WorldWideScience

Sample records for charge state ecr

  1. Future prospects for ECR plasma generators with improved charge state distributions

    International Nuclear Information System (INIS)

    The growing number and variety of fundamental, applied, and industrial uses for high intensity, high charge state ion beams continues to be the driving force behind efforts to develop Electron Cyclotron Resonance (ECR) ion sources with superior performance characteristics. Incumbent with the advent of sub-micron electronic devices and their fabrication has been the demand for improved process control and optimization. These demands have led to the development of methods for cleaning, chemical etching, and deposition of thin films based on the use of plasma devices including ECR sources. Despite the steady advance in the technology, ECR plasma heating has not yet reached its full potential in terms of charge state and intensity within a particular charge state, in part, because of the narrow band width, single-frequency microwave radiation commonly used to heat the plasma electrons. This heating technique, coupled with conventional minimum-B configuration magnetic fields used for confining the electrons, resulting in the formation of the thin, ECR surfaces within the plasma volumes of these sources. This report identifies fundamentally important methods for enhancing the performances of ECR plasma generators by transforming the ECR zones from surfaces to volumes. Two methods are readily available for increasing the sizes of these zones. These techniques include: (1) a tailored magnetic field configuration in combination with single-frequency microwave radiation to create a large uniformly distributed ECR volume and; (2) the use of broadband-frequency domain techniques derived from standard TWT technology, to transform the resonant plasma surfaces of traditional ECR ion sources into resonant plasma volumes

  2. Calculation of ion charge-state distribution in ECR ion sources

    International Nuclear Information System (INIS)

    Starting with the pioneering efforts of Y. Yongen (Louvain-la-Neuve, Belgium) a code has been developed to calculate the equilibrium ion charge-state distribution for electron-cyclotron resonance source (ECR) ion sources. Production of ions is caused by the impact ionization of the charge gas from ECR-heated electrons of a few keV. Loss of an ion of a given charge state is from charge exchange and radiative recombination. Ultimately, the ion flows out of the minimum-B containment region. The ion confinement times are calculated using an ion-trap-potential model which is based upon modeling calculations done at Lawrence Livermore National Laboratory (LLNL) for the Tandem Mirror Machine. Using this model requires the self-consistent determination of the trap potential and thermal electron density in the plasma. Code inputs are gas natural density, hot-electron temperature and density, ion temperature, cold-electron temperature, mirror ratio, physical dimensions, and atomic-physics data. Other than that there are no adjustable parameters. Results of comparison of calculations with the limited available data are reasonable

  3. On the physics of high charge state ion production in ECR ion sources

    International Nuclear Information System (INIS)

    Full text: In a previous research we have demonstrated that metal-dielectric (MD) structures have high capabilities of to enhance the high-charge-state ion production in ECR Ion Sources. In order to explain this effect, dedicated experiments have been performed, in which changes of main plasma parameters in the presence of a MD structure have been observed and an explanation for the mechanism of 'MD-effect' was given. In this contribution we present a new experiment, where we have concentrated on the question whether the effect of the high-charge-state enhancement by the MD structures is due to the presence of just a dielectric layer in the plasma chamber (e.g. working simply as a breaking of the non ambipolar wall currents) or whether details of the structure of the MD-layer play an essential role. By comparing ion charge state distributions (CSD) and Bremsstrahlung spectra for two MD cylinders, of drastically different layer thicknesses, the importance of the MD effect, and hence of the detailed structure of this type of layer for the production of very highly charged ions is demonstrated. The effect of the two different MD cylinders on the charge state distributions (CSD) of extracted argon ion is presented. It is obvious that both cylinders influence the CSD in a totally different manner. Whereas the thin MD-liner serves to strongly enhance the currents of ions with charge states higher than 9+, the thick MD-liner acted in the opposite way, i.e. enhancing the lower charge states. The experiments reported here demonstrate the role of the MD physics for obtaining an enhanced high charge state ion production in ECRIS. Following established scaling laws, the observed shift of the mean charge state in this experiment is equivalent to a frequency upgrade of an ECRIS from e.g. 14 GHZ to 18 GHz. It has also been demonstrated that than the simple fact of restoring ambipolarity by breaking the Simon short circuits cannot explain this effect. Therefore, the method may

  4. Global plasma simulation of charge state distribution inside a 2.45 GHz ECR plasma with experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Bodendorfer, M; Wurz, P; Hohl, M, E-mail: bodendorfer@ep.isas.jaxa.j [Space Research and Planetary Sciences, University of Bern, 3012 Bern (Switzerland)

    2010-08-15

    For the first time, the charge state distribution inside the MEsskammer fuer FlugzeitInStrumente und Time-Of-Flight (MEFISTO) electron cyclotron resonance (ECR) plasma and in the extracted ion beam was successfully simulated. A self-consistent ECR plasma ionization model (Hohl M 2002 MEFISTO II: Design, setup, characterization and operation of an improved calibration facility for solar plasma instrumentation PhD Thesis University of Bern) was further developed, recomputing the ion confinement time for every ion species and in every time step based on the actual plasma potential rather than using a prescribed constant ion confinement time. The simulation starts with a user defined set of initial conditions and develops the problem in time space by an adaptive step length fourth order Runge-Kutta (RK4) solver, considering particle densities based on ionization rates, recombination rates, ion confinement times and plasma potential. At the simulation end, a steady-state ion charge state distribution is reached, which is in excellent agreement with the measured ion beam charge state distribution of the MEFISTO ion source for Ar{sup 1+} to Ar{sup 5+} and in good agreement for Ar{sup 6+}.

  5. Global plasma simulation of charge state distribution inside a 2.45 GHz ECR plasma with experimental verification

    Science.gov (United States)

    Bodendorfer, M.; Wurz, P.; Hohl, M.

    2010-08-01

    For the first time, the charge state distribution inside the MEsskammer für FlugzeitInStrumente und Time-Of-Flight (MEFISTO) electron cyclotron resonance (ECR) plasma and in the extracted ion beam was successfully simulated. A self-consistent ECR plasma ionization model (Hohl M 2002 MEFISTO II: Design, setup, characterization and operation of an improved calibration facility for solar plasma instrumentation PhD Thesis University of Bern) was further developed, recomputing the ion confinement time for every ion species and in every time step based on the actual plasma potential rather than using a prescribed constant ion confinement time. The simulation starts with a user defined set of initial conditions and develops the problem in time space by an adaptive step length fourth order Runge-Kutta (RK4) solver, considering particle densities based on ionization rates, recombination rates, ion confinement times and plasma potential. At the simulation end, a steady-state ion charge state distribution is reached, which is in excellent agreement with the measured ion beam charge state distribution of the MEFISTO ion source for Ar1+ to Ar5+ and in good agreement for Ar6+.

  6. Ion charge state distributions in ECR-plasmas determined from mass spectrometry and X-ray spectroscopy

    International Nuclear Information System (INIS)

    The influence of microwave power, magnetic field, neutral gas pressure and gas mixture on the ion charge state distribution (CSD) of an electron cyclotron resonance (ECR) plasma was investigated by q/A-analysis of an ion beam extracted from the plasma and by X-ray spectroscopy of this plasma. As the ion beam expands from a limited plasma edge and the extraction process alters the plasma properties in this region a small plasma cone including the discharge core is investigated by the X-ray method. For this reason the measured CSD are significantly different. Additionally, the transmission of the ions to the beam stop depends on the q/A ratio of the ion species and can falsify the true, primary CSD. In this way, the analysis of ECR plasma X-rays represents a more accurate method to measure the CSD of a discharge. In comparison to the q/A analysis it provides the true distribution and, moreover, different plasma regions can be examined

  7. Techniques for enhancing the performance of high charge state ECR ion sources

    International Nuclear Information System (INIS)

    Electron Cyclotron Resonance ion source (ECRIS), which produces singly to highly charged ions, is widely used in heavy ion accelerators and is finding applications in industry. It has progressed significantly in recent years thanks to a few techniques, such as multiple-frequency plasma heating, higher mirror magnetic fields and a better cold electron donor. These techniques greatly enhance the production of highly charged ions. More than 1 emA of He2+ and O6+, hundreds of eμA of O7+, Ne8+, Ar12+, more than 100 eμA of intermediate heavy ions with charge states up to Ne9+, Ar13+, Ca13+, Fe13+, Co14+ and Kr18+, tens of eμA of heavy ions with charge states up to Xe28+, Au35+, Bi34+ and U34+ were produced at cw mode operation. At an intensity of about 1 eμA, the charge states for the heavy ions increased up to Xe36+, Au46+, Bi47+ and U48+. More than an order of magnitude enhancement of fully stripped argon ions was achieved (I≥0.1 and h;eμA). Higher charge state ions up to Kr35+, Xe46+ and U64+ at low intensities were produced for the first time from an ECRIS. copyright 1999 American Institute of Physics

  8. Production of highly charged ion beams from ECR ion sources

    International Nuclear Information System (INIS)

    Electron Cyclotron Resonance (ECR) ion source development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECR ion sources. So far at cw mode operation, up to 300 eμA of O7+ and 1.15 emA of O6+, more than 100 eμA of intermediate heavy ions for charge states up to Ar13+, Ca13+, Fe13+, Co14+ and Kr18+, and tens of eμA of heavy ions with charge states to Kr26+, Xe28+, Au35+, Bi34+ and U34+ have been produced from ECR ion sources. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe36+, Au46+, Bi47+ and U48+. An order of magnitude enhancement for fully stripped argon ions (I ≥ 60 enA) also has been achieved. This article will review the ECR ion source progress and discuss key requirement for ECR ion sources to produce the highly charged ion beams

  9. State of the Art ECR Ion Sources

    International Nuclear Information System (INIS)

    Electron Cyclotron Resonance (ECR) ion source which produces highly-charged ions is used in heavy ion accelerators worldwide. Applications also found in atomic physics research and industry ion implantation. ECR ion source performance continues to improve, especially in the last few years with new techniques, such as multiple-frequency plasma heating and better methods to provide extra cold electrons, combined with higher magnetic mirror fields. So far more than 1 emA of multiply-charged ions such as He2+ and O6+, and 30 eμA of Au32+, 1.1 eμA of 238U48+, and epA currents of very high charge states such as 86Kr35+ and 238U60+ have been produced

  10. A New Technique for Diagnosing Multi-charged Ion Beams Produced by ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    ZhangZimin; ZhaoHongwei; CaoYun; MaLei; MaBaohua; LiJinyu; WangHui; FengYucheng; DuJunfeng

    2003-01-01

    In order to study the transmission properties of multi-charged ion beams between the ECR ion source and the analyzing magnet, a new diagnostic system composed of three Wien-filters with three single-wires has been built and installed on the IMP ECR source test bcnch. The single-wire is used to measure the beam profile and the beam density distribution, and the Wien-filter is used to measure the charge state distribution of ion beam.

  11. Design of a 2.45 GHz ECR Ion Source for Production of Medium Charge States Ions

    International Nuclear Information System (INIS)

    At Lawrence Berkeley National Laboratory we are constructing an ECR ion source test facility for nuclear science experiments. For this purpose a single-stage 2.45 GHz electron cyclotron resonance ion source has been designed and fabricated. It features an axial magnetic field with a mirror ratio of up to 5.5 and a hexapole field produced by a novel Nd-Fe-B permanent magnet assembly. In order to enhance the ion confinement time the source plasma volume has been enlarged as much as possible while still maintaining a high mirror ratio. This paper describes the design of the source. Ion optics simulation of the extraction system currently under design will also be presented

  12. Design of a 4D Emittance Measurement Device for High Charge State ECR Ion Sources%高电荷态ECR离子源引出束流4D发射度测量仪设计

    Institute of Scientific and Technical Information of China (English)

    赵阳阳; 赵红卫; 孙良亭; 杨尧; 王云; 曹云

    2013-01-01

    For the purpose of on-line beam quality diagnostics and transverse emittance coupling investigation of the ion beams delivered by an Electron Cyclotron Resonance (ECR) ion source, a real-time 4D Pepper Pot type emittance scanner is under development at IMP(Institute of Moden Physics, Chinese Academy of Sciences). The high charge state ECR ion source at IMP could produce CW or pulsed heavy ion beam intensities in the range of 1 eµA∼1 emA with the kinetic energy of 10∼35 keV/q, which needs the design of the Pepper Pot scanner to be optimized accordingly. The Pepper Pot scanner has many features, such as very short response time and wide dynamic working range that the device could be applied. Since intense heavy ion beam bombardment is expected for this device, the structure and the material selection for the device is specially considered during the design, and a feasible solution to analyze the pictures acquired after the data acquisition is also made.%为了进一步探究高电荷态电子回旋共振(ECR)离子源引出束流品质和横向相空间耦合情况,根据中国科学院近代物理研究所高电荷态离子源引出束流发射度测量需求,针对束流流强为1 eµA∼1 emA,能量范围为10∼35 keV/q的直流或脉冲高电荷态重离子束,设计了一台实时四维Pepper-pot发射度测量仪。该Pepper-pot型发射度测量仪具有响应时间快和工作范围宽等特点。针对强流重离子束诊断的特点,在结构与材料选择上做了设计与优化,并对获得图像的处理方法提出了具体的解决办法。

  13. Electromagnetic analysis of the plasma chamber of an ECR-based charge breeder

    Energy Technology Data Exchange (ETDEWEB)

    Galatà, A., E-mail: alessio.galata@lnl.infn.it; Patti, G. [INFN-Laboratori Nazionali di Legnaro, Viale dell’Universitá 2, 35020 Legnaro, Padova (Italy); Celona, L.; Mascali, D.; Neri, L.; Torrisi, G. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy)

    2016-02-15

    The optimization of the efficiency of an ECR-based charge breeder is a twofold task: efforts must be paid to maximize the capture of the injected 1+ ions by the confined plasma and to produce high charge states to allow post-acceleration at high energies. Both tasks must be faced by studying in detail the electrons heating dynamics, influenced by the microwave-to-plasma coupling mechanism. Numerical simulations are a powerful tools for obtaining quantitative information about the wave-to-plasma interaction process: this paper presents a numerical study of the microwaves propagation and absorption inside the plasma chamber of the PHOENIX charge breeder, which the selective production of exotic species project, under construction at Legnaro National Laboratories, will adopt as charge breeder. Calculations were carried out with a commercial 3D FEM solver: first, all the resonant frequencies were determined by considering a simplified plasma chamber; then, the realistic geometry was taken into account, including a cold plasma model of increasing complexity. The results gave important information about the power absorption and losses and will allow the improvement of the plasma model to be used in a refined step of calculation reproducing the breeding process itself.

  14. Electromagnetic analysis of the plasma chamber of an ECR-based charge breeder.

    Science.gov (United States)

    Galatà, A; Patti, G; Celona, L; Mascali, D; Neri, L; Torrisi, G

    2016-02-01

    The optimization of the efficiency of an ECR-based charge breeder is a twofold task: efforts must be paid to maximize the capture of the injected 1+ ions by the confined plasma and to produce high charge states to allow post-acceleration at high energies. Both tasks must be faced by studying in detail the electrons heating dynamics, influenced by the microwave-to-plasma coupling mechanism. Numerical simulations are a powerful tools for obtaining quantitative information about the wave-to-plasma interaction process: this paper presents a numerical study of the microwaves propagation and absorption inside the plasma chamber of the PHOENIX charge breeder, which the selective production of exotic species project, under construction at Legnaro National Laboratories, will adopt as charge breeder. Calculations were carried out with a commercial 3D FEM solver: first, all the resonant frequencies were determined by considering a simplified plasma chamber; then, the realistic geometry was taken into account, including a cold plasma model of increasing complexity. The results gave important information about the power absorption and losses and will allow the improvement of the plasma model to be used in a refined step of calculation reproducing the breeding process itself. PMID:26932058

  15. Electromagnetic analysis of the plasma chamber of an ECR-based charge breeder

    Science.gov (United States)

    Galatà, A.; Patti, G.; Celona, L.; Mascali, D.; Neri, L.; Torrisi, G.

    2016-02-01

    The optimization of the efficiency of an ECR-based charge breeder is a twofold task: efforts must be paid to maximize the capture of the injected 1+ ions by the confined plasma and to produce high charge states to allow post-acceleration at high energies. Both tasks must be faced by studying in detail the electrons heating dynamics, influenced by the microwave-to-plasma coupling mechanism. Numerical simulations are a powerful tools for obtaining quantitative information about the wave-to-plasma interaction process: this paper presents a numerical study of the microwaves propagation and absorption inside the plasma chamber of the PHOENIX charge breeder, which the selective production of exotic species project, under construction at Legnaro National Laboratories, will adopt as charge breeder. Calculations were carried out with a commercial 3D FEM solver: first, all the resonant frequencies were determined by considering a simplified plasma chamber; then, the realistic geometry was taken into account, including a cold plasma model of increasing complexity. The results gave important information about the power absorption and losses and will allow the improvement of the plasma model to be used in a refined step of calculation reproducing the breeding process itself.

  16. The new ECR charge breeder for the Selective Production of Exotic Species project at INFN—Laboratori Nazionali di Legnaro

    International Nuclear Information System (INIS)

    The Selective Production of Exotic Species (SPES) project is an ISOL facility under construction at Istituto Nazionale di Fisica Nucleare–Laboratori Nationali di Legnaro (INFN-LNL). 1+ radioactive ions, produced and extracted from the target-ion-source system, will be charge bred to high charge states by an ECR charge breeder (SPES-CB): the project will adopt an upgraded version of the PHOENIX charge breeder, developed since about twenty years by the Laboratoire de Physique Subatomique et de Cosmologie (LPSC). The collaboration between LNL and LPSC started in 2010 with charge breeding experiments performed on the LPSC test bench and led, in June 2014, to the signature of a Research Collaboration Agreement for the delivery of a complete charge breeder and ancillaries, satisfying the SPES requirements. Important technological aspects were tackled during the construction phase, as, for example, beam purity issues, electrodes alignment, and vacuum sealing. This phase was completed in spring 2015, after which the qualification tests were carried out at LPSC on the 1+/q+ test stand. This paper describes the characteristics of the SPES-CB, with particular emphasis on the results obtained during the qualification tests: charge breeding of Ar, Xe, Rb, and Cs satisfied the SPES requirements for different intensities of the injected 1+ beam, showing very good performances, some of which are “best ever” for this device

  17. The new ECR charge breeder for the Selective Production of Exotic Species project at INFN—Laboratori Nazionali di Legnaro

    Science.gov (United States)

    Galatà, A.; Patti, G.; Roncolato, C.; Angot, J.; Lamy, T.

    2016-02-01

    The Selective Production of Exotic Species (SPES) project is an ISOL facility under construction at Istituto Nazionale di Fisica Nucleare-Laboratori Nationali di Legnaro (INFN-LNL). 1+ radioactive ions, produced and extracted from the target-ion-source system, will be charge bred to high charge states by an ECR charge breeder (SPES-CB): the project will adopt an upgraded version of the PHOENIX charge breeder, developed since about twenty years by the Laboratoire de Physique Subatomique et de Cosmologie (LPSC). The collaboration between LNL and LPSC started in 2010 with charge breeding experiments performed on the LPSC test bench and led, in June 2014, to the signature of a Research Collaboration Agreement for the delivery of a complete charge breeder and ancillaries, satisfying the SPES requirements. Important technological aspects were tackled during the construction phase, as, for example, beam purity issues, electrodes alignment, and vacuum sealing. This phase was completed in spring 2015, after which the qualification tests were carried out at LPSC on the 1+/q+ test stand. This paper describes the characteristics of the SPES-CB, with particular emphasis on the results obtained during the qualification tests: charge breeding of Ar, Xe, Rb, and Cs satisfied the SPES requirements for different intensities of the injected 1+ beam, showing very good performances, some of which are "best ever" for this device.

  18. The new ECR charge breeder for the Selective Production of Exotic Species project at INFN--Laboratori Nazionali di Legnaro.

    Science.gov (United States)

    Galatà, A; Patti, G; Roncolato, C; Angot, J; Lamy, T

    2016-02-01

    The Selective Production of Exotic Species (SPES) project is an ISOL facility under construction at Istituto Nazionale di Fisica Nucleare-Laboratori Nationali di Legnaro (INFN-LNL). 1+ radioactive ions, produced and extracted from the target-ion-source system, will be charge bred to high charge states by an ECR charge breeder (SPES-CB): the project will adopt an upgraded version of the PHOENIX charge breeder, developed since about twenty years by the Laboratoire de Physique Subatomique et de Cosmologie (LPSC). The collaboration between LNL and LPSC started in 2010 with charge breeding experiments performed on the LPSC test bench and led, in June 2014, to the signature of a Research Collaboration Agreement for the delivery of a complete charge breeder and ancillaries, satisfying the SPES requirements. Important technological aspects were tackled during the construction phase, as, for example, beam purity issues, electrodes alignment, and vacuum sealing. This phase was completed in spring 2015, after which the qualification tests were carried out at LPSC on the 1+/q+ test stand. This paper describes the characteristics of the SPES-CB, with particular emphasis on the results obtained during the qualification tests: charge breeding of Ar, Xe, Rb, and Cs satisfied the SPES requirements for different intensities of the injected 1+ beam, showing very good performances, some of which are "best ever" for this device. PMID:26932056

  19. The new ECR charge breeder for the Selective Production of Exotic Species project at INFN—Laboratori Nazionali di Legnaro

    Energy Technology Data Exchange (ETDEWEB)

    Galatà, A., E-mail: alessio.galata@lnl.infn.it; Patti, G.; Roncolato, C. [INFN-Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Padova, Legnaro (Italy); Angot, J.; Lamy, T. [LPSC-Université Grenoble Alpes-CNRS/IN2P3, 53 rue des Martyrs, 38026 Grenoble CEDEX (France)

    2016-02-15

    The Selective Production of Exotic Species (SPES) project is an ISOL facility under construction at Istituto Nazionale di Fisica Nucleare–Laboratori Nationali di Legnaro (INFN-LNL). 1+ radioactive ions, produced and extracted from the target-ion-source system, will be charge bred to high charge states by an ECR charge breeder (SPES-CB): the project will adopt an upgraded version of the PHOENIX charge breeder, developed since about twenty years by the Laboratoire de Physique Subatomique et de Cosmologie (LPSC). The collaboration between LNL and LPSC started in 2010 with charge breeding experiments performed on the LPSC test bench and led, in June 2014, to the signature of a Research Collaboration Agreement for the delivery of a complete charge breeder and ancillaries, satisfying the SPES requirements. Important technological aspects were tackled during the construction phase, as, for example, beam purity issues, electrodes alignment, and vacuum sealing. This phase was completed in spring 2015, after which the qualification tests were carried out at LPSC on the 1+/q+ test stand. This paper describes the characteristics of the SPES-CB, with particular emphasis on the results obtained during the qualification tests: charge breeding of Ar, Xe, Rb, and Cs satisfied the SPES requirements for different intensities of the injected 1+ beam, showing very good performances, some of which are “best ever” for this device.

  20. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L., E-mail: sunlt@impcas.ac.cn; Lu, W.; Zhang, W. H.; Feng, Y. C.; Qian, C.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W. [Institute of Modern Physics, CAS, Lanzhou 730000 (China); Guo, J. W.; Yang, Y.; Fang, X. [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-02-15

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω{sup 2} scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE{sub 01} and HE{sub 11} modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar{sup 12+}, 0.92 emA Xe{sup 27+}, and so on, will be presented.

  1. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    Science.gov (United States)

    Sun, L.; Guo, J. W.; Lu, W.; Zhang, W. H.; Feng, Y. C.; Yang, Y.; Qian, C.; Fang, X.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W.

    2016-02-01

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω2 scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE01 and HE11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar12+, 0.92 emA Xe27+, and so on, will be presented.

  2. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    International Nuclear Information System (INIS)

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω2 scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE01 and HE11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar12+, 0.92 emA Xe27+, and so on, will be presented

  3. Generation of multi-charged high current ion beams using the SMIS 37 gas-dynamic electron cyclotron resonance (ECR) ion source

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zorin, V. G. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Sidorov, A. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Bokhanov, A. F. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Izotov, I. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Razin, S. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Skalyga, V. A. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics

    2013-06-02

    A gas-dynamic ECR ion source (GaDIS) is distinguished by its ability to produce high current and high brightness beams of moderately charged ions. Contrary to a classical ECR ion source where the plasma confinement is determined by the slow electron scattering into an empty loss-cone, the higher density and lower electron temperature in a GaDIS plasma lead to an isotropic electron distribution with the confinement time determined by the prompt gas-dynamic flow losses. As a result, much higher ion fluxes are available, however a decrease in the confinement time of the GaDIS plasma lowers the ion charge state. The gas-dynamic ECR ion source concept has been successfully realized in the SMIS 37 experimental facility operated at the Institute of Applied Physics, Russia. The use of high-power (~100 kW) microwave (37.5 GHz) radiation provides a dense plasma (~1013 cm-3) with a relatively low electron temperature (~50- 100 eV) and allows for the generation of high current (~1 A/cm2) beams of multi-charged ions. In this work we report on the present status of the SMIS 37 ion source and discuss the advanced numerical modeling of ion beam extraction using the particle-in-cell code WARP

  4. A new numerical description of the interaction of an ion beam with a magnetized plasma in an ECR-based charge breeding device

    Science.gov (United States)

    Galatà, A.; Mascali, D.; Neri, L.; Celona, L.

    2016-08-01

    The ion beam-plasma interaction is a relevant topic in several fields of plasma physics, from fusion devices to modern ion sources. This paper discusses the numerical modelling of the whole beam-plus-plasma-target system in case of 1+  ions entering an ECR-based charge breeder (ECR-CB). The model is able to reproduce the ion capture and the creation of the first charge states in the selected physics case, i.e. the interaction of a 85Rb1+ ions with the plasma of the 14.5 GHz PHOENIX ECR-CB installed at the Laboratoire de Physique Subatomique et de Cosmologie (LPSC) of Grenoble. The results show that a very narrow window of physical parameters for both the beam (energy and energy spread especially) and plasma (ion temperature, density, density structural distribution, self-generated ambipolar fields) exists which is able to reproduce very well the experimental results, providing an exhaustive picture of the involved phenomena. Possible non-linear interactions and the role played by the eventual onset of instabilities are also discussed.

  5. Operation of the ORNL ECR source

    International Nuclear Information System (INIS)

    During the past year, the ORNL ECR source has fully demonstrated its capability for providing the high charge state, high current beams required for our group's atomic physics research program. The ECR source, which is dedicated completely for use in our investigations of the collisional properties of multicharged ions, has permitted considerable expansion of research in some areas, and has opened other areas that were experimentally unaccessible to us previously. A partial list of publications resulting from implementation of the ECR source is provided in the appendix

  6. Performance of the LBL ECR ion source

    International Nuclear Information System (INIS)

    The LBL Electron Cyclotron Resonance (ECR) ion source in test operation since January 1984 has produced a wide variety of high charge state ion beams suitable for injection into the 88-Inch Cyclotron. Two recent developments have dramatically improved the capability of the ECR source. The first development was the production of metallic ions. The intensities of aluminum ions produced were 36, 22, 10, and .065 eμA for charge states 6, 7, 8, and 11, respectively. Calcium ion intensities were 36, 31, 4.6, and 0.20 eμA for charge states 8, 9, 12, and 14, respectively. The second development was the replacement of the sextupole magnet used in of all other high charge state ECR sources with an octupole structure. This modification resulted in a dramatic improvement in the intensities of the high charge state beams and a significant upward shift in the charge state distribution (C.S.D.). The ECR-octupole or OCTIGUN has produced 89, 52, 9, and 2.5 eμA of Ar/sup 8,9,11,12+/ and 21, 10, and 0.34 eμA of Kr/sup 10,14,18+/, respectively. For the high charge states of argon and krypton the improvement gained by using the octupole is typically a factor of 5 to 10

  7. Commissioning of the superconducting ECR ion source VENUS

    OpenAIRE

    Leitner, Daniela; Abbott, Steve R.; Dwinell, Roger D.; Leitner, Matthaeus; Taylor, Clyde; Lyneis, Claude M.

    2003-01-01

    VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The magnetic confinement configuration consists of three superconducting axial coils and six superconducting radial coils in a sextupole configuration. The nomi...

  8. Radioactive Beams from 252CF Fission Using a Gas Catcher and an ECR Charge Breeder at ATLAS

    CERN Document Server

    Pardo, Richard C; Hecht, Adam; Moore, Eugene F; Savard, Guy

    2005-01-01

    An upgrade to the radioactive beam capability of the ATLAS facility has been proposed using 252Cf fission fragments thermalized and collected into a low-energy particle beam using a helium gas catcher. In order to reaccelerate these beams an existing ATLAS ECR ion source will be reconfigured as a charge breeder source. A 1Ci 252Cf source is expected to provide sufficient yield to deliver beams of up to ~106 far from stability ions per second on target. A facility description, the expected performance and the expected performance will be presented in this paper. This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract W-31-109-ENG-38.

  9. HIGH-INTENSITY, HIGH CHARGE-STATE HEAVY ION SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI,J.G.

    2004-08-16

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions is reviewed. These sources include ECR, EBIS, and Laser ion sources. Benefits and limitations for these type sources are described. Possible future improvements in these sources are also mentioned.

  10. Investigation of the performances of an ECR charge breeder at ISOLDE: a study of the 1+ → n+ scenario for the next generation ISOL facilities

    International Nuclear Information System (INIS)

    The work I describe here was performed at ISOLDE, CERN. It aimed at giving an objective report of the current performances of Electron Cyclotron Resonance (ECR) ion sources used as charge breeders, with both stable and radioactive ion beams. As a prerequisite, some technical developments were undertaken to improve the setup and to lead the tests with optimal conditions. A major part of these developments concerns beam purity, and is detailed in this thesis. Then, the program of measurements of the charge breeding efficiencies of various isotopes was completed with different charge breeding modes. I analyzed the results of these experiments and compared them to the current performances of other types of charge breeding methods. At the end, some conclusions are drawn from this investigation in perspective of the choices to make for future ISOL post-accelerators. The discussion is extended to the immediate application of ECR charge bred radioactive ion beams to physics experiments, for which I proposed and performed additional tests. (author)

  11. Recent developments of the LBL ECR ion source

    International Nuclear Information System (INIS)

    The performance of the LBL ECR has improved significantly since January 85 when the last ECR Ion Source Workshop was held in Berkeley. The 88-Inch Cyclotron began regular operation with the ECR source just prior to the workshop. Since then about 80% of the cyclotron operating schedule has been with the ECR source. The light-ion filament source is used only for runs two or more shifts in length using proton, 3He, or alpha beams. Occasionally the polarized ion source is used. The heavy-ion PIG sources are not longer used. The operating experience with the Cyclotron+ECR has been highly successful in terms of reliability, stability, production of high charge state currents, and in the range of ions which can be produced. For example, a 32.5 MeV/u 16O8+ beam was developed and successfully used for a nuclear structure experiment. The 60 nA beam available from the cyclotron was more intense than the experiment could use. A 1.08 GeV 36Ar18+ beam was used to test the response of various scintillator materials to intermediate energy heavy ions. Three aspects of the LBL ECR source development are discussed. First, the installation of a new first stage cavity has resulted in improved source performance. Second, a number of metal ion beams have been developed and are used regularly for nuclear science experiments with the cyclotron. Third, the source performance has been compared to charge state distribution (CSD) calculations using a computer code

  12. Status of ECR ion sources at JAERI

    CERN Document Server

    Yokota, W; Nara, T; Ishi, Y; Arakawa, K; Ohkoshi, K

    1999-01-01

    At the Takasaki site of Japan Atomic Energy Research Institute, four ECR ion sources were purchased or developed so far. This paper will report their performance, modification and status. The outlines for each source are as follows; 1. OCTOPUS purchased from IBA s.a. has been in use with a cyclotron since 1990. The gas feed system was modified to change gas species within 10 minutes to avoid impurity ions in the cocktail beam acceleration technique of the cyclotron. 2. ECR-18 with 18-GHz microwave has a solenoid coil between a pair of mirror coils to change mirror ratio in a wide range. A bump between mirror peaks in the original axial field distribution was removed by halving the solenoid length. The performance in generating high charge state ions was significantly improved as a result. 3. HYPERNANOGAN was purchased from PANTECHNIK s.a. and installed in the cyclotron system this year. Test operation was successfully made with generation of Ar, Pb and Ta ions. 4. MINI ECR is a full permanent magnet source wi...

  13. 6.4 GHz ECR ion source at VECC

    Indian Academy of Sciences (India)

    G S Taki; D K Chakraborty; R K Bhandari

    2002-11-01

    The 6.4 GHz ECR ion source that was indigenously developed a few years ago has been operating continuously for injecting oxygen and neon beams to the cyclotron since 1997. VEC-ECR is a single stage high magnetic field ion source provided with a negatively biased electron repeller placed on the axis, near the injection mirror point. The supply of cold electrons and use of low mass mixing gas improve the stability of ECR plasma. Very recently, the effect of aluminum oxide coating on the copper plasma chamber wall has been studied. The plasma chamber wall was coated with aluminum by vacuum evaporation method and then exposed to oxygen gas to form aluminum oxide. It was noticed that the process substantially shifts the charge state distribution to the higher charge state with an enhancement of ion current by an order of magnitude. With the aluminized plasma chamber, the VEC-ECR can now produce 12 A of O7+, 6.5 A of Ar12+, 1.5 A of Kr20+ and 1.0 A of Xe31+.

  14. A Newly Designed 14.5 GHz All Permanent ECR Ion Source in IMP

    Institute of Scientific and Technical Information of China (English)

    SunLiangting; ZhaoHongwei; ZhangZimin; WangHui; MaBaohua; D.Hitz

    2003-01-01

    A new all permanent ECR (Electron Cyclotron Resonance) ion source LAPECR2 (Lanzhou All Permanent ECRIS No. 2) is now under developing in IMP. This source will be used to set up on thc IMP 400 HV (High Voltage) platform. This HV platform aims to deliver high ion beams from low charge state to very high charge state, so the rigorous requirement to this ECRIS is obvious. To satisfy this requirement, the ion source is designed to be a very large one, which has very large volumc plasma chamber, larger ECR length and mirror length, and very strong 3 -dimension magnetic field. The detail parameters, are shown in Table 1 listed below.

  15. PuMa-ECR ion source operation

    International Nuclear Information System (INIS)

    The PuMa (Pulsed Magnetic field)-ECR ion source uses a pulsed solenoid coil to improve the peak current by opening the magnetic bottle along the beam axis. After demonstration of the principle of the pulsed magnetic extraction, the ion source was tested with different gases. We got promising results from helium up to krypton. For xenon the enhancement of the analyzed current was only in the same order as the enhancement of the afterglow. The influence of the current in the pulsed coil on the analyzed ion current was measured. With increased current levels in the pulsed coil the pulse height of the PuMa-pulse increases within the given pulse length of the coil. By using the pulsed coil the maximum of the charge state distribution can be shifted to higher charge states. (author)

  16. Proceedings of the workshop on the compact ECR ion source for highly charged ions with high efficiency

    International Nuclear Information System (INIS)

    This report is the collection of the summaries of OHP copies presented at the title workshop. In Tanashi Institute, the Institute for Particle and Nuclear Studies, the High Energy Accelerator Research Organization, as an E-Arena developmental research in the High Intensity Proton Accelerator Facility (KEK-JAERI Joint Project), a short-lived nucleus formation, separation and acceleration apparatus to form, separate and accelerate a short-lived nucleus by using beams from already installed SF cyclotron was finished. Together with movement from Tanashi to Tsukuba, plannings on effective application of the apparatus in Tanashi before finishing of the E-Arena in the Accelerator Facility have been investigated from various viewpoints. Therefore, it was necessary to develop present target and ion source system to supply short-lived nuclear ions formed by the ISOL method to a post-accelerator so as to be applicable to new possibility. Specification and applicability of ECR ion source under a center of groups relating to its development and actual application were reported. (G.K.)

  17. Present status of FLNR (JINR) ECR ion sources

    International Nuclear Information System (INIS)

    Six ECR ion sources have been operated in the Flerov Laboratory of Nuclear Reactions (JINR). Two 14 GHz ECR ion sources (ECR4M and DECRIS-2) supply various ion species for the U400 and U400M cyclotrons correspondingly for experiments on the synthesis of heavy and exotic nuclei using ion beams of stable and radioactive isotopes. The 18 GHz DECRIS-SC ion source with superconducting magnet system produces ions from Ar up to W for solid state physics experiments and polymer membrane fabrication at the IC-100 cyclotron. The third 14 GHz ion source DECRIS-4 with 'flat' minimum of the axial magnetic field is used as a stand alone machine for test experiments and also for experiments on ion modification of materials. The other two compact ECR ion sources with all permanent magnet configuration have been developed for the production of single charged ions and are used at the DRIBs installation and at the MASHA mass-spectrometer. In this paper, present status of the ion sources, recent developments and plans for modernization are reported. The paper is followed by the slides of the presentation. (authors)

  18. Proceedings of the 10th international workshop on ECR ion sources

    International Nuclear Information System (INIS)

    This report contains papers on the following topics: Recent Developments and Future Projects on ECR Ion Sources; Operation of the New KVI ECR Ion Source at 10 GHz; Operational Experience and Status of the INS SF-ECR Ion Source; Results of the New ''ECR4'' 14.5 GHz ECRIS; Preliminary Performance of the AECR; Experimental Study of the Parallel and Perpendicular Particle Losses from an ECRIS Plasma; Plasma Instability in Electron Cyclotron Resonance Heated Ion Sources; The Hyperbolic Energy Analyzer; Status of ECR Source Development; The New 10 GHz CAPRICE Source; First Operation of the Texas A ampersand M ECR Ion Source; Recent Developments of the RIKEN ECR Ion Sources; The 14 GHz CAPRICE Source; Characteristics and Potential Applications of an ORNL Microwave ECR Multicusp Plasma Ion Source; ECRIPAC: The Production and Acceleration of Multiply Charged Ions Using an ECR Plasma; ECR Source for the HHIRF Tandem Accelerator; Feasibility Studies for an ECR-Generated Plasma Stripper; Production of Ion Beams by using the ECR Plasmas Cathode; A Single Stage ECR Source for Efficient Production of Radioactive Ion Beams; The Single Staged ECR Source at the TRIUMF Isotope Separator TISOL; The Continuous Wave, Optically Pumped H- Source; The H+ ECR Source for the LAMPF Optically Pumped Polarized Ion Source; Present Status of the Warsaw CUSP ECR Ion Source; An ECR Source for Negative Ion Production; GYRAC-D: A Device for a 200 keV ECR Plasma Production and Accumulation; Status Report of the 14.4 GHZ ECR in Legnaro; Status of JYFL-ECRIS; Report on the Uppsala ECRIS Facility and Its Planned Use for Atomic Physics; A 10 GHz ECR Ion Source for Ion-Electron and Ion-Atom Collision Studies; and Status of the ORNL ECR Source Facility for Multicharged Ion Collision Research

  19. Proceedings of the 10th international workshop on ECR ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, F W; Kirkpatrick, M I [eds.

    1991-01-01

    This report contains papers on the following topics: Recent Developments and Future Projects on ECR Ion Sources; Operation of the New KVI ECR Ion Source at 10 GHz; Operational Experience and Status of the INS SF-ECR Ion Source; Results of the New ECR4'' 14.5 GHz ECRIS; Preliminary Performance of the AECR; Experimental Study of the Parallel and Perpendicular Particle Losses from an ECRIS Plasma; Plasma Instability in Electron Cyclotron Resonance Heated Ion Sources; The Hyperbolic Energy Analyzer; Status of ECR Source Development; The New 10 GHz CAPRICE Source; First Operation of the Texas A M ECR Ion Source; Recent Developments of the RIKEN ECR Ion Sources; The 14 GHz CAPRICE Source; Characteristics and Potential Applications of an ORNL Microwave ECR Multicusp Plasma Ion Source; ECRIPAC: The Production and Acceleration of Multiply Charged Ions Using an ECR Plasma; ECR Source for the HHIRF Tandem Accelerator; Feasibility Studies for an ECR-Generated Plasma Stripper; Production of Ion Beams by using the ECR Plasmas Cathode; A Single Stage ECR Source for Efficient Production of Radioactive Ion Beams; The Single Staged ECR Source at the TRIUMF Isotope Separator TISOL; The Continuous Wave, Optically Pumped H{sup {minus}} Source; The H{sup +} ECR Source for the LAMPF Optically Pumped Polarized Ion Source; Present Status of the Warsaw CUSP ECR Ion Source; An ECR Source for Negative Ion Production; GYRAC-D: A Device for a 200 keV ECR Plasma Production and Accumulation; Status Report of the 14.4 GHZ ECR in Legnaro; Status of JYFL-ECRIS; Report on the Uppsala ECRIS Facility and Its Planned Use for Atomic Physics; A 10 GHz ECR Ion Source for Ion-Electron and Ion-Atom Collision Studies; and Status of the ORNL ECR Source Facility for Multicharged Ion Collision Research.

  20. Electron cyclotron resonance (ECR) ion sources

    International Nuclear Information System (INIS)

    Starting with the pioneering work of R. Geller and his group in Grenoble (France), at least 14 ECR sources have been built and tested during the last five years. Most of those sources have been extremely successful, providing intense, stable and reliable beams of highly charged ions for cyclotron injection or atomic physics research. However, some of the operational features of those sources disagreed with commonly accepted theories on ECR source operation. To explain the observed behavior of actual sources, it was found necessary to refine some of the crude ideas we had about ECR sources. Some of those new propositions are explained, and used to make some extrapolations on the possible future developments in ECR sources

  1. Model of ionization equilibrium for a source of multiply charged ions of E.C.R. type

    International Nuclear Information System (INIS)

    An attempt is made to find a theoretical model which would describe the mecahnism inherent to a multiply charged heavy ion source with continuous extraction. The processes of radiative recombination are negligible and it thus results an ionization equilibrium governed by ionization and diffusion not very far from the 'coronal' equilibrium. We propose to put into evidence that the lifetime tausub(Z) of an ion of charge Z varies as Z3. The theoretical ion charge distributions will be compared with those obtained experimentally in the case of an Argon beam

  2. Development of a pepper-pot emittance meter for diagnostics of low-energy multiply charged heavy ion beams extracted from an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Nagatomo, T., E-mail: nagatomo@riken.jp; Kase, M.; Kamigaito, O.; Nakagawa, T. [Nishina Center for Accelerator Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Tzoganis, V. [Nishina Center for Accelerator Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Cockcroft Institute, Daresbury, Warrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool, Merseyside L69 3BX (United Kingdom)

    2016-02-15

    Several fluorescent materials were tested for use in the imaging screen of a pepper-pot emittance meter that is suitable for investigating the beam dynamics of multiply charged heavy ions extracted from an ECR ion source. SiO{sub 2} (quartz), KBr, Eu-doped CaF{sub 2}, and Tl-doped CsI crystals were first irradiated with 6.52-keV protons to determine the effects of radiation damage on their fluorescence emission properties. For such a low-energy proton beam, only the quartz was found to be a suitable fluorescent material, since the other materials suffered a decay in fluorescence intensity with irradiation time. Subsequently, quartz was irradiated with heavy {sup 12}C{sup 4+}, {sup 16}O{sup 4+}, and {sup 40}Ar{sup 11+} ions, but it was found that the fluorescence intensity decreased too rapidly to measure the emittance of these heavy-ion beams. These results suggest that a different energy loss mechanism occurs for heavier ions and for protons.

  3. Development of a pepper-pot emittance meter for diagnostics of low-energy multiply charged heavy ion beams extracted from an ECR ion source

    Science.gov (United States)

    Nagatomo, T.; Tzoganis, V.; Kase, M.; Kamigaito, O.; Nakagawa, T.

    2016-02-01

    Several fluorescent materials were tested for use in the imaging screen of a pepper-pot emittance meter that is suitable for investigating the beam dynamics of multiply charged heavy ions extracted from an ECR ion source. SiO2 (quartz), KBr, Eu-doped CaF2, and Tl-doped CsI crystals were first irradiated with 6.52-keV protons to determine the effects of radiation damage on their fluorescence emission properties. For such a low-energy proton beam, only the quartz was found to be a suitable fluorescent material, since the other materials suffered a decay in fluorescence intensity with irradiation time. Subsequently, quartz was irradiated with heavy 12C4+, 16O4+, and 40Ar11+ ions, but it was found that the fluorescence intensity decreased too rapidly to measure the emittance of these heavy-ion beams. These results suggest that a different energy loss mechanism occurs for heavier ions and for protons.

  4. Beam simulation studies of ECR beam extraction and low energy beam transport for FRIB.

    Science.gov (United States)

    Ren, Haitao; Pozdeyev, Eduard; Lund, Steven M; Machicoane, Guillaume; Wu, Xiaoyu; Morgan, Glenn

    2016-02-01

    To meet the beam power requirements of 400 kW at the fragmentation target for facility for Rare Isotope Beams (FRIB), simultaneous acceleration of two-charge states should be used for heavier ions. These intense multi-charged ion beams will be produced by a 28 GHz electron cyclotron resonance (ECR) ion source at a high voltage of 35 kV. After extraction, the ion beam will be pre-accelerated to 12 keV/u with a 50 kV platform, transported down to an achromatic charge state selection (CSS) system followed by a vertical transport line, and then injected into a radio frequency quadrupole accelerator. The TRACK code developed at ANL is used to perform the simulations of the ECR beam extraction and low energy beam transport for FRIB. In this study, we include the magnetic field of ECR ion source into simulations. Different initial beam conditions as well as different space charge neutralization levels are tested for the ECR beamline. The beam loss in CSS system and the corresponding protective measures are discussed. The detailed results about the beam dynamic simulation and beam loss in CSS system will be presented in this paper.

  5. Beam simulation studies of ECR beam extraction and low energy beam transport for FRIB

    International Nuclear Information System (INIS)

    To meet the beam power requirements of 400 kW at the fragmentation target for facility for Rare Isotope Beams (FRIB), simultaneous acceleration of two-charge states should be used for heavier ions. These intense multi-charged ion beams will be produced by a 28 GHz electron cyclotron resonance (ECR) ion source at a high voltage of 35 kV. After extraction, the ion beam will be pre-accelerated to 12 keV/u with a 50 kV platform, transported down to an achromatic charge state selection (CSS) system followed by a vertical transport line, and then injected into a radio frequency quadrupole accelerator. The TRACK code developed at ANL is used to perform the simulations of the ECR beam extraction and low energy beam transport for FRIB. In this study, we include the magnetic field of ECR ion source into simulations. Different initial beam conditions as well as different space charge neutralization levels are tested for the ECR beamline. The beam loss in CSS system and the corresponding protective measures are discussed. The detailed results about the beam dynamic simulation and beam loss in CSS system will be presented in this paper

  6. Spectroscopic Investigation of Nitrogen Loaded ECR Plasmas

    CERN Document Server

    Ullmann, F; Zschornack, G; Küchler, D; Ovsyannikov, V P

    1999-01-01

    Energy dispersive X-ray spectroscopy on ions in the plasma and magnetic q/A-analysis of the extracted ions were used to determine the plasmaproperties of nitrogen loaded ECR plasmas.As the beam expands from a limited plasma region and the ion extraction process alters the plasma properties in the extraction meniscus thebeam composition does not correspond to the bulk plasma composition. The analysis of measured spectra of characteristic X-rays delivers a method to determine the ion charge state distribution and the electron energy distribution inside the plasma and does not alter the plasma anddoes not depend on the extraction and transmission properties of the ion extraction and transport system. Hence this method seems to be moreaccurate than the traditional magnetic analysis and allows to analyse different plasma regions.A comparison between ion charge state distributions determined from X-ray spectra and such from q/A-analysis shows significant differencesfor the mean ion charge states in the source plasm...

  7. High-charge-state ion sources

    International Nuclear Information System (INIS)

    Sources of high charge state positive ions have uses in a variety of research fields. For heavy ion particle accelerators higher charge state particles give greater acceleration per gap and greater bending strength in a magnet. Thus higher energies can be obtained from circular accelerators of a given size, and linear accelerators can be designed with higher energy gain per length using higher charge state ions. In atomic physics the many atomic transitions in highly charged ions supplies a wealth of spectroscopy data. High charge state ion beams are also used for charge exchange and crossed beam experiments. High charge state ion sources are reviewed

  8. Design of a compact all-permanent magnet ECR ion source injector for ReA at the MSU NSCL

    Science.gov (United States)

    Pham, Alfonse N.; Leitner, Daniela; Glennon, Patrick; Ottarson, Jack; Lawton, Don; Portillo, Mauricio; Machicoane, Guillaume; Wenstrom, John; Lajoie, Andrew

    2016-06-01

    The design of a compact all-permanent magnet electron cyclotron resonance (ECR) ion source injector for the ReAccelerator Facility (ReA) at the Michigan State University (MSU) National Superconducting Cyclotron Laboratory (NSCL) is currently being carried out. The ECR ion source injector will complement the electron beam ion trap (EBIT) charge breeder as an off-line stable ion beam injector for the ReA linac. The objective of the ECR ion source injector is to provide continuous-wave beams of heavy ions from hydrogen to masses up to 136Xe within the ReA charge-to-mass ratio (Q / A) operational range from 0.2 to 0.5. The ECR ion source will be mounted on a high-voltage platform that can be adjusted to obtain the required 12 keV/u injection energy into a room temperature radio-frequency quadrupole (RFQ) for further acceleration. The beam line consists of a 30 kV tetrode extraction system, mass analyzing section, and optical matching section for injection into the existing ReA low energy beam transport (LEBT) line. The design of the ECR ion source and the associated beam line are discussed.

  9. Microwave Coupling to ECR and Alternative Heating Methods

    CERN Document Server

    Celona, L

    2013-01-01

    The Electron Cyclotron Resonance Ion Source (ECRIS) is nowadays the most effective device that can feed particle accelerators in a continuous and reliable way, providing high-current beams of low- and medium-charge-state ions and relatively intense currents for highly charged ions. The ECRIS is an important tool for research with ion beams (in surface, atomic, and nuclear science) while, on the other hand, it implies plasma under extreme conditions and thus constitutes an object of scientific interest in itself. The fundamental aspect of the coupling between the electromagnetic wave and the plasma is hereinafter treated together with some variations to the classical ECR heating mechanism, with particular attention being paid to the frequency tuning effect and two-frequency heating. Considerations of electron and ion dynamics will be presented together with some recent observations connecting the beam shape with the frequency of the electromagnetic wave feeding the cavity. The future challenges of higher-charg...

  10. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Lu, W., E-mail: luwang@impcas.ac.cn; Qian, C.; Sun, L. T.; Zhang, X. Z.; Feng, Y. C.; Ma, B. H.; Zhao, H. W.; Zhan, W. L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China); Fang, X.; Guo, J. W.; Yang, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, B.; Ruan, L. [Institute of Electrical Engineering, CAS, Beijing 100190 (China); Xie, D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-02-15

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O{sup 7+}, 620 eμA of Ar{sup 11+}, 430 eμA of Ar{sup 12+}, 430 eμA of Xe{sup 20+}, and so on. The comparison will be discussed in the paper.

  11. Direct injection of intense heavy ion beams from a high performance ECR ion source into an RFQ

    International Nuclear Information System (INIS)

    Beam intensities achievable from high performance ECR sources for highly charged ions are limited by the high space charge. For high performance ECR sources, the stray magnetic field of the source can provide focusing against the space charge blow-up of the beam when used with the Direct Plasma Injection Scheme (DPIS) developed for laser ion sources. A combined extraction/matching system has been designed for direct injection into a radio frequency quadrupole (RFQ) accelerator, allowing a total beam current of 12 mA for the production of highly charged 238U40 +(0.49 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ionsource extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of the ion beam. The RFQ has been designed to suppress most of the charge states extracted from the ECR, acting as a filter for the desired 238U40+. This reduces the transport problem for the beam line as well as reduces the emittance for the transmitted charge states. Such an rfq-channel might be very effective and less q/m sensitive for the extraction system of all high performing ECR ion sources. This technique has promising applications for injecting and transporting very intense beams into RFQ accelerators for research, ADSS and more efficient, compact neutron generators. The accelerator driven sub-critical system (ADSS) being developed at various laboratories around the world to create nuclear energy may also benefit from this technique, both in terms of transporting intense beams of protons and making the low energy segment more compact. This RFQ is essentially a buncher configured as a charge filter, so RIB facilities can take advantage of this technique. The charge breeding concept can be utilised with a powerful ECR ion source directly coupled to this

  12. Multiple Ionization Of Metal Ions By ECR Heating Of Electrons In Vacuum Arc Plasmas

    Science.gov (United States)

    Vodopyanov, A. V.; Golubev, S. V.; Mansfeld, D. A.; Nikolaev, A. G.; Oks, E. M.; Razin, S. V.; Savkin, K. P.

    2005-03-01

    A joint research and development effort has been initiated, whose ultimate goal is the enhancement the mean ion charge states in vacuum arc metal plasmas by a combination of a vacuum arc discharge and an electron cyclotron resonance (ECR) heating. Metal plasma was generated by a special vacuum arc mini-gun and injected into mirror magnetic trap. Plasma was pumped by high frequency gyrotron-generated microwave radiation (frequency 37.5 GHz, max power 100 kW, pulse duration 1.5 ms). Using of powerful microwaves makes it possible to sustain sufficient temperature of electrons needed for multiple ionizations at high plasma density (more then 1013 cm-3). Parameter of multiple ionization efficiency Neτi, where Ne is plasma density, τi, is ion lifetime, in such a case could reach rather high value ˜109 cm-3-s. In our situation τi = Ltrap/Vi, where Ltrap is trap length, Vi is plasma gun flow velocity. The results have demonstrated substantial multiple ionization of metal ions (including metals with high melting temperature). For a metal (lead, platinum) plasma, ECR heating shifted the average ion charge up to 5+. Further increase of the ion charge states will be attained by increasing the vacuum arc plasma density and optimizing the ECR heating conditions.

  13. Design aspects of a compact, single-frequency, permanent magnet ECR ion source with a large uniformly distributed resonant plasma volume

    International Nuclear Information System (INIS)

    A compact, all-permanent-magnet single-frequency ECR ion source with a large uniformly distributed ECR plasma volume has been designed and is presently under construction at the Oak Ridge National Laboratory (ORNL). The central region of the field is designed to achieve a flat-field (constant mod-B) which extends over the length of the central field region along the axis of symmetry and radially outward to form a uniformly distributed ECR plasma volume. The magnetic field design strongly contrasts with those used in conventional ECR ion sources where the central field regions are approximately parabolic and the consequent ECR zones are surfaces. The plasma confinement magnetic field mirror has a mirror ratio Bmax/BECR of slightly greater than two. The source is designed to operate at a nominal RF frequency of 6 GHz. The central flat magnetic field region can be easily adjusted by mechanical means to tune the source to the resonant conditions within the limits of 5.5 to 6.8 GHz. The RF injection system is broadband to ensure excitation of transverse electric (TE) modes so that the RF power is largely concentrated in the resonant plasma volume which lies along and surrounds the axis of symmetry of the source. Because of the much larger ECR zone, the probability for absorption of microwave power is dramatically increased thereby increasing the probability for acceleration of electrons, the electron temperature of the plasma and, consequently, the hot electron population within the plasma volume of the source. The creation of an ECR volume rather than a surface is commensurate with higher charge states and higher beam intensities within a particular charge state

  14. Numerical simulation program of multicomponent ion beam transport from ECR ion source

    Institute of Scientific and Technical Information of China (English)

    MA Lei; SONG Ming-Tao; CAO Yun; ZHAO Hong-Wei; ZHANG Zi-Min; LI Xue-Qian; LI Jia-Cai

    2004-01-01

    In order to research multi-component ion beam transport process and improve transport efficiency, a special simulating program for ECR beam is becoming more and more necessary. We have developed a program written by Visual Basic to be dedicated to numerical simulation of the highly charged ion beam and to optimization of beam dynamics in transport line. In the program the exchange of electrons between highly charged ions and low chargedions or neutral atoms (residual gas in transport line) is taken into account, adopting classical molecular over-barrier model and Monte Carlo method, so the code can easily give the change of charge state distribution along the transmission line. The main advantage of the code is the ability to simultaneously simulate a large quantity of ions with different masses and charge states, and particularly, to simulate the loss of highly charged ions and the increase of low charged ions due to electron exchange in the whole transport process. Some simulations have been done to study the transmission line of LECR3[1] which is an ECR ion source for highly charged ion beam at IMP. Compared with experimental results, the simulations are considered to be successful.

  15. Development of ECR ion source and LEBT technology for RIA

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Daniela; Lyneis, Claude M.; Abbott, Steven R.; Dwinell, Roger D.; Leitner, Matthaeus; Silver, Charles S.; Taylor, Clyde E.

    2004-08-10

    The Rare Isotope Accelerator (RIA) Linac driver requires a great variety of high charge state ion beams with up to a magnitude higher intensity than currently achievable for the heaviest masses. The goal of the RIA injector R&D program for VENUS is the reliable production of intense medium charge state ion beams, e.g., 8 puA (particle mu A) of U29+. Therefore, the superconducting ECR ion source VENUS has been designed from the beginning for optimum operation at 28 GHz at high power (10 kW). In addition, a high intensity Low Energy Beam Transport, LEBT, that was developed to analyze and transport these multiply-charged, space charge dominated beams. During the last year VENUS was commissioned at 18 GHz and preparations for 28 GHz operation continued. Tests with various gases and recently metals have been performed with up to 2000 W of 18 GHz RF power. Promising performance has been measured in those preliminary beam tests. For example, 180 p mu A of O6+, 15 p mu A of Ar12+, 7.5 puA of X e20+ and 4puA of Bi24+ were produced in the early commissioning phase, ranking VENUS among the currently highest performance 18 GHz ECR ion sources. In FY04 a 10 kW 28 gyrotron system will be added, which will enable VENUS to reach full performance. The emittance of the beams produced at 18 GHz was measured with a two axis emittance scanner developed with earlier RIA R&D funds.

  16. On-line charge breeding using ECRIS and EBIS

    Science.gov (United States)

    Vondrasek, Richard

    2016-06-01

    The efficient and rapid production of a high-quality, pure beam of highly charged ions is at the heart of any radioactive ion beam facility. Whether an electron cyclotron resonance (ECR) ion source or an electron beam ion source (EBIS) is used to produce these highly charged ions, their operating characteristics will set the boundaries on the range of experiments which can be performed. In addition, time structure and duty cycle have to be considered when defining the operating parameters of the accelerator system as a whole. At Argonne National Laboratory (ANL), an ECR charge breeder was developed as part of the Californium Rare Ion Breeder Upgrade (CARIBU) program. The charge breeding efficiency and high charge state production of the source is at the forefront of ECR charge breeders, but its overall performance as part of the accelerator system is limited by pervasive background and relatively long breeding times. As such, an EBIS charge breeder has been developed and is running in an off-line configuration. It has already demonstrated good breeding efficiencies, shorter residence times, and reduced background and is scheduled to replace the ECR charge breeder in late 2015. The resultant change in duty cycle and time structure necessitates changes to the overall operation of the facility. The experiences with these breeders, as well as from several other facilities which already utilize an ECR or EBIS for charge breeding, help to define the operational characteristics of each technology - their strengths, their weaknesses, and the possible paths to improvement.

  17. THE CUSP ECR ION SOURCE

    OpenAIRE

    Sudlitz, K.

    1989-01-01

    A Cusp ECR ion source is being developed in Warsaw University to be used on U-200 heavy ion cyclotron. The main goal of the work is the test of the idea of an ECR source constructed without permanent magnets and by means of an inexpensive 2.45GHz generator.

  18. Valorization of ECR sources

    CERN Document Server

    2003-01-01

    One way to limit the size of particle accelerators is to use intense multicharged ion beams. Thus, compact, low cost and reliable sources have been developed. These sources are based on the electron cyclotron resonance (ECR) principle and need no cathode nor filament. A prototype named Nanogan has been developed for the Spiral project of the Ganil accelerator (Caen, France). Then, this technology has been transferred toward other research domains and industrial applications, like the ion implantation in micro-electronics components. (J.S.)

  19. Charge transfer processes of low charge state heavy ions

    International Nuclear Information System (INIS)

    In this paper, some aspects of the collision processes of accelerated heavy ions in very low charge state is reviewed, and the beam loss due to such collisions is estimated. The processes included in ion-atom collisions are electron capture, the electron stripping of ions, and target ionization. The stripping cross sections decrease slowly at high energy, and are much larger than the electron capture cross sections. At low energy, the electron capture is dominant, and this process plays a principal role near ion sources and preacceleration regions. This has not been taken into account properly. In order to keep the beam loss less than 0.1 percent, it is estimated that the average vacuum of about 10-7 to 10-8 Torr is required. An empirical formula to calculate the stripping cross sections of heavy ions in low charge state in collisions is derived. The beam loss due to ion-atom collisions can be estimated. The charge transfer and stripping processes in ion-ion collisions are also discussed. The typical processes in ion-ion collisions are almost same as those in ion-atom collisions. In order to minimize the ion beam loss due to charge-changing processes, it is important to choose the heavy ions with closed shell configurations, which correspond to the slightly more ionized states than the singly ionized state. (Kato, T.)

  20. Numerical Simulation Multicomponent Ion Beam Transport form ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    MaLei; SongMingtao; ZhangZimin; CaoYun

    2003-01-01

    In order to simulate the transport of multi-components ion beam extracted from an ECR ion source, we have developed a multi-charged ion beam transport program named MCIBS 1.0. The program is dedicated to numerical simulation of the behavior of highly-charged ion beam and optimization of beam optics in transport lines and is realized on a PC with Windows user interface of Microsoft Visual Basic. Among all the ions with different charge states in the beam, the exchanges of electrons between highly charged ions and low charged ions or neutral,atoms of residual gas are taken into account by using classical Molecular Over-barrier Model and Monte Carlo method. An advanced Windows graphical interface makes it; comfortable and friendly for the user to operate in an interactive mode. The present program is used for the numerical calculation and optimization of beam optics in a transport line consisting of various magnetic elements, such as dipole magnet, quadrupole and so on. It is possible to simultaneously simulate 200,000 particles, in a transport line of 340 m at most, and show every particle orbit. Beam cross section graphics and emittance phase pictures can be also shown at any position in the transport line.

  1. Optimization of a charge-state analyzer for electron cyclotron resonance ion source beams

    NARCIS (Netherlands)

    Saminathan, S.; Beijers, J. P. M.; Kremers, H. R.; Mironov, V.; Mulder, J.; Brandenburg, S.

    2012-01-01

    A detailed experimental and simulation study of the extraction of a 24 keV He+ beam from an ECR ion source and the subsequent beam transport through an analyzing magnet is presented. We find that such a slow ion beam is very sensitive to space-charge forces, but also that the neutralization of the b

  2. Charge breeding ions for nuclear physics with the PHOENIX ECRIS

    International Nuclear Information System (INIS)

    At ISOLDE, CERN, an online PHOENIX ECR charge state breeder is being tested for the investigation of the 1+→n+ scenario for the next generation ISOL postaccelerators. As the program of tests reaches an end, the possible physics experiments with multiply charged radioactive ion beams are being investigated. Especially the use of the ECR charge breeder in combination with a high voltage platform would permit an acceleration of the radioactive ions produced at ISOLDE to total energies up to a few MeV. This opens up possibilities for nuclear astrophysics experiments such as various studies of low energy radiative capture reactions. Experiments requiring the implantation of radioactive ions in a substrate at varying depth can also be conceived. This contribution presents the various aspects of the current performances of the PHOENIX ECR charge breeder that could benefit physics applications.

  3. ECR (Electron Cyclotron Resonance) source for the HHIRF (Holifield Heavy Ion Research Facility) tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, D.K.; Alton, G.D.; Dowling, D.T.; Haynes, D.L.; Jones, C.M.; Juras, R.C.; Lane, S.N.; Meigs, M.J.; Mills, G.D.; Mosko, S.W.; Tatum, B.A.

    1990-01-01

    Electron Cyclotron Resonance, ECR, ion source technology has developed rapidly since the original pioneering work of R. Geller and his group at Grenoble in the early 1970s. These ion sources are capable of producing intense beams of highly charged positive ions and are used extensively for cyclotron injection, linac injection, and atomic physics research. In this paper, the advantages of using an ECR heavy-ion source in the terminal of the Holifield Heavy Ion Research Facility (HHIRF) 25-MV tandem accelerator is discussed. A possible ECR system for installation in the HHIRF tandem terminal is described.

  4. Numerical calculation of impurity charge state distributions

    Energy Technology Data Exchange (ETDEWEB)

    Crume, E. C.; Arnurius, D. E.

    1977-09-01

    The numerical calculation of impurity charge state distributions using the computer program IMPDYN is discussed. The time-dependent corona atomic physics model used in the calculations is reviewed, and general and specific treatments of electron impact ionization and recombination are referenced. The complete program and two examples relating to tokamak plasmas are given on a microfiche so that a user may verify that his version of the program is working properly. In the discussion of the examples, the corona steady-state approximation is shown to have significant defects when the plasma environment, particularly the electron temperature, is changing rapidly.

  5. A New ECR Ion Source for Atomic Physics Research at IMP

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new Electron Cyclotron Resonance (ECR) ion source (LECR3-Lanzhou Electron Cyclotron Resonance ion source No.3) was constructed this year. The main purpose of this source is to provide highly charged ion beams for atomic physics and surface physics research. The design of this ion source is based on the IMP 14.5 GHz ECR ion source (LECR2-Lanzhou Electron Cyclotron Resonance ion source No.2) with double RF heating

  6. Recent developments on ECR sources at LBL

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z.Q.; Lyneis, C.M.

    1993-05-05

    After a number of refinements, the stability and ease of tuning of the LBL AECR ion source are greatly improved. Several nuclear science experiments have now used cyclotron ion beams injected by the AECR ion source and have taken advantage of its good short and long term-stability and high performance. Refinements include installation of a dc filament power supply for the electron gun, improved gas flow control.and temperature stabilization of parts of the microwave transmission network. Measurements of the mean plasma potential and plasma potential difference were made on the AECR and the LBL ECR sources. The absolute. mean potentials of plasmas of oxygen, argon, and argon mixed with oxygen in the AECR have been determined. These plasma potentials are positive with respect to the plasma wall and are on the order of a few tens of volts for microwave power up to 600 W and normal operating gas flow. Electrons injected by an electron gun into the AECR plasma reduce the plasma potentials. Beam energy spreads of oxygen, argon and argon mixed with oxygen have also been measured. Measurement of the plasma potential difference between the first and the second stage of the LBL ECR ion source shows that the plasma potential in the first stage is higher than the second stage. Such plasma potential differences range from about 10 to 200 volts depending on the microwave power and density of neutral atoms. With these potential differences, typically of 10 to 40 V at the LBL ECR running conditions, most of the 1+ ions produced by the first stage are probably not be confined by the second state plasma. Thus it appears that the main function of a microwave-driven first stage is to provide electrons to the second stage plasma, as is done with an electron gun in the AECR source.

  7. Characteristics of MINI ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Yuichi; Yokota, Watalu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A very compact electron cyclotron resonance ion source (MINI ECR) was manufactured to extend available energy ranges of ion beams by applying multiply charged ions to electrostatic accelerators. The magnetic field to confine a plasma is formed only by small permanent magnets and the microwave power up to 15 W is generated by a compact transistor amplifier in order to install the ion source at a narrow high-voltage terminal where the electrical power feed is restricted. The magnet assembly is 12 cm in length and 11 cm in diameter, and forms a mirror field with the maximum strength of 0.55 T. The total power consumption of the source is below 160 W. The performance of the source was tested in a bench stand. The results of Ar, Xe, O, and N ion generation are reported in this paper. (author)

  8. Optimization of a charge-state analyzer for ECRIS beams

    CERN Document Server

    Saminathan, S; Kremers, H R; Mironov, V; Mulder, J; Brandenburg, S

    2012-01-01

    A detailed experimental and simulation study of the extraction of a 24 keV He-ion beam from an ECR ion source and the subsequent beam transport through an analyzing magnet is presented. We find that such a slow ion beam is very sensitive to space-charge forces, but also that the neutralization of the beam's space charge by secondary electrons is virtually complete for beam currents up to at least 0.5 mA. The beam emittance directly behind the extraction system is 65 pi mm mrad and is determined by the fact that the ion beam is extracted in the strong magnetic fringe field of the ion source. The relatively large emittance of the beam and its non-paraxiality lead, in combination with a relatively small magnet gap, to significant beam losses and a five-fold increase of the effective beam emittance during its transport through the analyzing magnet. The calculated beam profile and phase-space distributions in the image plane of the analyzing magnet agree well with measurements. The kinematic and magnet aberrations...

  9. Are There Topologically Charged States Associated with Quantum Electrodynamics ?

    CERN Document Server

    Marino, E C

    1994-01-01

    We present a formulation of Quantum Electrodynamics in terms of an antisymmetric tensor gauge field. In this formulation the topological current of this field appears as a source for the electromagnetic field and the topological charge therefore acts physically as an electric charge. The charged states of QED lie in the sector where the topological charge is identical to the matter charge. The antisymmetric field theory, however, admits new sectors where the topological charge is more general. These nontrivial, electrically charged, sectors contain massless states orthogonal to the vacuum which are created by a gauge invariant operator and can be interpreted as coherent states of photons. We evaluate the correlation functions of these states in the absence of matter. The new states have a positive definite norm and do interact with the charged states of QED in the usual way. It is argued that if these new sectors are in fact realized in nature then a very intense background electromagnetic field is necessary ...

  10. Operation of ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In 2001, ECR ion source was operated for HIRFL about 5138 hours and 8 species of ion beams, such as ~(12)C~(4+), ~(12)C~(5+), ~(36)Ar~(11+),~(13)C~(4+),~(40)Ca~(11+),~(40)Ar~(11+),~(56)Fe~(10+) and ~(18)O~(6+) were provided. Among these ions,~(56)Fe~(10+)is a new ion beam. In this period, 14 experiments of heavy ion physics application and nuclear research were finished.

  11. Electromagnetic Characteristics of a Superconducting Magnet for 28GHz ECR Ion Source according to the Series Resistance of a Protection Circuit

    OpenAIRE

    Lee, Hongseok; Mo, Young Kyu; Lee, Onyou; Kim, Junil; Bang, Seungmin; Kang, Jong O; Hong, Jonggi; Nam, Seokho; Choi, Sukjin; Hong, In Seok; Ahn, Min Chul; Kang, Hyoungku

    2015-01-01

    A linear accelerator, called RAON, has been being developed as a part of Rare Isotope Science Project (RISP) by Institute for Basic Science (IBS) [1]. The linear accelerator utilizes an electron cyclotron resonance (ECR) ion source for providing intense highly charged ion beams to the linear accelerator. 28GHz ECR ion source can extract heavy ion beams from proton to uranium. A superconducting magnet system for 28GHz ECR ion source is composed of hexapole coils and four solenoid coils made wi...

  12. Quantum superposition of charge states on capacitively coupled superconducting islands

    OpenAIRE

    Heij, C. P.; Dixon, D C; van der Wal, C H; Hadley, P.; Mooij, J.E.

    2003-01-01

    We investigate the ground state properties of a system containing two superconducting islands coupled capacitively by a wire. The ground state is a macroscopic superposition of charge states, even though the islands cannot exchange charge carriers. The ground state of the system is probed by measuring the switching current of a Bloch transistor containing one of the islands. Calculations based on superpositions of charge states on both islands show good agreement with the experiments. The abi...

  13. 77 FR 60005 - Schedule of Charges Outside the United States

    Science.gov (United States)

    2012-10-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Schedule of Charges Outside the United States AGENCY: Federal Aviation... of charges for services of FAA Flight Standards Aviation Safety Inspectors outside the United...

  14. Quantum superposition of charge states on capacitively coupled superconducting islands

    NARCIS (Netherlands)

    Heij, C.P.; Dixon, D.C.; Wal, C.H. van der; Hadley, P.; Mooij, J.E.

    2003-01-01

    We investigate the ground state properties of a system containing two superconducting islands coupled capacitively by a wire. The ground state is a macroscopic superposition of charge states, even though the islands cannot exchange charge carriers. The ground state of the system is probed by measuri

  15. Metastable states of plasma particles close to a charged surface

    Energy Technology Data Exchange (ETDEWEB)

    Shavlov, A. V., E-mail: shavlov@ikz.ru [The Institute of the Earth Cryosphere, RAS Siberian branch, 625000, P.O. 1230, Tyumen (Russian Federation); Tyumen State Oil and Gas University, 38, Volodarskogo St., 625000, Tyumen (Russian Federation); Dzhumandzhi, V. A. [The Institute of the Earth Cryosphere, RAS Siberian branch, 625000, P.O. 1230, Tyumen (Russian Federation)

    2015-09-15

    The free energy of the plasma particles and the charged surface that form an electroneutral system is calculated on the basis of the Poisson-Boltzmann equation. It is shown that, owing to correlation of light plasma particles near the charged surface and close to heavy particles of high charge, there can be metastable states in plasma. The corresponding phase charts of metastable states of the separate components of plasma, and plasma as a whole, are constructed. These charts depend on temperature, the charge magnitude, the size of the particles, and the share of the charge of the light carriers out of the total charge of the plasma particles.

  16. Metastable states of plasma particles close to a charged surface

    International Nuclear Information System (INIS)

    The free energy of the plasma particles and the charged surface that form an electroneutral system is calculated on the basis of the Poisson-Boltzmann equation. It is shown that, owing to correlation of light plasma particles near the charged surface and close to heavy particles of high charge, there can be metastable states in plasma. The corresponding phase charts of metastable states of the separate components of plasma, and plasma as a whole, are constructed. These charts depend on temperature, the charge magnitude, the size of the particles, and the share of the charge of the light carriers out of the total charge of the plasma particles

  17. Electromagnetic Characteristics of a Superconducting Magnet for 28GHz ECR Ion Source according to the Series Resistance of a Protection Circuit

    CERN Document Server

    Lee, Hongseok; Lee, Onyou; Kim, Junil; Bang, Seungmin; Kang, Jong O; Hong, Jonggi; Nam, Seokho; Choi, Sukjin; Hong, In Seok; Ahn, Min Chul; Kang, Hyoungku

    2015-01-01

    A linear accelerator, called RAON, has been being developed as a part of Rare Isotope Science Project (RISP) by Institute for Basic Science (IBS) [1]. The linear accelerator utilizes an electron cyclotron resonance (ECR) ion source for providing intense highly charged ion beams to the linear accelerator. 28GHz ECR ion source can extract heavy ion beams from proton to uranium. A superconducting magnet system for 28GHz ECR ion source is composed of hexapole coils and four solenoid coils made with low Tc superconducting wires of NbTi [2]. The electromagnetic force acts on the superconducting magnets due to the magnetic field and flowing current in case of not only normal state but also quench state [3]. In case of quench on hexapole coils, unbalanced flowing current among the hexapole coils is generated and it causes unbalanced electromagnetic force. Coil motions and coil strains in quench state are larger than those in normal state due to unbalanced electromagnetic force among hexapole coils. Therefore, analysi...

  18. Recent Results with the 6GHz Flat-B ECR Ion Source at ORNL-HRIBF%ORNL-HRIBF 6GHz ECR离子源的最新结果

    Institute of Scientific and Technical Information of China (English)

    Y.Liu; Y.Kawai; G.D.Alton

    2007-01-01

    Experimental studies were conducted to characterize and improve the performance of the flat-B ECR ion source.The emittance of the source was investigated for the first time.The output beam currents of high-charge-states of Ar (q>8) were nearly doubled by increasing the plasma electrode aperture from 4mm to 6mm in diameter.To investigate possible enhancements with broadband microwave radiation,a "white"Gaussian noise generator was employed with a TWT amplifier to generate microwave radiation with a bandwidth of~200MHz. The performance of the fiat-B ECR ion source was found to be much better with narrow bandwidth radiation when the source was operated in the fiat-B region.However.the ion beam intensities and charge state distributions were improved with the broadband radiation when the source was tuned off the flat-B region.

  19. Formation of High Charge State Heavy Ion Beams with intense Space Charge

    International Nuclear Information System (INIS)

    High charge-state heavy-ion beams are of interest and used for a number of accelerator applications. Some accelerators produce the beams downstream of the ion source by stripping bound electrons from the ions as they pass through a foil or gas. Heavy-ion inertial fusion (HIF) would benefit from low-emittance, high current ion beams with charge state >1. For these accelerators, the desired dimensionless perveance upon extraction from the emitter is ∼10-3, and the electrical current of the beam pulse is ∼1 A. For accelerator applications where high charge state and very high current are desired, space charge effects present unique challenges. For example, in a stripper, the separation of charge states creates significant nonlinear space-charge forces that impact the beam brightness. We will report on the particle-in-cell simulation of the formation of such beams for HIF, using a thin stripper at low energy.

  20. Formation of charge states of heavy ions in SEP events

    Science.gov (United States)

    Kartavykh, J. Y.; Kocharov, L.

    2007-12-01

    One can divide the formation of charge states of heavy ions in SEP events into two stages - formation of charge states during ion acceleration and their transformation due to coronal and interplanetary propagation. At the first stage the charge states of ions are formed as a result of competition of ionization and recombination processes, with possible charge-dependent acceleration. If ions were moving with a constant speed through a plasma for infinitely long time, the ionic charge of energetic ions would asymptotically reach an upper limit, the equilibrium mean charge, so that the mean charge of accelerated ions is between its thermal and equilibrium value. Coronal and interplanetary propagation can modify the charge spectra; coronal propagation by additional stripping after acceleration in a sufficiently dense environment, interplanetary propagation due to adiabatic deceleration in the expanding solar wind by shifting the charge spectra towards lower energies. The absolute value of this shift depends on the mean free path of energetic ions in interplanetary space that can be derived from the observed intensity-time profiles and anisotropies. In this paper we review recent achievements in the modeling of the charge-consistent acceleration and transport of solar ions as applied to the ionic charge states of iron.

  1. Preliminary Simulation of Beam Extraction for the 28 GHz ECR Ion Source

    CERN Document Server

    Park, Bum-Sik; Choi, Seokjin

    2015-01-01

    The 28 GHz ECR(Electron Cyclotron Resonance) ion source is under development to supply various beams from proton to uranium at RISP(Rare Isotope Science Project). The superconducting magnet system for a 28 GHz ECR ion source consists of four solenoid coils and a saddle type sextupole. To meet the design requirement of ECR ion source, a numerical simulation was accomplished by using the KOBRA3-INP to optimize the extraction system which is the three dimensional ion optics code. The influence of the three dimensional magnetic field and the space charge effect was considered to extract the highly charged ion beam. In this paper, the design results of the extraction system were reported in detail.

  2. Charge-State Distributions of Accelerated ^{48}Ca Ions

    CERN Document Server

    Skobelev, N K; Astabatyan, R A; Vincour, J; Kulko, A A; Lobastov, S P; Lukyanov, S M; Markaryan, E R; Maslov, V A; Penionzhkevich, Yu E; Sobolev, Yu G; Ugryumov, V Yu

    2003-01-01

    A stepped pole broad-range magnetic analyzer has been used to measure the charge-state distributions of accelerated ^{48}Ca ions at the two incident energies 242.8 and 264.5 MeV after passing through thin carbon or gold target foils. The measured charge-state distributions and the mean equilibrium charge of the ^{48}Ca ions are compared with various calculations. It has been shown that the calculations can be used only for evaluation purposes.

  3. Charge State Hysteresis in Semiconductor Quantum Dots

    OpenAIRE

    Yang, C. H.; Rossi, A; Lai, N. S.; Leon, R.; Lim, W. H.; Dzurak, A.S.

    2014-01-01

    Semiconductor quantum dots provide a two-dimensional analogy for real atoms and show promise for the implementation of scalable quantum computers. Here, we investigate the charge configurations in a silicon metal-oxide-semiconductor double quantum dot tunnel coupled to a single reservoir of electrons. By operating the system in the few-electron regime, the stability diagram shows hysteretic tunnelling events that depend on the history of the dots charge occupancy. We present a model which acc...

  4. 78 FR 61446 - Schedule of Charges Outside the United States

    Science.gov (United States)

    2013-10-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Schedule of Charges Outside the United States AGENCY: Federal Aviation... for services of FAA Flight Standards Aviation Safety Inspectors outside the United States....

  5. Charge-displacement analysis for excited states

    Energy Technology Data Exchange (ETDEWEB)

    Ronca, Enrico, E-mail: enrico@thch.unipg.it; Tarantelli, Francesco, E-mail: francesco.tarantelli@unipg.it [Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123 Perugia (Italy); Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, I-06123 Perugia (Italy); Pastore, Mariachiara, E-mail: chiara@thch.unipg.it; Belpassi, Leonardo; De Angelis, Filippo [Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123 Perugia (Italy); Angeli, Celestino; Cimiraglia, Renzo [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, via Borsari 46, I-44100 Ferrara (Italy)

    2014-02-07

    We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations. The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.

  6. Plasma as a high-charge-state projectile stripping medium

    International Nuclear Information System (INIS)

    The classical trajectory Monte Carlo model has been used to computationally study the charge-state distributions that result from interactions between a high-energy, multielectron projectile and neutral and fully ionized targets. These studies are designed to determine the properties of a plasma for producing highly stripped ions as a possible alternative to gas and foil strippers that are commonly used to enhance the charge states of energetic ion beams. The results of these studies clearly show that a low-atomic-number, highly ionized plasma can yield higher charge states than a neutral target of the same density. The effect is principally attributable to the reduction in the number of available electron-capture channels. In this article, we compare the charge-state distributions that result during passage of a 20-MeV Pb projectile through neutral gas and fully ionized (singly charged) plasma strippers and estimate the effects of multiple scattering on the quality of the beam

  7. Charge sensitive amplifies. The state of arts

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kunishiro [Clear Pulse Co., Tokyo (Japan)

    1996-07-01

    In the radiation detectors, signals are essentially brought with charges produced by radiation, then it is naturally the best way to use a charge sensitive amplifier (CSA) system to extract those signals. The CSA is thought to be the best amplifier suitable to almost all the radiation detectors, if neglecting economical points of view. The CSA has been only applied to special fields like radiation detection because the concept of `charges` is not so universal against the concepts of `voltage` and `current`. The CSA, however, is low in noise and a high speed amplifier and may be applicable not only to radiation measurement but also piezoelectric devices and also bolometers. In this article, noise in the CSA, basic circuit on the CSA, concepts of `equivalent noise charge` (ENC), a method for the ENC, and importance of the `open-loop gain` in the CSA to achieve better performance of it and how to realize in a practical CSA were described. And, characteristics on a counting rate of the CSA, various circuit used in the CSA, and CSAs which are commercially available at present and special purpose CSAs were also introduced. (G.K.)

  8. Spin Charge Separation in the Quantum Spin Hall State

    OpenAIRE

    Qi, Xiao-Liang; Zhang, Shou-Cheng

    2007-01-01

    The quantum spin Hall state is a topologically non-trivial insulator state protected by the time reversal symmetry. We show that such a state always leads to spin-charge separation in the presence of a $\\pi$ flux. Our result is generally valid for any interacting system. We present a proposal to experimentally observe the phenomenon of spin-charge separation in the recently discovered quantum spin Hall system.

  9. Spin Charge Separation in the Quantum Spin Hall State

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Liang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum spin Hall state is a topologically non-trivial insulator state protected by the time reversal symmetry. We show that such a state always leads to spin-charge separation in the presence of a {pi} flux. Our result is generally valid for any interacting system. We present a proposal to experimentally observe the phenomenon of spin-charge separation in the recently discovered quantum spin Hall system.

  10. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    P Kumar; G Rodrigues; U K Rao; C P Safvan; D Kanjilal; A Roy

    2002-11-01

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion beams ranging from a few keV to a few MeV for research in materials sciences, atomic and molecular physics is described. One of the important features of this facility is the availability of relatively large currents of multiply charged positive ions from an electron cyclotron resonance (ECR) source placed entirely on a high voltage platform. All the electronic and vacuum systems related to the ECR source including 10 GHz ultra high frequency (UHF) transmitter, high voltage power supplies for extractor and Einzel lens are placed on a high voltage platform. All the equipments are controlled using a personal computer at ground potential through optical fibers for high voltage isolation. Some of the experimental facilities available are also described.

  11. A multicharged ions facility with an 14.5 GHz ECR source

    International Nuclear Information System (INIS)

    Available as short communication only. The basic and applied research of atomic and nuclear physics requires beams of heavy ions in high ionization states. An excellent source for the production of multicharged ions is the Electron Cyclotron Resonance Ion Source (ECRIS). It has high efficiency, stability in operation and delivers a high quality beam. These sources may differ in construction but all are based on the same principle: almost complete stripping by successive collisions with relative high energy electrons stochastically heated in a plasma zone formed by resonant energy absorption from a GHz r.f. electrical field. The plasma is confined by superposition of radial and axial magnetic fields of 'B min-structure' distribution. The design and realization of an ECR ion source has been initiated in 1992 and it will be used in the first stage in atomic and plasma physics research. In the following stage it will be completed with an RFQ accelerator and will be used as an efficient injector for Tandem post-acceleration system. In order to obtain high intensities of almost totally stripped ion beams and as, the microwave power generators are commercially available, we have chosen the frequency 14.5 GHz for the ECR ion source. The corresponding value of the magnetic field was B=0.518 T. For the plasma confinement an axial magnetic field produced by an assembly of permanent hexapolar magnets (Nd Fe B) realized in a Halbach structure will be used. The extraction voltage will be at least 50 kV, in order to allow the use of the highly charged ion beam without pre-acceleration for atomic physics research. The IPNE ECRIS is designed to deliver μA intensities of highly charged heavy ions (Ar, Xe, and Bi ionized up to 14+, 25+, and 30+, respectively). (Author) 3 Refs

  12. The axial charges of the hidden-charm pentaquark states

    CERN Document Server

    Wang, Guang-Juan; Zhu, Shi-Lin

    2016-01-01

    With the chiral quark model, we have calculated the axial charges of the pentaquark states with $(I,I_3)=(\\frac{1}{2},\\frac{1}{2})$ and $J^{P}=\\frac{1}{2}^{\\pm},\\frac{3}{2}^{\\pm},\\frac{5}{2}^{\\pm}$. The $P_c$ states with the same $J^P$ quantum numbers but different color-spin-flavor configurations have very different axial charges, which encode important information on their underlying structures. For some of the $J^{P}=\\frac{3}{2}^{\\pm}$ or $\\frac{5}{2}^{\\pm}$ pentaquark states, their axial charges are much smaller than that of the proton.

  13. Charging state of atmospheric nanoparticles during the nucleation burst events

    Science.gov (United States)

    Vana, M.; Tamm, E.; Hõrrak, U.; Mirme, A.; Tammet, H.; Laakso, L.; Aalto, P. P.; Kulmala, M.

    2006-12-01

    In this work, the charging state of atmospheric nanoparticles was estimated through simultaneous measurements of aerosol size distribution and air ions mobility distribution with the aim to elucidate the formation mechanisms of atmospheric aerosols. The measurements were performed as a part of the QUEST 2 campaign at a boreal forest station in Finland. The overlapping part of the measurement ranges of the particle size spectrometers and air ion mobility spectrometers in the mass diameter interval of 2.6-40 nm was used to assess the percentage of charged particles (charging probability). This parameter was obtained as the slope of the linear regression line on the scatterplot of the measured concentrations of total (neutral + charged) and charged particles for the same diameter interval. Charging probabilities as a function of particle diameter were calculated for different days and were compared with the steady state charging probabilities of the particles in the bipolar ion atmosphere. For the smallest particles detectable by the particle size spectrometers (2.6-5 nm), the high percentages of negatively charged particles were found during the nanometer particle concentration bursts. These values considerably exceeded the values for the steady charging state and it was concluded that negative cluster ions preferably act as condensation nuclei. This effect was found to be the highest in the case of comparatively weak nucleation bursts of nanoparticles, when the rate of the homogeneous nucleation and the concentration of freshly nucleated particles were low. The nucleation burst days were classified according to the concentration of the generated smallest detectable new particles (weak and strong bursts). Approximately the same classification was obtained based on the charge asymmetry on particles with respect to the charge sign (polarity). The probabilities of negative and positive charge on the particles with the diameter of 5-20 nm were found to be nearly equal

  14. Simulation study of LEBT for transversely coupled beam from an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y., E-mail: yangyao@impcas.ac.cn [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Dou, W. P.; Sun, L. T.; Yao, Q. G.; Zhang, Z. M.; Yuan, Y. J.; He, Y.; Zh, X. Z.; Zhao, H. W. [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2016-02-15

    A Low-Energy intense-highly charged ion Accelerator Facility (LEAF) program has been launched at Institute of Modern Physics. This accelerator facility consists of a superconducting Electron Cyclotron Resonance (ECR) ion source, a Low Energy Beam Transport (LEBT) system, and a Radio Frequency Quadrupole (RFQ). It is especially of interest for the extracted ion beam from the ECR ion source, which is transversely coupled, and this property will significantly affect the beam transmission in the LEBT line and the matching with the downstream RFQ. In the beam transport design of LEAF, beam decoupling in the LEBT is considered to lower down the projection emittances and the feasibility of the design has been verified by beam simulation with a transversely coupled beam from the ECR ion source.

  15. Gauge Transformations For Self/Anti-Self Charge Conjugate States

    CERN Document Server

    Dvoeglazov, V V

    1998-01-01

    Gauge transformations of type-II spinors are considered in the Majorana-Ahluwalia construct for self/anti-self charge conjugate states. Some speculations on the relations of this model with the earlier ones are given.

  16. Measurements of aerosol charging states in Helsinki, Finland

    Directory of Open Access Journals (Sweden)

    S. Gagné

    2011-05-01

    Full Text Available The charging state of aerosol populations was measured with an Ion-DMPS in Helsinki, Finland between December 2008 and February 2010. Based on the charging states, we calculated the ion-induced nucleation fraction to be around 0.8 % ± 0.9 %. We review the role of ion-induced nucleation and propose different explanations for a low ion-induced nucleation participation in urban areas. We present a new method to retrieve the average charging state for an event, and a given size. We also use a new theoretical framework that allows for different concentrations of small cluster ions for different polarities (polarity asymmetry. We extrapolate the ion-induced fraction using polarity symmetry and asymmetry. Finally, a method to calculate the growth rates from the variation of the charging state as a function of the particle diameter using polarity symmetry and asymmetry is presented and used on a selection of new particle formation events.

  17. Explosion and final state of the charged black hole bomb

    CERN Document Server

    Sanchis-Gual, Nicolas; Montero, Pedro J; Font, José A; Herdeiro, Carlos

    2015-01-01

    A Reissner-Nordstr\\"om black hole (BH) is superradiantly unstable against spherical perturbations of a charged scalar field, enclosed in a cavity, with frequency lower than a critical value. We use numerical relativity techniques to follow the development of this unstable system -- dubbed charged BH bomb -- into the non-linear regime, solving the full Einstein--Maxwell--Klein-Gordon equations, in spherical symmetry. We show that: $i)$ the process stops before all the charge is extracted from the BH; $ii)$ the system settles down into a hairy BH: a charged horizon in equilibrium with a scalar field condensate, whose phase is oscillating at the (final) critical frequency. For low scalar field charge, $q$, the final state is approached smoothly and monotonically. For large $q$, however, the energy extraction overshoots and an explosive phenomenon, akin to a $bosenova$, pushes some energy back into the BH. The charge extraction, by contrast, does not reverse.

  18. Equilibrium charge state distributions of high energy heavy ions

    International Nuclear Information System (INIS)

    Equilibrium charge state fractions have been measured for N, O, Ne, S, Ar and Kr ions at 1.04 MeV/nucleon after passing through various stripping materials. Further data were obtained at higher energy for S ions (4.12 MeV/nucleon) and Ar ions (4.12 and 9.6 MeV/nucleon). The mean charge fractions can be fitted to universal curves for both solid and gaseous strippers. Measurements of the equilibrium fraction of krypton ions at 1.04 MeV/nucleon passing through heavy vapours have shown that a higher average charge state is obtained than for lighter gaseous strippers. (Auth.)

  19. 第四代ECR离子源的主要概念%Concepts for a Fourth Generation ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    C.Lyneis; D.Leitner

    2007-01-01

    To go beyond the present and planned third generation ECR ion sources operating at microwave frequencies between 20 and 30GHz to a fourth generation of sources operating above 50GHz offers new opportunities and challenges.Based on the experimentally demonstrated frequency scaling,a doubling in operating frequency could provide more intense high charge state beams with higher charge states.The technical challenges include the development of magnetic structures capable of producing 8T solenoid field and 4T sextupole fields,production and coupling of high power microwave power to heat the plasma,extraction of intense multiple charge ion beams from a region of strong magnetic field and shielding of bremstrahlung from the hot electrons.In this paper,the status of high field superconducting magnets now under development for accelerator applications,gyrotrons for microwave power and other technical aspects that would be incorporated into a fourth generation ECR ion source are explored and applied to a conceptual design.

  20. The mathematical simulation of physical processes in ECR multicharged ions sources

    International Nuclear Information System (INIS)

    The article presents a new model of the highly charged ion production in ECR sources which takes into account the violation of plasma charged neutrality condition. Mathematical methods have been analyzed to calculate the multicharged ion extraction in the RF pulse mode. The proposed calculation method has been chosen on the basis of the performed numerical experiments to solve the considered task. 10 refs.; 2 figs

  1. An EBIS for charge state breeding in the SPES project

    Indian Academy of Sciences (India)

    V Variale; G Brautti; T Clauser; A Rainò; V Stagno; G Lamanna; V Valentino; A Boggia; Y Boimelshtein; P Logatchov; B Skarbo; M Tiunov

    2002-11-01

    The ‘charge state breeder’, BRIC (breeding ion charge) is in construction at the INFN section of Bari (Italy). It is based on EBIS scheme and it is designed to accept radioactive ion beam (RIB) with charge state +1 in a slow injection mode. This experiment can be considered as a first step towards the design and construction of a charge breeder for the SPES project. The new feature of BRIC, with respect to the classical EBIS, is given by the insertion, in the ion chamber, of a rf-quadrupole aiming at filtering the unwanted masses and then making a more efficient containment of the wanted ions. In this paper, the breeder design, the simulation results of the electron and ion beam propagation and the construction problems of the device will be reported.

  2. Devitrification of the glassy state in suspensions of charged platelets

    NARCIS (Netherlands)

    Mourad, M.C.D.; Verhoeff, A.A.; Belov, D.V.; Petukhov, A.V.; Lekkerkerker, H.N.W.

    2009-01-01

    Colloidal suspensions of charged gibbsite platelets at salt concentrations of 10−2 M and below and with a sufficiently high particle concentration form a kinetically arrested, glassy state. We study the evolution of the glassy state in suspensions of three different gibbsite systems. Despite differe

  3. Electron cloud simulation of the ECR plasma

    International Nuclear Information System (INIS)

    Complete text of publication follows. The plasma of the Electron Cyclotron Resonance Ion Source (ECRIS) of ATOMKI is being continuously investigated by different diagnostic methods: using small-sized probes or taking X-ray and visible light photographs. In 2011 three articles were published by our team in a special edition of the IEEE Transactions on Plasma Science (Special Issue on Images in Plasma Science) describing our X-ray and visible light measurements and plasma modeling and simulating studies. Simulation is in many cases the base for the analysis of the photographs. The outcomes of the X-ray and visible light experiments were presented already in earlier issues of the Atomki Annual Report, therefore in this year we concentrate on the results of the simulating studies. The spatial distribution of the three main electron components (cold, warm and hot electron clouds) of the ECR plasmas was simulated by TrapCAD code. TrapCAD is a 'limited' plasma simulation code. The spatial and energy evolution of a large number of electrons can be realistically followed; however, these particles are independent, and no particle interactions are included. In ECRISs, the magnetic trap confines the electrons which keep together the ion component by their space charge. The electrons gain high energies while the ions remain very cold throughout the whole process. Thus, the spatial and energy simulation of the electron component gives much important and numerical information even for the ions. The electron components of ECRISs can artificially be grouped into three populations: cold, warm, and hot electrons. Cold electrons (1-200 eV) have not been heated by the microwave; they are mainly responsible for the visible light emission of the plasma. The energized warm electrons (several kiloelectronvolts) are able to ionize atoms and ions and they are mainly responsible for the characteristic Xray photons emitted by the plasma. Electrons having much higher energy than necessary for

  4. Efficient charge generation by relaxed charge-transfer states at organic interfaces

    KAUST Repository

    Vandewal, Koen

    2013-11-17

    Interfaces between organic electron-donating (D) and electron-accepting (A) materials have the ability to generate charge carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold via weakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C60 and polymer:polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy. © 2014 Macmillan Publishers Limited.

  5. Photoemission spectra of charge density wave states in cuprates

    Science.gov (United States)

    Tu, Wei-Lin; Chen, Peng-Jen; Lee, Ting-Kuo

    Angle-resolved photoemission spectroscopy(ARPES) experiments have reported many exotic properties of cuprates, such as Fermi arc at normal state, two gaps at superconducting state and particle-hole asymmetry at the antinodal direction. On the other hand, a number of inhomogeneous states or so-called charge density waves(CDW) states have also been discovered in cuprates by many experimental groups. The relation between these CDW states and ARPES spectra is unclear. With the help of Gutzwiller projected mean-field theory, we can reproduce the quasiparticle spectra in momentum space. The spectra show strong correspondence to the experimental data with afore-mentioned exotic features in it.

  6. Progress of the Intense ECR Proton Source

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An intense ECR proton source has been developed to meet the needs of intense proton RFQ. The source is tested on a newly built oil-free and high speed test-bench. The feed of microwave, structure ofionization chamber,HV sparks and especially the problem of BN disc facing plasma is investigated. The

  7. 兰州全永磁ECR离子源——LAPECR1%Lanzhou All Permanent ECR Ion Source No.1-LAPECRl

    Institute of Scientific and Technical Information of China (English)

    尚勇; 卢旺; 王辉; 赵环昱; 李杰; D.Z.Xie; 孙良亭; 马宝华; 张雪珍; 冯玉成; 曹云; 郭晓虹; 李锡霞; 李锦钰

    2007-01-01

    The Lanzhou All Permanent magnet ECR ion source NO.1(LAPECRl)is the first all permanent magnet multiple ECRIS made in IMP.This ECRIS is running at 14.5GHz and can provide intense low charge state ion beams(varying from several to hundreds of eμA)or medium charge state ion beams(varying from several to tens of eμA).The size of source body is φ102mm×296mm,the compactness and economical features enable the source suitable to be put on a HV platform or equipped by a small laboratory.This article gives the main parameters of the ion source.

  8. Fast electronic resistance switching involving hidden charge density wave states

    Science.gov (United States)

    Vaskivskyi, I.; Mihailovic, I. A.; Brazovskii, S.; Gospodaric, J.; Mertelj, T.; Svetin, D.; Sutar, P.; Mihailovic, D.

    2016-05-01

    The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T-TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states.

  9. Charged Cylindrical Polytropes with Generalized Polytropic Equation of State

    CERN Document Server

    Azam, M; Noureen, I; Rehman, M A

    2016-01-01

    We study the general formalism of polytropes in relativistic regime with generalized polytropic equations of state in the vicinity of cylindrical symmetry. We take charged anisotropic fluid distribution of matter with conformally flat condition for the development of general framework of polytropes. We discussed the stability of the model by Whittaker formula and concluded that one of the developed model is physically viable.

  10. Universal state-of-charge indication for portable applications

    NARCIS (Netherlands)

    Pop, V.

    2007-01-01

    Many leading semiconductors companies (e.g. Philips, Texas Instruments, Microchip, Maxim, etc.) are paying even more attention to accurate State-of-Charge (SoC) indication. Following the technological revolution and the appearance of more power consuming devices on the automotive electronics and por

  11. Development of a compact ECR ion source for various ion production

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, M., E-mail: m-mura@nirs.go.jp; Hojo, S.; Iwata, Y.; Katagiri, K.; Sakamoto, Y.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Takahashi, N. [Sumitomo Heavy Industries, Ltd., 19 Natsushima, Yokosuka, Kanagawa 237-8555 (Japan); Sasaki, N.; Fukushima, K.; Takahashi, K.; Suzuki, T.; Sasano, T. [Accelerator Engineering Corporation, 3-8-5 Konakadai, Inage, Chiba 263-0043 (Japan); Uchida, T.; Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan); Hagino, S.; Nishiokada, T.; Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan)

    2016-02-15

    There is a desire that a carbon-ion radiotherapy facility will produce various ion species for fundamental research. Although the present Kei2-type ion sources are dedicated for the carbon-ion production, a future ion source is expected that could provide: (1) carbon-ion production for medical use, (2) various ions with a charge-to-mass ratio of 1/3 for the existing Linac injector, and (3) low cost for modification. A prototype compact electron cyclotron resonance (ECR) ion source, named Kei3, based on the Kei series has been developed to correspond to the Kei2 type and to produce these various ions at the National Institute of Radiological Sciences (NIRS). The Kei3 has an outer diameter of 280 mm and a length of 1120 mm. The magnetic field is formed by the same permanent magnet as Kei2. The movable extraction electrode has been installed in order to optimize the beam extraction with various current densities. The gas-injection side of the vacuum chamber has enough space for an oven system. We measured dependence of microwave frequency, extraction voltage, and puller position. Charge state distributions of helium, carbon, nitrogen, oxygen, and neon were also measured.

  12. Development of a compact ECR ion source for various ion production

    Science.gov (United States)

    Muramatsu, M.; Hojo, S.; Iwata, Y.; Katagiri, K.; Sakamoto, Y.; Takahashi, N.; Sasaki, N.; Fukushima, K.; Takahashi, K.; Suzuki, T.; Sasano, T.; Uchida, T.; Yoshida, Y.; Hagino, S.; Nishiokada, T.; Kato, Y.; Kitagawa, A.

    2016-02-01

    There is a desire that a carbon-ion radiotherapy facility will produce various ion species for fundamental research. Although the present Kei2-type ion sources are dedicated for the carbon-ion production, a future ion source is expected that could provide: (1) carbon-ion production for medical use, (2) various ions with a charge-to-mass ratio of 1/3 for the existing Linac injector, and (3) low cost for modification. A prototype compact electron cyclotron resonance (ECR) ion source, named Kei3, based on the Kei series has been developed to correspond to the Kei2 type and to produce these various ions at the National Institute of Radiological Sciences (NIRS). The Kei3 has an outer diameter of 280 mm and a length of 1120 mm. The magnetic field is formed by the same permanent magnet as Kei2. The movable extraction electrode has been installed in order to optimize the beam extraction with various current densities. The gas-injection side of the vacuum chamber has enough space for an oven system. We measured dependence of microwave frequency, extraction voltage, and puller position. Charge state distributions of helium, carbon, nitrogen, oxygen, and neon were also measured.

  13. Vacuum improvements for ultra high charge state ion acceleration

    International Nuclear Information System (INIS)

    The installation of a second cryo panel has significantly improved the vacuum in the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. The neutral pressure in the extraction region decreased from 1.2 x 10-6 down to about 7 x 10-7 Torr. The vacuum improvement reduces beam loss from charge changing collisions and enhances the cyclotron beam transmission, especially for the high charge state heavy ions. Tests with improved vacuum show the cyclotron transmission increased more than 50% (from 5.7% to 9.0%) for a Xe27+ at 603 MeV, more than doubled for a Bi41+ beam (from 1.9% to 4.6%) at 904 MeV and tripled for a U47+ beam (from 1.2% to 3.6%) at 1,115 MeV. At about 5 NeV/nucleon 92 enA (2.2 pnA) for Bi41+ and 14 enA (0.3 pnA) for U47+ were extracted ut of the 88-Inch Cyclotron Ion beams with charge states as high as U64+ have been produced by the LBNL AECR-U ion source and accelerated through the cyclotron for the first time. The beam losses for a variety of ultra high charge state ions were measured as a function of cyclotron pressure and compared with the calculations from the existing models

  14. Fractional charge and spin states in topological insulator constrictions

    Science.gov (United States)

    Klinovaja, Jelena; Loss, Daniel

    2015-09-01

    We theoretically investigate the properties of two-dimensional topological insulator constrictions both in the integer and fractional regimes. In the presence of a perpendicular magnetic field, the constriction functions as a spin filter with near-perfect efficiency and can be switched by electric fields only. Domain walls between different topological phases can be created in the constriction as an interface between tunneling, magnetic fields, charge density wave, or electron-electron interaction dominated regions. These domain walls host non-Abelian bound states with fractional charge and spin and result in degenerate ground states with parafermions. If a proximity gap is induced bound states give rise to an exotic Josephson current with 8 π periodicity.

  15. Multiple charge states of titanium ions in laser produced plasma

    International Nuclear Information System (INIS)

    An intense laser radiation (1012 to 1014 W/cm-2) focused on the solid target creates a hot (≥ 1 KeV) and dense plasma having high ionization state. The multiple charged ions with high current densities produced during laser matter interaction have potential application in accelerators as an ion source. This paper presents generation and detection of highly stripped titanium ions (Ti) in laser produced plasma. An Nd:glass laser (KAMETRON) delivering 50 J energy (λ = 0.53 μm) in 2.5 ns was focused onto a titanium target to produce plasma. This plasma was allowed to drift across a space ∼ 3m through a diagnostic hole in the focusing mirror before ions are finally detected with the help of electrostatic ion analyzer. Maximum current density was detected for the charge states of +16 and +17 of Ti ions for laser intensity of ∼ 1014 W/cm-2. (author)

  16. Pion charge-exchange reactions: The analog state transitions

    International Nuclear Information System (INIS)

    The general features of pion charge-exchange reactions leading to nuclear-isobaric-analog states (IAS) and double-isobaric-analog states (DIAS), as they have emerged from studies over the past ten years, are reviewed. The energy range investigated is 20 to 550 MeV for IAS transitions and 20 to 300 MeV for DIAS transitions. These data are seen to play an important role in characterizing the pion optical potential, in determining the Δ-N interaction in nuclei, and in the study of nucleon correlations in nuclei. Recent progress achieved in understanding the role of such correlations in double-charge-exchange reactions is reviewed. 55 refs., 43 figs., 3 tabs

  17. Charged cylindrical polytropes with generalized polytropic equation of state

    Science.gov (United States)

    Azam, M.; Mardan, S. A.; Noureen, I.; Rehman, M. A.

    2016-09-01

    We study the general formalism of polytropes in the relativistic regime with generalized polytropic equations of state in the vicinity of cylindrical symmetry. We take a charged anisotropic fluid distribution of matter with a conformally flat condition for the development of a general framework of the polytropes. We discuss the stability of the model by the Whittaker formula and conclude that one of the models developed is physically viable.

  18. P.I.A.F.E. project: production of highly charged particles for radioactive ion beams

    International Nuclear Information System (INIS)

    The transformation of a mono-charged ion beam into a multicharged ion beam is an important problem in the projects of radioactive beams acceleration. This transformation must be performed with the best possible efficiency and in the shortest possible time to avoid the loss of particles by radioactive degenerescence. A ionization method using an electron cyclotron resonance (ECR) source is proposed. It consists in the fast capture by the ECR plasma of the radioactive elements injected inside this source in the form of a mono-charged ion beam. This method gives good results (2 to 6% efficiency to move from the 1+ to the 9+ charge state) for the ionization of alkaline elements, rare and metallic gases, with fast times of response allowing the ionization of radioactive products with a lifetime inferior to 1 s. (J.S.)

  19. Experiment on the KVI 14 GHz ECR ion source with a metal-dielectric liner

    International Nuclear Information System (INIS)

    The metal-dielectric (MD) structures with high secondary electron emission properties were developed in Bucharest. First promising tests of these structures in an ECRIS were performed at IKF, Frankfurt, Germany. The purpose of the present experiment made in November 2000 on the 14 GHz ECR ion source at KVI, Groningen, The Netherlands was: (1) to observe the effect of the MD structure on the intensity of high argon charge states, (2) to compare its effect on the ECRIS output beam charge state distribution (CSD) with the well known effect of gas mixing. The source fed with pure argon, but without liner, was optimized on the Ar12+ peak. A stable source operation was obtained at 320 Watt RF power. Contaminants like oxygen, nitrogen and carbon were extremely small, so that the effect of gas mixing was really negligible. Then, natural oxygen was fed as mixing gas into the source, again optimizing on the 12+ peak and using 730 W RF power. The improvements were: stability at higher RF power, a shift of the CSD maximum from 9+ to 11+ and for Ar16+ an increase from 0.002 to 0.180 eμA. A cylindrical MD structure (Al-Al2O3) was installed as a liner in the source plasma chamber. After one day of outgassing, a CSD-E was obtained at 320 W of RF power and optimizing on Ar12+. which is presented.. The intensities of beam charge states 12+ ... 14+ were equal with those obtained in the case of gas mixing while the Ar16+ intensity had almost doubled to 0.32 eμ A. Careful source optimization gave even a spectrum with 0.38 eμ A of Ar 16+ and 0.015 eμ A of Ar17+, while the Ar12+ peak was lower. Some low intensity oxygen peaks were clearly present in the spectra, implying that an effect of gas mixing could exist. After a few days of outgassing, the oxygen peaks had not reduced, so that we made the assumption that some oxygen is escaping from the MD structure. The effect of mixing small amounts of oxygen into an argon plasma (without liner) was studied in two situations: (i) the amount

  20. Charge Order Induced in an Orbital Density-Wave State

    Science.gov (United States)

    Singh, Dheeraj Kumar; Takimoto, Tetsuya

    2016-04-01

    Motivated by recent angle resolved photoemission measurements [D. V. Evtushinsky et al., Phys. Rev. Lett. 105, 147201 (2010)] and evidence of the density-wave state for the charge and orbital ordering [J. García et al., Phys. Rev. Lett. 109, 107202 (2012)] in La0.5Sr1.5MnO4, the issue of charge and orbital ordering in a two-orbital tight-binding model for layered manganite near half doping is revisited. We find that the charge order with the ordering wavevector 2{Q} = (π ,π ) is induced by the orbital order of d-/d+-type having B1g representation with a different ordering wavevector Q, where the orbital order as the primary order results from the strong Fermi-surface nesting. It is shown that the induced charge order parameter develops according to TCO - T by decreasing the temperature below the orbital ordering temperature TCO, in addition to the usual mean-field behavior of the orbital order parameter. Moreover, the same orbital order is found to stabilize the CE-type spin arrangement observed experimentally below TCE < TCO.

  1. Projectile charge state dependent sputtering of solid surfaces

    CERN Document Server

    Hayderer, G

    2000-01-01

    dependence on the ion kinetic energy. This new type of potential sputtering not only requires electronic excitation of the target material, but also the formation of a collision cascade within the target in order to initiate the sputtering process and has therefore been termed kinetically assisted potential sputtering. In order to study defects induced by potential sputtering on the atomic scale we performed measurements of multiply charged Ar ion irradiated HOPG (highly oriented pyrolitic graphite) samples with scanning tunneling microscopy (STM). The only surface defects found in the STM images are protrusions. The mean diameter of the defects increases with projectile charge state while the height of the protrusions stays roughly the same indicating a possible pre-equilibrium effect of the stopping of slow multiply charged projectiles in HOPG. Total sputter yields for impact of slow singly and multiply charged ions on metal- (Au), oxide- (Al2O3, MgO) and alkali-halide surfaces (LiF) have been measured as a...

  2. Excited State Structural Dynamics of Carotenoids and Charge Transfer Systems

    International Nuclear Information System (INIS)

    This dissertation describes the development and implementation of a visible/near infrared pump/mid-infrared probe apparatus. Chapter 1 describes the background and motivation of investigating optically induced structural dynamics, paying specific attention to solvation and the excitation selection rules of highly symmetric molecules such as carotenoids. Chapter 2 describes the development and construction of the experimental apparatus used throughout the remainder of this dissertation. Chapter 3 will discuss the investigation of DCM, a laser dye with a fluorescence signal resulting from a charge transfer state. By studying the dynamics of DCM and of its methyl deuterated isotopomer (an otherwise identical molecule), we are able to investigate the origins of the charge transfer state and provide evidence that it is of the controversial twisted intramolecular (TICT) type. Chapter 4 introduces the use of two-photon excitation to the S1 state, combined with one-photon excitation to the S2 state of the carotenoid beta-apo-8'-carotenal. These 2 investigations show evidence for the formation of solitons, previously unobserved in molecular systems and found only in conducting polymers Chapter 5 presents an investigation of the excited state dynamics of peridinin, the carotenoid responsible for the light harvesting of dinoflagellates. This investigation allows for a more detailed understanding of the importance of structural dynamics of carotenoids in light harvesting

  3. Hydrogen Recovery by ECR Plasma Pyrolysis of Methane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a microgravity and hypogravity compatible Electron Cyclotron Resonance (ECR) Plasma Methane Pyrolysis Reactor is proposed to recover hydrogen which...

  4. Charged oscillator quantum state generation with Rydberg atoms

    CERN Document Server

    Stevenson, Robin; Hofferberth, Sebastian; Lesanovsky, Igor

    2016-01-01

    We explore the possibility of engineering quantum states of a charged mechanical oscillator by coupling it to a stream of atoms in superpositions of high-lying Rydberg states. Our scheme relies on the driving of a two-phonon resonance within the oscillator by coupling it to an atomic two-photon transition. This approach effectuates a controllable open system dynamics on the oscillator that permits the creation of squeezed and other non-classical states. We show that these features are robust to thermal noise arising from a coupling of the oscillator with the environment. The possibility to create non-trivial quantum states of mechanical systems, provided by the proposed setup, is central to applications such as sensing and metrology and moreover allows the exploration of fundamental questions concerning the boundary between classical and quantum mechanical descriptions of macroscopic objects.

  5. MULTIPLY CHARGED IONS COLLISIONS WITH ATOMS INTO EXCITED STATES

    Institute of Scientific and Technical Information of China (English)

    PanGuangyan

    1990-01-01

    The emission spectra in collisions between Ions and Atoms have been measured by an Optical Multichannel Analysis System (OMA).The experimental results demonstrate that there are two channels of excitation in collision between single charged ions and atoms and three channels of excitation in collision between double charged ions and atoms.Emission cross cestions and excitation cross sections have been obtained.K.Kadota et al and R.Shingal et al suggested that,under the appropriate conditions,the H42+-Li and He2++Na collision systems can be used efficiently to produce a laser of Lyman-α(30,4nm) and Lyman-β(25.6nm)lines via cascade to He+(2P)state.

  6. Charge and electronic states of cuprite: Experiment and theory

    Science.gov (United States)

    Kim, Miyoung

    The bonding characteristics of cuprite have been studied by the using convergent beam electron diffraction (CBED) method. The low-order structure factors are closely related to the valence electron density, and the CBED is one of the most accurate methods of measuring the low order structure factors. The multipole model is used for converting the structure factors into charge density. The multipole expansion takes into account non-spherical valence electron density due to atomic bonding based on the crystal symmetry. The charge transfer from copper to oxygen is determined from the multipole fitting parameters. The hybridization state between 4s-3d orbitals of copper is also estimated. Electronic states of CU2O are investigated by studying the fine structure of the electron-energy loss spectrum (EELS). The cross section of the near edge structure is proportional to the density of state times an atomic transition site-projected matrix element which generally varies slowly in the region of interest. Both the fine structure of Cu- L2'3 and O-K of Cu2O are significantly different from those of CuO, which shows the sensitivity of EELS fine structure to the crystal bonding. Full-potential Linearized Augmented Plane Wave (FLAPW) calculations have been used to compare experimental results with theory. The structure factors and bonding charge density are compared with the results obtained by the CBED method, and the density of states is compared with the EELS. The FLAPW method has also been used in the local density approximations CLDA) to calculate values of the mean inner Coulomb potential V 0 for Si, Ge and MgO. These values are compared with recent measurements by electron holography. The supercell calculations are performed for crystal slabs, so that the effects of different crystal orientations and surface structures on V0 can be evaluated.

  7. 24 GHz microwave mode converter optimized for superconducting ECR ion source SECRAL

    International Nuclear Information System (INIS)

    Over-sized round waveguide with a diameter about Ø33.0 mm excited in the TE01 mode has been widely adopted for microwave transmission and coupling to the ECR (Electron Cyclotron Resonance) plasma with the superconducting ECR ion sources operating at 24 or 28 GHz, such as SECRAL and VENUS. In order to study the impact of different microwave modes on ECRH (Electron Cyclotron Resonance Heating) efficiency and especially the production of highly charged ions, a set of compact and efficient TE01-HE11 mode conversion and coupling system applicable to 24 GHz SECRAL whose overall length is 330 mm has been designed, fabricated and tested. Good agreements between off-line tests and calculation results have been achieved, which indicates the TE01-HE11 converter meets the application design. The detailed results of the optimized coupling system will be presented in the paper

  8. 24 GHz microwave mode converter optimized for superconducting ECR ion source SECRAL

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J. W., E-mail: jwguo@impcas.ac.cn [Institute of Modern Physics (IMP), Chinese Academy of Science, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Sun, L.; Zhang, X. Z.; Lu, W.; Zhang, W. H.; Feng, Y. C.; Zhao, H. W. [Institute of Modern Physics (IMP), Chinese Academy of Science, Lanzhou 730000 (China); Niu, X. J. [University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-02-15

    Over-sized round waveguide with a diameter about Ø33.0 mm excited in the TE{sub 01} mode has been widely adopted for microwave transmission and coupling to the ECR (Electron Cyclotron Resonance) plasma with the superconducting ECR ion sources operating at 24 or 28 GHz, such as SECRAL and VENUS. In order to study the impact of different microwave modes on ECRH (Electron Cyclotron Resonance Heating) efficiency and especially the production of highly charged ions, a set of compact and efficient TE{sub 01}-HE{sub 11} mode conversion and coupling system applicable to 24 GHz SECRAL whose overall length is 330 mm has been designed, fabricated and tested. Good agreements between off-line tests and calculation results have been achieved, which indicates the TE{sub 01}-HE{sub 11} converter meets the application design. The detailed results of the optimized coupling system will be presented in the paper.

  9. ECR ion and plasma source having new magnetic field for diverse applications

    International Nuclear Information System (INIS)

    The ECR ion and plasma source (ECRIPS) does not need any filament or electrode for plasma discharge rendering the least requirement of maintenance and uninterrupted operation for long time. The traditional ECRIPS use magnetic min-B field for plasma containment and energizing electrons based on the principle of the ECR process. Some new cusp field configurations (CFC) have been simulated to generate large volume uniform plasma of high density making it very appropriate for producing wide beam for low as well as high charged ion beam. The new cusp field, which is magneto-hydrodynamic (MHD) stable produce modified min-B or 0-B field. It can be designed corresponding to any RF frequency. Confinement feature of the field is assessed by electron simulation and found to contain the particles for longer time in comparison to the traditional similar field configuration (TFC). The CFC can be used to construct a new genre of ECRIPS for various applications. (author)

  10. Evolution of PAHs in photodissociation regions: Hydrogenation and charge states

    CERN Document Server

    Montillaud, J; Toublanc, D

    2013-01-01

    Various studies have emphasized variations of the charge state and composition of the interstellar polycyclic aromatic hydrocarbon (PAH) population in photodissociation regions (PDRs). We aim to model the spatial evolution of the charge and hydrogenation states of PAHs in PDRs. We focus on the specific case of the north-west (NW) PDR of NGC 7023 and also discuss the case of the diffuse interstellar medium (ISM). The physical conditions in NGC 7023 NW are modelled using a state-of-the-art PDR code. We then use a new PAH chemical evolution model that includes recent experimental data on PAHs and describes multiphoton events. We consider a family of compact PAHs bearing up to 96 carbon atoms. The calculated ionization ratio is in good agreement with observations in NGC 7023 NW. Within the PDR, PAHs evolve into three major populations: medium-sized PAHs (5090) can be superhydrogenated, and smaller species (Nc<50) are fully dehydrogenated. In the cavity, where the fullerene C60 was recently detected, all the st...

  11. Fractional quantum Hall states in charge-imbalanced bilayer systems

    OpenAIRE

    Thiebaut, N.; Regnault, N.; Goerbig, M. O.

    2013-01-01

    We study the fractional quantum Hall effect in a bilayer with charge-distribution imbalance induced, for instance, by a bias gate voltage. The bilayer can either be intrinsic or it can be formed spontaneously in wide quantum wells, due to the Coulomb repulsion between electrons. We focus on fractional quantum Hall effect in asymmetric bilayer systems at filling factor nu=4/11 and show that an asymmetric Halperin-like trial wavefunction gives a valid description of the ground state of the system.

  12. Localized charged states and phase separation near second order phase transition

    OpenAIRE

    Kabanov, V. V.; Mamin, R. F.; Shaposhnikova, T. S.

    2008-01-01

    Localized charged states and phase segregation are described in the framework of the phenomenological Ginzburg-Landau theory of phase transitions. The Coulomb interactions determines the charge distribution and the characteristic length of the phase separated states. The phase separation with charge segregation becomes possible because of the large dielectric constant and the small density of extra charge in the range of charge localization. The phase diagram is calculated and the energy gain...

  13. Analysis of Ion Charge States in Solar Wind and CMEs

    Indian Academy of Sciences (India)

    Arati Dasgupta; J. M. Laming

    2008-03-01

    We discuss needs in dielectronic recombination data motivated by recent work directed at a quantitative understanding of ion charge states of various elements observed in situ in the solar wind and CMEs. The competing processes of ionization and recombination lead to departures from collision ionization equilibrium. The use of this as a diagnostic of acceleration and heating processes of the solar wind and CMEs is sensitive to the accuracy of the atomic rates in a way that steady state ionization equilibrium plasmas are not. The most pressing need is dielectronic recombination rates for ions Fe8+-12+. These are among the dominant species observed in various regions of the solar wind and CMEs, and in remotely sensed EUV spectra.

  14. Influence of Multiple Ionization on Charge State Distributions

    Science.gov (United States)

    Hahn, Michael; Savin, Daniel Wolf

    2015-08-01

    The spectrum emitted by a plasma depends on the charge state distribution (CSD) of the gas. For collisionally ionized plasmas, the CSD is is determined by the corresponding rates for electron-impact ionization and recombination. In astrophysics, such plasmas are formed in stars, supernova remnants, galaxies, and galaxy clusters. Current CSD calculations generally do not account for electron-impact multiple ionization (EIMI), a process in which multiple electrons are ejected by a single electron-ion collision. We have estimated the EIMI cross sections for all charge states of iron using a combination of the available experimental data and semi-empirical formulae. We then modeled the CSD and observed the influence of EIMI compared to only including single ionization. One case of interest for astrophysics is nanoflare heating, which is a leading theory to explain the heating of the solar corona. In order to determine whether this theory can indeed explain coronal heating, spectroscopic measurements are being compared to model nanoflare spectra. Such models have attempted to predict the spectra of impulsively heated plasmas in which the CSD is time dependent. These nonequilbirium ionization calculations have so far ignored EIMI, but our findings suggest that EIMI can have a significant effect on the CSD of a nanoflare-heated plasma, changing the ion abundances by up to about 50%.

  15. Support vector based battery state of charge estimator

    Science.gov (United States)

    Hansen, Terry; Wang, Chia-Jiu

    This paper investigates the use of a support vector machine (SVM) to estimate the state-of-charge (SOC) of a large-scale lithium-ion-polymer (LiP) battery pack. The SOC of a battery cannot be measured directly and must be estimated from measurable battery parameters such as current and voltage. The coulomb counting SOC estimator has been used in many applications but it has many drawbacks [S. Piller, M. Perrin, Methods for state-of-charge determination and their application, J. Power Sources 96 (2001) 113-120]. The proposed SVM based solution not only removes the drawbacks of the coulomb counting SOC estimator but also produces accurate SOC estimates, using industry standard US06 [V.H. Johnson, A.A. Pesaran, T. Sack, Temperature-dependent battery models for high-power lithium-ion batteries, in: Presented at the 17th Annual Electric Vehicle Symposium Montreal, Canada, October 15-18, 2000. The paper is downloadable at website http://www.nrel.gov/docs/fy01osti/28716.pdf] aggressive driving cycle test procedures. The proposed SOC estimator extracts support vectors from a battery operation history then uses only these support vectors to estimate SOC, resulting in minimal computation load and suitable for real-time embedded system applications.

  16. Determination of Thermal State of Charge in Solar Heat Receivers

    Science.gov (United States)

    Glakpe, E. K.; Cannon, J. N.; Hall, C. A., III; Grimmett, I. W.

    1996-01-01

    The research project at Howard University seeks to develop analytical and numerical capabilities to study heat transfer and fluid flow characteristics, and the prediction of the performance of solar heat receivers for space applications. Specifically, the study seeks to elucidate the effects of internal and external thermal radiation, geometrical and applicable dimensionless parameters on the overall heat transfer in space solar heat receivers. Over the last year, a procedure for the characterization of the state-of-charge (SOC) in solar heat receivers for space applications has been developed. By identifying the various factors that affect the SOC, a dimensional analysis is performed resulting in a number of dimensionless groups of parameters. Although not accomplished during the first phase of the research, data generated from a thermal simulation program can be used to determine values of the dimensionless parameters and the state-of-charge and thereby obtain a correlation for the SOC. The simulation program selected for the purpose is HOTTube, a thermal numerical computer code based on a transient time-explicit, axisymmetric model of the total solar heat receiver. Simulation results obtained with the computer program are presented the minimum and maximum insolation orbits. In the absence of any validation of the code with experimental data, results from HOTTube appear reasonable qualitatively in representing the physical situations modeled.

  17. Microwave ion source for low charge state ion production

    Science.gov (United States)

    Reijonen, J.; Eardley, M.; Gough, R.; Leung, K.; Thomae, R.

    2003-10-01

    The Plasma and Ion Source Technology Group at LBNL have developed a microwave ion source. The source consists of a stainless-steel plasma chamber, a permanent-magnet dipole structure and a coaxial microwave feed. Measurements were carried out to characterize the plasma and the ion beam produced in the ion source. These measurements included current density, charge state distribution, gas efficiency and accelerated beam emittance measurements. Using a computer controlled data acquisition system a new method of determining the saturation ion current was developed. Current density of 3-6 mA/cm 2 was measured with the source operating in the over dense mode. The highest measured charge-states were Ar 5+, O 3+ and Xe 7+. Gas efficiency was measured using a calibrated argon leak. Depending on the source pressure and discharge power, more than 20% total gas efficiency was achieved. The emittance of the ion beam was measured by using a pepper-pot device. Certain spread was noticed in the beam emittance in the perpendicular direction to the source dipole field. For the parallel direction to the magnetic field, the normalized rr' emittance of 0.032 π-mm-mrad at 13 kV of acceleration voltage and beam exit aperture of 3-mm-in-diameter was measured. This compares relatively well with the simulated value of 4 rms, normalized emittance value of 0.024 π-mm-mrad.

  18. Coulomb charging energy of vacancy-induced states in graphene

    Science.gov (United States)

    Miranda, V. G.; Dias da Silva, Luis G. G. V.; Lewenkopf, C. H.

    2016-08-01

    Vacancies in graphene have been proposed to give rise to π -like magnetism in carbon materials, a conjecture which has been supported by recent experimental evidence. A key element in this "vacancy magnetism" is the formation of magnetic moments in vacancy-induced electronic states. In this work we compute the charging energy U of a single-vacancy-generated localized state for bulk graphene and graphene ribbons. We use a tight-binding model to calculate the dependency of the charging energy U on the amplitudes of the localized wave function on the graphene lattice sites. We show that for bulk graphene U scales with the system size L as (lnL) -2, confirming the predictions in the literature, based on heuristic arguments. In contrast, we find that for realistic system sizes U is of the order of eV, a value that is orders of magnitude higher than the previously reported estimates. Finally, when edges are considered, we show that U is very sensitive to the vacancy position with respect to the graphene flake boundaries. In the case of armchair nanoribbons, we find a strong enhancement of U in certain vacancy positions as compared to the value for vacancies in bulk graphene.

  19. 78 FR 47681 - Notice of Petition for Waiver of ECR (ECR) International, Inc. From the Department of Energy...

    Science.gov (United States)

    2013-08-06

    ... Public Law 95-619, Title IV, Sec. 441(a), established the Energy Conservation Program for Consumer... of Energy Efficiency and Renewable Energy Notice of Petition for Waiver of ECR (ECR) International..., and Grant of Interim Waiver AGENCY: Office of Energy Efficiency and Renewable Energy, Department...

  20. Application of Genetic Neural Network in Power Battery Charging State-of-Charge Estimation

    Directory of Open Access Journals (Sweden)

    Yongqin Zhou

    2011-03-01

    Full Text Available With global non-renewable resources and environmental issues becoming more apparent, the development of new energy vehicles have become the trend of auto industry. Hybrid vehicle becomes the key development of new energy vehicles with its long distance, low pollution, low fuel consumption characteristics and so on. The battery performances directly influence the quality of the whole vehicle performance. Considering the importance of the battery state of charge (SOC estimation and the nonlinear relationship between the battery SOC and the external characteristic, genetic algorithm (GA and back propagation (BP neural network are proposed. Because of the strong global search capability of the genetic algorithm and the generalization ability of BP neural network, the hybrid vehicle Ni-MH power battery GA-BP charging model is designed. In this approach, the network training speed is superior to the traditional BP network. According to the real-time data of the batteries, the optimal solution can be concluded in a short time and with high estimation precision.

  1. Application of carbon stripping foil to HIRFL-CSR and measurement of charge state distribution

    International Nuclear Information System (INIS)

    Charged ions may be injected into the CSRm by means of the charge stripping injection or the multiple multi-turn injection. The charge state distribution of the ions passing through the carbon foil has great influence on the performance of the accelerator and thus plays a key role in the charge stripping injection. It's found that the charge state distribution is dependent on the thicknesses of the carbon foil and the energy of the ions. In present work, the carbon stripper was applied to HIRFL-CSR and the best optional charge state distribution was measured. (authors)

  2. The lowest-energy charge-transfer state and its role in charge separation in organic photovoltaics.

    Science.gov (United States)

    Nan, Guangjun; Zhang, Xu; Lu, Gang

    2016-06-29

    Energy independent, yet higher than 90% internal quantum efficiency (IQE), has been observed in many organic photovoltaics (OPVs). However, its physical origin remains largely unknown and controversial. The hypothesis that the lowest charge-transfer (CT) state may be weakly bound at the interface has been proposed to rationalize the experimental observations. In this paper, we study the nature of the lowest-energy CT (CT1) state, and show conclusively that the CT1 state is localized in typical OPVs. The electronic couplings in the donor and acceptor are found to determine the localization of the CT1 state. We examine the geminate recombination of the CT1 state and estimate its lifetime from first principles. We identify the vibrational modes that contribute to the geminate recombination. Using material parameters determined from first principles and experiments, we carry out kinetic Monte Carlo simulations to examine the charge separation of the localized CT1 state. We find that the localized CT1 state can indeed yield efficient charge separation with IQE higher than 90%. Dynamic disorder and configuration entropy can provide the energetic and entropy driving force for charge separation. Charge separation efficiency depends more sensitively on the dimension and crystallinity of the acceptor parallel to the interface than that normal to the interface. Reorganization energy is found to be the most important material parameter for charge separation, and lowering the reorganization energy of the donor should be pursued in the materials design. PMID:27306609

  3. The lowest-energy charge-transfer state and its role in charge separation in organic photovoltaics.

    Science.gov (United States)

    Nan, Guangjun; Zhang, Xu; Lu, Gang

    2016-06-29

    Energy independent, yet higher than 90% internal quantum efficiency (IQE), has been observed in many organic photovoltaics (OPVs). However, its physical origin remains largely unknown and controversial. The hypothesis that the lowest charge-transfer (CT) state may be weakly bound at the interface has been proposed to rationalize the experimental observations. In this paper, we study the nature of the lowest-energy CT (CT1) state, and show conclusively that the CT1 state is localized in typical OPVs. The electronic couplings in the donor and acceptor are found to determine the localization of the CT1 state. We examine the geminate recombination of the CT1 state and estimate its lifetime from first principles. We identify the vibrational modes that contribute to the geminate recombination. Using material parameters determined from first principles and experiments, we carry out kinetic Monte Carlo simulations to examine the charge separation of the localized CT1 state. We find that the localized CT1 state can indeed yield efficient charge separation with IQE higher than 90%. Dynamic disorder and configuration entropy can provide the energetic and entropy driving force for charge separation. Charge separation efficiency depends more sensitively on the dimension and crystallinity of the acceptor parallel to the interface than that normal to the interface. Reorganization energy is found to be the most important material parameter for charge separation, and lowering the reorganization energy of the donor should be pursued in the materials design.

  4. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics.

    Science.gov (United States)

    Rácz, R; Biri, S; Pálinkás, J; Mascali, D; Castro, G; Caliri, C; Romano, F P; Gammino, S

    2016-02-01

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented. PMID:26931959

  5. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics.

    Science.gov (United States)

    Rácz, R; Biri, S; Pálinkás, J; Mascali, D; Castro, G; Caliri, C; Romano, F P; Gammino, S

    2016-02-01

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  6. The first results with the new JYFL 14 GHz ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Koivisto, H. E-mail: hannu.koivisto@phys.jyu.fi; Heikkinen, P.; Haenninen, V.; Lassila, A.; Leinonen, H.; Nieminen, V.; Pakarinen, J.; Ranttila, K.; Aerje, J.; Liukkonen, E

    2001-04-01

    A new 14 GHz ECR ion source has been built for the Accelerator Laboratory in the Department of Physics (JYFL), University of Jyvaeskylae. This source belongs to the family of the LBNL AECR-U-based ECR ion sources. The operation during the first four months has shown that the new ion source performs well and is able to produce intensive highly charged ion beams. For example, 145 {mu}A of O{sup 7+} ion beam was recorded. The production of iron and boron ion beams was tested using the MIVOC method. The {sup 56}Fe{sup 11+} ion beam current reached a value of 115 {mu}A. The intensities of {sup 11}B{sup 3+} and {sup 11}B{sup 5+} ion beams were 235 and 52 {mu}A, respectively. This iron beam intensity is the second highest and the boron beam intensities are the highest ever produced by an ECR ion source. In all the tests an extraction voltage of 10 kV was applied.

  7. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Rácz, R., E-mail: rracz@atomki.hu; Biri, S.; Pálinkás, J. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Mascali, D.; Castro, G.; Caliri, C.; Gammino, S. [Instituto Nazionale di Fisica Nucleare—Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Romano, F. P. [Instituto Nazionale di Fisica Nucleare—Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy)

    2016-02-15

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  8. Charge-state-dependent energy loss of slow ions. I. Experimental results on the transmission of highly charged ions

    Science.gov (United States)

    Wilhelm, Richard A.; Gruber, Elisabeth; Smejkal, Valerie; Facsko, Stefan; Aumayr, Friedrich

    2016-05-01

    We report on energy loss measurements of slow (v ≪v0 ), highly charged (Q >10 ) ions upon transmission through a 1-nm-thick carbon nanomembrane. We emphasize here the scaling of the energy loss with the velocity and charge exchange or loss. We show that a weak linear velocity dependence exists, whereas charge exchange dominates the kinetic energy loss, especially in the case of a large charge capture. A universal scaling of the energy loss with the charge exchange and velocity is found and discussed in this paper. A model for charge-state-dependent energy loss for slow ions is presented in paper II in this series [R. A. Wilhelm and W. Möller, Phys. Rev. A 93, 052709 (2016), 10.1103/PhysRevA.93.052709].

  9. State of charge estimation in Ni-MH rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Milocco, R.H. [Grupo Control Automatico y Sistemas (GCAyS), Depto. Electrotecnia, Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquen (Argentina); Castro, B.E. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Universidad Nacional de La Plata, Suc 4, CC16 (1900), La Plata (Argentina)

    2009-10-20

    In this work we estimate the state of charge (SOC) of Ni-MH rechargeable batteries using the Kalman filter based on a simplified electrochemical model. First, we derive the complete electrochemical model of the battery which includes diffusional processes and kinetic reactions in both Ni and MH electrodes. The full model is further reduced in a cascade of two parts, a linear time invariant dynamical sub-model followed by a static nonlinearity. Both parts are identified using the current and potential measured at the terminals of the battery with a simple 1-D minimization procedure. The inverse of the static nonlinearity together with a Kalman filter provide the SOC estimation as a linear estimation problem. Experimental results with commercial batteries are provided to illustrate the estimation procedure and to show the performance. (author)

  10. Low charge state heavy ion production with sub-nanosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Kanesue, T., E-mail: tkanesue@bnl.gov; Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Kumaki, M. [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Ikeda, S. [Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa 226-8503 (Japan)

    2016-02-15

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

  11. Low charge state heavy ion production with sub-nanosecond laser.

    Science.gov (United States)

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

  12. Low charge state heavy ion production with sub-nanosecond laser

    Science.gov (United States)

    Kanesue, T.; Kumaki, M.; Ikeda, S.; Okamura, M.

    2016-02-01

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

  13. Low charge state heavy ion production with sub-nanosecond laser

    International Nuclear Information System (INIS)

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target

  14. Instantaneous charge state of Uranium projectiles in fully ionized plasmas from energy loss experiments

    CERN Document Server

    Morales, Roberto; Casas, David

    2016-01-01

    The instantaneous charge state of uranium ions traveling through a fully ionized hydrogen plasma has been theoretically studied and compared with one of the first energy loss experiments in plasmas, carried out at GSI-Darmstadt by Hoffmann \\textit{et al.} in the 90's. For this purpose, two different methods to estimate the instantaneous charge state of the projectile have been employed: (1) rate equations using ionization and recombination cross sections, and (2) equilibrium charge state formulas for plasmas. Also, the equilibrium charge state has been obtained using these ionization and recombination cross sections, and compared with the former equilibrium formulas. The equilibrium charge state of projectiles in plasmas is not always reached, it depends mainly on the projectile velocity and the plasma density. Therefore, a non-equilibrium or an instantaneous description of the projectile charge is necessary. The charge state of projectile ions cannot be measured, except after exiting the target, and experime...

  15. Electron capture to autoionizing states of multiply charged ions

    International Nuclear Information System (INIS)

    The present thesis investigates electron capture reactions resulting from slow collisions (V q+) and neutral gas targets (B). The energy spectra of the emitted electrons are measured; detection angle is 500. Mainly, autoionizing double capture resulting from collisions with two-electron targets (He, H2) is studied; then, the emitted electrons stem from doubly excited projectile states. The projectiles used are bare C6+, the H-like and He-like ions of C, N and O, He-like Ne8+ and Ne-like Ar8+. Excited metastable projectiles used are C5+(2s), He-like projectiles Aq+(1s2s3S) and Ar8+(...2p53s). Comparison is made with the predictions of a recently proposed extended classical barrier model, that was developed in connection with the work. This model assumes sequential capture of the electrons ('two-step' process); it predicts the realized binding enegies of the captured electrons - which may be directly determined from the autoionization spectra using only the projectile charge, the ionization potentials of the target and the collision velocity as parameters. No adjustable parameter enters into the calculations. The term energies and decay modes of the highly excited product ions themselves are studied. Generally, the autoionizing decay of these states is found to proceed preferentially to the directly adjacent lower singly excited state. Experimental evidence is presented, that triply excited states decay by successive emission of two electrons, whenever this is energetically possible. Finally, the L-MM decay in few-electron systems is considered. 314 refs.; 96 figs.; 29 tabs

  16. Influence of charge changing collisions on charge state distributions (CSD) in non-equilibrium plasmas

    International Nuclear Information System (INIS)

    For an optimal design of ion sources and for some aspects of plasma diagnostics it is important to study the influence of all processes and parameters that are essential for the production and loss of multiply charged ions. Till now all existing calculations of CSD neglected charge transfer because of missing data. Now many of the very big charge transfer cross sections are measured and so we are able to include them into our calculations. (orig.)

  17. First operation of ECR ion source at Kochi University of Technology

    OpenAIRE

    Momota, Sadao; Nojiri, Yoichi; Saihara, Miwako; Sakamoto, Asako; Hamagawa, Hisayoshi; Hamaguchi, Kensuke

    2004-01-01

    To study nano-scale manufacturing using highly charged ion beams, a facility to produce and irradiate heavy ion beams has been installed at Kochi University of Technology (KUT). The facility includes an ECR ion source (ECRIS), a beam transport and analysis system, and an irradiation system. The first beam was extracted from ECRIS in January 2003. To evaluate the performance of ECRIS, the measurements of the current and mass spectrum of ion beams as a function of the voltage for the beam extra...

  18. Design of small ECR ion source for neutron generator

    International Nuclear Information System (INIS)

    The principles, structures and characteristics of small ECR (Electron Cyclotron Resonance) ion source used in the neutron generator are introduced. The processes of the design and key technique and innovations are described. (authors)

  19. Fractional Charge and Quantized Current in the Quantum Spin Hall State

    OpenAIRE

    Qi, Xiao-Liang; Hughes, Taylor L.; Zhang, Shou-Cheng

    2007-01-01

    A profound manifestation of topologically non-trivial states of matter is the occurrence of fractionally charged elementary excitations. The quantum spin Hall insulator state is a fundamentally novel quantum state of matter that exists at zero external magnetic field. In this work, we show that a magnetic domain wall at the edge of the quantum spin Hall insulator carries one half of the unit of electron charge, and we propose an experiment to directly measure this fractional charge on an indi...

  20. Universal Bounds on Charged States in 2d CFT and 3d Gravity

    CERN Document Server

    Benjamin, Nathan; Fitzpatrick, A Liam; Kachru, Shamit

    2016-01-01

    We derive an explicit bound on the dimension of the lightest charged state in two dimensional conformal field theories with a global abelian symmetry. We find that the bound scales with $c$ and provide examples that parametrically saturate this bound. We also prove than any such theory must contain a state with charge-to-mass ratio above a minimal lower bound. We comment on the implications for charged states in three dimensional theories of gravity.

  1. Thermal State-of-Charge in Solar Heat Receivers

    Science.gov (United States)

    Hall, Carsie, A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1998-01-01

    A theoretical framework is developed to determine the so-called thermal state-of-charge (SOC) in solar heat receivers employing encapsulated phase change materials (PCMS) that undergo cyclic melting and freezing. The present problem is relevant to space solar dynamic power systems that would typically operate in low-Earth-orbit (LEO). The solar heat receiver is integrated into a closed-cycle Brayton engine that produces electric power during sunlight and eclipse periods of the orbit cycle. The concepts of available power and virtual source temperature, both on a finite-time basis, are used as the basis for determining the SOC. Analytic expressions for the available power crossing the aperture plane of the receiver, available power stored in the receiver, and available power delivered to the working fluid are derived, all of which are related to the SOC through measurable parameters. Lower and upper bounds on the SOC are proposed in order to delineate absolute limiting cases for a range of input parameters (orbital, geometric, etc.). SOC characterization is also performed in the subcooled, two-phase, and superheat regimes. Finally, a previously-developed physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) system is used in order to predict the SOC as a function of measurable parameters.

  2. Boson ground state fields in electroweak theory with non-zero charge densities

    OpenAIRE

    Syska, J.

    2002-01-01

    The "non-linear" self-consistent theory of classical fields in the electroweak model is proposed. Homogeneous boson ground state solutions in the GSW model at the presence of a non-zero extended fermionic charge densities are reviewed and fully reinterpreted to make the theory with non-zero charge densities fruitful. Consequences of charge density fluctuations are proposed.

  3. Rendering high charge density of states in ionic liquid-gated MoS 2 transistors

    NARCIS (Netherlands)

    Lee, Y.; Lee, J.; Kim, S.; Park, H.S.

    2014-01-01

    We investigated high charge density of states (DOS) in the bandgap of MoS2 nanosheets with variable temperature measurements on ionic liquid-gated MoS2 transistors. The thermally activated charge transport indicates that the electrical current in the two-dimensional MoS 2 nanosheets under high charg

  4. A simple scheme to generate x-type four-charge entangled states in circuit QED

    Institute of Scientific and Technical Information of China (English)

    Gao Gui-Long; Song Fu-Quan; Huang Shou-Sheng; Wang Hui; Yuan Xian-Zhang; Wang Ming-Feng; Jiang Nian-Quan

    2012-01-01

    We propose a simple scheme to generate x-type four-charge entangled states by using SQUID-based charge qubits capacitively coupled to a transmission line resonator (TLR).The coupling between the superconducting qubit and the TLR can be effectively controlled by properly adjusting the control parameters of the charge qubit.The experimental feasibility of our scheme is also shown.

  5. Photo-induced changes in charge-ordered state of Ti4O7

    International Nuclear Information System (INIS)

    We have investigated photo-induced effects on the charge-ordered state of Ti4O7 with pump-probe spectroscopy. Reflectivity of the probe light changes after the pulsed pump excitation, and then recovers. The photo-induced effects are observed only when the pump power exceeds a threshold value, indicative of cooperative nature of the formation process, and the recovery rate shows thermally activated behaviour. We propose that the photo-induced state is a metastable charge localized state where charge disorder is induced by a photon-assisted charge transfer process from Ti26+ dimers to the neighbouring Ti4+ions. Moreover, it is found that subsequent cw laser irradiation converts the photo-induced state into the charge-ordered state. We interpret this result in terms of formation of Ti26+ dimers via an inverse charge transfer process assisted by the cw optical excitation.

  6. Charge state distributions and charge exchange cross sections of carbon in helium at 30-258 keV

    Science.gov (United States)

    Maxeiner, Sascha; Seiler, Martin; Suter, Martin; Synal, Hans-Arno

    2015-10-01

    With the introduction of helium stripping in radiocarbon (14C) accelerator mass spectrometry (AMS), higher +1 charge state yields in the 200 keV region and fewer beam losses are observed compared to nitrogen or argon stripping. To investigate the feasibility of even lower beam energies for 14C analyses the stripping characteristics of carbon in helium need to be further studied. Using two different AMS systems at ETH Zurich (myCADAS and MICADAS), ion beam transmissions of carbon ions for the charge states -1, +1, +2 and +3 were measured in the range of 258 keV down to 30 keV. The correction for beam losses and the extraction of charge state yields and charge exchange cross sections will be presented. An increase in population of the +1 charge state towards the lowest measured energies up to 75% was found as well as agreement with previous data from literature. The findings suggest that more compact radiocarbon AMS systems are possible and could provide even higher efficiency than current systems operating in the 200 keV range.

  7. Production of fully-stripped neon beam with the ECR ion source

    International Nuclear Information System (INIS)

    Complete text of publication follows. The ATOMKI ECRIS Laboratory celebrated the 20th anniversary of the project starting-up in 1992. Ion beams themselves are being delivered since 1996. The facility is used for low energy atomic physics research, plasma investigations and for applications. There is continuous necessity to increase the quality of the produced ion beams and plasmas in order to satisfy the diversified requirements. For example high intensity, highly charged neon ion beams with very low kinetic energy (several hundred eV/nucleon) are necessary to measure some aspect of the nowadays very intensively studied physics of nano-capillaries (guiding of highly charged ions through nanocapillaries). We were motivated to measure the intensity of a fully-stripped neon ion beam (at first time in Hungary) which is impossible with natural neon due to the (always) present molecular hydrogen ions (same charge - to- mass ratio). In order to overcome this difficulty it was decided to use isotopically enriched (99.95 %) 22Ne gas. The ECR ion source operated in standard mode. The plasma was tuned for the required charge state by changing parameters like the microwave power (klystron amplified), the biased electrode (voltage and position) and the neon-gas flow. The extraction voltage was 10 kV and the analysed beam was measured by a Faraday cup. The size of the beam was defined by (10 mm x 30 mm) slits. At first the charge state distribution (CSD) of the extracted ion beam was recorded using natural neon gas when the source was tuned for 20Ne8+ in order to get a benchmark for comparison. The natural neon gas abundances of 20Ne and 22Ne are 90.48 % and 9.25 %, respectively. By measuring the CSD of both isotopes in one setting we were able to observe (likely for the first time) the so-called isotopic anomaly, well known for nitrogen and oxygen, see figure 1. The CSD for the heavier isotope is shifted to higher charges at the cost of higher losses (output) for low charge

  8. A multi-state fragment charge difference approach for diabatic states in electron transfer: Extension and automation

    Science.gov (United States)

    Yang, Chou-Hsun; Hsu, Chao-Ping

    2013-10-01

    The electron transfer (ET) rate prediction requires the electronic coupling values. The Generalized Mulliken-Hush (GMH) and Fragment Charge Difference (FCD) schemes have been useful approaches to calculate ET coupling from an excited state calculation. In their typical form, both methods use two eigenstates in forming the target charge-localized diabatic states. For problems involve three or four states, a direct generalization is possible, but it is necessary to pick and assign the locally excited or charge-transfer states involved. In this work, we generalize the 3-state scheme for a multi-state FCD without the need of manual pick or assignment for the states. In this scheme, the diabatic states are obtained separately in the charge-transfer or neutral excited subspaces, defined by their eigenvalues in the fragment charge-difference matrix. In each subspace, the Hamiltonians are diagonalized, and there exist off-diagonal Hamiltonian matrix elements between different subspaces, particularly the charge-transfer and neutral excited diabatic states. The ET coupling values are obtained as the corresponding off-diagonal Hamiltonian matrix elements. A similar multi-state GMH scheme can also be developed. We test the new multi-state schemes for the performance in systems that have been studied using more than two states with FCD or GMH. We found that the multi-state approach yields much better charge-localized states in these systems. We further test for the dependence on the number of state included in the calculation of ET couplings. The final coupling values are converged when the number of state included is increased. In one system where experimental value is available, the multi-state FCD coupling value agrees better with the previous experimental result. We found that the multi-state GMH and FCD are useful when the original two-state approach fails.

  9. State of charge monitoring methods for vanadium redox flow battery control

    Science.gov (United States)

    Skyllas-Kazacos, Maria; Kazacos, Michael

    2011-10-01

    During operation of redox flow batteries, differential transfer of ions and electrolyte across the membrane and gassing side reactions during charging, can lead to an imbalance between the two half-cells that results in loss of capacity. This capacity loss can be corrected by either simple remixing of the two solutions, or by chemical or electrochemical rebalancing. In order to develop automated electrolyte management systems therefore, the state-of-charge of each half-cell electrolyte needs to be known. In this study, two state-of-charge monitoring methods are investigated for use in the vanadium redox flow battery. The first method utilizes conductivity measurements to independently measure the state-of-charge of each half-cell electrolyte. The second method is based on spectrophotometric principles and uses the different colours of the charged and discharged anolyte and catholyte to monitor system balance and state-of charge of each half-cell of the VRB during operation.

  10. Determination of the charge state distribution of a highly ionized coronal Au plasma

    International Nuclear Information System (INIS)

    We present the first definitive measurement of the charge state distribution of a highly ionized gold plasma in coronal equilibrium. The experiment utilized the Livermore electron beam ion trap EBIT-II in a novel configuration to create a plasma with a Maxwellian temperature of 2.5 keV. The charge balance in the plasma was inferred from spectral line emission measurements which accounted for charge exchange effects. The measured average ionization state was 46.8±0.75. This differs from the predictions of two modeling codes by up to four charge states

  11. Charge-state dynamics in electrostatic force spectroscopy

    Science.gov (United States)

    Ondráček, Martin; Hapala, Prokop; Jelínek, Pavel

    2016-07-01

    We present a numerical model that allows us to study the response of an oscillating probe in electrostatic force spectroscopy to charge switching in quantum dots at various time scales. The model provides more insight into the behavior of frequency shift and dissipated energy under different scanning conditions when measuring a temporarily charged quantum dot on a surface. Namely, we analyze the dependence of the frequency shift, the dissipated energy, and their fluctuations on the resonance frequency of the tip and on the electron tunneling rates across the tip–quantum dot and quantum dot–sample junctions. We discuss two complementary approaches to simulating the charge dynamics, a stochastic and a deterministic one. In addition, we derive analytic formulas valid for small amplitudes, describing relations between the frequency shift, dissipated energy, and the characteristic rates driving the charging and discharging processes.

  12. Quantum State Transfer between Charge and Flux Qubits in Circuit-QED

    Institute of Scientific and Technical Information of China (English)

    WU Qin-Qin; LIAO Jie-Qiao; KUANG Le-Man

    2008-01-01

    @@ We propose a scheme to implement quantum state transfer in a hybrid circuit quantum electrodynamics (QED)system which consists of a superconducting charge qubit, a flux qubit, and a transmission line resonator (TLR).It is shown that quantum state transfer between the charge qubit and the flux qubit can be realized by using the TLR as the data bus.

  13. Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Danilov, D.; Regtien, P.P.L.; Notten, P.H.L.

    2008-01-01

    Battery Management Systems – Universal State-of-Charge indication for portable applications describes the field of State-of-Charge (SoC) indication for rechargeable batteries. With the emergence of battery-powered devices with an increasing number of power-hungry features, accurately estimating the

  14. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited).

    Science.gov (United States)

    Vondrasek, R; Levand, A; Pardo, R; Savard, G; Scott, R

    2012-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi (252)Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci (252)Cf source to produce radioactive beams with intensities up to 10(6) ions∕s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for (23)Na(8+), 15.6% for (84)Kr(17+), and 13.7% for (85)Rb(19+) with typical breeding times of 10 ms∕charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for (143)Cs(27+) and 14.7% for (143)Ba(27+). The project has been commissioned with a radioactive beam of (143)Ba(27+) accelerated to 6.1 MeV∕u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities. PMID:22380254

  15. Generating the Schroedinger cat state in a nanomechanical resonator coupled to a charge qubit

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian-Qi; Feng, Mang [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan (China); Xiong, Wei [Department of Physics and State of Key Laboratory of Surface Physics, Fudan University, Shanghai (China); Zhang, Shuo [College of Science, National University of Defense Technology, Changsha (China); Li, Yong [Beijing Computational Science Research Center, Beijing (China)

    2015-01-01

    A scheme for generating the Schroedinger cat state based on geometric operations by a nanomechanical resonator coupled to a superconducting charge qubit is proposed. The charge qubit, driven by two strong classical fields, interacts with a high-frequency phonon mode of the nanomechanical resonator. During the operation, the charge qubit undergoes no real transitions, while the phonon mode of the nanomechanical resonator is displaced along different paths in the phase space, dependent on the states of the charge qubit. This generates the entangled cat state between the NAMR and charge qubit, and the NAMR cat state can be achieved after some operations applied on this entangled cat state. The robustness of the scheme is justified by considering noise from environment, and the feasibility of the scheme is discussed. (copyright 2014 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Interplay between strain, defect charge state, and functionality in complex oxides

    Science.gov (United States)

    Aschauer, Ulrich; Spaldin, Nicola A.

    2016-07-01

    We use first-principles calculations to investigate the interplay between strain and the charge state of point defect impurities in complex oxides. Our work is motivated by recent interest in using defects as active elements to provide novel functionality in coherent epitaxial films. Using oxygen vacancies as model point defects, and CaMnO3 and MnO as model materials, we calculate the changes in internal strain caused by changing the charge state of the vacancies, and conversely the effect of strain on charge-state stability. Our results show that the charge state is a degree of freedom that can be used to control the interaction of defects with strain and hence the concentration and location of defects in epitaxial films. We propose the use of field-effect gating to reversibly change the charge state of defects and hence the internal strain and corresponding strain-induced functionalities.

  17. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    Science.gov (United States)

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  18. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL (invited)a)

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Guo, X. H.; Cao, Y.; Lu, W.; Zhang, Z. M.; Yuan, P.; Song, M. T.; Zhao, H. Y.; Jin, T.; Shang, Y.; Zhan, W. L.; Wei, B. W.; Xie, D. Z.

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6T at injection, 2.2T at extraction, and a radial sextupole field of 2.0T at plasma chamber wall. During the commissioning phase at 18GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5kW by two 18GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810eμA of O7+, 505eμA of Xe20+, 306eμA of Xe27+, and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  19. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    Science.gov (United States)

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007. PMID:18315105

  20. Equilibrium charge-state distributions of highly stripped ions in carbon foils

    International Nuclear Information System (INIS)

    Asymmetric equilibrium charge-state distributions observed for heavy ions (Z approx. >= 7) in carbon foils at high velocities (v > 3.6 x 108 Z0sup(.)45 cm s-1) are closely approximated by a simple statistical distribution: the reduced chi-squared model. The dependences of the mean charge and of the standard deviation of the charge on the projectile velocity are obtained by a previously-known and a newly-proposed relation, respectively. Finally charge-state fractions may be easily predicted using a simple formula depending only on the atomic number and on the velocity of the projectile. (orig.)

  1. Anomalous charge and negative-charge-transfer insulating state in cuprate chain-compound KCuO_2

    OpenAIRE

    Choudhury, D.; Rivero, P.; Meyers, D.; Liu, X.; Cao, Y; Middey, S.; Whitaker, M. J.; Barraza-Lopez, S.; Freeland, J. W.; Greenblatt, M.; Chakhalian, J.

    2015-01-01

    Using a combination of X-ray absorption spectroscopy experiments with first principle calculations, we demonstrate that insulating KCuO_2 contains Cu in an unusually-high formal-3+ valence state, the ligand-to-metal (O to Cu) charge transfer energy is intriguingly negative (Delta~ -1.5 eV) and has a dominant (~60%) ligand-hole character in the ground state akin to the high Tc cuprate Zhang-Rice state. Unlike most other formal Cu^{3+} compounds, the Cu 2p XAS spectra of KCuO_2 exhibits pronoun...

  2. Status of the PuMa-ECR (Pulsed Magnetic field)

    International Nuclear Information System (INIS)

    Synchrotrons like the heavy ion synchrotron SIS at GSI need an efficient low duty cycle injector (typical 1 pulse/s and 200 μs pulse length). To improve the peak current, an ECR ion source has been designed using a pulsed magnetic field to force ion extraction. We replaced the hexapole of a 10 GHz MINIMAFIOS ECR ion source by a vacuum chamber containing a watercooled bilayered solenoid coil and a decapole permanent magnetic structure. A pulse line feeds the solenoid with a 250 μs pulse which increases the magnetic field in the minimum B region by 0.3 Tesla. This process opens the magnetic bottle along the beam axis resulting in an extracted ion pulse. First tests of the PuMa-ECR configuration in cw and pulsed operation are presented and analysed. (orig.)

  3. Influence of photoresist feature geometry on ECR plasma-etched HgCdTe trenches

    Science.gov (United States)

    Benson, J. David; Stoltz, Andrew J., Jr.; Kaleczyc, Andrew W.; Martinka, Mike; Almeida, Leo A.; Boyd, Phillip R.; Dinan, John H.

    2002-12-01

    Factors that affect width and aspect ratio in electron cyclotron resonance (ECR) etched HgCdTe trenches are investigated. The ECR etch bias and anisotropy are determined by photoresist feature erosion rate. The physical characteristics of the trenches are attributed to ECR plasma etch chemistry.

  4. Recycling effect of germanium on ECR ion source

    OpenAIRE

    Leherissier, P.; Barué, C.; Canet, C; Dubois, M.; Dupuis, M.; Flambard, J.L.; Gaubert, G.; Jardin, P.; Lecesne, N.; Lemagnen, F.; R. LEROY; Pacquet, J.Y.

    2003-01-01

    After running for three weeks with a 76Ge beam provided by the ECR-4 ion source at GANILwe have investigated the recycling effect of an SF6 plasma. The initial beam was produced bythe classical method, using germanium dioxide in our micro-oven and helium as support gas.The overall ionization efficiency was measured and found to be around 3%. Without theoven, and using SF6 instead of helium, the ECR-4 ion source has been able to produce a verystable beam during a two-week period. The intensity...

  5. Geometry of non-supersymmetric three-charge bound states

    Energy Technology Data Exchange (ETDEWEB)

    Gimon, Eric; Gimon, Eric G.; Levi, Thomas S.; Ross, Simon F.

    2007-05-14

    We study the smooth non-supersymmetric three-charge microstatesof Jejjala, Madden, Ross and Titchener using Kaluza-Klein reductions of the solutions to five and four dimensions. Our aim is to improve our understanding of the relation between these non-supersymmetric solutions and the well-studied supersymmetric cases. We find some surprising qualitative differences. In the five-dimensional description, the solution has orbifold fixed points which break supersymmetry locally, so the geometries cannot be thought of as made up of separate half-BPS centers. In the four-dimensional description, the two singularities in the geometry are connected by a conical singularity, which makes it impossible to treat them independently and assign unambiguous brane charges to these centers.

  6. Evidence of Delocalization in Charge-Transfer State Manifold for Donor:Acceptor Organic Photovoltaics.

    Science.gov (United States)

    Guan, Zhiqiang; Li, Ho-Wa; Zhang, Jinfeng; Cheng, Yuanhang; Yang, Qingdan; Lo, Ming-Fai; Ng, Tsz-Wai; Tsang, Sai-Wing; Lee, Chun-Sing

    2016-08-24

    How charge-transfer states (CTSs) assist charge separation of a Coulombically bound exciton in organic photovoltaics has been a hot topic. It is believed that the delocalization feature of a CTS plays a crucial role in the charge separation process. However, the delocalization of the "hot" and the "relaxed" CTSs is still under debate. Here, with a novel frequency dependent charge-modulated electroabsorption spectroscopy (CMEAS) technique, we elucidate clearly that both "hot" and "relaxed" CTSs are loosely bound and delocalized states. This is confirmed by comparing the CMEAS results of CTSs with those of localized polaron states. Our results reveal the role of CTS delocalization on charge separation and indicate that no substantial delocalization gradient exists in CTSs.

  7. Charge states of energetic oxygen and sulfur ions in Jupiter's magnetosphere

    Science.gov (United States)

    Clark, G.; Mauk, B. H.; Paranicas, C.; Kollmann, P.; Smith, H. T.

    2016-03-01

    Pitch angle distributions of proton and energetic heavy ion fluxes near Europa's orbit have been measured by the Galileo Energetic Particles Detector (EPD). At similar energies, these distributions have important differences. If their source and transport processes are similar, as we hypothesize here, then it is difficult to reconcile their different pitch angle distributions. By looking at the same question, other researchers have proposed that the heavies are multiply charged, leading to differences in how the particles are lost. This could not be confirmed directly with EPD because that detector does not separate heavy ion measurements by charge state. However, indirect analyses of the data have extracted the charge state of a few sulfur events. We present here a complete list of ion injections observed with EPD over the whole mission. Energetic sulfur and oxygen charge states can be inferred through a dispersion analysis of dynamic injections that makes use of the charge-dependent nature of the gradient-curvature azimuthal drift. We find that sulfur is predominantly multiply charged, whereas oxygen is more evenly distributed between singly and doubly charged states. In addition to current theories on energetic heavy ion transport near the Europa region, we propose that charge gain for the oxygen ions (electron stripping) may play an important role in the character of energetic particles in that region.

  8. Transport and emittance study for 18 GHz superconducting-ECR ion source at RCNP.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Kibayashi, M; Morinobu, S; Tamii, A

    2012-02-01

    As the upgrade program of the azimuthally varying field (AVF) cyclotron is at the cyclotron facility of the RCNP, Osaka University for the improvement of the quality, stability, and intensity of accelerated beams, an 18 GHz superconducting (SC) ECR ion source has been installed to increase beam currents and to extend the variety of ions, especially for highly charged heavy ions which can be accelerated by RCNP AVF cyclotron. The production development of several ions such as B, O, N, Ne, Ar, Ni, Kr, and Xe has been performed by Yorita et al. [Rev. Sci. Instrum. 79, 02A311(2008); 81, 02A332 (2010)]. Further studies for the beam transport have been done in order to improve the beam current more for injection of cyclotron. The effect of field leakage of AVF main coil is not negligible and additional steering magnet has been installed and then beam transmission has been improved. The emittance monitor has also been developed for the purpose of investigating correlation between emittance of beam from ECR ion sources and injection efficiency. The monitor consists with BPM82 with rotating wire for fast measurement for efficient study.

  9. Transport and emittance study for 18 GHz superconducting-ECR ion source at RCNP.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Kibayashi, M; Morinobu, S; Tamii, A

    2012-02-01

    As the upgrade program of the azimuthally varying field (AVF) cyclotron is at the cyclotron facility of the RCNP, Osaka University for the improvement of the quality, stability, and intensity of accelerated beams, an 18 GHz superconducting (SC) ECR ion source has been installed to increase beam currents and to extend the variety of ions, especially for highly charged heavy ions which can be accelerated by RCNP AVF cyclotron. The production development of several ions such as B, O, N, Ne, Ar, Ni, Kr, and Xe has been performed by Yorita et al. [Rev. Sci. Instrum. 79, 02A311(2008); 81, 02A332 (2010)]. Further studies for the beam transport have been done in order to improve the beam current more for injection of cyclotron. The effect of field leakage of AVF main coil is not negligible and additional steering magnet has been installed and then beam transmission has been improved. The emittance monitor has also been developed for the purpose of investigating correlation between emittance of beam from ECR ion sources and injection efficiency. The monitor consists with BPM82 with rotating wire for fast measurement for efficient study. PMID:22380182

  10. Ion beam measurements at the superconducting ECR ion source SECRAL

    Energy Technology Data Exchange (ETDEWEB)

    Maeder, Jan; Rossbach, Jon; Lang, Ralf; Maimone, Fabio; Spaedtke, Peter; Tinschert, Klaus [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Sun, Liangting; Cao, Yun; Zhao, Hongwei [Institute of Modern Physics, Lanzhou, GS (China)

    2009-08-15

    Measurement of the charge-state distribution, the beam profile, the beam emittance of the named ion source are presented. Furthermore computer simulations of the magnetic flux-density distribution in this source are described. (HSI)

  11. Evaluation of charge breeding options for EURISOL

    CERN Document Server

    Delahaye, P; Lamy, T; Marie-Jeanne, M; Kester, O; Wenander, F

    2010-01-01

    A comprehensive study of charge breeding techniques for the most ambitious ISOL-facility project, EURISOL, is presented here. It is based on results obtained during the past years at CERN-ISOLDE and LPSC Grenoble with charge breeders of both ECR and EBIS types.

  12. Charge State Evolution of Uranium in Electron Beam Ion Trap

    Institute of Scientific and Technical Information of China (English)

    LIU Ya-Feng; YAO Ke; Roger Hutton; ZOU Ya-Ming

    2005-01-01

    @@ We present a calculation scheme with significant modifications and improvements for determining the ionization balance and the ion temperature evolution in an electron beam ion trap (EBIT). The scheme is applied to uranium and nitrogen ions using a specific set of EBIT operating parameters. The calculation results are compared to the experimental data. Rates for the individual atomic processes in EBIT, especially single and multiple charge exchange processes, are discussed. The time evolution of the ion temperatures for uranium and its coolant nitrogen are also given.

  13. Charge state distribution studies of the metal vapor vacuum arc ion source

    International Nuclear Information System (INIS)

    We have studied the charge state distribution of the ion beam produced by the MEVVA (metal vapor vacuum arc) high current metal ion source. Beams produced from a wide range of cathode materials have been examined and the charge state distributions have been measured as a function of many operational parameters. In this paper we review the charge state data we have accumulated, with particular emphasis on the time history of the distribution throughout the arc current pulse duration. We find that in general the spectra remain quite constant throughout most of the beam pulse, so long as the arc current is constant. There is an interesting early-time transient behavior when the arc is first initiated and the arc current is still rising, during which time the ion charge states produced are observed to be significantly higher than during the steady current region that follows. 12 refs., 5 figs

  14. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several {mu}s) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution.

  15. Charge states of energetic tellurium ions: Equilibrium and non-equilibrium calculations

    Science.gov (United States)

    Kartavykh, Y.; Droege, W.; Klecker, B.; Kocharov, L.; Moebius, E.

    2007-12-01

    Recently, very high abundances of ultraheavy ions were observed in impulsive SEP events, compared to coronal abundances with enrichment factors of >100 for atomic mass > 100 amu. Because wave/particle interaction processes, as discussed for heavy ion enrichment and acceleration, depend critically on the mass per charge (M/Q) of the ions, an estimate of the ionic charge is very important for model calculations. In any realistic acceleration model one would have to use the ionization and recombination rates of these ions as a function of energy, because charge changing processes in the solar corona are inevitable and energy dependent. As an example of high mass ions, we calculate the equilibrium and non-equilibrium charge states for tellurium ions (Te, nuclear charge 52), and present a method to estimate the cross sections and rates for ionization and recombination of ions with arbitrary nuclear charge Z and atomic mass number A.

  16. Metal-organic charge transfer can produce biradical states and is mediated by conical intersections

    OpenAIRE

    Tishchenko, Oksana; Li, Ruifang; Truhlar, Donald G.

    2010-01-01

    The present paper illustrates key features of charge transfer between calcium atoms and prototype conjugated hydrocarbons (ethylene, benzene, and coronene) as elucidated by electronic structure calculations. One- and two-electron charge transfer is controlled by two sequential conical intersections. The two lowest electronic states that undergo a conical intersection have closed-shell and open-shell dominant configurations correlating with the 4s2 and 4s13d1 states of Ca, respectively. Unlike...

  17. Recoil ion charge state distribution following the beta(sup +) decay of {sup 21}Na

    Energy Technology Data Exchange (ETDEWEB)

    Scielzo, Nicholas D.; Freedman, Stuart J.; Fujikawa, Brian K.; Vetter, Paul A.

    2003-01-03

    The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions.

  18. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein.

    Science.gov (United States)

    Ahn, Tae Kyu; Avenson, Thomas J; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K; Bassi, Roberto; Fleming, Graham R

    2008-05-01

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). We found evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a delocalized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can "tune" the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophyll-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  19. ARCHITECTURE OF A CHARGE-TRANSFER STATE REGULATING LIGHT HARVESTING IN A PLANT ANTENNA PROTEIN

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Graham; Ahn, Tae Kyu; Avenson, Thomas J.; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K.; Bassi, Roberto; Fleming, Graham R.

    2008-04-02

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge-transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). In this work, we present evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a de-localized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can `tune? the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophylls-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  20. Observation of burst frequency in extracted ECR ion current

    NARCIS (Netherlands)

    Taki, G. S.; Sarma, P. R.; Drentje, A. G.; Nakagawa, T.; Ray, P. K.; Bhandari, R. K.

    2007-01-01

    Earlier we reported an ion current jump which was observed at a fixed negative biased disc potential in the 6.4GHz ECR ion source at VECC, Kolkata. In a recent experiment with neon ions, we measured the time spectra of the ion current and observed the presence of a burst frequency in the kilohertz r

  1. Heavy ion charge-state distribution effects on energy loss in plasmas

    Science.gov (United States)

    Barriga-Carrasco, Manuel D.

    2013-10-01

    According to dielectric formalism, the energy loss of the heavy ion depends on its velocity and its charge density. Also, it depends on the target through its dielectric function; here the random phase approximation is used because it correctly describes fully ionized plasmas at any degeneracy. On the other hand, the Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler is used to determine its mean charge state . This latter criterion implies that the mean charge state depends on the electron density and temperature of the plasma. Also, the initial charge state of the heavy ion is crucial for calculating inside the plasma. Comparing our models and estimations with experimental data, a very good agreement is found. It is noticed that the energy loss in plasmas is higher than that in the same cold gas cases, confirming the well-known enhanced plasma stopping (EPS). In this case, EPS is only due to the increase in projectile effective charge Qeff, which is obtained as the ratio between the energy loss of each heavy ion and that of the proton in the same plasma conditions. The ratio between the effective charges in plasmas and in cold gases is higher than 1, but it is not as high as thought in the past. Finally, another significant issue is that the calculated effective charge in plasmas Qeff is greater than the mean charge state , which is due to the incorporation of the BK charge distribution. When estimations are performed without this distribution, they do not fit well with experimental data.

  2. Fluorescence behavior of intramolecular charge transfer state in trans-ethyl p-(dimethylamino)cinamate

    International Nuclear Information System (INIS)

    Steady-state and time-resolved emission studies have been performed to investigate the intramolecular charge transfer (ICT) behavior of trans-ethyl p-(dimethylamino)cinamate (EDAC) in various solvents. Large fluorescence spectral shift in more polar solvents indicates an efficient charge transfer from the donor site to the acceptor moiety in the excited state compared to the ground state. The excited state properties in hydrogen-bonding solvents are markedly different from other solvents indicating the possible competition of intermolecular hydrogen bond formation with the electron donor site and ICT

  3. A Parallel 3D Model for The Multi-Species Low Energy Beam Transport System of the RIA Prototype ECR Ion Source Venus

    International Nuclear Information System (INIS)

    The driver linac of the proposed Rare Isotope Accelerator (RIA) requires a great variety of high intensity, high charge state ion beams. In order to design and to optimize the low energy beamline optics of the RIA front end,we have developed a new parallel three-dimensional model to simulate the low energy, multi-species ion beam formation and transport from the ECR ion source extraction region to the focal plane of the analyzing magnet. A multisection overlapped computational domain has been used to break the original transport system into a number of each subsystem, macro-particle tracking is used to obtain the charge density distribution in this subdomain. The three-dimensional Poisson equation is solved within the subdomain and particle tracking is repeated until the solution converges. Two new Poisson solvers based on a combination of the spectral method and the multigrid method have been developed to solve the Poisson equation in cylindrical coordinates for the beam extraction region and in the Frenet-Serret coordinates for the bending magnet region. Some test examples and initial applications will also be presented

  4. Inline state of health estimation of lithium-ion batteries using state of charge calculation

    Science.gov (United States)

    Sepasi, Saeed; Ghorbani, Reza; Liaw, Bor Yann

    2015-12-01

    The determination of state-of-health (SOH) and state-of-charge (SOC) is challenging and remains as an active research area in academia and industry due to its importance for Li-ion battery applications. The estimation process poses more challenges after substantial battery aging. This paper presents an inline SOH and SOC estimation method for Li-ion battery packs, specifically for those based on LiFePO4 chemistry. This new hybridized SOC and SOH estimator can be used for battery packs. Inline estimated model parameters were used in a compounded SOC + SOH estimator consisting of the SOC calculation based on coulomb counting method as an expedient approach and an SOH observer using an extended Kalman filter (EKF) technique for calibrating the estimates from the coulomb counting method. The algorithm's low SOC and SOH estimation error, fast response time, and less-demanding computational requirement make it practical for on-board estimations. The simulation and experimental results, along with the test bed structure, are presented to validate the proposed methodology on a single cell and a 3S1P LiFePO4 battery pack.

  5. Exceptionally Long-Lived Charge Separated State in Zeolitic Imidazolate Framework: Implication for Photocatalytic Applications.

    Science.gov (United States)

    Pattengale, Brian; Yang, Sizhuo; Ludwig, John; Huang, Zhuangqun; Zhang, Xiaoyi; Huang, Jier

    2016-07-01

    Zeolitic imidazolate frameworks (ZIFs) have emerged as a novel class of porous metal-organic frameworks (MOFs) for catalysis application because of their exceptional thermal and chemical stability. Inspired by the broad absorption of ZIF-67 in UV-vis-near IR region, we explored its excited state and charge separation dynamics, properties essential for photocatalytic applications, using optical (OTA) and X-ray transient absorption (XTA) spectroscopy. OTA results show that an exceptionally long-lived excited state is formed after photoexcitation. This long-lived excited state was confirmed to be the charge-separated (CS) state with ligand-to-metal charge-transfer character using XTA. The surprisingly long-lived CS state, together with its intrinsic hybrid nature, all point to its potential application in heterogeneous photocatalysis and energy conversion. PMID:27322216

  6. Even and Odd Charge Coherent States: Higher-Order Nonclassical Properties and Generation Scheme

    Science.gov (United States)

    Duc, Truong Minh; Dinh, Dang Huu; Dat, Tran Quang

    2016-06-01

    We examine the higher-order nonclassical properties of the even and odd charge coherent states as well as proposing a scheme to generate these states whose modes can freely travel in open space. We show that the even and odd charge coherent states exhibit both higher-order antibunching and higher-order squeezing. While the two-mode higher-order antibunching occurs in any order and essentially depends on the charge number, the two-mode higher-order squeezing appears only in the even orders. We also prove that these states are genuinely entangled, and they can be generated by means of cross-Kerr media, beam splitters, phase shifts and threshold detectors. We find that the fidelity and the corresponding success probability to generate these states are dependent on the correlative parameters.

  7. Exceptionally Long-Lived Charge Separated State in Zeolitic Imidazolate Framework: Implication for Photocatalytic Applications.

    Science.gov (United States)

    Pattengale, Brian; Yang, Sizhuo; Ludwig, John; Huang, Zhuangqun; Zhang, Xiaoyi; Huang, Jier

    2016-07-01

    Zeolitic imidazolate frameworks (ZIFs) have emerged as a novel class of porous metal-organic frameworks (MOFs) for catalysis application because of their exceptional thermal and chemical stability. Inspired by the broad absorption of ZIF-67 in UV-vis-near IR region, we explored its excited state and charge separation dynamics, properties essential for photocatalytic applications, using optical (OTA) and X-ray transient absorption (XTA) spectroscopy. OTA results show that an exceptionally long-lived excited state is formed after photoexcitation. This long-lived excited state was confirmed to be the charge-separated (CS) state with ligand-to-metal charge-transfer character using XTA. The surprisingly long-lived CS state, together with its intrinsic hybrid nature, all point to its potential application in heterogeneous photocatalysis and energy conversion.

  8. Constructing diabatic states from adiabatic states: extending generalized Mulliken-Hush to multiple charge centers with boys localization.

    Science.gov (United States)

    Subotnik, Joseph E; Yeganeh, Sina; Cave, Robert J; Ratner, Mark A

    2008-12-28

    This article shows that, although Boys localization is usually applied to single-electron orbitals, the Boys method itself can be applied to many electron molecular states. For the two-state charge-transfer problem, we show analytically that Boys localization yields the same charge-localized diabatic states as those found by generalized Mulliken-Hush theory. We suggest that for future work in electron transfer, where systems have more than two charge centers, one may benefit by using a variant of Boys localization to construct diabatic potential energy surfaces and extract electronic coupling matrix elements. We discuss two chemical examples of Boys localization and propose a generalization of the Boys algorithm for creating diabatic states with localized spin density that should be useful for Dexter triplet-triplet energy transfer.

  9. Constructing diabatic states from adiabatic states: Extending generalized Mulliken-Hush to multiple charge centers with Boys localization

    Science.gov (United States)

    Subotnik, Joseph E.; Yeganeh, Sina; Cave, Robert J.; Ratner, Mark A.

    2008-12-01

    This article shows that, although Boys localization is usually applied to single-electron orbitals, the Boys method itself can be applied to many electron molecular states. For the two-state charge-transfer problem, we show analytically that Boys localization yields the same charge-localized diabatic states as those found by generalized Mulliken-Hush theory. We suggest that for future work in electron transfer, where systems have more than two charge centers, one may benefit by using a variant of Boys localization to construct diabatic potential energy surfaces and extract electronic coupling matrix elements. We discuss two chemical examples of Boys localization and propose a generalization of the Boys algorithm for creating diabatic states with localized spin density that should be useful for Dexter triplet-triplet energy transfer.

  10. Charge pump DC-DC converter comprising solid state batteries

    NARCIS (Netherlands)

    Reefman, D.; Roozeboom, F.; Notten, P.H.L.; Klootwijk, J.H.

    2013-01-01

    An electronic device is provided which comprises a DC-DC converter. The DC-DC converter comprises at least one solid-state rechargeable battery (B1, B2) for storing energy for the DC-DC conversion and an output capacitor (C2).

  11. Charge state distributions of iron in impulsive solar flares: Importance of stripping effects

    Science.gov (United States)

    Ostryakov, V. M.; Kartavykh, Y. Y.; Ruffolo, D.; Kovaltsov, G. A.; Kocharov, L.

    2000-12-01

    A model of stochastic acceleration of heavy ions by Alfvén wave turbulence has been developed. It takes into account spatial diffusion, Coulomb losses, and the possibility of charge changes for ions during stochastic acceleration. The main processes influencing the ionic charge states are the stripping by thermal electrons and protons as constituents of a surrounding medium and dielectronic and radiative recombination. We have calculated energy spectra and charge distributions of nonthermal Fe ions as a sample species. The dependence of the charge distributions and energy spectra of iron on the parameters of the plasma (temperature and number density) is studied. We compare our results with measurements to date of the mean charge of iron in impulsive solar flare events and conclude that they indicate source plasma ionization temperatures between 6□×106 and 107K.

  12. Characterization of Final State Interaction Strength in Plastic Scintillator by Muon-Neutrino Charged Current Charged Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Eberly, Brandon M. [Univ. of Pittsburgh, PA (United States)

    2014-01-01

    Precise knowledge of neutrino-nucleus interactions is increasingly important as neutrino oscillation measurements transition into the systematics-limited era. In addition to modifying the initial interaction, the nuclear medium can scatter and absorb the interaction by-products through final state interactions, changing the types and kinematic distributions of particles seen by the detector. Recent neutrino pion production data from MiniBooNE is inconsistent with the final state interaction strength predicted by models and theoretical calculations, and some models fit best to the MiniBooNE data only after removing final state interactions entirely. This thesis presents a measurement of dσ/dTπ and dσ/dθπ for muon-neutrino charged current charged pion production in the MINER A scintillator tracker. MINER A is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. The analysis is limited to neutrino energies between 1.5-10 GeV. Dependence on invariant hadronic mass W is studied through two versions of the analysis that impose the limits W < 1.4 GeV and W < 1.8 GeV. The lower limit on W increases compatibility with the MiniBooNE pion data. The shapes of the differential cross sections, which depend strongly on the nature of final state interactions, are compared to Monte Carlo and theoretical predictions. It is shown that the measurements presented in this thesis favor models that contain final state interactions. Additionally, a variety of neutrino-nucleus interaction models are shown to successfully reproduce the thesis measurements, while simultaneously failing to describe the shape of the MiniBooNE data.

  13. Charge-state distribution and Doppler effect in an expanding photoionized plasma.

    Science.gov (United States)

    Foord, M E; Heeter, R F; van Hoof, P A M; Thoe, R S; Bailey, J E; Cuneo, M E; Chung, H-K; Liedahl, D A; Fournier, K B; Chandler, G A; Jonauskas, V; Kisielius, R; Mix, L P; Ramsbottom, C; Springer, P T; Keenan, F P; Rose, S J; Goldstein, W H

    2004-07-30

    The charge state distributions of Fe, Na, and F are determined in a photoionized laboratory plasma using high resolution x-ray spectroscopy. Independent measurements of the density and radiation flux indicate unprecedented values for the ionization parameter xi=20-25 erg cm s(-1) under near steady-state conditions. Line opacities are well fitted by a curve-of-growth analysis which includes the effects of velocity gradients in a one-dimensional expanding plasma. First comparisons of the measured charge state distributions with x-ray photoionization models show reasonable agreement.

  14. Controllable Quantum State Transfer Between a Josephson Charge Qubit and an Electronic Spin Ensemble

    Science.gov (United States)

    Yan, Run-Ying; Wang, Hong-Ling; Feng, Zhi-Bo

    2016-01-01

    We propose a theoretical scheme to implement controllable quantum state transfer between a superconducting charge qubit and an electronic spin ensemble of nitrogen-vacancy centers. By an electro-mechanical resonator acting as a quantum data bus, an effective interaction between the charge qubit and the spin ensemble can be achieved in the dispersive regime, by which state transfers are switchable due to the adjustable electrical coupling. With the accessible experimental parameters, we further numerically analyze the feasibility and robustness. The present scheme could provide a potential approach for transferring quantum states controllably with the hybrid system.

  15. Consecutive reversible ionization-recombination reactions and ionic charge state distribution of Au plasma

    Institute of Scientific and Technical Information of China (English)

    ZHU; Zhiyan; ZHU; Zhenghe; TANG; Changhuan; TANG; Yongjia

    2005-01-01

    The present work proposes kinetics of ionization-recombination to study the charge state distribution of Au plasma. The first step is to calculate the average lifetime, energy level structure, degeneracy and partition function of Au48+―Au52+ by relativistic quantum mechanics, and next to compute the equilibrium constant and the second-order recombination rate constant by statistical thermodynamics. Based on these data, the differential equations of consecutive reversible ionization-recombination reactions are solved from which the charge state distribution and its average charge are derived. Finally, the influence of electron temperature and density on average charge is given in this paper. It is called the first-principle theory, for no experimental data are needed.

  16. Battery State-of-Charge and Parameter Estimation Algorithm Based on Kalman Filter

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Sucic, Stjepan; Guerrero, Josep M.

    2013-01-01

    such as the actual state of charge (SOC) and state of health (SOH). Therefore, a modern battery management systems (BMSs) should incorporate functions that accommodate real time tracking of these nonlinearities. For that purpose, Kalman filter based algorithms emerged as a convenient solution due to their ability...

  17. Highly charged ions trapping for lifetime measurements

    International Nuclear Information System (INIS)

    A new experimental setup dedicated to highly charged ion trapping is presented in this work. The final goal is to perform lifetime measurement of metastable states produced by our ECR (Electron Cyclotron Resonance) ion source. Lifetimes to be measured are in the range of a few ms and more. We have measured the lifetimes of the M1 transitions of the metastable states of Ar9+, Ar13+ and Ar14+. These measurements are useful to test the N-body problem in the relativistic range. The trap we have built, was designed a few years ago at the Weizman Institute in Israel, it allows ions with an energy of several keV to be trapped for lifetimes of about 1 second. This trap was originally designed to study the dynamics of excited molecules. We have shown for the first time how the trap operates and that it can operate with highly charged ions. We have studied the beam dynamics of highly charged ions and the trap has been tested with various species of ions and different charge states: from O+ to O6+, from Ar8+ to Ar13+, and from Kr13+ to Kr20+

  18. Administrative charges in pensions in Chile, Malaysia, Zambia, and the United States

    OpenAIRE

    Valdes-Prieto, Salvador

    1994-01-01

    The author offers a framework for an international comparison of charges in mandatory and private pension systems, and in state-run and privately managed systems. Such comparisons make it possible to determine which combinations of quality and cost make the most sense in pension services. He finds that: 1) Charges in the private annuity industry are much higher than other components of the pension package, and much higher than publicly provided annuities in the US; 2) comparing the collection...

  19. The influence of nonthermal electron distributions on the charge state of heavy ions

    Science.gov (United States)

    Kartavykh, Yu.; Ostryakov, V.

    2001-08-01

    We investigate the influence of non-thermal electrons on the formation of ionic states of heavy elements in SEP events. The equilibrium mean charge of Mg, Si and Fe for several samples of non-Maxwellian populations (power law electron beam and bi-Maxwellian distribution) were calculated. According to our estimates the anomalously high density of non-thermal electrons is required to obtain substantial difference in the mean charge of heavy ions as compared with `pure' thermal dstribution.

  20. Defect charge states in Si doped hexagonal boron-nitride monolayer.

    Science.gov (United States)

    Mapasha, R E; Molepo, M P; Andrew, R C; Chetty, N

    2016-02-10

    We perform ab initio density functional theory calculations to investigate the energetics, electronic and magnetic properties of isolated stoichiometric and non-stoichiometric substitutional Si complexes in a hexagonal boron-nitride monolayer. The Si impurity atoms substituting the boron atom sites SiB giving non-stoichiometric complexes are found to be the most energetically favourable, and are half-metallic and order ferromagnetically in the neutral charge state. We find that the magnetic moments and magnetization energies increase monotonically when Si defects form a cluster. Partial density of states and standard Mulliken population analysis indicate that the half-metallic character and magnetic moments mainly arise from the Si 3p impurity states. The stoichiometric Si complexes are energetically unfavorable and non-magnetic. When charging the energetically favourable non-stoichiometric Si complexes, we find that the formation energies strongly depend on the impurity charge states and Fermi level position. We also find that the magnetic moments and orderings are tunable by charge state modulation q  =  -2, -1, 0, +1, +2. The induced half-metallic character is lost (retained) when charging isolated (clustered) Si defect(s). This underlines the potential of a Si doped hexagonal boron-nitride monolayer for novel spin-based applications.

  1. A vacuum spark ion source: High charge state metal ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Nikolaev, A. G.; Frolova, V. P. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Oks, E. M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Tomsk State University of Control System and Radioelectronics, Tomsk 634050 (Russian Federation)

    2016-02-15

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  2. Charge State Evolution in the Solar Wind. III. Model Comparison with Observations

    Science.gov (United States)

    Landi, E.; Oran, R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.; van der Holst, B.

    2014-08-01

    We test three theoretical models of the fast solar wind with a set of remote sensing observations and in-situ measurements taken during the minimum of solar cycle 23. First, the model electron density and temperature are compared to SOHO/SUMER spectroscopic measurements. Second, the model electron density, temperature, and wind speed are used to predict the charge state evolution of the wind plasma from the source regions to the freeze-in point. Frozen-in charge states are compared with Ulysses/SWICS measurements at 1 AU, while charge states close to the Sun are combined with the CHIANTI spectral code to calculate the intensities of selected spectral lines, to be compared with SOHO/SUMER observations in the north polar coronal hole. We find that none of the theoretical models are able to completely reproduce all observations; namely, all of them underestimate the charge state distribution of the solar wind everywhere, although the levels of disagreement vary from model to model. We discuss possible causes of the disagreement, namely, uncertainties in the calculation of the charge state evolution and of line intensities, in the atomic data, and in the assumptions on the wind plasma conditions. Last, we discuss the scenario where the wind is accelerated from a region located in the solar corona rather than in the chromosphere as assumed in the three theoretical models, and find that a wind originating from the corona is in much closer agreement with observations.

  3. Charge state evolution in the solar wind. III. Model comparison with observations

    Energy Technology Data Exchange (ETDEWEB)

    Landi, E.; Oran, R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.; Van der Holst, B. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2014-08-01

    We test three theoretical models of the fast solar wind with a set of remote sensing observations and in-situ measurements taken during the minimum of solar cycle 23. First, the model electron density and temperature are compared to SOHO/SUMER spectroscopic measurements. Second, the model electron density, temperature, and wind speed are used to predict the charge state evolution of the wind plasma from the source regions to the freeze-in point. Frozen-in charge states are compared with Ulysses/SWICS measurements at 1 AU, while charge states close to the Sun are combined with the CHIANTI spectral code to calculate the intensities of selected spectral lines, to be compared with SOHO/SUMER observations in the north polar coronal hole. We find that none of the theoretical models are able to completely reproduce all observations; namely, all of them underestimate the charge state distribution of the solar wind everywhere, although the levels of disagreement vary from model to model. We discuss possible causes of the disagreement, namely, uncertainties in the calculation of the charge state evolution and of line intensities, in the atomic data, and in the assumptions on the wind plasma conditions. Last, we discuss the scenario where the wind is accelerated from a region located in the solar corona rather than in the chromosphere as assumed in the three theoretical models, and find that a wind originating from the corona is in much closer agreement with observations.

  4. Modulation of nitrogen vacancy charge state and fluorescence in nanodiamonds using electrochemical potential

    Science.gov (United States)

    Karaveli, Sinan; Gaathon, Ophir; Wolcott, Abraham; Sakakibara, Reyu; Shemesh, Or A.; Peterka, Darcy S.; Boyden, Edward S.; Owen, Jonathan S.; Yuste, Rafael; Englund, Dirk

    2016-04-01

    The negatively charged nitrogen vacancy (NV-) center in diamond has attracted strong interest for a wide range of sensing and quantum information processing applications. To this end, recent work has focused on controlling the NV charge state, whose stability strongly depends on its electrostatic environment. Here, we demonstrate that the charge state and fluorescence dynamics of single NV centers in nanodiamonds with different surface terminations can be controlled by an externally applied potential difference in an electrochemical cell. The voltage dependence of the NV charge state can be used to stabilize the NV- state for spin-based sensing protocols and provides a method of charge state-dependent fluorescence sensing of electrochemical potentials. We detect clear NV fluorescence modulation for voltage changes down to 100 mV, with a single NV and down to 20 mV with multiple NV centers in a wide-field imaging mode. These results suggest that NV centers in nanodiamonds could enable parallel optical detection of biologically relevant electrochemical potentials.

  5. A vacuum spark ion source: High charge state metal ion beams

    Science.gov (United States)

    Yushkov, G. Yu.; Nikolaev, A. G.; Oks, E. M.; Frolova, V. P.

    2016-02-01

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  6. A vacuum spark ion source: High charge state metal ion beams

    International Nuclear Information System (INIS)

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described

  7. Decay of Bloch oscillations in the charge-density-wave ordered phase of an all electronic charge density wave state

    Science.gov (United States)

    Matveev, Oleg; Shvaika, Andrij; Devereaux, Thomas; Freericks, James

    The charge-density-wave phase of the Falicov-Kimball model displays a number of anomalous behavior including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field. Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for this nonlinear response. We examine both the current and the order parameter of the conduction electrons as the ordered system is driven by a dc electric field. Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, Lviv, Ukraine.

  8. Cathode material comparison of thermal runaway behavior of Li-ion cells at different state of charges including over charge

    Science.gov (United States)

    Mendoza-Hernandez, Omar Samuel; Ishikawa, Hiroaki; Nishikawa, Yuuki; Maruyama, Yuki; Umeda, Minoru

    2015-04-01

    The analysis of Li-ion secondary cells under outstanding conditions, as overcharge and high temperatures, is important to determine thermal abuse characteristics of electroactive materials and precise risk assessments on Li-ion cells. In this work, the thermal runaway behavior of LiCoO2 and LiMn2O4 cathode materials were compared at different state of charges (SOCs), including overcharge, by carrying out accelerating rate calorimetry (ARC) measurements using 18650 Li-ion cells. Onset temperatures of self-heating reactions and thermal runaway behavior were identified, and by using these onset points thermal mapping plots were made. We were able to identify non-self-heating, self-heating and thermal runaway regions as a function of state of charge and temperature. The cell using LiMn2O4 cathode material was found to be more thermally stable than the cell using LiCoO2. In parallel with the ARC measurements, the electrochemical behavior of the cells was monitored by measuring the OCV and internal resistance of the cells. The electrochemical behavior of the cells showed a slightly dependency on SOC.

  9. Local charge states in hexagonal boron nitride with Stone-Wales defects.

    Science.gov (United States)

    Wang, Rui; Yang, Jiali; Wu, Xiaozhi; Wang, Shaofeng

    2016-04-14

    A Stone-Wales (SW) defect is the simplest topological defect in graphene-like materials and can be potentially employed to design electronic devices . In this paper, we have systematically investigated the formation, structural, and electronic properties of the neutral and charged SW defects in hexagonal boron nitride (BN) using first-principles calculations. The transition states and energy barrier for the formation of SW defects demonstrate that the defected BN is stable. Our calculations show that there are two in-gap defect levels, which originate from the asymmetrical pentagon-heptagon pairs. The local defect configurations and electronic properties are sensitive to their charge states induced by the defect levels. The electronic band structures show that the negative and positive charged defects are mainly determined by shifting the conduction band minimum (CBM) and valence band maximum (VBM) respectively, and the SW-defected BN can realize -1 and +1 spin-polarized charge states. The effects of carbon (C) substitution on neutral and charged SW-defected BN have also been studied. Our results indicate that the C substitution of B in BN is in favour of the formation of SW defects. Structural and electronic calculations show rich charge-dependent properties of C substitutions in SW-defected BN, thus our theoretical study is important for various applications in the design of BN nanostructure-based devices. PMID:27030259

  10. The average equilibrium charge-states of heavy ions with Z > 60 stripped in He and H2

    International Nuclear Information System (INIS)

    The equilibrium charges of heavy ions (61 < Z < 101) with energies from 5 to 100 MeV stripped in He and H2 have been measured. New empirical formulae for the average charge state are presented. (orig.)

  11. Rolling Tachyon Boundary State, Conserved Charges and Two Dimensional String Theory

    Science.gov (United States)

    Sen, Ashoke

    2004-05-01

    The boundary state associated with the rolling tachyon solution on an unstable D-brane contains a part that decays exponentially in the asymptotic past and the asymptotic future, but it also contains other parts which either remain constant or grow exponentially in the past or future. We argue that the time dependence of the latter parts is completely determined by the requirement of BRST invariance of the boundary state, and hence they contain information about certain conserved charges in the system. We also examine this in the context of the unstable D0-brane in two dimensional string theory where these conseved charges produce closed string background associated with the discrete states, and show that these charges are in one to one correspondence with the symmetry generators in the matrix model description of this theory.

  12. Ionic charge state distribution of helium, carbon, oxygen, and iron in an energetic storm particle enhancement

    Science.gov (United States)

    Hovestadt, D.; Klecker, B.; Hoefner, H.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.

    1982-01-01

    An analysis is presented of the ionic charge state distribution of He, C, O and Fe in the energetic storm particle event of September 28-29, 1978. Data were obtained with the ULEZEQ electrostatic analyzer-proportional counter on board the ISEE 3 spacecraft. The He(+)/He(++) ratio between 0.4 and 1 MeV/n is shown to be significantly lower during the energetic storm particle event than during the preceding period of solar flare particle enhancement, with a temporal evolution similar to that of the Fe/He ratio as reported by Klecker et al. (1981). Increases in the mean charge state for oxygen by about 3% and for iron by about 16% are also noted. The temporal variations in charge states are accounted for in terms of first-order Fermi acceleration of the pre-existing solar flare particles by a propagating interplanetary shock wave.

  13. The role of the charge state of PAHs in ultraviolet extinction

    CERN Document Server

    Cecchi-Pestellini, C; Mulas, G; Joblin, C; Williams, D A

    2008-01-01

    Aims: We explore the relation between charge state of polycyclic aromatic hydrocarbons (PAHs) and extinction curve morphology. Methods: We fit extinction curves with a dust model including core-mantle spherical particles of mixed chemical composition (silicate core, sp^2 and sp^3 carbonaceous layers), and an additional molecular component. We use exact methods to calculate the extinction due to classical particles and accurate computed absorption spectra of PAHs in different charge states, for the contribution due to the molecular component. Eesults: A combination of classical dust particles and mixtures of real PAHs satisfactorily matches the observed interstellar extinction curves. Variations in the charge state of PAHs produce changes consistent with the varying relative strengths of the bump and non-linear far-UV rise.

  14. Charge Transfer and Triplet States in High Efficiency OPV Materials and Devices

    Science.gov (United States)

    Dyakonov, Vladimir

    2013-03-01

    The advantage of using polymers and molecules in electronic devices, such as light-emitting diodes (LED), field-effect transistors (FET) and, more recently, solar cells (SC) is justified by the unique combination of high device performance and processing of the semiconductors used. Power conversion efficiency of nanostructured polymer SC is in the range of 10% on lab scale, making them ready for up-scaling. Efficient charge carrier generation and recombination in SC are strongly related to dissociation of the primary singlet excitons. The dissociation (or charge transfer) process should be very efficient in photovoltaics. The mechanisms governing charge carrier generation, recombination and transport in SC based on the so-called bulk-heterojunctions, i.e. blends of two or more semiconductors with different electron affinities, appear to be very complex, as they imply the presence of the intermediate excited states, neutral and charged ones. Charge transfer states, or polaron pairs, are the intermediate states between free electrons/holes and strongly bound excitons. Interestingly, the mostly efficient OLEDs to date are based on the so-called triplet emitters, which utilize the triplet-triplet annihilation process. In SC, recent investigations indicated that on illumination of the device active layer, not only mobile charges but also triplet states were formed. With respect to triplets, it is unclear how these excited states are generated, via inter-system crossing or via back transfer of the electron from acceptor to donor. Triplet formation may be considered as charge carrier loss channel; however, the fusion of two triplets may lead to a formation of singlet excitons instead. In such case, a generation of charges by utilizing of the so far unused photons will be possible. The fundamental understanding of the processes involving the charge transfer and triplet states and their relation to nanoscale morphology and/or energetics of blends is essential for the

  15. Near-infrared-enhanced charge state conversion for low power optical nanoscopy with nitrogen vacancy center in diamond

    CERN Document Server

    Chen, Xiang-Dong; Shen, Ao; Dong, Yang; Dong, Chun-Hua; Guo, Guang-Can; Sun, Fang-Wen

    2016-01-01

    The near-infrared (NIR) optical pumped photophysics of nitrogen vacancy (NV) center in diamond was experimentally studied by considering both the charge state conversion and stimulated emission. We found that the NIR laser can help to highly enhance the charge state conversion rate, which can be applied to improve the performance of charge state depletion nanoscopy. Using a doughnut-shaped visible laser beam and a Gaussian-shaped NIR laser beam for charge state manipulation, we developed a low power charge state depletion nanoscopy for NV center. A spatial resolution of 14 nm was achieved with the depletion laser intensity approximately three orders lower than that used for the stimulated emission depletion nanoscopy with NV center. With high spatial resolution and low laser power, the nanoscopy can be used for nanoscale quantum sensing with NV center. And our study on the charge state conversion can help to further optimize the NV center spin state initialization and detection.

  16. Charge sensing of excited states in an isolated double quantum dot

    DEFF Research Database (Denmark)

    C. Johnson, A.; M. Marcus, C.; P. Hanson, M.;

    2005-01-01

    Pulsed electrostatic gating combined with capacitive charge sensing is used to perform excited state spectroscopy of an electrically isolated double-quantum-dot system. The tunneling rate of a single charge moving between the two dots is affected by the alignment of quantized energy levels......; measured tunneling probabilities thereby reveal spectral features. Two pulse sequences are investigated, one of which, termed latched detection, allows measurement of a single tunneling event without repetition. Both provide excited-state spectroscopy without electrical contact to the double-dot system....

  17. Charge-state dependence of electron loss from H by collisions with heavy, highly stripped ions

    International Nuclear Information System (INIS)

    Theoretical calculations, confirmed by experimental measurements, are used to obtain a new scaling for electron loss from a hydrogen atom in collision with a heavy, highly stripped ion. The calculations cover the energy range 50 to 5000 keV/amu and charge states q from 1 to 50. The experiments are in the range 108 to 1140 keV/amu and charge states 3 to 22. A simple analytic expression that describes the electron-loss cross section for 1 < or = q < or = 50 in the energy range 50 to 5000 keV/amu is presented

  18. Method of estimating the State-of-Charge and of the use time left of a rechageable battery, and apparatus for executing such a method

    OpenAIRE

    Bergveld, Hendrik Johannes; Pop, Valer; Notten, Petrus Henricus Laurentius

    2006-01-01

    Disclosed is a method of estimating the state-of-charge of a rechargeable battery, taking into account the factors battery spread and ageing. The method comprises the steps of: determining the starting state-of-charge of the battery by measuring the voltage across the battery and converting this measured value into a state-of-charge value; charging the battery; integrating the charge current and determining the accumulated charge during charging of the battery and adding said value to the sta...

  19. Observation of high iron charge states at low energies in solar energetic particle events

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Z.; Möbius, E.; Bochsler, P.; Connell, J. J.; Popecki, M. A. [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); Klecker, B. [Max-Planck-Institut für Extraterrestrische Physik, Postfach 1312, D-85741 Garching (Germany); Kartavykh, Y. Y. [Ioffe Physical-Technical Institute, St-Petersburg 194021 (Russian Federation); Mason, G. M., E-mail: zwm2@unh.edu [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States)

    2014-04-10

    The ionic charge states of solar energetic particles (SEPs) provide direct information about the source plasma, the acceleration environment, and their transport. Recent studies report that both gradual and impulsive SEP events show mean iron charge states (Q {sub Fe}) ∼ 10-14 at low energies E ≤ 0.1 MeV nuc{sup –1}, consistent with their origin from typical corona material at temperatures 1-2 MK. Observed increases of (Q {sub Fe}) up to 20 at energies 0.1-0.5 MeV nuc{sup –1} in impulsive SEPs are attributed to stripping during acceleration. However, Q {sub Fe} > 16 is occasionally found in the solar wind, particularly coming from active regions, in contrast to the exclusively reported (Q {sub Fe}) ≤ 14 for low energy SEPs. Here we report results from a survey of all 89 SEP events observed with Advanced Composition Explorer Solar Energetic Particle Ionic Charge Analyzer (SEPICA) in 1998-2000 for iron charge states augmented at low energy with Solar and Heliospheric Observatory CELIAS suprathermal time-of-flight (STOF). Nine SEP events with (Q {sub Fe}) ≥ 14 throughout the entire SEPICA and STOF energy range have been identified. Four of the nine events are impulsive events identified through velocity dispersion that are consistent with source temperatures ≥2 MK up to ∼4 MK. The other five events show evidence of interplanetary acceleration. Four of them involve re-acceleration of impulsive material, whose original energy dependent charge states appear re-distributed to varying extent bringing higher charge states to lower energy. One event, which shows flat but elevated (Q {sub Fe}) ∼ 14.2 over the entire energy range, can be associated with interplanetary acceleration of high temperature material. This event may exemplify a rare situation when a second shock plows through high temperature coronal mass ejection material.

  20. Control of donor charge states with the tip of a scanning tunnelling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Teichmann, K.; Wenderoth, M.; Loth, S.; Ulbrich, R.G. [IV. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany); Garlef, J.K.; Wijnheijmer, A.P.; Koenraad, P.M. [PSN, Eindhoven University of Technology (Netherlands)

    2009-07-01

    The functionality of nanoscale semiconductor devices crucially depends on details of the electrostatic potential landscape on the atomic scale and its microscopic response to external electric fields. We report here an investigation of charge state switching of buried single Si donors in 6.10{sup 18} cm{sup -3} n-doped GaAs with scanning tunnelling microscopy (STM) under UHV conditions at 5 K. The effect of tip induced band bending (TIBB) through the freshly cleaved (110)-surface was used to change the charge state of individual donors from neutral to positively charged and reverse. Scanning tunnelling spectroscopy (STS) revealed a ring like feature around each donor center. The ring radius depends on tip bias voltage. The charge state of each donor in the random arrangement of dopants was in most cases unambiguously fixed by the extension of the tip-induced space charge cloud, which was located under the tip and controlled by the applied voltage. For certain geometric configurations the system showed bi- (or multi-) stable behaviour, this lead to dynamic flickering of the ionization sequence.

  1. Status of ECR ion sources for the Facility for Rare Isotope Beams (FRIB) (invited).

    Science.gov (United States)

    Machicoane, Guillaume; Felice, Helene; Fogleman, Jesse; Hafalia, Ray; Morgan, Glenn; Pan, Heng; Prestemon, Soren; Pozdeyev, Eduard; Rao, Xing; Ren, Haitao; Tobos, Larry

    2016-02-01

    Ahead of the commissioning schedule, installation of the first Electron Cyclotron Resonance (ECR) ion source in the front end area of the Facility for Rare Isotope Beam (FRIB) is planned for the end of 2015. Operating at 14 GHz, this first ECR will be used for the commissioning and initial operation of the facility. In parallel, a superconducting magnet structure compatible with operation at 28 GHz for a new ECR ion source is in development at Lawrence Berkeley National Laboratory. The paper reviews the overall work in progress and development done with ECR ion sources for FRIB. PMID:26931961

  2. Status of ECR ion sources for the Facility for Rare Isotope Beams (FRIB) (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Machicoane, Guillaume, E-mail: machicoane@frib.msu.edu; Morgan, Glenn; Pozdeyev, Eduard; Rao, Xing; Ren, Haitao [Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824 (United States); Felice, Helene; Hafalia, Ray; Pan, Heng; Prestemon, Soren [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Fogleman, Jesse; Tobos, Larry [National Superconducting Cyclotron Laboratory, Michigan State University, 640 South Shaw Lane, East Lansing, Michigan 48824 (United States)

    2016-02-15

    Ahead of the commissioning schedule, installation of the first Electron Cyclotron Resonance (ECR) ion source in the front end area of the Facility for Rare Isotope Beam (FRIB) is planned for the end of 2015. Operating at 14 GHz, this first ECR will be used for the commissioning and initial operation of the facility. In parallel, a superconducting magnet structure compatible with operation at 28 GHz for a new ECR ion source is in development at Lawrence Berkeley National Laboratory. The paper reviews the overall work in progress and development done with ECR ion sources for FRIB.

  3. X-Ray Spectroscopy: An Experimental Technique to Measure Charge State Distribution Right at the Ion-Solid Interaction

    CERN Document Server

    Sharma, Prashant

    2015-01-01

    Charge state distributions of $^{56}$Fe and $^{58}$Ni projectile ions passing through thin carbon foils have been studied in the energy range of 1.44 - 2.69 MeV/u using a novel method from the x-ray spectroscopy technique. Interestingly the charge state distribution in the bulk show Lorentzian behavior instead of usual Gaussian distribution. Further, different parameters of charge state distribution like mean charge state, distribution width and asymmetric parameter are determined and compared with the empirical calculations and ETACHA predictions. It is found that the x-ray measurement technique is appropriate to determine the mean charge state right at the interaction zone or in the bulk. Interestingly, empirical formalism predicts much lower projectile mean charge states compare to x-ray measurements which clearly indicate multi-electron capture from the target surface. The ETACHA predictions and experimental results are found to be comparable for energies $\\geq$ 2 MeV/u.

  4. Performance on the low charge state laser ion source in BNL

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, M.; Alessi, J.; Beebe, E.; Costanzo, M.; DeSanto, L.; Jamilkowski, J.; Kanesue, T.; Lambiase, R.; Lehn, D.; Liaw, C. J.; McCafferty, D.; Morris, J.; Olsen, R.; Pikin, A.; Raparia, D.; Steszyn, A.; Ikeda, S.

    2015-09-07

    On March 2014, a Laser Ion Source (LIS) was commissioned which delivers high-brightness, low-charge-state heavy ions for the hadron accelerator complex in Brookhaven National Laboratory (BNL). Since then, the LIS has provided many heavy ion species successfully. The low-charge-state (mostly singly charged) beams are injected to the Electron Beam Ion Source (EBIS), where ions are then highly ionized to fit to the following accelerator’s Q/M acceptance, like Au32+. Recently we upgraded the LIS to be able to provide two different beams into EBIS on a pulse-to-pulse basis. Now the LIS is simultaneously providing beams for both the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory (NSRL).

  5. Excited-state proton coupled charge transfer modulated by molecular structure and media polarization.

    Science.gov (United States)

    Demchenko, Alexander P; Tang, Kuo-Chun; Chou, Pi-Tai

    2013-02-01

    Charge and proton transfer reactions in the excited states of organic dyes can be coupled in many different ways. Despite the complementarity of charges, they can occur on different time scales and in different directions of the molecular framework. In certain cases, excited-state equilibrium can be established between the charge-transfer and proton-transfer species. The interplay of these reactions can be modulated and even reversed by variations in dye molecular structures and changes of the surrounding media. With knowledge of the mechanisms of these processes, desired rates and directions can be achieved, and thus the multiple emission spectral features can be harnessed. These features have found versatile applications in a number of cutting-edge technological areas, particularly in fluorescence sensing and imaging.

  6. Spin depolarization effect induced by charge state conversion of nitrogen vacancy center in diamond

    Science.gov (United States)

    Chen, Xiang-Dong; Zhou, Lei-Ming; Zou, Chang-Ling; Li, Cong-Cong; Dong, Yang; Sun, Fang-Wen; Guo, Guang-Can

    2015-09-01

    The electron spin of the negatively charged the nitrogen vacancy center (NV- ) in diamond can be optically polarized through intersystem crossing, which enables the defect to be used for quantum computation and metrology. In this work, we studied the electron spin depolarization effect of the NV center induced by charge state conversion, which was proven to be a spin-independent process. The spin-state initialization fidelity was largely affected by the charge state conversion process. As a result, the optical polarization of the electron spin decreased about 14 %(31 % ) with a high-power continuous-wave (pulsed) green laser. Moreover, the undefined fluorescence anomalous saturation effect of the NV center was analyzed and explained in detail based on the spin depolarization. The results demonstrated that a weak laser should be used for initialization of the NV center. In addition, the power and polarization of a laser for NV spin detection should be carefully adjusted to obtain the highest fluorescence signal. Our work also provided information that can increase the understanding of the charge state conversion and spin polarization processes of the NV center for quantum information and sensing.

  7. Solvent-induced reversible solid-state colour change of an intramolecular charge-transfer complex.

    Science.gov (United States)

    Li, Ping; Maier, Josef M; Hwang, Jungwun; Smith, Mark D; Krause, Jeanette A; Mullis, Brian T; Strickland, Sharon M S; Shimizu, Ken D

    2015-10-11

    A dynamic intramolecular charge-transfer (CT) complex was designed that displayed reversible colour changes in the solid-state when treated with different organic solvents. The origins of the dichromatism were shown to be due to solvent-inclusion, which induced changes in the relative orientations of the donor pyrene and acceptor naphthalenediimide units. PMID:26299357

  8. Observation of High Iron Charge States at Low Energies in Solar Energetic Particle Events

    Science.gov (United States)

    Guo, Z.; Möbius, E.; Klecker, B.; Bochsler, P.; Connell, J. J.; Kartavykh, Y. Y.; Mason, G. M.; Popecki, M. A.

    2014-04-01

    The ionic charge states of solar energetic particles (SEPs) provide direct information about the source plasma, the acceleration environment, and their transport. Recent studies report that both gradual and impulsive SEP events show mean iron charge states langQ Ferang ~ 10-14 at low energies E nuc-1, consistent with their origin from typical corona material at temperatures 1-2 MK. Observed increases of langQ Ferang up to 20 at energies 0.1-0.5 MeV nuc-1 in impulsive SEPs are attributed to stripping during acceleration. However, Q Fe > 16 is occasionally found in the solar wind, particularly coming from active regions, in contrast to the exclusively reported langQ Ferang = 14 throughout the entire SEPICA and STOF energy range have been identified. Four of the nine events are impulsive events identified through velocity dispersion that are consistent with source temperatures >=2 MK up to ~4 MK. The other five events show evidence of interplanetary acceleration. Four of them involve re-acceleration of impulsive material, whose original energy dependent charge states appear re-distributed to varying extent bringing higher charge states to lower energy. One event, which shows flat but elevated langQ Ferang ~ 14.2 over the entire energy range, can be associated with interplanetary acceleration of high temperature material. This event may exemplify a rare situation when a second shock plows through high temperature coronal mass ejection material.

  9. Production of high charge state ions with the Advanced Electron Cyclotron Resonance Ion Source at LBNL

    International Nuclear Information System (INIS)

    Production of high charge state ions with the Advanced Electron Cyclotron Resonance ion source (AECR) at Lawrence Berkeley National Laboratory (LBNL) has been significantly improved by application of various new techniques. Heating the plasma simultaneously with microwaves of two frequencies (10 and 14 GHz) has increased the production of very high charge state heavy ions. The two-frequency technique provides extra electron cyclotron resonance heating zone as compared to the single-frequency heating and improves the heating of the plasma electrons. Aluminum oxide on the plasma chamber surface improves the production of cold electrons at the chamber surfaces and increases the performance of the AECR. Fully stripped argon ions, ≥5 enA, were produced and directly identified by the source charge state analyzing system. High charge state ion beams of bismuth and uranium, such as 209Bi51+ and 238U53+, were produced by the source and accelerated by the 88-in. cyclotron to energies above 6 MeV/nucleon for the first time. copyright 1996 American Institute of Physics

  10. Electroluminescence from charge transfer states in Donor/Acceptor solar cells

    DEFF Research Database (Denmark)

    Sherafatipour, Golenaz; Madsen, Morten

    which the maximum open-circuit voltage can be estimated, and further can be used in the modeling and optimization of the OPV devices. [1] C. Deibe, T. Strobe, and V. Dyakonov, “Role of the charge transfer state in organic donor-acceptor solar cells,” Adv. Mater., vol. 22, pp. 4097–4111, 2010. [2] K...

  11. Smart and Accurate State-of-Charge Indication in Portable Applications

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Notten, P.H.L.; Regtien, P.P.L.

    2005-01-01

    Accurate State-of-Charge (SoC) and remaining run-time indication for portable devices is important for the user-convenience and to prolong the lifetime of batteries. However, the known methods of SoC indication in portable applications are not accurate enough under all practical conditions. The meth

  12. Estimation of State of Charge of Lead Acid Battery using Radial Basis Function

    OpenAIRE

    Sauradip, M; Sinha, SK; K Muthukumar

    2001-01-01

    A Radial Basis Function based learning system method has been proposed for estimation of State of Charge (SOC) of Lead Acid Battery. Coulomb metric method is used for SOC estimation with correction factor computed by Radial Basis Function Method. Radial basis function based technique is used for learning battery performance variation with time and other parameters. Experimental results are included.

  13. Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads

    KAUST Repository

    Whited, Matthew T.

    2012-01-01

    We report the synthesis and characterization of symmetric BODIPY dyads where the chromophores are attached at the meso position, using either a phenylene bridge or direct linkage. Both molecules undergo symmetry-breaking intramolecular charge transfer in the excited state, and the directly linked dyad serves as a visible-light-absorbing analogue of 9,9′-bianthryl.

  14. Plasma diagnostics of the SIMPA Ecr ion source by X-ray spectroscopy, Collisions of H-like Neon ions with Argon clusters

    International Nuclear Information System (INIS)

    The first part of this thesis is devoted to the SIMPA ECR ion source characterization, first, I explored the ion source's capacities on the point of view of extracted currents for three elements, argon, krypton and neon. By analyzing the Bremsstrahlung spectra, I determined the electronic temperature in the plasma and the electronic and ionic densities. In a second time, I recorded high resolution X-spectra of argon and krypton plasma's. By taking into account the principal mechanisms of production of a K hole in the ions inside the plasma, I determined the ionic densities of the high charge states of argon. Lastly, I highlighted a correlation between the ions charge states densities with the intensities of extracted currents. The second part of the thesis is devoted to Ne9+- argon clusters collisions. First, I presented simple and effective theoretical models allowing to describe the phenomena occurring during a collision, from the point of view of the projectile. I carried out a simulation for a collision of an ion Ne9+ with an argon cluster of a given size, which has enabled us to know the energy levels populated during the electronic capture and to follow the number of electrons in each projectile shell. Lastly, I presented the first results of a collision between a Ne9+ beam and argon clusters. These results, have enabled me by using projectile X-ray spectroscopy during the ions-clusters collision, to evidence a strong clustering of targets atoms and to highlight an electronic multi-capture in the projectile ion excited states. (author)

  15. Propagation Distance Required to Reach Steady-State Detonation Velocity in Finite-Sized Charges

    OpenAIRE

    Li, Jianling; Mi, XiaoCheng; Higgins, Andrew J.

    2014-01-01

    The decay of a detonation wave from its initial CJ velocity to its final, steady state velocity upon encountering a finite thickness or diameter charge is investigated numerically and theoretically. The numerical simulations use an ideal gas equation of state and pressure dependent reaction rate in order to ensure a stable wave structure. The confinement is also treated as an ideal gas with variable impedance. The velocity decay along the centerline is extracted from the simulations and compa...

  16. Nucleon-pion-state contributions in the determination of the nucleon axial charge

    CERN Document Server

    Bar, Oliver

    2015-01-01

    The nucleon-pion-state contributions to QCD 2- and 3-point functions used in the calculation of the nucleon axial charge are studied in chiral perturbation theory. For sufficiently small quark masses and large volumes the nucleon-pion states are expected to have smaller total energy than the single-particle excited states. To leading order in chiral perturbation theory the results do not depend on low-energy constants associated with the interpolating nucleon fields and apply to local as well as smeared interpolators. The nucleon-pion-state contribution is found to be at the few percent level.

  17. The excited spin-triplet state of a charged exciton in quantum dots

    Science.gov (United States)

    Molas, M. R.; Nicolet, A. A. L.; Piętka, B.; Babiński, A.; Potemski, M.

    2016-09-01

    We report on spectroscopic studies of resonances related to ladder of states of a charged exciton in single GaAlAs/AlAs quantum dot structures. Polarization-resolved photoluminescence, photoluminescence excitation and photon-correlation measurements were performed at low (T  =  4.2 K) temperature also in magnetic field applied in Faraday configuration. The investigated resonances are assigned to three different configurations of a positively charged exciton. Together with a singlet ground state and a conventional triplet state (involving an electron from the ground state electronic s-shell), an excited triplet state, which involved an electron from the excited electronic p-shell was identified in single dots. The appearance of an emission line related to the latter complex is due to a partially suppressed electron relaxation in the investigated dots. An analysis of this emission line allows us to scrupulously determine properties of the excited triplet state and compare them with those of the conventional triplet state. Both triplets exhibit similar patterns of anisotropic fine structure and Zeeman splitting, however their amplitudes significantly differ for those two states. Presented results emphasize the role of the symmetry of the electronic state on the properties of the triplet states of two holes  +  electron excitonic complex.

  18. The excited spin-triplet state of a charged exciton in quantum dots.

    Science.gov (United States)

    Molas, M R; Nicolet, A A L; Piętka, B; Babiński, A; Potemski, M

    2016-09-14

    We report on spectroscopic studies of resonances related to ladder of states of a charged exciton in single GaAlAs/AlAs quantum dot structures. Polarization-resolved photoluminescence, photoluminescence excitation and photon-correlation measurements were performed at low (T  =  4.2 K) temperature also in magnetic field applied in Faraday configuration. The investigated resonances are assigned to three different configurations of a positively charged exciton. Together with a singlet ground state and a conventional triplet state (involving an electron from the ground state electronic s-shell), an excited triplet state, which involved an electron from the excited electronic p-shell was identified in single dots. The appearance of an emission line related to the latter complex is due to a partially suppressed electron relaxation in the investigated dots. An analysis of this emission line allows us to scrupulously determine properties of the excited triplet state and compare them with those of the conventional triplet state. Both triplets exhibit similar patterns of anisotropic fine structure and Zeeman splitting, however their amplitudes significantly differ for those two states. Presented results emphasize the role of the symmetry of the electronic state on the properties of the triplet states of two holes  +  electron excitonic complex. PMID:27391126

  19. Charge Neutral Fermionic States and Current Oscillation in a Graphene-Superconductor Hybrid Structure

    Science.gov (United States)

    Duan, Wenye; Wang, Wei; Zhang, Chao; Jin, Kuijuan; Ma, Zhongshui

    2016-10-01

    The proximity properties of edge currents in the vicinity of the interface between the graphene and superconductor in the presence of magnetic field are investigated. It is shown that the edge states introduced by Andreev reflection at the graphene-superconductor (G/S) interface give rise to the charge neutral states in all Landau levels. We note that in a topological insulator-superconductor (TI/S) hybrid structure, only N = 0 Landau level can support this type of charge neutral states. The different interface states of a G/S hybrid and a TI/S hybrid is due to that graphene consists of two distinct sublattices. The armchair edge consists of two inequivalent atoms. This gives rise to unique electronic properties of edge states when connected to a superconductor. A direct consequence of zero charge states in all Landau levels is that the current density approaches zero at interface. The proximity effect leads to quantum magnetic oscillation of the current density in the superconductor region. The interface current density can also be tuned with a finite interface potential. For sharp δ-type interface potential, the derivative of the wavefunction is discontinuous. As a result, we found that there is current density discontinuity at the interface. The step of the current discontinuity is proportional to the strength of the interface potential.

  20. Energy and charge state dependences of transfer ionization to single capture ratio for fast multiply charged ions on helium

    Science.gov (United States)

    Unal, Ridvan

    The charge state and energy dependences of Transfer Ionization (TI) and Single Capture (SC) processes in collisions of multiply charged ions with He from intermediate to high velocities are investigated using coincident recoil ion momentum spectroscopy. The collision chamber is commissioned on the 15-degree port of a switching magnet, which allows the delivery of a beam with very little impurity. The target was provided from a supersonic He jet with a two-stage collimation. The two-stage, geometrically cooled, supersonic He jet has significantly reduced background contribution to the spectrum compared to a single stage He jet. In the case of a differentially pumped gas cell complex calculations based on assumptions for the correction due to the collisions with the contaminant beam led to corrections, which were up to 50%. The new setup allows one to make a direct separation of contaminant processes in the experimental data using the longitudinal momentum spectra. Furthermore, this correction is much smaller (about 8.8%) yielding better overall precision. The collision systems reported here are 1 MeV/u O(4--8)+ , 0.5--2.5 MeV/u F(4--9)+, 2.0 MeV/u Ti 15,17,18+, 1.6--1.75 MeV/u Cu18,20+ and 0.25--0.5 MeV/u I(15--25)+ ions interacting with helium. We have determined the sTIsSC ratio for high velocity highly charged ions on He at velocities in the range of 6 to 10 au and observed that the ratio is monotonically decreasing with velocity. Furthermore, we see a ratio that follows a q2 dependence up to approximately q = 9. Above q = 9 the experimental values exceed the q2 dependence prediction due to antiscreening. C. D. Lin and H. C. Tseng have performed coupled channel calculations for the energy dependence of TI and SC for F9+ + He and find values slightly higher than our measured values, but with approximately the same energy dependence. The new data, Si, Ti and Cu, go up only to q = 20 and show a smooth monotonically increasing TI/SC ratio. The TI/SC ratio for I (15

  1. XPS studies of MgB2 superconductor for charge state of Mg

    International Nuclear Information System (INIS)

    X-ray photoelectron spectroscopic (XPS) studies have been carried out on polycrystalline MgB2 pellets. Characteristic Mg-2p and B-Is spectra have been analysed for extracting binding energies. There are evidences of MgB2 and formation of traces of metallic Mg, MgO and B2O3. Binding energy of Mg in MgB2 reveals its charge state to be less than 2(+) indicative of partial and not full charge transfer from Mg to B. (author)

  2. Charge states of high Z atoms in a strong laser field

    International Nuclear Information System (INIS)

    We present a numerical solution of the Thomas-Fermi atom in the presence of a static electric field as a model of the adiabatic response of a heavy atom in the presence of a strong laser field. In this semiclassical approach, we calculate the resulting charge state of the atom and its induced dipole moment after the field is turned on. Due to the scaling properties of the Thomas-Fermi approach, the resulting total atomic charge and dipole moment can be expressed as a universal function of the field. We compare our results with recent ionization experiments performed on noble gases using laser fields. 7 refs., 5 figs

  3. Modeling of direct beam extraction for a high-charge-state fusion driver

    Science.gov (United States)

    Anderson, O. A.; Grant Logan, B.

    A newly proposed type of multicharged ion source offers the possibility of an economically advantageous high-charge-state fusion driver. Multiphoton absorption in an intense uniform laser focus can give multiple charge states of high purity, simplifying or eliminating the need for charge-state separation downstream. Very large currents (hundreds of amperes) can be extracted from this type of source. Several arrangements are possible. For example, the laser plasma could be tailored for storage in a magnetic bucket, with beam extracted from the bucket. A different approach, described in this report, is direct beam extraction from the expanding laser plasma. We discuss extraction and focusing for the particular case of a 4.1 MV beam of Xe 16+ ions. The maximum duration of the beam pulse is limited by the total charge in the plasma, while the practical pulse length is determined by the range of plasma radii over which good beam optics can be achieved. The extraction electrode contains a solenoid for beam focusing. Our design studies were carried out first with an envelope code and then with a self-consistent particle code. Results from our initial model showed that hundreds of amperes could be extracted, but that most of this current missed the solenoid entrance or was intercepted by the wall and that only a few amperes were able to pass through. We conclude with an improved design which increases the surviving beam to more than 70 A.

  4. Solar Energetic Particle drifts and the energy dependence of 1 AU charge states

    CERN Document Server

    Dalla, S; Battarbee, M

    2016-01-01

    The event-averaged charge state of heavy ion Solar Energetic Particles (SEPs), measured at 1 AU from the Sun, typically increases with the ions' kinetic energy. The origin of this behaviour has been ascribed to processes taking place within the acceleration region. In this paper we study the propagation through interplanetary space of SEP Fe ions, injected near the Sun with a variety of charge states that are uniformly distributed in energy, by means of a 3D test particle model. In our simulations, due to gradient and curvature drifts associated with the Parker spiral magnetic field, ions of different charge propagate with very different efficiencies to an observer that is not magnetically well connected to the source region. As a result we find that, for many observer locations, the 1 AU event-averaged charge state , as obtained from our model, displays an increase with particle energy E, in qualitative agreement with spacecraft observations. We conclude that drift-associated propagation is a possible explan...

  5. Equation of state for the detonation products of hexanitrostilbene at various charge densities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. L.; Walton, J. R.; Kramer, P. E.

    1976-05-01

    An extensive description of the detonation behavior for the unique and useful high explosive hexanitrostilbene (HNS) is presented. To accomplish this the necessary experimental results measured by detonation of the pure material at charge densities of 1.00, 1.20, 1.40, 1.60, and 1.65 (g/cm/sup 3/ = Mg/m/sup 3/) were compiled and evaluated. Estimates of the equation of state of the detonation products were made for each charge density. To confirm these estimates two-dimensional hydrodynamic (HEMP code) calculations to simulate the cylinder test experiments for two charge densities of 1.2 and 1.6 Mg/m/sup 3/ were carried out. Detailed comparisons of the calculational and experimental results were made for these two tests. Interpolation and extrapolation of the equation of state parameters provided final estimates for the other charge densities. The results are summarized in five sets of Chapman-Jouguet parameters and JWL equation of state coefficients.

  6. Charge state distribution of light ions at glancing collision with solid surface

    International Nuclear Information System (INIS)

    Many experimental results have suggested that the charge state distribution of ions have penetrated through solid is different from that inside the solid. It is important to clarify the physical process taking place at solid surface in order to know the states of ions inside the solid from those observed outside the solid. In the present paper, we report our measurement of charge state distributions of He+ and H2+ ions having been scattered in small angles (less than 40) at surfaces of Au, Ag and C. One of the advantages of the use of the glancing collision of ions at solid surface for the study of ion-surface interaction is that the dwell time of ion near solid surface can be made more than 100 times longer than that in normal transmission experiments. The longer dwell times may alter any contribution of solid surface to electron capture and loss of ions

  7. Charge states distribution of 3350 keV He ions channeled in silicon

    CERN Document Server

    Bentini, G G; Bianconi, M; Lotti, R; Lulli, G

    2002-01-01

    When an ion beam is aligned along a major crystalline axis the dominant interaction is with valence electrons. In this condition the charge exchange processes mostly concern the interaction between the incident ion and a quasi-free electron gas and a strong reduction of the charge-changing probabilities is expected. In this work, 3350 keV He sup + and He sup 2 sup + ions were aligned at small tilt angles about the axis of a 4650 A silicon crystalline membrane. The charge state distribution (CSD) of the transmitted ions was detected by an electro-magnetic analyzer having a very small acceptance angle. In these conditions the equilibration of the CSD was not yet reached and this allowed, making use of simple approximations, for the measurement of the valence electron loss cross-section.

  8. Charged particle assisted nuclear reactions in solid state environment: renaissance of low energy nuclear physics

    CERN Document Server

    Kálmán, Péter

    2015-01-01

    The features of electron assisted neutron exchange processes in crystalline solids are survayed. It is stated that, contrary to expectations, the cross section of these processes may reach an observable magnitude even in the very low energy case because of the extremely huge increment caused by the Coulomb factor of the electron assisted processes and by the effect of the crystal-lattice. The features of electron assisted heavy charged particle exchange processes, electron assisted nuclear capure processes and heavy charged particle assisted nuclear processes are also overviewed. Experimental observations, which may be related to our theoretical findings, are dealt with. The anomalous screening phenomenon is related to electron assisted neutron and proton exchange processes in crystalline solids. A possible explanation of observations by Fleischmann and Pons is presented. The possibility of the phenomenon of nuclear transmutation is qualitatively explained with the aid of usual and charged particle assisted r...

  9. The evolution of ion charge states in cathodic vacuum arc plasmas: a review

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2011-12-18

    Cathodic vacuum arc plasmas are known to contain multiply charged ions. 20 years after “Pressure Ionization: its role in metal vapour vacuum arc plasmas and ion sources” appeared in vol. 1 of Plasma Sources Science and Technology, it is a great opportunity to re-visit the issue of pressure ionization, a non-ideal plasma effect, and put it in perspective to the many other factors that influence observable charge state distributions, such as the role of the cathode material, the path in the density-temperature phase diagram, the “noise” in vacuum arc plasma as described by a fractal model approach, the effects of external magnetic fields and charge exchange collisions with neutrals. A much more complex image of the vacuum arc plasma emerges putting decades of experimentation and modeling in perspective.

  10. High charge state carbon and oxygen ions in Earth's equatorial quasi-trapping region

    Science.gov (United States)

    Christon, S. P.; Hamilton, D. C.; Gloeckler, G.; Eastmann, T. E.

    1994-01-01

    Observations of energetic (1.5 - 300 keV/e) medium-to-high charge state (+3 less than or equal to Q less than or equal to +7) solar wind origin C and O ions made in the quasi-trapping region (QTR) of Earth's magnetosphere are compared to ion trajectories calculated in model equatorial magnetospheric magnetic and electric fields. These comparisons indicate that solar wind ions entering the QTR on the nightside as an energetic component of the plasma sheet exit the region on the dayside, experiencing little or no charge exchange on the way. Measurements made by the CHarge Energy Mass (CHEM) ion spectrometer on board the Active Magnetospheric Particle Tracer Explorer/Charge Composition Explorer (AMPTE/CCE) spacecraft at 7 less than L less than 9 from September 1984 to January 1989 are the source of the new results contained herein: quantitative long-term determination of number densities, average energies, energy spectra, local time distributions, and their variation with geomagnetic disturbance level as indexed by Kp. Solar wind primaries (ions with charge states unchanged) and their secondaries (ions with generally lower charge states produced from primaries in the magnetosphere via charge exchange)are observed throughout the QTR and have distinctly different local time variations that persist over the entire 4-year analysis interval. During Kp larger than or equal to 3 deg intervals, primary ion (e.g., O(+6)) densities exhibit a pronounced predawn maximum with average energy minimum and a broad near-local-noon density minimum with average energy maximum. Secondary ion (e.g., O(+5)) densities do not have an identifiable predawn peak, rather they have a broad dayside maximum peaked in local morning and a nightside minimum. During Kp less than or equal to 2(-) intervals, primary ion density peaks are less intense, broader in local time extent, and centered near midnight, while secondary ion density local time variations diminish. The long-time-interval baseline helps

  11. Energy-dependent Charge States and Their Connection with Ion Abundances in Impulsive Solar Energetic Particle Events

    Science.gov (United States)

    DiFabio, R.; Guo, Z.; Möbius, E.; Klecker, B.; Kucharek, H.; Mason, G. M.; Popecki, M.

    2008-11-01

    Impulsive solar energetic particle (SEP) events show substantial enhancements of heavy ions and 3He over the composition in the Sun's atmosphere. Mass per charge dependent acceleration mechanisms have been proposed to account for this preferential acceleration. However, a problem emerged for all the preferential acceleration models with the measurement of ionization states near 1 MeV nucleon-1, which showed that ions from C to Mg are fully stripped, a challenge that had been recognized early on. Since all models relied on differences in the charge-to-mass ratio to enable preferential acceleration, the proposed mechanisms were incompatible with this observation. Recent observations of the ionic charge states at lower energies have revealed a dependence on energy, with the charge states decreasing for lower energy ions. This raises the possibility that the low-energy charge states reflect the plasma conditions at the acceleration site, while the high-energy charge states are due to stripping low in the solar corona. In a survey of impulsive events we show that the increase of the Fe charge states with energy is highly significant for the sample of events and thus most likely a general feature of impulsive events. To see whether there is a connection between the enhancements and charge states, we extended the ACE SEPICA charge-state observations to lower energies and combined them with the ion fluxes from ACE ULEIS for impulsive events observed between 1997 and 2000. We find a positive correlation between the abundance ratios and the charge states at low energy, while the charge states at the highest energy do not demonstrate such dependence. This supports the idea that the higher mass particles are preferentially accelerated before being stripped.

  12. Conformal anisotropic relativistic charged fluid spheres with a linear equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Esculpi, M. [Universidad Central de Venezuela, Departamento de Fisica Aplicada, Facultad de Ingenieria, Caracas (Venezuela); Aloma, E. [Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela)

    2010-06-15

    We obtain two new families of compact solutions for a spherically symmetric distribution of matter consisting of an electrically charged anisotropic fluid sphere joined to the Reissner-Nordstrom static solution through a zero pressure surface. The static inner region also admits a one parameter group of conformal motions. First, to study the effect of the anisotropy in the sense of the pressures of the charged fluid, besides assuming a linear equation of state to hold for the fluid, we consider the tangential pressure p {sub perpendicular} {sub to} to be proportional to the radial pressure p{sub r}, the proportionality factor C measuring the grade of anisotropy. We analyze the resulting charge distribution and the features of the obtained family of solutions. These families of solutions reproduce for the value C=1, the conformal isotropic solution for quark stars, previously obtained by Mak and Harko. The second family of solutions is obtained assuming the electrical charge inside the sphere to be a known function of the radial coordinate. The allowed values of the parameters pertained to these solutions are constrained by the physical conditions imposed. We study the effect of anisotropy in the allowed compactness ratios and in the values of the charge. The Glazer's pulsation equation for isotropic charged spheres is extended to the case of anisotropic and charged fluid spheres in order to study the behavior of the solutions under linear adiabatic radial oscillations. These solutions could model some stage of the evolution of strange quark matter fluid stars. (orig.)

  13. Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)

    International Nuclear Information System (INIS)

    The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams

  14. Magnetization States of All-Oxide Spin Valves Controlled by Charge-orbital Ordering of Coupled Ferromagnets

    OpenAIRE

    SHVETS, IGOR

    2013-01-01

    PUBLISHED Charge-orbital ordering is commonly present in complex transition metal oxides and offers interesting opportunities for novel electronic devices. In this work, we demonstrate for the first time that the magnetization states of the spin valve can be directly manipulated by charge-orbital ordering. We investigate the interlayer exchange coupling (IEC) between two epitaxial magnetite layers separated by a nonmagnetic epitaxial MgO dielectric. We find that the state of the charge-orb...

  15. Studies on ECR4 for the CERN ion programme

    CERN Document Server

    Hill, C E; Scrivens, R; Wenander, F

    2001-01-01

    The CERN heavy ion community, and some other high energy physics experiments, are starting to demand other ions, both heavy and light, in addition to the traditional lead ions. Studies of the behaviour of the afterglow for different operation modes of the ECR4 at CERN have been continued to try to understand the differences between pulsed afterglow and continuous operation, and their effect on ion yield and beam reproducibility. The progress in adapting the source and ion beam characteristics to meet the new demands will be presented, as will new information on voltage holding problems in the extraction.

  16. The $s$-channel Charged Higgs in the Fully Hadronic Final State at LHC

    CERN Document Server

    Ahmed, Ijaz

    2016-01-01

    With the current measurements performed by CMS and ATLAS experiments, the light charged Higgs scenario ($m_{H^{\\pm}}$ $<$ 160 GeV), is excluded for most of the parameter space in the context of MSSM. However, there is still possibility to look for heavy charged Higgs boson particularly in the $s$-channel single top production process where the charged Higgs may appear as a heavy resonance state and decay to $t\\bar{b}$. The production process under consideration in this paper is $pp \\ra H^{\\pm} \\ra t\\bar{b}~+~h.c.$, where the top quark decays to $W^{+}b$ and $W^{+}$ boson subsequently decays to two light jets. It is shown that despite the presence of large QCD and electroweak background events, the charged Higgs signal can be extracted and observed at a large area of MSSM parameter space ($m_{H^{\\pm}}$,tan$\\beta$) at LHC. The observability of charged Higgs is potentially demonstrated with 5$\\sigma$ contours and $95\\%$ confidence level exclusion curves at different integrated LHC luminosities assuming a nomi...

  17. The s-channel charged Higgs in the fully hadronic final state at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Ijaz [University of Malaya, National Center for Particle Physics, Kuala Lumpur (Malaysia); COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Hashemi, Majid [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Tajuddin, Wan Ahmad [University of Malaya, National Center for Particle Physics, Kuala Lumpur (Malaysia)

    2016-04-15

    With the current measurements performed by CMS and ATLAS experiments, the light charged Higgs scenario (m{sub H}{sup {sub ±}} < 160 GeV), is excluded for most of the parameter space in the context of MSSM. However, there is still possibility to look for heavy charged Higgs boson particularly in the s-channel single top production process where the charged Higgs may appear as a heavy resonance state and decay to t anti b. The production process under consideration in this paper is pp → H{sup ±} → t anti b + h.c., where the top quark decays to W{sup +}b and W{sup +} boson subsequently decays to two light jets. It is shown that despite the presence of large QCD and electroweak background events, the charged Higgs signal can be extracted and observed at a large area of MSSM parameter space (m{sub H}{sup {sub ±}}, tanβ) at LHC. The observability of charged Higgs is potentially demonstrated with 5σ contours and 95% confidence level exclusion curves at different integrated LHC luminosities assuming a nominal center of mass energy of √(s) = 14 TeV. (orig.)

  18. Spin-charge separation and anomalous correlation functions in the edge states of quantum hall liquids

    CERN Document Server

    Lee, H C

    1998-01-01

    First, we have investigated chiral edges of a quantum Hall liquids at filling factor nu=2. The separation of spin and charge degrees of freedom becomes manifest in the presence of long- range Coulomb interaction. Due to the spin-charge separation the tunneling density of states takes the form D(omega) approx ( -lnl omega l) sup 1 sup / sup 2. Experimentally, the spin-charge separation can be revealed in the temperature and voltage dependence of the tunneling current into Fermi liquid reservoir. Second, the charge and spin correlation functions of partially spin-polarized edge electrons of a quantum Hall bar are studied using effective Hamiltonian and bosonization techniques. In the presence of the Coulomb interaction between the edges with opposite chirality we find a different crossover behavior in spin and charge correlation functions. The crossover of the spin correlation function in the Coulomb dominated regime is characterized by an anomalous exponent, which originates from the finite value of the effect...

  19. Correlation between the Open-Circuit Voltage and Charge Transfer State Energy in Organic Photovoltaic Cells.

    Science.gov (United States)

    Zou, Yunlong; Holmes, Russell J

    2015-08-26

    In order to further improve the performance of organic photovoltaic cells (OPVs), it is essential to better understand the factors that limit the open-circuit voltage (VOC). Previous work has sought to correlate the value of VOC in donor-acceptor (D-A) OPVs to the interface energy level offset (EDA). In this work, measurements of electroluminescence are used to extract the charge transfer (CT) state energy for multiple small molecule D-A pairings. The CT state as measured from electroluminescence is found to show better correlation to the maximum VOC than EDA. The difference between EDA and the CT state energy is attributed to the Coulombic binding energy of the CT state. This correlation is demonstrated explicitly by inserting an insulating spacer layer between the donor and acceptor materials, reducing the binding energy of the CT state and increasing the measured VOC. These results demonstrate a direct correlation between maximum VOC and CT state energy.

  20. The Influence of Nonthermal Particles and Radiation on the Charge State of Heavy Ions in Solar Cosmic Rays

    Science.gov (United States)

    Kartavykh, Yu. Yu.; Ostryakov, V. M.; Möbius, E.; Popecki, M. A.

    2004-09-01

    The influence of various types of nonthermal electron and proton distributions and photoionization on the charge state of energetic heavy elements moving in a plasma is investigated. The mean charges of Mg, Si, and Fe are calculated for a bi-Maxwellian distribution of the background electrons and for electron and neutral beams with power-law energy distributions. An anomalously high density of the nonthermal component is required to obtain substantial deviations of the equilibrium mean charges of these elements (a few charge units) from the case when they interact with a purely Maxwellian plasma. In this context, the mean charges for O, Ne, Mg, Si, and Fe ions are also calculated for a model with charge-consistent acceleration. The results indicate that photoionization does not significantly influence the charge state of solar cosmic rays if the parameters of the plasma are those characteristic of impulsive solar events.

  1. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  2. Properties of acceleration sites in active regions as derived from heavy ion charge states

    Science.gov (United States)

    Kartavykh, Y.; Dröge, W.; Klecker, B.; Möbius, E.; Popecki, M.; Mason, G.; Krucker, S.

    Charge states of heavy ions in solar energetic particle SEP events are determined by both the plasma conditions in the acceleration region and propagation effects The steep increase of the ionic charge of heavy ions as observed in all 3He- and Fe-rich SEP events suggests that stripping in a dense environment in the low corona is important in all these events The observed charge states and energy spectra of iron ions are used to infer the plasma conditions in the acceleration region by modelling the observations with a combined acceleration and propagation model that includes charge stripping acceleration coulomb losses and recombination in the corona and interplanetary propagation The interplanetary propagation includes anisotropic pitch-angle scattering on magnetic irregularities as well as magnetic focusing convection and adiabatic deceleration in the expanding solar wind To accurately derive the value of the scattering mean free path of particles the intensity profiles and anisotropy data from ACE and Wind spacecraft were used The comparison of the deduced parameters of the acceleration region with coronal density profiles shows that the acceleration of these ions takes place in closed magnetic structures in the low corona

  3. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible. PMID:24593615

  4. Hydrogen-bonded Intramolecular Charge Transfer Excited State of Dimethylaminobenzophenone using Time Dependent Density Functional Theory

    Institute of Scientific and Technical Information of China (English)

    Yu-ling Chu; Zhong Yang; Zhe-feng Pan; Jing Liu; Yue-yi Han; Yong Ding; Peng Song

    2012-01-01

    Density functional theory and time-dependent density-functional theory have been used to investigate the photophysical properties and relaxation dynamics of dimethylaminobenzophenone (DMABP) and its hydrogen-bonded DMABP-MeOH dimer.It is found that,in nonpolar aprotic solvent,the transitions from S0 to S1 and S2 states of DMABP have both n→π* and π→π* characters,with the locally excited feature mainly located on the C=O group and the partial CT one characterized by electron transfer mainly from the dimethylaminophenyl group to the C=O group.But when the intermolecular hydrogen bond C=O…H-O is formed,the highly polar intramolecular charge transfer character switches over to the first excited state of DMABP-MeOH dimer and the energy difference between the two lowlying electronically excited states increases.To gain insight into the relaxation dynamics of DMABP and DMABP-MeOH dimer in the excited state,the potential energy curves for conformational relaxation are calculated.The formation of twisted intramolecular charge transfer state via diffusive twisting motion of the dimethylamino/dimethylaminophenyl groups is found to be the major relaxation process.In addition,the decay of the S1 state of DMABP-MeOH dimer to the ground state,through nonradiative intermolecular hydrogen bond stretching vibrations,is facilitated by the formation of the hydrogen bond between DMABP and alcohols.

  5. Hospitalization frequency and charges for neurocysticercosis, United States, 2003-2012.

    Science.gov (United States)

    O'Neal, Seth E; Flecker, Robert H

    2015-06-01

    Neurocysticercosis, brain infection with Taenia solium larval cysts, causes substantial neurologic illness around the world. To assess the effect of neurocysticercosis in the United States, we reviewed hospitalization discharge data in the Nationwide Inpatient Sample for 2003-2012 and found an estimated 18,584 hospitalizations for neurocysticercosis and associated hospital charges totaling >US $908 million. The risk for hospitalization was highest among Hispanics (2.5/100,000 population), a rate 35 times higher than that for the non-Hispanic white population. Nearly three-quarters of all hospitalized patients with neurocysticercosis were Hispanic. Male sex and age 20-44 years also incurred increased risk. In addition, hospitalizations and associated charges related to cysticercosis far exceeded those for malaria and were greater than for those for all other neglected tropical diseases combined. Neurocysticercosis is an increasing public health concern in the United States, especially among Hispanics, and costs the US health care system a substantial amount of money.

  6. Contribution of material’s surface layer on charge state distribution in laser ablation plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kumaki, Masafumi, E-mail: rogus@asagi.waseda.jp [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Steski, Dannie; Kanesue, Takeshi [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Ikeda, Shunsuke [Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa 226-8503 (Japan); Okamura, Masahiro [Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Washio, Masakazu [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan)

    2016-02-15

    To generate laser ablation plasma, a pulse laser is focused onto a solid target making a crater on the surface. However, not all the evaporated material is efficiently converted to hot plasma. Some portion of the evaporated material could be turned to low temperature plasma or just vapor. To investigate the mechanism, we prepared an aluminum target coated by thin carbon layers. Then, we measured the ablation plasma properties with different carbon thicknesses on the aluminum plate. The results showed that C{sup 6+} ions were generated only from the surface layer. The deep layers (over 250 nm from the surface) did not provide high charge state ions. On the other hand, low charge state ions were mainly produced by the deeper layers of the target. Atoms deeper than 1000 nm did not contribute to the ablation plasma formation.

  7. Axial ion charge state distribution in the vacuum arc plasma jet

    International Nuclear Information System (INIS)

    We report on our experimental studies of the ion charge state distribution (CSD) of vacuum arc plasmas using a time-of-flight diagnostic method. The dependence of the CSD on the axial distance from the plasma source region was measured for a titanium vacuum arc. It was found that the axial CSD profile is nonuniform. Generally, the mean charge state increases approximately linearly with axial distance from about 1.7 at 12 cm up to 1.9 at 25 cm from the plasma source. A model for ion transport in the free boundary plasma jet is proposed which is based on the existence of an electric field in the quasineutral plasma. This model qualitatively explains the experimental results. (c) 2000 American Institute of Physics

  8. The state of itinerant charge carriers and thermoelectric effects in correlated oxide metals

    International Nuclear Information System (INIS)

    We analyzed the physics of transport processes and, in particular, the thermoelectric power in the mercurocuprates and other cuprates to get a better insight into the state of the carriers in these compounds. The actual problems related to the complicated mechanisms of carriers scattering above Tc are discussed. The experimental studies of thermoelectric power showed that the state of carriers in cuprates can be influenced by many complicated scattering processes, however the underlying mechanism for the linear decreasing of the TEP with increasing the temperature for most hole-doped HTSC cuprates is still not yet known. The actual problems related to the complicated mechanisms of carriers scattering above Tc are discussed for a few models of charge transport. A comparison between the analytical and experimental results is also made. It is concluded that the crucial factor for the understanding of the transport properties of correlated oxide metals is the nature of itinerant charge carriers, i.e. renormalized quasiparticles. (author)

  9. Studies of high charge-state ions in the constance B quadrupole mirror

    International Nuclear Information System (INIS)

    Experiments have been initiated into the confinement and extraction physics of high charge-state ions in an ECRH mirror plasma. ECRH mirrors are well suited for producing high Z ions because the hot electron temperature (>100 keV) is sufficient to fully strip heavy ions. The charge state distribution (CSD) of the ion endloss and the ion endloss temperatures have been measured using a time-of-flight analyzer. The CSD of the confined ions has been measured using a VUV spectrometer. Applying ICRH to the plasma was found to lower the Z/sub eff/ of the confined ions while raising the Z/sub eff/ of the extracted ions. The experimental results are compared to theoretical models which include Pastukhov, flow, and spatial-diffusion confinement times. 12 refs., 16 figs

  10. A Numerical Model for Ion Charge Distribution of Plasmas in Collisional Radiative Steady State

    Institute of Scientific and Technical Information of China (English)

    DUAN Yaoyong; GUO Yonghui; QIU Aici; KUAI Bin

    2009-01-01

    A numerical model for the charge state distribution of plasmas in a collisional ra-diative steady state (CRSS) is established by averaging over the atomic process rate coefficients in universal kinetic equations.It is used to calculate the mean ion charge and ion population for a given temperature and density of the plasmas,ranging from low Z to high Z elements.The comparisons of the calculated results with those of other non-local thermodynamic equilibrium kinetics codes show that this model possesses acceptable precision.Furthermore,the NLTE effects are investigated by virtue of the model,and the differences between CRSS and LTE models for low density plasmas are quite evident.

  11. Laser Plasmas : Multiple charge states of titanium ions in laser produced plasma

    Indian Academy of Sciences (India)

    M Shukla; S Bandhyopadhyay; V N Rai; A V Kilpio; H C Pant

    2000-11-01

    An intense laser radiation (1012 to 1014 W/cm-2) focused on the solid target creates a hot (≥ 1 keV) and dense plasma having high ionization state. The multiple charged ions with high current densities produced during laser matter interaction have potential application in accelerators as an ion source. This paper presents generation and detection of highly stripped titanium ions (Ti) in laser produced plasma. An Nd:glass laser (KAMETRON) delivering 50 J energy ( = 0.53 m) in 2.5 ns was focused onto a titanium target to produce plasma. This plasma was allowed to drift across a space of ∼ 3 m through a diagnostic hole in the focusing mirror before ions are finally detected with the help of electrostatic ion analyzer. Maximum current density was detected for the charge states of +16 and +17 of Ti ions for laser intensity of ∼ 1014 W/cm-2.

  12. Charge State of the Globular Histone Core Controls Stability of the Nucleosome

    OpenAIRE

    Fenley, Andrew T.; Adams, David A.; Onufriev, Alexey V.

    2010-01-01

    Presented here is a quantitative model of the wrapping and unwrapping of the DNA around the histone core of the nucleosome that suggests a mechanism by which this transition can be controlled: alteration of the charge state of the globular histone core. The mechanism is relevant to several classes of posttranslational modifications such as histone acetylation and phosphorylation; several specific scenarios consistent with recent in vivo experiments are considered. The model integrates a descr...

  13. Charge State of the Globular Histone Core Controls Stability of the Nucleosome

    OpenAIRE

    Fenley, Andrew T.; Adams, D. A.; Onufriev, Alexey V.

    2010-01-01

    Presented here is a quantitative model of the wrapping and unwrapping of the DNA around the histone core of the nucleosome that suggests a mechanism by which this transition can be controlled: alteration of the charge state of the globular histone core. The mechanism is relevant to several classes of posttranslational modifications such as histone acetylation and phosphorylation; several specific scenarios consistent with recent in vivo experiments are considered. The model integrates a descr...

  14. Extended Kalman Filter with a Fuzzy Method for Accurate Battery Pack State of Charge Estimation

    OpenAIRE

    Saeed Sepasi; Leon R. Roose; Marc M. Matsuura

    2015-01-01

    As the world moves toward greenhouse gas reduction, there is increasingly active work around Li-ion chemistry-based batteries as an energy source for electric vehicles (EVs), hybrid electric vehicles (HEVs) and smart grids. In these applications, the battery management system (BMS) requires an accurate online estimation of the state of charge (SOC) in a battery pack. This estimation is difficult, especially after substantial battery aging. In order to address this problem, this paper utilizes...

  15. Device and Method for Continuously Equalizing the Charge State of Lithium Ion Battery Cells

    Science.gov (United States)

    Schwartz, Paul D. (Inventor); Martin, Mark N. (Inventor); Roufberg, Lewis M. (Inventor)

    2015-01-01

    A method of equalizing charge states of individual cells in a battery includes measuring a previous cell voltage for each cell, measuring a previous shunt current for each cell, calculating, based on the previous cell voltage and the previous shunt current, an adjusted cell voltage for each cell, determining a lowest adjusted cell voltage from among the calculated adjusted cell voltages, and calculating a new shunt current for each cell.

  16. Vehicle trajectory optimization for hybrid vehicles taking into account battery state-of-charge

    OpenAIRE

    MENSING, Felicitas; TRIGUI, Rochdi; Bideaux, Eric

    2012-01-01

    Hybrid vehicles are found to be one solution to reduce fuel consumption in the transportation sector. Eco-driving is a concept that is immediately applicable by drivers to improve the efficiency of their vehicle. In this work the potential of eco-driving for hybrid drive train vehicles is discussed. The operation of hybrid vehicles is strongly dependent on their energy management and therefore on battery state-of-charge. Here, the velocity trajectory will be optimized taking into account b...

  17. Self/Anti-Self Charge Conjugate States for $j=1/2$ and $j=1$

    CERN Document Server

    Dvoeglazov, V V

    1997-01-01

    We briefly review recent achievements in the theory of neutral particles (the Majorana-McLennan-Case-Ahluwalia construct for self/anti-self charge conjugate states for j=1/2 and j=1 cases). Among new results we present a theoretical construct in which a fermion and an antifermion have the same intrinsic parity; discuss phase transformations and find relations between the Majorana-like field operator $\

  18. Charge state and energy loss of relativistic heavy ions in matter

    International Nuclear Information System (INIS)

    Relativistic heavy-ion collisions of few-electron projectiles ranging from argon up to uranium have been investigated in solid and gaseous media. Electron-loss and electron-capture cross sections, charge-state distributions, as well as energy loss and energy deposition have been measured and are compared with theoretical predictions. Especially fully-ionized heavy projectiles represent a unique possibility to test atomic-collision theories. (orig.)

  19. Design and Test of a Solid State Charged Particle Detector for Cubesat

    OpenAIRE

    Dowler, Michael; Aguero, Victor; Sears, Stephen; Twiggs, Robert; Albers, Jim; Lee, Kathy; Maahs, Gordon

    2002-01-01

    A solid state boron- ion implanted silicon Charged Particle Detector (CPD) was designed, built, and tested as one of the payloads for a Stanford University/Lockheed Martin Cubesat (10cm cube, 1 Kg) project intended for a low earth orbit. Design drivers to be discussed will include cost, size, mass and schedule. Two detectors were utilized with shielding to allow for two separate energy ranges to be detected. Stanford Research Institute facilities were used for testing. Design considerations w...

  20. Prospects of charged-oscillator quantum-state generation with Rydberg atoms

    Science.gov (United States)

    Stevenson, Robin; Minář, Jiří; Hofferberth, Sebastian; Lesanovsky, Igor

    2016-10-01

    We explore the possibility of engineering quantum states of a charged mechanical oscillator by coupling it to a stream of atoms in superpositions of high-lying Rydberg states. Our scheme relies on the driving of a two-phonon resonance within the oscillator by coupling it to an atomic two-photon transition. This approach effectuates a controllable open system dynamics on the oscillator that in principle permits versatile dissipative creation of squeezed and other nonclassical states which are central to sensing applications or for studies of fundamental questions concerning the boundary between classical and quantum-mechanical descriptions of macroscopic objects. We show that these features survive thermal coupling of the oscillator with the environment. We perform a detailed feasibility study finding that current state-of-the-art parameters result in atom-oscillator couplings which are too weak to efficiently implement the proposed oscillator state preparation protocol. Finally, we comment on ways to circumvent the present limitations.

  1. Ion charge state distributions of vacuum arc plasmas: The origin of species

    International Nuclear Information System (INIS)

    Vacuum arc plasmas are produced at micrometer-size, nonstationary cathode spots. Ion charge state distributions (CSD close-quote s) are experimentally known for 50 elements, but the theoretical understanding is unsatisfactory. In this paper, CSD close-quote s of vacuum arc plasmas are calculated under the assumption that the spot plasma experiences an instantaneous transition from equilibrium to nonequilibrium while expanding. Observable charge state distributions are the result of a freezing process at this transition. open-quotes Frozenclose quotes CSD close-quote s have been calculated using Saha equations in the Debye-Hueckel approximation of the nonideal plasma for all metals of the Periodic Table and for boron, carbon, silicon, and germanium. The results are presented in a open-quotes periodic table of CSD.close quotes The table contains also the mean ion charge state, the neutral vapor fraction, and the effective plasma temperature and density at the freezing point for each element. The validity of the concepts of open-quotes instantaneous freezingclose quotes and open-quotes effective temperature and densityclose quotes is discussed for low and high currents and for the presence of a magnetic field. Temperature fluctuations have been identified to cause broadening of CSD close-quote s. copyright 1997 The American Physical Society

  2. Plasma diagnostics of the SIMPA Ecr ion source by X-ray spectroscopy, Collisions of H-like Neon ions with Argon clusters; Diagnostic du plasma de la source d'ions ECR SIMPA par spectroscopie X, Collision d'ions neon hydrogenoides avec des agregats d'argon

    Energy Technology Data Exchange (ETDEWEB)

    Adrouche, N

    2006-09-15

    The first part of this thesis is devoted to the SIMPA ECR ion source characterization, first, I explored the ion source's capacities on the point of view of extracted currents for three elements, argon, krypton and neon. By analyzing the Bremsstrahlung spectra, I determined the electronic temperature in the plasma and the electronic and ionic densities. In a second time, I recorded high resolution X-spectra of argon and krypton plasma's. By taking into account the principal mechanisms of production of a K hole in the ions inside the plasma, I determined the ionic densities of the high charge states of argon. Lastly, I highlighted a correlation between the ions charge states densities with the intensities of extracted currents. The second part of the thesis is devoted to Ne{sup 9+-} argon clusters collisions. First, I presented simple and effective theoretical models allowing to describe the phenomena occurring during a collision, from the point of view of the projectile. I carried out a simulation for a collision of an ion Ne{sup 9+} with an argon cluster of a given size, which has enabled us to know the energy levels populated during the electronic capture and to follow the number of electrons in each projectile shell. Lastly, I presented the first results of a collision between a Ne{sup 9+} beam and argon clusters. These results, have enabled me by using projectile X-ray spectroscopy during the ions-clusters collision, to evidence a strong clustering of targets atoms and to highlight an electronic multi-capture in the projectile ion excited states. (author)

  3. Gas-pressure dependence of charge-state fractions and mean charges of 1.4 MeV/u-uranium ions stripped in molecular hydrogen

    Science.gov (United States)

    Shevelko, V. P.; Winckler, N.; Tolstikhina, I. Yu.

    2016-06-01

    Using a recently created BREIT computer code (Balance Rate Equations for Ion Transportation), evolutions of the charge-state fractions Fq (x) and equilibrium mean charge states q bar are calculated for stripping of 1.4 MeV/u-U4+ ions in H2 gas for target thicknesses x ⩽ 100 μg /cm2 (⩽ 3 ·1019molecule /cm2) and gas pressures 10-4 ⩽ P ⩽ 500 mbar. Calculations of the non-equilibrium Fq (x) and equilibrium Fq0 distributions for ion charges 4 ⩽ q ⩽ 40 are performed by solving the balance (rate) equations with account for the multi-electron processes and the target-density effect. Calculated equilibrium mean charge state increases from q bar ≈ 27.6 at P =10-4 mbar to its saturated (maximum) value of q bar ≈ 32.7 at pressures P≳ 250 mbar while the equilibrium target thickness xeq increases from 20 to 50 μg /cm2 (from 0.6 to 1.5 in units of 1019molecule /cm2) in the H2-pressure range considered. From the present calculations it is concluded that the maximum mean charge state q bar which can be achieved in stripping of 1.4 MeV/u-U4+ ions in H2 gas is about q bar ≈ 33 at a gas pressure P≳ 250 mbar.

  4. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Koichi, E-mail: tanak@mmc.co.jp [Central Research Institute, Mitsubishi Materials Corporation, 1002-14 Mukohyama, Naka-shi, Ibaraki 311-0102 (Japan); Anders, André [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 53, Berkeley, California 94720 (United States)

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  5. F-theory compactifications and central charges of BPS-states

    CERN Document Server

    Obikhod, Tetiana V

    2016-01-01

    F-theory, as Theory of Everything is compactified on Calabi-Yau threefolds or fourfolds. Using toric approximation of Batyrev and mirror symmetry of Calabi-Yau manifolds it is possible to present Calabi-Yau in the form of dual integer polyhedra. With the help of Gelfand, Zelevinsky, Kapranov algorithm were calculated the numbers of BPS-states in F-theory, and by application of Tate algorithm were determined the enhanced symmetries. As the result, any integral dual polyhedron representing a Calabi-Yau manifold, is characterized by its own set of topological invariants - the numbers of BPS states, whose central charges are classified by enhanced symmetries.

  6. Charge-transfer photodissociation of adsorbed molecules via electron image states

    CERN Document Server

    Jensen, E T

    2007-01-01

    The 248nm and 193nm photodissociation of submonolayer quantities of CH$_3$Br and CH$_3$I adsorbed on thin layers of n-hexane indicate that the dissociation is caused by dissociative electron attachment from sub-vacuum level photoelectrons created in the copper substrate. The characteristics of this photodissociation-- translation energy distributions and coverage dependences show that the dissociation is mediated by an image potential state which temporarily traps the photoelectrons near the n-hexane--vacuum interface, and then the charge transfers from this image state to the affinity level of a co-adsorbed halomethane which then dissociates.

  7. Excitation of atoms and molecules in collisions with fast, highly charged ions

    International Nuclear Information System (INIS)

    This paper discusses the following topics: charge distributions for Ar recoil-ions produced in one- and two-electron capture collisions by Oq+ projectiles; charge distributions of He, Ne, and Ar recoil-ions produced in collisions with 10 to 30 MeV/u N7+ ions; studies of recoil ions produced in collisions of 40 MeV Ar13+ with atomic and molecular targets; two-fragment coincidence studies of molecular dissociation induced by heavy ion collisions; resonant electron transfer to double K-vacancy states in oxygen compounds; quenching of metastable states in fast Mg projectiles; and design and construction of an atomic physics beamline for the ECR ion source

  8. Solar Wind Charge Exchange Studies Of Highly Charged Ions On Atomic Hydrogen

    International Nuclear Information System (INIS)

    Accurate studies of low-energy charge exchange (CX) are critical to understanding underlying soft X-ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H-like, and He-like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H-like ions of C, N, O and fully-stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV/u-20 keV/u) and compared to previous H-oven measurements. The present measurements are performed using a merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV/u-3.3 keV/u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H-oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  9. Solar Wind Charge Exchange Studies Of Highly Charged Ions On Atomic Hydrogen

    Science.gov (United States)

    Draganić, I. N.; Seely, D. G.; McCammon, D.; Havener, C. C.

    2011-06-01

    Accurate studies of low-energy charge exchange (CX) are critical to understanding underlying soft X-ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H-like, and He-like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H-like ions of C, N, O and fully-stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV/u-20 keV/u) and compared to previous H-oven measurements. The present measurements are performed using a merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV/u-3.3 keV/u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H-oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  10. Fragile charge order in the nonsuperconducting ground state of the underdoped high-temperature superconductors.

    Science.gov (United States)

    Tan, B S; Harrison, N; Zhu, Z; Balakirev, F; Ramshaw, B J; Srivastava, A; Sabok-Sayr, S A; Sabok, S A; Dabrowski, B; Lonzarich, G G; Sebastian, Suchitra E

    2015-08-01

    The normal state in the hole underdoped copper oxide superconductors has proven to be a source of mystery for decades. The measurement of a small Fermi surface by quantum oscillations on suppression of superconductivity by high applied magnetic fields, together with complementary spectroscopic measurements in the hole underdoped copper oxide superconductors, point to a nodal electron pocket from charge order in YBa2Cu3(6+δ). Here, we report quantum oscillation measurements in the closely related stoichiometric material YBa2Cu4O8, which reveals similar Fermi surface properties to YBa2Cu3(6+δ), despite the nonobservation of charge order signatures in the same spectroscopic techniques, such as X-ray diffraction, that revealed signatures of charge order in YBa2Cu3(6+δ). Fermi surface reconstruction in YBa2Cu4O8 is suggested to occur from magnetic field enhancement of charge order that is rendered fragile in zero magnetic fields because of its potential unconventional nature and/or its occurrence as a subsidiary to more robust underlying electronic correlations. PMID:26199413

  11. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion

    Science.gov (United States)

    Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning

    2016-08-01

    Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility.

  12. Multiple Charge Transfer States at Ordered and Disordered Donor/Acceptor Interfaces

    Science.gov (United States)

    Fusella, Michael; Verreet, Bregt; Lin, Yunhui; Brigeman, Alyssa; Purdum, Geoffrey; Loo, Yueh-Lin; Giebink, Noel; Rand, Barry

    The presence of charge transfer (CT) states in organic solar cells is accepted, but their role in photocurrent generation is not well understood. Here we investigate solar cells based on rubrene and C60 to show that CT state properties are influenced by molecular ordering at the donor/acceptor (D/A) interface. Crystalline rubrene films are produced with domains of 100s of microns adopting the orthorhombic phase, as confirmed by grazing incidence XRD, with the (h00) planes parallel to the substrate. C60 grown atop these films adopts a highly oriented face-centered cubic phase with the (111) plane parallel to the substrate. For this highly ordered system we have discovered the presence of four CT states. Polarized external quantum efficiency (EQE) measurements assign three of these to crystalline origins with the remaining one well aligned with the disordered CT state. Varying the thickness of a disordered blend of rubrene:C60 atop the rubrene template modulates the degree of crystallinity at the D/A interface. Strikingly, this process alters the prominence of the four CT states measured via EQE, and results in a transition from single to multiple electroluminescence peaks. These results underscore the impact of molecular structure at the heterojunction on charge photogeneration.

  13. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Tassle, Aaron Justin [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  14. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Tassle, Aaron Justin

    2006-09-01

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  15. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    Energy Technology Data Exchange (ETDEWEB)

    Theophilou, Iris, E-mail: i.theophilou@fz-juelich.de [Peter Grunberg Institut (PGI) Forschungszentrum Jülich, D-52425 Jülich (Germany); Tassi, M.; Thanos, S. [Institute for Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, ‘Demokritos’ National Center for Scientific Research, 15310 Athens (Greece)

    2014-04-28

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations.

  16. Status of charge breeding with electron cyclotron resonance ion sources (invited)

    CERN Document Server

    Lamy, T; Sortais, P; Thuillier, T; 10.1063/1.2149300

    2006-01-01

    Due to the production methods of exotic nuclei, an efficient acceleration of radioactive ion beams needs charge breeding of weakly charged ions. The upgrade of existing isotope separator on-line facilities (TRIUMF-isotope separation and acceleration, CERN-isotope separation on-line detector, etc.) or the development of projects for the acceleration of radioactive ion beams (GANIL-SPIRAL2, MAFF, EURISOL, etc.) requires charge breeders with high efficiency, fast charge breeding time, low background levels, and high intensity acceptance either in continuous or in pulsed mode. The optimization of these parameters is a challenge for the electron cyclotron resonance (ECR) community and is useful to get a better understanding of plasma physics in ECR ion sources (ECRISs). The ECR charge breeding technique has been developed for more than ten years at LPSC (former ISN) Grenoble, typical 1+rightward arrown+ efficiencies are in the 3%-10% range depending on the nature of the incoming beam (metallic, alkaline, and gaseo...

  17. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles

    International Nuclear Information System (INIS)

    An accurate battery State of Charge estimation is of great significance for battery electric vehicles and hybrid electric vehicles. This paper presents an adaptive unscented Kalman filtering method to estimate State of Charge of a lithium-ion battery for battery electric vehicles. The adaptive adjustment of the noise covariances in the State of Charge estimation process is implemented by an idea of covariance matching in the unscented Kalman filter context. Experimental results indicate that the adaptive unscented Kalman filter-based algorithm has a good performance in estimating the battery State of Charge. A comparison with the adaptive extended Kalman filter, extended Kalman filter, and unscented Kalman filter-based algorithms shows that the proposed State of Charge estimation method has a better accuracy. -- Highlights: → Adaptive unscented Kalman filtering is proposed to estimate State of Charge of a lithium-ion battery for electric vehicles. → The proposed method has a good performance in estimating the battery State of Charge. → A comparison with three other Kalman filtering algorithms shows that the proposed method has a better accuracy.

  18. Charge State Formation of Energetic Ultraheavy Ions in a Hot Plasma

    Science.gov (United States)

    Kartavykh, Y. Y.; Dröge, W.; Klecker, B.; Kocharov, L.; Kovaltsov, G. A.; Möbius, E.

    2008-07-01

    We introduce a simplified method to calculate the cross sections and rates of ionization and recombination of accelerated ions with arbitrary nuclear charge Z and atomic mass number A. Calculations of equilibrium and nonequilibrium charge states of the element Tellurium (Te, Z = 52) are presented for the first time. The validity of the proposed method is demonstrated by showing that predictions for Si and Fe are in agreement at energies characteristic for energetic (>=0.15 MeV nucleon-1) ultraheavy ions with the results of a more sophisticated model. We find that while the charge states for Te come out higher than those for Fe under similar conditions, the Q/A values for Te fall consistently below those for Fe over the entire energy range and under all comparable conditions, thus extending the trend in Q/A that is observed when going to higher mass elements. Implications of our results for the observed enrichments of ultraheavy ions in solar energetic particle events are discussed.

  19. Calculations on charge state and energy loss of argon ions in partially and fully ionized carbon plasmas.

    Science.gov (United States)

    Barriga-Carrasco, Manuel D; Casas, David; Morales, Roberto

    2016-03-01

    The energy loss of argon ions in a target depends on their velocity and charge density. At the energies studied in this work, it depends mostly on the free and bound electrons in the target. Here the random-phase approximation is used for analyzing free electrons at any degeneracy. For the plasma-bound electrons, an interpolation between approximations for low and high energies is applied. The Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler et al. is used to determine its equilibrium charge state Q(eq). This latter criterion implies that the equilibrium charge state depends slightly on the electron density and temperature of the plasma. On the other hand, the effective charge Q(eff) is obtained as the ratio between the energy loss of the argon ion and that of the proton for the same plasma conditions. This effective charge Q(eff) is larger than the equilibrium charge state Q(eq) due to the incorporation of the BK charge distribution. Though our charge-state estimations are not exactly the same as the experimental values, our energy loss agrees quite well with the experiments. It is noticed that the energy loss in plasmas is higher than that in the same cold target of about, ∼42-62.5% and increases with carbon plasma ionization. This confirms the well-known enhanced plasma stopping. It is also observed that only a small part of this energy loss enhancement is due to an increase of the argon charge state, namely only ∼2.2 and 5.1%, for the partially and the fully ionized plasma, respectively. The other contribution is connected with a better energy transfer to the free electrons at plasma state than to the bound electrons at solid state of about, ∼38.8-57.4%, where higher values correspond to a fully ionized carbon plasma. PMID:27078472

  20. Calculations on charge state and energy loss of argon ions in partially and fully ionized carbon plasmas

    Science.gov (United States)

    Barriga-Carrasco, Manuel D.; Casas, David; Morales, Roberto

    2016-03-01

    The energy loss of argon ions in a target depends on their velocity and charge density. At the energies studied in this work, it depends mostly on the free and bound electrons in the target. Here the random-phase approximation is used for analyzing free electrons at any degeneracy. For the plasma-bound electrons, an interpolation between approximations for low and high energies is applied. The Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler et al. is used to determine its equilibrium charge state Qeq. This latter criterion implies that the equilibrium charge state depends slightly on the electron density and temperature of the plasma. On the other hand, the effective charge Qeff is obtained as the ratio between the energy loss of the argon ion and that of the proton for the same plasma conditions. This effective charge Qeff is larger than the equilibrium charge state Qeq due to the incorporation of the BK charge distribution. Though our charge-state estimations are not exactly the same as the experimental values, our energy loss agrees quite well with the experiments. It is noticed that the energy loss in plasmas is higher than that in the same cold target of about, ˜42 -62.5 % and increases with carbon plasma ionization. This confirms the well-known enhanced plasma stopping. It is also observed that only a small part of this energy loss enhancement is due to an increase of the argon charge state, namely only ˜2.2 and 5.1 % , for the partially and the fully ionized plasma, respectively. The other contribution is connected with a better energy transfer to the free electrons at plasma state than to the bound electrons at solid state of about, ˜38.8 -57.4 % , where higher values correspond to a fully ionized carbon plasma.

  1. Local equilibria and state transfer of charged classical particles on a helix in an electric field

    CERN Document Server

    Plettenberg, J; Zampetaki, A V; Schmelcher, P

    2016-01-01

    We explore the effects of a homogeneous external electric field on the static properties and dynamical behavior of two charged particles confined to a helix. In contrast to the field-free setup which provides a separation of the center-of-mass and relative motion, the existence of an external force perpendicular to the helix axis couples the center-of-mass to the relative degree of freedom leading to equilibria with a localized center of mass. By tuning the external field various fixed points are created and/or annihilated through different bifurcation scenarios. We provide a detailed analysis of these bifurcations based on which we demonstrate a robust state transfer between essentially arbitrary equilibrium configurations of the two charges that can be induced by making the external force time-dependent.

  2. Electronic States and Spatial Charge Distribution of Single Mn Impurity in Diluted Magnetic Semiconductors

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-Hua; ZOU Liang-Jian

    2006-01-01

    The electronic and magnetic properties as well as the spatial charge distribution of single Mn impurity in Ⅲ-V diluted magnetic semiconductors are obtained when the degeneracy of the p orbits contributed from the four nearest-neighbouring As(N) atoms is taken into account. We show that in the ground state, the Mn spin is strongly antiferromagnetically coupled to the surrounding As(N) atoms when the p - d hybridization Vpd is large and both the hole level Ev and the impurity level Ed are close to the Fermi energy. The spatial charge distribution of the Mn acceptor in the (110) plane is non-spherically symmetric, in good agreement with the recent STM images.

  3. Charge states of Mg and Si from stochastic acceleration in impulsive solar flares

    Science.gov (United States)

    Kartavykh, Yu. Yu.; Wannawichian, S.; Ruffolo, D.; Ostryakov, V. M.

    2002-07-01

    We consider the acceleration of heavy ions in impulsive solar flares. In particular, we have performed Monte Carlo simulations of stochastic acceleration by Alfvén wave turbulence, and compare new results for magnesium and silicon ions with previous results for iron. The model takes into account stripping due to collisions with ambient electrons and heavy particles (protons and He +2) which becomes increasingly important for more energetic ions, as well as radiative and dielectronic recombination due to collisions with electrons. Spatial diffusion and Coulomb losses are also taken into account. For comparison, we also calculate equilibrium mean charges. We examine the effects of plasma parameters on the calculated energy-dependent charge state distributions of these elements, which can be compared with results from space-borne instruments in order to put constraints on the physical environment of the acceleration region.

  4. Semilocal and Hybrid Density Embedding Calculations of Ground-State Charge-Transfer Complexes

    CERN Document Server

    Laricchia, S; Della Sala, F; 10.1063/1.4795825

    2013-01-01

    We apply the frozen density embedding method, using a full relaxation of embedded densities through a freeze-and-thaw procedure, to study the electronic structure of several benchmark ground-state charge-transfer complexes, in order to assess the merits and limitations of the approach for this class of systems. The calculations are performed using both semilocal and hybrid exchange-correlation (XC) functionals. The results show that embedding calculations using semilocal XC functionals yield rather large deviations with respect to the corresponding supermolecular calculations. Due to a large error cancellation effect, however, they can often provide a relatively good description of the electronic structure of charge-transfer complexes, in contrast to supermolecular calculations performed at the same level of theory. On the contrary, when hybrid XC functionals are employed, both embedding and supermolecular calculations agree very well with each other and with the reference benchmark results. In conclusion, fo...

  5. Search for light charged Higgs bosons in hadronic τ final states with the ATLAS detector

    International Nuclear Information System (INIS)

    Charged Higgs bosons are predicted in theories with a non-minimal Higgs sector like the Minimal Supersymmetric Extension of the Standard Model (MSSM). At the LHC, light charged Higgs Bosons might be produced in on-shell top quark decays t→ H+b, if mH±t-mb. In most of the MSSM parameter space, the decay H+ → τν is the dominant decay channel and suggests the possibility of using the unique signature of hadronic τ final states to suppress the backgrounds. The subject of this study is the estimation of the sensitivity of the ATLAS detector for charged Higgs boson searches in t anti t events. Leptons from the decay chain of the second top quark allow for efficient triggering. A search strategy is developed and estimates of signal significances and exclusion limits in the MSSM mh-max scenario are presented based on Monte Carlo simulations. For an integrated luminosity of 10 fb-1, the discovery of charged Higgs bosons is possible for tanβ>32. Exclusion limits are given for values of tanβ>17, significantly improving the current best limits from the Tevatron. The most important systematic uncertainties were found to be the errors on the jet energy scale and the missing transverse energy, resulting in a total systematic uncertainty of 40% on the signal. To reduce the systematic uncertainty for the most important Standard Model background, t anti t production, emphasis is put on estimating this background using data instead of Monte Carlo simulations. The t anti t background consists of two contributions, one with a correctly identified τ-jet in the final state, which is irreducible, and one where the hadronic τ decay is faked by a light parton jet. For each background a method has been developed to estimate its contribution with minimal use of Monte Carlo simulations. In this way, the systematic uncertainty on the background can be significantly reduced. (orig.)

  6. Kinetic instabilities in a mirror-confined ECR discharge plasma

    Science.gov (United States)

    Mansfeld, Dmitry; Viktorov, Mikhail; Vodopyanov, Alexander; Golubev, Sergey

    2015-11-01

    Kinetic instabilities of nonequilibrium plasma heated by powerful radiation of gyrotron in electron cyclotron resonance conditions and confined in a mirror magnetic trap are reported. Instabilities are manifested as the generation of short pulses of electromagnetic radiation accompanied by precipitation of hot electrons from magnetic trap. Measuring electromagnetic field with high temporal resolution allowed to observe various dynamic spectra of electromagnetic radiation related to at least five types of kinetic instabilities. The opportunity to recreate different conditions for excitation and amplification of waves in plasma in a single ECR discharge pulse has been demonstrated. This report may be of interest in the context of a laboratory modeling of nonstationary wave-particle interaction processes in nonequilibrium space plasma since the observed phenomena have much in common with similar processes occurring in the magnetosphere of the Earth, planets, and in solar coronal loops. Work was supported by Russian Foundation for Basic Research # 15-32-20770.

  7. Preliminary Study of a Hybrid Helicon-ECR Plasma Source

    Science.gov (United States)

    M. Hala, A.; Oksuz, L.; Ximing, Zhu

    2016-08-01

    A new type of hybrid discharge is experimentally investigated in this work. A helicon source and an electron cyclotron resonance (ECR) source were combined to produce plasma. As a preliminary study of this type of plasma, the optical emission spectroscopy (OES) method was used to obtain values of electron temperature and density under a series of typical conditions. Generally, it was observed that the electron temperature decreases and the electron density increases as the pressure increased. When increasing the applied power at a certain pressure, the average electron density at certain positions in the discharge does not increase significantly possibly due to the high degree of neutral depletion. Electron temperature increased with power in the hybrid mode. Possible mechanisms of these preliminary observations are discussed.

  8. Propagation Distance Required to Reach Steady-State Detonation Velocity in Finite-Sized Charges

    CERN Document Server

    Li, Jianling; Higgins, Andrew J

    2014-01-01

    The decay of a detonation wave from its initial CJ velocity to its final, steady state velocity upon encountering a finite thickness or diameter charge is investigated numerically and theoretically. The numerical simulations use an ideal gas equation of state and pressure dependent reaction rate in order to ensure a stable wave structure. The confinement is also treated as an ideal gas with variable impedance. The velocity decay along the centerline is extracted from the simulations and compared to predictions base on a front evolution equation that uses the steady state detonation velocity-front curvature relation ($D_n-\\kappa$). This model fails to capture the finite signaling speed of the leading rarefaction resulting from the interaction with the yielding confinement. This signaling speed is verified to be the maximum signal velocity occurring in the ideal ZND wave structure of the initial CJ velocity. A simple heuristic model based on the rarefaction generated by a one-dimensional interaction between the...

  9. Search for AN Eta-Nuclear Bound State in the Double Charge Exchange Reaction OXYGEN-18

    Science.gov (United States)

    Johnson, John Doeppers

    1992-01-01

    Recent calculations have predicted that a bound state between an eta and a nucleus may occur as an intermediate state in pion double charge exchange (DCX). The existence of such a mesic nucleus would lead to a resonance-like structure in the DCX excitation function at fixed momentum transfer. LAMPF Experiment 1140 searched for an eta-nucleus bound state in the DCX reaction ^{18}O(pi ^{+}, pi^ {-})^{18}Ne(DIAS). An excitation function for this reaction was measured for energies ranging from 350 to 440 MeV and for momentum transfers of q = 0, 105 and 210 MeV/c. The calculated cross sections agree favorably with previously published data. Theoretical calculations predict that a resonance structure will be evidenced by an enhanced cross section at the eta production threshold for this reaction. The measured excitation function has found some evidence of structure in this region.

  10. Identifying the magnetoconductance responses by the induced charge transfer complex states in pentacene-based diodes

    Science.gov (United States)

    Huang, Wei-Shun; Lee, Tsung-Hsun; Guo, Tzung-Fang; Huang, J. C. A.; Wen, Ten-Chin

    2012-07-01

    We investigate the magnetoconductance (MC) responses in photocurrent, unipolar injection, and bipolar injection regimes in pentacene-based diodes. Both photocurrent and bipolar injection contributed MC responses show large difference in MC line shape, which are attributed to triplet-polaron interaction modulated by the magnetic field dependent singlet fission and the intersystem crossing of the polaron pair, respectively. By blending 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane into pentacene, all the MC responses are suppressed but the MC response at unipolar injection regime is enhanced, which is attributed to the induced charge transfer complex states (CT complex states). This work identify the MC responses between single carrier contributed MC and exciton related MC by the induced CT complex states.

  11. On the effect of excited states in lattice calculations of the nucleon axial charge

    CERN Document Server

    Hansen, Maxwell T

    2016-01-01

    Excited-state contamination is one of the dominant uncertainties in lattice calculations of the nucleon axial-charge, $g_A$. Recently published results in leading-order chiral perturbation theory (ChPT) predict the excited-state contamination to be independent of the nucleon interpolator and positive. However, empirical results from numerical lattice calculations show negative contamination (downward curvature), indicating that present-day calculations are not in the regime where the leading-order ChPT predictions apply. In this paper we show that, under plausible assumptions, one can reproduce the behavior of lattice correlators by taking into account final-state $N \\pi$ interactions, in particular the effect of the Roper resonance, and by postulating a sign change in the infinite-volume $N \\to N \\pi$ axial-vector transition amplitude.

  12. Development of ion beams for space effects testing using an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Janilee; Hodgkinson, Adrian; Johnson, Mike; Loew, Tim; Lyneis, Claude; Phair, Larry [Nuclear Science Division, Lawrence Berkeley National Lab One Cyclotron Road, Berkeley, CA 94720 (United States)

    2013-04-19

    At LBNL's 88-Inch Cyclotron and Berkeley Accelerator Space Effects (BASE) Facility, a range of ion beams at energies from 1 to 55 MeV/nucleon are used for radiation space effects testing. By bombarding a component with ion beams the radiation component of the space environment can be simulated and single event effects (SEEs) determined. The performance of electronic components used in space flight and high altitude aircraft can then be evaluated. The 88- Inch Cyclotron is coupled to the three electron cyclotron resonance ion sources (ECR, AECR-U, VENUS). These ion sources provide a variety of ion species, ranging from protons to heavy ions such as bismuth, for these tests. In particular the ion sources have been developed to provide {sup c}ocktails{sup ,} a mixture of ions of similar mass-to-charge ratio, which can be simultaneously injected into the cyclotron, but selectively extracted from it. The ions differ in both their linear energy transfer (LET) deposited to the part and in their penetration depth into the tested part. The current heavy ion cocktails available are the 4.5, 10, 16, and 30 MeV per nucleon.

  13. Generation of excited coherent states for a charged particle in a uniform magnetic field

    International Nuclear Information System (INIS)

    We introduce excited coherent states, |β,α;nгЂ‰≔a†n|β,αгЂ‰, where n is an integer and states |β,αгЂ‰ denote the coherent states of a charged particle in a uniform magnetic field. States |β,αгЂ‰ minimize the Schrödinger-Robertson uncertainty relation while having the nonclassical properties. It has been shown that the resolution of identity condition is realized with respect to an appropriate measure on the complex plane. Some of the nonclassical features such as sub-Poissonian statistics and quadrature squeezing of these states are investigated. Our results are compared with similar Agarwal’s type photon added coherent states (PACSs) and it is shown that, while photon-counting statistics of |β,α,nгЂ‰ are the same as PACSs, their squeezing properties are different. It is also shown that for large values of |β|, while they are squeezed, they minimize the uncertainty condition. Additionally, it has been demonstrated that by changing the magnitude of the external magnetic field, Bext, the squeezing effect is transferred from one component to another. Finally, a new scheme is proposed to generate states |β,α;nгЂ‰ in cavities. 

  14. Observation of excited state charge transfer with fs/ps-CARS

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Alex Jason [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4'-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4{prime}-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles.

  15. Observation of excited state charge transfer with fs/ps-CARS

    International Nuclear Information System (INIS)

    Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4(prime)-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4(prime)-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles

  16. Excess-electron and excess-hole states of charged alkali halide clusters

    Science.gov (United States)

    Honea, Eric C.; Homer, Margie L.; Whetten, R. L.

    1990-12-01

    Charged alkali halide clusters from a He-cooled laser vaporization source have been used to investigate two distinct cluster states corresponding to the excess-electron and excess-hole states of the crystal. The production method is UV-laser vaporization of an alkali metal rod into a halogen-containing He flow stream, resulting in variable cluster composition and cooling sufficient to stabilize weakly bound forms. Detection of charged clusters is accomplished without subsequent ionization by pulsed-field time-of-flight mass spectrometry of the skimmed cluster beam. Three types of positively charged sodium fluoride cluster are observed, each corresponding to a distinct physical situation: NanF+n-1 (purely ionic form), Nann+1F+n-1 (excess-electron form), and NanF+n (excess-hole form). The purely ionic clusters exhibit an abundance pattern similar to that observed in sputtering and fragmentation experiments and are explained by the stability of completed cubic microlattice structures. The excess-electron clusters, in contrast, exhibit very strong abundance maxima at n = 13 and 22, corresponding to the all-odd series (2n + 1 = jxkxl;j,k,l odd). Their high relative stability is explained by the ease of Na(0) loss except when the excess electron localizes in a lattice site to complete a cuboid structure. These may correspond to the internal F-center state predicted earlier. A localized electron model incorporating structural simulation results as account for the observed pattern. The excess-hole clusters, which had been proposed as intermediates in the ionization-induced fragmentation of neutral AHCs, exhibit a smaller variation in stability, indicating that the hole might not be well localized.

  17. The Effect of Interfacial Geometry on Charge-Transfer States in the Phthalocyanine/Fullerene Organic Photovoltaic System.

    Science.gov (United States)

    Lee, Myeong H; Geva, Eitan; Dunietz, Barry D

    2016-05-19

    The dependence of charge-transfer states on interfacial geometry at the phthalocyanine/fullerene organic photovoltaic system is investigated. The effect of deviations from the equilibrium geometry of the donor-donor-acceptor trimer on the energies of and electronic coupling between different types of interfacial electronic excited states is calculated from first-principles. Deviations from the equilibrium geometry are found to destabilize the donor-to-donor charge transfer states and to weaken their coupling to the photoexcited donor-localized states, thereby reducing their ability to serve as charge traps. At the same time, we find that the energies of donor-to-acceptor charge transfer states and their coupling to the donor-localized photoexcited states are either less sensitive to the interfacial geometry or become more favorable due to modifications relative to the equilibrium geometry, thereby enhancing their ability to serve as gateway states for charge separation. Through these findings, we eludicate how interfacial geometry modifications can play a key role in achieving charge separation in this widely studied organic photovoltaic system.

  18. The Effect of Interfacial Geometry on Charge-Transfer States in the Phthalocyanine/Fullerene Organic Photovoltaic System.

    Science.gov (United States)

    Lee, Myeong H; Geva, Eitan; Dunietz, Barry D

    2016-05-19

    The dependence of charge-transfer states on interfacial geometry at the phthalocyanine/fullerene organic photovoltaic system is investigated. The effect of deviations from the equilibrium geometry of the donor-donor-acceptor trimer on the energies of and electronic coupling between different types of interfacial electronic excited states is calculated from first-principles. Deviations from the equilibrium geometry are found to destabilize the donor-to-donor charge transfer states and to weaken their coupling to the photoexcited donor-localized states, thereby reducing their ability to serve as charge traps. At the same time, we find that the energies of donor-to-acceptor charge transfer states and their coupling to the donor-localized photoexcited states are either less sensitive to the interfacial geometry or become more favorable due to modifications relative to the equilibrium geometry, thereby enhancing their ability to serve as gateway states for charge separation. Through these findings, we eludicate how interfacial geometry modifications can play a key role in achieving charge separation in this widely studied organic photovoltaic system. PMID:26237431

  19. Vacuum space charge effect in laser-based solid-state photoemission spectroscopy

    OpenAIRE

    Graf, J; Hellmann, S; Jozwiak, C.; Smallwood, C. L.; Hussain, Z.; Kaindl, R. A.; Kipp, L.; Rossnagel, K.; Lanzara, A.

    2010-01-01

    We report a systematic measurement of the space charge effect observed in the few-ps laser pulse regime in laser-based solid-state photoemission spectroscopy experiments. The broadening and the shift of a gold Fermi edge as a function of spot size, laser power, and emission angle are characterized for pulse lengths of 6 ps and 6 eV photon energy. The results are used as a benchmark for an $N$-body numerical simulation and are compared to different regimes used in photoemission spectroscopy. T...

  20. Vacuum space charge effect in laser-based solid-state photoemission spectroscopy

    OpenAIRE

    Graf, Jeff

    2010-01-01

    We report a systematic measurement of the space charge effect observed in the few-ps laser pulse regime in laser-based solid-state photoemission spectroscopy experiments. The broadening and the shift of a gold Fermi edge as a function of spot size, laser power, and emission angle are characterized for pulse lengths of 6 ps and 6 eV photon energy. The results are used as a benchmark for an N-body numerical simulation and are compared to different regimes used in photoemission spectroscopy. The...

  1. Random Hopping Among Localized States and Charge Fluctuation at Disordered Surfaces

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    We show that 1/f noise of charge fluctuation at disordered surfaces follows naturally from random hopping of electrons among localized states.Computer models are proposed with hopping mechanisms simplified.and the occurance of 1/fα power spectrum is robust.The lifetime distribution of electrons is found to be D(τ)=(τ-β and a connection between the lifetime distribution and the power spectrum is derived.It is shown that the 1/f noise comes from random superposition of oscillatory spectra.We also define an generalized random walk model to act as the underlying mechanism of 1/f noise in disordered systems.

  2. State of charge modeling of lithium-ion batteries using dual exponential functions

    Science.gov (United States)

    Kuo, Ting-Jung; Lee, Kung-Yen; Huang, Chien-Kang; Chen, Jau-Horng; Chiu, Wei-Li; Huang, Chih-Fang; Wu, Shuen-De

    2016-05-01

    A mathematical model is developed by fitting the discharging curve of LiFePO4 batteries and used to investigate the relationship between the state of charge and the closed-circuit voltage. The proposed mathematical model consists of dual exponential terms and a constant term which can fit the characteristics of dual equivalent RC circuits closely, representing a LiFePO4 battery. One exponential term presents the stable discharging behavior and the other one presents the unstable discharging behavior and the constant term presents the cut-off voltage.

  3. Study on battery state of charge correct algorithm of electric vehicle

    Institute of Scientific and Technical Information of China (English)

    KAN Ping; QIAN Lijun

    2012-01-01

    State of Charge (SOC) is used to adjust the initialization SOC value so as to make electric vehicle simulation results close to real vehicle performance. This paper firstly analyses the battery SOC correct algorithm, then uses ADVISOR which is a electric vehicle simulation software to simulate a hybrid electric car with three different cases of no SOC correct, linear SOC correct and zero delta SOC correct, as well as makes the compare and analysis for those simulation results. In the end, an overall conclusion to SOC correct algorithm is given.

  4. Temperature and Magnetic Field Effects on the Transport Controlled Charge State of a Single Quantum Dot

    Directory of Open Access Journals (Sweden)

    Moskalenko ES

    2010-01-01

    Full Text Available Abstract Individual InAs/GaAs quantum dots are studied by micro-photoluminescence. By varying the strength of an applied external magnetic field and/or the temperature, it is demonstrated that the charge state of a single quantum dot can be tuned. This tuning effect is shown to be related to the in-plane electron and hole transport, prior to capture into the quantum dot, since the photo-excited carriers are primarily generated in the barrier.

  5. Fe1+ transient charge state in ZnS : 57Co Moessbauer sources

    International Nuclear Information System (INIS)

    ZnS:57Co Moessbauer sources emit below 255 K a line attributed to Fe1+ ions in addition to the main Fe2+ spectrum. Above this temperature the Fe1+ charge state is either no longer generated, or more probably its life time becomes shorter than the nuclear life time of 57Fe (14.4 KeV). Down to 100 K the Fe1+ contribution is present as a single line, and at lower temperatures this line broadens and splits into a doublet with large line widths. (Author)

  6. Quantum entanglement of charges in bound states with finite-size dyons

    International Nuclear Information System (INIS)

    We show that the presence of finite-size monopoles can lead to a number of interesting physical processes involving quantum entanglement of charges. Taking as a model the classical solution of the N=2 SU(2) Yang-Mills theory, we study interaction between dyons and scalar particles in the adjoint and fundamental representation. We find that there are bound states of scalars and dyons, which, remarkably, are always an entangled configuration of the form vertical bar ψ> = vertical bar dyon+> vertical bar scalar-> ± vertical bar dyon-> vertical bar scalar+>. We determine the energy levels and the wave functions and also discuss their stability. (author)

  7. Vibrational autodetachment spectroscopy of Au-6 : Image-charge-bound states of a gold ring

    International Nuclear Information System (INIS)

    Spectral experiments on mass-selected negative cluster ions of gold and silver were performed in the wavelength range near the threshold for one-photon photodetachment of the extra electron. The Au-6 cluster ion displayed a uniquely well resolved spectrum consisting of a progression in a single vibrational mode. Details of this threshold photodetachment spectrum and the associated photoelectron energy distribution suggest an explanation based on autodetachment from totally symmetric vibrational levels of very weakly bound excited electronic state (bound by image charge forces) of the Au-6 cluster in the form of a planar, six-fold symmetric, gold ring

  8. Spin-charge separation of dark-state polaritons in a Rydberg medium

    Science.gov (United States)

    Shi, Xiao-Feng; Svetlichnyy, P.; Kennedy, T. A. B.

    2016-04-01

    The propagation of light fields through a quasi one-dimensional cold atomic gas, exciting atomic Rydberg levels of large principal quantum number under conditions of electromagnetically induced transparency, can lead to a stable two-mode Luttinger liquid system. Atomic van der Waals interactions induce a coupling of bosonic field modes that display both photonic and atomic character, the Rydberg dark-state polaritons (RDPs). It is shown that by tunable control of the van der Waals coupling, the RDP may decouple into independent ‘spin’ and ‘charge’ fields which propagate at different speeds, analogous to spin-charge separation of electrons in a one-dimensional metal.

  9. Excited state intramolecular charge transfer reaction in 4-(1-azetidinyl)benzonitrile: Solvent isotope effects

    Indian Academy of Sciences (India)

    Tuhin Pradhan; Piue Ghoshal; Ranjit Biswas

    2009-01-01

    Excited state intramolecular charge transfer reaction of 4-(1-azetidinyl) benzonitrile (P4C) in deuterated and normal methanol, ethanol and acetonitrile has been studied in order to investigate the solvent isotope effects on reaction rates and yields. These quantities (reaction rates and yields) along with several other properties such as quantum yield and radiative rates have been found to be insensitive to the solvent isotope substitution in all these solvents. The origin of the solvent isotope insensitivity of the reaction is discussed and correlated with the observed slowing down of the solvation dynamics upon isotope substitution.

  10. Measuring neutrino-induced exclusive charge-current final states on hydrogen at T2K

    CERN Document Server

    Coplowe, David; Barr, Giles

    2016-01-01

    By taking advantage of symmetries with respect to the plane containing the directions of the neutrino and outgoing lepton, it is possible to isolate neutrino interactions on hydrogen in composite nuclear targets. This technique enables us to study the `primary' neutrino-nucleon interaction and therefore gain access to fundamental model parameters free from nuclear effects. Using T2K Monte Carlo equivalent to $\\sim7\\times10^{21}$ POT, we present an update on the measurement of the exclusive charged-current $\\mu^-$, p, $\\pi^+$ final state on hydrogen.

  11. ESTIMATION METHOD ON THE BATTERY STATE OF CHARGE FOR HYBRID ELECTRIC VEHICLE

    Institute of Scientific and Technical Information of China (English)

    QIANG Jiaxi; AO Guoqiang; YANG Lin

    2008-01-01

    A combined algorithm for battery state of charge (SOC) estimation is proposed to solve the critical issue of hybrid electric vehicle (HEV). To obtain a more accurate SOC, both coulomb-accumulation and battery resistance-capacitor (RC) model are weighted combined to compensate the deficiencies of individual methods. In order to solve the key issue of coulomb-accumulation, the battery thermal model is used. Based on the principle of energy conservation, the heat generated from battery charge and discharge process is converted into the equivalent electricity to calculate charge and discharge efficiency under variable current. The extended Kalman filter (EKF) as a closed loop algorithm is applied to estimate the parameters of resistance-capacitor model. The input variables do not increase much computing difficulty. The proposed combined algorithm is implemented by adjusting the weighting factor of coulomb- accumulation and resistance-capacitor model. In the end, four different methods including Ah-efficiency, Ah-Equip, RC-SOC and Combined-SOC are compared in federal testing procedure (FTP) drive cycle. The experiment results show that the proposed method has good robustness and high accuracy which is suitable for HEV application.

  12. Heavy Inertial Confinement Energy: Interactions Involoving Low charge State Heavy Ion Injection Beams

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, Robert D

    2006-04-14

    During the contract period, absolute cross sections for projectile ionization, and in some cases for target ionization, were measured for energetic (MeV/u) low-charge-state heavy ions interacting with gases typically found in high and ultra-high vacuum environments. This information is of interest to high-energy-density research projects as inelastic interactions with background gases can lead to serious detrimental effects when intense ion beams are accelerated to high energies, transported and possibly confined in storage rings. Thus this research impacts research and design parameters associated with projects such as the Heavy Ion Fusion Project, the High Current and Integrated Beam Experiments in the USA and the accelerator upgrade at GSI-Darmstadt, Germany. Via collaborative studies performed at GSI-Darmstadt, at the University of East Carolina, and Texas A&M University, absolute cross sections were measured for a series of collision systems using MeV/u heavy ions possessing most, or nearly all, of their bound electrons, e.g., 1.4 MeV/u Ar{sup +}, Xe{sup 3+}, and U{sup 4,6,10+}. Interactions involving such low-charge-state heavy ions at such high energies had never been previously explored. Using these, and data taken from the literature, an empirical model was developed for extrapolation to much higher energies. In order to extend our measurements to much higher energies, the gas target at the Experimental Storage Ring in GSI-Darmstadt was used. Cross sections were measured between 20 and 50 MeV/u for U{sup 28+}- H{sub 2} and - N{sub 2}, the primary components found in high and ultra-high vacuum systems. Storage lifetime measurements, information inversely proportional to the cross section, were performed up to 180 MeV/u. The lifetime and cross section data test various theoretical approaches used to calculate cross sections for many-electron systems. Various high energy density research projects directly benefit by this information. As a result, the general

  13. Charge state modification in Mn site substituted CMR manganites: strong deleterious influence on the ferromagnetic-metallic state

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi, L Seetha [XS and CGS, Materials Science Division, Indira Gandhi Centre For Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Doerr, K [Institute of Metallic Materials, IFW Dresden, Postach 270116, Dresden 01171 (Germany); Nenkov, K [Institute of Metallic Materials, IFW Dresden, Postach 270116, Dresden 01171 (Germany); Sastry, V S [XS and CGS, Materials Science Division, Indira Gandhi Centre For Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Mueller, K-H [Institute of Metallic Materials, IFW Dresden, Postach 270116, Dresden 01171 (Germany)

    2007-06-13

    The effect of charge state modification at the Mn site on the physical properties of CMR manganites is reported. With a view to avoiding additional complexity of local spin coupling effects, Mn site substitution of La{sub 0.67}Ca{sub 0.33}MnO{sub 3} is carried out with appropriate diamagnetic ions-Zn{sup 2+}, Zr{sup 4+}, Ta{sup 5+} and W{sup 6+}-of different valence states. The substitution results in size changes of the unit cell and enhanced local structural distortions, which increase in the order Zn, Zr, Ta and W. The ground state is ferromagnetic-metallic below a certain critical concentration x{sub c} of the substituents, beyond which the magnetic ground state shows a glassy behaviour. The phase transition temperatures (T{sub MI} and T{sub c}) decrease with substitution, but to different extents. The observed suppression rates of the Curie temperature, T{sub c}, of {approx}39 K/at.% and {approx}45 K/at.% respectively for Ta{sup 5+} and W{sup 6+} substituted compounds are the highest reported in the Mn site substituted CMR manganites. Besides the modification of majority carrier concentration due to the increased (decreased) Mn{sup 3+} concentration and enhanced local structural effects, the local electrostatic potential of the substituents seems to contribute to the unusually strong reduction in the itinerant ferromagnetism and the observed glassy states.

  14. VRLA Ultrabattery for high-rate partial-state-of-charge operation

    Science.gov (United States)

    Lam, L. T.; Louey, R.; Haigh, N. P.; Lim, O. V.; Vella, D. G.; Phyland, C. G.; Vu, L. H.; Furukawa, J.; Takada, T.; Monma, D.; Kano, T.

    The objective of this study is to produce and test the hybrid valve-regulated Ultrabattery designed specifically for hybrid-electric vehicle duty, i.e., high-rate partial-state-of-charge operation. The Ultrabattery developed by CSIRO Energy Technology is a hybrid energy-storage device, which combines an asymmetric supercapacitor, and a lead-acid battery in one unit cells, taking the best from both technologies without the need for extra, expensive electronic controls. The capacitor will enhance the power and lifespan of the lead-acid battery as it acts as a buffer during high-rate discharging and charging. Consequently, this hybrid technology is able to provide and absorb charge rapidly during vehicle acceleration and braking. The work programme of this study is divided into two main parts, namely, field trial of prototype Ultrabatteries in a Honda Insight HEV and laboratory tests of prototype batteries. In this paper, the performance of prototype Ultrabatteries under different laboratory tests is reported. The evaluation of Ultrabatteries in terms of initial performance and cycling performance has been conducted at both CSIRO and Furukawa laboratories. The initial performance of prototype Ultrabatteries, such as capacity, power, cold cranking and self-discharge has been evaluated based upon the US FreedomCAR Battery Test Manual (DOE/ID-11069, October 2003). Results show that the Ultrabatteries meet, or exceed, respective targets of power, available energy, cold cranking and self-discharge set for both minimum and maximum power-assist HEVs. The cycling performance of prototype Ultrabatteries has been evaluated using: (i) simplified discharge and charge profile to simulate the driving conditions of micro-HEV; (ii) 42-V profile to simulate the driving conditions of mild-HEV and (iii) EUCAR and RHOLAB profiles to simulate the driving conditions of medium-HEV. For comparison purposes, nickel-metal-hydride (Ni-MH) cells, which are presently used in the Honda Insight HEV

  15. Re-creation of aerosol charge state found near HV power lines using a high voltage corona charger

    Science.gov (United States)

    Matthews, J. C.; Wright, M. D.; Biddiscombe, M. F.; Underwood, R.; Usmani, O. S.; Shallcross, D. E.; Henshaw, D. L.

    2015-10-01

    Corona ionisation from AC HV power lines (HVPL) can release ions into the environment, which have the potential to electrically charge pollutant aerosol in the atmosphere. It has been hypothesised that these charged particles have an enhanced probability of being deposited in human airways upon inhalation due to electrostatic attraction by image charge within the lung, with implications for human health. Carbonaceous aerosol particles from a Technegas generator were artificially charge-enhanced using a corona charger. Once generated, particles were passed through the charger, which was either on or off, and stored in a 15 litre conducting bag for ∼20 minutes to observe size and charge distribution changes over time. Charge states were estimated using two Sequential Mobility Particle Sizers measuring the size and mobility distributions. Charge-neutral particles were measured 7 times and positive particles 9 times, the average charge-neutral value of x was 1.00 (sd = 0.06) while the average positive value was 4.60 (0.72). The system will be used to generate positive or charge neutral particles for delivery to human volunteers in an inhalation study to assess the impact of charge on ultrafine (size < 100 nm) particle deposition.

  16. Fractional charge and inter-Landau-level states at points of singular curvature

    Science.gov (United States)

    Biswas, Rudro R.; Thanh Son, Dam

    2016-08-01

    The quest for universal properties of topological phases is fundamentally important because these signatures are robust to variations in system-specific details. Aspects of the response of quantum Hall states to smooth spatial curvature are well-studied, but challenging to observe experimentally. Here we go beyond this prevailing paradigm and obtain general results for the response of quantum Hall states to points of singular curvature in real space; such points may be readily experimentally actualized. We find, using continuum analytical methods, that the point of curvature binds an excess fractional charge and sequences of quantum states split away, energetically, from the degenerate bulk Landau levels. Importantly, these inter-Landau-level states are bound to the topological singularity and have energies that are universal functions of bulk parameters and the curvature. Our exact diagonalization of lattice tight-binding models on closed manifolds demonstrates that these results continue to hold even when lattice effects are significant. An important technological implication of these results is that these inter-Landau-level states, being both energetically and spatially isolated quantum states, are promising candidates for constructing qubits for quantum computation.

  17. Efficient Consumer Response (ECR: a survey of the Australian grocery industry

    Directory of Open Access Journals (Sweden)

    Paula Swatman

    1998-05-01

    Full Text Available Efficient consumer response (ECR is a U.S. supply chain management strategy which attempts to address the inefficiencies which have led to excessive inventory and unnecessary costs at all levels within the grocery industry supply chain. This paper discusses the traditional grocery store format, the supermarket, and the ways in which inefficient business practices developed in the U.S. grocery supply chain; and discusses the major business activities needed for successful implementation of ECR. The paper then presents a brief summary of the results of a survey of ECR knowledge and usage within the Australian grocery industry, which is the initial phase of a long term research project whose main purpose is to evaluate ECR as it applies to that industry.

  18. Development of superconducting magnets for RAON 28 GHz ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jeongil, E-mail: jiheo@ibs.re.kr; Choi, Sukjin; Kim, Yonghwan; Hong, In-Seok [The Rare Isotope Science Project, Institute for Basic Science, Daejeon 34047 (Korea, Republic of)

    2016-02-15

    RAON, a 28 GHz electron cyclotron resonance ion source (ECR IS), was designed and tested as a Rare Isotope Science Project. It is expected that RAON would provide not only rare-isotope beams but also stable heavy ions ranging from protons to uranium. In order to obtain the steady heavy-ion beam required for ECR IS, we must use a 28 GHz microwave source as well as a high magnetic field. A superconducting magnet using a NbTi wire was designed and manufactured for producing the ECR IS and a test was conducted. In this paper, the design and fabrication of the superconducting magnet for the ECR IS are presented. Experimental results show that the quench current increases whenever quenching occurs, but it has not yet reached the designed current. The experiment is expected to reveal the ideal conditions required to reach the designed current.

  19. Development of superconducting magnets for RAON 28 GHz ECR ion source

    Science.gov (United States)

    Heo, Jeongil; Choi, Sukjin; Kim, Yonghwan; Hong, In-Seok

    2016-02-01

    RAON, a 28 GHz electron cyclotron resonance ion source (ECR IS), was designed and tested as a Rare Isotope Science Project. It is expected that RAON would provide not only rare-isotope beams but also stable heavy ions ranging from protons to uranium. In order to obtain the steady heavy-ion beam required for ECR IS, we must use a 28 GHz microwave source as well as a high magnetic field. A superconducting magnet using a NbTi wire was designed and manufactured for producing the ECR IS and a test was conducted. In this paper, the design and fabrication of the superconducting magnet for the ECR IS are presented. Experimental results show that the quench current increases whenever quenching occurs, but it has not yet reached the designed current. The experiment is expected to reveal the ideal conditions required to reach the designed current.

  20. Automated charge state determination of complex isotope-resolved mass spectra by peak-target Fourier transform.

    Science.gov (United States)

    Chen, Li; Yap, Yee Leng

    2008-01-01

    This study describes a new algorithm for charge state determination of complex isotope-resolved mass spectra. This algorithm is based on peak-target Fourier transform (PTFT) of isotope packets. It is modified from the widely used Fourier transform method because Fourier transform may give ambiguous charge state assignment for low signal-to-noise ratio (S/N) or overlapping isotopic clusters. The PTFT algorithm applies a novel "folding" strategy to enhance peaks that are symmetrically spaced about the targeted peak before applying the FT. The "folding" strategy multiplies each point to the high-m/z side of the targeted peak by its counterpart on the low-m/z side. A Fourier transform of this "folded" spectrum is thus simplified, emphasizing the charge state of the "chosen" ion, whereas ions of other charge states contribute less to the transformed data. An intensity-dependent technique is also proposed for charge state determination from frequency signals. The performance of PTFT is demonstrated using experimental electrospray ionization Fourier transform ion cyclotron resonance mass spectra. The results show that PTFT is robust for charge state determination of low S/N and overlapping isotopic clusters, and also useful for manual verification of potential hidden isotopic clusters that may be missed by the current analysis algorithms, i.e., AID-MS or THRASH.

  1. Projectile- and charge-state-dependent electron yields from ion penetration of solids as a probe of preequilibrium stopping power

    DEFF Research Database (Denmark)

    Rothard, H.; Schou, Jørgen; Groeneveld, K.-O.

    1992-01-01

    Kinetic electron-emission yields gamma from swift ion penetration of solids are proportional to the (electronic) stopping power gamma approximately Beta-S*, if the preequilibrium evolution of the charge and excitation states of the positively charged ions is taken into account. We show...... theory after having presented a summary of recent results on the projectile- and charge-state dependence of forward and backward electron yields gamma(F) and gamma(B) and the Meckbach factor R = gamma(F)/gamma(B). A simple extension of the yield equations is proposed and several assumptions are justified...

  2. Compact permanent magnet H+ ECR ion source with pulse gas valve

    Science.gov (United States)

    Iwashita, Y.; Tongu, H.; Fuwa, Y.; Ichikawa, M.

    2016-02-01

    Compact H+ ECR ion source using permanent magnets is under development. Switching the hydrogen gas flow in pulse operations can reduce the gas loads to vacuum evacuation systems. A specially designed piezo gas valve chops the gas flow quickly. A 6 GHz ECR ion source equipped with the piezo gas valve is tested. The gas flow was measured by a fast ion gauge and a few ms response time is obtained.

  3. Considerações conceituais sobre Efficient Consumer Response (ECR no contexto supermercadista

    Directory of Open Access Journals (Sweden)

    Fabio Beylouni Lavratti

    2002-01-01

    Full Text Available Supermarket chains’ stock management is very defying when searching for cost reduction and increasing the consumer service level at the same time. There are three main ways: to store the materials in the back of the shopping unit, the use of distribution centers and the Efficient Consumer Response (ECR, which are non-exclusive alternatives that show different feasibility results for each particular problem. ECR is a retailer and producer collaborative management strategy used along the supply chain.

  4. Refined Study of ECR Wave Propagation and Absorption in the Weakly Relativistic Plasma

    Institute of Scientific and Technical Information of China (English)

    SHIBingren; LONGYongxin

    2001-01-01

    The ECR wave heating is now a routine method for plasma heating and profile control in fusion devices and also in plasma applications. Theoretical study of ECR wave propagation and absorption began very early in 1950's. Basic theoretical work had accomplished in 1970~1980. For toroidal devices like the tokamak, the fundamental O-mode and X-mode with nearly perpendicular propagation were used very often. For pure O-mode and X-mode with kx=O,

  5. Langmuir-probe data analysis including the complex nature of the ECR plasma

    International Nuclear Information System (INIS)

    Electron Cyclotron Resonance (ECR) plasmas have already been studied in many ways, mainly by x-ray and UV measurements. Langmuir-probes, however, have proven useful for other kind of plasmas, and have rarely been used to explore the ECR plasma. A diagnostics setup has been built at the 14.5 GHz ATOMKI-ECRIS. Results of the cold plasma region measurements are shown. (R.P.)

  6. Charge transfer state in DBP:C70 organic solar cells

    DEFF Research Database (Denmark)

    Sherafatipour, Golenaz; Benduhn, Johannes; Spoltore, Donato;

    Organic solar cells (OSC) are green solar energy technology, which can be fabricated from organic compounds with cheep techniques and on flexible or transparent substrates such as plastic or glass. OSCs are cost efficient, and lightweight devices that can exhibit high power conversion efficiency...... of the CT states from which the maximum open circuit can be calculated and will set the base for modeling and optimizing the stability of the solar cells. 1. Cao, H. et al. Recent progress in degradation and stabilization of organic solar cells. J. Power Sources 264, 168–183 (2014). 2. Tvingstedt, K. et al....... Electroluminescence from charge transfer states in polymer solar cells. J. Am. Chem. Soc. 131, 11819–11824 (2009)....

  7. State-Of-Charge Estimation of Li-Ion Battery Using Extended Kalman Filter

    Directory of Open Access Journals (Sweden)

    Feng Jin

    2013-07-01

    Full Text Available The Li-ion battery is studied base on its equivalent circuit PNGV model. The model parameters are identified by HPPC test. The discrete state space equation is established according to the model. The basic theory of extended Kalman filter algorithm is studied and then the filtering algorithm is set up under the noisy environments. Finally, a kind of electric car is used for testing under the UDDS driving condition. The difference between the simulation value using extended Kalman filter under the noisy environment and the theoretical value is compared. The result indicated that the extended Kalman filter keeps an excellent precision in state of charge estimation of Li-ion battery and performs well when disturbance happens.

  8. Chiral and nonchiral edge states in quantum Hall systems with charge density modulation

    Science.gov (United States)

    Szumniak, Paweł; Klinovaja, Jelena; Loss, Daniel

    2016-06-01

    We consider a system of weakly coupled wires with quantum Hall effect (QHE) and in the presence of a spatially periodic modulation of the chemical potential along the wire, equivalent to a charge density wave (CDW). We investigate the competition between the two effects which both open a gap. We show that by changing the ratio between the amplitudes of the CDW modulation and the tunneling between wires, one can switch between nontopological CDW-dominated phase to topological QHE-dominated phase. Both phases host edge states of chiral and nonchiral nature robust to on-site disorder. However, only in the topological phase, the edge states are immune to disorder in the phase shifts of the CDWs. We provide analytical solutions for filling factor ν =1 and study numerically effects of disorder as well as present numerical results for higher filling factors.

  9. Long-lived charge-separated states in ligand-stabilized silver clusters

    KAUST Repository

    Pelton, Matthew

    2012-07-25

    Recently developed synthesis methods allow for the production of atomically monodisperse clusters of silver atoms stabilized in solution by aromatic thiol ligands, which exhibit intense absorption peaks throughout the visible and near-IR spectral regions. Here we investigated the time-dependent optical properties of these clusters. We observed two kinetic processes following ultrafast laser excitation of any of the absorption peaks: a rapid decay, with a time constant of 1 ps or less, and a slow decay, with a time constant that can be longer than 300 ns. Both time constants decrease as the polarity of the solvent increases, indicating that the two processes correspond to the formation and recombination, respectively, of a charge-separated state. The long lifetime of this state and the broad optical absorption spectrum mean that the ligand-stabilized silver clusters are promising materials for solar energy harvesting. © 2012 American Chemical Society.

  10. Self/anti-self charge conjugate states in the helicity basis

    Energy Technology Data Exchange (ETDEWEB)

    Dvoeglazov, Valeriy V. [UAF, Universidad de Zacatecas (Mexico)

    2013-07-23

    We construct self/anti-self charge conjugate (Majorana-like) states for the (1/2,0)⊕(0,1/2) representation of the Lorentz group, and their analogs for higher spins within the quantum field theory. The problem of the basis rotations and that of the selection of phases in the Dirac-like and Majorana-like field operators are considered. The discrete symmetries properties (P, C, T) are studied. Particular attention has been paid to the question of (anti)commutation of the Charge conjugation operator and the Parity in the helicity basis. Dynamical equations have also been presented. In the (1/2,0)⊕(0,1/2) representation they obey the Dirac-like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The chirality and the helicity (two concepts which are frequently confused in the literature) for Dirac and Majorana states have been discussed.

  11. A Symmetric Organic - Based Nonaqueous Redox Flow Battery and Its State of Charge Diagnostics by FTIR

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Wentao; Vemuri, Venkata Rama Ses; Milshtein, Jarrod D.; Laramie, Sydney; Dmello, Rylan D.; Huang, Jinhua; Zhang, Lu; Hu, Dehong; Vijayakumar, M.; Wang, Wei; Liu, Jun; Darling, Robert E.; Thompson, Levi; Smith, Kyle C.; Moore, Jeffrey S.; Brushett, Fikile; Wei, Xiaoliang

    2016-03-10

    Redox flow batteries have shown outstanding promise for grid-scale energy storage to promote utilization of renewable energy and improve grid stability. Nonaqueous battery systems can potentially achieve high energy density because of their broad voltage window. In this paper, we report a new organic redox-active material for use in a nonaqueous redox flow battery, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) that has high solubility (>2.6 M) in organic solvents. PTIO exhibits electrochemically reversible disproportionation reactions and thus can serve as both anolyte and catholyte redox materials in a symmetric flow cell. The PTIO flow battery has a moderate cell voltage of ~1.7 V and shows good cyclability under both cyclic voltammetry and flow cell conditions. Moreover, we demonstrate that FTIR can offer accurate estimation of the PTIO concentration in electrolytes and determine the state of charge of the PTIO flow cell, which suggests FTIR potentially as a powerful online battery status sensor. This study is expected to inspire more insights in this under-addressed area of state of charge analysis aiming at operational safety and reliability of flow batteries.

  12. Fuzzy modelling for the state-of-charge estimation of lead-acid batteries

    Science.gov (United States)

    Burgos, Claudio; Sáez, Doris; Orchard, Marcos E.; Cárdenas, Roberto

    2015-01-01

    This paper introduces a novel fuzzy model based structure for the characterisation of discharge processes in lead-acid batteries. This structure is based on a fuzzy model that characterises the relationship between the battery open-circuit voltage (Voc), the state of charge (SoC), and the discharge current. The model is identified and validated using experimental data that is obtained from an experimental system designed to test battery banks with several charge/discharge profiles. For model identification purposes, two standard experimental tests are implemented; one of these tests is used to identify the Voc-SoC curve, while the other helps to identify additional parameters of the model. The estimation of SoC is performed using an Extended Kalman Filter (EKF) with a state transition equation that is based on the proposed fuzzy model. Performance of the proposed estimation framework is compared with other parametric approaches that are inspired on electrical equivalents; e.g., Thevenin, Plett, and Copetti.

  13. A new state of charge determination method for battery management system

    Institute of Scientific and Technical Information of China (English)

    ZHU Chun-bo 朱春波; WANG Tie-cheng 王铁成; HURLEY W G

    2004-01-01

    State of Charge (SOC) determination is an increasingly important issue in battery technology. In addition to the immediate display of the remaining battery capacity to the user, precise knowledge of SOC exerts additional control over the charging/discharging process which in turn reduces the risk of over-voltage and gassing, which degrade the chemical composition of the electrolyte and plates. This paper describes a new approach to SOC determination for the lead-acid battery management system by combining Ah-balance with an EMF estimation algorithm, which predicts the battery' s EMF value while it is under load. The EMF estimation algorithm is based on an equivalent-circuit representation of the battery, with the parameters determined from a pulse test performed on the battery and a curve-fitting algorithm by means of least-square regression. The whole battery cycle is classified into seven states where the SOC is estimated with the Ah-balance method and the proposed EMF based algorithm. Laboratory tests and results are described in detail in the paper.

  14. Radiative charge transfer lifetime of the excited state of (NaCa)$^+$

    CERN Document Server

    Makarov, O P; Michels, H J; Smith, W W; Makarov, Oleg P.

    2003-01-01

    New experiments were proposed recently to investigate the regime of cold atomic and molecular ion-atom collision processes in a special hybrid neutral-atom--ion trap under high vacuum conditions. The collisional cooling of laser pre-cooled Ca$^+$ ions by ultracold Na atoms is being studied. Modeling this process requires knowledge of the radiative lifetime of the excited singlet A$^1\\Sigma^+$ state of the (NaCa)$^+$ molecular system. We calculate the rate coefficient for radiative charge transfer using a semiclassical approach. The dipole radial matrix elements between the ground and the excited states, and the potential curves were calculated using Complete Active Space Self-Consistent field and M\\"oller-Plesset second order perturbation theory (CASSCF/MP2) with an extended Gaussian basis, 6-311+G(3df). The semiclassical charge transfer rate coefficient was averaged over a thermal Maxwellian distribution. In addition we also present elastic collision cross sections and the spin-exchange cross section. The ra...

  15. A Lossy Counting-Based State of Charge Estimation Method and Its Application to Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2015-12-01

    Full Text Available Estimating the residual capacity or state-of-charge (SoC of commercial batteries on-line without destroying them or interrupting the power supply, is quite a challenging task for electric vehicle (EV designers. Many Coulomb counting-based methods have been used to calculate the remaining capacity in EV batteries or other portable devices. The main disadvantages of these methods are the cumulative error and the time-varying Coulombic efficiency, which are greatly influenced by the operating state (SoC, temperature and current. To deal with this problem, we propose a lossy counting-based Coulomb counting method for estimating the available capacity or SoC. The initial capacity of the tested battery is obtained from the open circuit voltage (OCV. The charging/discharging efficiencies, used for compensating the Coulombic losses, are calculated by the lossy counting-based method. The measurement drift, resulting from the current sensor, is amended with the distorted Coulombic efficiency matrix. Simulations and experimental results show that the proposed method is both effective and convenient.

  16. Variable Charge State Impurities in Coupled Kinetic Plasma-Kinetic Neutral Transport Simulations

    Science.gov (United States)

    Stotler, D. P.; Hager, R.; Kim, K.; Koskela, T.; Park, G.

    2015-11-01

    A previous version of the XGC0 neoclassical particle transport code with two fully stripped impurity species was used to study kinetic neoclassical transport in the DIII-D H-mode pedestal. To properly simulate impurities in the scrape-off layer and divertor and to account for radiative cooling, however, the impurity charge state distributions must evolve as the particles are transported into regions of different electron temperatures and densities. To do this, the charge state of each particle in XGC0 is included as a parameter in the list that represents the particle's location in phase space. Impurity ionizations and recombinations are handled with a dedicated collision routine. The associated radiative cooling is accumulated during the process and applied to the electron population later in the time step. The density profiles of the neutral impurities are simulated with the DEGAS 2 neutral transport code and then used as a background for electron impact ionization in XGC0 via a test particle Monte Carlo method analogous to that used for deuterium. This work supported by US DOE contracts DE-AC02-09CH11466.

  17. Charge Transfer States in Dilute Donor-Acceptor Blend Organic Heterojunctions.

    Science.gov (United States)

    Liu, Xiao; Ding, Kan; Panda, Anurag; Forrest, Stephen R

    2016-08-23

    We study the charge transfer (CT) states in small-molecule blend heterojunctions comprising the nonpolar donor, tetraphenyldibenzoperiflanthene (DBP), and the acceptor, C70, using electroluminescence and steady-state and time-resolved photoluminescence spectroscopy along with density functional theory calculations. We find that the CT exciton energy blue shifts as the C70 concentration in the blend is either decreased or increased away from 50 vol %. At 20 K, the increase in CT state lifetime is correlated with the increasing diameter of C70 nanocrystallites in the blends. A quantum confinement model is used to quantitatively describe the dependence of both CT energy and lifetime on the C70 or DBP domain size. Two discrete CT emission peaks are observed for blends whose C70 concentration is >65%, at which point C70 nanocrystallites with diameters >4 nm appear in high-resolution transmission electron micrographs. The presence of two CT states is attributed to coexistence of crystalline C70 and amorphous phases in the blends. Furthermore, analysis of CT dissociation efficiency versus photon energy suggests that the >90% dissociation efficiency of delocalized CT2 states from the crystalline phase significantly contributes to surprisingly efficient photogeneration in highly dilute (>80% C70) DBP/C70 heterojunctions. PMID:27487403

  18. Analysis of Total Dose-Induced Dark Current in CMOS Image Sensors From Interface State and Trapped Charge Density Measurements

    International Nuclear Information System (INIS)

    The origin of total ionizing dose induced dark current in CMOS image sensors is investigated by comparing dark current measurements to interface state density and trapped charge density measurements. Two types of photodiode and several thick-oxide-FETs were manufactured using a 0.18-μm CMOS image sensor process and exposed to 10-keV X-ray from 3 krad to 1 Mrad. It is shown that the radiation induced trapped charge extends the space charge region at the oxide interface, leading to an enhancement of interface state SRH generation current. Isochronal annealing tests show that STI interface states anneal out at temperature lower than 100 C whereas about a third of the trapped charge remains after 30 min at 300 C. (authors)

  19. ABS"Luna"ECR(R)设备的最新进展和使用效果%Latest Developments and Results of ABS "Luna" ECR(R) Plant

    Institute of Scientific and Technical Information of China (English)

    F.Alzetta; F.Toschi

    2005-01-01

    达涅利无头连铸连轧(ECR)工艺是小型钢厂生产特殊钢和普通钢种长材产品的一项创新技术.它能够实现从钢水到完整的最终产品的不间断生产,包括在线热处理和质量检查,可显著降低成本.介绍了ABS"Luna"ECR(R)设备取得的最新进展和使用效果.

  20. Metodologia multicritério e ECR: utilização no mercado varejista Multicriteria methodology and ECR: usage in the retail market

    OpenAIRE

    José Fabiano da Serra Costa; Celso Henrique Aragão Brazil; Monica Barboza de Oliveira

    2003-01-01

    Este trabalho pretende apresentar conceitos e aplicações do Gerenciamento por Categorias, como ferramenta fundamental do ECR - Efficient Consumer Response -, além de mostrar que a utilização de uma metodologia multicritério de apoio à decisão, e em particular de técnicas que utilizam matrizes decisórias, podem ser ótimas alternativas no auxílio à tomada de decisão, quando incorporadas ao ECR. Para ilustrar a questão, é desenvolvido um modelo, seguido de um exemplo prático de utilização.This w...

  1. Photo-induced changes in charge-ordered state of Ti{sub 4}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, M [Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501 (Japan); Miyahara, M; Tanaka, K, E-mail: j51061@sakura.kudpc.kyoto-u.ac.j [Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)

    2009-02-01

    We have investigated photo-induced effects on the charge-ordered state of Ti{sub 4}O{sub 7} with pump-probe spectroscopy. Reflectivity of the probe light changes after the pulsed pump excitation, and then recovers. The photo-induced effects are observed only when the pump power exceeds a threshold value, indicative of cooperative nature of the formation process, and the recovery rate shows thermally activated behaviour. We propose that the photo-induced state is a metastable charge localized state where charge disorder is induced by a photon-assisted charge transfer process from Ti{sub 2}{sup 6+} dimers to the neighbouring Ti{sup 4+}ions. Moreover, it is found that subsequent cw laser irradiation converts the photo-induced state into the charge-ordered state. We interpret this result in terms of formation of Ti{sub 2}{sup 6+} dimers via an inverse charge transfer process assisted by the cw optical excitation.

  2. Search for light charged Higgs bosons in hadronic {tau} final states with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Ehrich, Thies

    2010-07-07

    Charged Higgs bosons are predicted in theories with a non-minimal Higgs sector like the Minimal Supersymmetric Extension of the Standard Model (MSSM). At the LHC, light charged Higgs Bosons might be produced in on-shell top quark decays t{yields} H{sup +}b, if m{sub H{sup {+-}}}states to suppress the backgrounds. The subject of this study is the estimation of the sensitivity of the ATLAS detector for charged Higgs boson searches in t anti t events. Leptons from the decay chain of the second top quark allow for efficient triggering. A search strategy is developed and estimates of signal significances and exclusion limits in the MSSM m{sub h}-max scenario are presented based on Monte Carlo simulations. For an integrated luminosity of 10 fb{sup -1}, the discovery of charged Higgs bosons is possible for tan{beta}>32. Exclusion limits are given for values of tan{beta}>17, significantly improving the current best limits from the Tevatron. The most important systematic uncertainties were found to be the errors on the jet energy scale and the missing transverse energy, resulting in a total systematic uncertainty of 40% on the signal. To reduce the systematic uncertainty for the most important Standard Model background, t anti t production, emphasis is put on estimating this background using data instead of Monte Carlo simulations. The t anti t background consists of two contributions, one with a correctly identified {tau}-jet in the final state, which is irreducible, and one where the hadronic {tau} decay is faked by a light parton jet. For each background a method has been developed to estimate its contribution with minimal use of Monte Carlo simulations. In this way, the systematic uncertainty on the background can be significantly reduced. (orig.)

  3. 用于产生放射性离子束ECR离子源%ECR Ion Sources for Radioactive Ion Beam Production

    Institute of Scientific and Technical Information of China (English)

    P.Jardin; F.Lemagnen; R.Leroy; J.Y.Pacquet; M.G.Saint Laurent; A.C.C.Villari; C.Canet; J.C.Cornell; M.Dupuis; C.Eleon; J.L.Flambard; G.Gaubert; N.Lecesne; P.Leherissier

    2007-01-01

    ECRIS's dedicated to radioactive ion production must be as efficient as those used for production of stable elements,but in addition they are subject to more specific constraints such as radiation hardness,short atom-to-ion transformation time,beam purity and low cost.Up to now,different target/ion-source systems(TISSs)have been designed,using singly-charged ECRISs,multi.charged ion sources or an association of singly-to-multi-charged ECRISs.The main goals,constraints and advantages of different existing ECR setups will be compared before a more detailed description is given of the one designed for the SPIRAL Ⅱ project and its future improvements.

  4. State-of-charge estimation in lithium-ion batteries: A particle filter approach

    Science.gov (United States)

    Tulsyan, Aditya; Tsai, Yiting; Gopaluni, R. Bhushan; Braatz, Richard D.

    2016-11-01

    The dynamics of lithium-ion batteries are complex and are often approximated by models consisting of partial differential equations (PDEs) relating the internal ionic concentrations and potentials. The Pseudo two-dimensional model (P2D) is one model that performs sufficiently accurately under various operating conditions and battery chemistries. Despite its widespread use for prediction, this model is too complex for standard estimation and control applications. This article presents an original algorithm for state-of-charge estimation using the P2D model. Partial differential equations are discretized using implicit stable algorithms and reformulated into a nonlinear state-space model. This discrete, high-dimensional model (consisting of tens to hundreds of states) contains implicit, nonlinear algebraic equations. The uncertainty in the model is characterized by additive Gaussian noise. By exploiting the special structure of the pseudo two-dimensional model, a novel particle filter algorithm that sweeps in time and spatial coordinates independently is developed. This algorithm circumvents the degeneracy problems associated with high-dimensional state estimation and avoids the repetitive solution of implicit equations by defining a 'tether' particle. The approach is illustrated through extensive simulations.

  5. Manipulating the charge state and conductance of a single molecule on a semiconductor surface by electrostatic gating

    Science.gov (United States)

    Martinez-Blanco, Jesus; Nacci, Christophe; Erwin, Steven C.; Kanisawa, Kiyoshi; Locane, Elina; Thomas, Mark; von Oppen, Felix; Brouwer, Piet; Foelsch, Stefan

    2015-03-01

    We studied the charge state and tunneling conductance of single phthalocyanine molecules adsorbed on InAs(111)A using scanning tunneling microscopy (STM) at 5 K. On the InAs(111)A surface, native +1 charged indium adatoms can be repositioned by the STM tip using atom manipulation. This allows us to electrostatically gate an individual adsorbed molecule by placing charged adatoms nearby or, alternatively, by repositioning the molecule within the electrostatic potential landscape created by an STM-engineered adatom corral. By stepwise increasing the gating potential, the molecular charge state can be tuned from neutral to -1, as well as to bistable intermediate states. We find that the molecule changes its orientational conformation when the charge state is switched. Scanning tunneling spectroscopy measurements reveal that the conductance gap of the single-molecule tunneling junction can be precisely controlled by the electrostatic gating. We discuss the observed gating-dependent single-molecule tunneling conductance in terms of charge transport through a gated quantum dot. Granted by the German Research Foundation (FO 362/4-1; SFB 658).

  6. Improvement of Optical Reactivity for Nano-TiO2 Film by Nitrogen ECR Plasma

    Institute of Scientific and Technical Information of China (English)

    Yuying XIONG; Tao MA; Linghong KONG; Junfang CHEN; Xianqiu WU; Honghua YU; Zhenxi ZHANG

    2006-01-01

    Nitrogen ion was implanted into the nano-TiO2 film surfaces by electron cyclotron resonance (ECR) plasma modification to improve the optical reactivity in visible-light region for nano-TiO2. Diagnosing the N2 plasma by optical emission spectroscopy (OES) was applied to the process of plasma modification. X-ray photoelectron spectroscopy (XPS) was used for analysis of the binding of element after plasma modification. It is shown that the surface modification was caused by excitated N. The injecting of N2 and N2+ leads to the increase in the dissociative interstitial state N in the films. The doped N makes for TiO2-xNx appearing in the TiO2films. TiO2-xNx forms the impurity energy state in the TiO2 energy band gap and reduces the energy band gap. This is the main reason leading to the red shift of absorption edge.

  7. First Use of High Charge States for Mass Measurements of Short-lived Nuclides in a Penning Trap

    CERN Document Server

    Ettenauer, S; Gallant, A T; Brunner, T; Chowdhury, U; Simon, V V; Brodeur, M; Chaudhuri, A; Mané, E; Andreoiu, C; Audi, G; López-Urrutia, J R Crespo; Delheij, P; Gwinner, G; Lapierre, A; Lunney, D; Pearson, M R; Ringle, R; Ullrich, J; Dilling, J

    2011-01-01

    Penning trap mass measurements of short-lived nuclides have been performed for the first time with highly-charged ions (HCI), using the TITAN facility at TRIUMF. Compared to singly-charged ions, this provides an improvement in experimental precision that scales with the charge state q. Neutron-deficient Rb-isotopes have been charge bred in an electron beam ion trap to q = 8 - 12+ prior to injection into the Penning trap. In combination with the Ramsey excitation scheme, this unique setup creating low energy, highly-charged ions at a radioactive beam facility opens the door to unrivalled precision with gains of 1-2 orders of magnitude. The method is particularly suited for short-lived nuclides such as the superallowed {\\beta} emitter 74Rb (T1/2 = 65 ms). The determination of its atomic mass and an improved QEC-value are presented.

  8. Gap state charge induced spin-dependent negative differential resistance in tunnel junctions

    Science.gov (United States)

    Jiang, Jun; Zhang, X.-G.; Han, X. F.

    2016-04-01

    We propose and demonstrate through first-principles calculation a new spin-dependent negative differential resistance (NDR) mechanism in magnetic tunnel junctions (MTJ) with cubic cation disordered crystals (CCDC) AlO x or Mg1-x Al x O as barrier materials. The CCDC is a class of insulators whose band gap can be changed by cation doping. The gap becomes arched in an ultrathin layer due to the space charge formed from metal-induced gap states. With an appropriate combination of an arched gap and a bias voltage, NDR can be produced in either spin channel. This mechanism is applicable to 2D and 3D ultrathin junctions with a sufficiently small band gap that forms a large space charge. It provides a new way of controlling the spin-dependent transport in spintronic devices by an electric field. A generalized Simmons formula for tunneling current through junction with an arched gap is derived to show the general conditions under which ultrathin junctions may exhibit NDR.

  9. Charge trapping phenomena of tetraethylorthosilicate thin film containing Si nanocrystals synthesized by solid-state reaction.

    Science.gov (United States)

    Lau, H W; Tan, O K; Liu, Y; Trigg, D A; Chen, T P

    2006-08-28

    In this work, we report on the fabrication of tetraethylorthosilicate (TEOS) thin dielectric film containing silicon nanocrystals (Si nc), synthesized by solid-state reaction, in a capacitor structure. A metal-insulator-semi-conductor (MIS) capacitor, with 28 nm thick Si nc in a TEOS thin film, has been fabricated. For this MIS, both electron and hole trapping in the Si nc are possible, depending on the polarity of the bias voltage. A V(FB) shift greater than 1 V can be experienced by a bias voltage of 16 V applied to the metal electrode for 1 s. Though there is no top control oxide, the discharge time for 10% of charges can be up to 4480 s when it is biased at 16 V for 1 s. It is further demonstrated that charging and discharging mechanisms are due to the Si nc rather than the TEOS oxide defects. This form of Si nc in a TEOS thin film capacitor provides the possibility of memory applications at low cost.

  10. State of Charge Estimation Based on Microscopic Driving Parameters for Electric Vehicle's Battery

    Directory of Open Access Journals (Sweden)

    Enjian Yao

    2013-01-01

    Full Text Available Recently, battery-powered electric vehicle (EV has received wide attention due to less pollution during use, low noise, and high energy efficiency and is highly expected to improve urban air quality and then mitigate energy and environmental pressure. However, the widespread use of EV is still hindered by limited battery capacity and relatively short cruising range. This paper aims to propose a state of charge (SOC estimation method for EV’s battery necessary for route planning and dynamic route guidance, which can help EV drivers to search for the optimal energy-efficient routes and to reduce the risk of running out of electricity before arriving at the destination or charging station. Firstly, by analyzing the variation characteristics of power consumption rate with initial SOC and microscopic driving parameters (instantaneous speed and acceleration, a set of energy consumption rate models are established according to different operation modes. Then, the SOC estimation model is proposed based on the presented EV power consumption model. Finally, by comparing the estimated SOC with the measured SOC, the proposed SOC estimation method is proved to be highly accurate and effective, which can be well used in EV route planning and navigation systems.

  11. Surface-State-Dominated Spin-Charge Current Conversion in Topological-Insulator-Ferromagnetic-Insulator Heterostructures

    Science.gov (United States)

    Wang, Hailong; Kally, James; Lee, Joon Sue; Liu, Tao; Chang, Houchen; Hickey, Danielle Reifsnyder; Mkhoyan, K. Andre; Wu, Mingzhong; Richardella, Anthony; Samarth, Nitin

    2016-08-01

    We report the observation of ferromagnetic resonance-driven spin pumping signals at room temperature in three-dimensional topological insulator thin films—Bi2Se3 and (Bi,Sb ) 2Te3 —deposited by molecular beam epitaxy on Y3 Fe5 O12 thin films. By systematically varying the Bi2 Se3 film thickness, we show that the spin-charge conversion efficiency, characterized by the inverse Rashba-Edelstein effect length (λIREE ), increases dramatically as the film thickness is increased from two quintuple layers, saturating above six quintuple layers. This suggests a dominant role of surface states in spin and charge interconversion in topological-insulator-ferromagnet heterostructures. Our conclusion is further corroborated by studying a series of Y3 Fe5 O12 /(Bi,Sb ) 2Te3 heterostructures. Finally, we use the ferromagnetic resonance linewidth broadening and the inverse Rashba-Edelstein signals to determine the effective interfacial spin mixing conductance and λIREE.

  12. Surface-State-Dominated Spin-Charge Current Conversion in Topological-Insulator-Ferromagnetic-Insulator Heterostructures.

    Science.gov (United States)

    Wang, Hailong; Kally, James; Lee, Joon Sue; Liu, Tao; Chang, Houchen; Hickey, Danielle Reifsnyder; Mkhoyan, K Andre; Wu, Mingzhong; Richardella, Anthony; Samarth, Nitin

    2016-08-12

    We report the observation of ferromagnetic resonance-driven spin pumping signals at room temperature in three-dimensional topological insulator thin films-Bi_{2}Se_{3} and (Bi,Sb)_{2}Te_{3}-deposited by molecular beam epitaxy on Y_{3}Fe_{5}O_{12} thin films. By systematically varying the Bi_{2}Se_{3} film thickness, we show that the spin-charge conversion efficiency, characterized by the inverse Rashba-Edelstein effect length (λ_{IREE}), increases dramatically as the film thickness is increased from two quintuple layers, saturating above six quintuple layers. This suggests a dominant role of surface states in spin and charge interconversion in topological-insulator-ferromagnet heterostructures. Our conclusion is further corroborated by studying a series of Y_{3}Fe_{5}O_{12}/(Bi,Sb)_{2}Te_{3} heterostructures. Finally, we use the ferromagnetic resonance linewidth broadening and the inverse Rashba-Edelstein signals to determine the effective interfacial spin mixing conductance and λ_{IREE}. PMID:27563980

  13. State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter

    Directory of Open Access Journals (Sweden)

    Bizhong Xia

    2015-06-01

    Full Text Available Accurate state of charge (SOC estimation is of great significance for a lithium-ion battery to ensure its safe operation and to prevent it from over-charging or over-discharging. However, it is difficult to get an accurate value of SOC since it is an inner sate of a battery cell, which cannot be directly measured. This paper presents an Adaptive Cubature Kalman filter (ACKF-based SOC estimation algorithm for lithium-ion batteries in electric vehicles. Firstly, the lithium-ion battery is modeled using the second-order resistor-capacitor (RC equivalent circuit and parameters of the battery model are determined by the forgetting factor least-squares method. Then, the Adaptive Cubature Kalman filter for battery SOC estimation is introduced and the estimated process is presented. Finally, two typical driving cycles, including the Dynamic Stress Test (DST and New European Driving Cycle (NEDC are applied to evaluate the performance of the proposed method by comparing with the traditional extended Kalman filter (EKF and cubature Kalman filter (CKF algorithms. Experimental results show that the ACKF algorithm has better performance in terms of SOC estimation accuracy, convergence to different initial SOC errors and robustness against voltage measurement noise as compared with the traditional EKF and CKF algorithms.

  14. Gap state charge induced spin-dependent negative differential resistance in tunnel junctions

    Science.gov (United States)

    Jiang, Jun; Zhang, X.-G.; Han, X. F.

    2016-04-01

    We propose and demonstrate through first-principles calculation a new spin-dependent negative differential resistance (NDR) mechanism in magnetic tunnel junctions (MTJ) with cubic cation disordered crystals (CCDC) AlO x or Mg1‑x Al x O as barrier materials. The CCDC is a class of insulators whose band gap can be changed by cation doping. The gap becomes arched in an ultrathin layer due to the space charge formed from metal-induced gap states. With an appropriate combination of an arched gap and a bias voltage, NDR can be produced in either spin channel. This mechanism is applicable to 2D and 3D ultrathin junctions with a sufficiently small band gap that forms a large space charge. It provides a new way of controlling the spin-dependent transport in spintronic devices by an electric field. A generalized Simmons formula for tunneling current through junction with an arched gap is derived to show the general conditions under which ultrathin junctions may exhibit NDR.

  15. New Developments in Charge Transfer Multiplet Calculations: Projection Operations, Mixed-Spin States and pi-Bonding

    Energy Technology Data Exchange (ETDEWEB)

    de Groot, F.M.F.; /Utrecht U.; Hocking, R.K.; /Stanford U., Chem. Dept.; Piamonteze, C.; /LBL, Berkeley; Hedman, B.; Hodgson, K.O.; Solomon, E.I.; /Stanford U., Chem. Dept.

    2007-01-02

    This paper presents a number of new additions to the charge transfer multiplet calculations as used in the calculation of L edge X-ray absorption spectra of 3d and 4d transition metal systems, both oxides and coordination compounds. The focus of the paper is on the consequences of the optimized spectral simulations for the ground state, where we make use of a recently developed projection technique. This method is also used to develop the concept of a mixed-spin ground state, i.e. a state that is a mixture of a high-spin and low-spin state due to spin-orbit coupling combined with strong covalency. The charge transfer mechanism to describe {pi}-bonding uses the mixing of the metal-to-ligand charge transfer (MLCT) channel in addition to the normal CT channel and allows for the accurate simulation of {pi}-bonding systems, for example cyanides.

  16. Observations of energetic oxygen and carbon ions with charge states between 3 and 6 in the magnetosphere

    Science.gov (United States)

    Kremser, G.; Stuedemann, W.; Wilken, B.; Gloeckler, G.; Hamilton, D. C.

    1988-01-01

    Data obtained by the AMPTE/CCE charge-energy-mass spectrometer are used to study the average spatial distributions of oxygen and carbon ions with charge states between 3 and 6. The O(6+) and C(6+) ion fluxes are found to increase with the drift shell parameter L up to a constant level at L of not less than 7. It is suggested that the diurnal variations noted are related to the shape of the L profiles. The results support a model in which the solar wind origin O(6+) and C(6+) ions and the terrestrial origin O(+) and O(2+) ions are transported from the tail towards the earth. Charge exchange processes near the earth produce the oxygen and carbon ions with charge states between 3 and 5.

  17. Prediction Model of Battery State of Charge and Control Parameter Optimization for Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2015-07-01

    Full Text Available This paper presents the construction of a battery state of charge (SOC prediction model and the optimization method of the said model to appropriately control the number of parameters in compliance with the SOC as the battery output objectives. Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences has tested its electric vehicle research prototype on the road, monitoring its voltage, current, temperature, time, vehicle velocity, motor speed, and SOC during the operation. Using this experimental data, the prediction model of battery SOC was built. Stepwise method considering multicollinearity was able to efficiently develops the battery prediction model that describes the multiple control parameters in relation to the characteristic values such as SOC. It was demonstrated that particle swarm optimization (PSO succesfully and efficiently calculated optimal control parameters to optimize evaluation item such as SOC based on the model.

  18. Space Charge Layer Effect in Solid State Ion Conductors and Lithium Batteries: Principle and Perspective.

    Science.gov (United States)

    Chen, Cheng; Guo, Xiangxin

    2016-01-01

    The space charge layer (SCL) effects were initially developed to explain the anomalous conductivity enhancement in composite ionic conductors. They were further extended to qualitatively as well as quantitatively understand the interfacial phenomena in many other ionic-conducting systems. Especially in nanometre-scale systems, the SCL effects could be used to manipulate the conductivity and construct artificial conductors. Recently, existence of such effects either at the electrolyte/cathode interface or at the interfaces inside the composite electrode in all solid state lithium batteries (ASSLB) has attracted attention. Therefore, in this article, the principle of SCL on basis of defect chemistry is first presented. The SCL effects on the carrier transport and storage in typical conducting systems are reviewed. For ASSLB, the relevant effects reported so far are also reviewed. Finally, the perspective of interface engineer related to SCL in ASSLB is addressed.

  19. Single-sheet identification method of heavy charged particles using solid state nuclear track detectors

    Indian Academy of Sciences (India)

    M F Zaki; A Abdel-Naby; A Ahmed Morsy

    2007-08-01

    The theoretical and experimental investigations of the penetration of charged particles in matter played a very important role in the development of modern physics. Solid state nuclear track detectors have become one of the most important tools for many branches of science and technology. An attempt has been made to examine the suitability of the single-sheet particle identification technique in CR-39 and CN-85 polycarbonate by plotting track cone length vs. residual range for different heavy ions in these detectors. So, the maximum etchable ranges of heavy ions such as 93Nb, 86Kr and 4He in CR-39 and 4He and 132Xe in CN-85 polycarbonate have been determined. The ranges of these ions in these detectors have also been computed theoretically using the Henke–Benton program. A reasonably good agreement has been observed between the experimentally and theoretically computed values.

  20. Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions

    International Nuclear Information System (INIS)

    The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)

  1. Confinement physics for thermal, neutral, high-charge-state plasmas in nested-well solenoidal traps.

    Science.gov (United States)

    Dolliver, D D; Ordonez, C A

    1999-06-01

    A theoretical study is presented which indicates that it is possible to confine a neutral plasma using static electric and solenoidal magnetic fields. The plasma consists of equal temperature electrons and highly stripped ions. The solenoidal magnetic field provides radial confinement, while the electric field, which produces an axial nested-well potential profile, provides axial confinement. A self-consistent, multidimensional numerical solution for the electric potential is obtained, and a fully kinetic theoretical treatment on axial transport is used to determine an axial confinement time scale. The effect on confinement of the presence of a radial electric field is explored with the use of ion trajectory calculations. A thermal, neutral, high-charge-state plasma confined in a nested-well trap opens new possibilities for fundamental studies on plasma recombination and cross-field transport processes under highly controlled conditions. PMID:11969700

  2. MOS Capacitance-Voltage Characteristics Ⅲ.Trapping Capacitance from 2-Charge-State Impurities

    Institute of Scientific and Technical Information of China (English)

    Jie Binbin; Sah Chihtang

    2011-01-01

    Low-frequency and high-frequency capacitance-voltage curves of Metal-Oxide-Semiconductor Capacitors are presented to illustrate giant electron and hole trapping capacitances at many simultaneously present two-charge-state and one-trapped-carrier,or one-energy-level impurity species.Models described include a donor electron trap and an acceptor hole trap,both donors,both acceptors,both shallow energy levels,both deep,one shallow and one deep,and the identical donor and acceptor.Device and material parameters are selected to simulate chemically and physically realizable capacitors for fundamental trapping parameter characterizations and for electrical and optical signal processing applications.

  3. Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Hetzheim, Henrik

    2009-01-14

    The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)

  4. An adaptive Kalman filtering based State of Charge combined estimator for electric vehicle battery pack

    International Nuclear Information System (INIS)

    Ah counting is not a satisfactory method for the estimation of the State of Charge (SOC) of a battery, as the initial SOC and coulombic efficiency are difficult to measure. To address this issue, a new SOC estimation method, denoted as 'AEKFAh', is proposed. This method uses the adaptive Kalman filtering method which can avoid filtering divergence resulting from uncertainty to correct for the initial value used in the Ah counting method. A Ni/MH battery test procedure, consisting of 8.08 continuous Federal Urban Driving Schedule (FUDS) cycles, is carried out to verify the method. The SOC estimation error is 2.4% when compared with the real SOC obtained from a discharge test. This compares favorably with an estimation error of 11.4% when using Ah counting.

  5. Electric vehicle state of charge estimation: Nonlinear correlation and fuzzy support vector machine

    Science.gov (United States)

    Sheng, Hanmin; Xiao, Jian

    2015-05-01

    The aim of this study is to estimate the state of charge (SOC) of the lithium iron phosphate (LiFePO4) battery pack by applying machine learning strategy. To reduce the noise sensitive issue of common machine learning strategies, a kind of SOC estimation method based on fuzzy least square support vector machine is proposed. By applying fuzzy inference and nonlinear correlation measurement, the effects of the samples with low confidence can be reduced. Further, a new approach for determining the error interval of regression results is proposed to avoid the control system malfunction. Tests are carried out on modified COMS electric vehicles, with two battery packs each consists of 24 50 Ah LiFePO4 batteries. The effectiveness of the method is proven by the test and the comparison with other popular methods.

  6. Production of highly charged ion beams from electron cyclotron resonance ion sources (invited)

    International Nuclear Information System (INIS)

    Electron cyclotron resonance ion source (ECRIS) development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields, and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECRISs. So far at continuous wave (CW) mode operation, up to 300 eμA of O7+ and 1.15 emA of O6+, more than 100 eμA of intermediate heavy ions for charge states up to Ar13+, Ca13+, Fe13+, Co14+, and Kr18+, and tens of eμA of heavy ions with charge states to Kr26+, Xe28+, Au35+, Bi34+, and U34+ were produced from ECRISs. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe36+, Au46+, Bi47+, and U48+. An order of magnitude enhancement for fully stripped argon ions (I≥60enA) were also achieved. This article will review the ECR ion source progress and discuss key requirement for ECRISs to produce the highly charged ion beams. copyright 1998 American Institute of Physics

  7. Analysis of total dose-induced dark current in CMOS image sensors from interface state and trapped charge density measurements

    OpenAIRE

    Goiffon, Vincent; Virmontois, Cédric; Magnan, Pierre; Girard, Sylvain; Paillet, Philippe

    2010-01-01

    The origin of total ionizing dose induced dark current in CMOS image sensors is investigated by comparing dark current measurements to interface state density and trapped charge density measurements. Two types of photodiode and several thick-oxide-FETs were manufactured using a 0,18 um CMOS image sensor process and exposed to 10 keV X-ray from 3 krad to 1 Mrad. It is shown that the radiation induced trapped charge extends the space charge region at the oxide interface, leading to an enhanceme...

  8. Co-axial ECR plasma system for radioactive ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, M A [INRS-EMT (Universite du Quebec), 1650 boul. Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Marion, F [INRS-EMT (Universite du Quebec), 1650 boul. Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Stansfield, B [INRS-EMT (Universite du Quebec), 1650 boul. Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Paynter, R W [INRS-EMT (Universite du Quebec), 1650 boul. Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Sarkar, D [INRS-EMT (Universite du Quebec), 1650 boul. Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Sarkissian, A [Plasmionique Inc., 1650 boul. Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Terreault, B [INRS-EMT (Universite du Quebec), 1650 boul. Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2005-08-01

    A pulsed, co-axial electron cyclotron resonance (ECR, 2.45 GHz) plasma reactor was designed and tested to demonstrate the feasibility of plasma-based radioactive ion implantation ({sup 32}P radioisotope). The geometry of the reactor was designed to produce an efficient implantation of cylindrical implants. Therefore, the reactor is cylindrical in shape, and is equipped with a cylindrical grid in a co-axial geometry. The plasma is created between the wall and the grid; the plasma surrounds the implant, allowing for a radial implantation. A 1 ms microwave pulse creates a plasma in argon, which sputters material from a radioactive cathode. A fraction of the radioisotopes is then ionized, and the ions are implanted into negatively biased metal samples. The plasma was characterized by means of electrostatic probes, giving spatial evaluations of the electron temperature, plasma potential and electron density. Titanium samples were implanted with {sup 32}P during a study that aimed at optimizing the position of the radioactive sputter cathode in the plasma. From an analysis of the distribution of the radioactive fragments, we deduce that the plasma potential has a marked effect on the ion trajectories. In particular, it provides a more uniform implantation distribution than one would otherwise expect. For plasma densities {approx}8 x 10{sup 10} cm{sup -3}, implantation efficiencies as high as 1% are measured; this is about 100 times higher than conventional beam-line ion implantation.

  9. Studies of the ECR plasma in the visible light range

    International Nuclear Information System (INIS)

    High resolution visible light (VL) plasma photographs were taken at the ATOMKI-ECRIS by an 8 mega-pixel digital camera. Plasmas were generated from gases of He, methane, N, O, Ne, Ar, Kr, Xe and from their mixtures. The analysis of the photo series gave many qualitative and numerous valuable physical information on the nature of ECR plasmas. VL photos convey information mainly on the cold electron component of the plasma. Cold electrons are confined in the central part of the plasma. It is a further challenging task to understand the colors of this special type of plasmas. The colors can be determined by the VL electron transitions of the plasma atoms and ions combined with the human eye sensitivity. There is a good visual agreement between the calculated normalized color and the real color of the plasmas. Through the examples of He and Xe we analyze the physical processes which affect the characteristic colors of these plasmas. The paper is followed by the slides of the presentation. (authors)

  10. Development work with the JYFL ECR ion sources

    Science.gov (United States)

    Koivisto, H.; Heikkinen, P.; Ranttila, K.; ńrje, J.; Liukkonen, E.

    2001-12-01

    Two ECR ion sources are presently operational at the Accelerator Laboratory of the Department of Physics, University of Jyväskylä. The former JYFL 6.4 GHz ECRIS has worked reliably since its construction in 1989-90. It has been used approximately 4500 h/year for the production of heavy ion beams and more than 46 000 plasma-on hours have been achieved. Presently this source is also used for the experiments of material physics and it will be upgraded to better meet the ion beam requirements set by the new programs. The magnetic field calculations have shown that the known rules for the magnetic field configuration can be fulfilled by better iron and coil configuration. New power supplies for the coils are not needed. The new JYFL 14 GHz ECRIS was completed in spring 2000. Since that, several ion beams have been developed-for example 45 μA of Ti11+ ion beam using the MIVOC method. The internal oven for the production of calcium ion beams has been developed. In the first test, 75 μA of Ca11+ ion beam was obtained with a microwave power of 500 W.

  11. Metodologia multicritério e ECR: utilização no mercado varejista Multicriteria methodology and ECR: usage in the retail market

    Directory of Open Access Journals (Sweden)

    José Fabiano da Serra Costa

    2003-01-01

    Full Text Available Este trabalho pretende apresentar conceitos e aplicações do Gerenciamento por Categorias, como ferramenta fundamental do ECR - Efficient Consumer Response -, além de mostrar que a utilização de uma metodologia multicritério de apoio à decisão, e em particular de técnicas que utilizam matrizes decisórias, podem ser ótimas alternativas no auxílio à tomada de decisão, quando incorporadas ao ECR. Para ilustrar a questão, é desenvolvido um modelo, seguido de um exemplo prático de utilização.This work intends to present concepts and applications of Category Management, as an ECR (Efficient Consumer Response fundamental tool. It also intends to show that the use of a multicriteria decision methodology, particularly the techniques that use decision matrices, can be excellent alternatives in decision making support, if incorporated to ECR. In order to illustrate the issue, a model has been developed, followed by a practical example of usage.

  12. Equilibrium charge state distributions of Ni, Co, and Cu beams in molybdenum foil at 2 MeV/u

    Science.gov (United States)

    Gastis, Panagiotis; Perdikakis, George; Robertson, Daniel; Bauder, Will; Skulski, Michael; Collon, Phillipe; Anderson, Tyler; Ostdiek, Karen; Aprahamian, Ani; Lu, Wenting; Almus, Robert

    2015-10-01

    The charge states of heavy-ions are important for the study of nuclear reactions in inverse kinematics when electromagnetic recoil mass spectrometers are used. The passage of recoil products through a material, like the windows of gas cells or charge state boosters, results a charge state distribution (CSD) in the exit. This distribution must be known for the extraction of any cross section since only few charge-state can be transmitted through a magnetic separator separator for a given setting. The calculation of CSDs for heavy ions is challenging. Currently we rely on semi-empirical models with unknown accuracy for ion/target combinations in the Z > 20 region. In the present study were measured the CSDs of the stable 60Ni, 59Co, and 63Cu beams while passing through a 1 μm molybdenum foil. The beam energies were 1.84 MeV/u, 2.09 MeV/u, and 2.11 MeV/u for the 60Ni, 59Co, and 63Cu respectively. The results of this study mainly check the accuracy of the semi-empirical models used by the program LISE++, on calculating CSDs for ion/target combinations of Z > 20. In addition, other empirical models on calculating mean charge states were compared and checked.

  13. Valence states and possible charge ordering in LaCo(1-x)Rh(x)O₃.

    Science.gov (United States)

    Streltsov, Sergey V; Gapontsev, Vladimir V; Khomskii, Daniel I

    2016-03-01

    An unusual effect was discovered in Li et al (2010 J. Solid State Chem. 183 1388): the substitution of nonmagnetic low-spin Co(3+) in LaCoO3 by the formally isoelectronic and also nonmagnetic Rh(3+) led, surprisingly, to a rapid appearance of magnetism in LaCo(1-x)Rh(x)O3, even for small amounts of doping. Different explanations for this effect were proposed in the literature. To clarify the situation we carried out unbiased ab initio calculations of this system. We concluded that, in agreement with the original assumption of Li et al, but in contrast with later statements (Knizek et al 2012 Phys. Rev. B 85 134401), this effect is caused by the valence change ('redox reaction') Co(3+) +  Rh(3+) → Co(2+) +  Rh(4+), which creates magnetic Co(2+) and Rh(4+) ions. For the half-filled case LaCo1/2Rh1/2O3 we obtained the state with charge ordering of Co(2+) and Rh(4+) ions, which according to our calculations are antiferromagnetically coupled. The obtained results reasonably explain the observed behavior of the magnetic susceptibility of LaCo(1-x)Rh(x)O3, and the novel state predicted at half-doping could be verified experimentally by detailed structural and magnetic studies and by x-ray absorption spectroscopy.

  14. Valence states and possible charge ordering in LaCo1-x Rh x O3

    Science.gov (United States)

    Streltsov, Sergey V.; Gapontsev, Vladimir V.; Khomskii, Daniel I.

    2016-03-01

    An unusual effect was discovered in Li et al (2010 J. Solid State Chem. 183 1388): the substitution of nonmagnetic low-spin Co3+ in LaCoO3 by the formally isoelectronic and also nonmagnetic Rh3+ led, surprisingly, to a rapid appearance of magnetism in LaCo1-x Rh x O3, even for small amounts of doping. Different explanations for this effect were proposed in the literature. To clarify the situation we carried out unbiased ab initio calculations of this system. We concluded that, in agreement with the original assumption of Li et al, but in contrast with later statements (Knizek et al 2012 Phys. Rev. B 85 134401), this effect is caused by the valence change (’redox reaction’) Co3+   +  Rh3+ \\to Co2+   +  Rh4+ , which creates magnetic Co2+ and Rh4+ ions. For the half-filled case LaCo1/2Rh1/2O3 we obtained the state with charge ordering of Co2+ and Rh4+ ions, which according to our calculations are antiferromagnetically coupled. The obtained results reasonably explain the observed behavior of the magnetic susceptibility of LaCo1-x Rh x O3, and the novel state predicted at half-doping could be verified experimentally by detailed structural and magnetic studies and by x-ray absorption spectroscopy.

  15. On the nature of the low temperature insulating state of ferromagnetic and charge ordered manganites

    International Nuclear Information System (INIS)

    Based on electroresistance (ER) measurements founded on a current induced resistivity switching (CIRS) phenomena, we establish the presence of a 'colossal' ER in the low temperature ferromagnetic insulating (FMI) phase exhibited by certain hole doped manganites. Notably, concomitant with the build-up of ER, is a sharp drop in the magnetoresistance (MR). This intelligibly demonstrates an effective decoupling of the mechanisms underlying ER and MR in the FMI phase. ER (CIRS) and MR were measured on single crystals of two widely different FMI manganites: La0.82Ca0.18MnO3 and Nd0.7Pb0.3MnO3. The samples have Curie temperatures, TC∼165 and 150 K, and the FMI state is realized for temperatures, T≤100 and 130 K, respectively. The ER, arising from a strong nonlinear dependence of resistivity (ρ) on current density (j), attains a value ≅100% in the FMI state. The severity of the nonlinear behavior of resistivity at high current densities is progressively enhanced with decreasing temperature. The MR, however, collapses (<20%) even in magnetic field, H=14 T. Comparison with magnetotransport data on charge ordered insulating (COI) manganites reveal discernible differences in response to applied current and magnetic field. This is credible proof that the nature of the insulating state, in the FMI and COI phases, is different

  16. A new method of modeling and state of charge estimation of the battery

    Science.gov (United States)

    Liu, Congzhi; Liu, Weiqun; Wang, Lingyan; Hu, Guangdi; Ma, Luping; Ren, Bingyu

    2016-07-01

    Accurately estimating the State of Charge (SOC) of the battery is the basis of Battery Management System (BMS). This paper has introduced a new modeling and state estimation method for the lithium battery system, which utilizes the fractional order theories. Firstly, a fractional order model based on the PNGV (Partnership for a New Generation of Vehicle) model is proposed after analyzing the impedance characteristics of the lithium battery and compared with the integer order model. With the observability of the discrete non-linear model of the battery confirmed, the method of the state observer based on the extended fractional Kalman filter (EFKF) and the least square identification method of battery parameters are studied. Then, it has been applied successfully to estimate the battery SOC using the measured battery current and voltage. Finally, a standard HPPC (Hybrid Pulse Power Characteristic) test is used for parameter identification and several experimental validations are investigated on a ternary manganese-nickel-cobalt lithium battery pack with a nominal capacity of 24 Ah which consists of ten Sony commercial cells (US18650GR G7) in parallels. The results demonstrate the effectiveness of the fractional order model and the estimation method.

  17. Adding high time resolution to charge-state-specific ion energy measurements for pulsed copper vacuum arc plasmas

    CERN Document Server

    Tanaka, Koichi; Zhou, Xue; Anders, André

    2015-01-01

    Charge-state-resolved ion energy-time-distributions of pulsed Cu arc plasma were obtained by using direct (time dependent) acquisition of the ion detection signal from a commercial ion mass-per-charge and energy-per-charge analyzer. We find a shift of energies of Cu2+, Cu3+ and Cu4+ ions to lower values during the first few hundred microseconds after arc ignition, which is evidence for particle collisions in the plasma. The generation of Cu1+ ions in the later part of the pulse, measured by the increase of Cu1+ signal intensity and an associated slight reduction of the mean charge state point to charge exchange reactions between ions and neutrals. At the very beginning of the pulse, when the plasma expands into vacuum and the plasma potential strongly fluctuates, ions with much higher energy (over 200 eV) were observed. Early in the pulse, the ion energies observed are approximately proportional to the ion charge state, and we conclude that the acceleration mechanism is primarily based on acceleration in an e...

  18. The charge percolation mechanism and simulation of Ziegler–Natta polymerizations Part III. Oxidation states of transition metals

    Directory of Open Access Journals (Sweden)

    BRANKA PILIC

    2006-04-01

    Full Text Available The oxidation state of the transition metal (Mt active centre is the most disputable question in the polymerization of olefins by Ziegler–Natta (ZN and metallocene complexes. In this paper the importance and the changes of the Mt active centres are presented and discussed on the basis of a charge percolation mechanism (CPM of olefin polymerization. Mt atoms can exist in different oxidation states and can be easily transformed from one to another state during activation. In all cases, the Mt atoms are present in several oxidation states, i.e., Mt+(n-1, Mt+(n to Mt+(n+1, producing an irregular charge distribution over the support surface. There is a tendency to equalize the oxidation states by a charge transfer from Mt+(n–1 (donor toMt+(n+1 (acceptor. This cannot occur since the different oxidation states are highly separated on the support. However, monomer molecules are adsorbed on the support producing clusters with stacked p-bonds, making a p-bond bridge between a donor and an acceptor. Once a bridge is formed (percolation moment, charge transfer occurs. The donor and acceptor equalize their oxidation states simultaneously with the polymerization of the monomer. The polymer chain is desorbed from the support, freeing the surface for subsequent monomer adsorption. The whole process is repeated with the oxidation-reduction of other donor-acceptor ensembles.

  19. Valence state parameters of all transition metal atoms in metalloproteins--development of ABEEMσπ fluctuating charge force field.

    Science.gov (United States)

    Yang, Zhong-Zhi; Wang, Jian-Jiang; Zhao, Dong-Xia

    2014-09-01

    To promote accuracy of the atom-bond electronegativity equalization method (ABEEMσπ) fluctuating charge polarizable force fields, and extend it to include all transition metal atoms, a new parameter, the reference charge is set up in the expression of the total energy potential function. We select over 700 model molecules most of which model metalloprotein molecules that come from Protein Data Bank. We set reference charges for different apparent valence states of transition metals and calibrate the parameters of reference charges, valence state electronegativities, and valence state hardnesses for ABEEMσπ through linear regression and least square method. These parameters can be used to calculate charge distributions of metalloproteins containing transition metal atoms (Sc-Zn, Y-Cd, and Lu-Hg). Compared the results of ABEEMσπ charge distributions with those obtained by ab initio method, the quite good linear correlations of the two kinds of charge distributions are shown. The reason why the STO-3G basis set in Mulliken population analysis for the parameter calibration is specially explained in detail. Furthermore, ABEEMσπ method can also quickly and quite accurately calculate dipole moments of molecules. Molecular dynamics optimizations of five metalloproteins as the examples show that their structures obtained by ABEEMσπ fluctuating charge polarizable force field are very close to the structures optimized by the ab initio MP2/6–311G method. This means that the ABEEMσπ/MM can now be applied to molecular dynamics simulations of systems that contain metalloproteins with good accuracy.

  20. Valence state parameters of all transition metal atoms in metalloproteins--development of ABEEMσπ fluctuating charge force field.

    Science.gov (United States)

    Yang, Zhong-Zhi; Wang, Jian-Jiang; Zhao, Dong-Xia

    2014-09-01

    To promote accuracy of the atom-bond electronegativity equalization method (ABEEMσπ) fluctuating charge polarizable force fields, and extend it to include all transition metal atoms, a new parameter, the reference charge is set up in the expression of the total energy potential function. We select over 700 model molecules most of which model metalloprotein molecules that come from Protein Data Bank. We set reference charges for different apparent valence states of transition metals and calibrate the parameters of reference charges, valence state electronegativities, and valence state hardnesses for ABEEMσπ through linear regression and least square method. These parameters can be used to calculate charge distributions of metalloproteins containing transition metal atoms (Sc-Zn, Y-Cd, and Lu-Hg). Compared the results of ABEEMσπ charge distributions with those obtained by ab initio method, the quite good linear correlations of the two kinds of charge distributions are shown. The reason why the STO-3G basis set in Mulliken population analysis for the parameter calibration is specially explained in detail. Furthermore, ABEEMσπ method can also quickly and quite accurately calculate dipole moments of molecules. Molecular dynamics optimizations of five metalloproteins as the examples show that their structures obtained by ABEEMσπ fluctuating charge polarizable force field are very close to the structures optimized by the ab initio MP2/6–311G method. This means that the ABEEMσπ/MM can now be applied to molecular dynamics simulations of systems that contain metalloproteins with good accuracy. PMID:25042901

  1. The two photon decay of a bound state of exotic colored scalars charged under an additional unbroken gauge interaction

    CERN Document Server

    Foot, Robert

    2016-01-01

    We argue that a charged scalar particle $\\chi$ of mass around 375 GeV charged under both $\\mathrm{SU}(3)_{c}$ and a new confining non-abelian gauge interaction can explain the 750 GeV diphoton excess. After pair production, these interactions confine the exotic scalar into non-relativistic bound states whose decays into photons can explain the discrepancy. Taking the new confining group to be $\\mathrm{SU}(2)$, we find $\\chi$ must carry an electric charge of $Q \\approx 1/2$ to fit the data. Interestingly, we find that pair production of the scalars and the subsequent formation of the bound state dominates over direct bound state resonance production. This explanation is quite weakly constrained by current experimental bounds, and we expect future constraints to come from dijet, mono-jet and possibly dilepton searches.

  2. Highly charged ions trapping for lifetime measurements; Piegeage d'ions tres charges pour la mesure de duree de vie d'etats metastables

    Energy Technology Data Exchange (ETDEWEB)

    Attia, D

    2007-10-15

    A new experimental setup dedicated to highly charged ion trapping is presented in this work. The final goal is to perform lifetime measurement of metastable states produced by our ECR (Electron Cyclotron Resonance) ion source. Lifetimes to be measured are in the range of a few ms and more. We have measured the lifetimes of the M1 transitions of the metastable states of Ar{sup 9+}, Ar{sup 13+} and Ar{sup 14+}. These measurements are useful to test the N-body problem in the relativistic range. The trap we have built, was designed a few years ago at the Weizman Institute in Israel, it allows ions with an energy of several keV to be trapped for lifetimes of about 1 second. This trap was originally designed to study the dynamics of excited molecules. We have shown for the first time how the trap operates and that it can operate with highly charged ions. We have studied the beam dynamics of highly charged ions and the trap has been tested with various species of ions and different charge states: from O{sup +} to O{sup 6+}, from Ar{sup 8+} to Ar{sup 13+}, and from Kr{sup 13+} to Kr{sup 20+}.

  3. Evaluation of Model Based State of Charge Estimation Methods for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Zhongyue Zou

    2014-08-01

    Full Text Available Four model-based State of Charge (SOC estimation methods for lithium-ion (Li-ion batteries are studied and evaluated in this paper. Different from existing literatures, this work evaluates different aspects of the SOC estimation, such as the estimation error distribution, the estimation rise time, the estimation time consumption, etc. The equivalent model of the battery is introduced and the state function of the model is deduced. The four model-based SOC estimation methods are analyzed first. Simulations and experiments are then established to evaluate the four methods. The urban dynamometer driving schedule (UDDS current profiles are applied to simulate the drive situations of an electrified vehicle, and a genetic algorithm is utilized to identify the model parameters to find the optimal parameters of the model of the Li-ion battery. The simulations with and without disturbance are carried out and the results are analyzed. A battery test workbench is established and a Li-ion battery is applied to test the hardware in a loop experiment. Experimental results are plotted and analyzed according to the four aspects to evaluate the four model-based SOC estimation methods.

  4. Fractional-order modeling and State-of-Charge estimation for ultracapacitors

    Science.gov (United States)

    Zhang, Lei; Hu, Xiaosong; Wang, Zhenpo; Sun, Fengchun; Dorrell, David G.

    2016-05-01

    Ultracapacitors (UCs) have been widely recognized as an enabling energy storage technology in various industrial applications. They hold several advantages including high power density and exceptionally long lifespan over the well-adopted battery technology. Accurate modeling and State-of-Charge (SOC) estimation of UCs are essential for reliability, resilience, and safety in UC-powered system operations. In this paper, a novel fractional-order model composed of a series resistor, a constant-phase-element (CPE), and a Walburg-like element, is proposed to emulate the UC dynamics. The Grünald-Letnikov derivative (GLD) is then employed to discretize the continuous-time fractional-order model. The model parameters are optimally extracted using genetic algorithm (GA), based on the time-domain data acquired through the Federal Urban Driving Schedule (FUDS) test. By means of this fractional-order model, a fractional Kalman filter is synthesized to recursively estimate the UC SOC. Validation results prove that the proposed fractional-order modeling and state estimation scheme is accurate and outperforms current practice based on integer-order techniques.

  5. How to construct self/anti-self charge conjugate states for higher spins?

    CERN Document Server

    Dvoeglazov, Valeriy V

    2012-01-01

    We construct self/anti-self charge conjugate (Majorana-like) states for the (1/2, 0)+(0, 1/2) representation of the Lorentz group, and their analogs for higher spins within the quantum field theory. The problem of the basis rotations and that of the selection of phases in the Dirac-like and Majorana-like field operators are considered. The discrete symmetries properties (P, C, T) are studied. The corresponding dynamical equations are presented. In the (1/2, 0)+(0, 1/2) representation they obey the Dirac-like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The particular attention has been paid to the questions of chirality and helicity (two concepts which are frequently confused in the literature) for Dirac and Majorana states. We further review several experimental consequences which follow from the previous works of M.Kirchbach et al. on neutrinoless double beta decay, and G.J.Ni et al. on meson ...

  6. Correlation between ionic charge and ground-state properties in rocksalt and zinc blende structured solids

    International Nuclear Information System (INIS)

    In this paper we have evaluated the ground-state properties (i.e., bulk modulus and cohesive energy) of rocksalt and zinc blende structured solids. We have presented two expressions relating the bulk modulus B (GPa) for the alkali halides, alkaline-earth chalcogenides, transition metal nitrides, rare-earth {divalent (R2+X) and trivalent (R3+X) } monochalcogenides, group IV, III-V and II-VI semiconductors and the cohesive energy Ecoh (kcal mol-1) for the alkali halides and alkaline-earth chalcogenides with the product of ionic charges (Z1Z2) and nearest-neighbour distance d (A). The bulk moduli and cohesive energy of rocksalt and zinc blende type structure compounds exhibit a linear relationship when plotted on a log-log scale against the nearest-neighbour distance d (A), but fall on different straight lines according to the ionic charge product of the compounds. We have applied the modified relation on rocksalt and zinc blende structured solids and found a better agreement with experimental data as compared to the values evaluated by earlier researchers. The results for bulk modulus differ from experimental values by the following amounts: BaO-0%, LiCl-0%, LaS-0%, SmSe-0%, ZnS-0%, CdS-0%, GaP-0%, InP-0%, MgO-0.61%, CaO-0.89%, SmS-1.7%, YbSe-1.6%, UP-1.9%, EuSe-1.9%; and the results for cohesive energy differ from experimental values by the following amounts: LiCl-0.49%, KF-0.51%, RbF-0.54%, SrO-1.2%, NaCl-1.6%, NaF-1.8%, MgSe-1.9%

  7. The use of iron charge state changes as a tracer for solar wind entry and energization within the magnetosphere

    OpenAIRE

    T. A. Fritz; Zurbuchen, T. H.; Gloeckler, G.; Hefti, S.; Chen, J.

    2003-01-01

    The variation of the charge state of iron [Fe] ions is used to trace volume elements of plasma in the solar wind into the magnetosphere and to determine the time scales associated with the entry into and the action of the magnetospheric energization process working on these plasmas. On 2–3 May 1998 the Advanced Composition Explorer (ACE) spacecraft located at the L1 libration point observed a series of changes to the average charge state of the element Fe in the solar wind plasma refle...

  8. Analysis of Charge State Distribution by Non-Local Thermodynamic-Equilibrium Spin-Orbit-Split-Array Collisional Radiative Model

    Institute of Scientific and Technical Information of China (English)

    张红; 张继彦; 杨向东; 杨国洪; 郑志坚

    2003-01-01

    A collisional radiative model based on the spin-orbit-split-arrays is used to determine the charge state distribution of gold plasmas. The ab initio atomic structure code of Cowan and the spin-orbit-split-array model were used to calculate all the emission spectra of the different gold species, and a non-local thermodynamic-equilibrium model was coupled to calculate the ion populations at a given plasma density and electron temperature. The charge state distribution and other plasma parameters were determined by comparing the experimental spectra with the theoretical simulated spectra of gold plasmas.

  9. Voltage Scheduling Droop Control for State-of-Charge Balance of Distributed Energy Storage in DC Microgrids

    DEFF Research Database (Denmark)

    Li, Chendan; Dragicevic, Tomislav; Aldana, Nelson Leonardo Diaz;

    2014-01-01

    the State-of-Charge balance. In this paper, a new droop method based on voltage scheduling for State-of-Charge balance is proposed to keep the SoC balance for the energy storage units. The proposed method has the advantage of avoiding the stability problem existed in traditional methods based on droop gain...... scheduling. Simulation experiment is taken in Matlab on a DC microgrid with two distributed energy storage units. The simulation results show that the proposed method has successfully achieved SoC balance during the load changes while maintaining the DC bus voltage within the allowable range....

  10. Adiabatic mechanism of the multiply charged ion production by a laser field through ATI states of an atom

    CERN Document Server

    Kuchiev, M Yu

    1996-01-01

    ATI can be followed by an inelastic collision of the ionized electron with the parent atomic particle resulting in an excitation of the ion. It may be a continuum state excitation producing the doubly charged ion or a discrete state which also enhances the doubly charged ion production. Absorption of a few quanta above the atomic threshold is sufficient to make this mechanism work. As a result the two-electron processes can take place even in moderate fields. The example of two-electron excitations of He atoms in a 780 nm laser field with intensity above 10^{14}W/cm^2 is discussed

  11. Voltage Scheduling Droop Control for State-of-Charge Balance of Distributed Energy Storage in DC Microgrids

    OpenAIRE

    Li, Chendan; Dragicevic, Tomislav; Aldana, Nelson Leonardo Diaz; Vasquez, Juan Carlos; Guerrero, Josep M.

    2014-01-01

    Due to higher power quality, lower conversion loss, and more DC loads, there has been an increasing awareness on DC microgrid. Previous emphasis has been on equal power sharing among different units in the DC microgrid, whileoverlooking the coordination of the energy storage units to maintain the State-of-Charge balance. In this paper, a new droop method based on voltage scheduling for State-of-Charge balance is proposed to keep the SoC balance for the energy storage units. The proposed metho...

  12. Magnetism tuned by the charge states of defects in bulk C-doped SnO2 materials.

    Science.gov (United States)

    Lu, Ying-Bo; Ling, Z C; Cong, Wei-Yan; Zhang, Peng

    2015-10-21

    To analyze the controversial conclusions on the magnetism of C-doped SnO2 (SnO2:C) bulk materials between theoretical calculations and experimental observations, we propose the critical role of the charge states of defects in the geometric structures and magnetism, and carry out a series of first principle calculations. By changing the charge states, we can influence Bader charge distributions and atomic orbital occupancies in bulk SnO2:C systems, which consequently conduct magnetism. In all charged SnO2:C supercells, C-2px/py/pz electron occupancies are significantly changed by the charge self-regulation, and thus they make the C-2p orbitals spin polarized, which contribute to the dominant magnetic moment of the system. When the concentration of C dopant in the SnO2 supercell increases, the charge redistribution assigns extra electrons averagely to each dopant, and thus effectively modulates the magnetism. These findings provide an experimentally viable way for controlling the magnetism in these systems. PMID:26387478

  13. Magnetism tuned by the charge states of defects in bulk C-doped SnO2 materials.

    Science.gov (United States)

    Lu, Ying-Bo; Ling, Z C; Cong, Wei-Yan; Zhang, Peng

    2015-10-21

    To analyze the controversial conclusions on the magnetism of C-doped SnO2 (SnO2:C) bulk materials between theoretical calculations and experimental observations, we propose the critical role of the charge states of defects in the geometric structures and magnetism, and carry out a series of first principle calculations. By changing the charge states, we can influence Bader charge distributions and atomic orbital occupancies in bulk SnO2:C systems, which consequently conduct magnetism. In all charged SnO2:C supercells, C-2px/py/pz electron occupancies are significantly changed by the charge self-regulation, and thus they make the C-2p orbitals spin polarized, which contribute to the dominant magnetic moment of the system. When the concentration of C dopant in the SnO2 supercell increases, the charge redistribution assigns extra electrons averagely to each dopant, and thus effectively modulates the magnetism. These findings provide an experimentally viable way for controlling the magnetism in these systems.

  14. Electric-field breakdown of the insulating charge-ordered state in LuFe2O4 thin films

    International Nuclear Information System (INIS)

    We have studied the dielectric breakdown of the insulating charge-ordered state and the associated current switching phenomenon in layered ferrite LuFe2O4. To elucidate the correlation between the ordering pattern and current switching behaviour, we synthesized highly c-axis oriented thin films by pulsed-laser deposition. An enhanced switching effect was achieved in the three-dimensional charge-ordered phase below ∼310 K, but not in the high-temperature two-dimensional phase. High-field transport measurements revealed that collective depinning of localized charge carriers is essential to induce switching. The lack of collective charge motion is proposed as the origin of the switching suppression in the two-dimensional phase. (paper)

  15. Status of Charge Exchange Cross Section Measurements for Highly Charged Ions on Atomic Hydrogen

    Science.gov (United States)

    Draganic, I. N.; Havener, C. C.; Schultz, D. R.; Seely, D. G.; Schultz, P. C.

    2011-05-01

    Total cross sections of charge exchange (CX) for C5+, N6+, and O7+ ions on ground state atomic hydrogen are measured in an extended collision energy range of 1 - 20,000 eV/u. Absolute CX measurements are performed using an improved merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source mounted on a high voltage platform. In order to improve the problematic H+ signal collection for these exoergic CX collisions at low relative energies, a new double focusing electrostatic analyzer was installed. Experimental CX data are in good agreement with all previous H-oven relative measurements at higher collision energies. We compare our results with the most recent molecular orbital close-coupling (MOCC) and atomic orbital close-coupling (AOCC) theoretical calculations. Work supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, and the Office of Basic Energy Sciences of the U.S. DoE.

  16. Materials Characterization at Utah State University: Facilities and Knowledge-base of Electronic Properties of Materials Applicable to Spacecraft Charging

    Science.gov (United States)

    Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie

    2004-01-01

    In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further

  17. Plasma heating due to X-B mode conversion in a cylindrical ECR plasma system

    International Nuclear Information System (INIS)

    Extra Ordinary (X) mode conversion to Bernstein wave near Upper Hybrid Resonance (UHR) layer plays an important role in plasma heating through cyclotron resonance. Wave generation at UHR and parametric decay at high power has been observed during Electron Cyclotron Resonance (ECR) heating experiments in toroidal magnetic fusion devices. A small linear system with ECR and UHR layer within the system has been used to conduct experiments on X-B conversion and parametric decay process as a function of system parameters. Direct probing in situ is conducted and plasma heating is evidenced by soft x-ray emission measurement. Experiments are performed with hydrogen plasma produced with 160-800 W microwave power at 2.45 GHz of operating frequency at 10-3 mbar pressure. The axial magnetic field required for ECR is such that the resonant surface (B = 875 G) is situated at the geometrical axis of the plasma system. Experimental results will be presented in the paper. (authors)

  18. ECR Browser: A Tool For Visualizing And Accessing Data From Comparisons Of Multiple Vertebrate Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Loots, G G; Ovcharenko, I; Stubbs, L; Nobrega, M A

    2004-01-06

    The increasing number of vertebrate genomes being sequenced in draft or finished form provide a unique opportunity to study and decode the language of DNA sequence through comparative genome alignments. However, novel tools and strategies are required to accommodate this increasing volume of genomic information and to facilitate experimental annotation of genome function. Here we present the ECR Browser, a tool that provides an easy and dynamic access to whole genome alignments of human, mouse, rat and fish sequences. This web-based tool (http://ecrbrowser.dcode.org) provides the starting point for discovery of novel genes, identification of distant gene regulatory elements and prediction of transcription factor binding sites. The genome alignment portal of the ECR Browser also permits fast and automated alignment of any user-submitted sequence to the genome of choice. The interconnection of the ECR browser with other DNA sequence analysis tools creates a unique portal for studying and exploring vertebrate genomes.

  19. Plasma heating due to X-B mode conversion in a cylindrical ECR plasma system

    CERN Document Server

    Yadav, V K; Yadav, Vipin K.

    2004-01-01

    Extra Ordinary (X) mode conversion to Bernstein wave near Upper Hybrid Resonance (UHR) layer plays an important role in plasma heating through cyclotron resonance. Wave generation at UHR and parametric decay at high power has been observed during Electron Cyclotron Resonance (ECR) heating experiments in toroidal magnetic fusion devices. A small linear system with ECR and UHR layer within the system has been used to conduct experiments on X-B conversion and parametric decay process as a function of system parameters. Direct probing {\\em in situ} is conducted and plasma heating is evidenced by soft x-ray emission measurement. Experiments are performed with hydrogen plasma produced with 160-800 W microwave power at 2.45 GHz of operating frequency at $10^{-3}$ mbar pressure. The axial magnetic field required for ECR is such that the resonant surface (B = 875 G) is situated at the geometrical axis of the plasma system. Experimental results will be presented in the paper.

  20. The steady state of a particle in a vibrating box and possible application in short pulse generation of charged particles

    Indian Academy of Sciences (India)

    Nandan Jha; Sudhir R Jain

    2013-09-01

    In this paper the classical evolution of a particle is studied which bounces back and forth in a 1D vibrating cavity such that the reflection from the wall does not change the speed of the particle. A peculiar behaviour of the particle motion can be seen where the time evolution of the motion shows superposition of linear and oscillatory behaviour. In particular, the parameter range is found in which the particle oscillates between the walls in steady state as if the wall was static and it is showed that for these parameter ranges the particle settles to this steady state for all initial conditions. It is proposed that this phenomenon can be used to bunch charged particles in short pulses where the synchronization proposed in our model should work against the space charge effect in the charged particle bunch.

  1. Correlation of Mn charge state with the electrical resistivity of Mn doped indium tin oxide thin films

    KAUST Repository

    Kumar, S. R. Sarath

    2010-09-15

    Correlation of charge state of Mn with the increase in resistivity with Mn concentration is demonstrated in Mn-doped indium tin oxide films. Bonding analysis shows that Mn 2p3/2 core level can be deconvoluted into three components corresponding to Mn2+ and Mn4+ with binding energies 640.8 eV and 642.7 eV, respectively, and a Mn2+ satellite at ∼5.4 eV away from the Mn2+ peak. The presence of the satellite peak unambiguously proves that Mn exists in the +2 charge state. The ratio of concentration of Mn2+ to Mn4+ of ∼4:1 suggests that charge compensation occurs in the n-type films causing the resistivity increase.

  2. Charge-state dependence of energy loss of MeV dimers in GaAs(100)

    International Nuclear Information System (INIS)

    Carbon and oxygen dimers with charge states 1+ and 3+ were implanted into GaAs along the [100] direction at an energy of 0.5 MeV/atom. The defect depth profiles are extracted from Rutherford backscattering spectrometry and channeling. The depth profile of carbon is extracted from secondary ion mass spectrometry measurements. The defect density produced by dimer ions is larger than monomer ions. The depth profile of carbon in dimer implanted GaAs is deeper than that of monomer implanted GaAs showing negative molecular effect. The defect depth profile of oxygen dimer implanted GaAs is deeper for 3+ than that for 1+ charge state. This indicates that energy loss of O23+ is smaller than that of O2+. It is attributed to charge asymmetry and a higher degree of alignment of O23+ along the [100] axis of GaAs

  3. Temperature dependency of state of charge inhomogeneities and their equalization in cylindrical lithium-ion cells

    Science.gov (United States)

    Osswald, P. J.; Erhard, S. V.; Rheinfeld, A.; Rieger, B.; Hoster, H. E.; Jossen, A.

    2016-10-01

    The influence of cell temperature on the current density distribution and accompanying inhomogeneities in state of charge (SOC) during cycling is analyzed in this work. To allow for a detailed insight in the electrochemical behavior of the cell, commercially available 26650 cells were modified to allow for measuring local potentials at four different, nearly equidistant positions along the electrodes. As a follow-up to our previous work investigating local potentials within a cell, we apply this method for studying SOC deviations and their sensitivity to cell temperature. The local potential distribution was studied during constant current discharge operations for various current rates and discharge pulses in order to evoke local inhomogeneities for temperatures ranging from 10 °C to 40 °C. Differences in local potentials were considered for estimating local SOC variations within the electrodes. It could be observed that even low currents such as 0.1C can lead to significant inhomogeneities, whereas a higher cell temperature generally results in more pronounced inhomogeneities. A rapid SOC equilibration can be observed if the variation in the SOC distribution corresponds to a considerable potential difference defined by the open circuit voltage of either the positive or negative electrode. With increasing temperature, accelerated equalization effects can be observed.

  4. Laser-induced charge-disproportionated metallic state in LaCoO3

    Science.gov (United States)

    Izquierdo, M.; Karolak, M.; Trabant, C.; Holldack, K.; Föhlisch, A.; Kummer, K.; Prabhakaran, D.; Boothroyd, A. T.; Spiwek, M.; Belozerov, A.; Poteryaev, A.; Lichtenstein, A.; Molodtsov, S. L.

    2014-12-01

    Understanding the origin of the spin transition in LaCoO3 is one of the long-standing aims in condensed matter physics. Aside from its fundamental interest, a detailed description of this crossover will have a direct impact on the interpretation of the semiconductor-to-metal transition (SMT) and the properties of the high-temperature metallic phase in this compound, which has shown to have important applications in environmentally friendly energy production. To date, the spin transition has been investigated mainly as a function of temperature in thermal equilibrium. These results have hinted at dynamical effects. In this paper, we have investigated the SMT by means of pump-probe soft x-ray reflectivity experiments at the O K , Co L , and La M edges and theoretical calculations within a DFT++ formalism. The results point towards a laser-induced metallization in which the optical transitions stabilize a metallic state with high-spin configuration and increased charge disproportionation.

  5. Extended Kalman Filter with a Fuzzy Method for Accurate Battery Pack State of Charge Estimation

    Directory of Open Access Journals (Sweden)

    Saeed Sepasi

    2015-06-01

    Full Text Available As the world moves toward greenhouse gas reduction, there is increasingly active work around Li-ion chemistry-based batteries as an energy source for electric vehicles (EVs, hybrid electric vehicles (HEVs and smart grids. In these applications, the battery management system (BMS requires an accurate online estimation of the state of charge (SOC in a battery pack. This estimation is difficult, especially after substantial battery aging. In order to address this problem, this paper utilizes SOC estimation of Li-ion battery packs using a fuzzy-improved extended Kalman filter (fuzzy-IEKF for Li-ion cells, regardless of their age. The proposed approach introduces a fuzzy method with a new class and associated membership function that determines an approximate initial value applied to SOC estimation. Subsequently, the EKF method is used by considering the single unit model for the battery pack to estimate the SOC for following periods of battery use. This approach uses an adaptive model algorithm to update the model for each single cell in the battery pack. To verify the accuracy of the estimation method, tests are done on a LiFePO4 aged battery pack consisting of 120 cells connected in series with a nominal voltage of 432 V.

  6. Direct and charge transfer state mediated photogeneration in polymer-fullerene bulk heterojunction solar cells

    Science.gov (United States)

    Mingebach, M.; Walter, S.; Dyakonov, V.; Deibel, C.

    2012-05-01

    We investigated photogeneration yield and recombination dynamics in blends of poly(3-hexyl thiophene) (P3HT) and poly[2-methoxy-5 -(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) with [6,6]-phenyl-C61butyric acid methyl ester (PC61BM) by means of temperature dependent time delayed collection field measurements. In MDMO-PPV:PC61BM, we find a strongly field dependent polaron pair dissociation which can be attributed to geminate recombination in the device. Our findings are in good agreement with field dependent photoluminescence measurements published before, supporting a scenario of polaron pair dissociation via an intermediate charge transfer state. In contrast, polaron pair dissociation in P3HT:PC61BM shows only a very weak field dependence, indicating an almost field independent polaron pair dissociation or a direct photogeneration. Furthermore, we found Langevin recombination for MDMO-PPV:PC61BM and strongly reduced Langevin recombination for P3HT:PC61BM.

  7. The beam commissioning of a CW high charge state heavy ion RFQ

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, K. [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Lu, Y.R., E-mail: yrlu@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Yin, X.J.; Yang, Y.Q. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Gao, S.L.; Wang, Z. [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); He, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liu, G. [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Zhang, X.H.; Yuan, Y.J.; Zhao, H.W.; Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Chen, C.E. [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China)

    2015-09-11

    The SSC-LINAC project is launched at Institute of Modern Physics in China to develop one new linear accelerator (LINAC) injector for separated sector cyclotron (SSC). It includes a high charge state ion source, a CW RFQ and a DTL section, and is designed to accelerate ions up to 580 keV/u. Now the ion source and the RFQ cavity have been installed in the main hall and the beam commissioning has been carried out. Two kinds of ions have been tested, {sup 16}O{sup 5+} and {sup 40}Ar{sup 8+}. The experiment result of {sup 16}O{sup 5+} is: the measured beam current is 180 μA at entrance of RFQ and 150 μA at exit of RFQ. The output energy of {sup 16}O{sup 5+} is 141.89 keV/u. The measured beam current is 210 μA at entrance of RFQ and 198 μA at exit of RFQ for {sup 40}Ar{sup 8+}. The output energy of {sup 40}Ar{sup 8+} is 142.78 keV/u. The experiment results agree with the design parameters of RFQ very well. This paper presents: the design consideration of beam dynamics, RF and cooling structure design; measurement of the cold model; high power test of RFQ and beam commissioning result.

  8. Thickness dependent charge transfer states and dark carriers density in vacuum deposited small molecule organic photocell

    Science.gov (United States)

    Shekhar, Himanshu; Tzabari, Lior; Solomeshch, Olga; Tessler, Nir

    2016-10-01

    We have investigated the influence of the active layer thickness on the balance of the internal mechanisms affecting the efficiency of copper phthalocyanine - fullerene (C60) based vacuum deposited bulk heterojunction organic photocell. We fabricated a range of devices for which we varied the thickness of the active layer from 40 to 120 nm and assessed their performance using optical and electrical characterization techniques. As reported previously for phthalocyanine:C60, the performance of the device is highly dependent on the active layer thickness and of all the thicknesses we tried, the 40 nm thin active layer device showed the best solar cell characteristic parameters. Using the transfer matrix based optical model, which includes interference effects, we calculated the optical power absorbed in the active layers for the entire absorption band, and we found that this cannot explain the trend with thickness. Measurement of the cell quantum efficiency as a function of light intensity showed that the relative weight of the device internal processes changes when going from 40 nm to 120 nm thick active layer. Electrical modeling of the device, which takes different internal processes into account, allowed to quantify the changes in the processes affecting the generation - recombination balance. Sub gap external quantum efficiency and morphological analysis of the surface of the films agree with the model's result. We found that as the thickness grows the density of charge transfer states and of dark carriers goes up and the uniformity in the vertical direction is reduced.

  9. Recent developments in high charge state heavy ion beams at the LBL 88-inch cyclotron

    International Nuclear Information System (INIS)

    Recent advances in design and operation of the internal PIG sources at the LBL 88-Inch Cyclotron have led to the development of high charge state (0.4 less than or equal to Q/A less than or equal to 0.5) heavy ion beams between lithium and neon with energies 20 less than or equal to E/A/ less than or equal to 32 MeV per nucleon, including fully stripped ions up to 16O8+. Total external intensities of these beams range from 1012 particles/s for 6Li3+ to 0.1 particles/s for 16O8+. Techniques have been developed for routine tune-out of the low intensity beams. These include use of model beams and reliance on the large systematic data base of cyclotron parameters which has been developed over many years of operation. Techniques for delivery of these weak beams to the experimental target areas are presented. Source design and operation, including special problems associated with Li, Be and B beams, are discussed

  10. The beam commissioning of a CW high charge state heavy ion RFQ

    International Nuclear Information System (INIS)

    The SSC-LINAC project is launched at Institute of Modern Physics in China to develop one new linear accelerator (LINAC) injector for separated sector cyclotron (SSC). It includes a high charge state ion source, a CW RFQ and a DTL section, and is designed to accelerate ions up to 580 keV/u. Now the ion source and the RFQ cavity have been installed in the main hall and the beam commissioning has been carried out. Two kinds of ions have been tested, 16O5+ and 40Ar8+. The experiment result of 16O5+ is: the measured beam current is 180 μA at entrance of RFQ and 150 μA at exit of RFQ. The output energy of 16O5+ is 141.89 keV/u. The measured beam current is 210 μA at entrance of RFQ and 198 μA at exit of RFQ for 40Ar8+. The output energy of 40Ar8+ is 142.78 keV/u. The experiment results agree with the design parameters of RFQ very well. This paper presents: the design consideration of beam dynamics, RF and cooling structure design; measurement of the cold model; high power test of RFQ and beam commissioning result

  11. Coherence, energy and charge transfers in de-excitation pathways of electronic excited state of biomolecules in photosynthesis

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F. Bary

    2013-01-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin–chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used F¨orster–Dexter th...

  12. 1972-73 Student Charges at State and Land Grant Universities (Tuition, Required Fees, Room and Board).

    Science.gov (United States)

    National Association of State Universities and Land-Grant Colleges, Washington, DC. Office of Research and Information.

    Tuition for resident students at state and land-grant universities increased less in fall 1972 than it has for any fall since 1968. Two universities even put tuition decreases into effect. The slowdown in the amount of increase in student charges is based on responses to a survey from 98 of the 101 multi-campus institutions holding membership in…

  13. EVOLUTION OF THE RELATIONSHIPS BETWEEN HELIUM ABUNDANCE, MINOR ION CHARGE STATE, AND SOLAR WIND SPEED OVER THE SOLAR CYCLE

    International Nuclear Information System (INIS)

    The changing relationships between solar wind speed, helium abundance, and minor ion charge state are examined over solar cycle 23. Observations of the abundance of helium relative to hydrogen (AHe ≡ 100 × nHe/nH) by the Wind spacecraft are used to examine the dependence of AHe on solar wind speed and solar activity between 1994 and 2010. This work updates an earlier study of AHe from 1994 to 2004 to include the recent extreme solar minimum and broadly confirms our previous result that AHe in slow wind is strongly correlated with sunspot number, reaching its lowest values in each solar minima. During the last minimum, as sunspot numbers reached their lowest levels in recent history, AHe continued to decrease, falling to half the levels observed in slow wind during the previous minimum and, for the first time observed, decreasing even in the fastest solar wind. We have also extended our previous analysis by adding measurements of the mean carbon and oxygen charge states observed with the Advanced Composition Explorer spacecraft since 1998. We find that as solar activity decreased, the mean charge states of oxygen and carbon for solar wind of a given speed also fell, implying that the wind was formed in cooler regions in the corona during the recent solar minimum. The physical processes in the coronal responsible for establishing the mean charge state and speed of the solar wind have evolved with solar activity and time.

  14. The effect of deuteration on the transition into a charge ordered state of (TMTTF)2X salts

    International Nuclear Information System (INIS)

    From dielectric permittivity measurements, we show that deuteration yields a large increase of the transition temperature for the charge ordered state of (TMTTF)2X (X = AsF6, SbF6, ReO4) salts. We propose an explanation of this phenomenon, suggesting that deuteration induces a modification of the (TMTTF)2X crystal unit cell. (letter to the editor)

  15. Double-Quadrant State-of-Charge-Based Droop Control Method for Distributed Energy Storage Systems in Autonomous DC Microgrids

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Guerrero, Josep M.;

    2015-01-01

    In this paper, a double-quadrant state-of-charge (SoC) based droop control method for distributed energy storage system (DESS) is proposed to reach the proper power distribution in autonomous DC microgrids. Since DESS is commonly used in DC microgrids, it is necessary to achieve the rational power...

  16. State-of-Charge Balance Using Adaptive Droop Control for Distributed Energy Storage Systems in DC MicroGrid Applications

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Guerrero, Josep M.;

    2014-01-01

    This paper presents the coordinated control of distributed energy storage systems (DESSs) in DC micro-grids. In order to balance the state-of-charge (SoC) of each energy storage unit (ESU), an SoC-based adaptive droop control method is proposed. In this decentralized control method, the droop...

  17. Aerosol charging state at an urban site: new analytical approach and implications for ion-induced nucleation

    Directory of Open Access Journals (Sweden)

    S. Gagné

    2012-05-01

    Full Text Available The charging state of aerosol populations was determined using an Ion-DMPS in Helsinki, Finland between December 2008 and February 2010. We extrapolated the charging state and calculated the ion-induced nucleation fraction to be around 1.3 % ± 0.4 % at 2 nm and 1.3 % ± 0.5 % at 1.5 nm, on average. We present a new method to retrieve the average charging state for a new particle formation event, at a given size and polarity. We improve the uncertainty assessment and fitting technique used previously with an Ion-DMPS. We also use a new theoretical framework that allows for different concentrations of small ions for different polarities (polarity asymmetry. We extrapolate the ion-induced fraction using polarity symmetry and asymmetry. Finally, a method to calculate the growth rates from the behaviour of the charging state as a function of the particle diameter using polarity symmetry and asymmetry is presented and used on a selection of new particle formation events.

  18. The Effect of Organic Modifiers on Electrospray Ionization Charge-State Distribution and Desorption Efficiency for Oligonucleotides

    Science.gov (United States)

    Chen, Buyun; Mason, Sadie F.; Bartlett, Michael G.

    2013-02-01

    The chemical composition of the solution has a critical impact on the electrospray desorption efficiency of oligonucleotides. Several physiochemical properties of various organic modifiers were investigated with respect to their role in the desorption process of oligonucleotides. The Henry's Law Constant, which reflects the volatility of alkylamines, was found to have a prominent effect on both the electrospray charge state distribution and desorption efficiency of oligonucleotides. Alkylamines with higher k_{H,cc}( {aq/gas} ) values such as hexylamine, piperidine, and imidazole reduced the charge state distribution by forming complexes with the oligonucleotide and dissociating from it in the gas phase, while alkylamines with extremely low k_{H,cc}( {aq/gas} ) values reduced the electrospray charge state distribution by facilitating ion emission at an earlier stage of the electrospray desorption process. Ion-pairing agents with moderate k_{H,cc}( {aq/gas} ) values do not alter the electrospray charge state distribution of oligonucleotides and their ability to enhance oligonucleotide ionization followed the order of decreasing k_{H,cc}( {aq/gas} ) values. The Henry's Law Constant also correlated to the impact of the acidic modifiers on oligonucleotide ionization efficiency. Ionization enhancement effects were observed with hexafluoroisopropanol, and this effect was attributed to its low k_{H,cc}( {aq/gas} ) and moderate acidity. The comprehensive effects of both alkylamine and hexafluoroisoproapnol on the electrospray ionization desorption of oligonucleotides were also evaluated, and acid-base equilibrium was found to play a critical role in determining these effects.

  19. ECR [electron cyclotron resonance] ion source beams for accelerator applications: Final report

    International Nuclear Information System (INIS)

    Reliable, easily operated ion sources are always in demand for accelerator applications. This paper reports on a systematic study of ion-beam characterisrtics and optimization of beam quality for production of light ion beams in an ECR ion source. Of particular interest is the optimization of beam brightness (defined as ion current divided by the square of the emittance), which is typically used as a figure-of-merit for accelerator-quality beams. Other areas to be discussed include the measurement of beam emittance values, the effects of various source parameters on emittances, and scaling effects from operating the same ECR source at different frequencies. 4 refs., 4 figs

  20. Quantum states of charge carriers and longitudinal conductivity in double periodic n-type semiconductor lattice structures in electric field

    Energy Technology Data Exchange (ETDEWEB)

    Perov, A. A., E-mail: 19perov73@gmail.com; Penyagin, I. V. [Nizhny Novgorod State University (Russian Federation)

    2015-07-15

    Quantum states of charge carriers in double periodic semiconductor superlattices of n-type quantum dots with Rashba spin–orbit coupling in an electron gas have been calculated in the one-electron approximation in the presence of mutually perpendicular electric and magnetic fields. For these structures in weak constant electric field, the solution to the quasi-classical kinetic Boltzmann equation shows that the states of carriers in magnetic Landau minibands with negative differential conductivity are possible.

  1. Steady State Analytical Equation of Motion of Linear Shaped Charges Jet Based on the Modification of Birkhoff Theory

    Directory of Open Access Journals (Sweden)

    Seokbin Lim

    2012-01-01

    Full Text Available Birkhoff theory exhibits an analytical steady state liner collapse model of shaped charges followed by jetting process. It also provides the fundamental idea in study of shaped charges and has widened its application in many areas, including a configuration where the detonation front strikes the entire liner surface at the same time providing the α = β (liner apex angle α, and the liner collapse point angle β condition in the literature. Upon consideration of the detonation front propagation along the lateral length of the core charge in LSCs (linear shaped charges, a further modification of the Birkhoff theory motivated by the unique geometrical condition of LSCs and the α = β condition is necessary to correctly describe the jetting behavior of LSCs which is different than that of CSCs (conical shaped charges. Based on such unique geometrical properties of LSCs, the original Birkhoff theory was modified and an analytical steady state LSCs model was built. The analytical model was then compared to the numerical simulation results created from Autodyn™ in terms of M/C ratio and apex angles in three different sized LSCs, and it exhibits favorable results in a limited range.

  2. Effect of intrachain sulfonic acid dopants on the solid-state charge mobility of a model radical polymer

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Holly; Wang, Yucheng; Boudouris, Bryan W., E-mail: boudouris@purdue.edu

    2015-02-27

    Radical polymers are an emerging class of non-conjugated, charge-conducting macromolecules that are capable of transporting charge through localized oxidation–reduction (redox) reactions that occur at the stable radical groups present as the pendant groups of the macromolecular chains. The chemical nature and oxidation state of these pendant radical groups are critical to the charge transporting abilities of radical polymers in the solid state. To date, however, the control of this chemistry has been limited to external oxidizing agents, and the concept of intramolecular dopants has not been explored fully. To this end, we have synthesized poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate)-co-poly(vinylsulfonic acid sodium salt) (PTMA-co-PVS). Then, electron paramagnetic resonance spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy are implemented to evaluate the exact chemical nature of the pendant groups as a function of the PVS intramolecular dopants and exposure of the materials to external oxidation reactions. We correlate these changes in pendant group chemistry to charge transport ability, and we establish that the inclusion of a moderate amount of PVS dopants can improve the solid-state hole mobility of the material. Conversely, a large amount of sulfonic acidic dopants can be detrimental to the transport of the polymer relative to the homopolymer PTMA. Therefore, refinement of pendant group chemistry and careful addition of intramolecular dopants can enhance the solid-state transport ability of a radical polymer system. These fundamental principles, in turn, provide a vital foothold by which to optimize the solid-state charge transporting ability of current and next-generation radical polymer designs. - Highlights: • Sulfonic acid groups are copolymerized within the backbone of radical polymer chain. • Addition of the sulfonic acid groups alters the pendant group oxidation state. • Exact oxidation states are

  3. Influence of multi-electron charge-changing processes on the average charge states of heavy ions passing through a He-gas target

    International Nuclear Information System (INIS)

    Average (equilibrium) charge states q¯ of heavy Acq+ (Z = 89), Noq+ (Z = 102) and Flq+ (Z = 114) ions passing through a He-gas target at energies 50–150 keV/u are calculated with account for single- and multi-electron loss and capture cross sections. The q¯ values are obtained by solving the balance equations for equilibrium charge-state fractions and using single-, double- and triple-electron loss cross sections and single- and double-electron capture cross sections. Calculations of all electron-loss and single-capture cross sections are performed using available computer codes, and double-electron capture cross sections are estimated using a new semi-empirical formula obtained in this work on the basis of available experimental data for He target atoms. The account for the multi-electron processes changes significantly (up to about 25%) the q¯ values compared with those calculated with only single-electron cross sections and leads to a better agreement with experimental data

  4. Course Notes: United States Particle Accelerator School Beam Physics with Intense Space-Charge

    International Nuclear Information System (INIS)

    The purpose of this course is to provide a comprehensive introduction to the physics of beams with intense space charge. This course is suitable for graduate students and researchers interested in accelerator systems that require sufficient high intensity where mutual particle interactions in the beam can no longer be neglected. This course is intended to give the student a broad overview of the dynamics of beams with strong space charge. The emphasis is on theoretical and analytical methods of describing the acceleration and transport of beams. Some aspects of numerical and experimental methods will also be covered. Students will become familiar with standard methods employed to understand the transverse and longitudinal evolution of beams with strong space charge. The material covered will provide a foundation to design practical architectures. In this course, we will introduce you to the physics of intense charged particle beams, focusing on the role of space charge. The topics include: particle equations of motion, the paraxial ray equation, and the Vlasov equation; 4-D and 2-D equilibrium distribution functions (such as the Kapchinskij-Vladimirskij, thermal equilibrium, and Neuffer distributions), reduced moment and envelope equation formulations of beam evolution; transport limits and focusing methods; the concept of emittance and the calculation of its growth from mismatches in beam envelope and from space-charge non-uniformities using system conservation constraints; the role of space-charge in producing beam halos; longitudinal space-charge effects including small amplitude and rarefaction waves; stable and unstable oscillation modes of beams (including envelope and kinetic modes); the role of space charge in the injector; and algorithms to calculate space-charge effects in particle codes. Examples of intense beams will be given primarily from the ion and proton accelerator communities with applications from, for example, heavy-ion fusion, spallation

  5. State-diagnosed charge stripping in low-energy collisions of ground-state and highly excited N+ ions with He

    International Nuclear Information System (INIS)

    Translational energy spectra have been measured on N2+ product ions resulting from 2-keV charge-stripping collisions between N+ ions and He. The projectile N+ ion beam is produced under varying ion source conditions so as to contain different fractions of a long-lived metastable component. By measuring the endoergic energy defect for charge stripping from ground-state and excited-state projectiles at different electron energies in the ion source, the quantal identity of the N+ metastable state is deduced to be either 2s2p22p' 1D0, which lies 17.9 eV above the 2s22p23P ground electronic state, or 2s22p3s 1P0, whose excitation energy is 18.5 eV

  6. Evaluation of intramolecular charge transfer state of 4-, -dimethylamino cinnamaldehyde using time-dependent density functional theory

    Indian Academy of Sciences (India)

    Surajit Ghosh; K V S Girish; Subhadip Ghosh

    2013-07-01

    Intramolecular charge transfer of 4-,-dimethylamino cinnamaldehyde (DMACA) in vacuum and in five different aprotic solvents has been studied by using time-dependent density functional theory (TDDFT). Polarizable continuum model (PCM) was employed to consider solvent-solute interactions. The potential energy curves were constructed at different torsional angle of ,-dimethylamino moiety with respect to the adjacent phenyl ring. A large bathochromic shift in our calculated emission and absorption energies for polar solvents is a clear reminiscent of charge transfer nature of the excited state. Finally, the reported results are in agreement with experimental findings.

  7. Observation of the hadronic final state charge asymmetry in high Q2 deep-inelastic scattering at HERA

    International Nuclear Information System (INIS)

    A first measurement is presented of the charge asymmetry in the hadronic final state from the hard interaction in deep-inelastic ep neutral current scattering at HERA. The measurement is performed in the range of negative squared four momentum transfer 10022. The difference between the event normalised distributions of the scaled momentum, xp, for positively and negatively charged particles, measured in the current region of the Breit frame, is studied together with its evolution as a function of Q. The results are compared to Monte Carlo models at the hadron and parton level. (orig.)

  8. Dynamics of the Rydberg state population of slow highly charged ions impinging a solid surface at arbitrary collision geometry

    Science.gov (United States)

    Nedeljković, N. N.; Majkić, M. D.; Božanić, D. K.; Dojčilović, R. J.

    2016-06-01

    We consider the population dynamics of the intermediate Rydberg states of highly charged ions (core charge Z\\gg 1, principal quantum number {n}{{A}}\\gg 1) interacting with solid surfaces at arbitrary collision geometry. The recently developed resonant two-state vector model for the grazing incidence (2012 J. Phys. B: At. Mol. Opt. Phys. 45 215202) is extended to the quasi-resonant case and arbitrary angle of incidence. According to the model, the population probabilities depend both on the projectile parallel and perpendicular velocity components, in a complementary way. A cascade neutralization process for {{{Xe}}}Z+ ions, for Z=15{--}45, interacting with a conductive-surface is considered by taking into account the population dynamics. For an arbitrary collision geometry and given range of ionic velocities, a micro-staircase model for the simultaneous calculation of the kinetic energy gain and the charge state of the ion in front of the surface is proposed. The relevance of the obtained results for the explanation of the formation of nanostructures on solid surfaces by slow highly charged ions for normal incidence geometry is briefly discussed.

  9. The weak bound state with the non-zero charge density as the LHC 126.5 GeV state

    Science.gov (United States)

    Syska, J.

    2016-09-01

    The self-consistent model of classical field interactions formulated as the counterpart of the quantum electroweak model leads to homogeneous boson ground state solutions in presence of non-zero extended fermionic charge density fluctuations. Two different types of electroweak configurations of fields are analyzed. The first one has non-zero electric and weak charge fluctuations. The second one is electrically uncharged but weakly charged. Both types of configurations have two physically interesting solutions which possess masses equal to 126.67 GeV at the value of the scalar fluctuation potential parameter λ equal to ~0.0652. The spin zero electrically uncharged droplet formed as a result of the decay of the charged one is interpreted as the ~126.5 GeV state found in the Large Hadron Collider (LHC) experiment. (The other two configurations correspond to solutions with masses equal to 123.7 GeV and λ equal to ~0.0498 and thus the algebraic mean of the masses of two central solutions, i.e., 126.67 GeV and 123.7 GeV, is equal to 125.185 GeV.) The problem of a mass of this kind of droplets will be considered on the basis of the phenomenon of the screening of the fluctuation of charges. Their masses are found in the thin wall approximation.

  10. Automated system for efficient microwave power coupling in an S-band ECR ion source driven under different operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Muguira, L., E-mail: lmuguira@essbilbao.org [ESS-Bilbao, Edificio Rectorado, Vivero de Empresas, 48940 Leioa (Bizkaia) (Spain); Portilla, J. [University of Basque Country (UPV/EHU), Department of Electricity and Electronics, Science and Technology Faculty, 48940 Leioa (Bizkaia) (Spain); Gonzalez, P.J.; Garmendia, N.; Feuchtwanger, J. [ESS-Bilbao, Edificio Rectorado, Vivero de Empresas, 48940 Leioa (Bizkaia) (Spain); Etxebarria, V. [University of Basque Country (UPV/EHU), Department of Electricity and Electronics, Science and Technology Faculty, 48940 Leioa (Bizkaia) (Spain); Eguiraun, M.; Arredondo, I.; Miracoli, R.; Belver, D. [ESS-Bilbao, Edificio Rectorado, Vivero de Empresas, 48940 Leioa (Bizkaia) (Spain)

    2014-03-21

    This article presents an automated system for optimizing the microwave power coupling to the plasma generated in a proton/deuteron Electron Cyclotron Resonance (ECR) source, based on a specific model of a rectangular waveguide triple-stub tuner and the integrated measurement and control electronics, helping to get stable plasma states. The control and improvement of the RF power absorption into the plasma is a complex process, essential for the ion source development and optimization under different operating conditions. A model and a matching algorithm for the triple-stub tuner have been developed and, besides, different methods to accurately measure the power transfer in a waveguide RF system have been studied and deployed in the ESS-Bilbao ion source system. The different parts have been integrated through a controller, which allows to run an automatic plasma matching system in closed loop. The behavior of the system implemented for low and high power regimes has been tested under different conditions: with several load impedances, with plasma inside the chamber, in continuous wave and pulsed wave operation modes, demonstrating power absorption typically over 90% in all the ion source configurations. The developed system allows to achieve significant improvement in the ECR ion source power absorption efficiency, both in continuous and pulsed mode. The automatic tuning unit enhances the system operation finding an optimum solution much faster than manually, also behaving as an adaptive system able to respond in few pulses to ion source configuration changes to maintain the power coupling as high as possible. - Highlights: • An automated system optimizing plasma and microwave power interaction is presented. • A model and a matching algorithm for the triple-stub tuner have been developed. • Different methods to measure the power transfer have been studied and deployed. • The system works for low or high power regimes under different ion source conditions.

  11. Indirect spin dephasing via charge-state decoherence in optical control schemes in quantum dots

    Science.gov (United States)

    Grodecka, A.; Machnikowski, P.; Förstner, J.

    2009-04-01

    We demonstrate that an optically driven spin of a carrier in a quantum dot undergoes indirect dephasing via conditional optically induced charge evolution even in the absence of any direct interaction between the spin and its environment. A generic model for the indirect dephasing with a three-component system with spin, charge, and reservoir is proposed. This indirect decoherence channel is studied for the optical spin manipulation in a quantum dot with a microscopic description of the charge-phonon interaction taking into account its non-Markovian nature.

  12. Topics in quantum transport of charge and heat in solid state systems

    Science.gov (United States)

    Choi, Yunjin

    In the thesis, we present a series of investigations for quantum transport of charge and heat in solid state systems. The first topic of the thesis focuses on the fundamental quantum problems which can be studied with electron transport along with the correlations of detectors to measure physical properties. We theoretically describe a generalized ``which-path'' measurement using a pair of coupled electronic Mach-Zehnder Interferometers. In the second topic of thesis, we investigate an operational approach to measure the tunneling time based on the Larmor clock. To handle the cases of indirect measurement from the first and second topics, we introduce the contextual values formalism. The form of the contextual values provides direct physical insight into the measurement being performed, providing information about the correlation strength between system and detector, the measurement inefficiency, the proper background removal, and the conditioned average value of the system operator. Additionally, the weak interaction limit of these conditioned averages produces weak values of the system operator and an additional detector dependent disturbance term for both cases. In our treatment of the third topic of the thesis, we propose a three terminal heat engine based on semiconductor superlattices for energy harvesting. The periodicity of the superlattice structure creates an energy miniband, giving an energy window to allow electron transport. We find that this device delivers a large amount of power, nearly twice that produced by the heat engine based on quantum wells, with a small reduction of efficiency. This engine also works as a refrigerator in a different regime of the system's parameters. The thermoelectric performance of the refrigerator is analyzed, including the cooling power and coefficient of performance in the optimized condition. We also calculate phonon heat current through the system and explore the reduction of phonon heat current compared to the bulk

  13. Cycle life testing and modeling of graphite/LiCoO2 cells under different state of charge ranges

    Science.gov (United States)

    Saxena, Saurabh; Hendricks, Christopher; Pecht, Michael

    2016-09-01

    Lithium-ion batteries are used for energy storage in a wide array of applications, and do not always undergo full charge and discharge cycling. This study quantifies the effect of partial charge-discharge cycling on Li-ion battery capacity loss by means of cycling tests conducted on graphite/LiCoO2 pouch cells under different state of charge (SOC) ranges and discharge currents. The results are used to develop a model of capacity fade for batteries under full or partial cycling conditions. This study demonstrates that all of the variables studied including mean SOC, change in SOC (ΔSOC) and discharge rate have a significant impact on capacity loss rate during the cycling operation. This study is useful in identifying the SOC ranges with slow degradation rates.

  14. Nucleon-pion-state contribution in lattice calculations of the nucleon charges $g_A,g_T$ and $g_S$

    CERN Document Server

    Bar, Oliver

    2016-01-01

    We employ leading order covariant chiral perturbation theory to compute the nucleon-pion-state contribution to the 3-point correlation functions one typically measures in lattice QCD to extract the isovector nucleon charges $g_A,g_T$ and $g_S$. We estimate the impact of the nucleon-pion-state contribution on both the plateau and the summation method for lattice simulations with physical pion masses. The nucleon-pion-state contribution results in an overestimation of all charges with both methods. The overestimation is roughly equal for the axial and the tensor charge, and about fifty percent larger for the scalar charge.

  15. REVIEW OF THE 11TH INTERNATIONAL WORKSHOP ON ECR ION SOURCES

    NARCIS (Netherlands)

    DRENTJE, AG

    1994-01-01

    At the Workshop, the operation of various new and existing ECR ion sources was reported, with most of the emphasis on new methods to improve the performance and extend the variety of species. Much attention was paid to theoretical aspects, in particular to the basic question of electron heating; a c

  16. Single stage ECR source for the radioactive ion beam project in Louvain- la-Neuve

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M.; Vanhorenbeeck, J.; Baeten, F.; Dom, C.; Darquennes, D.; Delbar, T.; Jongen, Y.; Huyse, M.; Reusen, G.; Van Duppen, P. and others

    1989-01-01

    In 1987 the project RIB (Radioactive Ion Beam) was started at Louvain-La - Neuve, to produce and accelerate radioactive nuclei of C, N, O, F and Ne. Within the framework of this project, a single stage E.C.R. source will be built. The general scheme of the project and the design of the source are discussed.

  17. Crystalline silicon thin film growth by ECR plasma CVD for solar cells

    International Nuclear Information System (INIS)

    This thesis describes the background, motivation and work carried out towards this PhD programme entitled 'Crystalline Silicon Thin Film Growth by ECR Plasma CVD for Solar Cells'. The fundamental principles of silicon solar cells are introduced with a review of silicon thin film and bulk solar cells. The development and prospects for thin film silicon solar cells are described. Some results of a modelling study on thin film single crystalline solar cells are given which has been carried out using a commercially available solar cell simulation package (PC-1D). This is followed by a description of thin film deposition techniques. These include Chemical Vapour Deposition (CVD) and Plasma-Assisted CVD (PACVD). The basic theory and technology of the emerging technique of Electron Cyclotron Resonance (ECR) PACVD, which was used in this research, are introduced and the potential advantages summarised. Some of the basic methods of material and cell characterisation are briefly described, together with the work carried out in this research. The growth by ECR PACVD at temperatures 2 illumination. The best efficiency in the ECR grown structures was 13.76% using an epitaxial emitter. Cell performance was analysed in detail and the factors controlling performance identified by fitting self-consistently the fight and dark current-voltage and spectral response data using PC-1D. Finally, the conclusions for this research and suggestions for further work are outlined. (author)

  18. Doping dependence of self-diffusion in germanium and the charge states of vacancies

    DEFF Research Database (Denmark)

    Südkamp, T.; Bracht, H.; Impellizzeri, G.;

    2013-01-01

    into account the dominance of doubly negatively charged vacancies under donor doping, the doping dependence of self-diffusion is best described with an inverse level ordering for singly and doubly negatively charged vacancies for all doping conditions. The level ordering explains the dominance of doubly......Self-diffusion in boron-doped germanium has been studied at temperatures between 526 and 749 °C with secondary ion mass spectrometry. Self-diffusion under acceptor doping is retarded compared to intrinsic conditions. This demonstrates the contribution of charged vacancies in self-diffusion. Taking...... charged vacancies under donor doping and their decreasing contribution with increasing acceptor doping until neutral vacancies mediate self-diffusion...

  19. Bound state properties and photodetachment of the negatively charged hydrogen ions

    OpenAIRE

    Frolov, Alexei M.

    2015-01-01

    Absorption of infrared and visible radiation from stellar emission spectra by the negatively charged hydrogen ions H$^{-}$ is considered. The explicit formula for the photodetachment cross-section of the negatively charged hydrogen ion(s) is derived. Photodetachemnt cross-sections of the ${}^{\\infty}$H$^{-}$, ${}^{3}$H$^{-}$ (or T$^{-}$), ${}^{2}$H$^{-}$ (or D$^{-}$) and ${}^{1}$H$^{-}$ ions are determined to high accuracy and for a large number of photo-electron momenta/energies. We introduc...

  20. Fluctuations in Electronic Energy Affecting Singlet Fission Dynamics and Mixing with Charge-Transfer State: Quantum Dynamics Study.

    Science.gov (United States)

    Fujihashi, Yuta; Ishizaki, Akihito

    2016-02-01

    Singlet fission is a spin-allowed process by which a singlet excited state is converted to two triplet states. To understand mechanisms of the ultrafast fission via a charge transfer (CT) state, one has investigated the dynamics through quantum-dynamical calculations with the uncorrelated fluctuation model; however, the electronic states are expected to experience the same fluctuations induced by the surrounding molecules because the electronic structure of the triplet pair state is similar to that of the singlet state except for the spin configuration. Therefore, the fluctuations in the electronic energies could be correlated, and the 1D reaction coordinate model may adequately describe the fission dynamics. In this work we develop a model for describing the fission dynamics to explain the experimentally observed behaviors. We also explore impacts of fluctuations in the energy of the CT state on the fission dynamics and the mixing with the CT state. The overall behavior of the dynamics is insensitive to values of the reorganization energy associated with the transition from the singlet state to the CT state, although the coherent oscillation is affected by the fluctuations. This result indicates that the mixing with the CT state is rather robust under the fluctuations in the energy of the CT state as well as the high-lying CT state. PMID:26732701

  1. Charge 2 e /3 Superconductivity and Topological Degeneracies without Localized Zero Modes in Bilayer Fractional Quantum Hall States

    Science.gov (United States)

    Barkeshli, Maissam

    2016-08-01

    It has been recently shown that non-Abelian defects with localized parafermion zero modes can arise in conventional Abelian fractional quantum Hall (FQH) states. Here we propose an alternate route to creating, manipulating, and measuring topologically protected degeneracies in bilayer FQH states coupled to superconductors, without the creation of localized parafermion zero modes. We focus mainly on electron-hole bilayers, with a ±1 /3 Laughlin FQH state in each layer, with boundaries that are proximity coupled to a superconductor. We show that the superconductor induces charge 2 e /3 quasiparticle-pair condensation at each boundary of the FQH state, and that this leads to (i) topologically protected degeneracies that can be measured through charge sensing experiments and (ii) a fractional charge 2 e /3 ac Josephson effect. We demonstrate that an analog of non-Abelian braiding is possible, despite the absence of a localized zero mode. We discuss several practical advantages of this proposal over previous work, and also several generalizations.

  2. In situ X-ray near-edge absorption spectroscopy investigation of the state of charge of all-vanadium redox flow batteries.

    Science.gov (United States)

    Jia, Chuankun; Liu, Qi; Sun, Cheng-Jun; Yang, Fan; Ren, Yang; Heald, Steve M; Liu, Yadong; Li, Zhe-Fei; Lu, Wenquan; Xie, Jian

    2014-10-22

    Synchrotron-based in situ X-ray near-edge absorption spectroscopy (XANES) has been used to study the valence state evolution of the vanadium ion for both the catholyte and anolyte in all-vanadium redox flow batteries (VRB) under realistic cycling conditions. The results indicate that, when using the widely used charge-discharge profile during the first charge process (charging the VRB cell to 1.65 V under a constant current mode), the vanadium ion valence did not reach V(V) in the catholyte and did not reach V(II) in the anolyte. Consequently, the state of charge (SOC) for the VRB cell was only 82%, far below the desired 100% SOC. Thus, such incompletely charged mix electrolytes results in not only wasting the electrolytes but also decreasing the cell performance in the following cycles. On the basis of our study, we proposed a new charge-discharge profile (first charged at a constant current mode up to 1.65 V and then continuously charged at a constant voltage mode until the capacity was close to the theoretical value) for the first charge process that achieved 100% SOC after the initial charge process. Utilizing this new charge-discharge profile, the theoretical charge capacity and the full utilization of electrolytes has been achieved, thus having a significant impact on the cost reduction of the electrolytes in VRB. PMID:25191695

  3. In situ X-ray near-edge absorption spectroscopy investigation of the state of charge of all-vanadium redox flow batteries.

    Science.gov (United States)

    Jia, Chuankun; Liu, Qi; Sun, Cheng-Jun; Yang, Fan; Ren, Yang; Heald, Steve M; Liu, Yadong; Li, Zhe-Fei; Lu, Wenquan; Xie, Jian

    2014-10-22

    Synchrotron-based in situ X-ray near-edge absorption spectroscopy (XANES) has been used to study the valence state evolution of the vanadium ion for both the catholyte and anolyte in all-vanadium redox flow batteries (VRB) under realistic cycling conditions. The results indicate that, when using the widely used charge-discharge profile during the first charge process (charging the VRB cell to 1.65 V under a constant current mode), the vanadium ion valence did not reach V(V) in the catholyte and did not reach V(II) in the anolyte. Consequently, the state of charge (SOC) for the VRB cell was only 82%, far below the desired 100% SOC. Thus, such incompletely charged mix electrolytes results in not only wasting the electrolytes but also decreasing the cell performance in the following cycles. On the basis of our study, we proposed a new charge-discharge profile (first charged at a constant current mode up to 1.65 V and then continuously charged at a constant voltage mode until the capacity was close to the theoretical value) for the first charge process that achieved 100% SOC after the initial charge process. Utilizing this new charge-discharge profile, the theoretical charge capacity and the full utilization of electrolytes has been achieved, thus having a significant impact on the cost reduction of the electrolytes in VRB.

  4. Equilibrium and non-equilibrium charge-state distributions of 2.0 MeV/u carbon ions passing through carbon foils

    Energy Technology Data Exchange (ETDEWEB)

    Imai, M., E-mail: imai@nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto University, Nishikyo, Kyoto 615-8540 (Japan); Sataka, M.; Matsuda, M.; Okayasu, S. [Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Kawatsura, K. [Kansai Gaidai University, Hirakata, Osaka 573-1001 (Japan); Takahiro, K. [Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Sakyo, Kyoto 606-8585 (Japan); Komaki, K. [Atomic Physics Laboratory, RIKEN, Wako, Saitama 351-0198 (Japan); Shibata, H. [Department of Nuclear Engineering, Kyoto University, Nishikyo, Kyoto 615-8540 (Japan); Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Nishio, K. [Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan)

    2015-07-01

    Both equilibrium and non-equilibrium charge-state distributions were studied experimentally for 2.0 MeV/u carbon ions after passing through carbon foils. Measured charge-state distribution established the equilibrium at a target thickness of 10 μg/cm{sup 2} and this remained unchanged until a maximum target thickness of 98 μg/cm{sup 2}. The equilibrium charge-state distribution, the equilibrium mean charge-state, and the width and skewness of the equilibrium distribution were compared with predictions using existing semi-empirical formulae as well as simulation results, including the ETACHA code. It was found that charge-state distributions, mean charge states, and distribution widths for C{sup 2+}, C{sup 3+}, and C{sup 4+} incident ions merged into quasi-equilibrium values at a target thickness of 5.7 μg/cm{sup 2} in the pre-equilibrium region and evolved simultaneously to the ‘real equilibrium’ values for all of the initial charge states, including C{sup 5+} and C{sup 6+} ions, as previously demonstrated for sulfur projectile ions at the same velocity (Imai et al., 2009). Two kinds of simulation, ETACHA and solution of rate equations taking only single electron transfers into account, were used, and both of them reproduced the measured charge evolution qualitatively. The quasi-equilibrium behavior could be reproduced with the ETACHA code, but not with solution of elementary rate equations.

  5. Equilibrium and non-equilibrium charge-state distributions of 2.0 MeV/u carbon ions passing through carbon foils

    International Nuclear Information System (INIS)

    Both equilibrium and non-equilibrium charge-state distributions were studied experimentally for 2.0 MeV/u carbon ions after passing through carbon foils. Measured charge-state distribution established the equilibrium at a target thickness of 10 μg/cm2 and this remained unchanged until a maximum target thickness of 98 μg/cm2. The equilibrium charge-state distribution, the equilibrium mean charge-state, and the width and skewness of the equilibrium distribution were compared with predictions using existing semi-empirical formulae as well as simulation results, including the ETACHA code. It was found that charge-state distributions, mean charge states, and distribution widths for C2+, C3+, and C4+ incident ions merged into quasi-equilibrium values at a target thickness of 5.7 μg/cm2 in the pre-equilibrium region and evolved simultaneously to the ‘real equilibrium’ values for all of the initial charge states, including C5+ and C6+ ions, as previously demonstrated for sulfur projectile ions at the same velocity (Imai et al., 2009). Two kinds of simulation, ETACHA and solution of rate equations taking only single electron transfers into account, were used, and both of them reproduced the measured charge evolution qualitatively. The quasi-equilibrium behavior could be reproduced with the ETACHA code, but not with solution of elementary rate equations

  6. A Steady-State Picture of Solar Wind Acceleration and Charge State Composition Derived from a Global Wave-Driven MHD Model

    CERN Document Server

    Oran, Rona; van der Holst, Bart; Lepri, Susan T; Frazin, Alberto M Vásquez Federico A Nuevo Richard; Manchester, Ward B; Sokolov, Igor V; Gombosi, Tamas I

    2014-01-01

    The higher charge states found in slow ($<$400km s$^{-1}$) solar wind streams compared to fast streams have supported the hypothesis that the slow wind originates in closed coronal loops, and released intermittently through reconnection. Here we examine whether a highly ionized slow wind can also form along steady and open magnetic field lines. We model the steady-state solar atmosphere using AWSoM, a global magnetohydrodynamic model driven by Alfv{\\'e}n waves, and apply an ionization code to calculate the charge state evolution along modeled open field lines. This constitutes the first charge states calculation covering all latitudes in a realistic magnetic field. The ratios $O^{+7}/O^{+6}$ and $C^{+6}/C^{+5}$ are compared to in-situ Ulysses observations, and are found to be higher in the slow wind, as observed; however, they are under-predicted in both wind types. The modeled ion fractions of S, Si, and Fe are used to calculate line-of-sight intensities, which are compared to EIS observations above a cor...

  7. Separation of monoclonal antibody charge state variants by open tubular capillary electrochromatography with immobilised protein as stationary phase.

    Science.gov (United States)

    Zhang, Yamin; Wang, Wentao; Xiao, Xue; Jia, Li

    2016-09-30

    Monoclonal antibodies (mAbs) are highly heterogeneous and complex glycoproteins requiring powerful analytical tools for characterization and quality control. In this work, we utilize adsorbed bovine serum albumin (BSA) as a stationary phase in open tubular (OT) capillary electrochromatography for separation of charge state variants of mAbs. Poly(diallydimethylammonium chloride) (PDDA) was used to assist fabrication of BSA coated OT column by electrostatic self-assembly. Scanning electron microscopy and electroosmotic flow measurement were carried out to characterize the as-prepared BSA coated PDDA OT columns. The electrochromatographic performance of the OT columns was evaluated by separation of basic proteins and different charge state variants of mAbs. The effects of background solution pH and concentration on separation were investigated. A rapid separation of charge state variants of mAbs was successfully achieved in the BSA coated PDDA OT column. Separation of seven variants of the mAb cetuximab was achieved using the prepared column. Two basic variants and one acidic variant of rituximab, and two basic variants and four acidic variants of trastuximab were successfully distinguished from the main forms. In addition, the columns demonstrated good repeatability and stability with the run-to-run, day-to-day and batch-to-batch relative standard deviations of migration times less than 3.7%.

  8. A New State of Charge Estimation Method for LiFePO4 Battery Packs Used in Robots

    OpenAIRE

    Han-Pang Huang; Ming-Hui Chang; Shu-Wei Chang

    2013-01-01

    The accurate state of charge (SOC) estimation of the LiFePO4 battery packs used in robot applications is required for better battery life cycle, performance, reliability, and economic issues. In this paper, a new SOC estimation method, “Modified ECE + EKF”, is proposed. The method is the combination of the modified Equivalent Coulombic Efficiency (ECE) method and the Extended Kalman Filter (EKF) method. It is based on the zero-state hysteresis battery model, and adopts the EKF method to corre...

  9. Bound state properties and photo-detachment of the negatively charged hydrogen ions

    International Nuclear Information System (INIS)

    The absorption of infrared and visible radiation from stellar emission spectra by the negatively charged hydrogen ions H- is considered. The explicit formula for the photo-detachment cross-section of the negatively charged hydrogen ion(s) is derived. Photo-detachment cross-sections of the ∞H-, 3H- (or T-), 2H- (or D-) and 1H- ions are determined to high accuracy and for a large number of photo-electron momenta/energies. We introduce criteria which can be used to evaluate the overall quality of highly accurate wave functions of the hydrogen ion(s). One of these criteria is based on highly accurate calculations of the lowest order QED corrections in the negatively charged hydrogen ions, including 1H- (protium), 2H- (deuterium), 3H- (tritium) and model ion with the infinitely heavy nucleus ∞H-. An effective approach has been developed to calculate three-body integrals with the Bessel functions of different orders. Some preliminary evaluations of the photo-detachment cross-sections of the negatively charged hydrogen ions are performed. Inverse Bremsstrahlung in the field of the neutral hydrogen atom is briefly discussed. (author)

  10. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion.

    Science.gov (United States)

    Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning

    2016-08-01

    Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility. PMID:27159015

  11. Bias spectroscopy and simultaneous single-electron transistor charge state detection of Si:P double dots

    International Nuclear Information System (INIS)

    We report a detailed study of low-temperature (mK) transport properties of a silicon double-dot system fabricated by phosphorous ion implantation. The device under study consists of two phosphorous nanoscale islands doped to above the metal-insulator transition, separated from each other and the source and drain reservoirs by nominally undoped (intrinsic) silicon tunnel barriers. Metallic control gates, together with an Al-AlOx single-electron transistor (SET), were positioned on the substrate surface, capacitively coupled to the buried dots. The individual double-dot charge states were probed using source-drain bias spectroscopy combined with non-invasive SET charge sensing. The system was measured in linear (source-drain DC bias VSD = 0) and non-linear (VSD ≠ 0) regimes, allowing calculations of the relevant capacitances. Simultaneous detection using both SET sensing and source-drain current measurements was demonstrated, providing a valuable combination for the analysis of the system. Evolution of the triple points with applied bias was observed using both charge and current sensing. Coulomb diamonds, showing the interplay between the Coulomb charging effects of the two dots, were measured using simultaneous detection and compared with numerical simulations

  12. A pair of two-component regulatory genes ecrA1/A2 in S. coelicolor

    Institute of Scientific and Technical Information of China (English)

    李永泉; 岑沛霖; 陈时飞; 吴凡; 郑静

    2004-01-01

    Two-component genes are kinds of genetic elements involved in regulation of antibiotic production in Streptomyces coelicolor. DNA microarray analysis revealed that ecrA1/A2, which mapped at distant sites from red locus and encode respectively the kinase and regulator, expressed coordinately with genes of Red specific biosynthetic pathway, ecrA1 and ecrA2 gene-disruptive mutants were constructed using homogenotisation by reciprocal double crossover. Fermentation data showed that the undecylprodigiosin (Red) level of production was lower than that of wild-type strain. However, the change of the actinorhodin (Act) production level was not significant compared with wild type. Thus, these experiment results confirmed that the two-component system ecrA 1/A2 was positive regulatory element for red gene cluster.

  13. Carotenoid to chlorophyll energy transfer in the peridinin–chlorophyll-a–protein complex involves an intramolecular charge transfer state

    Science.gov (United States)

    Zigmantas, Donatas; Hiller, Roger G.; Sundström, Villy; Polívka, Tomáš

    2002-01-01

    Carotenoids are, along with chlorophylls, crucial pigments involved in light-harvesting processes in photosynthetic organisms. Details of carotenoid to chlorophyll energy transfer mechanisms and their dependence on structural variability of carotenoids are as yet poorly understood. Here, we employ femtosecond transient absorption spectroscopy to reveal energy transfer pathways in the peridinin–chlorophyll-a–protein (PCP) complex containing the highly substituted carotenoid peridinin, which includes an intramolecular charge transfer (ICT) state in its excited state manifold. Extending the transient absorption spectra toward near-infrared region (600–1800 nm) allowed us to separate contributions from different low-lying excited states of peridinin. The results demonstrate a special light-harvesting strategy in the PCP complex that uses the ICT state of peridinin to enhance energy transfer efficiency. PMID:12486228

  14. Influence of state of charge in lead-acid batteries operating in PV systems; Comportamiento no repetitivo de las baterias de plomo-acido operando en sistemas FV.

    Energy Technology Data Exchange (ETDEWEB)

    Vela, N.; Chenlo, F.

    2004-07-01

    Correct determination of the overcharge cut-off voltage is a key point for both the optimal operation and maximum life-time of batteries in photovoltaic (PV) systems. This work presents the results of analysing the influence on charge voltage of different operation conditions, mainly current rate, temperature and state of charge (SOC). From the results obtained we have observed that voltage evolution during a charge process depends on its activation degree of the battery. The battery activation is reached when battery was previously fully charged. So, we can conclude that variation of the charge voltage with time as function of starting point (fully charged or fully discharged) together with current rate and temperature should be taking into account in the battery SOC determination and in the design of charge controllers. (Author)

  15. Charge-Exchange Excitation of the Isobaric Analog State and Implication for the Nuclear Symmetry Energy and Neutron Skin

    Science.gov (United States)

    Khoa, Dao T.; Loc, Bui Minh; Zegers, R. G. T.

    The charge-exchange (p, n) or (3He,t) reaction can be considered as elastic scattering of proton or 3He by the isovector term of the optical potential that flips the projectile isospin. Therefore, the accurately measured charge-exchange scattering cross section for the isobaric analog states can be a good probe of the isospin dependence of the optical potential, which is determined exclusively within the folding model by the difference between the neutron and proton densities and isospin dependence of the nucleon-nucleon interaction. On the other hand, the same isospin- and density-dependent nucleon-nucleon interaction can also be used in a Hartree-Fock calculation of asymmetric nuclear matter, to estimate the nuclear matter energy and its asymmetry part. As a result, the fine-tuning of the isospin dependence of the effective nucleon-nucleon interaction against the measured (p, n) or (3He,t) cross sections should allow us to make some realistic prediction of the nuclear symmetry energy and its density dependence. Moreover, given the neutron skin of the target related directly to the neutron-proton difference of the ground-state density, it can be well probed in the analysis of the charge-exchange (3He,t) reactions at medium energies when the two-step processes can be neglected and the t-matrix interaction can be used in the folding calculation.

  16. Extended Kalman filter method for state of charge estimation of vanadium redox flow battery using thermal-dependent electrical model

    Science.gov (United States)

    Xiong, Binyu; Zhao, Jiyun; Wei, Zhongbao; Skyllas-Kazacos, Maria

    2014-09-01

    State of charge (SOC) estimation is a key issue for battery management since an accurate estimation method can ensure safe operation and prevent the over-charge/discharge of a battery. Traditionally, open circuit voltage (OCV) method is utilized to estimate the stack SOC and one open flow cell is needed in each battery stack [1,2]. In this paper, an alternative method, extended Kalman filter (EKF) method, is proposed for SOC estimation for VRBs. By measuring the stack terminal voltages and applied currents, SOC can be predicted with a state estimator instead of an additional open circuit flow cell. To implement EKF estimator, an electrical model is required for battery analysis. A thermal-dependent electrical circuit model is proposed to describe the charge/discharge characteristics of the VRB. Two scenarios are tested for the robustness of the EKF. For the lab testing scenarios, the filtered stack voltage tracks the experimental data despite the model errors. For the online operation, the simulated temperature rise is observed and the maximum SOC error is within 5.5%. It is concluded that EKF method is capable of accurately predicting SOC using stack terminal voltages and applied currents in the absence of an open flow cell for OCV measurement.

  17. Highly charged ion production in ECRH plasma sources for heavy-ion accelerators and other applications

    International Nuclear Information System (INIS)

    The design and status of three ECRH ion sources under development at NSCL are briefly discussed. The RT-ECR ion source, with two minimum B plasma stages and ECRH heating at 6.4 GHz, produces useable intensities of fully stripped light ions up to oxygen; for heavier species, charges such as Argon 14+, Krypton 20+, Iodine 25+ and Tantalum 29+ have been measured. The 6.4 GHz CP-ECR, just beginning operation, has a high temperature metal vapor oven replacing the first plasma stage, and will be used for metal ion production. Initial results for Lithium ions are presented. The SC-ECR, now in the design stage, has a superconducting magnet structure to allow first harmonic ECRH heating at 30--35 GHz. With a higher cutoff density, it is hoped that A≅200 ions with Q>50+ will be realized

  18. Top Quark Pair Properties - Spin Correlation, Charge Asymmetry, and Complex Final States - at ATLAS

    Directory of Open Access Journals (Sweden)

    Brost Elizabeth

    2014-04-01

    Full Text Available We present measurements of top quark pair properties performed with the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a center-of-mass energy of √s = 7 TeV. The latest measurements of spin correlation and charge asymmetry in tt¯$t\\overline t $ events, as well as measurements of the cross section for tt¯$t\\overline t $ production in association with vector bosons, are presented.

  19. Bound States of Guided Matter Waves: An Atom and a Charged Wire

    OpenAIRE

    Hau, Lene Vestergaard; Burns, Michael M.; Golovchenko, Jene A.

    1992-01-01

    We argue that it is possible to bind a neutral atom in stable orbits around a wire charged by a time-varying sinusoidal voltage. Both classical and quantum-mechanical theories for this system are discussed, and a unified approach to the Kapitza picture of effective potentials associated with high-frequency fields is presented. It appears that cavities and waveguides for neutral-atomic-matter waves may be fashioned from these considerations.

  20. Design study of low-energy beam transport for multi-charge beams at RAON

    Science.gov (United States)

    Bahng, Jungbae; Qiang, Ji; Kim, Eun-San

    2015-12-01

    The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.