WorldWideScience

Sample records for charge state dependent

  1. Projectile charge state dependent sputtering of solid surfaces

    CERN Document Server

    Hayderer, G

    2000-01-01

    dependence on the ion kinetic energy. This new type of potential sputtering not only requires electronic excitation of the target material, but also the formation of a collision cascade within the target in order to initiate the sputtering process and has therefore been termed kinetically assisted potential sputtering. In order to study defects induced by potential sputtering on the atomic scale we performed measurements of multiply charged Ar ion irradiated HOPG (highly oriented pyrolitic graphite) samples with scanning tunneling microscopy (STM). The only surface defects found in the STM images are protrusions. The mean diameter of the defects increases with projectile charge state while the height of the protrusions stays roughly the same indicating a possible pre-equilibrium effect of the stopping of slow multiply charged projectiles in HOPG. Total sputter yields for impact of slow singly and multiply charged ions on metal- (Au), oxide- (Al2O3, MgO) and alkali-halide surfaces (LiF) have been measured as a...

  2. Charge-state-dependent energy loss of slow ions. I. Experimental results on the transmission of highly charged ions

    Science.gov (United States)

    Wilhelm, Richard A.; Gruber, Elisabeth; Smejkal, Valerie; Facsko, Stefan; Aumayr, Friedrich

    2016-05-01

    We report on energy loss measurements of slow (v ≪v0 ), highly charged (Q >10 ) ions upon transmission through a 1-nm-thick carbon nanomembrane. We emphasize here the scaling of the energy loss with the velocity and charge exchange or loss. We show that a weak linear velocity dependence exists, whereas charge exchange dominates the kinetic energy loss, especially in the case of a large charge capture. A universal scaling of the energy loss with the charge exchange and velocity is found and discussed in this paper. A model for charge-state-dependent energy loss for slow ions is presented in paper II in this series [R. A. Wilhelm and W. Möller, Phys. Rev. A 93, 052709 (2016), 10.1103/PhysRevA.93.052709].

  3. Hydrogen-bonded Intramolecular Charge Transfer Excited State of Dimethylaminobenzophenone using Time Dependent Density Functional Theory

    Institute of Scientific and Technical Information of China (English)

    Yu-ling Chu; Zhong Yang; Zhe-feng Pan; Jing Liu; Yue-yi Han; Yong Ding; Peng Song

    2012-01-01

    Density functional theory and time-dependent density-functional theory have been used to investigate the photophysical properties and relaxation dynamics of dimethylaminobenzophenone (DMABP) and its hydrogen-bonded DMABP-MeOH dimer.It is found that,in nonpolar aprotic solvent,the transitions from S0 to S1 and S2 states of DMABP have both n→π* and π→π* characters,with the locally excited feature mainly located on the C=O group and the partial CT one characterized by electron transfer mainly from the dimethylaminophenyl group to the C=O group.But when the intermolecular hydrogen bond C=O…H-O is formed,the highly polar intramolecular charge transfer character switches over to the first excited state of DMABP-MeOH dimer and the energy difference between the two lowlying electronically excited states increases.To gain insight into the relaxation dynamics of DMABP and DMABP-MeOH dimer in the excited state,the potential energy curves for conformational relaxation are calculated.The formation of twisted intramolecular charge transfer state via diffusive twisting motion of the dimethylamino/dimethylaminophenyl groups is found to be the major relaxation process.In addition,the decay of the S1 state of DMABP-MeOH dimer to the ground state,through nonradiative intermolecular hydrogen bond stretching vibrations,is facilitated by the formation of the hydrogen bond between DMABP and alcohols.

  4. Energy and charge state dependences of transfer ionization to single capture ratio for fast multiply charged ions on helium

    Science.gov (United States)

    Unal, Ridvan

    The charge state and energy dependences of Transfer Ionization (TI) and Single Capture (SC) processes in collisions of multiply charged ions with He from intermediate to high velocities are investigated using coincident recoil ion momentum spectroscopy. The collision chamber is commissioned on the 15-degree port of a switching magnet, which allows the delivery of a beam with very little impurity. The target was provided from a supersonic He jet with a two-stage collimation. The two-stage, geometrically cooled, supersonic He jet has significantly reduced background contribution to the spectrum compared to a single stage He jet. In the case of a differentially pumped gas cell complex calculations based on assumptions for the correction due to the collisions with the contaminant beam led to corrections, which were up to 50%. The new setup allows one to make a direct separation of contaminant processes in the experimental data using the longitudinal momentum spectra. Furthermore, this correction is much smaller (about 8.8%) yielding better overall precision. The collision systems reported here are 1 MeV/u O(4--8)+ , 0.5--2.5 MeV/u F(4--9)+, 2.0 MeV/u Ti 15,17,18+, 1.6--1.75 MeV/u Cu18,20+ and 0.25--0.5 MeV/u I(15--25)+ ions interacting with helium. We have determined the sTIsSC ratio for high velocity highly charged ions on He at velocities in the range of 6 to 10 au and observed that the ratio is monotonically decreasing with velocity. Furthermore, we see a ratio that follows a q2 dependence up to approximately q = 9. Above q = 9 the experimental values exceed the q2 dependence prediction due to antiscreening. C. D. Lin and H. C. Tseng have performed coupled channel calculations for the energy dependence of TI and SC for F9+ + He and find values slightly higher than our measured values, but with approximately the same energy dependence. The new data, Si, Ti and Cu, go up only to q = 20 and show a smooth monotonically increasing TI/SC ratio. The TI/SC ratio for I (15

  5. Energy-dependent Charge States and Their Connection with Ion Abundances in Impulsive Solar Energetic Particle Events

    Science.gov (United States)

    DiFabio, R.; Guo, Z.; Möbius, E.; Klecker, B.; Kucharek, H.; Mason, G. M.; Popecki, M.

    2008-11-01

    Impulsive solar energetic particle (SEP) events show substantial enhancements of heavy ions and 3He over the composition in the Sun's atmosphere. Mass per charge dependent acceleration mechanisms have been proposed to account for this preferential acceleration. However, a problem emerged for all the preferential acceleration models with the measurement of ionization states near 1 MeV nucleon-1, which showed that ions from C to Mg are fully stripped, a challenge that had been recognized early on. Since all models relied on differences in the charge-to-mass ratio to enable preferential acceleration, the proposed mechanisms were incompatible with this observation. Recent observations of the ionic charge states at lower energies have revealed a dependence on energy, with the charge states decreasing for lower energy ions. This raises the possibility that the low-energy charge states reflect the plasma conditions at the acceleration site, while the high-energy charge states are due to stripping low in the solar corona. In a survey of impulsive events we show that the increase of the Fe charge states with energy is highly significant for the sample of events and thus most likely a general feature of impulsive events. To see whether there is a connection between the enhancements and charge states, we extended the ACE SEPICA charge-state observations to lower energies and combined them with the ion fluxes from ACE ULEIS for impulsive events observed between 1997 and 2000. We find a positive correlation between the abundance ratios and the charge states at low energy, while the charge states at the highest energy do not demonstrate such dependence. This supports the idea that the higher mass particles are preferentially accelerated before being stripped.

  6. Gap state charge induced spin-dependent negative differential resistance in tunnel junctions

    Science.gov (United States)

    Jiang, Jun; Zhang, X.-G.; Han, X. F.

    2016-04-01

    We propose and demonstrate through first-principles calculation a new spin-dependent negative differential resistance (NDR) mechanism in magnetic tunnel junctions (MTJ) with cubic cation disordered crystals (CCDC) AlO x or Mg1-x Al x O as barrier materials. The CCDC is a class of insulators whose band gap can be changed by cation doping. The gap becomes arched in an ultrathin layer due to the space charge formed from metal-induced gap states. With an appropriate combination of an arched gap and a bias voltage, NDR can be produced in either spin channel. This mechanism is applicable to 2D and 3D ultrathin junctions with a sufficiently small band gap that forms a large space charge. It provides a new way of controlling the spin-dependent transport in spintronic devices by an electric field. A generalized Simmons formula for tunneling current through junction with an arched gap is derived to show the general conditions under which ultrathin junctions may exhibit NDR.

  7. Gap state charge induced spin-dependent negative differential resistance in tunnel junctions

    Science.gov (United States)

    Jiang, Jun; Zhang, X.-G.; Han, X. F.

    2016-04-01

    We propose and demonstrate through first-principles calculation a new spin-dependent negative differential resistance (NDR) mechanism in magnetic tunnel junctions (MTJ) with cubic cation disordered crystals (CCDC) AlO x or Mg1‑x Al x O as barrier materials. The CCDC is a class of insulators whose band gap can be changed by cation doping. The gap becomes arched in an ultrathin layer due to the space charge formed from metal-induced gap states. With an appropriate combination of an arched gap and a bias voltage, NDR can be produced in either spin channel. This mechanism is applicable to 2D and 3D ultrathin junctions with a sufficiently small band gap that forms a large space charge. It provides a new way of controlling the spin-dependent transport in spintronic devices by an electric field. A generalized Simmons formula for tunneling current through junction with an arched gap is derived to show the general conditions under which ultrathin junctions may exhibit NDR.

  8. Projectile- and charge-state-dependent electron yields from ion penetration of solids as a probe of preequilibrium stopping power

    DEFF Research Database (Denmark)

    Rothard, H.; Schou, Jørgen; Groeneveld, K.-O.

    1992-01-01

    Kinetic electron-emission yields gamma from swift ion penetration of solids are proportional to the (electronic) stopping power gamma approximately Beta-S*, if the preequilibrium evolution of the charge and excitation states of the positively charged ions is taken into account. We show...... theory after having presented a summary of recent results on the projectile- and charge-state dependence of forward and backward electron yields gamma(F) and gamma(B) and the Meckbach factor R = gamma(F)/gamma(B). A simple extension of the yield equations is proposed and several assumptions are justified...

  9. Doping dependence of self-diffusion in germanium and the charge states of vacancies

    DEFF Research Database (Denmark)

    Südkamp, T.; Bracht, H.; Impellizzeri, G.;

    2013-01-01

    into account the dominance of doubly negatively charged vacancies under donor doping, the doping dependence of self-diffusion is best described with an inverse level ordering for singly and doubly negatively charged vacancies for all doping conditions. The level ordering explains the dominance of doubly......Self-diffusion in boron-doped germanium has been studied at temperatures between 526 and 749 °C with secondary ion mass spectrometry. Self-diffusion under acceptor doping is retarded compared to intrinsic conditions. This demonstrates the contribution of charged vacancies in self-diffusion. Taking...... charged vacancies under donor doping and their decreasing contribution with increasing acceptor doping until neutral vacancies mediate self-diffusion...

  10. Charge-state dependence of electron loss from H by collisions with heavy, highly stripped ions

    International Nuclear Information System (INIS)

    Theoretical calculations, confirmed by experimental measurements, are used to obtain a new scaling for electron loss from a hydrogen atom in collision with a heavy, highly stripped ion. The calculations cover the energy range 50 to 5000 keV/amu and charge states q from 1 to 50. The experiments are in the range 108 to 1140 keV/amu and charge states 3 to 22. A simple analytic expression that describes the electron-loss cross section for 1 < or = q < or = 50 in the energy range 50 to 5000 keV/amu is presented

  11. Thickness dependent charge transfer states and dark carriers density in vacuum deposited small molecule organic photocell

    Science.gov (United States)

    Shekhar, Himanshu; Tzabari, Lior; Solomeshch, Olga; Tessler, Nir

    2016-10-01

    We have investigated the influence of the active layer thickness on the balance of the internal mechanisms affecting the efficiency of copper phthalocyanine - fullerene (C60) based vacuum deposited bulk heterojunction organic photocell. We fabricated a range of devices for which we varied the thickness of the active layer from 40 to 120 nm and assessed their performance using optical and electrical characterization techniques. As reported previously for phthalocyanine:C60, the performance of the device is highly dependent on the active layer thickness and of all the thicknesses we tried, the 40 nm thin active layer device showed the best solar cell characteristic parameters. Using the transfer matrix based optical model, which includes interference effects, we calculated the optical power absorbed in the active layers for the entire absorption band, and we found that this cannot explain the trend with thickness. Measurement of the cell quantum efficiency as a function of light intensity showed that the relative weight of the device internal processes changes when going from 40 nm to 120 nm thick active layer. Electrical modeling of the device, which takes different internal processes into account, allowed to quantify the changes in the processes affecting the generation - recombination balance. Sub gap external quantum efficiency and morphological analysis of the surface of the films agree with the model's result. We found that as the thickness grows the density of charge transfer states and of dark carriers goes up and the uniformity in the vertical direction is reduced.

  12. Solar Energetic Particle drifts and the energy dependence of 1 AU charge states

    CERN Document Server

    Dalla, S; Battarbee, M

    2016-01-01

    The event-averaged charge state of heavy ion Solar Energetic Particles (SEPs), measured at 1 AU from the Sun, typically increases with the ions' kinetic energy. The origin of this behaviour has been ascribed to processes taking place within the acceleration region. In this paper we study the propagation through interplanetary space of SEP Fe ions, injected near the Sun with a variety of charge states that are uniformly distributed in energy, by means of a 3D test particle model. In our simulations, due to gradient and curvature drifts associated with the Parker spiral magnetic field, ions of different charge propagate with very different efficiencies to an observer that is not magnetically well connected to the source region. As a result we find that, for many observer locations, the 1 AU event-averaged charge state , as obtained from our model, displays an increase with particle energy E, in qualitative agreement with spacecraft observations. We conclude that drift-associated propagation is a possible explan...

  13. Evaluation of intramolecular charge transfer state of 4-, -dimethylamino cinnamaldehyde using time-dependent density functional theory

    Indian Academy of Sciences (India)

    Surajit Ghosh; K V S Girish; Subhadip Ghosh

    2013-07-01

    Intramolecular charge transfer of 4-,-dimethylamino cinnamaldehyde (DMACA) in vacuum and in five different aprotic solvents has been studied by using time-dependent density functional theory (TDDFT). Polarizable continuum model (PCM) was employed to consider solvent-solute interactions. The potential energy curves were constructed at different torsional angle of ,-dimethylamino moiety with respect to the adjacent phenyl ring. A large bathochromic shift in our calculated emission and absorption energies for polar solvents is a clear reminiscent of charge transfer nature of the excited state. Finally, the reported results are in agreement with experimental findings.

  14. Temperature dependency of state of charge inhomogeneities and their equalization in cylindrical lithium-ion cells

    Science.gov (United States)

    Osswald, P. J.; Erhard, S. V.; Rheinfeld, A.; Rieger, B.; Hoster, H. E.; Jossen, A.

    2016-10-01

    The influence of cell temperature on the current density distribution and accompanying inhomogeneities in state of charge (SOC) during cycling is analyzed in this work. To allow for a detailed insight in the electrochemical behavior of the cell, commercially available 26650 cells were modified to allow for measuring local potentials at four different, nearly equidistant positions along the electrodes. As a follow-up to our previous work investigating local potentials within a cell, we apply this method for studying SOC deviations and their sensitivity to cell temperature. The local potential distribution was studied during constant current discharge operations for various current rates and discharge pulses in order to evoke local inhomogeneities for temperatures ranging from 10 °C to 40 °C. Differences in local potentials were considered for estimating local SOC variations within the electrodes. It could be observed that even low currents such as 0.1C can lead to significant inhomogeneities, whereas a higher cell temperature generally results in more pronounced inhomogeneities. A rapid SOC equilibration can be observed if the variation in the SOC distribution corresponds to a considerable potential difference defined by the open circuit voltage of either the positive or negative electrode. With increasing temperature, accelerated equalization effects can be observed.

  15. Extended Kalman filter method for state of charge estimation of vanadium redox flow battery using thermal-dependent electrical model

    Science.gov (United States)

    Xiong, Binyu; Zhao, Jiyun; Wei, Zhongbao; Skyllas-Kazacos, Maria

    2014-09-01

    State of charge (SOC) estimation is a key issue for battery management since an accurate estimation method can ensure safe operation and prevent the over-charge/discharge of a battery. Traditionally, open circuit voltage (OCV) method is utilized to estimate the stack SOC and one open flow cell is needed in each battery stack [1,2]. In this paper, an alternative method, extended Kalman filter (EKF) method, is proposed for SOC estimation for VRBs. By measuring the stack terminal voltages and applied currents, SOC can be predicted with a state estimator instead of an additional open circuit flow cell. To implement EKF estimator, an electrical model is required for battery analysis. A thermal-dependent electrical circuit model is proposed to describe the charge/discharge characteristics of the VRB. Two scenarios are tested for the robustness of the EKF. For the lab testing scenarios, the filtered stack voltage tracks the experimental data despite the model errors. For the online operation, the simulated temperature rise is observed and the maximum SOC error is within 5.5%. It is concluded that EKF method is capable of accurately predicting SOC using stack terminal voltages and applied currents in the absence of an open flow cell for OCV measurement.

  16. Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns.

    Science.gov (United States)

    Huang, Yingying; Triscari, Joseph M; Tseng, George C; Pasa-Tolic, Ljiljana; Lipton, Mary S; Smith, Richard D; Wysocki, Vicki H

    2005-09-15

    Data mining was performed on 28 330 unique peptide tandem mass spectra for which sequences were assigned with high confidence. By dividing the spectra into different sets based on structural features and charge states of the corresponding peptides, chemical interactions involved in promoting specific cleavage patterns in gas-phase peptides were characterized. Pairwise fragmentation maps describing cleavages at all Xxx-Zzz residue combinations for b and y ions reveal that the difference in basicity between Arg and Lys results in different dissociation patterns for singly charged Arg- and Lys-ending tryptic peptides. While one dominant protonation form (proton localized) exists for Arg-ending peptides, a heterogeneous population of different protonated forms or more facile interconversion of protonated forms (proton partially mobile) exists for Lys-ending peptides. Cleavage C-terminal to acidic residues dominates spectra from singly charged peptides that have a localized proton and cleavage N-terminal to Pro dominates those that have a mobile or partially mobile proton. When Pro is absent from peptides that have a mobile or partially mobile proton, cleavage at each peptide bond becomes much more prominent. Whether the above patterns can be found in b ions, y ions, or both depends on the location of the proton holder(s) in multiply protonated peptides. Enhanced cleavages C-terminal to branched aliphatic residues (Ile, Val, Leu) are observed in both b and y ions from peptides that have a mobile proton, as well as in y ions from peptides that have a partially mobile proton; enhanced cleavages N-terminal to these residues are observed in b ions from peptides that have a partially mobile proton. Statistical tools have been designed to visualize the fragmentation maps and measure the similarity between them. The pairwise cleavage patterns observed expand our knowledge of peptide gas-phase fragmentation behaviors and may be useful in algorithm development that employs

  17. Gas-pressure dependence of charge-state fractions and mean charges of 1.4 MeV/u-uranium ions stripped in molecular hydrogen

    Science.gov (United States)

    Shevelko, V. P.; Winckler, N.; Tolstikhina, I. Yu.

    2016-06-01

    Using a recently created BREIT computer code (Balance Rate Equations for Ion Transportation), evolutions of the charge-state fractions Fq (x) and equilibrium mean charge states q bar are calculated for stripping of 1.4 MeV/u-U4+ ions in H2 gas for target thicknesses x ⩽ 100 μg /cm2 (⩽ 3 ·1019molecule /cm2) and gas pressures 10-4 ⩽ P ⩽ 500 mbar. Calculations of the non-equilibrium Fq (x) and equilibrium Fq0 distributions for ion charges 4 ⩽ q ⩽ 40 are performed by solving the balance (rate) equations with account for the multi-electron processes and the target-density effect. Calculated equilibrium mean charge state increases from q bar ≈ 27.6 at P =10-4 mbar to its saturated (maximum) value of q bar ≈ 32.7 at pressures P≳ 250 mbar while the equilibrium target thickness xeq increases from 20 to 50 μg /cm2 (from 0.6 to 1.5 in units of 1019molecule /cm2) in the H2-pressure range considered. From the present calculations it is concluded that the maximum mean charge state q bar which can be achieved in stripping of 1.4 MeV/u-U4+ ions in H2 gas is about q bar ≈ 33 at a gas pressure P≳ 250 mbar.

  18. Observation of Energy Dependent Charge States in Impulsive Solar Energetic Particle Events with ACE SEPICA and Implications on Source Conditions and Transport

    Science.gov (United States)

    Guo, Z.; Moebius, E.; Difabio, R.; Klecker, B.; Kartavykh, J.; Mason, G.; Droege, W.; Kucharek, H.; Popecki, M.

    2008-05-01

    The ionic charge states of Solar Energetic Particle (SEP) events provide information both about the plasma environment of the flare site and the propagation process of the energetic particles. We have performed a survey of the charge state behavior for impulsive flare-related SEP events with ACE SEPICA from 1998 through 2000. This event set has been selected by eliminating all CME and shock-related events, out of which two thirds showed a short time injection with recognizable energy dispersion, an independent sign for impulsive events. However, all events in this survey also showed a strong energy dependence of the ionic charge state of heavy ions, most pronounced for iron. Based on the finding that this energy dependence is very similar for all events with and without obvious injection, we then expanded the database to all events with a charge state increase for iron by at least 2.5 units, within the energy range from 0.06 to 0.54 Mev/nuc. For the combined set of 34 impulsive events we find that the source temperature is constrained by the lowest energy charge state to 1-3 million K. In combination with models on interplanetary propagation, including scattering, convection and adiabatic deceleration, a systematic study of the observed Fe charge state behavior is consistent with a range of mean free path lengths of 0.1 - 1 AU for these energetic particles. Further implications on the propagation and acceleration conditions are discussed.

  19. Hierarchical surface charge dependent phase states of gelatin-bovine serum albumin dispersions close to their common pI.

    Science.gov (United States)

    Pathak, Jyotsana; Rawat, Kamla; Aswal, V K; Bohidar, H B

    2014-09-25

    We report interaction between bovine serum albumin ([BSA] = 1% (w/v)) and gelatin B ([GB] = 0.25-3.5% (w/v)) occurring close to their common isoelectric pH (pI). This interaction generated distinguishable multiple soft matter phases like opaque coacervates (phase I) and transparent gels (phase II), where the former are composed of partially charge neutralized intermolecular complexes (zeta potential, ζ ≤ 0) and the latter of overcharged complexes (ζ ≥ 0) that organized into a network pervading the entire sample volume. These phase states were completely governed by the protein mixing ratio r = [GB]:[BSA]. Coacervates, when heated above 32 °C, produced thermoirreversible turbid gels (phase III), stable in the region 32 ≥ T ≤ 50 °C. When the transparent gels were heated to T ≥ 34 °C, these turned into turbid solutions that did form a turbid fragile gel (phase IV) upon cooling. Mechanical and thermal behaviors of aforesaid coacervates (phase I) and gels (phase II) were examined; coacervates had lower storage modulus and melting temperature compared to gels. Cole-Cole plots attributed considerable heterogeneity to coacervate phase, but gels were relatively homogeneous. Raman spectroscopy data suggested differential microenvironment for these phases. Coacervates were mostly hydrated by partially structured water with degree of hydration dependent on gelatin concentration whereas for gels hydration was invariant of [GB]. Small-angle neutron scattering (SANS) data gave static structure factor profiles, I(q), versus wavevector q, that were remarkably different. For transparent gels, data could be split into two distinct regions: (i) 0.01 < q < 0.1 Å(-1), I(q) = IOZ(0)/(1 + q(2)ζgel(2))(2) (Debye-Bueche function) with ζgel = 9-13 nm, and (ii) 0.1 < q < 0.35 Å(-1), I(q) = IOZ(0)/(1 + q(2)ξgel(2)) (Ornstein-Zernike function) with ξgel = 3.1 ± 0.6 nm. Similarly, for coacervate, the aforesaid two q-regions were described by (i) I(q) = IPL(0)q(-α) with

  20. Charge-state dependence of energy loss of MeV dimers in GaAs(100)

    International Nuclear Information System (INIS)

    Carbon and oxygen dimers with charge states 1+ and 3+ were implanted into GaAs along the [100] direction at an energy of 0.5 MeV/atom. The defect depth profiles are extracted from Rutherford backscattering spectrometry and channeling. The depth profile of carbon is extracted from secondary ion mass spectrometry measurements. The defect density produced by dimer ions is larger than monomer ions. The depth profile of carbon in dimer implanted GaAs is deeper than that of monomer implanted GaAs showing negative molecular effect. The defect depth profile of oxygen dimer implanted GaAs is deeper for 3+ than that for 1+ charge state. This indicates that energy loss of O23+ is smaller than that of O2+. It is attributed to charge asymmetry and a higher degree of alignment of O23+ along the [100] axis of GaAs

  1. Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel.

    Science.gov (United States)

    Amodeo, Giuseppe Federico; Scorciapino, Mariano Andrea; Messina, Angela; De Pinto, Vito; Ceccarelli, Matteo

    2014-01-01

    Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs) Molecular Dynamics (MD) simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities. PMID:25084457

  2. Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel.

    Directory of Open Access Journals (Sweden)

    Giuseppe Federico Amodeo

    Full Text Available Voltage Dependent Anion-selective Channels (VDACs are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs Molecular Dynamics (MD simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities.

  3. Composition-dependent charge transport and temperature-dependent density of state effective mass interpreted by temperature-normalized Pisarenko plot in Bi2-xSbxTe3 compounds

    Science.gov (United States)

    An, Tae-Ho; Lim, Young Soo; Park, Mi Jin; Tak, Jang-Yeul; Lee, Soonil; Cho, Hyung Koun; Cho, Jun-Young; Park, Chan; Seo, Won-Seon

    2016-10-01

    Composition-dependent charge transport and temperature-dependent density of state effective mass-dependent Seebeck coefficient were investigated in Bi2-xSbxTe3 (x = 1.56-1.68) compounds. The compounds were prepared by the spark plasma sintering of high-energy ball-milled powder. High-temperature Hall measurements revealed that the charge transport in the compounds was governed dominantly by phonon scattering and influenced additionally by alloy scattering depending on the amount of Sb. Contrary effects of Sb content on the Seebeck coefficient were discussed in terms of carrier concentration and density of state effective mass, and it was elucidated by temperature-normalized Pisarenko plot for the first time.

  4. Extraction of high charge density of states in electrolyte-gated polymer thin-film transistor with temperature-dependent measurements

    Science.gov (United States)

    Lee, Jiyoul

    2016-05-01

    Using temperature-dependent charge transport measurements, we investigated spectral density of states (DOS) in the bandgap of polythiophene thin-films under high carrier densities (Meyer-Neldel rule. The spectral DOS extracted from the electrolyte-gated polymer film lie in the range of 8.0 × 1019 cm-3 eV-1-8.0 × 1021 cm-3 eV-1, which are at least two orders of magnitude larger than the DOS extracted from the same polymer film at relatively low induced carrier densities by general oxide dielectrics.

  5. Time-dependent density functional study of the electronic spectra of oligoacenes in the charge states -1, 0, +1, and +2

    CERN Document Server

    Malloci, G; Cappellini, G; Joblin, C

    2007-01-01

    We present a systematic theoretical study of the five smallest oligoacenes (naphthalene, anthracene, tetracene, pentacene, and hexacene) in their anionic,neutral, cationic, and dicationic charge states. We used density functional theory (DFT) to obtain the ground-state optimised geometries, and time-dependent DFT (TD-DFT) to evaluate the electronic absorption spectra. Total-energy differences enabled us to evaluate the electron affinities and first and second ionisation energies, the quasiparticle correction to the HOMO-LUMO energy gap and an estimate of the excitonic effects in the neutral molecules. Electronic absorption spectra have been computed by combining two different implementations of TD-DFT: the frequency-space method to study general trends as a function of charge-state and molecular size for the lowest-lying in-plane long-polarised and short-polarised $\\pi\\to\\pi^\\star$ electronic transitions, and the real-time propagation scheme to obtain the whole photo-absorption cross-section up to the far-UV....

  6. High-charge-state ion sources

    International Nuclear Information System (INIS)

    Sources of high charge state positive ions have uses in a variety of research fields. For heavy ion particle accelerators higher charge state particles give greater acceleration per gap and greater bending strength in a magnet. Thus higher energies can be obtained from circular accelerators of a given size, and linear accelerators can be designed with higher energy gain per length using higher charge state ions. In atomic physics the many atomic transitions in highly charged ions supplies a wealth of spectroscopy data. High charge state ion beams are also used for charge exchange and crossed beam experiments. High charge state ion sources are reviewed

  7. Supramolecular control of the spin-dependent dynamics of long-lived charge-separated states at the micellar interface as studied by magnetic field effect.

    Science.gov (United States)

    Miura, Tomoaki

    2013-05-30

    Spin selectivity in long-lived charge separation at the micellar interface is studied using the magnetic field effect (MFE). An amphiphilic viologen is complexed with a nonionic surfactant to form a supramolecular acceptor cage, of which the size is controlled by the acceptor concentration, as confirmed by dynamic light scattering measurement. Photoinduced electron transfer (ET) from a guest polyaromatic molecule to the viologen moiety is observed spin-dependently with time-resolved fluorescence (trFL) and transient absorption (TA). A negative MFE on the radical yield is successfully observed, which indicates generation of singlet-born long-lived radical pair that is realized by supramolecular control of the donor-acceptor (D-A) distances. The dominance of the singlet-precursor MFE is sensitive to the acceptor concentration, which presumably affects the D-A distance as well as the cage size. However, theoretical analysis of the MFE gives large recombination rates of ca. 10(8) s(-1), which indicate the contribution of spin-allowed recombination of the pseudocontact radical pair generated by still active in-cage diffusion. Dependence of the viologen concentration and alkyl chain length on the recombination and escape dynamics is discussed in terms of precursor spin states and the microenvironments in the cage.

  8. Metastable states of plasma particles close to a charged surface

    Energy Technology Data Exchange (ETDEWEB)

    Shavlov, A. V., E-mail: shavlov@ikz.ru [The Institute of the Earth Cryosphere, RAS Siberian branch, 625000, P.O. 1230, Tyumen (Russian Federation); Tyumen State Oil and Gas University, 38, Volodarskogo St., 625000, Tyumen (Russian Federation); Dzhumandzhi, V. A. [The Institute of the Earth Cryosphere, RAS Siberian branch, 625000, P.O. 1230, Tyumen (Russian Federation)

    2015-09-15

    The free energy of the plasma particles and the charged surface that form an electroneutral system is calculated on the basis of the Poisson-Boltzmann equation. It is shown that, owing to correlation of light plasma particles near the charged surface and close to heavy particles of high charge, there can be metastable states in plasma. The corresponding phase charts of metastable states of the separate components of plasma, and plasma as a whole, are constructed. These charts depend on temperature, the charge magnitude, the size of the particles, and the share of the charge of the light carriers out of the total charge of the plasma particles.

  9. Metastable states of plasma particles close to a charged surface

    International Nuclear Information System (INIS)

    The free energy of the plasma particles and the charged surface that form an electroneutral system is calculated on the basis of the Poisson-Boltzmann equation. It is shown that, owing to correlation of light plasma particles near the charged surface and close to heavy particles of high charge, there can be metastable states in plasma. The corresponding phase charts of metastable states of the separate components of plasma, and plasma as a whole, are constructed. These charts depend on temperature, the charge magnitude, the size of the particles, and the share of the charge of the light carriers out of the total charge of the plasma particles

  10. Temperature Dependent Kinetics DNA Charge Transport

    Science.gov (United States)

    Wohlgamuth, Chris; McWilliams, Marc; Slinker, Jason

    2012-10-01

    Charge transport (CT) through DNA has been extensively studied, and yet the mechanism of this process is still not yet fully understood. Besides the benefits of understanding charge transport through this fundamental molecule, further understanding of this process will elucidate the biological implications of DNA CT and advance sensing technology. Therefore, we have investigated the temperature dependence of DNA CT by measuring the electrochemistry of DNA monolayers modified with a redox-active probe. By using multiplexed electrodes on silicon chips, we compare square wave voltammetry of distinct DNA sequences under identical experimental conditions. We vary the probe length within the well matched DNA duplex in order to investigate distance dependent kinetics. This length dependent study is a necessary step to understanding the dominant mechanism behind DNA CT. Using a model put forth by O'Dea and Osteryoung and applying a nonlinear least squares analysis we are able to determine the charge transfer rates (k), transfer coefficients (α), and the total surface concentration (&*circ;) of the DNA monolayer. Arrhenius like behavior is observed for the multiple probe locations, and the results are viewed in light of and compared to the prominent charge transport mechanisms.

  11. Numerical calculation of impurity charge state distributions

    Energy Technology Data Exchange (ETDEWEB)

    Crume, E. C.; Arnurius, D. E.

    1977-09-01

    The numerical calculation of impurity charge state distributions using the computer program IMPDYN is discussed. The time-dependent corona atomic physics model used in the calculations is reviewed, and general and specific treatments of electron impact ionization and recombination are referenced. The complete program and two examples relating to tokamak plasmas are given on a microfiche so that a user may verify that his version of the program is working properly. In the discussion of the examples, the corona steady-state approximation is shown to have significant defects when the plasma environment, particularly the electron temperature, is changing rapidly.

  12. State Dependence in Unemployment

    DEFF Research Database (Denmark)

    Ahmad, Nisar

    2014-01-01

    This study examines the extent state dependence among unemployed immigrants in a dynamic discrete choice framework. Three alternative methodologies are employed to control for the problem of the initial condition. The empirical findings show that there is a considerable correlation between the un...

  13. Formation of charge states of heavy ions in SEP events

    Science.gov (United States)

    Kartavykh, J. Y.; Kocharov, L.

    2007-12-01

    One can divide the formation of charge states of heavy ions in SEP events into two stages - formation of charge states during ion acceleration and their transformation due to coronal and interplanetary propagation. At the first stage the charge states of ions are formed as a result of competition of ionization and recombination processes, with possible charge-dependent acceleration. If ions were moving with a constant speed through a plasma for infinitely long time, the ionic charge of energetic ions would asymptotically reach an upper limit, the equilibrium mean charge, so that the mean charge of accelerated ions is between its thermal and equilibrium value. Coronal and interplanetary propagation can modify the charge spectra; coronal propagation by additional stripping after acceleration in a sufficiently dense environment, interplanetary propagation due to adiabatic deceleration in the expanding solar wind by shifting the charge spectra towards lower energies. The absolute value of this shift depends on the mean free path of energetic ions in interplanetary space that can be derived from the observed intensity-time profiles and anisotropies. In this paper we review recent achievements in the modeling of the charge-consistent acceleration and transport of solar ions as applied to the ionic charge states of iron.

  14. Charge transfer processes of low charge state heavy ions

    International Nuclear Information System (INIS)

    In this paper, some aspects of the collision processes of accelerated heavy ions in very low charge state is reviewed, and the beam loss due to such collisions is estimated. The processes included in ion-atom collisions are electron capture, the electron stripping of ions, and target ionization. The stripping cross sections decrease slowly at high energy, and are much larger than the electron capture cross sections. At low energy, the electron capture is dominant, and this process plays a principal role near ion sources and preacceleration regions. This has not been taken into account properly. In order to keep the beam loss less than 0.1 percent, it is estimated that the average vacuum of about 10-7 to 10-8 Torr is required. An empirical formula to calculate the stripping cross sections of heavy ions in low charge state in collisions is derived. The beam loss due to ion-atom collisions can be estimated. The charge transfer and stripping processes in ion-ion collisions are also discussed. The typical processes in ion-ion collisions are almost same as those in ion-atom collisions. In order to minimize the ion beam loss due to charge-changing processes, it is important to choose the heavy ions with closed shell configurations, which correspond to the slightly more ionized states than the singly ionized state. (Kato, T.)

  15. Environment Dependent Charge Potential for Water

    OpenAIRE

    Muralidharan, Krishna; Valone, Steven M.; Atlas, Susan R.

    2007-01-01

    We present a new interatomic potential for water captured in a charge-transfer embedded atom method (EAM) framework. The potential accounts for explicit, dynamical charge transfer in atoms as a function of the local chemical environment. As an initial test of the charge-transfer EAM approach for a molecular system, we have constructed a relatively simple version of the potential and examined its ability to model the energetics of small water clusters. The excellent agreement between our resul...

  16. Solute location in a nanoconfined liquid depends on charge distribution

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Jacob A.; Thompson, Ward H., E-mail: wthompson@ku.edu [Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (United States)

    2015-07-28

    Nanostructured materials that can confine liquids have attracted increasing attention for their diverse properties and potential applications. Yet, significant gaps remain in our fundamental understanding of such nanoconfined liquids. Using replica exchange molecular dynamics simulations of a nanoscale, hydroxyl-terminated silica pore system, we determine how the locations explored by a coumarin 153 (C153) solute in ethanol depend on its charge distribution, which can be changed through a charge transfer electronic excitation. The solute position change is driven by the internal energy, which favors C153 at the pore surface compared to the pore interior, but less so for the more polar, excited-state molecule. This is attributed to more favorable non-specific solvation of the large dipole moment excited-state C153 by ethanol at the expense of hydrogen-bonding with the pore. It is shown that a change in molecule location resulting from shifts in the charge distribution is a general result, though how the solute position changes will depend upon the specific system. This has important implications for interpreting measurements and designing applications of mesoporous materials.

  17. Charge State Hysteresis in Semiconductor Quantum Dots

    OpenAIRE

    Yang, C. H.; Rossi, A; Lai, N. S.; Leon, R.; Lim, W. H.; Dzurak, A.S.

    2014-01-01

    Semiconductor quantum dots provide a two-dimensional analogy for real atoms and show promise for the implementation of scalable quantum computers. Here, we investigate the charge configurations in a silicon metal-oxide-semiconductor double quantum dot tunnel coupled to a single reservoir of electrons. By operating the system in the few-electron regime, the stability diagram shows hysteretic tunnelling events that depend on the history of the dots charge occupancy. We present a model which acc...

  18. Charge Distribution Dependency on Gap Thickness of CMS Endcap RPC

    CERN Document Server

    Park, Sung K; Lee, Kyongsei

    2016-01-01

    We report a systematic study of charge distribution dependency of CMS Resistive Plate Chamber (RPC) on gap thickness. Prototypes of double-gap RPCs with six different gap thickness ranging from from 1.0 to 2.0 mm in 0.2-mm steps have been built with 2-mm-thick phenolic high-pressure-laminated plates. The efficiencies of the six gaps are measured as a function of the effective high voltages. We report that the strength of the electric fields of the gap is decreased as the gap thickness is increased. The distributions of charges in six gaps are measured. The space charge effect is seen in the charge distribution at the higher voltages. The logistic function is used to fit the charge distribution data. Smaller charges can be produced within smaller gas gap. But the digitization threshold should be also lowered to utilize these smaller charges.

  19. Application of carbon stripping foil to HIRFL-CSR and measurement of charge state distribution

    International Nuclear Information System (INIS)

    Charged ions may be injected into the CSRm by means of the charge stripping injection or the multiple multi-turn injection. The charge state distribution of the ions passing through the carbon foil has great influence on the performance of the accelerator and thus plays a key role in the charge stripping injection. It's found that the charge state distribution is dependent on the thicknesses of the carbon foil and the energy of the ions. In present work, the carbon stripper was applied to HIRFL-CSR and the best optional charge state distribution was measured. (authors)

  20. AC impedance behaviour and state-of-charge dependence of Zr0.5Ti0.5V0.6Cr0.2Ni1.2 metal-hydride electrodes

    Indian Academy of Sciences (India)

    S Rodrigues; N Munichandraiah; A K Shukla

    2001-10-01

    Metal-hydride electrodes made of an AB2 alloy of the composition Zr0.5Ti0.5V0.6Cr0.2Ni1.2 are studied for AC impedance behaviour at several of their state-of-charge values. Impedance data at any state-of-charge comprise two RC-time constants and accordingly are analysed by using a nonlinear-least-square-fitting procedure. Resistance of the electrode and frequency maximum (*) of the lowfrequency semicircle are found useful for predicting state-of-charge of the metalhydride electrodes.

  1. Shell-model calculations for A=18 nuclei with a finite charge-dependent potential

    Energy Technology Data Exchange (ETDEWEB)

    Deka, A.K.; Mahanta, P.

    1976-05-01

    Shell-model calculations of T = 1 isospin states of A = 18 nuclei have been performed with a realistic, finite, and charge-dependent potential. The charge dependence is found to influence the reduced integrals calculated by using the separation method and the reference spectrum method. The two-body matrix elements and the energy levels show good agreement with the results of other realistic potentials, particularly with those of the Hamada-Johnston potential. An estimate of the charge dependence of the potential is also made and compared with similar results. (AIP)

  2. Efficient charge generation by relaxed charge-transfer states at organic interfaces

    KAUST Repository

    Vandewal, Koen

    2013-11-17

    Interfaces between organic electron-donating (D) and electron-accepting (A) materials have the ability to generate charge carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold via weakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C60 and polymer:polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy. © 2014 Macmillan Publishers Limited.

  3. Dependence structure of market states

    OpenAIRE

    Desislava Chetalova; Marcel Wollschl\\"ager; Rudi Sch\\"afer

    2015-01-01

    We study the dependence structure of market states by estimating empirical pairwise copulas of daily stock returns. We consider both original returns, which exhibit time-varying trends and volatilities, as well as locally normalized ones, where the non-stationarity has been removed. The empirical pairwise copula for each state is compared with a bivariate K-copula. This copula arises from a recently introduced random matrix model, in which non-stationary correlations between returns are model...

  4. Instantaneous charge state of Uranium projectiles in fully ionized plasmas from energy loss experiments

    CERN Document Server

    Morales, Roberto; Casas, David

    2016-01-01

    The instantaneous charge state of uranium ions traveling through a fully ionized hydrogen plasma has been theoretically studied and compared with one of the first energy loss experiments in plasmas, carried out at GSI-Darmstadt by Hoffmann \\textit{et al.} in the 90's. For this purpose, two different methods to estimate the instantaneous charge state of the projectile have been employed: (1) rate equations using ionization and recombination cross sections, and (2) equilibrium charge state formulas for plasmas. Also, the equilibrium charge state has been obtained using these ionization and recombination cross sections, and compared with the former equilibrium formulas. The equilibrium charge state of projectiles in plasmas is not always reached, it depends mainly on the projectile velocity and the plasma density. Therefore, a non-equilibrium or an instantaneous description of the projectile charge is necessary. The charge state of projectile ions cannot be measured, except after exiting the target, and experime...

  5. Volume Dependence of the Axial Charge of the Nucleon

    OpenAIRE

    Hall, N. L.; Thomas, A. W.; Young, R.D.(ARC Centre of Excellence for Particle Physics at the Terascale and CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia); Zanotti, J. M.

    2012-01-01

    It is shown that the strong volume-dependence of the axial charge of the nucleon seen in lattice QCD calculations can be understood quantitatively in terms of the pion-induced interactions between neighbouring nucleons. The associated wave function renormalization leads to an increased suppression of the axial charge as the strength of the interaction increases, either because of a decrease in lattice size or in pion mass.

  6. Geometry dependence of 2-dimensional space-charge-limited currents

    CERN Document Server

    De Visschere, Patrick

    2016-01-01

    The space-charge-limited current in a zero thickness planar thin film depends on the geometry of the electrodes. We present a theory which is to a large extent analytical and applicable to many different lay-outs. We show that a space-charge-limited current can only be sustained if the emitting electrode induces a singularity in the field and if the singularity induced by the collecting electrode is not too strong. For those lay-outs where no space-charge-limited current can be sustained for a zero thickness film, the real thickness of the film must be taken into account using a numerical model.

  7. Charge and Energy Dependences of Ionization and Transfer for Helium in Collisions with Fast Charged Projectiles

    Institute of Scientific and Technical Information of China (English)

    FU Hong-Bin; WANG Bao-Hong; DING Bao-Wei; LIU Zhao-Yuan

    2009-01-01

    The classical method within the independent electron model is employed to investigate (i) charge dependences of single and double ionization for helium by various charged ions Aq+ (q = 1 - 8) at impact energies of 0.64 and 1.44 MeV/u, respectively, (ii) energy dependences of transfer ionization for helium by 0.5-3 MeV/u A8,9+ ions impact. The Lenz-Jensen model of the atom is applied instead of the Bohr model of the atom, and the impact-parameter dependences are also introduced into the calculations. Satisfactory agreement is found between theoretical and experimental data.

  8. Are There Topologically Charged States Associated with Quantum Electrodynamics ?

    CERN Document Server

    Marino, E C

    1994-01-01

    We present a formulation of Quantum Electrodynamics in terms of an antisymmetric tensor gauge field. In this formulation the topological current of this field appears as a source for the electromagnetic field and the topological charge therefore acts physically as an electric charge. The charged states of QED lie in the sector where the topological charge is identical to the matter charge. The antisymmetric field theory, however, admits new sectors where the topological charge is more general. These nontrivial, electrically charged, sectors contain massless states orthogonal to the vacuum which are created by a gauge invariant operator and can be interpreted as coherent states of photons. We evaluate the correlation functions of these states in the absence of matter. The new states have a positive definite norm and do interact with the charged states of QED in the usual way. It is argued that if these new sectors are in fact realized in nature then a very intense background electromagnetic field is necessary ...

  9. State-Dependent Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Ciann-Dong Yang

    2014-10-01

    Full Text Available This paper proposes a new mixed quantum mechanics (QM—molecular mechanics (MM approach, where MM is replaced by quantum Hamilton mechanics (QHM, which inherits the modeling capability of MM, while preserving the state-dependent nature of QM. QHM, a single mechanics playing the roles of QM and MM simultaneously, will be employed here to derive the three-dimensional quantum dynamics of diatomic molecules. The resulting state-dependent molecular dynamics including vibration, rotation and spin are shown to completely agree with the QM description and well match the experimental vibration-rotation spectrum. QHM can be incorporated into the framework of a mixed quantum-classical Bohmian method to enable a trajectory interpretation of orbital-spin interaction and spin entanglement in molecular dynamics.

  10. Charge state and incident energy dependence of K X-ray emission as a function of target thickness for 50-165 MeV Cu ions incident on 11-250 μg/cm 2 Cu

    Science.gov (United States)

    Momoi, T.; Shima, K.; Umetani, K.; Moriyama, M.; Ishihara, T.; Mikumo, T.

    1986-05-01

    Thin self-supporting Cu targets in 11-250 μg/cm 2 thickness were bombarded with 50-165 MeV Cu qi+ ions (7 ⩽ qi⩽ 24) to investigate the target thickness dependence of inner shell vacancy production processes in the symmetric collision of Cu + Cu. Doppler-shifted projectile K X-rays were discriminated from the target K X-rays, and the projectile and target K X-ray yields were separately measured as a function of target thickness. The K X-ray yields emitted from the projectile and the target Cu atoms are strongly dependent on the projectile initial charge state and target thickness for all the investigated collision systems of Cu qi+ + Cu. From the observed K X-ray yields, K-shell vacancy production cross sections averaged over the target thickness t of projectile overlineσ KV and target overlineσ ∗KV were separately derived taking into account the fluorescence yield that can be estimated from the Kα X-ray energy shift. When the values of overlineσ KV and overlineσ ∗KV are extrapolated to zero foil thickness, the K shell vacancy formed in the collision has been found to be equally shared between projectile and target in a single collision. With the increase of penetration depth, however, the values of overlineσ ∗KV are greater than those of overlineσ KV presumably due to electron transfer of a target K electron to the projectile K vacancy. the evolution process of projectile excited states as a function of target thickness and the resulting variation of projectile and target K X-ray emissions are discussed.

  11. Quantum superposition of charge states on capacitively coupled superconducting islands

    OpenAIRE

    Heij, C. P.; Dixon, D C; van der Wal, C H; Hadley, P.; Mooij, J.E.

    2003-01-01

    We investigate the ground state properties of a system containing two superconducting islands coupled capacitively by a wire. The ground state is a macroscopic superposition of charge states, even though the islands cannot exchange charge carriers. The ground state of the system is probed by measuring the switching current of a Bloch transistor containing one of the islands. Calculations based on superpositions of charge states on both islands show good agreement with the experiments. The abi...

  12. BALANCE FUNCTIONS : Multiplicity and transverse momentum dependence of the charge dependent correlations in ALICE

    NARCIS (Netherlands)

    Rodriguez Manso, A.

    2015-01-01

    The measurement of charge-dependent correlations between positively and negatively charged particles as a function of pseudorapidity and azimuthal angle, known as the \\emph{balance functions}, provide insight to the properties of matter created in high-energy collisions. The balance functions are ar

  13. Equilibrium charge-state distributions of highly stripped ions in carbon foils

    International Nuclear Information System (INIS)

    Asymmetric equilibrium charge-state distributions observed for heavy ions (Z approx. >= 7) in carbon foils at high velocities (v > 3.6 x 108 Z0sup(.)45 cm s-1) are closely approximated by a simple statistical distribution: the reduced chi-squared model. The dependences of the mean charge and of the standard deviation of the charge on the projectile velocity are obtained by a previously-known and a newly-proposed relation, respectively. Finally charge-state fractions may be easily predicted using a simple formula depending only on the atomic number and on the velocity of the projectile. (orig.)

  14. Cation charge dependence of the forces driving DNA assembly.

    Science.gov (United States)

    DeRouchey, Jason; Parsegian, V Adrian; Rau, Donald C

    2010-10-20

    Understanding the strength and specificity of interactions among biologically important macromolecules that control cellular functions requires quantitative knowledge of intermolecular forces. Controlled DNA condensation and assembly are particularly critical for biology, with separate repulsive and attractive intermolecular forces determining the extent of DNA compaction. How these forces depend on the charge of the condensing ion has not been determined, but such knowledge is fundamental for understanding the basis of DNA-DNA interactions. Here, we measure DNA force-distance curves for a homologous set of arginine peptides. All forces are well fit as the sum of two exponentials with 2.4- and 4.8-Å decay lengths. The shorter-decay-length force is always repulsive, with an amplitude that varies slightly with length or charge. The longer-decay-length force varies strongly with cation charge, changing from repulsion with Arg¹ to attraction with Arg². Force curves for a series of homologous polyamines and the heterogeneous protein protamine are quite similar, demonstrating the universality of these forces for DNA assembly. Repulsive amplitudes of the shorter-decay-length force are species-dependent but nearly independent of charge within each species. A striking observation was that the attractive force amplitudes for all samples collapse to a single curve, varying linearly with the inverse of the cation charge. PMID:20959102

  15. 77 FR 60005 - Schedule of Charges Outside the United States

    Science.gov (United States)

    2012-10-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Schedule of Charges Outside the United States AGENCY: Federal Aviation... of charges for services of FAA Flight Standards Aviation Safety Inspectors outside the United...

  16. Quantum superposition of charge states on capacitively coupled superconducting islands

    NARCIS (Netherlands)

    Heij, C.P.; Dixon, D.C.; Wal, C.H. van der; Hadley, P.; Mooij, J.E.

    2003-01-01

    We investigate the ground state properties of a system containing two superconducting islands coupled capacitively by a wire. The ground state is a macroscopic superposition of charge states, even though the islands cannot exchange charge carriers. The ground state of the system is probed by measuri

  17. The lowest-energy charge-transfer state and its role in charge separation in organic photovoltaics.

    Science.gov (United States)

    Nan, Guangjun; Zhang, Xu; Lu, Gang

    2016-06-29

    Energy independent, yet higher than 90% internal quantum efficiency (IQE), has been observed in many organic photovoltaics (OPVs). However, its physical origin remains largely unknown and controversial. The hypothesis that the lowest charge-transfer (CT) state may be weakly bound at the interface has been proposed to rationalize the experimental observations. In this paper, we study the nature of the lowest-energy CT (CT1) state, and show conclusively that the CT1 state is localized in typical OPVs. The electronic couplings in the donor and acceptor are found to determine the localization of the CT1 state. We examine the geminate recombination of the CT1 state and estimate its lifetime from first principles. We identify the vibrational modes that contribute to the geminate recombination. Using material parameters determined from first principles and experiments, we carry out kinetic Monte Carlo simulations to examine the charge separation of the localized CT1 state. We find that the localized CT1 state can indeed yield efficient charge separation with IQE higher than 90%. Dynamic disorder and configuration entropy can provide the energetic and entropy driving force for charge separation. Charge separation efficiency depends more sensitively on the dimension and crystallinity of the acceptor parallel to the interface than that normal to the interface. Reorganization energy is found to be the most important material parameter for charge separation, and lowering the reorganization energy of the donor should be pursued in the materials design. PMID:27306609

  18. The lowest-energy charge-transfer state and its role in charge separation in organic photovoltaics.

    Science.gov (United States)

    Nan, Guangjun; Zhang, Xu; Lu, Gang

    2016-06-29

    Energy independent, yet higher than 90% internal quantum efficiency (IQE), has been observed in many organic photovoltaics (OPVs). However, its physical origin remains largely unknown and controversial. The hypothesis that the lowest charge-transfer (CT) state may be weakly bound at the interface has been proposed to rationalize the experimental observations. In this paper, we study the nature of the lowest-energy CT (CT1) state, and show conclusively that the CT1 state is localized in typical OPVs. The electronic couplings in the donor and acceptor are found to determine the localization of the CT1 state. We examine the geminate recombination of the CT1 state and estimate its lifetime from first principles. We identify the vibrational modes that contribute to the geminate recombination. Using material parameters determined from first principles and experiments, we carry out kinetic Monte Carlo simulations to examine the charge separation of the localized CT1 state. We find that the localized CT1 state can indeed yield efficient charge separation with IQE higher than 90%. Dynamic disorder and configuration entropy can provide the energetic and entropy driving force for charge separation. Charge separation efficiency depends more sensitively on the dimension and crystallinity of the acceptor parallel to the interface than that normal to the interface. Reorganization energy is found to be the most important material parameter for charge separation, and lowering the reorganization energy of the donor should be pursued in the materials design.

  19. Cation Charge Dependence of the Forces Driving DNA Assembly

    OpenAIRE

    DeRouchey, Jason; Parsegian, V. Adrian; Rau, Donald C.

    2010-01-01

    Understanding the strength and specificity of interactions among biologically important macromolecules that control cellular functions requires quantitative knowledge of intermolecular forces. Controlled DNA condensation and assembly are particularly critical for biology, with separate repulsive and attractive intermolecular forces determining the extent of DNA compaction. How these forces depend on the charge of the condensing ion has not been determined, but such knowledge is fundamental fo...

  20. SOLARPROP: Charge-sign Dependent Solar Modulation for Everyone

    CERN Document Server

    Kappl, Rolf

    2015-01-01

    We present SOLARPROP, a tool to compute the influence of charge-sign dependent solar modulation for cosmic ray spectra. SOLARPROP is able to use the output of popular tools like GALPROP or DRAGON and offers the possibility to embed new models for solar modulation. We present some examples for proton, antiproton and positron fluxes in the light of the recent PAMELA and AMS-02 data.

  1. State-dependent visual processing

    Directory of Open Access Journals (Sweden)

    Juliane eBritz

    2011-12-01

    Full Text Available The temporal dynamics and anatomical correlates underlying human visual cognition are traditionally assessed as a function of stimulus properties and task demands. Any non-stimulus related activity is commonly dismissed as noise and eliminated to extract an evoked signal that is only a small fraction of the magnitude of the measured signal. We review studies that challenge this view by showing that non-stimulus related activity is not mere noise but that it has a well structured organization which can largely determine the processing of upcoming stimuli. We review evidence from human electrophysiology that shows how different aspects of pre-stimulus activity such as pre-stimulus EEG frequency power and phase and pre-stimulus EEG microstates can determine qualitative and quantitative properties of both lower and higher level visual processing. These studies show that low-level sensory processes depend on the momentary excitability of sensory cortices whereas perceptual processes leading to stimulus awareness depend on momentary pre-stimulus activity in higher-level non-visual brain areas. Speed and accuracy of stimulus identification have likewise been shown to be modulated by pre-stimulus brain states.

  2. Formation of High Charge State Heavy Ion Beams with intense Space Charge

    International Nuclear Information System (INIS)

    High charge-state heavy-ion beams are of interest and used for a number of accelerator applications. Some accelerators produce the beams downstream of the ion source by stripping bound electrons from the ions as they pass through a foil or gas. Heavy-ion inertial fusion (HIF) would benefit from low-emittance, high current ion beams with charge state >1. For these accelerators, the desired dimensionless perveance upon extraction from the emitter is ∼10-3, and the electrical current of the beam pulse is ∼1 A. For accelerator applications where high charge state and very high current are desired, space charge effects present unique challenges. For example, in a stripper, the separation of charge states creates significant nonlinear space-charge forces that impact the beam brightness. We will report on the particle-in-cell simulation of the formation of such beams for HIF, using a thin stripper at low energy.

  3. Influence of Multiple Ionization on Charge State Distributions

    Science.gov (United States)

    Hahn, Michael; Savin, Daniel Wolf

    2015-08-01

    The spectrum emitted by a plasma depends on the charge state distribution (CSD) of the gas. For collisionally ionized plasmas, the CSD is is determined by the corresponding rates for electron-impact ionization and recombination. In astrophysics, such plasmas are formed in stars, supernova remnants, galaxies, and galaxy clusters. Current CSD calculations generally do not account for electron-impact multiple ionization (EIMI), a process in which multiple electrons are ejected by a single electron-ion collision. We have estimated the EIMI cross sections for all charge states of iron using a combination of the available experimental data and semi-empirical formulae. We then modeled the CSD and observed the influence of EIMI compared to only including single ionization. One case of interest for astrophysics is nanoflare heating, which is a leading theory to explain the heating of the solar corona. In order to determine whether this theory can indeed explain coronal heating, spectroscopic measurements are being compared to model nanoflare spectra. Such models have attempted to predict the spectra of impulsively heated plasmas in which the CSD is time dependent. These nonequilbirium ionization calculations have so far ignored EIMI, but our findings suggest that EIMI can have a significant effect on the CSD of a nanoflare-heated plasma, changing the ion abundances by up to about 50%.

  4. Generating the Schroedinger cat state in a nanomechanical resonator coupled to a charge qubit

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian-Qi; Feng, Mang [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan (China); Xiong, Wei [Department of Physics and State of Key Laboratory of Surface Physics, Fudan University, Shanghai (China); Zhang, Shuo [College of Science, National University of Defense Technology, Changsha (China); Li, Yong [Beijing Computational Science Research Center, Beijing (China)

    2015-01-01

    A scheme for generating the Schroedinger cat state based on geometric operations by a nanomechanical resonator coupled to a superconducting charge qubit is proposed. The charge qubit, driven by two strong classical fields, interacts with a high-frequency phonon mode of the nanomechanical resonator. During the operation, the charge qubit undergoes no real transitions, while the phonon mode of the nanomechanical resonator is displaced along different paths in the phase space, dependent on the states of the charge qubit. This generates the entangled cat state between the NAMR and charge qubit, and the NAMR cat state can be achieved after some operations applied on this entangled cat state. The robustness of the scheme is justified by considering noise from environment, and the feasibility of the scheme is discussed. (copyright 2014 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Charge-State Distributions of Accelerated ^{48}Ca Ions

    CERN Document Server

    Skobelev, N K; Astabatyan, R A; Vincour, J; Kulko, A A; Lobastov, S P; Lukyanov, S M; Markaryan, E R; Maslov, V A; Penionzhkevich, Yu E; Sobolev, Yu G; Ugryumov, V Yu

    2003-01-01

    A stepped pole broad-range magnetic analyzer has been used to measure the charge-state distributions of accelerated ^{48}Ca ions at the two incident energies 242.8 and 264.5 MeV after passing through thin carbon or gold target foils. The measured charge-state distributions and the mean equilibrium charge of the ^{48}Ca ions are compared with various calculations. It has been shown that the calculations can be used only for evaluation purposes.

  6. Charge distribution dependency on gap thickness of CMS endcap RPC

    CERN Document Server

    Park, Sung Keun

    2016-01-01

    We present a systematic study of charge distribution dependency of CMS Resistive Plate Chamber (RPC) on gap thickness.Prototypes of double-gap with five different gap thickness from 1.8mm to 1.0mm in 0.2mm steps have been built with 2mm thick phenolic high-pressure-laminated (HPL) plates. The charges of cosmic-muon signals induced on the detector strips are measured as a function of time using two four-channel 400-MHz fresh ADCs. In addition, the arrival time of the muons and the strip cluster sizes are measured by digitizing the signal using a 32-channel voltage-mode front-end-electronics and a 400-MHz 64-channel multi-hit TDC. The gain and the input impedance of the front-end-electronics were 200mV/mV and 20 Ohm, respectively.

  7. 78 FR 61446 - Schedule of Charges Outside the United States

    Science.gov (United States)

    2013-10-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Schedule of Charges Outside the United States AGENCY: Federal Aviation... for services of FAA Flight Standards Aviation Safety Inspectors outside the United States....

  8. A multi-state fragment charge difference approach for diabatic states in electron transfer: Extension and automation

    Science.gov (United States)

    Yang, Chou-Hsun; Hsu, Chao-Ping

    2013-10-01

    The electron transfer (ET) rate prediction requires the electronic coupling values. The Generalized Mulliken-Hush (GMH) and Fragment Charge Difference (FCD) schemes have been useful approaches to calculate ET coupling from an excited state calculation. In their typical form, both methods use two eigenstates in forming the target charge-localized diabatic states. For problems involve three or four states, a direct generalization is possible, but it is necessary to pick and assign the locally excited or charge-transfer states involved. In this work, we generalize the 3-state scheme for a multi-state FCD without the need of manual pick or assignment for the states. In this scheme, the diabatic states are obtained separately in the charge-transfer or neutral excited subspaces, defined by their eigenvalues in the fragment charge-difference matrix. In each subspace, the Hamiltonians are diagonalized, and there exist off-diagonal Hamiltonian matrix elements between different subspaces, particularly the charge-transfer and neutral excited diabatic states. The ET coupling values are obtained as the corresponding off-diagonal Hamiltonian matrix elements. A similar multi-state GMH scheme can also be developed. We test the new multi-state schemes for the performance in systems that have been studied using more than two states with FCD or GMH. We found that the multi-state approach yields much better charge-localized states in these systems. We further test for the dependence on the number of state included in the calculation of ET couplings. The final coupling values are converged when the number of state included is increased. In one system where experimental value is available, the multi-state FCD coupling value agrees better with the previous experimental result. We found that the multi-state GMH and FCD are useful when the original two-state approach fails.

  9. Charge-displacement analysis for excited states

    Energy Technology Data Exchange (ETDEWEB)

    Ronca, Enrico, E-mail: enrico@thch.unipg.it; Tarantelli, Francesco, E-mail: francesco.tarantelli@unipg.it [Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123 Perugia (Italy); Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, I-06123 Perugia (Italy); Pastore, Mariachiara, E-mail: chiara@thch.unipg.it; Belpassi, Leonardo; De Angelis, Filippo [Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123 Perugia (Italy); Angeli, Celestino; Cimiraglia, Renzo [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, via Borsari 46, I-44100 Ferrara (Italy)

    2014-02-07

    We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations. The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.

  10. Plasma as a high-charge-state projectile stripping medium

    International Nuclear Information System (INIS)

    The classical trajectory Monte Carlo model has been used to computationally study the charge-state distributions that result from interactions between a high-energy, multielectron projectile and neutral and fully ionized targets. These studies are designed to determine the properties of a plasma for producing highly stripped ions as a possible alternative to gas and foil strippers that are commonly used to enhance the charge states of energetic ion beams. The results of these studies clearly show that a low-atomic-number, highly ionized plasma can yield higher charge states than a neutral target of the same density. The effect is principally attributable to the reduction in the number of available electron-capture channels. In this article, we compare the charge-state distributions that result during passage of a 20-MeV Pb projectile through neutral gas and fully ionized (singly charged) plasma strippers and estimate the effects of multiple scattering on the quality of the beam

  11. Charge states of energetic tellurium ions: Equilibrium and non-equilibrium calculations

    Science.gov (United States)

    Kartavykh, Y.; Droege, W.; Klecker, B.; Kocharov, L.; Moebius, E.

    2007-12-01

    Recently, very high abundances of ultraheavy ions were observed in impulsive SEP events, compared to coronal abundances with enrichment factors of >100 for atomic mass > 100 amu. Because wave/particle interaction processes, as discussed for heavy ion enrichment and acceleration, depend critically on the mass per charge (M/Q) of the ions, an estimate of the ionic charge is very important for model calculations. In any realistic acceleration model one would have to use the ionization and recombination rates of these ions as a function of energy, because charge changing processes in the solar corona are inevitable and energy dependent. As an example of high mass ions, we calculate the equilibrium and non-equilibrium charge states for tellurium ions (Te, nuclear charge 52), and present a method to estimate the cross sections and rates for ionization and recombination of ions with arbitrary nuclear charge Z and atomic mass number A.

  12. Charge sensitive amplifies. The state of arts

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kunishiro [Clear Pulse Co., Tokyo (Japan)

    1996-07-01

    In the radiation detectors, signals are essentially brought with charges produced by radiation, then it is naturally the best way to use a charge sensitive amplifier (CSA) system to extract those signals. The CSA is thought to be the best amplifier suitable to almost all the radiation detectors, if neglecting economical points of view. The CSA has been only applied to special fields like radiation detection because the concept of `charges` is not so universal against the concepts of `voltage` and `current`. The CSA, however, is low in noise and a high speed amplifier and may be applicable not only to radiation measurement but also piezoelectric devices and also bolometers. In this article, noise in the CSA, basic circuit on the CSA, concepts of `equivalent noise charge` (ENC), a method for the ENC, and importance of the `open-loop gain` in the CSA to achieve better performance of it and how to realize in a practical CSA were described. And, characteristics on a counting rate of the CSA, various circuit used in the CSA, and CSAs which are commercially available at present and special purpose CSAs were also introduced. (G.K.)

  13. Support vector based battery state of charge estimator

    Science.gov (United States)

    Hansen, Terry; Wang, Chia-Jiu

    This paper investigates the use of a support vector machine (SVM) to estimate the state-of-charge (SOC) of a large-scale lithium-ion-polymer (LiP) battery pack. The SOC of a battery cannot be measured directly and must be estimated from measurable battery parameters such as current and voltage. The coulomb counting SOC estimator has been used in many applications but it has many drawbacks [S. Piller, M. Perrin, Methods for state-of-charge determination and their application, J. Power Sources 96 (2001) 113-120]. The proposed SVM based solution not only removes the drawbacks of the coulomb counting SOC estimator but also produces accurate SOC estimates, using industry standard US06 [V.H. Johnson, A.A. Pesaran, T. Sack, Temperature-dependent battery models for high-power lithium-ion batteries, in: Presented at the 17th Annual Electric Vehicle Symposium Montreal, Canada, October 15-18, 2000. The paper is downloadable at website http://www.nrel.gov/docs/fy01osti/28716.pdf] aggressive driving cycle test procedures. The proposed SOC estimator extracts support vectors from a battery operation history then uses only these support vectors to estimate SOC, resulting in minimal computation load and suitable for real-time embedded system applications.

  14. Microwave ion source for low charge state ion production

    Science.gov (United States)

    Reijonen, J.; Eardley, M.; Gough, R.; Leung, K.; Thomae, R.

    2003-10-01

    The Plasma and Ion Source Technology Group at LBNL have developed a microwave ion source. The source consists of a stainless-steel plasma chamber, a permanent-magnet dipole structure and a coaxial microwave feed. Measurements were carried out to characterize the plasma and the ion beam produced in the ion source. These measurements included current density, charge state distribution, gas efficiency and accelerated beam emittance measurements. Using a computer controlled data acquisition system a new method of determining the saturation ion current was developed. Current density of 3-6 mA/cm 2 was measured with the source operating in the over dense mode. The highest measured charge-states were Ar 5+, O 3+ and Xe 7+. Gas efficiency was measured using a calibrated argon leak. Depending on the source pressure and discharge power, more than 20% total gas efficiency was achieved. The emittance of the ion beam was measured by using a pepper-pot device. Certain spread was noticed in the beam emittance in the perpendicular direction to the source dipole field. For the parallel direction to the magnetic field, the normalized rr' emittance of 0.032 π-mm-mrad at 13 kV of acceleration voltage and beam exit aperture of 3-mm-in-diameter was measured. This compares relatively well with the simulated value of 4 rms, normalized emittance value of 0.024 π-mm-mrad.

  15. Coulomb charging energy of vacancy-induced states in graphene

    Science.gov (United States)

    Miranda, V. G.; Dias da Silva, Luis G. G. V.; Lewenkopf, C. H.

    2016-08-01

    Vacancies in graphene have been proposed to give rise to π -like magnetism in carbon materials, a conjecture which has been supported by recent experimental evidence. A key element in this "vacancy magnetism" is the formation of magnetic moments in vacancy-induced electronic states. In this work we compute the charging energy U of a single-vacancy-generated localized state for bulk graphene and graphene ribbons. We use a tight-binding model to calculate the dependency of the charging energy U on the amplitudes of the localized wave function on the graphene lattice sites. We show that for bulk graphene U scales with the system size L as (lnL) -2, confirming the predictions in the literature, based on heuristic arguments. In contrast, we find that for realistic system sizes U is of the order of eV, a value that is orders of magnitude higher than the previously reported estimates. Finally, when edges are considered, we show that U is very sensitive to the vacancy position with respect to the graphene flake boundaries. In the case of armchair nanoribbons, we find a strong enhancement of U in certain vacancy positions as compared to the value for vacancies in bulk graphene.

  16. Recoil ion charge state distribution following the beta(sup +) decay of {sup 21}Na

    Energy Technology Data Exchange (ETDEWEB)

    Scielzo, Nicholas D.; Freedman, Stuart J.; Fujikawa, Brian K.; Vetter, Paul A.

    2003-01-03

    The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions.

  17. Spin Charge Separation in the Quantum Spin Hall State

    OpenAIRE

    Qi, Xiao-Liang; Zhang, Shou-Cheng

    2007-01-01

    The quantum spin Hall state is a topologically non-trivial insulator state protected by the time reversal symmetry. We show that such a state always leads to spin-charge separation in the presence of a $\\pi$ flux. Our result is generally valid for any interacting system. We present a proposal to experimentally observe the phenomenon of spin-charge separation in the recently discovered quantum spin Hall system.

  18. Spin Charge Separation in the Quantum Spin Hall State

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Liang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum spin Hall state is a topologically non-trivial insulator state protected by the time reversal symmetry. We show that such a state always leads to spin-charge separation in the presence of a {pi} flux. Our result is generally valid for any interacting system. We present a proposal to experimentally observe the phenomenon of spin-charge separation in the recently discovered quantum spin Hall system.

  19. The axial charges of the hidden-charm pentaquark states

    CERN Document Server

    Wang, Guang-Juan; Zhu, Shi-Lin

    2016-01-01

    With the chiral quark model, we have calculated the axial charges of the pentaquark states with $(I,I_3)=(\\frac{1}{2},\\frac{1}{2})$ and $J^{P}=\\frac{1}{2}^{\\pm},\\frac{3}{2}^{\\pm},\\frac{5}{2}^{\\pm}$. The $P_c$ states with the same $J^P$ quantum numbers but different color-spin-flavor configurations have very different axial charges, which encode important information on their underlying structures. For some of the $J^{P}=\\frac{3}{2}^{\\pm}$ or $\\frac{5}{2}^{\\pm}$ pentaquark states, their axial charges are much smaller than that of the proton.

  20. Evidence of Delocalization in Charge-Transfer State Manifold for Donor:Acceptor Organic Photovoltaics.

    Science.gov (United States)

    Guan, Zhiqiang; Li, Ho-Wa; Zhang, Jinfeng; Cheng, Yuanhang; Yang, Qingdan; Lo, Ming-Fai; Ng, Tsz-Wai; Tsang, Sai-Wing; Lee, Chun-Sing

    2016-08-24

    How charge-transfer states (CTSs) assist charge separation of a Coulombically bound exciton in organic photovoltaics has been a hot topic. It is believed that the delocalization feature of a CTS plays a crucial role in the charge separation process. However, the delocalization of the "hot" and the "relaxed" CTSs is still under debate. Here, with a novel frequency dependent charge-modulated electroabsorption spectroscopy (CMEAS) technique, we elucidate clearly that both "hot" and "relaxed" CTSs are loosely bound and delocalized states. This is confirmed by comparing the CMEAS results of CTSs with those of localized polaron states. Our results reveal the role of CTS delocalization on charge separation and indicate that no substantial delocalization gradient exists in CTSs.

  1. Charging state of atmospheric nanoparticles during the nucleation burst events

    Science.gov (United States)

    Vana, M.; Tamm, E.; Hõrrak, U.; Mirme, A.; Tammet, H.; Laakso, L.; Aalto, P. P.; Kulmala, M.

    2006-12-01

    In this work, the charging state of atmospheric nanoparticles was estimated through simultaneous measurements of aerosol size distribution and air ions mobility distribution with the aim to elucidate the formation mechanisms of atmospheric aerosols. The measurements were performed as a part of the QUEST 2 campaign at a boreal forest station in Finland. The overlapping part of the measurement ranges of the particle size spectrometers and air ion mobility spectrometers in the mass diameter interval of 2.6-40 nm was used to assess the percentage of charged particles (charging probability). This parameter was obtained as the slope of the linear regression line on the scatterplot of the measured concentrations of total (neutral + charged) and charged particles for the same diameter interval. Charging probabilities as a function of particle diameter were calculated for different days and were compared with the steady state charging probabilities of the particles in the bipolar ion atmosphere. For the smallest particles detectable by the particle size spectrometers (2.6-5 nm), the high percentages of negatively charged particles were found during the nanometer particle concentration bursts. These values considerably exceeded the values for the steady charging state and it was concluded that negative cluster ions preferably act as condensation nuclei. This effect was found to be the highest in the case of comparatively weak nucleation bursts of nanoparticles, when the rate of the homogeneous nucleation and the concentration of freshly nucleated particles were low. The nucleation burst days were classified according to the concentration of the generated smallest detectable new particles (weak and strong bursts). Approximately the same classification was obtained based on the charge asymmetry on particles with respect to the charge sign (polarity). The probabilities of negative and positive charge on the particles with the diameter of 5-20 nm were found to be nearly equal

  2. Even and Odd Charge Coherent States: Higher-Order Nonclassical Properties and Generation Scheme

    Science.gov (United States)

    Duc, Truong Minh; Dinh, Dang Huu; Dat, Tran Quang

    2016-06-01

    We examine the higher-order nonclassical properties of the even and odd charge coherent states as well as proposing a scheme to generate these states whose modes can freely travel in open space. We show that the even and odd charge coherent states exhibit both higher-order antibunching and higher-order squeezing. While the two-mode higher-order antibunching occurs in any order and essentially depends on the charge number, the two-mode higher-order squeezing appears only in the even orders. We also prove that these states are genuinely entangled, and they can be generated by means of cross-Kerr media, beam splitters, phase shifts and threshold detectors. We find that the fidelity and the corresponding success probability to generate these states are dependent on the correlative parameters.

  3. Gauge Transformations For Self/Anti-Self Charge Conjugate States

    CERN Document Server

    Dvoeglazov, V V

    1998-01-01

    Gauge transformations of type-II spinors are considered in the Majorana-Ahluwalia construct for self/anti-self charge conjugate states. Some speculations on the relations of this model with the earlier ones are given.

  4. Measurements of aerosol charging states in Helsinki, Finland

    Directory of Open Access Journals (Sweden)

    S. Gagné

    2011-05-01

    Full Text Available The charging state of aerosol populations was measured with an Ion-DMPS in Helsinki, Finland between December 2008 and February 2010. Based on the charging states, we calculated the ion-induced nucleation fraction to be around 0.8 % ± 0.9 %. We review the role of ion-induced nucleation and propose different explanations for a low ion-induced nucleation participation in urban areas. We present a new method to retrieve the average charging state for an event, and a given size. We also use a new theoretical framework that allows for different concentrations of small cluster ions for different polarities (polarity asymmetry. We extrapolate the ion-induced fraction using polarity symmetry and asymmetry. Finally, a method to calculate the growth rates from the variation of the charging state as a function of the particle diameter using polarity symmetry and asymmetry is presented and used on a selection of new particle formation events.

  5. Heavy ion charge-state distribution effects on energy loss in plasmas

    Science.gov (United States)

    Barriga-Carrasco, Manuel D.

    2013-10-01

    According to dielectric formalism, the energy loss of the heavy ion depends on its velocity and its charge density. Also, it depends on the target through its dielectric function; here the random phase approximation is used because it correctly describes fully ionized plasmas at any degeneracy. On the other hand, the Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler is used to determine its mean charge state . This latter criterion implies that the mean charge state depends on the electron density and temperature of the plasma. Also, the initial charge state of the heavy ion is crucial for calculating inside the plasma. Comparing our models and estimations with experimental data, a very good agreement is found. It is noticed that the energy loss in plasmas is higher than that in the same cold gas cases, confirming the well-known enhanced plasma stopping (EPS). In this case, EPS is only due to the increase in projectile effective charge Qeff, which is obtained as the ratio between the energy loss of each heavy ion and that of the proton in the same plasma conditions. The ratio between the effective charges in plasmas and in cold gases is higher than 1, but it is not as high as thought in the past. Finally, another significant issue is that the calculated effective charge in plasmas Qeff is greater than the mean charge state , which is due to the incorporation of the BK charge distribution. When estimations are performed without this distribution, they do not fit well with experimental data.

  6. Explosion and final state of the charged black hole bomb

    CERN Document Server

    Sanchis-Gual, Nicolas; Montero, Pedro J; Font, José A; Herdeiro, Carlos

    2015-01-01

    A Reissner-Nordstr\\"om black hole (BH) is superradiantly unstable against spherical perturbations of a charged scalar field, enclosed in a cavity, with frequency lower than a critical value. We use numerical relativity techniques to follow the development of this unstable system -- dubbed charged BH bomb -- into the non-linear regime, solving the full Einstein--Maxwell--Klein-Gordon equations, in spherical symmetry. We show that: $i)$ the process stops before all the charge is extracted from the BH; $ii)$ the system settles down into a hairy BH: a charged horizon in equilibrium with a scalar field condensate, whose phase is oscillating at the (final) critical frequency. For low scalar field charge, $q$, the final state is approached smoothly and monotonically. For large $q$, however, the energy extraction overshoots and an explosive phenomenon, akin to a $bosenova$, pushes some energy back into the BH. The charge extraction, by contrast, does not reverse.

  7. Equilibrium charge state distributions of high energy heavy ions

    International Nuclear Information System (INIS)

    Equilibrium charge state fractions have been measured for N, O, Ne, S, Ar and Kr ions at 1.04 MeV/nucleon after passing through various stripping materials. Further data were obtained at higher energy for S ions (4.12 MeV/nucleon) and Ar ions (4.12 and 9.6 MeV/nucleon). The mean charge fractions can be fitted to universal curves for both solid and gaseous strippers. Measurements of the equilibrium fraction of krypton ions at 1.04 MeV/nucleon passing through heavy vapours have shown that a higher average charge state is obtained than for lighter gaseous strippers. (Auth.)

  8. Strong Asymmetric Charge Carrier Dependence in Inelastic Electron Tunneling Spectroscopy of Graphene Phonons.

    Science.gov (United States)

    Natterer, Fabian D; Zhao, Yue; Wyrick, Jonathan; Chan, Yang-Hao; Ruan, Wen-Ying; Chou, Mei-Yin; Watanabe, Kenji; Taniguchi, Takashi; Zhitenev, Nikolai B; Stroscio, Joseph A

    2015-06-19

    The observation of phonons in graphene by inelastic electron tunneling spectroscopy has been met with limited success in previous measurements arising from weak signals and other spectral features which inhibit a clear distinction between phonons and miscellaneous excitations. Utilizing a back-gated graphene device that allows adjusting the global charge carrier density, we introduce an averaging method where individual tunneling spectra at varying charge carrier density are combined into one representative spectrum. This method improves the signal for inelastic transitions while it suppresses dispersive spectral features. We thereby map the total graphene phonon density of states, in good agreement with density functional calculations. Unexpectedly, an abrupt change in the phonon intensity is observed when the graphene charge carrier type is switched through a variation of the back-gate electrode potential. This sudden variation in phonon intensity is asymmetric in the carrier type, depending on the sign of the tunneling bias.

  9. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several {mu}s) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution.

  10. Charge states of energetic oxygen and sulfur ions in Jupiter's magnetosphere

    Science.gov (United States)

    Clark, G.; Mauk, B. H.; Paranicas, C.; Kollmann, P.; Smith, H. T.

    2016-03-01

    Pitch angle distributions of proton and energetic heavy ion fluxes near Europa's orbit have been measured by the Galileo Energetic Particles Detector (EPD). At similar energies, these distributions have important differences. If their source and transport processes are similar, as we hypothesize here, then it is difficult to reconcile their different pitch angle distributions. By looking at the same question, other researchers have proposed that the heavies are multiply charged, leading to differences in how the particles are lost. This could not be confirmed directly with EPD because that detector does not separate heavy ion measurements by charge state. However, indirect analyses of the data have extracted the charge state of a few sulfur events. We present here a complete list of ion injections observed with EPD over the whole mission. Energetic sulfur and oxygen charge states can be inferred through a dispersion analysis of dynamic injections that makes use of the charge-dependent nature of the gradient-curvature azimuthal drift. We find that sulfur is predominantly multiply charged, whereas oxygen is more evenly distributed between singly and doubly charged states. In addition to current theories on energetic heavy ion transport near the Europa region, we propose that charge gain for the oxygen ions (electron stripping) may play an important role in the character of energetic particles in that region.

  11. SOLARPROP: Charge-sign dependent solar modulation for everyone

    Science.gov (United States)

    Kappl, Rolf

    2016-10-01

    We present SOLARPROP, a tool to compute the influence of charge-sign dependent solar modulation for cosmic ray spectra. SOLARPROP is able to use the output of popular tools like GALPROP or DRAGON and offers the possibility to embed new models for solar modulation. We present some examples for proton, antiproton and positron fluxes in the light of the recent PAMELA and AMS-02 data. Catalogue identifier: AFAP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFAP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: MIT licence (MIT) No. of lines in distributed program, including test data, etc.: 15347 No. of bytes in distributed program, including test data, etc.: 125635 Distribution format: tar.gz Programming language: C++ll. Computer: PC. Operating system: Linux. Classification: 1.1, 1.6. External routines: cfitsio, CCFITS Nature of problem: Calculation of the influence on cosmic rays by the heliosphere including drift effects. Solution method: Stochastic differential equations. Additional comments: Simple interface for text and FITS format input and output. Running time: Between a few seconds and a few minutes depending on the physical model.

  12. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein.

    Science.gov (United States)

    Ahn, Tae Kyu; Avenson, Thomas J; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K; Bassi, Roberto; Fleming, Graham R

    2008-05-01

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). We found evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a delocalized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can "tune" the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophyll-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  13. ARCHITECTURE OF A CHARGE-TRANSFER STATE REGULATING LIGHT HARVESTING IN A PLANT ANTENNA PROTEIN

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Graham; Ahn, Tae Kyu; Avenson, Thomas J.; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K.; Bassi, Roberto; Fleming, Graham R.

    2008-04-02

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge-transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). In this work, we present evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a de-localized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can `tune? the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophylls-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  14. Charge dependence of the plasma travel length in atmospheric-pressure plasma

    Science.gov (United States)

    Yambe, Kiyoyuki; Konda, Kohmei; Masuda, Seiya

    2016-06-01

    Plasma plume is generated using a quartz tube, helium gas, and foil electrode by applying AC high voltage under the atmosphere. The plasma plume is released into the atmosphere from inside of the quartz tube and is seen as the continuous movement of the plasma bullet. The travel length of plasma bullet is defined from plasma energy and force due to electric field. The drift velocity of plasma bullet has the upper limit under atmospheric-pressure because the drift velocity is determined from the balance between electric field and resistive force due to collisions between plasma and air. The plasma plume charge depends on the drift velocity. Consequently, in the laminar flow of helium gas flow state, the travel length of the plasma plume logarithmically depends on the plasma plume charge which changes with both the electric field and the resistive force.

  15. Modulation of nitrogen vacancy charge state and fluorescence in nanodiamonds using electrochemical potential

    Science.gov (United States)

    Karaveli, Sinan; Gaathon, Ophir; Wolcott, Abraham; Sakakibara, Reyu; Shemesh, Or A.; Peterka, Darcy S.; Boyden, Edward S.; Owen, Jonathan S.; Yuste, Rafael; Englund, Dirk

    2016-04-01

    The negatively charged nitrogen vacancy (NV-) center in diamond has attracted strong interest for a wide range of sensing and quantum information processing applications. To this end, recent work has focused on controlling the NV charge state, whose stability strongly depends on its electrostatic environment. Here, we demonstrate that the charge state and fluorescence dynamics of single NV centers in nanodiamonds with different surface terminations can be controlled by an externally applied potential difference in an electrochemical cell. The voltage dependence of the NV charge state can be used to stabilize the NV- state for spin-based sensing protocols and provides a method of charge state-dependent fluorescence sensing of electrochemical potentials. We detect clear NV fluorescence modulation for voltage changes down to 100 mV, with a single NV and down to 20 mV with multiple NV centers in a wide-field imaging mode. These results suggest that NV centers in nanodiamonds could enable parallel optical detection of biologically relevant electrochemical potentials.

  16. An EBIS for charge state breeding in the SPES project

    Indian Academy of Sciences (India)

    V Variale; G Brautti; T Clauser; A Rainò; V Stagno; G Lamanna; V Valentino; A Boggia; Y Boimelshtein; P Logatchov; B Skarbo; M Tiunov

    2002-11-01

    The ‘charge state breeder’, BRIC (breeding ion charge) is in construction at the INFN section of Bari (Italy). It is based on EBIS scheme and it is designed to accept radioactive ion beam (RIB) with charge state +1 in a slow injection mode. This experiment can be considered as a first step towards the design and construction of a charge breeder for the SPES project. The new feature of BRIC, with respect to the classical EBIS, is given by the insertion, in the ion chamber, of a rf-quadrupole aiming at filtering the unwanted masses and then making a more efficient containment of the wanted ions. In this paper, the breeder design, the simulation results of the electron and ion beam propagation and the construction problems of the device will be reported.

  17. Devitrification of the glassy state in suspensions of charged platelets

    NARCIS (Netherlands)

    Mourad, M.C.D.; Verhoeff, A.A.; Belov, D.V.; Petukhov, A.V.; Lekkerkerker, H.N.W.

    2009-01-01

    Colloidal suspensions of charged gibbsite platelets at salt concentrations of 10−2 M and below and with a sufficiently high particle concentration form a kinetically arrested, glassy state. We study the evolution of the glassy state in suspensions of three different gibbsite systems. Despite differe

  18. Charge-state dynamics in electrostatic force spectroscopy

    Science.gov (United States)

    Ondráček, Martin; Hapala, Prokop; Jelínek, Pavel

    2016-07-01

    We present a numerical model that allows us to study the response of an oscillating probe in electrostatic force spectroscopy to charge switching in quantum dots at various time scales. The model provides more insight into the behavior of frequency shift and dissipated energy under different scanning conditions when measuring a temporarily charged quantum dot on a surface. Namely, we analyze the dependence of the frequency shift, the dissipated energy, and their fluctuations on the resonance frequency of the tip and on the electron tunneling rates across the tip–quantum dot and quantum dot–sample junctions. We discuss two complementary approaches to simulating the charge dynamics, a stochastic and a deterministic one. In addition, we derive analytic formulas valid for small amplitudes, describing relations between the frequency shift, dissipated energy, and the characteristic rates driving the charging and discharging processes.

  19. Balance functions: Multiplicity and transverse momentum dependence of the charge dependent correlations in ALICE

    CERN Document Server

    AUTHOR|(CDS)2078856; Snellings, Raimond; Christakoglou, Panos

    The measurement of charge-dependent correlations between positively and negatively charged particles as a function of pseudorapidity and azimuthal angle, known as the balance functions, provide insight to the properties of matter created in high-energy collisions. The balance functions are argued to probe the creation time of the particles and are also sensitive to the collective motion of the system. In this thesis, I present the results of the measured balance functions in p--Pb collisions at √sNN = 5.02~TeV obtained with the ALICE detector at the LHC. The results are compared with balance functions measured in pp and Pb--Pb collisions at √s=7~TeV and √sNN = 2.76~TeV$, respectively. The width of the balance functions in both pseudorapidity and azimuthal angle for non-identified charged particles decreases with increasing multiplicity in all three systems, for particles with low transverse momentum value pT < 2~GeV/c. For higher values of transverse momentum the balance functions become narrower and...

  20. Charge state distributions of iron in impulsive solar flares: Importance of stripping effects

    Science.gov (United States)

    Ostryakov, V. M.; Kartavykh, Y. Y.; Ruffolo, D.; Kovaltsov, G. A.; Kocharov, L.

    2000-12-01

    A model of stochastic acceleration of heavy ions by Alfvén wave turbulence has been developed. It takes into account spatial diffusion, Coulomb losses, and the possibility of charge changes for ions during stochastic acceleration. The main processes influencing the ionic charge states are the stripping by thermal electrons and protons as constituents of a surrounding medium and dielectronic and radiative recombination. We have calculated energy spectra and charge distributions of nonthermal Fe ions as a sample species. The dependence of the charge distributions and energy spectra of iron on the parameters of the plasma (temperature and number density) is studied. We compare our results with measurements to date of the mean charge of iron in impulsive solar flare events and conclude that they indicate source plasma ionization temperatures between 6□×106 and 107K.

  1. Path Integral Control and State Dependent Feedback

    OpenAIRE

    Thijssen, Sep; Kappen, H. J.

    2014-01-01

    In this paper we address the problem to compute state dependent feedback controls for path integral control problems. To this end we generalize the path integral control formula and utilize this to construct parameterized state dependent feedback controllers. In addition, we show a novel relation between control and importance sampling: better control, in terms of control cost, yields more efficient importance sampling, in terms of effective sample size. The optimal control provides a zero-va...

  2. State Dependence in Unemployment among Danish Immigrants

    OpenAIRE

    Ahmad, Nisar

    2009-01-01

    This study examines the extent state dependence among unemployed Danish immigrants in a dynamic discrete choice framework. Three alternative methodologies are employed to control for the problem of the initial condition. The empirical findings show that there is a considerable correlation between the unobserved individual heterogeneity and the initial condition and that the degree of state dependence is overstated if we do not address this problem. The results show that an individual who was ...

  3. Nonadiabatic couplings and charge transfer study in H + CS+ collision using time-dependent quantum dynamics

    Science.gov (United States)

    Kaur, Rajwant; Dhilip Kumar, T. J.

    2015-11-01

    Experiments have reported the high stability of HCS+ ion and inhibit to decompose over the range of collision energies. In this study, the various energy transfer channels of atomic H collision with CS+ molecular ion has been performed by ab initio computations at the multireference configuration interaction/aug-cc-pVQZ level of theory. The ground and several low-lying excited electronic state potential energy surfaces in three different molecular orientations, namely, two collinear configurations with, (1) H approaching the S atom (γ = 0°), (2) H approaching the C atom (γ = 180°) and one perpendicular configuration, (3) H approaching the centre of mass of CS (γ = 90°) with the diatom fixed at the equilibrium bond length, have been obtained. Nonadiabatic effects with Landau-Zener coupling leading to avoided crossings are observed between the ground- and the first-excited states in γ = 90° orientation, and also between the first- and second-excited states in γ = 180° orientation. Quantum dynamics have been performed to study the charge transfer using time-dependent wave packet method on the diabatic potential energy surfaces. The probability of charge transfer is found to be highest with 42% in γ = 180°. The high charge transfer probability result in the formation of H+ + CS channel which ascertains the high stability of HCS+ ion.

  4. Photoemission spectra of charge density wave states in cuprates

    Science.gov (United States)

    Tu, Wei-Lin; Chen, Peng-Jen; Lee, Ting-Kuo

    Angle-resolved photoemission spectroscopy(ARPES) experiments have reported many exotic properties of cuprates, such as Fermi arc at normal state, two gaps at superconducting state and particle-hole asymmetry at the antinodal direction. On the other hand, a number of inhomogeneous states or so-called charge density waves(CDW) states have also been discovered in cuprates by many experimental groups. The relation between these CDW states and ARPES spectra is unclear. With the help of Gutzwiller projected mean-field theory, we can reproduce the quasiparticle spectra in momentum space. The spectra show strong correspondence to the experimental data with afore-mentioned exotic features in it.

  5. Fast electronic resistance switching involving hidden charge density wave states

    Science.gov (United States)

    Vaskivskyi, I.; Mihailovic, I. A.; Brazovskii, S.; Gospodaric, J.; Mertelj, T.; Svetin, D.; Sutar, P.; Mihailovic, D.

    2016-05-01

    The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T-TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states.

  6. Charged Cylindrical Polytropes with Generalized Polytropic Equation of State

    CERN Document Server

    Azam, M; Noureen, I; Rehman, M A

    2016-01-01

    We study the general formalism of polytropes in relativistic regime with generalized polytropic equations of state in the vicinity of cylindrical symmetry. We take charged anisotropic fluid distribution of matter with conformally flat condition for the development of general framework of polytropes. We discussed the stability of the model by Whittaker formula and concluded that one of the developed model is physically viable.

  7. Universal state-of-charge indication for portable applications

    NARCIS (Netherlands)

    Pop, V.

    2007-01-01

    Many leading semiconductors companies (e.g. Philips, Texas Instruments, Microchip, Maxim, etc.) are paying even more attention to accurate State-of-Charge (SoC) indication. Following the technological revolution and the appearance of more power consuming devices on the automotive electronics and por

  8. Charge-dependent and A-dependent effects in isotope shifts of Coulomb displacement energies

    International Nuclear Information System (INIS)

    Coulomb displacement energies in a series of isotopes generally decrease with A. This decrease can arise from an increase with A of the average distance of interaction between pairs of protons. In the shell model a decrease can also result from charge-independence-breaking effects if the neutron-proton interaction for the valence nucleons is more attractive than the neutron-neutron interaction. Using the model recently proposed by Sherr and Talmi for the 1d/sub 3/2/ shell, existing data for this shell and also the 1d/sub 5/2/ and 1f/sub 7/2/ shells were analyzed allowing all matrix elements to vary as A/sup -lambda/3/. Least squares calculations of the rms deviation sigma were carried out for varying values of lambda from -2 to +2. It was found that although there was a minimum in sigma vs lambda it was too shallow to exclude any lambda for -1 to +1 in the 1d/sub 3/2/ and 1f/sub 7/2/ shells or 0 to +1 in the 1d/sub 5/2/ shell. It is therefore not possible to distinguish between A dependence and charge dependence in this model. The magnitude of the latter as expressed in terms of (np-nn) matrix elements depends strongly on the former. As lambda increases from -1 to +1, these (np-nn) matrix elements decrease roughly linearly in absolute magnitude and eventually change sign. For lambda = 0 they have appreciable and reasonable magnitudes for the 1d/sub 3/2/ and 1f/sub 7/2/ shells but for the 1d/sub 5/2/ shell the values are too small to be considered significant

  9. Rolling Tachyon Boundary State, Conserved Charges and Two Dimensional String Theory

    Science.gov (United States)

    Sen, Ashoke

    2004-05-01

    The boundary state associated with the rolling tachyon solution on an unstable D-brane contains a part that decays exponentially in the asymptotic past and the asymptotic future, but it also contains other parts which either remain constant or grow exponentially in the past or future. We argue that the time dependence of the latter parts is completely determined by the requirement of BRST invariance of the boundary state, and hence they contain information about certain conserved charges in the system. We also examine this in the context of the unstable D0-brane in two dimensional string theory where these conseved charges produce closed string background associated with the discrete states, and show that these charges are in one to one correspondence with the symmetry generators in the matrix model description of this theory.

  10. Propagation Distance Required to Reach Steady-State Detonation Velocity in Finite-Sized Charges

    OpenAIRE

    Li, Jianling; Mi, XiaoCheng; Higgins, Andrew J.

    2014-01-01

    The decay of a detonation wave from its initial CJ velocity to its final, steady state velocity upon encountering a finite thickness or diameter charge is investigated numerically and theoretically. The numerical simulations use an ideal gas equation of state and pressure dependent reaction rate in order to ensure a stable wave structure. The confinement is also treated as an ideal gas with variable impedance. The velocity decay along the centerline is extracted from the simulations and compa...

  11. Vacuum improvements for ultra high charge state ion acceleration

    International Nuclear Information System (INIS)

    The installation of a second cryo panel has significantly improved the vacuum in the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. The neutral pressure in the extraction region decreased from 1.2 x 10-6 down to about 7 x 10-7 Torr. The vacuum improvement reduces beam loss from charge changing collisions and enhances the cyclotron beam transmission, especially for the high charge state heavy ions. Tests with improved vacuum show the cyclotron transmission increased more than 50% (from 5.7% to 9.0%) for a Xe27+ at 603 MeV, more than doubled for a Bi41+ beam (from 1.9% to 4.6%) at 904 MeV and tripled for a U47+ beam (from 1.2% to 3.6%) at 1,115 MeV. At about 5 NeV/nucleon 92 enA (2.2 pnA) for Bi41+ and 14 enA (0.3 pnA) for U47+ were extracted ut of the 88-Inch Cyclotron Ion beams with charge states as high as U64+ have been produced by the LBNL AECR-U ion source and accelerated through the cyclotron for the first time. The beam losses for a variety of ultra high charge state ions were measured as a function of cyclotron pressure and compared with the calculations from the existing models

  12. Defect charge states in Si doped hexagonal boron-nitride monolayer.

    Science.gov (United States)

    Mapasha, R E; Molepo, M P; Andrew, R C; Chetty, N

    2016-02-10

    We perform ab initio density functional theory calculations to investigate the energetics, electronic and magnetic properties of isolated stoichiometric and non-stoichiometric substitutional Si complexes in a hexagonal boron-nitride monolayer. The Si impurity atoms substituting the boron atom sites SiB giving non-stoichiometric complexes are found to be the most energetically favourable, and are half-metallic and order ferromagnetically in the neutral charge state. We find that the magnetic moments and magnetization energies increase monotonically when Si defects form a cluster. Partial density of states and standard Mulliken population analysis indicate that the half-metallic character and magnetic moments mainly arise from the Si 3p impurity states. The stoichiometric Si complexes are energetically unfavorable and non-magnetic. When charging the energetically favourable non-stoichiometric Si complexes, we find that the formation energies strongly depend on the impurity charge states and Fermi level position. We also find that the magnetic moments and orderings are tunable by charge state modulation q  =  -2, -1, 0, +1, +2. The induced half-metallic character is lost (retained) when charging isolated (clustered) Si defect(s). This underlines the potential of a Si doped hexagonal boron-nitride monolayer for novel spin-based applications.

  13. Fractional charge and spin states in topological insulator constrictions

    Science.gov (United States)

    Klinovaja, Jelena; Loss, Daniel

    2015-09-01

    We theoretically investigate the properties of two-dimensional topological insulator constrictions both in the integer and fractional regimes. In the presence of a perpendicular magnetic field, the constriction functions as a spin filter with near-perfect efficiency and can be switched by electric fields only. Domain walls between different topological phases can be created in the constriction as an interface between tunneling, magnetic fields, charge density wave, or electron-electron interaction dominated regions. These domain walls host non-Abelian bound states with fractional charge and spin and result in degenerate ground states with parafermions. If a proximity gap is induced bound states give rise to an exotic Josephson current with 8 π periodicity.

  14. The Asymmetric Information Model of State Dependence

    OpenAIRE

    Nickolay V. Moshkin; Ron Shachar

    2002-01-01

    Marketing researchers and practitioners are interested in consumer loyalty because of its managerial consequences. Previous empirical studies find that consumers are loyal not only to a brand, but also to a firm (umbrella brand). That is, even when firms offer products, consumers tend to continue to purchase from the same firm. This repeat-purchase behavior might result from or from . The meaning of state dependence is that the current choice behaviorally depends on the previous one. The trad...

  15. Control of donor charge states with the tip of a scanning tunnelling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Teichmann, K.; Wenderoth, M.; Loth, S.; Ulbrich, R.G. [IV. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany); Garlef, J.K.; Wijnheijmer, A.P.; Koenraad, P.M. [PSN, Eindhoven University of Technology (Netherlands)

    2009-07-01

    The functionality of nanoscale semiconductor devices crucially depends on details of the electrostatic potential landscape on the atomic scale and its microscopic response to external electric fields. We report here an investigation of charge state switching of buried single Si donors in 6.10{sup 18} cm{sup -3} n-doped GaAs with scanning tunnelling microscopy (STM) under UHV conditions at 5 K. The effect of tip induced band bending (TIBB) through the freshly cleaved (110)-surface was used to change the charge state of individual donors from neutral to positively charged and reverse. Scanning tunnelling spectroscopy (STS) revealed a ring like feature around each donor center. The ring radius depends on tip bias voltage. The charge state of each donor in the random arrangement of dopants was in most cases unambiguously fixed by the extension of the tip-induced space charge cloud, which was located under the tip and controlled by the applied voltage. For certain geometric configurations the system showed bi- (or multi-) stable behaviour, this lead to dynamic flickering of the ionization sequence.

  16. Local charge states in hexagonal boron nitride with Stone-Wales defects.

    Science.gov (United States)

    Wang, Rui; Yang, Jiali; Wu, Xiaozhi; Wang, Shaofeng

    2016-04-14

    A Stone-Wales (SW) defect is the simplest topological defect in graphene-like materials and can be potentially employed to design electronic devices . In this paper, we have systematically investigated the formation, structural, and electronic properties of the neutral and charged SW defects in hexagonal boron nitride (BN) using first-principles calculations. The transition states and energy barrier for the formation of SW defects demonstrate that the defected BN is stable. Our calculations show that there are two in-gap defect levels, which originate from the asymmetrical pentagon-heptagon pairs. The local defect configurations and electronic properties are sensitive to their charge states induced by the defect levels. The electronic band structures show that the negative and positive charged defects are mainly determined by shifting the conduction band minimum (CBM) and valence band maximum (VBM) respectively, and the SW-defected BN can realize -1 and +1 spin-polarized charge states. The effects of carbon (C) substitution on neutral and charged SW-defected BN have also been studied. Our results indicate that the C substitution of B in BN is in favour of the formation of SW defects. Structural and electronic calculations show rich charge-dependent properties of C substitutions in SW-defected BN, thus our theoretical study is important for various applications in the design of BN nanostructure-based devices. PMID:27030259

  17. Vascular permeability in a human tumour xenograft: molecular charge dependence.

    Science.gov (United States)

    Dellian, M; Yuan, F; Trubetskoy, V S; Torchilin, V P; Jain, R K

    2000-05-01

    Molecular charge is one of the main determinants of transvascular transport. There are, however, no data available on the effect of molecular charge on microvascular permeability of macromolecules in solid tumours. To this end, we measured tumour microvascular permeability to different proteins having similar size but different charge. Measurements were performed in the human colon adenocarcinoma LS174T transplanted in transparent dorsal skinfold chambers in severe combined immunodeficient (SCID) mice. Bovine serum albumin (BSA) and IgG were fluorescently labelled and were either cationized by conjugation with hexamethylenediamine or anionized by succinylation. The molecules were injected i.v. and the fluorescence in tumour tissue was quantified by intravital fluorescence microscopy. The fluorescence intensity and pharmacokinetic data were used to calculate the microvascular permeability. We found that tumour vascular permeability of cationized BSA (pI-range: 8.6-9.1) and IgG (pI: 8.6-9.3) was more than two-fold higher (4.25 and 4.65x10(-7) cm s(-1)) than that of the anionized BSA (pI approximately 2.0) and IgG (pI: 3.0-3.9; 1.11 and 1.93x10(-7) cm s(-1), respectively). Our results indicate that positively charged molecules extravasate faster in solid tumours compared to the similar-sized compounds with neutral or negative charges. However, the plasma clearance of cationic molecules was approximately 2x faster than that of anionic ones, indicating that the modification of proteins enhances drug delivery to normal organs as well. Therefore, caution should be exercised when such a strategy is used to improve drug and gene delivery to solid tumours.

  18. A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins

    International Nuclear Information System (INIS)

    A general formalism to compute configurational properties of proteins and other heteropolymers with an arbitrary sequence of charges and non-uniform excluded volume interaction is presented. A variational approach is utilized to predict average distance between any two monomers in the chain. The presented analytical model, for the first time, explicitly incorporates the role of sequence charge distribution to determine relative sizes between two sequences that vary not only in total charge composition but also in charge decoration (even when charge composition is fixed). Furthermore, the formalism is general enough to allow variation in excluded volume interactions between two monomers. Model predictions are benchmarked against the all-atom Monte Carlo studies of Das and Pappu [Proc. Natl. Acad. Sci. U. S. A. 110, 13392 (2013)] for 30 different synthetic sequences of polyampholytes. These sequences possess an equal number of glutamic acid (E) and lysine (K) residues but differ in the patterning within the sequence. Without any fit parameter, the model captures the strong sequence dependence of the simulated values of the radius of gyration with a correlation coefficient of R2 = 0.9. The model is then applied to real proteins to compare the unfolded state dimensions of 540 orthologous pairs of thermophilic and mesophilic proteins. The excluded volume parameters are assumed similar under denatured conditions, and only electrostatic effects encoded in the sequence are accounted for. With these assumptions, thermophilic proteins are found—with high statistical significance—to have more compact disordered ensemble compared to their mesophilic counterparts. The method presented here, due to its analytical nature, is capable of making such high throughput analysis of multiple proteins and will have broad applications in proteomic studies as well as in other heteropolymeric systems

  19. State Dependence in Unemployment among Danish Immigrants

    DEFF Research Database (Denmark)

    Ahmad, Nisar

    This study examines the extent state dependence among unemployed Danish immigrants in a dynamic discrete choice framework. Three alternative methodologies are employed to control for the problem of the initial condition. The empirical findings show that there is a considerable correlation between...

  20. State Dependence in Unemployment among Danish Immigrants

    DEFF Research Database (Denmark)

    Ahmad, Nisar

    2009-01-01

    This study examines the extent state dependence among unemployed Danish immigrants in a dynamic discrete choice framework. Three alternative methodologies are employed to control for the problem of the initial condition. The empirical findings show that there is a considerable correlation between...

  1. Transmission of electrons through insulating PET foils: Dependence on charge deposition, tilt angle and incident energy

    Science.gov (United States)

    Keerthisinghe, D.; Dassanayake, B. S.; Wickramarachchi, S. J.; Stolterfoht, N.; Tanis, J. A.

    2016-09-01

    Transmission of electrons through insulating polyethylene terephthalate (PET) nanocapillaries was observed as a function of charge deposition, angular and energy dependence. Two samples with capillary diameters 100 and 200 nm and pore densities 5 × 108/cm2 and 5 × 107/cm2, respectively, were studied for incident electron energies of 300, 500 and 800 eV. Transmission and steady state of the electrons were attained after a time delay during which only a few electron counts were observed. The transmission through the capillaries depended on the tilt angle with both elastic and inelastic electrons going through. The guiding ability of electrons was found to increase with the incident energy in contrast to previous measurements in our laboratory for a similar PET foil.

  2. Nucleon-pion-state contributions in the determination of the nucleon axial charge

    CERN Document Server

    Bar, Oliver

    2015-01-01

    The nucleon-pion-state contributions to QCD 2- and 3-point functions used in the calculation of the nucleon axial charge are studied in chiral perturbation theory. For sufficiently small quark masses and large volumes the nucleon-pion states are expected to have smaller total energy than the single-particle excited states. To leading order in chiral perturbation theory the results do not depend on low-energy constants associated with the interpolating nucleon fields and apply to local as well as smeared interpolators. The nucleon-pion-state contribution is found to be at the few percent level.

  3. Multiple charge states of titanium ions in laser produced plasma

    International Nuclear Information System (INIS)

    An intense laser radiation (1012 to 1014 W/cm-2) focused on the solid target creates a hot (≥ 1 KeV) and dense plasma having high ionization state. The multiple charged ions with high current densities produced during laser matter interaction have potential application in accelerators as an ion source. This paper presents generation and detection of highly stripped titanium ions (Ti) in laser produced plasma. An Nd:glass laser (KAMETRON) delivering 50 J energy (λ = 0.53 μm) in 2.5 ns was focused onto a titanium target to produce plasma. This plasma was allowed to drift across a space ∼ 3m through a diagnostic hole in the focusing mirror before ions are finally detected with the help of electrostatic ion analyzer. Maximum current density was detected for the charge states of +16 and +17 of Ti ions for laser intensity of ∼ 1014 W/cm-2. (author)

  4. Pion charge-exchange reactions: The analog state transitions

    International Nuclear Information System (INIS)

    The general features of pion charge-exchange reactions leading to nuclear-isobaric-analog states (IAS) and double-isobaric-analog states (DIAS), as they have emerged from studies over the past ten years, are reviewed. The energy range investigated is 20 to 550 MeV for IAS transitions and 20 to 300 MeV for DIAS transitions. These data are seen to play an important role in characterizing the pion optical potential, in determining the Δ-N interaction in nuclei, and in the study of nucleon correlations in nuclei. Recent progress achieved in understanding the role of such correlations in double-charge-exchange reactions is reviewed. 55 refs., 43 figs., 3 tabs

  5. Calculations on charge state and energy loss of argon ions in partially and fully ionized carbon plasmas.

    Science.gov (United States)

    Barriga-Carrasco, Manuel D; Casas, David; Morales, Roberto

    2016-03-01

    The energy loss of argon ions in a target depends on their velocity and charge density. At the energies studied in this work, it depends mostly on the free and bound electrons in the target. Here the random-phase approximation is used for analyzing free electrons at any degeneracy. For the plasma-bound electrons, an interpolation between approximations for low and high energies is applied. The Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler et al. is used to determine its equilibrium charge state Q(eq). This latter criterion implies that the equilibrium charge state depends slightly on the electron density and temperature of the plasma. On the other hand, the effective charge Q(eff) is obtained as the ratio between the energy loss of the argon ion and that of the proton for the same plasma conditions. This effective charge Q(eff) is larger than the equilibrium charge state Q(eq) due to the incorporation of the BK charge distribution. Though our charge-state estimations are not exactly the same as the experimental values, our energy loss agrees quite well with the experiments. It is noticed that the energy loss in plasmas is higher than that in the same cold target of about, ∼42-62.5% and increases with carbon plasma ionization. This confirms the well-known enhanced plasma stopping. It is also observed that only a small part of this energy loss enhancement is due to an increase of the argon charge state, namely only ∼2.2 and 5.1%, for the partially and the fully ionized plasma, respectively. The other contribution is connected with a better energy transfer to the free electrons at plasma state than to the bound electrons at solid state of about, ∼38.8-57.4%, where higher values correspond to a fully ionized carbon plasma. PMID:27078472

  6. Calculations on charge state and energy loss of argon ions in partially and fully ionized carbon plasmas

    Science.gov (United States)

    Barriga-Carrasco, Manuel D.; Casas, David; Morales, Roberto

    2016-03-01

    The energy loss of argon ions in a target depends on their velocity and charge density. At the energies studied in this work, it depends mostly on the free and bound electrons in the target. Here the random-phase approximation is used for analyzing free electrons at any degeneracy. For the plasma-bound electrons, an interpolation between approximations for low and high energies is applied. The Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler et al. is used to determine its equilibrium charge state Qeq. This latter criterion implies that the equilibrium charge state depends slightly on the electron density and temperature of the plasma. On the other hand, the effective charge Qeff is obtained as the ratio between the energy loss of the argon ion and that of the proton for the same plasma conditions. This effective charge Qeff is larger than the equilibrium charge state Qeq due to the incorporation of the BK charge distribution. Though our charge-state estimations are not exactly the same as the experimental values, our energy loss agrees quite well with the experiments. It is noticed that the energy loss in plasmas is higher than that in the same cold target of about, ˜42 -62.5 % and increases with carbon plasma ionization. This confirms the well-known enhanced plasma stopping. It is also observed that only a small part of this energy loss enhancement is due to an increase of the argon charge state, namely only ˜2.2 and 5.1 % , for the partially and the fully ionized plasma, respectively. The other contribution is connected with a better energy transfer to the free electrons at plasma state than to the bound electrons at solid state of about, ˜38.8 -57.4 % , where higher values correspond to a fully ionized carbon plasma.

  7. Charged cylindrical polytropes with generalized polytropic equation of state

    Science.gov (United States)

    Azam, M.; Mardan, S. A.; Noureen, I.; Rehman, M. A.

    2016-09-01

    We study the general formalism of polytropes in the relativistic regime with generalized polytropic equations of state in the vicinity of cylindrical symmetry. We take a charged anisotropic fluid distribution of matter with a conformally flat condition for the development of a general framework of the polytropes. We discuss the stability of the model by the Whittaker formula and conclude that one of the models developed is physically viable.

  8. HIGH-INTENSITY, HIGH CHARGE-STATE HEAVY ION SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI,J.G.

    2004-08-16

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions is reviewed. These sources include ECR, EBIS, and Laser ion sources. Benefits and limitations for these type sources are described. Possible future improvements in these sources are also mentioned.

  9. Analysis of Longitudinal Space Charge Effects With Radial Dependence

    CERN Document Server

    Wu, Juhao; Huang, Z

    2005-01-01

    Longitudinal space charge (LSC) force can be a main effect driving the microbunching instability in the linac for an x-ray free-electron laser (FEL). In this paper, the LSC-induced beam modulation is studied using an integral equation approach that takes into account the transverse (radial) variation of LSC field. Changes of beam energy and the transverse beam size can be also incorporated. We discuss the validity of this approach and compare it with other analyses as well as numerical simulations. We apply this approach to study the LSC effect in the LCLS accelerator

  10. Quark Mass Dependence of Nucleon Magnetic Moment and Charge Radii

    Institute of Scientific and Technical Information of China (English)

    MA Wei-Xing; ZHOU Li-Juan; GU Yun-Ting; PING Rong-Gang

    2005-01-01

    Understanding hadron structure within the framework of QCD is an extremely challenging problem. Our purpose here is to explain the model-independent consequences of the approximated chiral symmetry of QCD for two famous results concerning the quark structure of the nucleon. We show that both the apparent success of the constituent quark model in reproducing the ratio of proton to neutron magnetic moments and the apparent success of the Foldy term in reproducing the observed charge radius of the neutron are coincidental. That is, a relatively small change of the current quark mass would spoil both results.

  11. Characterization of Final State Interaction Strength in Plastic Scintillator by Muon-Neutrino Charged Current Charged Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Eberly, Brandon M. [Univ. of Pittsburgh, PA (United States)

    2014-01-01

    Precise knowledge of neutrino-nucleus interactions is increasingly important as neutrino oscillation measurements transition into the systematics-limited era. In addition to modifying the initial interaction, the nuclear medium can scatter and absorb the interaction by-products through final state interactions, changing the types and kinematic distributions of particles seen by the detector. Recent neutrino pion production data from MiniBooNE is inconsistent with the final state interaction strength predicted by models and theoretical calculations, and some models fit best to the MiniBooNE data only after removing final state interactions entirely. This thesis presents a measurement of dσ/dTπ and dσ/dθπ for muon-neutrino charged current charged pion production in the MINER A scintillator tracker. MINER A is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. The analysis is limited to neutrino energies between 1.5-10 GeV. Dependence on invariant hadronic mass W is studied through two versions of the analysis that impose the limits W < 1.4 GeV and W < 1.8 GeV. The lower limit on W increases compatibility with the MiniBooNE pion data. The shapes of the differential cross sections, which depend strongly on the nature of final state interactions, are compared to Monte Carlo and theoretical predictions. It is shown that the measurements presented in this thesis favor models that contain final state interactions. Additionally, a variety of neutrino-nucleus interaction models are shown to successfully reproduce the thesis measurements, while simultaneously failing to describe the shape of the MiniBooNE data.

  12. Charge Order Induced in an Orbital Density-Wave State

    Science.gov (United States)

    Singh, Dheeraj Kumar; Takimoto, Tetsuya

    2016-04-01

    Motivated by recent angle resolved photoemission measurements [D. V. Evtushinsky et al., Phys. Rev. Lett. 105, 147201 (2010)] and evidence of the density-wave state for the charge and orbital ordering [J. García et al., Phys. Rev. Lett. 109, 107202 (2012)] in La0.5Sr1.5MnO4, the issue of charge and orbital ordering in a two-orbital tight-binding model for layered manganite near half doping is revisited. We find that the charge order with the ordering wavevector 2{Q} = (π ,π ) is induced by the orbital order of d-/d+-type having B1g representation with a different ordering wavevector Q, where the orbital order as the primary order results from the strong Fermi-surface nesting. It is shown that the induced charge order parameter develops according to TCO - T by decreasing the temperature below the orbital ordering temperature TCO, in addition to the usual mean-field behavior of the orbital order parameter. Moreover, the same orbital order is found to stabilize the CE-type spin arrangement observed experimentally below TCE < TCO.

  13. Excited State Structural Dynamics of Carotenoids and Charge Transfer Systems

    International Nuclear Information System (INIS)

    This dissertation describes the development and implementation of a visible/near infrared pump/mid-infrared probe apparatus. Chapter 1 describes the background and motivation of investigating optically induced structural dynamics, paying specific attention to solvation and the excitation selection rules of highly symmetric molecules such as carotenoids. Chapter 2 describes the development and construction of the experimental apparatus used throughout the remainder of this dissertation. Chapter 3 will discuss the investigation of DCM, a laser dye with a fluorescence signal resulting from a charge transfer state. By studying the dynamics of DCM and of its methyl deuterated isotopomer (an otherwise identical molecule), we are able to investigate the origins of the charge transfer state and provide evidence that it is of the controversial twisted intramolecular (TICT) type. Chapter 4 introduces the use of two-photon excitation to the S1 state, combined with one-photon excitation to the S2 state of the carotenoid beta-apo-8'-carotenal. These 2 investigations show evidence for the formation of solitons, previously unobserved in molecular systems and found only in conducting polymers Chapter 5 presents an investigation of the excited state dynamics of peridinin, the carotenoid responsible for the light harvesting of dinoflagellates. This investigation allows for a more detailed understanding of the importance of structural dynamics of carotenoids in light harvesting

  14. Charged oscillator quantum state generation with Rydberg atoms

    CERN Document Server

    Stevenson, Robin; Hofferberth, Sebastian; Lesanovsky, Igor

    2016-01-01

    We explore the possibility of engineering quantum states of a charged mechanical oscillator by coupling it to a stream of atoms in superpositions of high-lying Rydberg states. Our scheme relies on the driving of a two-phonon resonance within the oscillator by coupling it to an atomic two-photon transition. This approach effectuates a controllable open system dynamics on the oscillator that permits the creation of squeezed and other non-classical states. We show that these features are robust to thermal noise arising from a coupling of the oscillator with the environment. The possibility to create non-trivial quantum states of mechanical systems, provided by the proposed setup, is central to applications such as sensing and metrology and moreover allows the exploration of fundamental questions concerning the boundary between classical and quantum mechanical descriptions of macroscopic objects.

  15. The United States facing their petroleum dependence

    International Nuclear Information System (INIS)

    In the framework of ''the energy crisis of 2000-2001'', the Cheney report and the petroleum dependence, this study presents a critical examination of the United States petroleum situation, its perception in the american political milieu and the public policies implementing during the last ten years. The first section is devoted to the petroleum supply. In the second section, the american petroleum policy and the energy safety are studied. (A.L.B.)

  16. Time and voltage dependence of dielectric charging in RF MEMS capacitive switches

    NARCIS (Netherlands)

    Herfst, R.W.; Steeneken, P.G.; Schmitz, J.

    2007-01-01

    A major issue in the reliability of RF MEMS capacitive switches is charge injection in the dielectric. In this study we try to establish the time and voltage dependence of dielectric charging in RF MEMS with silicon nitride as a dielectric. It is shown that the voltage shift of the CV-curve due to i

  17. MULTIPLY CHARGED IONS COLLISIONS WITH ATOMS INTO EXCITED STATES

    Institute of Scientific and Technical Information of China (English)

    PanGuangyan

    1990-01-01

    The emission spectra in collisions between Ions and Atoms have been measured by an Optical Multichannel Analysis System (OMA).The experimental results demonstrate that there are two channels of excitation in collision between single charged ions and atoms and three channels of excitation in collision between double charged ions and atoms.Emission cross cestions and excitation cross sections have been obtained.K.Kadota et al and R.Shingal et al suggested that,under the appropriate conditions,the H42+-Li and He2++Na collision systems can be used efficiently to produce a laser of Lyman-α(30,4nm) and Lyman-β(25.6nm)lines via cascade to He+(2P)state.

  18. Observation of high iron charge states at low energies in solar energetic particle events

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Z.; Möbius, E.; Bochsler, P.; Connell, J. J.; Popecki, M. A. [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); Klecker, B. [Max-Planck-Institut für Extraterrestrische Physik, Postfach 1312, D-85741 Garching (Germany); Kartavykh, Y. Y. [Ioffe Physical-Technical Institute, St-Petersburg 194021 (Russian Federation); Mason, G. M., E-mail: zwm2@unh.edu [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States)

    2014-04-10

    The ionic charge states of solar energetic particles (SEPs) provide direct information about the source plasma, the acceleration environment, and their transport. Recent studies report that both gradual and impulsive SEP events show mean iron charge states (Q {sub Fe}) ∼ 10-14 at low energies E ≤ 0.1 MeV nuc{sup –1}, consistent with their origin from typical corona material at temperatures 1-2 MK. Observed increases of (Q {sub Fe}) up to 20 at energies 0.1-0.5 MeV nuc{sup –1} in impulsive SEPs are attributed to stripping during acceleration. However, Q {sub Fe} > 16 is occasionally found in the solar wind, particularly coming from active regions, in contrast to the exclusively reported (Q {sub Fe}) ≤ 14 for low energy SEPs. Here we report results from a survey of all 89 SEP events observed with Advanced Composition Explorer Solar Energetic Particle Ionic Charge Analyzer (SEPICA) in 1998-2000 for iron charge states augmented at low energy with Solar and Heliospheric Observatory CELIAS suprathermal time-of-flight (STOF). Nine SEP events with (Q {sub Fe}) ≥ 14 throughout the entire SEPICA and STOF energy range have been identified. Four of the nine events are impulsive events identified through velocity dispersion that are consistent with source temperatures ≥2 MK up to ∼4 MK. The other five events show evidence of interplanetary acceleration. Four of them involve re-acceleration of impulsive material, whose original energy dependent charge states appear re-distributed to varying extent bringing higher charge states to lower energy. One event, which shows flat but elevated (Q {sub Fe}) ∼ 14.2 over the entire energy range, can be associated with interplanetary acceleration of high temperature material. This event may exemplify a rare situation when a second shock plows through high temperature coronal mass ejection material.

  19. Charge and electronic states of cuprite: Experiment and theory

    Science.gov (United States)

    Kim, Miyoung

    The bonding characteristics of cuprite have been studied by the using convergent beam electron diffraction (CBED) method. The low-order structure factors are closely related to the valence electron density, and the CBED is one of the most accurate methods of measuring the low order structure factors. The multipole model is used for converting the structure factors into charge density. The multipole expansion takes into account non-spherical valence electron density due to atomic bonding based on the crystal symmetry. The charge transfer from copper to oxygen is determined from the multipole fitting parameters. The hybridization state between 4s-3d orbitals of copper is also estimated. Electronic states of CU2O are investigated by studying the fine structure of the electron-energy loss spectrum (EELS). The cross section of the near edge structure is proportional to the density of state times an atomic transition site-projected matrix element which generally varies slowly in the region of interest. Both the fine structure of Cu- L2'3 and O-K of Cu2O are significantly different from those of CuO, which shows the sensitivity of EELS fine structure to the crystal bonding. Full-potential Linearized Augmented Plane Wave (FLAPW) calculations have been used to compare experimental results with theory. The structure factors and bonding charge density are compared with the results obtained by the CBED method, and the density of states is compared with the EELS. The FLAPW method has also been used in the local density approximations CLDA) to calculate values of the mean inner Coulomb potential V 0 for Si, Ge and MgO. These values are compared with recent measurements by electron holography. The supercell calculations are performed for crystal slabs, so that the effects of different crystal orientations and surface structures on V0 can be evaluated.

  20. Vehicle trajectory optimization for hybrid vehicles taking into account battery state-of-charge

    OpenAIRE

    MENSING, Felicitas; TRIGUI, Rochdi; Bideaux, Eric

    2012-01-01

    Hybrid vehicles are found to be one solution to reduce fuel consumption in the transportation sector. Eco-driving is a concept that is immediately applicable by drivers to improve the efficiency of their vehicle. In this work the potential of eco-driving for hybrid drive train vehicles is discussed. The operation of hybrid vehicles is strongly dependent on their energy management and therefore on battery state-of-charge. Here, the velocity trajectory will be optimized taking into account b...

  1. Measurement of Nuclear Dependence in Inclusive Charged Current Neutrino Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tice, Brian George [Rutgers Univ., New Brunswick, NJ (United States)

    2014-01-01

    Neutrino experiments use heavy nuclei (C, Fe, Pb) to achieve necessary statistics. However, the use of heavy nuclei exposes these experiments to the nuclear dependence of neutrino-nucleus cross sections, which are poorly known and difficult to model. This dissertation presents an analysis of the nuclear dependence of inclusive chargedcurrent neutrino scattering using events in carbon, iron, lead, and scintillator targets of the MINERvA detector. MINERvA (Main INjector ExpeRiment for -A) is a few-GeV neutrinonucleus scattering experiment at Fermilab.

  2. Observation of High Iron Charge States at Low Energies in Solar Energetic Particle Events

    Science.gov (United States)

    Guo, Z.; Möbius, E.; Klecker, B.; Bochsler, P.; Connell, J. J.; Kartavykh, Y. Y.; Mason, G. M.; Popecki, M. A.

    2014-04-01

    The ionic charge states of solar energetic particles (SEPs) provide direct information about the source plasma, the acceleration environment, and their transport. Recent studies report that both gradual and impulsive SEP events show mean iron charge states langQ Ferang ~ 10-14 at low energies E nuc-1, consistent with their origin from typical corona material at temperatures 1-2 MK. Observed increases of langQ Ferang up to 20 at energies 0.1-0.5 MeV nuc-1 in impulsive SEPs are attributed to stripping during acceleration. However, Q Fe > 16 is occasionally found in the solar wind, particularly coming from active regions, in contrast to the exclusively reported langQ Ferang = 14 throughout the entire SEPICA and STOF energy range have been identified. Four of the nine events are impulsive events identified through velocity dispersion that are consistent with source temperatures >=2 MK up to ~4 MK. The other five events show evidence of interplanetary acceleration. Four of them involve re-acceleration of impulsive material, whose original energy dependent charge states appear re-distributed to varying extent bringing higher charge states to lower energy. One event, which shows flat but elevated langQ Ferang ~ 14.2 over the entire energy range, can be associated with interplanetary acceleration of high temperature material. This event may exemplify a rare situation when a second shock plows through high temperature coronal mass ejection material.

  3. Density Dependence of Charge-4 Vortex Splitting in Bose–Einstein Condensates

    Science.gov (United States)

    Shibayama, Hitoshi; Tsukada, Akinori; Yoshihara, Takahisa; Kuwamoto, Takeshi

    2016-05-01

    We studied the axial-direction density dependence of the splitting of a charge-4 vortex created in 87Rb Bose–Einstein condensates. Vortices were generated by topological phase imprinting, and the axial density of the condensates was controlled by an optical potential. Linear and triangular arrangements of four single-charged vortices that emerged through the charge-4 vortex collapse were observed. The splitting of the charge-4 vortices was suppressed by maintaining the density outside the l = 2 unstable mode regions where linear arrangements were formed. In addition, we studied vortex dynamics in a high density region for which investigations have not been previously performed.

  4. Evolution of PAHs in photodissociation regions: Hydrogenation and charge states

    CERN Document Server

    Montillaud, J; Toublanc, D

    2013-01-01

    Various studies have emphasized variations of the charge state and composition of the interstellar polycyclic aromatic hydrocarbon (PAH) population in photodissociation regions (PDRs). We aim to model the spatial evolution of the charge and hydrogenation states of PAHs in PDRs. We focus on the specific case of the north-west (NW) PDR of NGC 7023 and also discuss the case of the diffuse interstellar medium (ISM). The physical conditions in NGC 7023 NW are modelled using a state-of-the-art PDR code. We then use a new PAH chemical evolution model that includes recent experimental data on PAHs and describes multiphoton events. We consider a family of compact PAHs bearing up to 96 carbon atoms. The calculated ionization ratio is in good agreement with observations in NGC 7023 NW. Within the PDR, PAHs evolve into three major populations: medium-sized PAHs (5090) can be superhydrogenated, and smaller species (Nc<50) are fully dehydrogenated. In the cavity, where the fullerene C60 was recently detected, all the st...

  5. Contactless Spectral-dependent Charge Carrier Lifetime Measurements in Silicon Photovoltaic Materials

    Science.gov (United States)

    Roller, John; Hamadani, Behrang; Dagenais, Mario

    Charge carrier lifetime measurements in bulk or unfinished photovoltaic (PV) materials allow for a more accurate estimate of power conversion efficiency in completed solar cells. In this work, carrier lifetimes in PV-grade silicon wafers are obtained by way of quasi-steady state photoconductance measurements. These measurements use a contactless RF system coupled with varying narrow spectrum input LEDs, ranging in wavelength from 460 nm to 1030 nm. Spectral dependent lifetime measurements allow for determination of bulk and surface properties of the material, including the intrinsic bulk lifetime and the surface recombination velocity. The effective lifetimes are fit to an analytical physics-based model to determine the desired parameters. Passivated and non-passivated samples are both studied and are shown to have good agreement with the theoretical model.

  6. Spin-dependent charge carrier recombination in PCBM

    Science.gov (United States)

    Morishita, Hiroki; Baker, William; Waters, David; Baarda, Rachel; Lupton, John; Boehme, Christoph; Utah Spin Electronics Group Collaboration; Lupton Group Collaboration

    2013-03-01

    We present room temperature pulsed electrically detected magnetic resonance (pEDMR) measurements on [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) (electron acceptor) thin film unipolar and bipolar devices. Our study aimed at identifying the dominating spin-dependent transport and recombination processes therein. Experimentally, the devices were operated under a constant positive bias, and the resultant transient current response was then monitored after the application of a short resonant microwave pulse excitation. The measurements did not reveal any observable signal for unipolar electron devices which suggests that spin-dependent transport mechanisms are not dominant in PCBM. However, under bipolar injection, at least two pronounced spin-dependent signals were detected whose magnitudes increased as the devices degraded upon exposure to air. Electrical detection of spin-Rabi beat oscillation revealed that one of these two signals is due to weakly coupled pairs of spins with s =1/2. We therefore attribute this signal to electron-hole recombination. This observation shows that while PCBM is a poor hole conductor, hole injection can be significant.

  7. Fractional quantum Hall states in charge-imbalanced bilayer systems

    OpenAIRE

    Thiebaut, N.; Regnault, N.; Goerbig, M. O.

    2013-01-01

    We study the fractional quantum Hall effect in a bilayer with charge-distribution imbalance induced, for instance, by a bias gate voltage. The bilayer can either be intrinsic or it can be formed spontaneously in wide quantum wells, due to the Coulomb repulsion between electrons. We focus on fractional quantum Hall effect in asymmetric bilayer systems at filling factor nu=4/11 and show that an asymmetric Halperin-like trial wavefunction gives a valid description of the ground state of the system.

  8. Polarization dependence of charge-transfer excitations in La2CuO4

    Science.gov (United States)

    Lu, Li; Chabot-Couture, Guillaume; Hancock, Jason; Vajk, Owen; Yu, Guichuan; Ishii, Kenji; Mizuki, Jun'ichiro; Casa, Diego; Gog, Thomas; Greven, Martin

    2006-03-01

    We have carried out an extensive resonant inelastic x-ray scattering (RIXS) study of La2CuO4 at the Cu K-edge. Multiple charge-transfer excitations have been identified using the incident photon energy dependence of the cross section and studied carefully with polarizations E//c and E //ab. An analysis of the incident photon energy dependence, the polarization dependence, as well as the K-edge absorption spectra, indicates that the RIXS spectra reveal rich physics about the K-edge absorption process and momentum-dependent charge-transfer excitations in cuprates.

  9. Cathode material comparison of thermal runaway behavior of Li-ion cells at different state of charges including over charge

    Science.gov (United States)

    Mendoza-Hernandez, Omar Samuel; Ishikawa, Hiroaki; Nishikawa, Yuuki; Maruyama, Yuki; Umeda, Minoru

    2015-04-01

    The analysis of Li-ion secondary cells under outstanding conditions, as overcharge and high temperatures, is important to determine thermal abuse characteristics of electroactive materials and precise risk assessments on Li-ion cells. In this work, the thermal runaway behavior of LiCoO2 and LiMn2O4 cathode materials were compared at different state of charges (SOCs), including overcharge, by carrying out accelerating rate calorimetry (ARC) measurements using 18650 Li-ion cells. Onset temperatures of self-heating reactions and thermal runaway behavior were identified, and by using these onset points thermal mapping plots were made. We were able to identify non-self-heating, self-heating and thermal runaway regions as a function of state of charge and temperature. The cell using LiMn2O4 cathode material was found to be more thermally stable than the cell using LiCoO2. In parallel with the ARC measurements, the electrochemical behavior of the cells was monitored by measuring the OCV and internal resistance of the cells. The electrochemical behavior of the cells showed a slightly dependency on SOC.

  10. Localized charged states and phase separation near second order phase transition

    OpenAIRE

    Kabanov, V. V.; Mamin, R. F.; Shaposhnikova, T. S.

    2008-01-01

    Localized charged states and phase segregation are described in the framework of the phenomenological Ginzburg-Landau theory of phase transitions. The Coulomb interactions determines the charge distribution and the characteristic length of the phase separated states. The phase separation with charge segregation becomes possible because of the large dielectric constant and the small density of extra charge in the range of charge localization. The phase diagram is calculated and the energy gain...

  11. Scaling dependence of memory windows and different carrier charging behaviors in Si nanocrystal nonvolatile memory devices

    Science.gov (United States)

    Yu, Jie; Chen, Kun-ji; Ma, Zhong-yuan; Zhang, Xin-xin; Jiang, Xiao-fan; Wu, Yang-qing; Huang, Xin-fan; Oda, Shunri

    2016-09-01

    Based on the charge storage mode, it is important to investigate the scaling dependence of memory performance in silicon nanocrystal (Si-NC) nonvolatile memory (NVM) devices for its scaling down limit. In this work, we made eight kinds of test key cells with different gate widths and lengths by 0.13-μm node complementary metal oxide semiconductor (CMOS) technology. It is found that the memory windows of eight kinds of test key cells are almost the same of about 1.64 V @ ± 7 V/1 ms, which are independent of the gate area, but mainly determined by the average size (12 nm) and areal density (1.8 × 1011/cm2) of Si-NCs. The program/erase (P/E) speed characteristics are almost independent of gate widths and lengths. However, the erase speed is faster than the program speed of test key cells, which is due to the different charging behaviors between electrons and holes during the operation processes. Furthermore, the data retention characteristic is also independent of the gate area. Our findings are useful for further scaling down of Si-NC NVM devices to improve the performance and on-chip integration. Project supported by the State Key Development Program for Basic Research of China (Grant No. 2010CB934402) and the National Natural Science Foundation of China (Grant Nos. 11374153, 61571221, and 61071008).

  12. Temperature dependence of charge transport in conjugated single molecule junctions

    Science.gov (United States)

    Huisman, Eek; Kamenetska, Masha; Venkataraman, Latha

    2011-03-01

    Over the last decade, the break junction technique using a scanning tunneling microscope geometry has proven to be an important tool to understand electron transport through single molecule junctions. Here, we use this technique to probe transport through junctions at temperatures ranging from 5K to 300K. We study three amine-terminated (-NH2) conjugated molecules: a benzene, a biphenyl and a terphenyl derivative. We find that amine groups bind selectively to undercoordinate gold atoms gold all the way down to 5K, yielding single molecule junctions with well-defined conductances. Furthermore, we find that the conductance of a single molecule junction increases with temperature and we present a mechanism for this temperature dependent transport result. Funded by a Rubicon Grant from The Netherlands Organisation for Scientific Research (NWO) and the NSEC program of NSF under grant # CHE-0641523.

  13. Analysis of Ion Charge States in Solar Wind and CMEs

    Indian Academy of Sciences (India)

    Arati Dasgupta; J. M. Laming

    2008-03-01

    We discuss needs in dielectronic recombination data motivated by recent work directed at a quantitative understanding of ion charge states of various elements observed in situ in the solar wind and CMEs. The competing processes of ionization and recombination lead to departures from collision ionization equilibrium. The use of this as a diagnostic of acceleration and heating processes of the solar wind and CMEs is sensitive to the accuracy of the atomic rates in a way that steady state ionization equilibrium plasmas are not. The most pressing need is dielectronic recombination rates for ions Fe8+-12+. These are among the dominant species observed in various regions of the solar wind and CMEs, and in remotely sensed EUV spectra.

  14. Determination of Thermal State of Charge in Solar Heat Receivers

    Science.gov (United States)

    Glakpe, E. K.; Cannon, J. N.; Hall, C. A., III; Grimmett, I. W.

    1996-01-01

    The research project at Howard University seeks to develop analytical and numerical capabilities to study heat transfer and fluid flow characteristics, and the prediction of the performance of solar heat receivers for space applications. Specifically, the study seeks to elucidate the effects of internal and external thermal radiation, geometrical and applicable dimensionless parameters on the overall heat transfer in space solar heat receivers. Over the last year, a procedure for the characterization of the state-of-charge (SOC) in solar heat receivers for space applications has been developed. By identifying the various factors that affect the SOC, a dimensional analysis is performed resulting in a number of dimensionless groups of parameters. Although not accomplished during the first phase of the research, data generated from a thermal simulation program can be used to determine values of the dimensionless parameters and the state-of-charge and thereby obtain a correlation for the SOC. The simulation program selected for the purpose is HOTTube, a thermal numerical computer code based on a transient time-explicit, axisymmetric model of the total solar heat receiver. Simulation results obtained with the computer program are presented the minimum and maximum insolation orbits. In the absence of any validation of the code with experimental data, results from HOTTube appear reasonable qualitatively in representing the physical situations modeled.

  15. Stochastic approximation with state-dependent noise

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The purpose of stochastic approximation (SA) is to find the roots of f(·) or the maximizer (minimizer) of L(·) when the unknown function f(·) or L(·) can be observed but with noise. SA is an important tool in dealing with many problems arising from systems and control, whose solutions often rely on convergence of the SA algorithm applied. Here the pathwise convergence of SA algorithms is considered, when the observation noise may depend on state by which we mean those x at which f(x) or L(x) are observed. The conditions imposed on the observation noise are the weakest in comparison with the existing ones. When the algorithm is to find the roots of f(·), the superiority of the condition given in the paper over those used in literature consists in the fact that the present condition is directly verifiable, needless to see the behaviour of the algorithm. When the algorithm is to find the maximizer (minimizer) of L(·), the present conditioin allows the observation noise to depend on the state. The conditions imposed on f(·) and L(·) are truly general: f(·) is required to be measurable and locally bounded if the roots of f(·) are sought, and the gradient of L(·) is required to be locally Lipschitz continuous if the maximizer (minimizer) of L(·) is searched.

  16. Charge-transfer photodissociation of adsorbed molecules via electron image states

    CERN Document Server

    Jensen, E T

    2007-01-01

    The 248nm and 193nm photodissociation of submonolayer quantities of CH$_3$Br and CH$_3$I adsorbed on thin layers of n-hexane indicate that the dissociation is caused by dissociative electron attachment from sub-vacuum level photoelectrons created in the copper substrate. The characteristics of this photodissociation-- translation energy distributions and coverage dependences show that the dissociation is mediated by an image potential state which temporarily traps the photoelectrons near the n-hexane--vacuum interface, and then the charge transfers from this image state to the affinity level of a co-adsorbed halomethane which then dissociates.

  17. Application of Genetic Neural Network in Power Battery Charging State-of-Charge Estimation

    Directory of Open Access Journals (Sweden)

    Yongqin Zhou

    2011-03-01

    Full Text Available With global non-renewable resources and environmental issues becoming more apparent, the development of new energy vehicles have become the trend of auto industry. Hybrid vehicle becomes the key development of new energy vehicles with its long distance, low pollution, low fuel consumption characteristics and so on. The battery performances directly influence the quality of the whole vehicle performance. Considering the importance of the battery state of charge (SOC estimation and the nonlinear relationship between the battery SOC and the external characteristic, genetic algorithm (GA and back propagation (BP neural network are proposed. Because of the strong global search capability of the genetic algorithm and the generalization ability of BP neural network, the hybrid vehicle Ni-MH power battery GA-BP charging model is designed. In this approach, the network training speed is superior to the traditional BP network. According to the real-time data of the batteries, the optimal solution can be concluded in a short time and with high estimation precision.

  18. Brain state-dependent neuronal computation

    Directory of Open Access Journals (Sweden)

    Pascale eQuilichini

    2012-10-01

    Full Text Available Neuronal firing pattern, which includes both the frequency and the timing of action potentials, is a key component of information processing in the brain. Although the relationship between neuronal output (the firing pattern and function (during a task/behavior is not fully understood, there is now considerable evidence that a given neuron can show very different firing patterns according to brain state. Thus, such neurons assembled into neuronal networks generate different rhythms (e.g. theta, gamma, sharp wave ripples, which sign specific brain states (e.g. learning, sleep. This implies that a given neuronal network, defined by its hard-wired physical connectivity, can support different brain state-dependent activities through the modulation of its functional connectivity. Here, we review data demonstrating that not only the firing pattern, but also the functional connections between neurons, can change dynamically. We then explore the possible mechanisms of such versatility, focusing on the intrinsic properties of neurons and the properties of the synapses they establish, and how they can be modified by neuromodulators, i.e. the different ways that neurons can use to switch from one mode of communication to the other.

  19. Axial ion charge state distribution in the vacuum arc plasma jet

    International Nuclear Information System (INIS)

    We report on our experimental studies of the ion charge state distribution (CSD) of vacuum arc plasmas using a time-of-flight diagnostic method. The dependence of the CSD on the axial distance from the plasma source region was measured for a titanium vacuum arc. It was found that the axial CSD profile is nonuniform. Generally, the mean charge state increases approximately linearly with axial distance from about 1.7 at 12 cm up to 1.9 at 25 cm from the plasma source. A model for ion transport in the free boundary plasma jet is proposed which is based on the existence of an electric field in the quasineutral plasma. This model qualitatively explains the experimental results. (c) 2000 American Institute of Physics

  20. The Effect of Interfacial Geometry on Charge-Transfer States in the Phthalocyanine/Fullerene Organic Photovoltaic System.

    Science.gov (United States)

    Lee, Myeong H; Geva, Eitan; Dunietz, Barry D

    2016-05-19

    The dependence of charge-transfer states on interfacial geometry at the phthalocyanine/fullerene organic photovoltaic system is investigated. The effect of deviations from the equilibrium geometry of the donor-donor-acceptor trimer on the energies of and electronic coupling between different types of interfacial electronic excited states is calculated from first-principles. Deviations from the equilibrium geometry are found to destabilize the donor-to-donor charge transfer states and to weaken their coupling to the photoexcited donor-localized states, thereby reducing their ability to serve as charge traps. At the same time, we find that the energies of donor-to-acceptor charge transfer states and their coupling to the donor-localized photoexcited states are either less sensitive to the interfacial geometry or become more favorable due to modifications relative to the equilibrium geometry, thereby enhancing their ability to serve as gateway states for charge separation. Through these findings, we eludicate how interfacial geometry modifications can play a key role in achieving charge separation in this widely studied organic photovoltaic system.

  1. The Effect of Interfacial Geometry on Charge-Transfer States in the Phthalocyanine/Fullerene Organic Photovoltaic System.

    Science.gov (United States)

    Lee, Myeong H; Geva, Eitan; Dunietz, Barry D

    2016-05-19

    The dependence of charge-transfer states on interfacial geometry at the phthalocyanine/fullerene organic photovoltaic system is investigated. The effect of deviations from the equilibrium geometry of the donor-donor-acceptor trimer on the energies of and electronic coupling between different types of interfacial electronic excited states is calculated from first-principles. Deviations from the equilibrium geometry are found to destabilize the donor-to-donor charge transfer states and to weaken their coupling to the photoexcited donor-localized states, thereby reducing their ability to serve as charge traps. At the same time, we find that the energies of donor-to-acceptor charge transfer states and their coupling to the donor-localized photoexcited states are either less sensitive to the interfacial geometry or become more favorable due to modifications relative to the equilibrium geometry, thereby enhancing their ability to serve as gateway states for charge separation. Through these findings, we eludicate how interfacial geometry modifications can play a key role in achieving charge separation in this widely studied organic photovoltaic system. PMID:26237431

  2. Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics

    International Nuclear Information System (INIS)

    Highlights: ► Analyzed National Household Travel Survey to simulate driving and charging patterns. ► Average compact PHEVs used 49 kW h of electricity and 6.8 L of gasoline per week. ► Percent of electrically driven miles increased from 64.3 in 2001 to 66.7 in 2009. ► Investigated demographic effects of sex, age, income, and household location. ► Analysis shows higher utility factors for females versus males and high age variation. -- Abstract: Plug-in hybrid electric vehicles (PHEVs) are one promising technology for addressing concerns around petroleum consumption, energy security and greenhouse gas emissions. However, there is much uncertainty in the impact that PHEVs can have on energy consumption and related emissions, as they are dependent on vehicle technology, driving patterns, and charging behavior. A methodology is used to simulate PHEV charging and gasoline consumption based on driving pattern data in USDOT’s National Household Travel Survey. The method uses information from each trip taken by approximately 170,000 vehicles to track their battery state of charge throughout the day, and to determine the timing and quantity of electricity and gasoline consumption for a fleet of PHEVs. Scenarios were developed to examine the effects of charging location, charging rate, time of charging and battery size. Additionally, demographic information was examined to see how driver and household characteristics influence consumption patterns. Results showed that a compact vehicle with a 10.4 kW h useable battery (approximately a 42 mile [68 km] all electric range) travels between 62.5% and 75.7% on battery electricity, depending on charging scenario. The percent of travel driven electrically (Utility Factor, UF) in a baseline charging scenario increased from 64.3% using 2001 NHTS data to 66.7% using 2009 data. The average UF was 63.5% for males and 72.9% for females and in both cases they are highly sensitive to age. Vehicle charging load profiles across

  3. Spin-charge separation and anomalous correlation functions in the edge states of quantum hall liquids

    CERN Document Server

    Lee, H C

    1998-01-01

    First, we have investigated chiral edges of a quantum Hall liquids at filling factor nu=2. The separation of spin and charge degrees of freedom becomes manifest in the presence of long- range Coulomb interaction. Due to the spin-charge separation the tunneling density of states takes the form D(omega) approx ( -lnl omega l) sup 1 sup / sup 2. Experimentally, the spin-charge separation can be revealed in the temperature and voltage dependence of the tunneling current into Fermi liquid reservoir. Second, the charge and spin correlation functions of partially spin-polarized edge electrons of a quantum Hall bar are studied using effective Hamiltonian and bosonization techniques. In the presence of the Coulomb interaction between the edges with opposite chirality we find a different crossover behavior in spin and charge correlation functions. The crossover of the spin correlation function in the Coulomb dominated regime is characterized by an anomalous exponent, which originates from the finite value of the effect...

  4. Charge dependent asphaltene adsorption onto metal substrate : electrochemistry and AFM, STM, SAM, SEM analysis

    Energy Technology Data Exchange (ETDEWEB)

    Batina, N.; Morales-Martinez, J. [Univ. Autonoma Metropolitana-Iztapalapa (Mexico). Lab. de Nanotecnologia e Ingenieria Molecular; Ivar-Andersen, S. [Technical Univ. of Denmark (Denmark). Dept. Hem. Eng; Lira-Galeana, C. [Inst. Mexicano del Petroleo, Lazaro (Mexico). Molecular Simulation Research Program; De la Cruz-Hernandez, W.; Cota-Araiza, L.; Avalos-Borja, M. [Univ. Nacional Autonoma de Mexico (Mexico)

    2008-07-01

    Asphaltenes have been identified as the main component of pipeline molecular deposits that cause plugging of oil wells. In this study, Atomic Force Microscopy (AFM), Scanning Tunneling Microscopy (STM), Scanning Auger Microprobe Spectroscopy (SAM) and Scanning Electron Microscopy (SEM) were used to characterized molecular deposits of Mexican crude oil and asphaltenes formed at a charged metal surface. The qualitative and quantitative characterization involved determining the size and shape of adsorbed molecules and aggregates, and the elemental analysis of all components in molecular films. Samples were prepared by electrolytic deposition under galvanostatic or potentiostatic conditions directly from the crude oil or asphaltene in toluene solutions. The study showed that the formation of asphaltene deposit depends on the metal substrate charge. Asphaltenes as well as crude oil readily adsorbed at the negatively charged metal surface. Two elements were present, notably carbon and sulfur. Their content ratio varied depending on the metal substrate charge.

  5. Model for charge/discharge-rate-dependent plastic flow in amorphous battery materials

    Science.gov (United States)

    Khosrownejad, S. M.; Curtin, W. A.

    2016-09-01

    Plastic flow is an important mechanism for relaxing stresses that develop due to swelling/shrinkage during charging/discharging of battery materials. Amorphous high-storage-capacity Li-Si has lower flow stresses than crystalline materials but there is evidence that the plastic flow stress depends on the conditions of charging and discharging, indicating important non-equilibrium aspects to the flow behavior. Here, a mechanistically-based constitutive model for rate-dependent plastic flow in amorphous materials, such as LixSi alloys, during charging and discharging is developed based on two physical concepts: (i) excess energy is stored in the material during electrochemical charging and discharging due to the inability of the amorphous material to fully relax during the charging/discharging process and (ii) this excess energy reduces the barriers for plastic flow processes and thus reduces the applied stresses necessary to cause plastic flow. The plastic flow stress is thus a competition between the time scales of charging/discharging and the time scales of glassy relaxation. The two concepts, as well as other aspects of the model, are validated using molecular simulations on a model Li-Si system. The model is applied to examine the plastic flow behavior of typical specimen geometries due to combined charging/discharging and stress history, and the results generally rationalize experimental observations.

  6. Charge-Dependent Dynamics of Polyelectrolyte Dendrimer and Its Correlation with Invasive Water

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ren [ORNL; Hong, Kunlun [ORNL; Li, Xin [ORNL; Liu, Emily [Rensselaer Polytechnic Institute (RPI); Liu, Yun [National Institute of Standards and Technology (NIST); Porcar, L. [National Institute of Standards and Technology (NIST); Smith, Gregory Scott [ORNL; Wu, Bin [ORNL; Mamontov, Eugene [ORNL; Egami, T. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Kolesnikov, Alexander I [ORNL; Diallo, Souleymane Omar [Oak Ridge National Laboratory (ORNL)

    2013-01-01

    Atomistic molecular dynamics (MD) simulations were carried out to investigate the local dynamics of polyelectrolyte dendrimers dissolved in deuterium oxide (D2O) and its dependence on molecular charge. Enhanced segmental dy-namics upon increase in molecular charge is observed, consistent with quasielastic neutron scattering (QENS) measurements. A strong coupling between the intra-dendrimer local hydration level and segmental dynamics is also revealed. Compelling evidence shows these findings originate from the electrostatic interaction between the hydrocarbon components of dendrimer and invasive water. This combined study provides fundamental insight into the dynamics of charged polyelectrolytes and the solvating water molecules.

  7. Charge-Transfer in Time-Dependent Density Functional Theory: Insights from the Asymmetric Hubbard Dimer

    CERN Document Server

    Fuks, J I

    2013-01-01

    We show that an asymmetric two-fermion two-site Hubbard model illustrates the essential features of long-range charge-transfer dynamics in a real-space molecule. We apply a resonant field that transfers one fermion from one site to the other. Via constrained search we find the exact ground-state exchange-correlation functional, and use it to propagate the Kohn-Sham system, giving the first "adiabatically-exact" calculation of time-resolved charge-transfer. This propagation fails to properly transfer charge. We analyze why by comparing the exact and adiabatically-exact potentials and discuss the role of the derivative discontinuity. The implication for real-space molecules is that even the best possible adiabatic approximation, despite capturing non-local step features relevant to dissociation and charge-transfer excitations, cannot capture fully time-resolved charge-transfer dynamics.

  8. State of charge estimation in Ni-MH rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Milocco, R.H. [Grupo Control Automatico y Sistemas (GCAyS), Depto. Electrotecnia, Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquen (Argentina); Castro, B.E. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Universidad Nacional de La Plata, Suc 4, CC16 (1900), La Plata (Argentina)

    2009-10-20

    In this work we estimate the state of charge (SOC) of Ni-MH rechargeable batteries using the Kalman filter based on a simplified electrochemical model. First, we derive the complete electrochemical model of the battery which includes diffusional processes and kinetic reactions in both Ni and MH electrodes. The full model is further reduced in a cascade of two parts, a linear time invariant dynamical sub-model followed by a static nonlinearity. Both parts are identified using the current and potential measured at the terminals of the battery with a simple 1-D minimization procedure. The inverse of the static nonlinearity together with a Kalman filter provide the SOC estimation as a linear estimation problem. Experimental results with commercial batteries are provided to illustrate the estimation procedure and to show the performance. (author)

  9. Low charge state heavy ion production with sub-nanosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Kanesue, T., E-mail: tkanesue@bnl.gov; Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Kumaki, M. [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Ikeda, S. [Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa 226-8503 (Japan)

    2016-02-15

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

  10. Low charge state heavy ion production with sub-nanosecond laser.

    Science.gov (United States)

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

  11. Low charge state heavy ion production with sub-nanosecond laser

    Science.gov (United States)

    Kanesue, T.; Kumaki, M.; Ikeda, S.; Okamura, M.

    2016-02-01

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

  12. Low charge state heavy ion production with sub-nanosecond laser

    International Nuclear Information System (INIS)

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target

  13. Automated charge state determination of complex isotope-resolved mass spectra by peak-target Fourier transform.

    Science.gov (United States)

    Chen, Li; Yap, Yee Leng

    2008-01-01

    This study describes a new algorithm for charge state determination of complex isotope-resolved mass spectra. This algorithm is based on peak-target Fourier transform (PTFT) of isotope packets. It is modified from the widely used Fourier transform method because Fourier transform may give ambiguous charge state assignment for low signal-to-noise ratio (S/N) or overlapping isotopic clusters. The PTFT algorithm applies a novel "folding" strategy to enhance peaks that are symmetrically spaced about the targeted peak before applying the FT. The "folding" strategy multiplies each point to the high-m/z side of the targeted peak by its counterpart on the low-m/z side. A Fourier transform of this "folded" spectrum is thus simplified, emphasizing the charge state of the "chosen" ion, whereas ions of other charge states contribute less to the transformed data. An intensity-dependent technique is also proposed for charge state determination from frequency signals. The performance of PTFT is demonstrated using experimental electrospray ionization Fourier transform ion cyclotron resonance mass spectra. The results show that PTFT is robust for charge state determination of low S/N and overlapping isotopic clusters, and also useful for manual verification of potential hidden isotopic clusters that may be missed by the current analysis algorithms, i.e., AID-MS or THRASH.

  14. Charge Independent(CI) and Charge Dependent(CD) correlations vs. Centrality from $\\Delta \\phi \\Delta \\eta$ Charged Pairs in Minimum Bias Au + Au Collisions at 200 Gev

    CERN Document Server

    Abelev, B I; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Beavis, D R; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Braidot, E; Brandin, A V; Bültmann, S; Burton, T P; Bystersky, M; Cai, X Z; Caines, H; Calderón de la Barca-Sanchez, M; Callner, J; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, S U; Clarke, R F; Codrington, M J M; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; De Moura, M M; Dedovich, T G; De Phillips, M; Derevshchikov, A A; Derradide Souza, R; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunlop, J C; Dutta-Majumdar, M R; Edwards, W R; Efimov, L G; Elhalhuli, E; Elnimr, M; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Yu; Gagliardi, C A; Gaillard, L; Gangadharan, D R; Ganti, M S; García-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Sen-Gupta, A; Gupta, N; Guryn, W; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Heppelmann, S; Hippolyte, B; Hirsch, A; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, H Z; Hughes, E W; Humanic, T J; Igo, G; Iordanova, A; Jacobs, W W; Jakl, P; Jin, F; Jones, P G; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kravtsov, P; Kravtsov, V I; Krüger, K; Kuhn, C; Kumar, A; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; Lange, S; La Pointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Le Vine, M J; Li, C; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Matis, H S; Matulenko, Yu A; McShane, T S; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mischke, A; Mitchell, J; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, C; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, Grazyna Janina; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Pal, S K; Panebratsev, Yu A; Pawlak, T; Peitzmann, T; Perevozchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Porile, N; Poskanzer, A M; Potekhin, M; Potukuchi, B V K S; Prindle, D; Pruneau, C; Pruthi, N K; Putschke, J; Qattan, I A; Raniwala, R; Raniwala, S; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Rykov, V; Sahoo, R; Sakai, S; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Shi, X-H; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Snellings, R; Sørensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tokarev, M; Tram, V N; Trattner, A L; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; Van der Kolk, N; Van Leeuwen, M; Van der Molen, A M; Varma, R; Vasconcelos, G M S; Vasilevski, I M; Vasilev, A N; Videbaek, F; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, Q; Wang, X; Wang, X L; Wang, Y; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, J; Wu, Y; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, H; Zhang, S; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zuo, J X

    2008-01-01

    We report high precision charged-particle pair (2-D) correlation analyses in the space of $\\Delta \\phi$ (azimuth) and $\\Delta \\eta$ (pseudorapidity), for minimum bias Au + Au collisions at $\\sqrt{s_{NN}}$ = 200 GeV as a function of centrality (0-80%). The intermediate transverse momenta region chosen $0.8 < p_t < 4.0$ GeV/c corresponds to an emission source size $\\sim2$fm obtained from HBT measurements and should resolve substructures at the scale of $\\sim2$fm. The difference and the sum of unlike-sign and like-sign charged pairs form Charge Dependent (CD) correlations and Charge Independent (CI) correlations respectively. The CD displays the initial correlation at hadronization of the opposite sign pairs emitted from the same space-time region as modified by further medium interactions before kinetic freeze-out. Our analysis of the CD correlations shows approximately jet-like structure, independent of centrality and is consistent with the initial correlation which is predicted by Pythia (or HIJING) jet...

  15. Electron capture to autoionizing states of multiply charged ions

    International Nuclear Information System (INIS)

    The present thesis investigates electron capture reactions resulting from slow collisions (V q+) and neutral gas targets (B). The energy spectra of the emitted electrons are measured; detection angle is 500. Mainly, autoionizing double capture resulting from collisions with two-electron targets (He, H2) is studied; then, the emitted electrons stem from doubly excited projectile states. The projectiles used are bare C6+, the H-like and He-like ions of C, N and O, He-like Ne8+ and Ne-like Ar8+. Excited metastable projectiles used are C5+(2s), He-like projectiles Aq+(1s2s3S) and Ar8+(...2p53s). Comparison is made with the predictions of a recently proposed extended classical barrier model, that was developed in connection with the work. This model assumes sequential capture of the electrons ('two-step' process); it predicts the realized binding enegies of the captured electrons - which may be directly determined from the autoionization spectra using only the projectile charge, the ionization potentials of the target and the collision velocity as parameters. No adjustable parameter enters into the calculations. The term energies and decay modes of the highly excited product ions themselves are studied. Generally, the autoionizing decay of these states is found to proceed preferentially to the directly adjacent lower singly excited state. Experimental evidence is presented, that triply excited states decay by successive emission of two electrons, whenever this is energetically possible. Finally, the L-MM decay in few-electron systems is considered. 314 refs.; 96 figs.; 29 tabs

  16. Charge-transport anisotropy in black phosphorus: critical dependence on the number of layers.

    Science.gov (United States)

    Banerjee, Swastika; Pati, Swapan K

    2016-06-28

    Phosphorene is a promising candidate for modern electronics because of the anisotropy associated with high electron-hole mobility. Additionally, superior mechanical flexibility allows the strain-engineering of various properties including the transport of charge carriers in phosphorene. In this work, we have shown the criticality of the number of layers to dictate the transport properties of black phosphorus. Trilayer black phosphorus (TBP) has been proposed as an excellent anisotropic material, based on the transport parameters using Boltzmann transport formalisms coupled with density functional theory. The mobilities of both the electron and the hole are found to be higher along the zigzag direction (∼10(4) cm(2) V(-1) s(-1) at 300 K) compared to the armchair direction (∼10(2) cm(2) V(-1) s(-1)), resulting in the intrinsic directional anisotropy. Application of strain leads to additional electron-hole anisotropy with 10(3) fold higher mobility for the electron compared to the hole. Critical strain for maximum anisotropic response has also been determined. Whether the transport anisotropy is due to the spatial or charge-carrier has been determined through analyses of the scattering process of electrons and holes, and their recombination as well as relaxation dynamics. In this context, we have derived two descriptors (S and F(k)), which are general enough for any 2D or quasi-2D systems. Information on the scattering involving purely the carrier states also helps to understand the layer-dependent photoluminescence and electron (hole) relaxation in black phosphorus. Finally, we justify trilayer black phosphorus (TBP) as the material of interest with excellent transport properties. PMID:27257640

  17. Influence of charge changing collisions on charge state distributions (CSD) in non-equilibrium plasmas

    International Nuclear Information System (INIS)

    For an optimal design of ion sources and for some aspects of plasma diagnostics it is important to study the influence of all processes and parameters that are essential for the production and loss of multiply charged ions. Till now all existing calculations of CSD neglected charge transfer because of missing data. Now many of the very big charge transfer cross sections are measured and so we are able to include them into our calculations. (orig.)

  18. Local equilibria and state transfer of charged classical particles on a helix in an electric field

    CERN Document Server

    Plettenberg, J; Zampetaki, A V; Schmelcher, P

    2016-01-01

    We explore the effects of a homogeneous external electric field on the static properties and dynamical behavior of two charged particles confined to a helix. In contrast to the field-free setup which provides a separation of the center-of-mass and relative motion, the existence of an external force perpendicular to the helix axis couples the center-of-mass to the relative degree of freedom leading to equilibria with a localized center of mass. By tuning the external field various fixed points are created and/or annihilated through different bifurcation scenarios. We provide a detailed analysis of these bifurcations based on which we demonstrate a robust state transfer between essentially arbitrary equilibrium configurations of the two charges that can be induced by making the external force time-dependent.

  19. Charge states of Mg and Si from stochastic acceleration in impulsive solar flares

    Science.gov (United States)

    Kartavykh, Yu. Yu.; Wannawichian, S.; Ruffolo, D.; Ostryakov, V. M.

    2002-07-01

    We consider the acceleration of heavy ions in impulsive solar flares. In particular, we have performed Monte Carlo simulations of stochastic acceleration by Alfvén wave turbulence, and compare new results for magnesium and silicon ions with previous results for iron. The model takes into account stripping due to collisions with ambient electrons and heavy particles (protons and He +2) which becomes increasingly important for more energetic ions, as well as radiative and dielectronic recombination due to collisions with electrons. Spatial diffusion and Coulomb losses are also taken into account. For comparison, we also calculate equilibrium mean charges. We examine the effects of plasma parameters on the calculated energy-dependent charge state distributions of these elements, which can be compared with results from space-borne instruments in order to put constraints on the physical environment of the acceleration region.

  20. Charge order from orbital-dependent coupling evidenced by NbSe2.

    Science.gov (United States)

    Flicker, Felix; van Wezel, Jasper

    2015-01-01

    Niobium diselenide has long served as a prototype of two-dimensional charge ordering, believed to arise from an instability of the electronic structure analogous to the one-dimensional Peierls mechanism. Despite this, various anomalous properties have recently been identified experimentally, which cannot be explained by Peierls-like weak-coupling theories. Here, we consider instead a model with strong electron-phonon coupling, taking into account both the full momentum and orbital dependence of the coupling matrix elements. We show that both are necessary for a consistent description of the full range of experimental observations. We argue that NbSe2 is typical in this sense, and that any charge-ordered material in more than one dimension will generically be shaped by the momentum and orbital dependence of its electron-phonon coupling as well as its electronic structure. The consequences will be observable in many charge-ordered materials, including cuprate superconductors. PMID:25948390

  1. Time-dependent ion selectivity in capacitive charging of porous electrodes

    NARCIS (Netherlands)

    Zhao, R.; Soestbergen, M.; Rijnaarts, H.H.M.; Wal, van der A.F.; Bazant, M.Z.; Biesheuvel, P.M.

    2012-01-01

    In a combined experimental and theoretical study, we show that capacitive charging of porous electrodes in multicomponent electrolytes may lead to the phenomenon of time-dependent ion selectivity of the electrical double layers (EDLs) in the electrodes. This effect is found in experiments on capacit

  2. Fractional Charge and Quantized Current in the Quantum Spin Hall State

    OpenAIRE

    Qi, Xiao-Liang; Hughes, Taylor L.; Zhang, Shou-Cheng

    2007-01-01

    A profound manifestation of topologically non-trivial states of matter is the occurrence of fractionally charged elementary excitations. The quantum spin Hall insulator state is a fundamentally novel quantum state of matter that exists at zero external magnetic field. In this work, we show that a magnetic domain wall at the edge of the quantum spin Hall insulator carries one half of the unit of electron charge, and we propose an experiment to directly measure this fractional charge on an indi...

  3. Universal Bounds on Charged States in 2d CFT and 3d Gravity

    CERN Document Server

    Benjamin, Nathan; Fitzpatrick, A Liam; Kachru, Shamit

    2016-01-01

    We derive an explicit bound on the dimension of the lightest charged state in two dimensional conformal field theories with a global abelian symmetry. We find that the bound scales with $c$ and provide examples that parametrically saturate this bound. We also prove than any such theory must contain a state with charge-to-mass ratio above a minimal lower bound. We comment on the implications for charged states in three dimensional theories of gravity.

  4. Charge-dependent conformations and dynamics of pamam dendrimers revealed by neutron scattering and molecular dynamics

    Science.gov (United States)

    Wu, Bin

    Neutron scattering and fully atomistic molecular dynamics (MD) are employed to investigate the structural and dynamical properties of polyamidoamine (PAMAM) dendrimers with ethylenediamine (EDA) core under various charge conditions. Regarding to the conformational characteristics, we focus on scrutinizing density profile evolution of PAMAM dendrimers as the molecular charge of dendrimer increases from neutral state to highly charged condition. It should be noted that within the context of small angle neutron scattering (SANS), the dendrimers are composed of hydrocarbon component (dry part) and the penetrating water molecules. Though there have been SANS experiments that studied the charge-dependent structural change of PAMAM dendrimers, their results were limited to the collective behavior of the aforementioned two parts. This study is devoted to deepen the understanding towards the structural responsiveness of intra-molecular polymeric and hydration parts separately through advanced contrast variation SANS data analysis scheme available recently and unravel the governing principles through coupling with MD simulations. Two kinds of acids, namely hydrochloric and sulfuric acids, are utilized to tune the pH condition and hence the molecular charge. As far as the dynamical properties, we target at understanding the underlying mechanism that leads to segmental dynamic enhancement observed from quasielstic neutron scattering (QENS) experiment previously. PAMAM dendrimers have a wealth of potential applications, such as drug delivery agency, energy harvesting medium, and light emitting diodes. More importantly, it is regarded as an ideal system to test many theoretical predictions since dendrimers conjugate both colloid-like globular shape and polymer-like flexible chains. This Ph.D. research addresses two main challenges in studying PAMAM dendrimers. Even though neutron scattering is an ideal tool to study this PAMAM dendrimer solution due to its matching temporal and

  5. State-dependent Jastrow correlation functions for $^{4}He$ nuclei

    CERN Document Server

    Guardiola, R

    1998-01-01

    We calculate the ground-state energy for the nucleus 4He with V4 nucleon interactions, making use of a Jastrow description of the corresponding wavefunction with state-dependent correlation factors. The effect related to the state dependence of the correlation is quite important, lowering the upper bound for the ground-state energy by some 2 MeV.

  6. Manipulating the charge state and conductance of a single molecule on a semiconductor surface by electrostatic gating

    Science.gov (United States)

    Martinez-Blanco, Jesus; Nacci, Christophe; Erwin, Steven C.; Kanisawa, Kiyoshi; Locane, Elina; Thomas, Mark; von Oppen, Felix; Brouwer, Piet; Foelsch, Stefan

    2015-03-01

    We studied the charge state and tunneling conductance of single phthalocyanine molecules adsorbed on InAs(111)A using scanning tunneling microscopy (STM) at 5 K. On the InAs(111)A surface, native +1 charged indium adatoms can be repositioned by the STM tip using atom manipulation. This allows us to electrostatically gate an individual adsorbed molecule by placing charged adatoms nearby or, alternatively, by repositioning the molecule within the electrostatic potential landscape created by an STM-engineered adatom corral. By stepwise increasing the gating potential, the molecular charge state can be tuned from neutral to -1, as well as to bistable intermediate states. We find that the molecule changes its orientational conformation when the charge state is switched. Scanning tunneling spectroscopy measurements reveal that the conductance gap of the single-molecule tunneling junction can be precisely controlled by the electrostatic gating. We discuss the observed gating-dependent single-molecule tunneling conductance in terms of charge transport through a gated quantum dot. Granted by the German Research Foundation (FO 362/4-1; SFB 658).

  7. Thermal State-of-Charge in Solar Heat Receivers

    Science.gov (United States)

    Hall, Carsie, A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1998-01-01

    A theoretical framework is developed to determine the so-called thermal state-of-charge (SOC) in solar heat receivers employing encapsulated phase change materials (PCMS) that undergo cyclic melting and freezing. The present problem is relevant to space solar dynamic power systems that would typically operate in low-Earth-orbit (LEO). The solar heat receiver is integrated into a closed-cycle Brayton engine that produces electric power during sunlight and eclipse periods of the orbit cycle. The concepts of available power and virtual source temperature, both on a finite-time basis, are used as the basis for determining the SOC. Analytic expressions for the available power crossing the aperture plane of the receiver, available power stored in the receiver, and available power delivered to the working fluid are derived, all of which are related to the SOC through measurable parameters. Lower and upper bounds on the SOC are proposed in order to delineate absolute limiting cases for a range of input parameters (orbital, geometric, etc.). SOC characterization is also performed in the subcooled, two-phase, and superheat regimes. Finally, a previously-developed physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) system is used in order to predict the SOC as a function of measurable parameters.

  8. Propagation Distance Required to Reach Steady-State Detonation Velocity in Finite-Sized Charges

    CERN Document Server

    Li, Jianling; Higgins, Andrew J

    2014-01-01

    The decay of a detonation wave from its initial CJ velocity to its final, steady state velocity upon encountering a finite thickness or diameter charge is investigated numerically and theoretically. The numerical simulations use an ideal gas equation of state and pressure dependent reaction rate in order to ensure a stable wave structure. The confinement is also treated as an ideal gas with variable impedance. The velocity decay along the centerline is extracted from the simulations and compared to predictions base on a front evolution equation that uses the steady state detonation velocity-front curvature relation ($D_n-\\kappa$). This model fails to capture the finite signaling speed of the leading rarefaction resulting from the interaction with the yielding confinement. This signaling speed is verified to be the maximum signal velocity occurring in the ideal ZND wave structure of the initial CJ velocity. A simple heuristic model based on the rarefaction generated by a one-dimensional interaction between the...

  9. Identifying the magnetoconductance responses by the induced charge transfer complex states in pentacene-based diodes

    Science.gov (United States)

    Huang, Wei-Shun; Lee, Tsung-Hsun; Guo, Tzung-Fang; Huang, J. C. A.; Wen, Ten-Chin

    2012-07-01

    We investigate the magnetoconductance (MC) responses in photocurrent, unipolar injection, and bipolar injection regimes in pentacene-based diodes. Both photocurrent and bipolar injection contributed MC responses show large difference in MC line shape, which are attributed to triplet-polaron interaction modulated by the magnetic field dependent singlet fission and the intersystem crossing of the polaron pair, respectively. By blending 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane into pentacene, all the MC responses are suppressed but the MC response at unipolar injection regime is enhanced, which is attributed to the induced charge transfer complex states (CT complex states). This work identify the MC responses between single carrier contributed MC and exciton related MC by the induced CT complex states.

  10. Boson ground state fields in electroweak theory with non-zero charge densities

    OpenAIRE

    Syska, J.

    2002-01-01

    The "non-linear" self-consistent theory of classical fields in the electroweak model is proposed. Homogeneous boson ground state solutions in the GSW model at the presence of a non-zero extended fermionic charge densities are reviewed and fully reinterpreted to make the theory with non-zero charge densities fruitful. Consequences of charge density fluctuations are proposed.

  11. Rendering high charge density of states in ionic liquid-gated MoS 2 transistors

    NARCIS (Netherlands)

    Lee, Y.; Lee, J.; Kim, S.; Park, H.S.

    2014-01-01

    We investigated high charge density of states (DOS) in the bandgap of MoS2 nanosheets with variable temperature measurements on ionic liquid-gated MoS2 transistors. The thermally activated charge transport indicates that the electrical current in the two-dimensional MoS 2 nanosheets under high charg

  12. A simple scheme to generate x-type four-charge entangled states in circuit QED

    Institute of Scientific and Technical Information of China (English)

    Gao Gui-Long; Song Fu-Quan; Huang Shou-Sheng; Wang Hui; Yuan Xian-Zhang; Wang Ming-Feng; Jiang Nian-Quan

    2012-01-01

    We propose a simple scheme to generate x-type four-charge entangled states by using SQUID-based charge qubits capacitively coupled to a transmission line resonator (TLR).The coupling between the superconducting qubit and the TLR can be effectively controlled by properly adjusting the control parameters of the charge qubit.The experimental feasibility of our scheme is also shown.

  13. Photo-induced changes in charge-ordered state of Ti4O7

    International Nuclear Information System (INIS)

    We have investigated photo-induced effects on the charge-ordered state of Ti4O7 with pump-probe spectroscopy. Reflectivity of the probe light changes after the pulsed pump excitation, and then recovers. The photo-induced effects are observed only when the pump power exceeds a threshold value, indicative of cooperative nature of the formation process, and the recovery rate shows thermally activated behaviour. We propose that the photo-induced state is a metastable charge localized state where charge disorder is induced by a photon-assisted charge transfer process from Ti26+ dimers to the neighbouring Ti4+ions. Moreover, it is found that subsequent cw laser irradiation converts the photo-induced state into the charge-ordered state. We interpret this result in terms of formation of Ti26+ dimers via an inverse charge transfer process assisted by the cw optical excitation.

  14. Charge state distributions and charge exchange cross sections of carbon in helium at 30-258 keV

    Science.gov (United States)

    Maxeiner, Sascha; Seiler, Martin; Suter, Martin; Synal, Hans-Arno

    2015-10-01

    With the introduction of helium stripping in radiocarbon (14C) accelerator mass spectrometry (AMS), higher +1 charge state yields in the 200 keV region and fewer beam losses are observed compared to nitrogen or argon stripping. To investigate the feasibility of even lower beam energies for 14C analyses the stripping characteristics of carbon in helium need to be further studied. Using two different AMS systems at ETH Zurich (myCADAS and MICADAS), ion beam transmissions of carbon ions for the charge states -1, +1, +2 and +3 were measured in the range of 258 keV down to 30 keV. The correction for beam losses and the extraction of charge state yields and charge exchange cross sections will be presented. An increase in population of the +1 charge state towards the lowest measured energies up to 75% was found as well as agreement with previous data from literature. The findings suggest that more compact radiocarbon AMS systems are possible and could provide even higher efficiency than current systems operating in the 200 keV range.

  15. Localization-dependent charge separation efficiency at an organic/inorganic hybrid interface

    Science.gov (United States)

    Foglia, Laura; Bogner, Lea; Wolf, Martin; Stähler, Julia

    2016-02-01

    By combining complementary optical techniques, photoluminescence and time-resolved excited state absorption, we achieve a comprehensive picture of the relaxation processes in the organic/inorganic hybrid system SP6/ZnO. We identify two long-lived excited states of the organic molecules of which only the lowest energy one, localized on the sexiphenyl backbone of the molecule, is found to efficiently charge separate to the ZnO conduction band or radiatively recombine. The other state, most likely localized on the spiro-linked biphenyl, relaxes only by intersystem crossing to a long-lived, probably triplet state, thus acting as a sink of the excitation and limiting the charge separation efficiency.

  16. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    Science.gov (United States)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact

  17. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer.

    Science.gov (United States)

    Yao, Yi; Berkowitz, Max L; Kanai, Yosuke

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na(+) and K(+) ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  18. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    International Nuclear Information System (INIS)

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na+ and K+ ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications

  19. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  20. Thermodynamic stability of charged BTZ black holes: Ensemble dependency problem and its solution

    CERN Document Server

    Hendi, S H; Mamasani, R

    2015-01-01

    Motivated by the wide applications of thermal stability and phase transition, we investigate thermodynamic properties of charged BTZ black holes. We apply the standard method to calculate the heat capacity and the Hessian matrix and find that thermal stability of charged BTZ solutions depends on the choice of ensemble. To overcome this problem, we take into account cosmological constant as a thermodynamical variable. By this modification, we show that the ensemble dependency is eliminated and thermal stability conditions are the same in both ensembles. Then, we generalize our solutions to the case of nonlinear electrodynamics. We show how nonlinear matter field modifies the geometrical behavior of the metric function. We also study phase transition and thermal stability of these black holes in context of both canonical and grand canonical ensembles. We show that by considering the cosmological constant as a thermodynamical variable and modifying the Hessian matrix, the ensemble dependency of thermal stability...

  1. Temperature dependence of the charge carrier mobility in gated quasi-one-dimensional systems

    OpenAIRE

    Gallos, L. K.; Movaghar, B.; Siebbeles, L.D.A.

    2003-01-01

    The many-body Monte Carlo method is used to evaluate the frequency dependent conductivity and the average mobility of a system of hopping charges, electronic or ionic on a one-dimensional chain or channel of finite length. Two cases are considered: the chain is connected to electrodes and in the other case the chain is confined giving zero dc conduction. The concentration of charge is varied using a gate electrode. At low temperatures and with the presence of an injection barrier, the mobilit...

  2. Scaling of temperature dependence of charge mobility in molecular Holstein chains.

    Science.gov (United States)

    Tikhonov, D A; Fialko, N S; Sobolev, E V; Lakhno, V D

    2014-03-01

    The temperature dependence of a charge mobility in a model DNA based on a Holstein Hamiltonian is calculated for four types of homogeneous sequences It has turned out that upon rescaling all four types are quite similar. Two types of rescaling, i.e., those for low and intermediate temperatures, are found. The curves obtained are approximated on a logarithmic scale by cubic polynomials. We believe that for model homogeneous biopolymers with parameters close to the designed ones, one can assess the value of the charge mobility without carrying out resource-intensive direct simulation, just by using a suitable approximating function.

  3. Relativistic mean field theory with density dependent coupling constants for nuclear matter and finite nuclei with large charge asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Typel, S.; Wolter, H.H. [Sektion Physik, Univ. Muenchen, Garching (Germany)

    1998-06-01

    Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)

  4. State Sampling Dependence of Hopfield Network Inference

    Institute of Scientific and Technical Information of China (English)

    黄海平

    2012-01-01

    The fully connected Hopfield network is inferred based on observed magnetizations and pairwise correlations. We present the system in the glassy phase with low temperature and high memory load. We find that the inference error is very sensitive to the form of state sampling. When a single state is sampled to compute magnetizations and correlations, the inference error is almost indistinguishable irrespective of the sampled state. However, the error can be greatly reduced if the data is collected with state transitions. Our result holds for different disorder samples and accounts for the previously observed large fluctuations of inference error at low temperatures.

  5. Charge-dependent dissociation of insulin cations via ion/ion electron transfer

    Science.gov (United States)

    Liu, Jian; Gunawardena, Harsha P.; Huang, Teng-Yi; McLuckey, Scott A.

    2008-10-01

    The dissociation reactions of various charge states of insulin cations obtained directly from nano-electrospray were investigated as a result of ion/ion electron transfer from azobenzene anions. Data were collected with and without simultaneous ion trap collisional excitation of the first generation charge-reduced product during the ion/ion reaction period. Neither separation of the two constituent chains nor cleavages within the loop defined by the disulfide bridges were observed under normal electron transfer dissociation (ETD) conditions for any of the charge states studied. However, substantial sequence coverage (exocyclic region: 82.6%; entire protein: 38.8%) outside the ring structure was obtained for insulin +6, while only limited coverage (exocyclic: 43.5%; entire protein: 20.4%) was observed for insulin +5 and no dissociation, aside from low abundance side-chain losses, was noted for insulin +4 and +3 in the normal ETD spectra. When the first generation charge-reduced precursor ions were subjected to collisional activation during the ion/ion reaction period, higher sequence coverages were obtained for both insulin +5 (entire protein: 34.7%) and +4 (entire protein: 20.4%) with backbone cleavages occurring within the loop defined by the disulfide bonds. Dissociation of insulin +3 was not significantly improved by the additional activation. Separation of the two constituent chains resulting from cleavages of both of the two disulfide bridges that link the chains was observed for insulin +6, +5, and +4 when the charge-reduced species were activated. The dissociation of disulfide linkages in this study suggests that as the charge state decreases, disulfide bond cleavages dominate over N-C[alpha] bond cleavages in the electron transfer dissociation process.

  6. State of charge monitoring methods for vanadium redox flow battery control

    Science.gov (United States)

    Skyllas-Kazacos, Maria; Kazacos, Michael

    2011-10-01

    During operation of redox flow batteries, differential transfer of ions and electrolyte across the membrane and gassing side reactions during charging, can lead to an imbalance between the two half-cells that results in loss of capacity. This capacity loss can be corrected by either simple remixing of the two solutions, or by chemical or electrochemical rebalancing. In order to develop automated electrolyte management systems therefore, the state-of-charge of each half-cell electrolyte needs to be known. In this study, two state-of-charge monitoring methods are investigated for use in the vanadium redox flow battery. The first method utilizes conductivity measurements to independently measure the state-of-charge of each half-cell electrolyte. The second method is based on spectrophotometric principles and uses the different colours of the charged and discharged anolyte and catholyte to monitor system balance and state-of charge of each half-cell of the VRB during operation.

  7. Energy and centrality dependences of charged multiplicity pseudorapidity density in relativistic nuclear collisions

    CERN Document Server

    Zhou Dai Mei; Sá Ben-Hao; Li Zhong Dao

    2002-01-01

    Using a hadron and string cascade model, JPCIAE, and the corresponding Monte Carlo events generator, the energy and centrality dependences of charged particle pseudorapidity density in relativistic nuclear collisions were studied. Within the framework of this model, both the relativistic p anti p experimental data and the PHOBOS and PHENIX Au + Au data could be reproduced fairly well without retuning the model parameters. The author shows that since is not a well defined physical variable both experimentally and theoretically, the charged particle pseudorapidity density per participant pair can increase and also can decrease with increasing of , so it may be hard to use charged particle pseudorapidity density per participant pair as a function of to distinguish various theoretical models for particle production

  8. Adding high time resolution to charge-state-specific ion energy measurements for pulsed copper vacuum arc plasmas

    CERN Document Server

    Tanaka, Koichi; Zhou, Xue; Anders, André

    2015-01-01

    Charge-state-resolved ion energy-time-distributions of pulsed Cu arc plasma were obtained by using direct (time dependent) acquisition of the ion detection signal from a commercial ion mass-per-charge and energy-per-charge analyzer. We find a shift of energies of Cu2+, Cu3+ and Cu4+ ions to lower values during the first few hundred microseconds after arc ignition, which is evidence for particle collisions in the plasma. The generation of Cu1+ ions in the later part of the pulse, measured by the increase of Cu1+ signal intensity and an associated slight reduction of the mean charge state point to charge exchange reactions between ions and neutrals. At the very beginning of the pulse, when the plasma expands into vacuum and the plasma potential strongly fluctuates, ions with much higher energy (over 200 eV) were observed. Early in the pulse, the ion energies observed are approximately proportional to the ion charge state, and we conclude that the acceleration mechanism is primarily based on acceleration in an e...

  9. Determination of the charge state distribution of a highly ionized coronal Au plasma

    International Nuclear Information System (INIS)

    We present the first definitive measurement of the charge state distribution of a highly ionized gold plasma in coronal equilibrium. The experiment utilized the Livermore electron beam ion trap EBIT-II in a novel configuration to create a plasma with a Maxwellian temperature of 2.5 keV. The charge balance in the plasma was inferred from spectral line emission measurements which accounted for charge exchange effects. The measured average ionization state was 46.8±0.75. This differs from the predictions of two modeling codes by up to four charge states

  10. Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kuechler, Erich R. [BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8087 (United States); Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Giese, Timothy J.; York, Darrin M. [BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8087 (United States)

    2015-12-21

    Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom’s local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the S{sub N}2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM

  11. Quantum State Transfer between Charge and Flux Qubits in Circuit-QED

    Institute of Scientific and Technical Information of China (English)

    WU Qin-Qin; LIAO Jie-Qiao; KUANG Le-Man

    2008-01-01

    @@ We propose a scheme to implement quantum state transfer in a hybrid circuit quantum electrodynamics (QED)system which consists of a superconducting charge qubit, a flux qubit, and a transmission line resonator (TLR).It is shown that quantum state transfer between the charge qubit and the flux qubit can be realized by using the TLR as the data bus.

  12. Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Danilov, D.; Regtien, P.P.L.; Notten, P.H.L.

    2008-01-01

    Battery Management Systems – Universal State-of-Charge indication for portable applications describes the field of State-of-Charge (SoC) indication for rechargeable batteries. With the emergence of battery-powered devices with an increasing number of power-hungry features, accurately estimating the

  13. State dependent computation using coupled recurrent networks

    CERN Document Server

    Rutishauser, Ueli

    2008-01-01

    Although conditional branching between possible behavioural states is a hallmark of intelligent behavior, very little is known about the neuronal mechanisms that support this processing. In a step toward solving this problem we demonstrate by theoretical analysis and simulation how networks of richly inter-connected neurons, such as those observed in the superficial layers of the neocortex, can embed reliable robust finite state machines. We show how a multi-stable neuronal network containing a number of states can be created very simply, by coupling two recurrent networks whose synaptic weights have been configured for soft winner-take-all (sWTA) performance. These two sWTAs have simple, homogenous locally recurrent connectivity except for a small fraction of recurrent cross-connections between them, which are used to embed the required states. This coupling between the maps allows the network to continue to express the current state even after the input that elicted that state is withdrawn. In addition, a s...

  14. Long-lived charge-separated states in ligand-stabilized silver clusters

    KAUST Repository

    Pelton, Matthew

    2012-07-25

    Recently developed synthesis methods allow for the production of atomically monodisperse clusters of silver atoms stabilized in solution by aromatic thiol ligands, which exhibit intense absorption peaks throughout the visible and near-IR spectral regions. Here we investigated the time-dependent optical properties of these clusters. We observed two kinetic processes following ultrafast laser excitation of any of the absorption peaks: a rapid decay, with a time constant of 1 ps or less, and a slow decay, with a time constant that can be longer than 300 ns. Both time constants decrease as the polarity of the solvent increases, indicating that the two processes correspond to the formation and recombination, respectively, of a charge-separated state. The long lifetime of this state and the broad optical absorption spectrum mean that the ligand-stabilized silver clusters are promising materials for solar energy harvesting. © 2012 American Chemical Society.

  15. Electric-field-dependent charge delocalization from dopant atoms in silicon junctionless nanowire transistor

    Science.gov (United States)

    Wang, Hao; Han, Wei-Hua; Zhao, Xiao-Song; Zhang, Wang; Lyu, Qi-Feng; Ma, Liu-Hong; Yang, Fu-Hua

    2016-10-01

    We study electric-field-dependent charge delocalization from dopant atoms in a silicon junctionless nanowire transistor by low-temperature electron transport measurement. The Arrhenius plot of the temperature-dependent conductance demonstrates the transport behaviors of variable-range hopping (below 30 K) and nearest-neighbor hopping (above 30 K). The activation energy for the charge delocalization gradually decreases due to the confinement potential of the conduction channel decreasing from the threshold voltage to the flatband voltage. With the increase of the source-drain bias, the activation energy increases in a temperature range from 30 K to 100 K at a fixed gate voltage, but decreases above the temperature of 100 K. Project supported partly by the National Key R & D Program of China (Grant No. 2016YFA02005003) and the National Natural Science Foundation of China (Grant Nos. 61376096 and 61327813).

  16. Interplay between strain, defect charge state, and functionality in complex oxides

    Science.gov (United States)

    Aschauer, Ulrich; Spaldin, Nicola A.

    2016-07-01

    We use first-principles calculations to investigate the interplay between strain and the charge state of point defect impurities in complex oxides. Our work is motivated by recent interest in using defects as active elements to provide novel functionality in coherent epitaxial films. Using oxygen vacancies as model point defects, and CaMnO3 and MnO as model materials, we calculate the changes in internal strain caused by changing the charge state of the vacancies, and conversely the effect of strain on charge-state stability. Our results show that the charge state is a degree of freedom that can be used to control the interaction of defects with strain and hence the concentration and location of defects in epitaxial films. We propose the use of field-effect gating to reversibly change the charge state of defects and hence the internal strain and corresponding strain-induced functionalities.

  17. Time-dependent ion selectivity in capacitive charging of porous electrodes

    OpenAIRE

    Zhao, R.; Van Soestbergen, M.; Rijnaarts, H. H. M.; Wal, van der, A.C.; Bazant, M.Z.; Biesheuvel, P. M.

    2012-01-01

    In a combined experimental and theoretical study, we show that capacitive charging of porous electrodes in multicomponent electrolytes may lead to the phenomenon of time-dependent ion selectivity of the electrical double layers (EDLs) in the electrodes. This effect is found in experiments on capacitive deionization of water containing NaCl/CaCl[subscript 2] mixtures, when the concentration of Na[superscript +] ions in the water is five times the Ca[superscript 2+]-ion concentration. In this e...

  18. Effect of Mono- and Multivalent Salts on Angle-dependent Attractions between Charged Rods

    OpenAIRE

    Lee, Kun-Chun; Borukhov, Itamar; Gelbart, William M.; Liu, Andrea J.; Stevens, Mark J.

    2003-01-01

    Using molecular dynamics simulations we examine the effective interactions between two like-charged rods as a function of angle and separation. In particular, we determine how the competing electrostatic repulsions and multivalent-ion-induced attractions depend upon concentrations of simple and multivalent salt. We find that with increasing multivalent salt the stable configuration of two rods evolves from isolated rods to aggregated perpendicular rods to aggregated parallel rods; at sufficie...

  19. Humidity Dependence of Charge Transport through DNA Revealed by Silicon-Based Nanotweezers Manipulation

    OpenAIRE

    Yamahata, Christophe; Collard, Dominique; Takekawa, Tetsuya; Kumemura, Momoko; Hashiguchi, Gen; Fujita, Hiroyuki

    2007-01-01

    The study of the electrical properties of DNA has aroused increasing interest since the last decade. So far, controversial arguments have been put forward to explain the electrical charge transport through DNA. Our experiments on DNA bundles manipulated with silicon-based actuated tweezers demonstrate undoubtedly that humidity is the main factor affecting the electrical conduction in DNA. We explain the quasi-Ohmic behavior of DNA and the exponential dependence of its conductivity with relati...

  20. Time-dependent Displaced and Squeezed Number States

    CERN Document Server

    Kim, S P

    2004-01-01

    We generalize the wave functions of the displaced and squeezed number states, found by Nieto, to a time-dependent harmonic oscillator with variable mass and frequency. These time-dependent displaced and squeezed number states are obtained by first squeezing and then displacing the exact number states and are exact solutions of the Schr\\"{o}dinger equation. Further, these wave functions are the time-dependent squeezed harmonic-oscillator wave functions centered at classical trajectories.

  1. Energy-Dependent Ionization States of Shock-Accelerated Particles in the Solar Corona

    Science.gov (United States)

    Reames, Donald V.; Ng, C. K.; Tylka, A. J.

    2000-01-01

    We examine the range of possible energy dependence of the ionization states of ions that are shock-accelerated from the ambient plasma of the solar corona. If acceleration begins in a region of moderate density, sufficiently low in the corona, ions above about 0.1 MeV/amu approach an equilibrium charge state that depends primarily upon their speed and only weakly on the plasma temperature. We suggest that the large variations of the charge states with energy for ions such as Si and Fe observed in the 1997 November 6 event are consistent with stripping in moderately dense coronal. plasma during shock acceleration. In the large solar-particle events studied previously, acceleration occurs sufficiently high in the corona that even Fe ions up to 600 MeV/amu are not stripped of electrons.

  2. Charge-sign dependent modulation in the heliosphere over a 22-year cycle

    Directory of Open Access Journals (Sweden)

    S. E. S. Ferreira

    Full Text Available A time-dependent model based on a numerical solution of Parker’s transport equation is used to model the modulation of cosmic ray protons, electrons and helium for full 11-year and 22-year modulation cycles using a compound approach. This approach incorporates the concept of propagating diffusion barriers based on global increases in the heliospheric magnetic field as they propagate from the Sun throughout the heliosphere, combined with gradient, curvature and current sheet drifts and the other basic modulation mechanisms. The model results are compared to the observed 11-year and 22-year cycles for 1.2 GV electrons and 1.2 GV Helium at Earth for the period 1975–1998. The model solutions are also compared to the observed charge-sign dependent modulation along Ulysses’ trajectory for the period 1990–1998. This compound approach to long-term modulation, especially charge-sign dependent modulation, is found to be remarkably successful. It is shown that the model can easily account for the latitude dependence for cosmic ray protons and the lack thereof for cosmic ray electrons by assuming large perpendicular diffusion in the polar direction. This approach contributes to an improved understanding of how diffusion and drifts vary from solar minimum to maximum modulation, and what the time-dependence of the heliospheric diffusion coefficients may be.

    Key words. Interplanetary physics (energetic particles; cosmic rays; general or miscellaneous

  3. Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation

    Science.gov (United States)

    Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.; Burchill, J. K.; Collier, M. R.; Zimmerman, M. I.; Vondrak, R. R.; Delory, G. T.; Pfaff, R. F.

    2014-01-01

    The surface of the Moon is electrically charged by exposure to solar radiation on its dayside, as well as by the continuous flux of charged particles from the various plasma environments that surround it. An electric potential develops between the lunar surface and ambient plasma, which manifests itself in a near-surface plasma sheath with a scale height of order the Debye length. This study investigates surface charging on the lunar dayside and near-terminator regions in the solar wind, for which the dominant current sources are usually from the pohotoemission of electrons, J(sub p), and the collection of plasma electrons J(sub e) and ions J(sub i). These currents are dependent on the following six parameters: plasma concentration n(sub 0), electron temperature T(sub e), ion temperature T(sub i), bulk flow velocity V, photoemission current at normal incidence J(sub P0), and photo electron temperature T(sub p). Using a numerical model, derived from a set of eleven basic assumptions, the influence of these six parameters on surface charging - characterized by the equilibrium surface potential, Debye length, and surface electric field - is investigated as a function of solar zenith angle. Overall, T(sub e) is the most important parameter, especially near the terminator, while J(sub P0) and T(sub p) dominate over most of the dayside.

  4. Charge-Exchange Excitation of the Isobaric Analog State and Implication for the Nuclear Symmetry Energy and Neutron Skin

    Science.gov (United States)

    Khoa, Dao T.; Loc, Bui Minh; Zegers, R. G. T.

    The charge-exchange (p, n) or (3He,t) reaction can be considered as elastic scattering of proton or 3He by the isovector term of the optical potential that flips the projectile isospin. Therefore, the accurately measured charge-exchange scattering cross section for the isobaric analog states can be a good probe of the isospin dependence of the optical potential, which is determined exclusively within the folding model by the difference between the neutron and proton densities and isospin dependence of the nucleon-nucleon interaction. On the other hand, the same isospin- and density-dependent nucleon-nucleon interaction can also be used in a Hartree-Fock calculation of asymmetric nuclear matter, to estimate the nuclear matter energy and its asymmetry part. As a result, the fine-tuning of the isospin dependence of the effective nucleon-nucleon interaction against the measured (p, n) or (3He,t) cross sections should allow us to make some realistic prediction of the nuclear symmetry energy and its density dependence. Moreover, given the neutron skin of the target related directly to the neutron-proton difference of the ground-state density, it can be well probed in the analysis of the charge-exchange (3He,t) reactions at medium energies when the two-step processes can be neglected and the t-matrix interaction can be used in the folding calculation.

  5. Anomalous charge and negative-charge-transfer insulating state in cuprate chain-compound KCuO_2

    OpenAIRE

    Choudhury, D.; Rivero, P.; Meyers, D.; Liu, X.; Cao, Y; Middey, S.; Whitaker, M. J.; Barraza-Lopez, S.; Freeland, J. W.; Greenblatt, M.; Chakhalian, J.

    2015-01-01

    Using a combination of X-ray absorption spectroscopy experiments with first principle calculations, we demonstrate that insulating KCuO_2 contains Cu in an unusually-high formal-3+ valence state, the ligand-to-metal (O to Cu) charge transfer energy is intriguingly negative (Delta~ -1.5 eV) and has a dominant (~60%) ligand-hole character in the ground state akin to the high Tc cuprate Zhang-Rice state. Unlike most other formal Cu^{3+} compounds, the Cu 2p XAS spectra of KCuO_2 exhibits pronoun...

  6. Influence of state of charge in lead-acid batteries operating in PV systems; Comportamiento no repetitivo de las baterias de plomo-acido operando en sistemas FV.

    Energy Technology Data Exchange (ETDEWEB)

    Vela, N.; Chenlo, F.

    2004-07-01

    Correct determination of the overcharge cut-off voltage is a key point for both the optimal operation and maximum life-time of batteries in photovoltaic (PV) systems. This work presents the results of analysing the influence on charge voltage of different operation conditions, mainly current rate, temperature and state of charge (SOC). From the results obtained we have observed that voltage evolution during a charge process depends on its activation degree of the battery. The battery activation is reached when battery was previously fully charged. So, we can conclude that variation of the charge voltage with time as function of starting point (fully charged or fully discharged) together with current rate and temperature should be taking into account in the battery SOC determination and in the design of charge controllers. (Author)

  7. Charge Transfer States in Dilute Donor-Acceptor Blend Organic Heterojunctions.

    Science.gov (United States)

    Liu, Xiao; Ding, Kan; Panda, Anurag; Forrest, Stephen R

    2016-08-23

    We study the charge transfer (CT) states in small-molecule blend heterojunctions comprising the nonpolar donor, tetraphenyldibenzoperiflanthene (DBP), and the acceptor, C70, using electroluminescence and steady-state and time-resolved photoluminescence spectroscopy along with density functional theory calculations. We find that the CT exciton energy blue shifts as the C70 concentration in the blend is either decreased or increased away from 50 vol %. At 20 K, the increase in CT state lifetime is correlated with the increasing diameter of C70 nanocrystallites in the blends. A quantum confinement model is used to quantitatively describe the dependence of both CT energy and lifetime on the C70 or DBP domain size. Two discrete CT emission peaks are observed for blends whose C70 concentration is >65%, at which point C70 nanocrystallites with diameters >4 nm appear in high-resolution transmission electron micrographs. The presence of two CT states is attributed to coexistence of crystalline C70 and amorphous phases in the blends. Furthermore, analysis of CT dissociation efficiency versus photon energy suggests that the >90% dissociation efficiency of delocalized CT2 states from the crystalline phase significantly contributes to surprisingly efficient photogeneration in highly dilute (>80% C70) DBP/C70 heterojunctions. PMID:27487403

  8. Elections, Information, and State-Dependent Candidate Quality

    DEFF Research Database (Denmark)

    Jensen, Thomas

    The quality of political candidates often depends on the current state of the world, for example because their personal characteristics are more valuable in some situations than in others. We explore the implications of state-dependent candidate quality in a model of electoral competition where v...

  9. Charge-collection efficiency of GaAs field effect transistors fabricated with a low temperature grown buffer layer: dependence on charge deposition profile

    International Nuclear Information System (INIS)

    The results presented here reveal a surprising dependence of the charge-collection efficiency of LT GaAs FETs (field effect transistors) on the depth profile of the deposited charge. Investigation of the temporal dependence of the signal amplitude, carrier density contours, and potential contours reveals different mechanisms for charge collection arising from carriers deposited above and below the LT GaAs buffer layer, respectively. In particular, carriers deposited below the LT GaAs buffer layer dissipate slowly and give rise to a persistent charge collection that is associated with a bipolar-like gain process. These results may be of significance in understanding the occurrence of single-event upsets from protons, neutrons, and large-angle, glancing heavy-ion strikes. (authors)

  10. Measurement of the $Z/A$ dependence of neutrino charged-current total cross-sections

    CERN Document Server

    Kayis-Topaksu, A; Van Dantzig, R; De Jong, M; Konijn, J; Melzer, O; Oldeman, R G C; Pesen, E; Van der Poel, C A F J; Spada, F R; Visschers, J L; Güler, M; Serin-Zeyrek, M; Kama, S; Sever, R; Tolun, P; Zeyrek, M T; Armenise, N; Catanesi, M G; De Serio, M; Ieva, M; Muciaccia, M T; Radicioni, E; Simone, S; Bülte, A; Winter, Klaus; El-Aidi, R; Van de Vyver, B; Vilian, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Artamonov, A V; Brunner, J; Chizhov, M; Cussans, D G; Doucet, M; Fabre, Jean-Paul; Hristova, I R; Kawamura, T; Kolev, D; Litmaath, M; Meinhard, H; Panman, J; Papadopoulos, I M; Ricciardi, S; Rozanov, A; Saltzberg, D; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Arik, E; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Rondeshagen, D; Wolff, T; Hoshino, K; Kawada, J; Komatsu, M; Miyanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Ereditato, A; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Pistillo, C; Santorelli, R; Scotto-Lavina, L; Strolin, P; Tioukov, V; Nakamura, K; Okusawa, T; Dore, U; Loverre, P F; Ludovici, L; Maslennikov, A L; Righini, P; Rosa, G; Santacesaria, R; Satta, A; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2003-01-01

    A relative measurement of total cross-sections is reported for polyethylene, marble, iron, and lead targets for the inclusive charged-current reaction nu_mu + N -> mu^- + X. The targets, passive blocks of ~100kg each, were exposed simultaneously to the CERN SPS wide-band muon-neutrino beam over a period of 18 weeks. Systematics effects due to differences in the neutrino flux and detector efficiency for the different target locations were minimised by changing the position of the four targets on their support about every two weeks. The relative neutrino fluxes on the targets were monitored within the same experiment using charged-current interactions in the calorimeter positioned directly downstream of the four targets. From a fit to the Z/A dependence of the total cross-sections a value is deduced for the effective neutron-to-proton cross-section ratio.

  11. Measurement of the Z/A dependence of neutrino charged-current total cross-sections

    CERN Document Server

    Kayis-Topasku, A; Dantzig, R V

    2003-01-01

    A relative measurement of total cross-sections is reported for polyethylene, marble, iron, and lead targets for the inclusive charged-current reaction nu submu + N -> mu sup - + X. The targets, passive blocks of propor to 100 kg each, were exposed simultaneously to the CERN SPS wide-band muon-neutrino beam over a period of 18 weeks. Systematic effects due to differences in the neutrino flux and detector efficiency for the different target locations were minimised by changing the position of the four targets on their support about every two weeks. The relative neutrino fluxes on the targets were monitored within the same experiment using charged-current interactions in the calorimeter positioned directly downstream of the four targets. From a fit to the Z/A dependence of the total cross-sections a value is deduced for the effective neutron-to-proton cross-section ratio. (orig.)

  12. Glomerular size and charge selectivity in insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Deckert, T; Feldt-Rasmussen, B; Djurup, R;

    1988-01-01

    . These alterations indicate an increase in anionic pore charge within the glomerular basement membrane concomitant with an increase in either pore size or impairment of tubular reabsorption. Diabetic patients, whose urinary albumin excretion has started to rise (30 to 100 mg/24 hr), had unchanged fractional Ig......The pathogenesis of clinical nephropathy in Type 1 (insulin-dependent) diabetes was investigated by measuring renal fractional clearances of albumin, total IgG, IgG4 and beta 2-microglobulin, four plasma proteins which differ in size and charge. Seventy patients and eleven control subjects were...... studied. In diabetic patients with normal urinary albumin excretion (less than 30 mg/24 hr), fractional IgG clearance was two to three times higher than in control subjects, whereas fractional clearance of the anionic plasma proteins IgG4 and albumin was similar to that of control subjects...

  13. State-dependent impulses boundary value problems on compact interval

    CERN Document Server

    Rachůnková, Irena

    2015-01-01

    This book offers the reader a new approach to the solvability of boundary value problems with state-dependent impulses and provides recently obtained existence results for state dependent impulsive problems with general linear boundary conditions. It covers fixed-time impulsive boundary value problems both regular and singular and deals with higher order differential equations or with systems that are subject to general linear boundary conditions. We treat state-dependent impulsive boundary value problems, including a new approach giving effective conditions for the solvability of the Dirichlet problem with one state-dependent impulse condition and we show that the depicted approach can be extended to problems with a finite number of state-dependent impulses. We investigate the Sturm–Liouville boundary value problem for a more general right-hand side of a differential equation. Finally, we offer generalizations to higher order differential equations or differential systems subject to general linear boundary...

  14. Geometry of non-supersymmetric three-charge bound states

    Energy Technology Data Exchange (ETDEWEB)

    Gimon, Eric; Gimon, Eric G.; Levi, Thomas S.; Ross, Simon F.

    2007-05-14

    We study the smooth non-supersymmetric three-charge microstatesof Jejjala, Madden, Ross and Titchener using Kaluza-Klein reductions of the solutions to five and four dimensions. Our aim is to improve our understanding of the relation between these non-supersymmetric solutions and the well-studied supersymmetric cases. We find some surprising qualitative differences. In the five-dimensional description, the solution has orbifold fixed points which break supersymmetry locally, so the geometries cannot be thought of as made up of separate half-BPS centers. In the four-dimensional description, the two singularities in the geometry are connected by a conical singularity, which makes it impossible to treat them independently and assign unambiguous brane charges to these centers.

  15. Direct and charge transfer state mediated photogeneration in polymer-fullerene bulk heterojunction solar cells

    Science.gov (United States)

    Mingebach, M.; Walter, S.; Dyakonov, V.; Deibel, C.

    2012-05-01

    We investigated photogeneration yield and recombination dynamics in blends of poly(3-hexyl thiophene) (P3HT) and poly[2-methoxy-5 -(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) with [6,6]-phenyl-C61butyric acid methyl ester (PC61BM) by means of temperature dependent time delayed collection field measurements. In MDMO-PPV:PC61BM, we find a strongly field dependent polaron pair dissociation which can be attributed to geminate recombination in the device. Our findings are in good agreement with field dependent photoluminescence measurements published before, supporting a scenario of polaron pair dissociation via an intermediate charge transfer state. In contrast, polaron pair dissociation in P3HT:PC61BM shows only a very weak field dependence, indicating an almost field independent polaron pair dissociation or a direct photogeneration. Furthermore, we found Langevin recombination for MDMO-PPV:PC61BM and strongly reduced Langevin recombination for P3HT:PC61BM.

  16. Using Light Charged Particles to Probe the Asymmetry Dependence of the Nuclear Caloric Curve

    CERN Document Server

    McIntosh, Alan B; Kohley, Zachary; Cammarata, Paul J; Hagel, Kris; Heilborn, Lauren; Mabiala, Justin; May, Larry W; Marini, Paola; Raphelt, Andrew; Souliotis, George A; Wuenschel, Sara; Zarrella, Andrew; Yennello, Sherry J

    2013-01-01

    Recently, we observed a clear dependence of the nuclear caloric curve on neutron-proton asymmetry $\\frac{N-Z}{A}$ through examination of fully reconstructed equilibrated quasi-projectile sources produced in heavy ion collisions at E/A = 35 MeV. In the present work, we extend our analysis using multiple light charged particle probes of the temperature. Temperatures are extracted with five distinct probes using a kinetic thermometer approach. Additionally, temperatures are extracted using two probes within a chemical thermometer approach (Albergo method). All seven measurements show a significant linear dependence of the source temperature on the source asymmetry. For the kinetic thermometer, the strength of the asymmetry dependence varies with the probe particle species in a way which is consistent with an average emission-time ordering.

  17. Informational Asymmetries in Laboratory Asset Markets with State Dependent Fundamentals

    OpenAIRE

    Keser, Claudia; Markstädter, Andreas

    2014-01-01

    We investigate the formation of market prices in a new experimental setting involving multi-period asset markets with state-dependent fundamentals. We are particularly interested in two informational aspects: (1) the role of traders who are informed about the true state and (2) the provision of Bayesian updates of the assets state-dependent fundamental value (BFVs) to all traders. We find that bubbles are a rare phenomenon in all our treatments. Markets with asymmetrically informed traders co...

  18. EVOLUTION OF THE RELATIONSHIPS BETWEEN HELIUM ABUNDANCE, MINOR ION CHARGE STATE, AND SOLAR WIND SPEED OVER THE SOLAR CYCLE

    International Nuclear Information System (INIS)

    The changing relationships between solar wind speed, helium abundance, and minor ion charge state are examined over solar cycle 23. Observations of the abundance of helium relative to hydrogen (AHe ≡ 100 × nHe/nH) by the Wind spacecraft are used to examine the dependence of AHe on solar wind speed and solar activity between 1994 and 2010. This work updates an earlier study of AHe from 1994 to 2004 to include the recent extreme solar minimum and broadly confirms our previous result that AHe in slow wind is strongly correlated with sunspot number, reaching its lowest values in each solar minima. During the last minimum, as sunspot numbers reached their lowest levels in recent history, AHe continued to decrease, falling to half the levels observed in slow wind during the previous minimum and, for the first time observed, decreasing even in the fastest solar wind. We have also extended our previous analysis by adding measurements of the mean carbon and oxygen charge states observed with the Advanced Composition Explorer spacecraft since 1998. We find that as solar activity decreased, the mean charge states of oxygen and carbon for solar wind of a given speed also fell, implying that the wind was formed in cooler regions in the corona during the recent solar minimum. The physical processes in the coronal responsible for establishing the mean charge state and speed of the solar wind have evolved with solar activity and time.

  19. Quantum work statistics of charged Dirac particles in time-dependent fields

    International Nuclear Information System (INIS)

    The quantum Jarzynski equality is an important theorem of modern quantum thermodynamics. We show that the Jarzynski equality readily generalizes to relativistic quantum mechanics described by the Dirac equation. After establishing the conceptual framework we solve a pedagogical, yet experimentally relevant, system analytically. As a main result we obtain the exact quantum work distributions for charged particles traveling through a time-dependent vector potential evolving under Schroedinger as well as under Dirac dynamics, and for which the Jarzynski equality is verified. Thus, special emphasis is put on the conceptual and technical subtleties arising from relativistic quantum mechanics

  20. Charge State Evolution of Uranium in Electron Beam Ion Trap

    Institute of Scientific and Technical Information of China (English)

    LIU Ya-Feng; YAO Ke; Roger Hutton; ZOU Ya-Ming

    2005-01-01

    @@ We present a calculation scheme with significant modifications and improvements for determining the ionization balance and the ion temperature evolution in an electron beam ion trap (EBIT). The scheme is applied to uranium and nitrogen ions using a specific set of EBIT operating parameters. The calculation results are compared to the experimental data. Rates for the individual atomic processes in EBIT, especially single and multiple charge exchange processes, are discussed. The time evolution of the ion temperatures for uranium and its coolant nitrogen are also given.

  1. Time-dependent ion selectivity in capacitive charging of porous electrodes.

    Science.gov (United States)

    Zhao, R; van Soestbergen, M; Rijnaarts, H H M; van der Wal, A; Bazant, M Z; Biesheuvel, P M

    2012-10-15

    In a combined experimental and theoretical study, we show that capacitive charging of porous electrodes in multicomponent electrolytes may lead to the phenomenon of time-dependent ion selectivity of the electrical double layers (EDLs) in the electrodes. This effect is found in experiments on capacitive deionization of water containing NaCl/CaCl(2) mixtures, when the concentration of Na(+) ions in the water is five times the Ca(2+)-ion concentration. In this experiment, after applying a voltage difference between two porous carbon electrodes, first the majority monovalent Na(+) cations are preferentially adsorbed in the EDLs, and later, they are gradually replaced by the minority, divalent Ca(2+) cations. In a process where this ion adsorption step is followed by washing the electrode with freshwater under open-circuit conditions, and subsequent release of the ions while the cell is short-circuited, a product stream is obtained which is significantly enriched in divalent ions. Repeating this process three times by taking the product concentrations of one run as the feed concentrations for the next, a final increase in the Ca(2+)/Na(+)-ratio of a factor of 300 is achieved. The phenomenon of time-dependent ion selectivity of EDLs cannot be explained by linear response theory. Therefore, a nonlinear time-dependent analysis of capacitive charging is performed for both porous and flat electrodes. Both models attribute time-dependent ion selectivity to the interplay between the transport resistance for the ions in the aqueous solution outside the EDL, and the voltage-dependent ion adsorption capacity of the EDLs. Exact analytical expressions are presented for the excess ion adsorption in planar EDLs (Gouy-Chapman theory) for mixtures containing both monovalent and divalent cations. PMID:22819395

  2. Charge state distribution studies of the metal vapor vacuum arc ion source

    International Nuclear Information System (INIS)

    We have studied the charge state distribution of the ion beam produced by the MEVVA (metal vapor vacuum arc) high current metal ion source. Beams produced from a wide range of cathode materials have been examined and the charge state distributions have been measured as a function of many operational parameters. In this paper we review the charge state data we have accumulated, with particular emphasis on the time history of the distribution throughout the arc current pulse duration. We find that in general the spectra remain quite constant throughout most of the beam pulse, so long as the arc current is constant. There is an interesting early-time transient behavior when the arc is first initiated and the arc current is still rising, during which time the ion charge states produced are observed to be significantly higher than during the steady current region that follows. 12 refs., 5 figs

  3. Anisometric Charge Dependent Swelling of Porous Carbon in an Ionic Liquid

    CERN Document Server

    Kaasik, F; Hantel, M M; Perre, E; Aabloo, A; Lust, E; Bazant, M Z; Presser, V

    2013-01-01

    In situ electrochemical dilatometry was used to study, for the first time, the expansion behavior of a porous carbon electrode in a pure ionic liquid, 1-ethyl-3-methyl-imidazolium-tetrafluoroborate. For a single electrode, an applied potential of -2 V and +2 V against the potential of zero charge resulted in maximum strain of 1.8 % and 0.5 %, respectively. During cyclic voltammetry, the characteristic expansion behavior strongly depends on the scan rate, with increased scan rates leading to a decrease of the expansion. Chronoamperometry was used to determine the equilibrium specific capacitance and expansion. The obtained strain versus accumulated charge relationship can be fitted with a simple quadratic function. Cathodic and anodic expansion data collapses on one parabola when normalizing the surface charge by the ratio of ion volume and average pore size. There is also a transient spike in the height change when polarity is switched from positive to negative that is not observed when changing the potential...

  4. Optimization of a charge-state analyzer for ECRIS beams

    CERN Document Server

    Saminathan, S; Kremers, H R; Mironov, V; Mulder, J; Brandenburg, S

    2012-01-01

    A detailed experimental and simulation study of the extraction of a 24 keV He-ion beam from an ECR ion source and the subsequent beam transport through an analyzing magnet is presented. We find that such a slow ion beam is very sensitive to space-charge forces, but also that the neutralization of the beam's space charge by secondary electrons is virtually complete for beam currents up to at least 0.5 mA. The beam emittance directly behind the extraction system is 65 pi mm mrad and is determined by the fact that the ion beam is extracted in the strong magnetic fringe field of the ion source. The relatively large emittance of the beam and its non-paraxiality lead, in combination with a relatively small magnet gap, to significant beam losses and a five-fold increase of the effective beam emittance during its transport through the analyzing magnet. The calculated beam profile and phase-space distributions in the image plane of the analyzing magnet agree well with measurements. The kinematic and magnet aberrations...

  5. Metal-organic charge transfer can produce biradical states and is mediated by conical intersections

    OpenAIRE

    Tishchenko, Oksana; Li, Ruifang; Truhlar, Donald G.

    2010-01-01

    The present paper illustrates key features of charge transfer between calcium atoms and prototype conjugated hydrocarbons (ethylene, benzene, and coronene) as elucidated by electronic structure calculations. One- and two-electron charge transfer is controlled by two sequential conical intersections. The two lowest electronic states that undergo a conical intersection have closed-shell and open-shell dominant configurations correlating with the 4s2 and 4s13d1 states of Ca, respectively. Unlike...

  6. Intertime jump statistics of state-dependent Poisson processes.

    Science.gov (United States)

    Daly, Edoardo; Porporato, Amilcare

    2007-01-01

    A method to obtain the probability distribution of the interarrival times of jump occurrences in systems driven by state-dependent Poisson noise is proposed. Such a method uses the survivor function obtained by a modified version of the master equation associated to the stochastic process under analysis. A model for the timing of human activities shows the capability of state-dependent Poisson noise to generate power-law distributions. The application of the method to a model for neuron dynamics and to a hydrological model accounting for land-atmosphere interaction elucidates the origin of characteristic recurrence intervals and possible persistence in state-dependent Poisson models.

  7. Intertime jump statistics of state-dependent Poisson processes

    Science.gov (United States)

    Daly, Edoardo; Porporato, Amilcare

    2007-01-01

    A method to obtain the probability distribution of the interarrival times of jump occurrences in systems driven by state-dependent Poisson noise is proposed. Such a method uses the survivor function obtained by a modified version of the master equation associated to the stochastic process under analysis. A model for the timing of human activities shows the capability of state-dependent Poisson noise to generate power-law distributions. The application of the method to a model for neuron dynamics and to a hydrological model accounting for land-atmosphere interaction elucidates the origin of characteristic recurrence intervals and possible persistence in state-dependent Poisson models.

  8. Charge trapping phenomena of tetraethylorthosilicate thin film containing Si nanocrystals synthesized by solid-state reaction.

    Science.gov (United States)

    Lau, H W; Tan, O K; Liu, Y; Trigg, D A; Chen, T P

    2006-08-28

    In this work, we report on the fabrication of tetraethylorthosilicate (TEOS) thin dielectric film containing silicon nanocrystals (Si nc), synthesized by solid-state reaction, in a capacitor structure. A metal-insulator-semi-conductor (MIS) capacitor, with 28 nm thick Si nc in a TEOS thin film, has been fabricated. For this MIS, both electron and hole trapping in the Si nc are possible, depending on the polarity of the bias voltage. A V(FB) shift greater than 1 V can be experienced by a bias voltage of 16 V applied to the metal electrode for 1 s. Though there is no top control oxide, the discharge time for 10% of charges can be up to 4480 s when it is biased at 16 V for 1 s. It is further demonstrated that charging and discharging mechanisms are due to the Si nc rather than the TEOS oxide defects. This form of Si nc in a TEOS thin film capacitor provides the possibility of memory applications at low cost.

  9. Ligand-induced dependence of charge transfer in nanotube-quantum dot heterostructures.

    Science.gov (United States)

    Wang, Lei; Han, Jinkyu; Sundahl, Bryan; Thornton, Scott; Zhu, Yuqi; Zhou, Ruiping; Jaye, Cherno; Liu, Haiqing; Li, Zhuo-Qun; Taylor, Gordon T; Fischer, Daniel A; Appenzeller, Joerg; Harrison, Robert J; Wong, Stanislaus S

    2016-08-25

    As a model system to probe ligand-dependent charge transfer in complex composite heterostructures, we fabricated double-walled carbon nanotube (DWNT)-CdSe quantum dot (QD) composites. Whereas the average diameter of the QDs probed was kept fixed at ∼4.1 nm and the nanotubes analyzed were similarly oxidatively processed, by contrast, the ligands used to mediate the covalent attachment between the QDs and DWNTs were systematically varied to include p-phenylenediamine (PPD), 2-aminoethanethiol (AET), and 4-aminothiophenol (ATP). Herein, we have put forth a unique compilation of complementary data from experiment and theory, including results from transmission electron microscopy (TEM), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, Raman spectroscopy, electrical transport measurements, and theoretical modeling studies, in order to fundamentally assess the nature of the charge transfer between CdSe QDs and DWNTs, as a function of the structure of various, intervening bridging ligand molecules. Specifically, we correlated evidence of charge transfer as manifested by changes and shifts associated with NEXAFS intensities, Raman peak positions, and threshold voltages both before and after CdSe QD deposition onto the underlying DWNT surface. Importantly, for the first time ever in these types of nanoscale composite systems, we have sought to use theoretical modeling to justify and account for our experimental results. Our overall data suggest that (i) QD coverage density on the DWNTs varies, based upon the different ligand pendant groups used and that (ii) the presence of a π-conjugated carbon framework within the ligands themselves coupled with the electron affinity of their pendant groups collectively play important roles in the resulting charge transfer from QDs to the underlying CNTs. PMID:27368081

  10. Salt effects on lamellar repeat distance depending on head groups of neutrally charged lipids.

    Science.gov (United States)

    Hishida, Mafumi; Yamamura, Yasuhisa; Saito, Kazuya

    2014-09-01

    Change in lamellar repeat distances of neutrally charged lipids upon addition of monovalent salts was measured with small-angle X-ray scattering for combinations of two lipids (PC and PE lipids) and six salts. Large dependence on lipid head group is observed in addition to those on added cation and anion. The ion and lipid dependences have little correlation with measured surface potentials of lipid membranes. These results indicate that the lamellar swelling by salt is not explained through balance among interactions considered previously (van der Waals interaction, electrostatic repulsion emerged by ion binding, etc.). It is suggested that effect of water structure, which is affected by not only ions but also lipid itself, should be taken into account for understanding membrane-membrane interactions, as in the Hofmeister effect. PMID:25126900

  11. The charge state distributions of 0.5-2.9 MeV Be, Al, Cl, Ti and Ni ions measured after carbon foil stripping

    International Nuclear Information System (INIS)

    Equilibrium charge state distributions have been measured for Be, Al, Cl, Ti and Ni ions stripped in the high-voltage terminal of an electrostatic tandem accelerator using a 2 μg/cm2 carbon foil. The series of measurements were made with a terminal voltage ranging from typically 1.5 to 2.9 MV. The charge state distributions were measured on the high-energy side of the accelerator, just in front of the analysing magnet, in order to take charge state-dependent transmission through the high-energy side of the accelerator into account. The obtained charge state distributions will be used for accelerator mass spectrometry measurements to find the optimum terminal voltage of the accelerator. (orig.)

  12. Incident energy and charge deposition dependences of electron transmission through a microsized tapered glass capillary

    Science.gov (United States)

    Wickramarachchi, S. J.; Ikeda, T.; Dassanayake, B. S.; Keerthisinghe, D.; Tanis, J. A.

    2016-09-01

    An experimental study of electron transmission and guiding through a tapered glass capillary has been performed. Electrons were transmitted for tilt angles up to ∼6.5° and ∼9.5° (laboratory angles) for incident energies of 500 and 1000 eV, respectively. It is found that elastic and inelastic contributions give rise to distinguishable peaks in the transmitted profile. For 500 eV elastic transmission dominates the profile, while for 1000 eV both elastic and inelastic contributions are present. The transmission for both energies was studied as a function of the charge (time) deposition and found to be strongly dependent. Results suggest fundamental differences between 500 and 1000 eV incident electrons. For 500 eV the transmission slowly increases suggesting charge up of the capillary wall, reaching relative stability with infrequent breakdowns for all angles investigated. For 1000 eV for tilt angles near zero degrees the time dependent profile shows oscillations in the transmission, which never reached a stable condition, while for the larger angle investigated the transmission reached near equilibrium. Inelastic processes dominated the transmission for 1000 eV even at very small tilt angles, but was generally elastic (due to Coulomb deflection) for 500 eV even for the largest tilt angle measured.

  13. DEPTH-CHARGE static and time-dependent perturbation/sensitivity system for nuclear reactor core analysis. Revision I. [DEPTH-CHARGE code

    Energy Technology Data Exchange (ETDEWEB)

    White, J.R.

    1985-04-01

    This report provides the background theory, user input, and sample problems required for the efficient application of the DEPTH-CHARGE system - a code black for both static and time-dependent perturbation theory and data sensitivity analyses. The DEPTH-CHARGE system is of modular construction and has been implemented within the VENTURE-BURNER computational system at Oak Ridge National Laboratory. The DEPTH module (coupled with VENTURE) solves for the three adjoint functions of Depletion Perturbation Theory and calculates the desired time-dependent derivatives of the response with respect to the nuclide concentrations and nuclear data utilized in the reference model. The CHARGE code is a collection of utility routines for general data manipulation and input preparation and considerably extends the usefulness of the system through the automatic generation of adjoint sources, estimated perturbed responses, and relative data sensitivity coefficients. Combined, the DEPTH-CHARGE system provides, for the first time, a complete generalized first-order perturbation/sensitivity theory capability for both static and time-dependent analyses of realistic multidimensional reactor models. This current documentation incorporates minor revisions to the original DEPTH-CHARGE documentation (ORNL/CSD-78) to reflect some new capabilities within the individual codes.

  14. Dynamics of the Rydberg state population of slow highly charged ions impinging a solid surface at arbitrary collision geometry

    Science.gov (United States)

    Nedeljković, N. N.; Majkić, M. D.; Božanić, D. K.; Dojčilović, R. J.

    2016-06-01

    We consider the population dynamics of the intermediate Rydberg states of highly charged ions (core charge Z\\gg 1, principal quantum number {n}{{A}}\\gg 1) interacting with solid surfaces at arbitrary collision geometry. The recently developed resonant two-state vector model for the grazing incidence (2012 J. Phys. B: At. Mol. Opt. Phys. 45 215202) is extended to the quasi-resonant case and arbitrary angle of incidence. According to the model, the population probabilities depend both on the projectile parallel and perpendicular velocity components, in a complementary way. A cascade neutralization process for {{{Xe}}}Z+ ions, for Z=15{--}45, interacting with a conductive-surface is considered by taking into account the population dynamics. For an arbitrary collision geometry and given range of ionic velocities, a micro-staircase model for the simultaneous calculation of the kinetic energy gain and the charge state of the ion in front of the surface is proposed. The relevance of the obtained results for the explanation of the formation of nanostructures on solid surfaces by slow highly charged ions for normal incidence geometry is briefly discussed.

  15. Fluorescence behavior of intramolecular charge transfer state in trans-ethyl p-(dimethylamino)cinamate

    International Nuclear Information System (INIS)

    Steady-state and time-resolved emission studies have been performed to investigate the intramolecular charge transfer (ICT) behavior of trans-ethyl p-(dimethylamino)cinamate (EDAC) in various solvents. Large fluorescence spectral shift in more polar solvents indicates an efficient charge transfer from the donor site to the acceptor moiety in the excited state compared to the ground state. The excited state properties in hydrogen-bonding solvents are markedly different from other solvents indicating the possible competition of intermolecular hydrogen bond formation with the electron donor site and ICT

  16. On the nature of the low temperature insulating state of ferromagnetic and charge ordered manganites

    International Nuclear Information System (INIS)

    Based on electroresistance (ER) measurements founded on a current induced resistivity switching (CIRS) phenomena, we establish the presence of a 'colossal' ER in the low temperature ferromagnetic insulating (FMI) phase exhibited by certain hole doped manganites. Notably, concomitant with the build-up of ER, is a sharp drop in the magnetoresistance (MR). This intelligibly demonstrates an effective decoupling of the mechanisms underlying ER and MR in the FMI phase. ER (CIRS) and MR were measured on single crystals of two widely different FMI manganites: La0.82Ca0.18MnO3 and Nd0.7Pb0.3MnO3. The samples have Curie temperatures, TC∼165 and 150 K, and the FMI state is realized for temperatures, T≤100 and 130 K, respectively. The ER, arising from a strong nonlinear dependence of resistivity (ρ) on current density (j), attains a value ≅100% in the FMI state. The severity of the nonlinear behavior of resistivity at high current densities is progressively enhanced with decreasing temperature. The MR, however, collapses (<20%) even in magnetic field, H=14 T. Comparison with magnetotransport data on charge ordered insulating (COI) manganites reveal discernible differences in response to applied current and magnetic field. This is credible proof that the nature of the insulating state, in the FMI and COI phases, is different

  17. State-Dependent Divergences in the Entanglement Entropy

    CERN Document Server

    Marolf, Donald

    2016-01-01

    We show the entanglement entropy in certain quantum field theories to contain state-dependent divergences. Both perturbative and holographic examples are exhibited. However, quantities such as the relative entropy and the generalized entropy of black holes remain finite, due to cancellation of divergences. We classify all possible state-dependent divergences that can appear in both perturbatively renormalizeable and holographic covariant $d\\le 6$ quantum field theories.

  18. Inline state of health estimation of lithium-ion batteries using state of charge calculation

    Science.gov (United States)

    Sepasi, Saeed; Ghorbani, Reza; Liaw, Bor Yann

    2015-12-01

    The determination of state-of-health (SOH) and state-of-charge (SOC) is challenging and remains as an active research area in academia and industry due to its importance for Li-ion battery applications. The estimation process poses more challenges after substantial battery aging. This paper presents an inline SOH and SOC estimation method for Li-ion battery packs, specifically for those based on LiFePO4 chemistry. This new hybridized SOC and SOH estimator can be used for battery packs. Inline estimated model parameters were used in a compounded SOC + SOH estimator consisting of the SOC calculation based on coulomb counting method as an expedient approach and an SOH observer using an extended Kalman filter (EKF) technique for calibrating the estimates from the coulomb counting method. The algorithm's low SOC and SOH estimation error, fast response time, and less-demanding computational requirement make it practical for on-board estimations. The simulation and experimental results, along with the test bed structure, are presented to validate the proposed methodology on a single cell and a 3S1P LiFePO4 battery pack.

  19. Exceptionally Long-Lived Charge Separated State in Zeolitic Imidazolate Framework: Implication for Photocatalytic Applications.

    Science.gov (United States)

    Pattengale, Brian; Yang, Sizhuo; Ludwig, John; Huang, Zhuangqun; Zhang, Xiaoyi; Huang, Jier

    2016-07-01

    Zeolitic imidazolate frameworks (ZIFs) have emerged as a novel class of porous metal-organic frameworks (MOFs) for catalysis application because of their exceptional thermal and chemical stability. Inspired by the broad absorption of ZIF-67 in UV-vis-near IR region, we explored its excited state and charge separation dynamics, properties essential for photocatalytic applications, using optical (OTA) and X-ray transient absorption (XTA) spectroscopy. OTA results show that an exceptionally long-lived excited state is formed after photoexcitation. This long-lived excited state was confirmed to be the charge-separated (CS) state with ligand-to-metal charge-transfer character using XTA. The surprisingly long-lived CS state, together with its intrinsic hybrid nature, all point to its potential application in heterogeneous photocatalysis and energy conversion. PMID:27322216

  20. Exceptionally Long-Lived Charge Separated State in Zeolitic Imidazolate Framework: Implication for Photocatalytic Applications.

    Science.gov (United States)

    Pattengale, Brian; Yang, Sizhuo; Ludwig, John; Huang, Zhuangqun; Zhang, Xiaoyi; Huang, Jier

    2016-07-01

    Zeolitic imidazolate frameworks (ZIFs) have emerged as a novel class of porous metal-organic frameworks (MOFs) for catalysis application because of their exceptional thermal and chemical stability. Inspired by the broad absorption of ZIF-67 in UV-vis-near IR region, we explored its excited state and charge separation dynamics, properties essential for photocatalytic applications, using optical (OTA) and X-ray transient absorption (XTA) spectroscopy. OTA results show that an exceptionally long-lived excited state is formed after photoexcitation. This long-lived excited state was confirmed to be the charge-separated (CS) state with ligand-to-metal charge-transfer character using XTA. The surprisingly long-lived CS state, together with its intrinsic hybrid nature, all point to its potential application in heterogeneous photocatalysis and energy conversion.

  1. Constructing diabatic states from adiabatic states: extending generalized Mulliken-Hush to multiple charge centers with boys localization.

    Science.gov (United States)

    Subotnik, Joseph E; Yeganeh, Sina; Cave, Robert J; Ratner, Mark A

    2008-12-28

    This article shows that, although Boys localization is usually applied to single-electron orbitals, the Boys method itself can be applied to many electron molecular states. For the two-state charge-transfer problem, we show analytically that Boys localization yields the same charge-localized diabatic states as those found by generalized Mulliken-Hush theory. We suggest that for future work in electron transfer, where systems have more than two charge centers, one may benefit by using a variant of Boys localization to construct diabatic potential energy surfaces and extract electronic coupling matrix elements. We discuss two chemical examples of Boys localization and propose a generalization of the Boys algorithm for creating diabatic states with localized spin density that should be useful for Dexter triplet-triplet energy transfer.

  2. Constructing diabatic states from adiabatic states: Extending generalized Mulliken-Hush to multiple charge centers with Boys localization

    Science.gov (United States)

    Subotnik, Joseph E.; Yeganeh, Sina; Cave, Robert J.; Ratner, Mark A.

    2008-12-01

    This article shows that, although Boys localization is usually applied to single-electron orbitals, the Boys method itself can be applied to many electron molecular states. For the two-state charge-transfer problem, we show analytically that Boys localization yields the same charge-localized diabatic states as those found by generalized Mulliken-Hush theory. We suggest that for future work in electron transfer, where systems have more than two charge centers, one may benefit by using a variant of Boys localization to construct diabatic potential energy surfaces and extract electronic coupling matrix elements. We discuss two chemical examples of Boys localization and propose a generalization of the Boys algorithm for creating diabatic states with localized spin density that should be useful for Dexter triplet-triplet energy transfer.

  3. Study of photon emission by electron capture during solar nuclei acceleration. 1: temperature-dependent cross section for charge changing processes

    International Nuclear Information System (INIS)

    The study of charge changing cross sections of fast ions colliding with matter provides the fundamental basis for the analysis of the charge states produced in such interactions. Given the high degree of complexity of the phenomena, there is no theoretical treatment able to give a comprehensive description. In fact, the involved processes are very dependent on the basic parameters of the projectile, such as velocity charge state and atomic number, and on the target parameters, the physical state (molecular, atomic or ionized matter) and density. The target velocity may have also influence on the process through the temperature of the traversed medium. In addition, multiple electron transfer in single collisions intrincates more the phenomena. Though in simplified cases such as protons moving through atomic hydrogen considerable agreement has been obtained between theory and experiments. However, in general the available theoretical approaches have only limited validity in restricted regions of the basic parameters. Since most measurements of charge changing cross sections are performed in atomic matter at ambient temperature, models are commonly based on the assumption of targets at rest. However at astrophysical scales, temperature displays a wide range in atomic and ionized matter. Therefore, due to the lack of experimental data , an attempt is made here to quantify temperature dependent cross sections on the basis to somewhat arbitrary but physically reasonable assumptions

  4. Control of Thermodynamical System with Input-Dependent State Delays

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Krstic, Miroslav

    2013-01-01

    -negligible amount of time to travel to the consumers, giving rise to input-dependent state delays. We first present a simple bilinear model of the system, followed by a state feedback control design that is able to stabilize the system at a chosen equilibrium in spite of the delays. We also present a heuristic...

  5. A new temperature-dependent equation of state of solids

    Indian Academy of Sciences (India)

    Kamal Kapoor; Anuj Kumar; Narsingh Dass

    2014-03-01

    In the present paper, a temperature-dependent equation of state (EOS) of solids is discussed which is found to be applicable in high-pressure and high-temperature range. Present equation of state has been applied in 18 solids. The calculated data are found in very good agreement with the data available from other sources.

  6. Charge pump DC-DC converter comprising solid state batteries

    NARCIS (Netherlands)

    Reefman, D.; Roozeboom, F.; Notten, P.H.L.; Klootwijk, J.H.

    2013-01-01

    An electronic device is provided which comprises a DC-DC converter. The DC-DC converter comprises at least one solid-state rechargeable battery (B1, B2) for storing energy for the DC-DC conversion and an output capacitor (C2).

  7. Techniques for enhancing the performance of high charge state ECR ion sources

    International Nuclear Information System (INIS)

    Electron Cyclotron Resonance ion source (ECRIS), which produces singly to highly charged ions, is widely used in heavy ion accelerators and is finding applications in industry. It has progressed significantly in recent years thanks to a few techniques, such as multiple-frequency plasma heating, higher mirror magnetic fields and a better cold electron donor. These techniques greatly enhance the production of highly charged ions. More than 1 emA of He2+ and O6+, hundreds of eμA of O7+, Ne8+, Ar12+, more than 100 eμA of intermediate heavy ions with charge states up to Ne9+, Ar13+, Ca13+, Fe13+, Co14+ and Kr18+, tens of eμA of heavy ions with charge states up to Xe28+, Au35+, Bi34+ and U34+ were produced at cw mode operation. At an intensity of about 1 eμA, the charge states for the heavy ions increased up to Xe36+, Au46+, Bi47+ and U48+. More than an order of magnitude enhancement of fully stripped argon ions was achieved (I≥0.1 and h;eμA). Higher charge state ions up to Kr35+, Xe46+ and U64+ at low intensities were produced for the first time from an ECRIS. copyright 1999 American Institute of Physics

  8. True Versus Spurious State Dependence in Firm Performance

    DEFF Research Database (Denmark)

    Kaiser, Ulrich; Kongsted, Hans Christian

    determinants. Our results, which are consistent with the findings of previous studies on firms in developing countries and in the United States, show the presence of important sunk costs in export market entry and a depreciation of knowledge and experience in export markets...... to critical assumptions on firms' initial export status. We find robust evidence of state dependence in the current export status of firms. We also document an important role of unobserved permanent firm heterogeneity ("spurious state dependence") and quantify the relative importance of different export...

  9. True versus spurious state dependence in firm performance

    DEFF Research Database (Denmark)

    Kaiser, Ulrich; Kongsted, Hans Christian

    2008-01-01

    determinants. Our results, which are consistent with the findings of previous studies on firms in developing countries and in the United States, show the presence of important sunk costs in export market entry and a depreciation of knowledge and experience in export markets....... to critical assumptions on firms' initial export status. We find robust evidence of state dependence in the current export status of firms. We also document an important role of unobserved permanent firm heterogeneity (spurious state dependence) and quantify the relative importance of different export...

  10. Multi-temperature state-dependent equivalent circuit discharge model for lithium-sulfur batteries

    DEFF Research Database (Denmark)

    Propp, Karsten; Marinescu, Monica; Auger, Daniel J.;

    2016-01-01

    Lithium-sulfur (Li-S) batteries are described extensively in the literature, but existing computational models aimed at scientific understanding are too complex for use in applications such as battery management. Computationally simple models are vital for exploitation. This paper proposes a non......-linear state-of-charge dependent Li-S equivalent circuit network (ECN) model for a Li-S cell under discharge. Li-S batteries are fundamentally different to Li-ion batteries, and require chemistry-specific models. A new Li-S model is obtained using a ‘behavioural’ interpretation of the ECN model; as Li...... pulse profile at four temperatures from 10 °C to 50 °C, giving linearized ECN parameters for a range of states-of-charge, currents and temperatures. These are used to create a nonlinear polynomial-based battery model suitable for use in a battery management system. When the model is used to predict...

  11. Thickness dependence of surface morphology and charge carrier mobility in organic field-effect transistors

    International Nuclear Information System (INIS)

    With the aim of understanding the relationships between organic small molecule field-effect transistors (FETs) and organic conjugated polymer FETs, we investigate the thickness dependence of surface morphology and charge carrier mobility in pentacene and regioregular poly (3-hexylthiophene) (RR-P3HT) field-effect transistors. On the basis of the results of surface morphologies and electrical properties, we presume that the charge carrier mobility is largely related to the morphology of the organic active layer. We observe that the change trends of the surface morphologies (average size and average roughness) of pentacene and RR-P3HT thin films are mutually opposite, as the thickness of the organic layer increases. Further, we demonstrate that the change trends of the field-effect mobilities of pentacene and RR-P3HT FETs are also opposite to each other, as the thickness of the organic layer increases within its limit. (cross-disciplinary physics and related areas of science and technology)

  12. Beam energy dependence of pseudorapidity distributions of charged particles produced in relativistic heavy-ion collisions

    Science.gov (United States)

    Basu, Sumit; Nayak, Tapan K.; Datta, Kaustuv

    2016-06-01

    Heavy-ion collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN probe matter at extreme conditions of temperature and energy density. Most of the global properties of the collisions can be extracted from the measurements of charged-particle multiplicity and pseudorapidity (η ) distributions. We have shown that the available experimental data on beam energy and centrality dependence of η distributions in heavy-ion (Au +Au or Pb +Pb ) collisions from √{sNN}=7.7 GeV to 2.76 TeV are reasonably well described by the AMPT model, which is used for further exploration. The nature of the η distributions has been described by a double Gaussian function using a set of fit parameters, which exhibit a regular pattern as a function of beam energy. By extrapolating the parameters to a higher energy of √{sNN}=5.02 TeV, we have obtained the charged-particle multiplicity densities, η distributions, and energy densities for various centralities. Incidentally, these results match well with some of the recently published data by the ALICE Collaboration.

  13. Charge-state distribution and Doppler effect in an expanding photoionized plasma.

    Science.gov (United States)

    Foord, M E; Heeter, R F; van Hoof, P A M; Thoe, R S; Bailey, J E; Cuneo, M E; Chung, H-K; Liedahl, D A; Fournier, K B; Chandler, G A; Jonauskas, V; Kisielius, R; Mix, L P; Ramsbottom, C; Springer, P T; Keenan, F P; Rose, S J; Goldstein, W H

    2004-07-30

    The charge state distributions of Fe, Na, and F are determined in a photoionized laboratory plasma using high resolution x-ray spectroscopy. Independent measurements of the density and radiation flux indicate unprecedented values for the ionization parameter xi=20-25 erg cm s(-1) under near steady-state conditions. Line opacities are well fitted by a curve-of-growth analysis which includes the effects of velocity gradients in a one-dimensional expanding plasma. First comparisons of the measured charge state distributions with x-ray photoionization models show reasonable agreement.

  14. Controllable Quantum State Transfer Between a Josephson Charge Qubit and an Electronic Spin Ensemble

    Science.gov (United States)

    Yan, Run-Ying; Wang, Hong-Ling; Feng, Zhi-Bo

    2016-01-01

    We propose a theoretical scheme to implement controllable quantum state transfer between a superconducting charge qubit and an electronic spin ensemble of nitrogen-vacancy centers. By an electro-mechanical resonator acting as a quantum data bus, an effective interaction between the charge qubit and the spin ensemble can be achieved in the dispersive regime, by which state transfers are switchable due to the adjustable electrical coupling. With the accessible experimental parameters, we further numerically analyze the feasibility and robustness. The present scheme could provide a potential approach for transferring quantum states controllably with the hybrid system.

  15. Consecutive reversible ionization-recombination reactions and ionic charge state distribution of Au plasma

    Institute of Scientific and Technical Information of China (English)

    ZHU; Zhiyan; ZHU; Zhenghe; TANG; Changhuan; TANG; Yongjia

    2005-01-01

    The present work proposes kinetics of ionization-recombination to study the charge state distribution of Au plasma. The first step is to calculate the average lifetime, energy level structure, degeneracy and partition function of Au48+―Au52+ by relativistic quantum mechanics, and next to compute the equilibrium constant and the second-order recombination rate constant by statistical thermodynamics. Based on these data, the differential equations of consecutive reversible ionization-recombination reactions are solved from which the charge state distribution and its average charge are derived. Finally, the influence of electron temperature and density on average charge is given in this paper. It is called the first-principle theory, for no experimental data are needed.

  16. Battery State-of-Charge and Parameter Estimation Algorithm Based on Kalman Filter

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Sucic, Stjepan; Guerrero, Josep M.

    2013-01-01

    such as the actual state of charge (SOC) and state of health (SOH). Therefore, a modern battery management systems (BMSs) should incorporate functions that accommodate real time tracking of these nonlinearities. For that purpose, Kalman filter based algorithms emerged as a convenient solution due to their ability...

  17. Energy-resolved collision-induced dissociation of non-covalent ions: charge- and guest-dependence of decomplexation reaction efficiencies.

    Science.gov (United States)

    Carroy, Glenn; Lemaur, Vincent; De Winter, Julien; Isaacs, Lyle; De Pauw, Edwin; Cornil, Jérôme; Gerbaux, Pascal

    2016-05-14

    Supramolecular chemistry, and especially host-guest chemistry, has been the subject of great interest in the past few decades leading to the synthesis of host cage molecules such as calixarenes, cyclodextrins and more recently cucurbiturils. Mass spectrometry methods are increasingly used to decipher at the molecular level the non-covalent interactions between the different associated molecules. The present article illustrates that the association between mass spectrometry and computational chemistry techniques proves very complementary to depict the gas-phase dissociation processes of ionic non-covalent complexes when subjected to collisional activation. The selected system associates a nor-seco-cucurbit[10]uril bitopic receptor with different amino compounds (adamantylamine, para-xylylenediamine, and para-phenylenediamine). When subjected to CID experiments, the ternary complexes undergo fragmentation via dissociation of non-covalently bound partners. Interestingly, depending on their charge state, the collisionally excited complexes can selectively expel either a neutral guest molecule or a protonated guest molecule. Moreover, based on energy-resolved CID experiments, it is possible to evaluate the guest molecule dependence on the gas phase dissociation efficiency. We observed that the relative order of gas phase dissociation is charge state dependent, with the adamantylamine-containing complexes being the weakest when triply charged and the strongest when doubly charged. The energetics of the gas-phase dissociation reactions have been estimated by density functional theory (DFT) calculations. We succeeded in theoretically rationalizing the experimental collision-induced dissociation results with a special emphasis on: (i) the charge state of the expelled guest molecule and (ii) the nature of the guest molecule. PMID:27086657

  18. New evidence for charge-sign dependent modulation during the solar minimum of 2006 to 2009

    CERN Document Server

    Di Felice, V; Vos, E E; Potgieter, M S

    2016-01-01

    The PAMELA space experiment, in orbit since 2006, has measured cosmic rays through the most recent A < 0 solar minimum activity period. During this entire time, galactic electrons and protons have been detected down to 70 MV and 400 MV, respectively, and their differential intensity variation in time has been monitored with unprecedented accuracy. These observations are used to show how differently electrons and protons responded to the quiet modulation conditions that prevailed from 2006 to 2009. It is well known that particle drifts, as one of four major mechanisms for the solar modulation of cosmic rays, cause charge-sign dependent solar modulation. Solar minimum activity periods provide optimal conditions to study these drift effects. The observed behaviour is compared to the solutions of a three-dimensional model for cosmic rays in the heliosphere, including drifts. The numerical results confirm that the difference in the evolution of electron and proton spectra during the last prolonged solar minimum...

  19. Administrative charges in pensions in Chile, Malaysia, Zambia, and the United States

    OpenAIRE

    Valdes-Prieto, Salvador

    1994-01-01

    The author offers a framework for an international comparison of charges in mandatory and private pension systems, and in state-run and privately managed systems. Such comparisons make it possible to determine which combinations of quality and cost make the most sense in pension services. He finds that: 1) Charges in the private annuity industry are much higher than other components of the pension package, and much higher than publicly provided annuities in the US; 2) comparing the collection...

  20. The influence of nonthermal electron distributions on the charge state of heavy ions

    Science.gov (United States)

    Kartavykh, Yu.; Ostryakov, V.

    2001-08-01

    We investigate the influence of non-thermal electrons on the formation of ionic states of heavy elements in SEP events. The equilibrium mean charge of Mg, Si and Fe for several samples of non-Maxwellian populations (power law electron beam and bi-Maxwellian distribution) were calculated. According to our estimates the anomalously high density of non-thermal electrons is required to obtain substantial difference in the mean charge of heavy ions as compared with `pure' thermal dstribution.

  1. A vacuum spark ion source: High charge state metal ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Nikolaev, A. G.; Frolova, V. P. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Oks, E. M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Tomsk State University of Control System and Radioelectronics, Tomsk 634050 (Russian Federation)

    2016-02-15

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  2. Charge State Evolution in the Solar Wind. III. Model Comparison with Observations

    Science.gov (United States)

    Landi, E.; Oran, R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.; van der Holst, B.

    2014-08-01

    We test three theoretical models of the fast solar wind with a set of remote sensing observations and in-situ measurements taken during the minimum of solar cycle 23. First, the model electron density and temperature are compared to SOHO/SUMER spectroscopic measurements. Second, the model electron density, temperature, and wind speed are used to predict the charge state evolution of the wind plasma from the source regions to the freeze-in point. Frozen-in charge states are compared with Ulysses/SWICS measurements at 1 AU, while charge states close to the Sun are combined with the CHIANTI spectral code to calculate the intensities of selected spectral lines, to be compared with SOHO/SUMER observations in the north polar coronal hole. We find that none of the theoretical models are able to completely reproduce all observations; namely, all of them underestimate the charge state distribution of the solar wind everywhere, although the levels of disagreement vary from model to model. We discuss possible causes of the disagreement, namely, uncertainties in the calculation of the charge state evolution and of line intensities, in the atomic data, and in the assumptions on the wind plasma conditions. Last, we discuss the scenario where the wind is accelerated from a region located in the solar corona rather than in the chromosphere as assumed in the three theoretical models, and find that a wind originating from the corona is in much closer agreement with observations.

  3. Charge state evolution in the solar wind. III. Model comparison with observations

    Energy Technology Data Exchange (ETDEWEB)

    Landi, E.; Oran, R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.; Van der Holst, B. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2014-08-01

    We test three theoretical models of the fast solar wind with a set of remote sensing observations and in-situ measurements taken during the minimum of solar cycle 23. First, the model electron density and temperature are compared to SOHO/SUMER spectroscopic measurements. Second, the model electron density, temperature, and wind speed are used to predict the charge state evolution of the wind plasma from the source regions to the freeze-in point. Frozen-in charge states are compared with Ulysses/SWICS measurements at 1 AU, while charge states close to the Sun are combined with the CHIANTI spectral code to calculate the intensities of selected spectral lines, to be compared with SOHO/SUMER observations in the north polar coronal hole. We find that none of the theoretical models are able to completely reproduce all observations; namely, all of them underestimate the charge state distribution of the solar wind everywhere, although the levels of disagreement vary from model to model. We discuss possible causes of the disagreement, namely, uncertainties in the calculation of the charge state evolution and of line intensities, in the atomic data, and in the assumptions on the wind plasma conditions. Last, we discuss the scenario where the wind is accelerated from a region located in the solar corona rather than in the chromosphere as assumed in the three theoretical models, and find that a wind originating from the corona is in much closer agreement with observations.

  4. A vacuum spark ion source: High charge state metal ion beams

    Science.gov (United States)

    Yushkov, G. Yu.; Nikolaev, A. G.; Oks, E. M.; Frolova, V. P.

    2016-02-01

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  5. A vacuum spark ion source: High charge state metal ion beams

    International Nuclear Information System (INIS)

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described

  6. Decay of Bloch oscillations in the charge-density-wave ordered phase of an all electronic charge density wave state

    Science.gov (United States)

    Matveev, Oleg; Shvaika, Andrij; Devereaux, Thomas; Freericks, James

    The charge-density-wave phase of the Falicov-Kimball model displays a number of anomalous behavior including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field. Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for this nonlinear response. We examine both the current and the order parameter of the conduction electrons as the ordered system is driven by a dc electric field. Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, Lviv, Ukraine.

  7. Photoinduced charge generation rates in soluble P3HT : PCBM nano-aggregates predict the solvent-dependent film morphology

    Science.gov (United States)

    Roy, Palas; Jha, Ajay; Dasgupta, Jyotishman

    2016-01-01

    The device efficiency of bulk heterojunction (BHJ) solar cells is critically dependent on the nano-morphology of the solution-processed polymer : fullerene blend. Active control on blend morphology can only emanate from a detailed understanding of solution structures during the film casting process. Here we use photoinduced charge transfer (CT) rates to probe the effective length scale of the pre-formed solution structures and their energy disorder arising from a mixture of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in three different organic solvents. The observed solvent-dependent ultrafast biphasic rise of the transient polaron state in solution along with changes detected in the C&z.dbd;C stretching frequency of bound PCBM provides direct evidence for film-like P3HT : PCBM interfaces in solution. Using the diffusive component of the charge transfer rate, we deduce ~3-times larger functional nano-domain size in toluene than in chlorobenzene thereby correctly predicting the relative polymer nanofiber widths observed in annealed films. We thus provide first experimental evidence for the postulated polymer : fullerene : solvent ternary phase that seeds the eventual morphology in spin-cast films. Our work motivates the design of new chemical additives to tune the grain size of the evolving polymer : fullerene domains within the solution phase.The device efficiency of bulk heterojunction (BHJ) solar cells is critically dependent on the nano-morphology of the solution-processed polymer : fullerene blend. Active control on blend morphology can only emanate from a detailed understanding of solution structures during the film casting process. Here we use photoinduced charge transfer (CT) rates to probe the effective length scale of the pre-formed solution structures and their energy disorder arising from a mixture of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in three

  8. Ground-state energies and charge radii of $^{4}$He, $^{16}$O, $^{40}$Ca, and $^{56}$Ni in the unitary-model-operator approach

    CERN Document Server

    Miyagi, Takayuki; Okamoto, Ryoji; Otsuka, Takaharu

    2015-01-01

    We study the nuclear ground-state properties by using the unitary-model-operator approach (UMOA). Recently, the particle-basis formalism has been introduced in the UMOA and enables us to employ the charge-dependent nucleon-nucleon interaction. We evaluate the ground-state energies and charge radii of $^{4}$He, $^{16}$O, $^{40}$Ca, and $^{56}$Ni with the charge-dependent Bonn potential. The ground-state energy is dominated by the contributions from the one- and two-body cluster terms, while, for the radius, the one-particle-one-hole excitations are more important than the two-particle-two-hole excitations. The calculated results reproduce the trend of experimental data of the saturation property for finite nuclei.

  9. On the physics of high charge state ion production in ECR ion sources

    International Nuclear Information System (INIS)

    Full text: In a previous research we have demonstrated that metal-dielectric (MD) structures have high capabilities of to enhance the high-charge-state ion production in ECR Ion Sources. In order to explain this effect, dedicated experiments have been performed, in which changes of main plasma parameters in the presence of a MD structure have been observed and an explanation for the mechanism of 'MD-effect' was given. In this contribution we present a new experiment, where we have concentrated on the question whether the effect of the high-charge-state enhancement by the MD structures is due to the presence of just a dielectric layer in the plasma chamber (e.g. working simply as a breaking of the non ambipolar wall currents) or whether details of the structure of the MD-layer play an essential role. By comparing ion charge state distributions (CSD) and Bremsstrahlung spectra for two MD cylinders, of drastically different layer thicknesses, the importance of the MD effect, and hence of the detailed structure of this type of layer for the production of very highly charged ions is demonstrated. The effect of the two different MD cylinders on the charge state distributions (CSD) of extracted argon ion is presented. It is obvious that both cylinders influence the CSD in a totally different manner. Whereas the thin MD-liner serves to strongly enhance the currents of ions with charge states higher than 9+, the thick MD-liner acted in the opposite way, i.e. enhancing the lower charge states. The experiments reported here demonstrate the role of the MD physics for obtaining an enhanced high charge state ion production in ECRIS. Following established scaling laws, the observed shift of the mean charge state in this experiment is equivalent to a frequency upgrade of an ECRIS from e.g. 14 GHZ to 18 GHz. It has also been demonstrated that than the simple fact of restoring ambipolarity by breaking the Simon short circuits cannot explain this effect. Therefore, the method may

  10. Challenging Adiabatic Time-dependent Density Functional Theory with a Hubbard Dimer: The Case of Time-Resolved Long-Range Charge Transfer

    CERN Document Server

    Fuks, Johanna I

    2014-01-01

    We explore an asymmetric two-fermion Hubbard dimer to test the accuracy of the adiabatic approximation of time-dependent density functional theory in modelling time-resolved charge transfer. We show that the model shares essential features of a ground state long-range molecule in real-space, and by applying a resonant field we show that the model also reproduces essential traits of the CT dynamics. The simplicity of the model allows us to propagate with an "adiabatically-exact" approximation, i.e. one that uses the exact ground-state exchange-correlation functional, and compare with the exact propagation. This allows us to study the impact of the time-dependent charge-transfer step feature in the exact correlation potential of real molecules on the resulting dynamics. Tuning the parameters of the dimer allows a study both of charge-transfer between open-shell fragments and between closed-shell fragments. We find that the adiabatically-exact functional is unable to properly transfer charge, even in situations ...

  11. Time-dependent cylindrical and spherical ion-acoustic solitary structures in relativistic degenerate multi-ion plasmas with positively-charged heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Hossen, M. R.; Nahar, L.; Mamun, A. A. [Jahangirnagar University,Savar, Dhaka (Bangladesh)

    2014-12-15

    The properties of time-dependent cylindrical and spherical, modified ion-acoustic (mIA) solitary structures in relativistic degenerate multi-ion plasmas (containing degenerate electron fluids, inertial positively-, as well as negatively-, charged light ions, and positively-charged static heavy ions) have been investigated theoretically. This investigation is valid for both non-relativistic and ultrarelativistic limits. The well-known reductive perturbation method has been used to derive the Korteweg-de Vries (K-dV) and the mK-dV equations for studying the basic features of solitary waves. The fundamental characteristics of mIA solitary waves are found to be significantly modified by the effects of the degenerate pressures of the electron and the ion fluids, their number densities, and the various charge states of heavy ions. The relevance of our results in astrophysical compact objects like white dwarfs and neutron stars, which are of scientific interest, is briefly discussed.

  12. Charge and agglomeration dependent in vitro uptake and cytotoxicity of zinc oxide nanoparticles.

    Science.gov (United States)

    Abdelmonem, Abuelmagd M; Pelaz, Beatriz; Kantner, Karsten; Bigall, Nadja C; Del Pino, Pablo; Parak, Wolfgang J

    2015-12-01

    The influence of the surface charge and the state of agglomeration of ZnO nanoparticles on cellular uptake and viability are investigated. For this purpose, ZnO nanoparticles were synthesized by colloidal routes and their physicochemical properties were investigated in detail. Three different surface modifications were investigated, involving coatings with the amphiphilic polymer poly(isobutylene-alt-maleic anhydride)-graft-dodecyl, mercaptoundecanoic acid, and L-arginine, which provide the nanoparticles with either a negative or a positive zeta-potential. The hydrodynamic diameters and zeta-potentials of all three nanoparticle species were investigated at different pH values and NaCl concentrations by means of dynamic light scattering and laser Doppler anemometry, respectively. The three differently modified ZnO nanoparticle species of similar sizes were also investigated in respect to their cellular uptake by 3T3 fibroblasts and HeLa cells, and their effect on cell viability. PMID:26387023

  13. The average equilibrium charge-states of heavy ions with Z > 60 stripped in He and H2

    International Nuclear Information System (INIS)

    The equilibrium charges of heavy ions (61 < Z < 101) with energies from 5 to 100 MeV stripped in He and H2 have been measured. New empirical formulae for the average charge state are presented. (orig.)

  14. Chemical physics behind formation of efficient charge-separated state for complexation between PC70BM and designed diporphyrin in solution

    Science.gov (United States)

    Ray, Anamika; Banerjee, Shrabanti; Ghosh, Shalini; Bauri, Ajoy K.; Bhattacharya, Sumanta

    2016-01-01

    The present work reports supramolecular interaction of [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) with two designed diporphyrin molecules having dithiophene (1) and carbazole (2) spacer in solvent having varying polarity. Studies on complex formation reveal relatively higher binding constant for PC70BM/2 complex in all the solvent studied. Solvent dependence of charge separation and charge recombination processes in PC70BM/diporphyrin non-covalent complexes has been well established in present work. Donor-acceptor geometry and stabilization of the singlet excited state of the diporphyrin during charge recombination are considered to be the possible reasons for this behavior.

  15. Activity prediction of substrates in NADH-dependent carbonyl reductase by docking requires catalytic constraints and charge parameterization of catalytic zinc environment.

    Science.gov (United States)

    Dhoke, Gaurao V; Loderer, Christoph; Davari, Mehdi D; Ansorge-Schumacher, Marion; Schwaneberg, Ulrich; Bocola, Marco

    2015-11-01

    Molecular docking of substrates is more challenging compared to inhibitors as the reaction mechanism has to be considered. This becomes more pronounced for zinc-dependent enzymes since the coordination state of the catalytic zinc ion is of greater importance. In order to develop a predictive substrate docking protocol, we have performed molecular docking studies of diketone substrates using the catalytic state of carbonyl reductase 2 from Candida parapsilosis (CPCR2). Different docking protocols using two docking methods (AutoDock Vina and AutoDock4.2) with two different sets of atomic charges (AM1-BCC and HF-RESP) for catalytic zinc environment and substrates as well as two sets of vdW parameters for zinc ion were examined. We have selected the catalytic binding pose of each substrate by applying mechanism based distance criteria. To compare the performance of the docking protocols, the correlation plots for the binding energies of these catalytic poses were obtained against experimental Vmax values of the 11 diketone substrates for CPCR2. The best correlation of 0.73 was achieved with AutoDock4.2 while treating catalytic zinc ion in optimized non-bonded (NBopt) state with +1.01 charge on the zinc ion, compared to 0.36 in non-bonded (+2.00 charge on the zinc ion) state. These results indicate the importance of catalytic constraints and charge parameterization of catalytic zinc environment for the prediction of substrate activity in zinc-dependent enzymes by molecular docking. The developed predictive docking protocol described here is in principle generally applicable for the efficient in silico substrate spectra characterization of zinc-dependent ADH.

  16. Ionic charge state distribution of helium, carbon, oxygen, and iron in an energetic storm particle enhancement

    Science.gov (United States)

    Hovestadt, D.; Klecker, B.; Hoefner, H.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.

    1982-01-01

    An analysis is presented of the ionic charge state distribution of He, C, O and Fe in the energetic storm particle event of September 28-29, 1978. Data were obtained with the ULEZEQ electrostatic analyzer-proportional counter on board the ISEE 3 spacecraft. The He(+)/He(++) ratio between 0.4 and 1 MeV/n is shown to be significantly lower during the energetic storm particle event than during the preceding period of solar flare particle enhancement, with a temporal evolution similar to that of the Fe/He ratio as reported by Klecker et al. (1981). Increases in the mean charge state for oxygen by about 3% and for iron by about 16% are also noted. The temporal variations in charge states are accounted for in terms of first-order Fermi acceleration of the pre-existing solar flare particles by a propagating interplanetary shock wave.

  17. The role of the charge state of PAHs in ultraviolet extinction

    CERN Document Server

    Cecchi-Pestellini, C; Mulas, G; Joblin, C; Williams, D A

    2008-01-01

    Aims: We explore the relation between charge state of polycyclic aromatic hydrocarbons (PAHs) and extinction curve morphology. Methods: We fit extinction curves with a dust model including core-mantle spherical particles of mixed chemical composition (silicate core, sp^2 and sp^3 carbonaceous layers), and an additional molecular component. We use exact methods to calculate the extinction due to classical particles and accurate computed absorption spectra of PAHs in different charge states, for the contribution due to the molecular component. Eesults: A combination of classical dust particles and mixtures of real PAHs satisfactorily matches the observed interstellar extinction curves. Variations in the charge state of PAHs produce changes consistent with the varying relative strengths of the bump and non-linear far-UV rise.

  18. Charge Transfer and Triplet States in High Efficiency OPV Materials and Devices

    Science.gov (United States)

    Dyakonov, Vladimir

    2013-03-01

    The advantage of using polymers and molecules in electronic devices, such as light-emitting diodes (LED), field-effect transistors (FET) and, more recently, solar cells (SC) is justified by the unique combination of high device performance and processing of the semiconductors used. Power conversion efficiency of nanostructured polymer SC is in the range of 10% on lab scale, making them ready for up-scaling. Efficient charge carrier generation and recombination in SC are strongly related to dissociation of the primary singlet excitons. The dissociation (or charge transfer) process should be very efficient in photovoltaics. The mechanisms governing charge carrier generation, recombination and transport in SC based on the so-called bulk-heterojunctions, i.e. blends of two or more semiconductors with different electron affinities, appear to be very complex, as they imply the presence of the intermediate excited states, neutral and charged ones. Charge transfer states, or polaron pairs, are the intermediate states between free electrons/holes and strongly bound excitons. Interestingly, the mostly efficient OLEDs to date are based on the so-called triplet emitters, which utilize the triplet-triplet annihilation process. In SC, recent investigations indicated that on illumination of the device active layer, not only mobile charges but also triplet states were formed. With respect to triplets, it is unclear how these excited states are generated, via inter-system crossing or via back transfer of the electron from acceptor to donor. Triplet formation may be considered as charge carrier loss channel; however, the fusion of two triplets may lead to a formation of singlet excitons instead. In such case, a generation of charges by utilizing of the so far unused photons will be possible. The fundamental understanding of the processes involving the charge transfer and triplet states and their relation to nanoscale morphology and/or energetics of blends is essential for the

  19. Carotenoid to chlorophyll energy transfer in the peridinin–chlorophyll-a–protein complex involves an intramolecular charge transfer state

    Science.gov (United States)

    Zigmantas, Donatas; Hiller, Roger G.; Sundström, Villy; Polívka, Tomáš

    2002-01-01

    Carotenoids are, along with chlorophylls, crucial pigments involved in light-harvesting processes in photosynthetic organisms. Details of carotenoid to chlorophyll energy transfer mechanisms and their dependence on structural variability of carotenoids are as yet poorly understood. Here, we employ femtosecond transient absorption spectroscopy to reveal energy transfer pathways in the peridinin–chlorophyll-a–protein (PCP) complex containing the highly substituted carotenoid peridinin, which includes an intramolecular charge transfer (ICT) state in its excited state manifold. Extending the transient absorption spectra toward near-infrared region (600–1800 nm) allowed us to separate contributions from different low-lying excited states of peridinin. The results demonstrate a special light-harvesting strategy in the PCP complex that uses the ICT state of peridinin to enhance energy transfer efficiency. PMID:12486228

  20. Electroosmotic transport in polyelectrolyte-grafted nanochannels with pH-dependent charge density

    Science.gov (United States)

    Chen, Guang; Das, Siddhartha

    2015-05-01

    "Smart" polyelectrolyte-grafted or "soft" nanochannels with pH-responsiveness have shown great promise for applications like manipulation of ion transport, ion sensing and selection, current rectification, and many more. In this paper, we develop a theory to study the electroosmotic transport in a polyelectrolyte-grafted (or soft) nanochannel with pH-dependent charge density. In one of our recent studies, we have identified that explicit consideration of hydrogen ion concentration is mandatory for appropriately describing the electrostatics of such systems and the resulting monomer concentration must obey a non-unique, cubic distribution. Here, we use this electrostatic calculation to study the corresponding electroosmotic transport. We establish that the effect of pH in the electroosmotic transport in polyelectrolyte-grafted nanochannels introduces two separate issues: first is the consideration of the hydrogen and hydroxyl ion concentrations in describing the electroosmotic body force, and second is the consideration of the appropriate drag force that bears the signature of this cubic monomeric distribution. Our results indicate that the strength of the electroosmotic velocity for the pH-dependent case is always smaller than that for the pH-independent case, with the extent of this difference being a function of the system parameters. Such nature of the electroosmotic transport will be extremely significant in suppressing the electroosmotic flow strength with implications in large number applications such as capillary electrophoresis induced separation, electric field mediated DNA elongation, electrophoretic DNA nanopore sequencing, and many more.

  1. State-dependent pairing fields in rotating nuclei

    International Nuclear Information System (INIS)

    In the present thesis the properties of state-dependent pairing and its influence on the nuclear rotation were studied. For this the HFBC equations were solved by a new developed method in a model with a Nilsson operator for the single-particle part and the surface-delta interaction for the generation of the self-consistently calculated pairing fields. The agreement with the experimental data was improved in all considered cases by regarding the higher multipoles (state-dependent pairing). (orig./HSI)

  2. Near-infrared-enhanced charge state conversion for low power optical nanoscopy with nitrogen vacancy center in diamond

    CERN Document Server

    Chen, Xiang-Dong; Shen, Ao; Dong, Yang; Dong, Chun-Hua; Guo, Guang-Can; Sun, Fang-Wen

    2016-01-01

    The near-infrared (NIR) optical pumped photophysics of nitrogen vacancy (NV) center in diamond was experimentally studied by considering both the charge state conversion and stimulated emission. We found that the NIR laser can help to highly enhance the charge state conversion rate, which can be applied to improve the performance of charge state depletion nanoscopy. Using a doughnut-shaped visible laser beam and a Gaussian-shaped NIR laser beam for charge state manipulation, we developed a low power charge state depletion nanoscopy for NV center. A spatial resolution of 14 nm was achieved with the depletion laser intensity approximately three orders lower than that used for the stimulated emission depletion nanoscopy with NV center. With high spatial resolution and low laser power, the nanoscopy can be used for nanoscale quantum sensing with NV center. And our study on the charge state conversion can help to further optimize the NV center spin state initialization and detection.

  3. Computer modeling reveals that modifications of the histone tail charges define salt-dependent interaction of the nucleosome core particles.

    Science.gov (United States)

    Yang, Ye; Lyubartsev, Alexander P; Korolev, Nikolay; Nordenskiöld, Lars

    2009-03-18

    Coarse-grained Langevin molecular dynamics computer simulations were conducted for systems that mimic solutions of nucleosome core particles (NCPs). The NCP was modeled as a negatively charged spherical particle representing the complex of DNA and the globular part of the histones combined with attached strings of connected charged beads modeling the histone tails. The size, charge, and distribution of the tails relative to the core were built to match real NCPs. Three models of NCPs were constructed to represent different extents of covalent modification on the histone tails: (nonmodified) recombinant (rNCP), acetylated (aNCP), and acetylated and phosphorylated (paNCP). The simulation cell contained 10 NCPs in a dielectric continuum with explicit mobile counterions and added salt. The NCP-NCP interaction is decisively dependent on the modification state of the histone tails and on salt conditions. Increasing the monovalent salt concentration (KCl) from salt-free to physiological concentration leads to NCP aggregation in solution for rNCP, whereas NCP associates are observed only occasionally in the system of aNCPs. In the presence of divalent salt (Mg(2+)), rNCPs form dense stable aggregates, whereas aNCPs form aggregates less frequently. Aggregates are formed via histone-tail bridging and accumulation of counterions in the regions of NCP-NCP contacts. The paNCPs do not show NCP-NCP interaction upon addition of KCl or in the presence of Mg(2+). Simulations for systems with a gradual substitution of K(+) for Mg(2+), to mimic the Mg(2+) titration of an NCP solution, were performed. The rNCP system showed stronger aggregation that occurred at lower concentrations of added Mg(2+), compared to the aNCP system. Additional molecular dynamics simulations performed with a single NCP in the simulation cell showed that detachment of the tails from the NCP core was modest under a wide range of salt concentrations. This implies that salt-induced tail dissociation of the

  4. Thermal state of the general time-dependent harmonic oscillator

    Indian Academy of Sciences (India)

    Jeong-Ryeol Choi

    2003-07-01

    Taking advantage of dynamical invariant operator, we derived quantum mechanical solution of general time-dependent harmonic oscillator. The uncertainty relation of the system is always larger than ħ=2 not only in number but also in the thermal state as expected. We used the diagonal elements of density operator satisfying Leouville–von Neumann equation to calculate various expectation values in the thermal state. We applied our theory to a special case which is the forced Caldirola–Kanai oscillator.

  5. Charge sensing of excited states in an isolated double quantum dot

    DEFF Research Database (Denmark)

    C. Johnson, A.; M. Marcus, C.; P. Hanson, M.;

    2005-01-01

    Pulsed electrostatic gating combined with capacitive charge sensing is used to perform excited state spectroscopy of an electrically isolated double-quantum-dot system. The tunneling rate of a single charge moving between the two dots is affected by the alignment of quantized energy levels......; measured tunneling probabilities thereby reveal spectral features. Two pulse sequences are investigated, one of which, termed latched detection, allows measurement of a single tunneling event without repetition. Both provide excited-state spectroscopy without electrical contact to the double-dot system....

  6. Method of estimating the State-of-Charge and of the use time left of a rechageable battery, and apparatus for executing such a method

    OpenAIRE

    Bergveld, Hendrik Johannes; Pop, Valer; Notten, Petrus Henricus Laurentius

    2006-01-01

    Disclosed is a method of estimating the state-of-charge of a rechargeable battery, taking into account the factors battery spread and ageing. The method comprises the steps of: determining the starting state-of-charge of the battery by measuring the voltage across the battery and converting this measured value into a state-of-charge value; charging the battery; integrating the charge current and determining the accumulated charge during charging of the battery and adding said value to the sta...

  7. Anion-Dependent Aggregate Formation and Charge Behavior of Colloidal Fullerenes (n-C60)

    Science.gov (United States)

    Mukherjee, B.; Weaver, J. W.

    2009-12-01

    The fate and transport of colloidal fullerenes (n-C60) in the environment are likely to be guided by their electrokinetic and aggregation behavior. In natural water bodies inorganic ions exert significant effects in determining the size and charge of dispersed n-C60. Although the effects of cations on the behavior of n-C60 have been studied extensively; studies on the effect of anions are relatively few and thus were the focus of our investigation. The effects of anions (e.g., Cl- , SO42-) on average aggregate size (DH) and zeta potential (ZP) of n-C60 were found to be absent in presence of monovalent cations (e.g., Na+) over the tested range of pH (3-to-12) and ionic strength (0-to-20 mM). Similar observations were noted in the presence of multivalent cations (e.g., Mg2+) near acidic and neutral pH conditions. However, under alkaline conditions (pH~10) a strong anion-dependent reversal of surface charge was noted. The ZP of n-C60 changed from -65 mV, when dispersed in DI water, to +4 mV and +40 mV in the presence of SO42- and Cl-, respectively in a 10mM salt concentration (i.e., MgCl2 and MgSO4). The corresponding DH of the dispersed n-C60 changed simultaneously from 115 nm, in DI water, to 1450 nm and 225 nm for the MgSO4 and MgCl2 electrolytes. These findings provide a better understanding of interfacial interaction characteristics of n-C60 NPs, and may lead to remediation strategies for n-C60 NPs in the environment.

  8. The Charge-to-Mass Dependence of SEP Fluences Over Wide Longitudes

    Science.gov (United States)

    Cohen, C. M. S.; Mewaldt, R. A.; Mason, G. M.

    2014-05-01

    Accurate characterization of the transport of energetic particles throughout the inner heliosphere is important for the planning of space missions and the development and testing of space weather forecasting tools. How particles are distributed in both radius and longitude during a solar energetic particle (SEP) event has been the subject of a number of studies. Initially these studies were performed through statistical analysis of single-spacecraft measurements of many different SEP events. Later multi-spacecraft observations of individual events were examined, most notably using data from Helios and, very recently, MESSENGER. Currently by combining measurements from near-Earth spacecraft and the twin STEREO spacecraft, particle distributions can be examined as a function of longitude separately from radial dependences. Additionally, while previous studies concentrated on protons and electrons, the SEP sensors on STEREO and ACE allow heavy ions to be examined as well. We have analyzed 5 large SEP events in 2011 and 2012 that were clearly observed by both STEREOs and ACE and determined the longitudinal distribution of the event-integrated fluences for H, He, O at 3.6-5 MeV/nuc and for H, He, O, and Fe at 0.32-0.45 MeV/nuc. We find no consistent charge-to-mass dependence in the longitudinal distributions at either energy suggesting rigidity is not a controlling factor in the particle spread in longitude. We find that typically lower energy ions have a wider longitudinal spread than higher energy ions suggesting a velocity dependence. Both of these results are consistent with the possibility that magnetic field line meandering and/or co-rotation is a primary means of longitudinally transporting particles.

  9. Multi-temperature state-dependent equivalent circuit discharge model for lithium-sulfur batteries

    Science.gov (United States)

    Propp, Karsten; Marinescu, Monica; Auger, Daniel J.; O'Neill, Laura; Fotouhi, Abbas; Somasundaram, Karthik; Offer, Gregory J.; Minton, Geraint; Longo, Stefano; Wild, Mark; Knap, Vaclav

    2016-10-01

    Lithium-sulfur (Li-S) batteries are described extensively in the literature, but existing computational models aimed at scientific understanding are too complex for use in applications such as battery management. Computationally simple models are vital for exploitation. This paper proposes a non-linear state-of-charge dependent Li-S equivalent circuit network (ECN) model for a Li-S cell under discharge. Li-S batteries are fundamentally different to Li-ion batteries, and require chemistry-specific models. A new Li-S model is obtained using a 'behavioural' interpretation of the ECN model; as Li-S exhibits a 'steep' open-circuit voltage (OCV) profile at high states-of-charge, identification methods are designed to take into account OCV changes during current pulses. The prediction-error minimization technique is used. The model is parameterized from laboratory experiments using a mixed-size current pulse profile at four temperatures from 10 °C to 50 °C, giving linearized ECN parameters for a range of states-of-charge, currents and temperatures. These are used to create a nonlinear polynomial-based battery model suitable for use in a battery management system. When the model is used to predict the behaviour of a validation data set representing an automotive NEDC driving cycle, the terminal voltage predictions are judged accurate with a root mean square error of 32 mV.

  10. Role of projectile charge state in convoy electron emission by fast protons colliding with LiF(0 0 1)

    Science.gov (United States)

    Aldazabal, I.; Gravielle, M. S.; Miraglia, J. E.; Arnau, A.; Ponce, V. H.

    2005-05-01

    Target ionization and projectile ionization differential cross sections are used to calculate the electron emission spectra by fast proton impact on ionic crystal surfaces under grazing incidence conditions. Both bare protons and neutral hydrogen species are considered. We use a planar potential approach to determine the projectile trajectory that later on allows us to calculate the charge state fractions. We show that, although the fraction of protons is significantly higher, the contribution from neutral hydrogen ionization has to be considered. The energy and angular dependence of the spectra is analyzed.

  11. Bond Length Dependence on Quantum States as Shown by Spectroscopy

    Science.gov (United States)

    Lim, Kieran F.

    2005-01-01

    A discussion on how a spreadsheet simulation of linear-molecular spectra could be used to explore the dependence of rotational band spacing and contours on average bond lengths in the initial and final quantum states is presented. The simulation of hydrogen chloride IR, iodine UV-vis, and nitrogen UV-vis spectra clearly show whether the average…

  12. Integrated vehicle dynamics control using State Dependent Riccati Equations

    NARCIS (Netherlands)

    Bonsen, B.; Mansvelders, R.; Vermeer, E.

    2010-01-01

    In this paper we discuss a State Dependent Riccati Equations (SDRE) solution for Integrated Vehicle Dynamics Control (IVDC). The SDRE approach is a nonlinear variant of the well known Linear Quadratic Regulator (LQR) and implements a quadratic cost function optimization. A modified version of this m

  13. X-Ray Spectroscopy: An Experimental Technique to Measure Charge State Distribution Right at the Ion-Solid Interaction

    CERN Document Server

    Sharma, Prashant

    2015-01-01

    Charge state distributions of $^{56}$Fe and $^{58}$Ni projectile ions passing through thin carbon foils have been studied in the energy range of 1.44 - 2.69 MeV/u using a novel method from the x-ray spectroscopy technique. Interestingly the charge state distribution in the bulk show Lorentzian behavior instead of usual Gaussian distribution. Further, different parameters of charge state distribution like mean charge state, distribution width and asymmetric parameter are determined and compared with the empirical calculations and ETACHA predictions. It is found that the x-ray measurement technique is appropriate to determine the mean charge state right at the interaction zone or in the bulk. Interestingly, empirical formalism predicts much lower projectile mean charge states compare to x-ray measurements which clearly indicate multi-electron capture from the target surface. The ETACHA predictions and experimental results are found to be comparable for energies $\\geq$ 2 MeV/u.

  14. Nuclear-mass dependence of azimuthal beam-helicity and beam-charge asymmetries in deeply virtual Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Lab. of Physics; Akopov, N. [Yerevan Physics Institute (Armenia); Akopov, Z. [DESY, Hamburg (DE)] (and others)

    2009-11-15

    The nuclear-mass dependence of azimuthal cross section asymmetries with respect to charge and longitudinal polarization of the lepton beam is studied for hard exclusive electroproduction of real photons. The observed beam-charge and beam-helicity asymmetries are attributed to the interference between the Bethe-Heitler and deeply virtual Compton scattering processes. For various nuclei, the asymmetries are extracted for both coherent and incoherent-enriched regions, which involve different (combinations of) generalized parton distributions. For both regions, the asymmetries are compared to those for a free proton, and no nuclear-mass dependence is found. (orig.)

  15. Quantum features of a charged particle in ionized plasma controlled by a time-dependent magnetic field

    Directory of Open Access Journals (Sweden)

    Jeong Ryeol eChoi

    2014-08-01

    Full Text Available Quantum characteristics of a charged particle traveling under the influence of an external time-dependent magnetic field in ionized plasma are investigated using the invariant operator method. The Hamiltonian that gives the radial part of the classical equation of motion for the charged particle is dependent on time. The corresponding invariant operator that satisfies Liouville-von Neumann equation is constructed using fundamental relations. The exact radial wave functions are derived by taking advantage of the eigenstates of the invariant operator. Quantum properties of the system is studied using these wave functions. Especially, the time behavior of the radial component of the quantized energy is addressed in detail.

  16. Explicit symplectic algorithms based on generating functions for relativistic charged particle dynamics in time-dependent electromagnetic field

    CERN Document Server

    Zhang, Ruili; He, Yang; Xiao, Jianyuan; Liu, Jian; Qin, Hong; Tang, Yifa

    2016-01-01

    Relativistic dynamics of a charged particle in time-dependent electromagnetic fields has theoretical significance and a wide range of applications. It is often multi-scale and requires accurate long-term numerical simulations using symplectic integrators. For modern large-scale particle simulations in complex, time-dependent electromagnetic field, explicit symplectic algorithms are much more preferable. In this paper, we treat the relativistic dynamics of a particle as a Hamiltonian system on the cotangent space of the space-time, and construct for the first time explicit symplectic algorithms for relativistic charged particles of order 2 and 3 using the sum-split technique and generating functions.

  17. Performance on the low charge state laser ion source in BNL

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, M.; Alessi, J.; Beebe, E.; Costanzo, M.; DeSanto, L.; Jamilkowski, J.; Kanesue, T.; Lambiase, R.; Lehn, D.; Liaw, C. J.; McCafferty, D.; Morris, J.; Olsen, R.; Pikin, A.; Raparia, D.; Steszyn, A.; Ikeda, S.

    2015-09-07

    On March 2014, a Laser Ion Source (LIS) was commissioned which delivers high-brightness, low-charge-state heavy ions for the hadron accelerator complex in Brookhaven National Laboratory (BNL). Since then, the LIS has provided many heavy ion species successfully. The low-charge-state (mostly singly charged) beams are injected to the Electron Beam Ion Source (EBIS), where ions are then highly ionized to fit to the following accelerator’s Q/M acceptance, like Au32+. Recently we upgraded the LIS to be able to provide two different beams into EBIS on a pulse-to-pulse basis. Now the LIS is simultaneously providing beams for both the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory (NSRL).

  18. Excited-state proton coupled charge transfer modulated by molecular structure and media polarization.

    Science.gov (United States)

    Demchenko, Alexander P; Tang, Kuo-Chun; Chou, Pi-Tai

    2013-02-01

    Charge and proton transfer reactions in the excited states of organic dyes can be coupled in many different ways. Despite the complementarity of charges, they can occur on different time scales and in different directions of the molecular framework. In certain cases, excited-state equilibrium can be established between the charge-transfer and proton-transfer species. The interplay of these reactions can be modulated and even reversed by variations in dye molecular structures and changes of the surrounding media. With knowledge of the mechanisms of these processes, desired rates and directions can be achieved, and thus the multiple emission spectral features can be harnessed. These features have found versatile applications in a number of cutting-edge technological areas, particularly in fluorescence sensing and imaging.

  19. Charge-exchange scattering to the isobaric analog state at medium energies as a probe of the neutron skin

    CERN Document Server

    Loc, Bui Minh; Zegers, R G T

    2014-01-01

    The charge-exchange (3He,t) scattering to the isobaric analog state (IAS) of the target can be considered as "elastic" scattering of 3He by the isovector term of the optical potential (OP) that flips the projectile isospin. Therefore, the accurately measured charge-exchange scattering cross- section for the IAS can be a good probe of the isospin dependence of the OP, which is determined exclusively within the folding model by the difference between the neutron and proton densities and isospin dependence of the nucleon-nucleon interaction. Given the neutron skin of the target is related directly to the same density difference, it can be well probed in the analysis of the charge- exchange (3He,t) reactions at medium energies when the two-step processes can be neglected and the t-matrix interaction can be used in the folding calculation. For this purpose, the data of the (3He,t) scattering to the IAS of 90Zr and 208Pb targets at Elab = 420 MeV have been analyzed in the distorted wave Born approximation using the...

  20. Spin depolarization effect induced by charge state conversion of nitrogen vacancy center in diamond

    Science.gov (United States)

    Chen, Xiang-Dong; Zhou, Lei-Ming; Zou, Chang-Ling; Li, Cong-Cong; Dong, Yang; Sun, Fang-Wen; Guo, Guang-Can

    2015-09-01

    The electron spin of the negatively charged the nitrogen vacancy center (NV- ) in diamond can be optically polarized through intersystem crossing, which enables the defect to be used for quantum computation and metrology. In this work, we studied the electron spin depolarization effect of the NV center induced by charge state conversion, which was proven to be a spin-independent process. The spin-state initialization fidelity was largely affected by the charge state conversion process. As a result, the optical polarization of the electron spin decreased about 14 %(31 % ) with a high-power continuous-wave (pulsed) green laser. Moreover, the undefined fluorescence anomalous saturation effect of the NV center was analyzed and explained in detail based on the spin depolarization. The results demonstrated that a weak laser should be used for initialization of the NV center. In addition, the power and polarization of a laser for NV spin detection should be carefully adjusted to obtain the highest fluorescence signal. Our work also provided information that can increase the understanding of the charge state conversion and spin polarization processes of the NV center for quantum information and sensing.

  1. Solvent-induced reversible solid-state colour change of an intramolecular charge-transfer complex.

    Science.gov (United States)

    Li, Ping; Maier, Josef M; Hwang, Jungwun; Smith, Mark D; Krause, Jeanette A; Mullis, Brian T; Strickland, Sharon M S; Shimizu, Ken D

    2015-10-11

    A dynamic intramolecular charge-transfer (CT) complex was designed that displayed reversible colour changes in the solid-state when treated with different organic solvents. The origins of the dichromatism were shown to be due to solvent-inclusion, which induced changes in the relative orientations of the donor pyrene and acceptor naphthalenediimide units. PMID:26299357

  2. Production of high charge state ions with the Advanced Electron Cyclotron Resonance Ion Source at LBNL

    International Nuclear Information System (INIS)

    Production of high charge state ions with the Advanced Electron Cyclotron Resonance ion source (AECR) at Lawrence Berkeley National Laboratory (LBNL) has been significantly improved by application of various new techniques. Heating the plasma simultaneously with microwaves of two frequencies (10 and 14 GHz) has increased the production of very high charge state heavy ions. The two-frequency technique provides extra electron cyclotron resonance heating zone as compared to the single-frequency heating and improves the heating of the plasma electrons. Aluminum oxide on the plasma chamber surface improves the production of cold electrons at the chamber surfaces and increases the performance of the AECR. Fully stripped argon ions, ≥5 enA, were produced and directly identified by the source charge state analyzing system. High charge state ion beams of bismuth and uranium, such as 209Bi51+ and 238U53+, were produced by the source and accelerated by the 88-in. cyclotron to energies above 6 MeV/nucleon for the first time. copyright 1996 American Institute of Physics

  3. Electroluminescence from charge transfer states in Donor/Acceptor solar cells

    DEFF Research Database (Denmark)

    Sherafatipour, Golenaz; Madsen, Morten

    which the maximum open-circuit voltage can be estimated, and further can be used in the modeling and optimization of the OPV devices. [1] C. Deibe, T. Strobe, and V. Dyakonov, “Role of the charge transfer state in organic donor-acceptor solar cells,” Adv. Mater., vol. 22, pp. 4097–4111, 2010. [2] K...

  4. Smart and Accurate State-of-Charge Indication in Portable Applications

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Notten, P.H.L.; Regtien, P.P.L.

    2005-01-01

    Accurate State-of-Charge (SoC) and remaining run-time indication for portable devices is important for the user-convenience and to prolong the lifetime of batteries. However, the known methods of SoC indication in portable applications are not accurate enough under all practical conditions. The meth

  5. Estimation of State of Charge of Lead Acid Battery using Radial Basis Function

    OpenAIRE

    Sauradip, M; Sinha, SK; K Muthukumar

    2001-01-01

    A Radial Basis Function based learning system method has been proposed for estimation of State of Charge (SOC) of Lead Acid Battery. Coulomb metric method is used for SOC estimation with correction factor computed by Radial Basis Function Method. Radial basis function based technique is used for learning battery performance variation with time and other parameters. Experimental results are included.

  6. Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads

    KAUST Repository

    Whited, Matthew T.

    2012-01-01

    We report the synthesis and characterization of symmetric BODIPY dyads where the chromophores are attached at the meso position, using either a phenylene bridge or direct linkage. Both molecules undergo symmetry-breaking intramolecular charge transfer in the excited state, and the directly linked dyad serves as a visible-light-absorbing analogue of 9,9′-bianthryl.

  7. Charge dependence of neoclassical and turbulent transport of light impurities on MAST

    Science.gov (United States)

    Henderson, S. S.; Garzotti, L.; Casson, F. J.; Dickinson, D.; O'Mullane, M.; Patel, A.; Roach, C. M.; Summers, H. P.; Tanabe, H.; Valovič, M.; the MAST Team

    2015-09-01

    Carbon and nitrogen impurity transport coefficients are determined from gas puff experiments carried out during repeat L-mode discharges on the Mega-Amp Spherical Tokamak (MAST) and compared against a previous analysis of helium impurity transport on MAST. The impurity density profiles are measured on the low-field side of the plasma, therefore this paper focuses on light impurities where the impact of poloidal asymmetries on impurity transport is predicted to be negligible. A weak screening of carbon and nitrogen is found in the plasma core, whereas the helium density profile is peaked over the entire plasma radius. Both carbon and nitrogen experience a diffusivity of the order of 10 m2s-1 and a strong inward convective velocity of ˜40 m s-1 near the plasma edge, and a region of outward convective velocity at mid-radius. The measured impurity transport coefficients are consistent with neoclassical Banana-Plateau predictions within ρ ≤slant 0.4 . Quasi-linear gyrokinetic predictions of the carbon and helium particle flux at two flux surfaces, ρ =0.6 and ρ =0.7 , suggest that trapped electron modes are responsible for the anomalous impurity transport observed in the outer regions of the plasma. The model, combining neoclassical transport with quasi-linear turbulence, is shown to provide reasonable estimates of the impurity transport coefficients and the impurity charge dependence.

  8. State-Dependent Implication and Equivalence in Quantum Logic

    Directory of Open Access Journals (Sweden)

    Fedor Herbut

    2012-01-01

    Full Text Available Ideal occurrence of an event (projector leads to the known change of a state (density operator into (the Lüders state. It is shown that two events and give the same Lüders state if and only if the equivalence relation is valid. This relation determines equivalence classes. The set of them and each class, are studied in detail. It is proved that the range projector of the Lüders state can be evaluated as , where denotes the greatest lower bound, and is the null projector of . State-dependent implication extends absolute implication (which, in turn, determines the entire structure of quantum logic. and are investigated in a closely related way to mutual benefit. Inherent in the preorder is the state-dependent equivalence , defining equivalence classes in a given Boolean subalgebra. The quotient set, in which the classes are the elements, has itself a partially ordered structure, and so has each class. In a complete Boolean subalgebra, both structures are complete lattices. Physical meanings are discussed.

  9. Charge-dependent directed flow in Cu+Au collisions at $\\sqrt{s_{_{NN}}}$ = 200 GeV

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Anderson, D M; Aoyama, R; Aparin, A; Arkhipkin, D; Aschenauer, E C; Ashraf, M U; Attri, A; Averichev, G S; Bai, X; Bairathi, V; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandenburg, J D; Brandin, A V; Bunzarov, I; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Campbell, J M; Cebra, D; Chakaberia, I; Chaloupka, P; Chang, Z; Chatterjee, A; Chattopadhyay, S; Chen, X; Chen, J H; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Esumi, S; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A I; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, G W; Horvat, S; Huang, B; Huang, X; Huang, H Z; Huang, T; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jentsch, A; Jia, J; Jiang, K; Jowzaee, S; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikoła, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kumar, L; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, Y; Li, C; Li, W; Li, X; Li, X; Lin, T; Lisa, M A; Liu, Y; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Luo, S; Ma, G L; Ma, R; Ma, Y G; Ma, L; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Matis, H S; McDonald, D; McKinzie, S; Meehan, K; Mei, J C; Miller, Z W; Minaev, N G; Mioduszewski, S; Mishra, D; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Niida, T; Nogach, L V; Nonaka, T; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V A; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Pile, P; Pluta, J; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Przybycien, M; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Ray, R L; Reed, R; Rehbein, M J; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Roth, J D; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, A; Sharma, M K; Sharma, B; Shen, W Q; Shi, S S; Shi, Z; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Singha, S; Skoby, M J; Smirnov, D; Smirnov, N; Solyst, W; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sugiura, T; Sumbera, M; Summa, B; Sun, Z; Sun, Y; Sun, X M; Surrow, B; Svirida, D N; Tang, A H; Tang, Z; Tarnowsky, T; Tawfik, A; Thäder, J; Thomas, J H; Timmins, A R; Tlusty, D; Todoroki, T; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Vokal, S; Voloshin, S A; Vossen, A; Wang, G; Wang, F; Wang, J S; Wang, Y; Wang, H; Wang, Y; Webb, J C; Webb, G; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xiao, Z G; Xie, W; Xie, G; Xin, K; Xu, Q H; Xu, Y F; Xu, H; Xu, Z; Xu, N; Xu, J; Yang, C; Yang, Y; Yang, S; Yang, Y; Yang, Q; Yang, Y; Ye, Z; Ye, Z; Yi, L; Yip, K; Yoo, I -K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, J; Zhang, X P; Zhang, S; Zhang, Y; Zhang, J B; Zhang, Z; Zhang, S; Zhang, J; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2016-01-01

    We present the first measurement of charge-dependent directed flow in Cu+Au collisions at $\\sqrt{s_{_{NN}}}$ = 200 GeV. The results are presented as a function of the particle transverse momentum and pseudorapidity for different centralities. A finite difference between the directed flow of positive and negative charged particles is observed that qualitatively agrees with the expectations from the effects of the initial strong electric field between two colliding ions with different nuclear charges. The measured difference in directed flow is much smaller than that obtained from the parton-hadron-string-dynamics (PHSD) model, which suggests that most of the electric charges, i.e. quarks and antiquarks, have not yet been created during the lifetime of the strong electric field, which is of the order of, or less than, 1fm/$c$.

  10. Analysis and Comparison of Voltage Dependent Charging Strategies for Single-Phase Electric Vehicles in an Unbalanced Danish Distribution Grid

    DEFF Research Database (Denmark)

    Álvarez, Jorge Nájera; Knezovic, Katarina; Marinelli, Mattia

    2016-01-01

    This paper studies four voltage dependent solutions for modulating the charging of multiple Electric Vehicles (EVs) in a real Danish network. Uncontrolled EV charging, especially in grid with high EV penetration, can result in overloaded lines and transformers, low-voltages and other performance...... degradations which lead to poor quality of supply. Therefore, a decentralized control for modulating the EVs’ charging current is developed, which sets the EV reference current based on the phase-to-neutral voltage at the EV connection node. Due to the controller’s decentralised feature, EVs plugged......-in on phases with lower voltages are constrained during the charging period. In order to solve instability issues which may occur due to lack of communication between the controllers, several improvements are applied to the aforementioned droop control. Simulation results demonstrate the performance...

  11. The excited spin-triplet state of a charged exciton in quantum dots

    Science.gov (United States)

    Molas, M. R.; Nicolet, A. A. L.; Piętka, B.; Babiński, A.; Potemski, M.

    2016-09-01

    We report on spectroscopic studies of resonances related to ladder of states of a charged exciton in single GaAlAs/AlAs quantum dot structures. Polarization-resolved photoluminescence, photoluminescence excitation and photon-correlation measurements were performed at low (T  =  4.2 K) temperature also in magnetic field applied in Faraday configuration. The investigated resonances are assigned to three different configurations of a positively charged exciton. Together with a singlet ground state and a conventional triplet state (involving an electron from the ground state electronic s-shell), an excited triplet state, which involved an electron from the excited electronic p-shell was identified in single dots. The appearance of an emission line related to the latter complex is due to a partially suppressed electron relaxation in the investigated dots. An analysis of this emission line allows us to scrupulously determine properties of the excited triplet state and compare them with those of the conventional triplet state. Both triplets exhibit similar patterns of anisotropic fine structure and Zeeman splitting, however their amplitudes significantly differ for those two states. Presented results emphasize the role of the symmetry of the electronic state on the properties of the triplet states of two holes  +  electron excitonic complex.

  12. The excited spin-triplet state of a charged exciton in quantum dots.

    Science.gov (United States)

    Molas, M R; Nicolet, A A L; Piętka, B; Babiński, A; Potemski, M

    2016-09-14

    We report on spectroscopic studies of resonances related to ladder of states of a charged exciton in single GaAlAs/AlAs quantum dot structures. Polarization-resolved photoluminescence, photoluminescence excitation and photon-correlation measurements were performed at low (T  =  4.2 K) temperature also in magnetic field applied in Faraday configuration. The investigated resonances are assigned to three different configurations of a positively charged exciton. Together with a singlet ground state and a conventional triplet state (involving an electron from the ground state electronic s-shell), an excited triplet state, which involved an electron from the excited electronic p-shell was identified in single dots. The appearance of an emission line related to the latter complex is due to a partially suppressed electron relaxation in the investigated dots. An analysis of this emission line allows us to scrupulously determine properties of the excited triplet state and compare them with those of the conventional triplet state. Both triplets exhibit similar patterns of anisotropic fine structure and Zeeman splitting, however their amplitudes significantly differ for those two states. Presented results emphasize the role of the symmetry of the electronic state on the properties of the triplet states of two holes  +  electron excitonic complex. PMID:27391126

  13. Charge Neutral Fermionic States and Current Oscillation in a Graphene-Superconductor Hybrid Structure

    Science.gov (United States)

    Duan, Wenye; Wang, Wei; Zhang, Chao; Jin, Kuijuan; Ma, Zhongshui

    2016-10-01

    The proximity properties of edge currents in the vicinity of the interface between the graphene and superconductor in the presence of magnetic field are investigated. It is shown that the edge states introduced by Andreev reflection at the graphene-superconductor (G/S) interface give rise to the charge neutral states in all Landau levels. We note that in a topological insulator-superconductor (TI/S) hybrid structure, only N = 0 Landau level can support this type of charge neutral states. The different interface states of a G/S hybrid and a TI/S hybrid is due to that graphene consists of two distinct sublattices. The armchair edge consists of two inequivalent atoms. This gives rise to unique electronic properties of edge states when connected to a superconductor. A direct consequence of zero charge states in all Landau levels is that the current density approaches zero at interface. The proximity effect leads to quantum magnetic oscillation of the current density in the superconductor region. The interface current density can also be tuned with a finite interface potential. For sharp δ-type interface potential, the derivative of the wavefunction is discontinuous. As a result, we found that there is current density discontinuity at the interface. The step of the current discontinuity is proportional to the strength of the interface potential.

  14. Impact of electron delocalization on the nature of the charge-transfer states in model pentacene/C60 Interfaces: A density functional theory study

    KAUST Repository

    Yang, Bing

    2014-12-04

    Electronic delocalization effects have been proposed to play a key role in photocurrent generation in organic photovoltaic devices. Here, we study the role of charge delocalization on the nature of the charge-transfer (CT) states in the case of model complexes consisting of several pentacene molecules and one fullerene (C60) molecule, which are representative of donor/acceptor heterojunctions. The energies of the CT states are examined by means of time-dependent density functional theory (TD-DFT) using the long-range-corrected functional, ωB97X, with an optimized range-separation parameter, ω. We provide a general description of how the nature of the CT states is impacted by molecular packing (i.e., interfacial donor/acceptor orientations), system size, and intermolecular interactions, features of importance in the understanding of the charge-separation mechanism.

  15. Stress state and strain rate dependence of the human placenta.

    Science.gov (United States)

    Weed, Benjamin C; Borazjani, Ali; Patnaik, Sourav S; Prabhu, R; Horstemeyer, M F; Ryan, Peter L; Franz, Thomas; Williams, Lakiesha N; Liao, Jun

    2012-10-01

    Maternal trauma (MT) in automotive collisions is a source of injury, morbidity, and mortality for both mothers and fetuses. The primary associated pathology is placental abruption in which the placenta detaches from the uterus leading to hemorrhaging and termination of pregnancy. In this study, we focused on the differences in placental tissue response to different stress states (tension, compression, and shear) and different strain rates. Human placentas were obtained (n = 11) for mechanical testing and microstructure analysis. Specimens (n = 4+) were tested in compression, tension, and shear, each at three strain rates (nine testing protocols). Microstructure analysis included scanning electron microscopy, histology, and interrupted mechanical tests to observe tissue response to various loading states. Our data showed the greatest stiffness in tension, followed by compression, and then by shear. The study concludes that mechanical behavior of human placenta tissue (i) has a strong stress state dependence and (ii) behaves in a rate dependent manner in all three stress states, which had previously only been shown in tension. Interrupted mechanical tests revealed differences in the morphological microstructure evolution that was driven by the kinematic constraints from the different loading states. Furthermore, these structure-property data can be used to develop high fidelity constitutive models for MT simulations. PMID:22581478

  16. Back Electron Transfer Suppresses the Periodic Length Dependence of DNA-mediated Charge Transport Across Adenine Tracts

    OpenAIRE

    Genereux, Joseph C.; Augustyn, Katherine E.; Davis, Molly L.; Shao, Fangwei; Barton, Jacqueline K.

    2008-01-01

    DNA-mediated charge transport (CT) is exquisitely sensitive to the integrity of the bridging π-stack and is characterized by a shallow distance dependence. These properties are obscured by poor coupling between the donor/acceptor pair and the DNA bridge, or by convolution with other processes. Previously, we found a surprising periodic length dependence for the rate of DNA-mediated CT across adenine tracts monitored by 2-aminopurine fluorescence. Here we report a similar periodicity by monito...

  17. XPS studies of MgB2 superconductor for charge state of Mg

    International Nuclear Information System (INIS)

    X-ray photoelectron spectroscopic (XPS) studies have been carried out on polycrystalline MgB2 pellets. Characteristic Mg-2p and B-Is spectra have been analysed for extracting binding energies. There are evidences of MgB2 and formation of traces of metallic Mg, MgO and B2O3. Binding energy of Mg in MgB2 reveals its charge state to be less than 2(+) indicative of partial and not full charge transfer from Mg to B. (author)

  18. Charge states of high Z atoms in a strong laser field

    International Nuclear Information System (INIS)

    We present a numerical solution of the Thomas-Fermi atom in the presence of a static electric field as a model of the adiabatic response of a heavy atom in the presence of a strong laser field. In this semiclassical approach, we calculate the resulting charge state of the atom and its induced dipole moment after the field is turned on. Due to the scaling properties of the Thomas-Fermi approach, the resulting total atomic charge and dipole moment can be expressed as a universal function of the field. We compare our results with recent ionization experiments performed on noble gases using laser fields. 7 refs., 5 figs

  19. Comparison of various models to describe the charge-pH dependence of poly(acrylic acid)

    NARCIS (Netherlands)

    Lützenkirchen, J.; Male, van J.; Leermakers, F.A.M.; Sjöberg, S.

    2011-01-01

    The charge of poly(acrylic acid) (PAA) in dilute aqueous solutions depends on pH and ionic strength. We report new experimental data and test various models to describe the deprotonation of PAA in three different NaCl concentrations. A simple surface complexation approach is found to be very success

  20. Forcing-dependent stability of steady turbulent states

    CERN Document Server

    Saint-Michel, Brice; Ravelet, Florent; Daviaud, François

    2013-01-01

    We study the influuence of the forcing on the steady turbulent states of a von K\\'arm\\'an swirling flow, at constant impeller speed, or at constant torque. We find that the different forcing conditions change the nature of the stability of the steady states and reveal dynamical regimes that bear similarities with low-dimensional systems. We suggest that this forcing dependence may be an out- of-equilibrium analogue of the ensemble inequivalence, valid for long-range interacting statistical systems, and that it may be applicable to other turbulent systems.

  1. Beam-Energy and System-Size Dependence of Dynamical Net Charge Fluctuations

    CERN Document Server

    Abelev, B I; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Beavis, D R; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Braidot, E; Brandin, A V; Bültmann, S; Burton, T P; Bystersky, M; Cai, X Z; Caines, H; Sánchez, M Calderón de la Barca; Callner, J; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, S U; Clarke, R F; Codrington, M J M; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; Dedovich, T G; DePhillips, M; Derevshchikov, A A; de Souza, R Derradi; Didenko, L; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunlop, J C; Mazumdar, M R Dutta; Edwards, W R; Efimov, L G; Elhalhuli, E; Elnimr, M; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Yu; Gagliardi, C A; Gaillard, L; Gangadharan, D R; Ganti, M S; García-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Sen-Gupta, A; Gupta, N; Guryn, W; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Heppelmann, S; Hippolyte, B; Hirsch, A; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, H Z; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jin, F; Jones, P G; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kopytine, M; Kotchenda, L; Kouchpil, V; Kravtsov, P; Kravtsov, V I; Krüger, K; Kuhn, C; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; LaPointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Le Vine, M J; Li, C; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, Y G; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Matis, H S; Matulenko, Yu A; McShane, T S; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mischke, A; Mitchell, J; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, C; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, Grazyna Janina; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Pal, S K; Panebratsev, Yu A; Pawlak, T; Peitzmann, T; Perevozchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Porile, N; Poskanzer, A M; Potukuchi, B V K S; Prindle, D; Pruneau, C; Pruthi, N K; Putschke, J; Qattan, I A; Raniwala, R; Raniwala, S; Ray, R L; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Rykov, V; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Shi, X-H; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Snellings, R; Sørensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Symons, T J M; de Toledo, A Szanto; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Tram, V N; Trattner, A L; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; Van der Kolk, N; Van Leeuwen, M; Molen, A M Vander; Varma, R; Vasconcelos, G M S; Vasilevski, I M; Vasilev, A N; Videbaek, F; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, Q; Wang, X; Wang, X L; Wang, Y; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, J; Wu, Y; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yepes, P; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, H; Zhang, S; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zuo, J X

    2008-01-01

    We present measurements of net charge fluctuations in $Au + Au$ collisions at $\\sqrt{s_{NN}} = $ 19.6, 62.4, 130, and 200 GeV, $Cu + Cu$ collisions at $\\sqrt{s_{NN}} = $ 62.4, 200 GeV, and $p + p$ collisions at $\\sqrt{s} = $ 200 GeV using the dynamical net charge fluctuations measure $\

  2. An experimental investigation of charge-dependent deviations from the Bethe stopping power formula

    DEFF Research Database (Denmark)

    Andersen, H.H.; Simonsen, H.; Sørensen, H.

    1969-01-01

    The stopping powers of aluminiun and tantalum for 5–13.5 MeV protons and deuterons and 8–20 MeV 3He and 4He have been measured. At identical velocities, the ratio between the stopping powers for the double-charged and the single-charged ions is systematically higher than the factor four predicted...

  3. Dependence of the TMCI threshold on the space charge tune shift

    CERN Document Server

    Balbekov, V

    2016-01-01

    Transverse mode coupling instability of a bunch with space charge is considered in frameworks of the boxcar model. Presented results demonstrate a monotonous growth of the TMCI threshold at increasing space charge tune shift, and do not support the supposition that the monotony can be violated at a higher SC.

  4. Modeling of direct beam extraction for a high-charge-state fusion driver

    Science.gov (United States)

    Anderson, O. A.; Grant Logan, B.

    A newly proposed type of multicharged ion source offers the possibility of an economically advantageous high-charge-state fusion driver. Multiphoton absorption in an intense uniform laser focus can give multiple charge states of high purity, simplifying or eliminating the need for charge-state separation downstream. Very large currents (hundreds of amperes) can be extracted from this type of source. Several arrangements are possible. For example, the laser plasma could be tailored for storage in a magnetic bucket, with beam extracted from the bucket. A different approach, described in this report, is direct beam extraction from the expanding laser plasma. We discuss extraction and focusing for the particular case of a 4.1 MV beam of Xe 16+ ions. The maximum duration of the beam pulse is limited by the total charge in the plasma, while the practical pulse length is determined by the range of plasma radii over which good beam optics can be achieved. The extraction electrode contains a solenoid for beam focusing. Our design studies were carried out first with an envelope code and then with a self-consistent particle code. Results from our initial model showed that hundreds of amperes could be extracted, but that most of this current missed the solenoid entrance or was intercepted by the wall and that only a few amperes were able to pass through. We conclude with an improved design which increases the surviving beam to more than 70 A.

  5. Equation of state for the detonation products of hexanitrostilbene at various charge densities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. L.; Walton, J. R.; Kramer, P. E.

    1976-05-01

    An extensive description of the detonation behavior for the unique and useful high explosive hexanitrostilbene (HNS) is presented. To accomplish this the necessary experimental results measured by detonation of the pure material at charge densities of 1.00, 1.20, 1.40, 1.60, and 1.65 (g/cm/sup 3/ = Mg/m/sup 3/) were compiled and evaluated. Estimates of the equation of state of the detonation products were made for each charge density. To confirm these estimates two-dimensional hydrodynamic (HEMP code) calculations to simulate the cylinder test experiments for two charge densities of 1.2 and 1.6 Mg/m/sup 3/ were carried out. Detailed comparisons of the calculational and experimental results were made for these two tests. Interpolation and extrapolation of the equation of state parameters provided final estimates for the other charge densities. The results are summarized in five sets of Chapman-Jouguet parameters and JWL equation of state coefficients.

  6. Isotopic dependence of isomeric states in heavy nuclei

    International Nuclear Information System (INIS)

    High-spin K-isomer states, which are usually assumed as two quasiparticle high-spin configurations states, were observed in heavy nuclei 250,256Fm, 252,254No, 266Hs and 270,271Ds. In order to calculate the energies of 2qp isomer states in even-even nuclei, the two-center shell model is used for finding the single-particle levels at the ground state of nucleus. The shape parameterization used in this model effectively includes many even multipolarities. The dependence of the parameters of Is and I2 terms on A and N - Z were modified for the correct description of the ground state spins of odd actinides. The microscopical corrections and quadrupole parameters of deformation calculated with the two-center shell model are close to those obtained with the microscopic-macroscopic approaches of P. Moller et al. and A.Sobiczewski et al. The calculated values of Qa are in reasonable agreement with measured values. The calculated two-quasiparticle energies are in good agreement with the available experimental data. In the even isotope chains of Fm and No the calculated E2qp for high spin K-isomer states are minimal for 250Fm and 252No. In 242,244Fm the K-isomer states with K ≥ 6 are above 1.38 MeV that is larger than the energies of the K-isomer states in 252,254No. In order to observe these states in the neutron-deficient Fm isotopes, one should produce these isotopes with the cross sections similar to those for the nuclei 252,254No. Calculating the potential energy surface near the ground state, one can not exclude the existence of shallow potential minima which can be related to the shape isomers. The possibility of existence of these minima is discussed within the microscopic-macroscopic model. We found the indications for the low-lying shape isomers in 264,266Sg and 268,270Hs The alpha-decay between the isomer states and between the ground states can have similar properties that shields the observation of isomeric states. The population of the isomer states in the

  7. Charge state distribution of light ions at glancing collision with solid surface

    International Nuclear Information System (INIS)

    Many experimental results have suggested that the charge state distribution of ions have penetrated through solid is different from that inside the solid. It is important to clarify the physical process taking place at solid surface in order to know the states of ions inside the solid from those observed outside the solid. In the present paper, we report our measurement of charge state distributions of He+ and H2+ ions having been scattered in small angles (less than 40) at surfaces of Au, Ag and C. One of the advantages of the use of the glancing collision of ions at solid surface for the study of ion-surface interaction is that the dwell time of ion near solid surface can be made more than 100 times longer than that in normal transmission experiments. The longer dwell times may alter any contribution of solid surface to electron capture and loss of ions

  8. State-dependent utility maximization in L\\'evy markets

    OpenAIRE

    Figueroa-Lopez, Jose E.; Jin Ma

    2009-01-01

    We revisit Merton's portfolio optimization problem under boun-ded state-dependent utility functions, in a market driven by a L\\'evy process $Z$ extending results by Karatzas et. al. (1991) and Kunita (2003). The problem is solved using a dual variational problem as it is customarily done for non-Markovian models. One of the main features here is that the domain of the dual problem enjoys an explicit "parametrization", built on a multiplicative optional decomposition for nonnegative supermarti...

  9. Quadrature-dependent Bogoliubov transformations and multiphoton squeezed states

    OpenAIRE

    De Siena, Silvio; Di Lisi, Antonio; Illuminati, Fabrizio

    2001-01-01

    We introduce a linear, canonical transformation of the fundamental single--mode field operators $a$ and $a^{\\dagger}$ that generalizes the linear Bogoliubov transformation familiar in the construction of the harmonic oscillator squeezed states. This generalization is obtained by adding to the linear transformation a nonlinear function of any of the fundamental quadrature operators $X_{1}$ and $X_{2}$, making the original Bogoliubov transformation quadrature--dependent. Remarkably, the conditi...

  10. Doping dependence of the charge-density-wave order in HgBa2CuO4+δ

    Science.gov (United States)

    Yu, Biqiong

    Following the original discovery of short-range charge-density-wave (CDW) order in the orthorhombic double-layer cuprate YBa2Cu3O6+δ (YBCO) below optimal doping, resonant X-ray scattering measurements have revealed that the simple tetragonal single-layer compound HgBa2CuO4+δ (Hg1201; Tc = 71 K) exhibits short-range CDW order as well. Here we report on the doping dependence of the CDW order in Hg1201 and contrast our results with the extensive data available for YBCO. Work done in collaboration with: W. Tabis, G. Yu, M.J. Veit, N. BarisŬić, M.K. Chan, C.J. Dorow, X. Zhao, M. Greven (University of Minnesota); M. Bluschke, E. Weschke (BESSY, Berlin); T. Kolodziej, I. Bialo, A. Kozlowski (AGH, Krakow); M. Hepting, H. Gretarsson, M. Le Tacon, M. Minola, B. Keimer (MPI, Stuttgart); Ronny Sutarto (CLS, Saskatoon); Y. Li (PKU, Beijing); L. Braicovich, G. Dellea, G. Ghiringhelli (CNR-SPIN, Milano); A. Kreyssig, M. Ramazanoglu, A.I. Goldman (Iowa State University and Ames Lab); T. Schmitt (PSI, Switzerland). We acknowledge the support from US Department of Energy, Office of Basic Energy Sciences.

  11. State-Dependent Inhibition of Sodium Channels by Local Anesthetics: A 40-Year Evolution.

    Science.gov (United States)

    Wang, G-K; Strichartz, G R

    2012-04-01

    Knowledge about the mechanism of impulse blockade by local anesthetics has evolved over the past four decades, from the realization that Na(+) channels were inhibited to affect the impulse blockade to an identification of the amino acid residues within the Na(+) channel that bind the local anesthetic molecule. Within this period appreciation has grown of the state-dependent nature of channel inhibition, with rapid binding and unbinding at relatively high affinity to the open state, and weaker binding to the closed resting state. Slow binding of high affinity for the inactivated state accounts for the salutary therapeutic as well as the toxic actions of diverse class I anti-arrhythmic agents, but may have little importance for impulse blockade, which requires concentrations high enough to block the resting state. At the molecular level, residues on the S6 transmembrane segments in three of the homologous domains of the channel appear to contribute to the binding of local anesthetics, with some contribution also from parts of the selectivity filter. Binding to the inactivated state, and perhaps the open state, involves some residues that are not identical to those that bind these drugs in the resting state, suggesting spatial flexibility in the "binding site". Questions remaining include the mechanism that links local anesthetic binding with the inhibition of gating charge movements, and the molecular nature of the theoretical "hydrophobic pathway" that may be critical for determining the recovery rates from blockade of closed channels, and thus account for both therapeutic and cardiotoxic actions. PMID:23710324

  12. Charge states distribution of 3350 keV He ions channeled in silicon

    CERN Document Server

    Bentini, G G; Bianconi, M; Lotti, R; Lulli, G

    2002-01-01

    When an ion beam is aligned along a major crystalline axis the dominant interaction is with valence electrons. In this condition the charge exchange processes mostly concern the interaction between the incident ion and a quasi-free electron gas and a strong reduction of the charge-changing probabilities is expected. In this work, 3350 keV He sup + and He sup 2 sup + ions were aligned at small tilt angles about the axis of a 4650 A silicon crystalline membrane. The charge state distribution (CSD) of the transmitted ions was detected by an electro-magnetic analyzer having a very small acceptance angle. In these conditions the equilibration of the CSD was not yet reached and this allowed, making use of simple approximations, for the measurement of the valence electron loss cross-section.

  13. Charged particle assisted nuclear reactions in solid state environment: renaissance of low energy nuclear physics

    CERN Document Server

    Kálmán, Péter

    2015-01-01

    The features of electron assisted neutron exchange processes in crystalline solids are survayed. It is stated that, contrary to expectations, the cross section of these processes may reach an observable magnitude even in the very low energy case because of the extremely huge increment caused by the Coulomb factor of the electron assisted processes and by the effect of the crystal-lattice. The features of electron assisted heavy charged particle exchange processes, electron assisted nuclear capure processes and heavy charged particle assisted nuclear processes are also overviewed. Experimental observations, which may be related to our theoretical findings, are dealt with. The anomalous screening phenomenon is related to electron assisted neutron and proton exchange processes in crystalline solids. A possible explanation of observations by Fleischmann and Pons is presented. The possibility of the phenomenon of nuclear transmutation is qualitatively explained with the aid of usual and charged particle assisted r...

  14. The evolution of ion charge states in cathodic vacuum arc plasmas: a review

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2011-12-18

    Cathodic vacuum arc plasmas are known to contain multiply charged ions. 20 years after “Pressure Ionization: its role in metal vapour vacuum arc plasmas and ion sources” appeared in vol. 1 of Plasma Sources Science and Technology, it is a great opportunity to re-visit the issue of pressure ionization, a non-ideal plasma effect, and put it in perspective to the many other factors that influence observable charge state distributions, such as the role of the cathode material, the path in the density-temperature phase diagram, the “noise” in vacuum arc plasma as described by a fractal model approach, the effects of external magnetic fields and charge exchange collisions with neutrals. A much more complex image of the vacuum arc plasma emerges putting decades of experimentation and modeling in perspective.

  15. Orbital dependent ultrafast charge transfer dynamics of ferrocenyl-functionalized SAMs on gold studied by core-hole clock spectroscopy

    International Nuclear Information System (INIS)

    Understanding the charge transport properties in general of different molecular components in a self-assembled monolayer (SAM) is of importance for the rational design of SAM molecular structures for molecular electronics. In this study, we study an important aspect of the charge transport properties, i.e. the charge transfer (CT) dynamics between the active molecular component (in this case, the ferrocenyl moieties of a ferrocenyl-n-alkanethiol SAM) and the electrode using synchrotron-based core-hole clock (CHC) spectroscopy. The characteristic CT times are found to depend strongly on the character of the ferrocenyl-derived molecular orbitals (MOs) which mediate the CT process. Furthermore, by systemically shifting the position of the ferrocenyl moiety in the SAM, it is found that the CT characteristics of the ferrocenyl MOs display distinct dependence on its distance to the electrode. These results demonstrate experimentally that the efficiency and rate of charge transport through the molecular backbone can be modulated by resonant injection of charge carriers into specific MOs. (paper)

  16. High charge state carbon and oxygen ions in Earth's equatorial quasi-trapping region

    Science.gov (United States)

    Christon, S. P.; Hamilton, D. C.; Gloeckler, G.; Eastmann, T. E.

    1994-01-01

    Observations of energetic (1.5 - 300 keV/e) medium-to-high charge state (+3 less than or equal to Q less than or equal to +7) solar wind origin C and O ions made in the quasi-trapping region (QTR) of Earth's magnetosphere are compared to ion trajectories calculated in model equatorial magnetospheric magnetic and electric fields. These comparisons indicate that solar wind ions entering the QTR on the nightside as an energetic component of the plasma sheet exit the region on the dayside, experiencing little or no charge exchange on the way. Measurements made by the CHarge Energy Mass (CHEM) ion spectrometer on board the Active Magnetospheric Particle Tracer Explorer/Charge Composition Explorer (AMPTE/CCE) spacecraft at 7 less than L less than 9 from September 1984 to January 1989 are the source of the new results contained herein: quantitative long-term determination of number densities, average energies, energy spectra, local time distributions, and their variation with geomagnetic disturbance level as indexed by Kp. Solar wind primaries (ions with charge states unchanged) and their secondaries (ions with generally lower charge states produced from primaries in the magnetosphere via charge exchange)are observed throughout the QTR and have distinctly different local time variations that persist over the entire 4-year analysis interval. During Kp larger than or equal to 3 deg intervals, primary ion (e.g., O(+6)) densities exhibit a pronounced predawn maximum with average energy minimum and a broad near-local-noon density minimum with average energy maximum. Secondary ion (e.g., O(+5)) densities do not have an identifiable predawn peak, rather they have a broad dayside maximum peaked in local morning and a nightside minimum. During Kp less than or equal to 2(-) intervals, primary ion density peaks are less intense, broader in local time extent, and centered near midnight, while secondary ion density local time variations diminish. The long-time-interval baseline helps

  17. Charge carrier concentration dependence of encounter-limited bimolecular recombination in phase-separated organic semiconductor blends

    Science.gov (United States)

    Heiber, Michael C.; Nguyen, Thuc-Quyen; Deibel, Carsten

    2016-05-01

    Understanding how the complex intermolecular configurations and nanostructure present in organic semiconductor donor-acceptor blends impacts charge carrier motion, interactions, and recombination behavior is a critical fundamental issue with a particularly major impact on organic photovoltaic applications. In this study, kinetic Monte Carlo (KMC) simulations are used to numerically quantify the complex bimolecular charge carrier recombination behavior in idealized phase-separated blends. Recent KMC simulations have identified how the encounter-limited bimolecular recombination rate in these blends deviates from the often used Langevin model and have been used to construct the new power mean mobility model. Here, we make a challenging but crucial expansion to this work by determining the charge carrier concentration dependence of the encounter-limited bimolecular recombination coefficient. In doing so, we find that an accurate treatment of the long-range electrostatic interactions between charge carriers is critical, and we further argue that many previous KMC simulation studies have used a Coulomb cutoff radius that is too small, which causes a significant overestimation of the recombination rate. To shed more light on this issue, we determine the minimum cutoff radius required to reach an accuracy of less than ±10 % as a function of the domain size and the charge carrier concentration and then use this knowledge to accurately quantify the charge carrier concentration dependence of the recombination rate. Using these rigorous methods, we finally show that the parameters of the power mean mobility model are determined by a newly identified dimensionless ratio of the domain size to the average charge carrier separation distance.

  18. Charge Carrier Generation Followed by Triplet State Formation, Annihilation, and Carrier Recreation in PBDTTT-C:PC 60 BM Photovoltaic Blends

    KAUST Repository

    Gehrig, Dominik W.

    2015-05-22

    Triplet state formation after photoexcitation of low-bandgap polymer:fullerene blends has recently been demonstrated, however, the precise mechanism and its impact on solar cell performance is still under debate. Here, we study exciton dissociation, charge carrier generation and triplet state formation in low-bandgap polymer PBDTTT-C:PC60BM bulk heterojunction photovoltaic blends by a combination of fs-µs broadband Vis-NIR transient absorption (TA) pump-probe spectroscopy and multivariate curve resolution (MCR) data analysis. We found sub-ps exciton dissociation and charge generation followed by sub-ns triplet state creation. The carrier dynamics and triplet state dynamics exhibited a very pronounced intensity dependence indicating non-geminate recombination of free carriers is the origin of triplet formation in these blends. Triplets were found to be the dominant state present on the nanosecond timescale. Surprisingly, the carrier population increased again on the ns-µs timescale. We attribute this to triplet-triplet annihilation and the formation of higher energy excited states that subsequently underwent charge transfer. This unique dip and recovery of the charge population is a clear indication that triplets are formed by non-geminate recombination, as such a kinetic is incompatible with a monomolecular triplet state formation process.

  19. Conformal anisotropic relativistic charged fluid spheres with a linear equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Esculpi, M. [Universidad Central de Venezuela, Departamento de Fisica Aplicada, Facultad de Ingenieria, Caracas (Venezuela); Aloma, E. [Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela)

    2010-06-15

    We obtain two new families of compact solutions for a spherically symmetric distribution of matter consisting of an electrically charged anisotropic fluid sphere joined to the Reissner-Nordstrom static solution through a zero pressure surface. The static inner region also admits a one parameter group of conformal motions. First, to study the effect of the anisotropy in the sense of the pressures of the charged fluid, besides assuming a linear equation of state to hold for the fluid, we consider the tangential pressure p {sub perpendicular} {sub to} to be proportional to the radial pressure p{sub r}, the proportionality factor C measuring the grade of anisotropy. We analyze the resulting charge distribution and the features of the obtained family of solutions. These families of solutions reproduce for the value C=1, the conformal isotropic solution for quark stars, previously obtained by Mak and Harko. The second family of solutions is obtained assuming the electrical charge inside the sphere to be a known function of the radial coordinate. The allowed values of the parameters pertained to these solutions are constrained by the physical conditions imposed. We study the effect of anisotropy in the allowed compactness ratios and in the values of the charge. The Glazer's pulsation equation for isotropic charged spheres is extended to the case of anisotropic and charged fluid spheres in order to study the behavior of the solutions under linear adiabatic radial oscillations. These solutions could model some stage of the evolution of strange quark matter fluid stars. (orig.)

  20. Magnetization States of All-Oxide Spin Valves Controlled by Charge-orbital Ordering of Coupled Ferromagnets

    OpenAIRE

    SHVETS, IGOR

    2013-01-01

    PUBLISHED Charge-orbital ordering is commonly present in complex transition metal oxides and offers interesting opportunities for novel electronic devices. In this work, we demonstrate for the first time that the magnetization states of the spin valve can be directly manipulated by charge-orbital ordering. We investigate the interlayer exchange coupling (IEC) between two epitaxial magnetite layers separated by a nonmagnetic epitaxial MgO dielectric. We find that the state of the charge-orb...

  1. Complexity and state-transitions in social dependence networks

    Directory of Open Access Journals (Sweden)

    Giuliano Pistolesi

    2001-01-01

    Full Text Available Computation of complexity in Social Dependence Networks is an interesting research domain to understand evolution processes and group exchange dynamics in natural and artificial intelligent Multi-Agent Systems. We perform an agent-based simulation by NET-PLEX (Conte and Pistolesi, 2000, a new software system able both to build interdependence networks tipically emerging in Multi-Agent System scenarios and to investigate complexity phenomena, i.e., unstability and state-transitions like Hopf bifurcation (Nowak and Lewenstein, 1994, and to describe social self organization phenomena emerging in these artificial social systems by means of complexity measures similar to those introduced by Hubermann and Hogg (1986. By performing analysis of complexity in these kind of artificial societies we observed interesting phenomena in emerging organizations that suggest state-transitions induced by critical configurations of parameters describing the social system similar to those observed in many studies on state-transitions in bifurcation chaos (Schuster, 1988; Ruelle, 1989.

  2. Quadrature-dependent Bogoliubov transformations and multiphoton squeezed states

    CERN Document Server

    De Siena, S; Illuminati, F; Siena, Silvio De; Lisi, Antonio Di; Illuminati, Fabrizio

    2001-01-01

    We introduce a linear, canonical transformation of the fundamental single--mode field operators $a$ and $a^{\\dagger}$ that generalizes the linear Bogoliubov transformation familiar in the construction of the harmonic oscillator squeezed states. This generalization is obtained by adding to the linear transformation a nonlinear function of any of the fundamental quadrature operators $X_{1}$ and $X_{2}$, making the original Bogoliubov transformation quadrature--dependent. Remarkably, the conditions of canonicity do not impose any constraint on the form of the nonlinear function, and lead to a set of nontrivial algebraic relations between the $c$--number coefficients of the transformation. We examine in detail the structure and the properties of the new quantum states defined as eigenvectors of the transformed annihilation operator $b$. These eigenvectors define a class of multiphoton squeezed states. The structure of the uncertainty products and of the quasiprobability distributions in phase space shows that bes...

  3. The $s$-channel Charged Higgs in the Fully Hadronic Final State at LHC

    CERN Document Server

    Ahmed, Ijaz

    2016-01-01

    With the current measurements performed by CMS and ATLAS experiments, the light charged Higgs scenario ($m_{H^{\\pm}}$ $<$ 160 GeV), is excluded for most of the parameter space in the context of MSSM. However, there is still possibility to look for heavy charged Higgs boson particularly in the $s$-channel single top production process where the charged Higgs may appear as a heavy resonance state and decay to $t\\bar{b}$. The production process under consideration in this paper is $pp \\ra H^{\\pm} \\ra t\\bar{b}~+~h.c.$, where the top quark decays to $W^{+}b$ and $W^{+}$ boson subsequently decays to two light jets. It is shown that despite the presence of large QCD and electroweak background events, the charged Higgs signal can be extracted and observed at a large area of MSSM parameter space ($m_{H^{\\pm}}$,tan$\\beta$) at LHC. The observability of charged Higgs is potentially demonstrated with 5$\\sigma$ contours and $95\\%$ confidence level exclusion curves at different integrated LHC luminosities assuming a nomi...

  4. The s-channel charged Higgs in the fully hadronic final state at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Ijaz [University of Malaya, National Center for Particle Physics, Kuala Lumpur (Malaysia); COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Hashemi, Majid [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Tajuddin, Wan Ahmad [University of Malaya, National Center for Particle Physics, Kuala Lumpur (Malaysia)

    2016-04-15

    With the current measurements performed by CMS and ATLAS experiments, the light charged Higgs scenario (m{sub H}{sup {sub ±}} < 160 GeV), is excluded for most of the parameter space in the context of MSSM. However, there is still possibility to look for heavy charged Higgs boson particularly in the s-channel single top production process where the charged Higgs may appear as a heavy resonance state and decay to t anti b. The production process under consideration in this paper is pp → H{sup ±} → t anti b + h.c., where the top quark decays to W{sup +}b and W{sup +} boson subsequently decays to two light jets. It is shown that despite the presence of large QCD and electroweak background events, the charged Higgs signal can be extracted and observed at a large area of MSSM parameter space (m{sub H}{sup {sub ±}}, tanβ) at LHC. The observability of charged Higgs is potentially demonstrated with 5σ contours and 95% confidence level exclusion curves at different integrated LHC luminosities assuming a nominal center of mass energy of √(s) = 14 TeV. (orig.)

  5. Correlation between the Open-Circuit Voltage and Charge Transfer State Energy in Organic Photovoltaic Cells.

    Science.gov (United States)

    Zou, Yunlong; Holmes, Russell J

    2015-08-26

    In order to further improve the performance of organic photovoltaic cells (OPVs), it is essential to better understand the factors that limit the open-circuit voltage (VOC). Previous work has sought to correlate the value of VOC in donor-acceptor (D-A) OPVs to the interface energy level offset (EDA). In this work, measurements of electroluminescence are used to extract the charge transfer (CT) state energy for multiple small molecule D-A pairings. The CT state as measured from electroluminescence is found to show better correlation to the maximum VOC than EDA. The difference between EDA and the CT state energy is attributed to the Coulombic binding energy of the CT state. This correlation is demonstrated explicitly by inserting an insulating spacer layer between the donor and acceptor materials, reducing the binding energy of the CT state and increasing the measured VOC. These results demonstrate a direct correlation between maximum VOC and CT state energy.

  6. Treating tobacco dependence: state of the science and new directions.

    Science.gov (United States)

    Lerman, Caryn; Patterson, Freda; Berrettini, Wade

    2005-01-10

    Despite almost two decades of intensive tobacco control efforts, nearly one quarter of Americans continue to smoke. The two United States Food and Drug Administration-approved medications used to treat tobacco dependence, bupropion and nicotine replacement therapy, are effective for only a fraction of smokers. Investigations of medications approved for affective disorders and other forms of substance abuse, such as fluoxetine and naltrexone, have yielded mixed results as tobacco dependence treatments. A particular challenge in tobacco dependence treatment is the development of effective approaches for smokers with unique needs, such as cancer patients and pregnant women. Despite new developments in these areas, significant gaps in knowledge and practice remain. Basic research in the neurobiologic and genetic basis of nicotine dependence offers promise for the development of novel and more effective treatment approaches. For example, emerging research in pharmacogenetics explores how genetic variation in drug-metabolizing enzymes and drug targets modifies response to pharmacotherapy. These discoveries could someday help practitioners to individualize the type, dosage, and duration of tobacco dependence treatment based on genotype, and maximize the efficacy. PMID:15637394

  7. The Influence of Nonthermal Particles and Radiation on the Charge State of Heavy Ions in Solar Cosmic Rays

    Science.gov (United States)

    Kartavykh, Yu. Yu.; Ostryakov, V. M.; Möbius, E.; Popecki, M. A.

    2004-09-01

    The influence of various types of nonthermal electron and proton distributions and photoionization on the charge state of energetic heavy elements moving in a plasma is investigated. The mean charges of Mg, Si, and Fe are calculated for a bi-Maxwellian distribution of the background electrons and for electron and neutral beams with power-law energy distributions. An anomalously high density of the nonthermal component is required to obtain substantial deviations of the equilibrium mean charges of these elements (a few charge units) from the case when they interact with a purely Maxwellian plasma. In this context, the mean charges for O, Ne, Mg, Si, and Fe ions are also calculated for a model with charge-consistent acceleration. The results indicate that photoionization does not significantly influence the charge state of solar cosmic rays if the parameters of the plasma are those characteristic of impulsive solar events.

  8. Calculation of ion charge-state distribution in ECR ion sources

    International Nuclear Information System (INIS)

    Starting with the pioneering efforts of Y. Yongen (Louvain-la-Neuve, Belgium) a code has been developed to calculate the equilibrium ion charge-state distribution for electron-cyclotron resonance source (ECR) ion sources. Production of ions is caused by the impact ionization of the charge gas from ECR-heated electrons of a few keV. Loss of an ion of a given charge state is from charge exchange and radiative recombination. Ultimately, the ion flows out of the minimum-B containment region. The ion confinement times are calculated using an ion-trap-potential model which is based upon modeling calculations done at Lawrence Livermore National Laboratory (LLNL) for the Tandem Mirror Machine. Using this model requires the self-consistent determination of the trap potential and thermal electron density in the plasma. Code inputs are gas natural density, hot-electron temperature and density, ion temperature, cold-electron temperature, mirror ratio, physical dimensions, and atomic-physics data. Other than that there are no adjustable parameters. Results of comparison of calculations with the limited available data are reasonable

  9. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  10. Properties of acceleration sites in active regions as derived from heavy ion charge states

    Science.gov (United States)

    Kartavykh, Y.; Dröge, W.; Klecker, B.; Möbius, E.; Popecki, M.; Mason, G.; Krucker, S.

    Charge states of heavy ions in solar energetic particle SEP events are determined by both the plasma conditions in the acceleration region and propagation effects The steep increase of the ionic charge of heavy ions as observed in all 3He- and Fe-rich SEP events suggests that stripping in a dense environment in the low corona is important in all these events The observed charge states and energy spectra of iron ions are used to infer the plasma conditions in the acceleration region by modelling the observations with a combined acceleration and propagation model that includes charge stripping acceleration coulomb losses and recombination in the corona and interplanetary propagation The interplanetary propagation includes anisotropic pitch-angle scattering on magnetic irregularities as well as magnetic focusing convection and adiabatic deceleration in the expanding solar wind To accurately derive the value of the scattering mean free path of particles the intensity profiles and anisotropy data from ACE and Wind spacecraft were used The comparison of the deduced parameters of the acceleration region with coronal density profiles shows that the acceleration of these ions takes place in closed magnetic structures in the low corona

  11. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible. PMID:24593615

  12. Cognitive Distortions in Depressed Women: Trait, or State Dependent?

    Directory of Open Access Journals (Sweden)

    Sedat BATMAZ

    2016-07-01

    Full Text Available Objective: According to the cognitive theory developed by Beck, cognitive distortions are important mediators for the onset and maintenance of depressive disorders. It has not been researched if these cognitive distortions are more frequently encountered during the depressive episode, or if they are trait-like features. This study aims to investigate this. The hypothesis of the study is that cognitive distortions are state dependent. Method: Three groups of outpatients (n=178 patients in acute major depressive episode, n=168 depressive patients in remission, n=177 healthy controls presenting to the psychiatry clinics of three different state hospitals were recruited for the study. The participants were diagnostically interviewed by the MINI according to the DSM-IV criteria. The participants were asked to complete the Cognitive Distortions Scale and the severity of their depression was measured by the Inventory for Depressive Symptomatology. Results: According to the cognitive distortion subscales, except for the self-blame subscale, the acute depressive group scored the highest. Also it was found that the cognitive distortions of the depressive populations, except for the self-blame related ones, statistically differed from the healthy controls’. Self-blame related distortions were mood state dependent. Conclusion: The results have revealed that self-criticism, helplessness, hopelessness and preoccupation with danger related distortions had trait-like features, whereas selfblame related distortions were state dependent. This has clinical implications for the psychotherapeutic treatment of cognitive distortions in depression. Specifically, self-criticism related distortions should be managed during cognitive therapy for depression since the other subscales seem rather problematic.

  13. Negative affective states and cognitive impairments in nicotine dependence.

    Science.gov (United States)

    Hall, F Scott; Der-Avakian, Andre; Gould, Thomas J; Markou, Athina; Shoaib, Mohammed; Young, Jared W

    2015-11-01

    Smokers have substantial individual differences in quit success in response to current treatments for nicotine dependence. This observation may suggest that different underlying motivations for continued tobacco use across individuals and nicotine cessation may require different treatments in different individuals. Although most animal models of nicotine dependence emphasize the positive reinforcing effects of nicotine as the major motivational force behind nicotine use, smokers generally report that other consequences of nicotine use, including the ability of nicotine to alleviate negative affective states or cognitive impairments, as reasons for continued smoking. These states could result from nicotine withdrawal, but also may be associated with premorbid differences in affective and/or cognitive function. Effects of nicotine on cognition and affect may alleviate these impairments regardless of their premorbid or postmorbid origin (e.g., before or after the development of nicotine dependence). The ability of nicotine to alleviate these symptoms would thus negatively reinforce behavior, and thus maintain subsequent nicotine use, contributing to the initiation of smoking, the progression to dependence and relapse during quit attempts. The human and animal studies reviewed here support the idea that self-medication for pre-morbid and withdrawal-induced impairments may be more important factors in nicotine addiction and relapse than has been previously appreciated in preclinical research into nicotine dependence. Given the diverse beneficial effects of nicotine under these conditions, individuals might smoke for quite different reasons. This review suggests that inter-individual differences in the diverse effects of nicotine associated with self-medication and negative reinforcement are an important consideration in studies attempting to understand the causes of nicotine addiction, as well as in the development of effective, individualized nicotine cessation

  14. Negative affective states and cognitive impairments in nicotine dependence.

    Science.gov (United States)

    Hall, F Scott; Der-Avakian, Andre; Gould, Thomas J; Markou, Athina; Shoaib, Mohammed; Young, Jared W

    2015-11-01

    Smokers have substantial individual differences in quit success in response to current treatments for nicotine dependence. This observation may suggest that different underlying motivations for continued tobacco use across individuals and nicotine cessation may require different treatments in different individuals. Although most animal models of nicotine dependence emphasize the positive reinforcing effects of nicotine as the major motivational force behind nicotine use, smokers generally report that other consequences of nicotine use, including the ability of nicotine to alleviate negative affective states or cognitive impairments, as reasons for continued smoking. These states could result from nicotine withdrawal, but also may be associated with premorbid differences in affective and/or cognitive function. Effects of nicotine on cognition and affect may alleviate these impairments regardless of their premorbid or postmorbid origin (e.g., before or after the development of nicotine dependence). The ability of nicotine to alleviate these symptoms would thus negatively reinforce behavior, and thus maintain subsequent nicotine use, contributing to the initiation of smoking, the progression to dependence and relapse during quit attempts. The human and animal studies reviewed here support the idea that self-medication for pre-morbid and withdrawal-induced impairments may be more important factors in nicotine addiction and relapse than has been previously appreciated in preclinical research into nicotine dependence. Given the diverse beneficial effects of nicotine under these conditions, individuals might smoke for quite different reasons. This review suggests that inter-individual differences in the diverse effects of nicotine associated with self-medication and negative reinforcement are an important consideration in studies attempting to understand the causes of nicotine addiction, as well as in the development of effective, individualized nicotine cessation

  15. Discrimination between spin-dependent charge transport and spin-dependent recombination in π-conjugated polymers by correlated current and electroluminescence-detected magnetic resonance

    Science.gov (United States)

    Kavand, Marzieh; Baird, Douglas; van Schooten, Kipp; Malissa, Hans; Lupton, John M.; Boehme, Christoph

    2016-08-01

    Spin-dependent processes play a crucial role in organic electronic devices. Spin coherence can give rise to spin mixing due to a number of processes such as hyperfine coupling, and leads to a range of magnetic field effects. However, it is not straightforward to differentiate between pure single-carrier spin-dependent transport processes which control the current and therefore the electroluminescence, and spin-dependent electron-hole recombination which determines the electroluminescence yield and in turn modulates the current. We therefore investigate the correlation between the dynamics of spin-dependent electric current and spin-dependent electroluminescence in two derivatives of the conjugated polymer poly(phenylene-vinylene) using simultaneously measured pulsed electrically detected (pEDMR) and optically detected (pODMR) magnetic resonance spectroscopy. This experimental approach requires careful analysis of the transient response functions under optical and electrical detection. At room temperature and under bipolar charge-carrier injection conditions, a correlation of the pEDMR and the pODMR signals is observed, consistent with the hypothesis that the recombination currents involve spin-dependent electronic transitions. This observation is inconsistent with the hypothesis that these signals are caused by spin-dependent charge-carrier transport. These results therefore provide no evidence that supports earlier claims that spin-dependent transport plays a role for room-temperature magnetoresistance effects. At low temperatures, however, the correlation between pEDMR and pODMR is weakened, demonstrating that more than one spin-dependent process influences the optoelectronic materials' properties. This conclusion is consistent with prior studies of half-field resonances that were attributed to spin-dependent triplet exciton recombination, which becomes significant at low temperatures when the triplet lifetime increases.

  16. The United States facing their petroleum dependence; Les Etats-Unis face a leur dependance petroliere

    Energy Technology Data Exchange (ETDEWEB)

    Noel, P. [Institut francais des Relations Internationals, 75 - Paris (France); Universite Pierre Mendes-France-IEPE-CNRS, 38 - Grenoble (France)

    2002-06-01

    In the framework of ''the energy crisis of 2000-2001'', the Cheney report and the petroleum dependence, this study presents a critical examination of the United States petroleum situation, its perception in the american political milieu and the public policies implementing during the last ten years. The first section is devoted to the petroleum supply. In the second section, the american petroleum policy and the energy safety are studied. (A.L.B.)

  17. Topics in quantum transport of charge and heat in solid state systems

    Science.gov (United States)

    Choi, Yunjin

    In the thesis, we present a series of investigations for quantum transport of charge and heat in solid state systems. The first topic of the thesis focuses on the fundamental quantum problems which can be studied with electron transport along with the correlations of detectors to measure physical properties. We theoretically describe a generalized ``which-path'' measurement using a pair of coupled electronic Mach-Zehnder Interferometers. In the second topic of thesis, we investigate an operational approach to measure the tunneling time based on the Larmor clock. To handle the cases of indirect measurement from the first and second topics, we introduce the contextual values formalism. The form of the contextual values provides direct physical insight into the measurement being performed, providing information about the correlation strength between system and detector, the measurement inefficiency, the proper background removal, and the conditioned average value of the system operator. Additionally, the weak interaction limit of these conditioned averages produces weak values of the system operator and an additional detector dependent disturbance term for both cases. In our treatment of the third topic of the thesis, we propose a three terminal heat engine based on semiconductor superlattices for energy harvesting. The periodicity of the superlattice structure creates an energy miniband, giving an energy window to allow electron transport. We find that this device delivers a large amount of power, nearly twice that produced by the heat engine based on quantum wells, with a small reduction of efficiency. This engine also works as a refrigerator in a different regime of the system's parameters. The thermoelectric performance of the refrigerator is analyzed, including the cooling power and coefficient of performance in the optimized condition. We also calculate phonon heat current through the system and explore the reduction of phonon heat current compared to the bulk

  18. Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer.

    Science.gov (United States)

    Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim

    2016-01-01

    The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field. PMID:27629702

  19. Hospitalization frequency and charges for neurocysticercosis, United States, 2003-2012.

    Science.gov (United States)

    O'Neal, Seth E; Flecker, Robert H

    2015-06-01

    Neurocysticercosis, brain infection with Taenia solium larval cysts, causes substantial neurologic illness around the world. To assess the effect of neurocysticercosis in the United States, we reviewed hospitalization discharge data in the Nationwide Inpatient Sample for 2003-2012 and found an estimated 18,584 hospitalizations for neurocysticercosis and associated hospital charges totaling >US $908 million. The risk for hospitalization was highest among Hispanics (2.5/100,000 population), a rate 35 times higher than that for the non-Hispanic white population. Nearly three-quarters of all hospitalized patients with neurocysticercosis were Hispanic. Male sex and age 20-44 years also incurred increased risk. In addition, hospitalizations and associated charges related to cysticercosis far exceeded those for malaria and were greater than for those for all other neglected tropical diseases combined. Neurocysticercosis is an increasing public health concern in the United States, especially among Hispanics, and costs the US health care system a substantial amount of money.

  20. Contribution of material’s surface layer on charge state distribution in laser ablation plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kumaki, Masafumi, E-mail: rogus@asagi.waseda.jp [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Steski, Dannie; Kanesue, Takeshi [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Ikeda, Shunsuke [Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa 226-8503 (Japan); Okamura, Masahiro [Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Washio, Masakazu [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan)

    2016-02-15

    To generate laser ablation plasma, a pulse laser is focused onto a solid target making a crater on the surface. However, not all the evaporated material is efficiently converted to hot plasma. Some portion of the evaporated material could be turned to low temperature plasma or just vapor. To investigate the mechanism, we prepared an aluminum target coated by thin carbon layers. Then, we measured the ablation plasma properties with different carbon thicknesses on the aluminum plate. The results showed that C{sup 6+} ions were generated only from the surface layer. The deep layers (over 250 nm from the surface) did not provide high charge state ions. On the other hand, low charge state ions were mainly produced by the deeper layers of the target. Atoms deeper than 1000 nm did not contribute to the ablation plasma formation.

  1. The state of itinerant charge carriers and thermoelectric effects in correlated oxide metals

    International Nuclear Information System (INIS)

    We analyzed the physics of transport processes and, in particular, the thermoelectric power in the mercurocuprates and other cuprates to get a better insight into the state of the carriers in these compounds. The actual problems related to the complicated mechanisms of carriers scattering above Tc are discussed. The experimental studies of thermoelectric power showed that the state of carriers in cuprates can be influenced by many complicated scattering processes, however the underlying mechanism for the linear decreasing of the TEP with increasing the temperature for most hole-doped HTSC cuprates is still not yet known. The actual problems related to the complicated mechanisms of carriers scattering above Tc are discussed for a few models of charge transport. A comparison between the analytical and experimental results is also made. It is concluded that the crucial factor for the understanding of the transport properties of correlated oxide metals is the nature of itinerant charge carriers, i.e. renormalized quasiparticles. (author)

  2. Studies of high charge-state ions in the constance B quadrupole mirror

    International Nuclear Information System (INIS)

    Experiments have been initiated into the confinement and extraction physics of high charge-state ions in an ECRH mirror plasma. ECRH mirrors are well suited for producing high Z ions because the hot electron temperature (>100 keV) is sufficient to fully strip heavy ions. The charge state distribution (CSD) of the ion endloss and the ion endloss temperatures have been measured using a time-of-flight analyzer. The CSD of the confined ions has been measured using a VUV spectrometer. Applying ICRH to the plasma was found to lower the Z/sub eff/ of the confined ions while raising the Z/sub eff/ of the extracted ions. The experimental results are compared to theoretical models which include Pastukhov, flow, and spatial-diffusion confinement times. 12 refs., 16 figs

  3. A Numerical Model for Ion Charge Distribution of Plasmas in Collisional Radiative Steady State

    Institute of Scientific and Technical Information of China (English)

    DUAN Yaoyong; GUO Yonghui; QIU Aici; KUAI Bin

    2009-01-01

    A numerical model for the charge state distribution of plasmas in a collisional ra-diative steady state (CRSS) is established by averaging over the atomic process rate coefficients in universal kinetic equations.It is used to calculate the mean ion charge and ion population for a given temperature and density of the plasmas,ranging from low Z to high Z elements.The comparisons of the calculated results with those of other non-local thermodynamic equilibrium kinetics codes show that this model possesses acceptable precision.Furthermore,the NLTE effects are investigated by virtue of the model,and the differences between CRSS and LTE models for low density plasmas are quite evident.

  4. Laser Plasmas : Multiple charge states of titanium ions in laser produced plasma

    Indian Academy of Sciences (India)

    M Shukla; S Bandhyopadhyay; V N Rai; A V Kilpio; H C Pant

    2000-11-01

    An intense laser radiation (1012 to 1014 W/cm-2) focused on the solid target creates a hot (≥ 1 keV) and dense plasma having high ionization state. The multiple charged ions with high current densities produced during laser matter interaction have potential application in accelerators as an ion source. This paper presents generation and detection of highly stripped titanium ions (Ti) in laser produced plasma. An Nd:glass laser (KAMETRON) delivering 50 J energy ( = 0.53 m) in 2.5 ns was focused onto a titanium target to produce plasma. This plasma was allowed to drift across a space of ∼ 3 m through a diagnostic hole in the focusing mirror before ions are finally detected with the help of electrostatic ion analyzer. Maximum current density was detected for the charge states of +16 and +17 of Ti ions for laser intensity of ∼ 1014 W/cm-2.

  5. Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Leyva, A Davila; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; de Souza, R Derradi; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Don, D M M D Madagodagettige; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen,, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-01-01

    Local parity-odd domains are theorized to form inside a Quark-Gluon-Plasma (QGP) which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect (CME). The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this paper, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy, and tends to vanish by 7.7 GeV. The implications of these results for the CME will be discussed.

  6. Charge State of the Globular Histone Core Controls Stability of the Nucleosome

    OpenAIRE

    Fenley, Andrew T.; Adams, David A.; Onufriev, Alexey V.

    2010-01-01

    Presented here is a quantitative model of the wrapping and unwrapping of the DNA around the histone core of the nucleosome that suggests a mechanism by which this transition can be controlled: alteration of the charge state of the globular histone core. The mechanism is relevant to several classes of posttranslational modifications such as histone acetylation and phosphorylation; several specific scenarios consistent with recent in vivo experiments are considered. The model integrates a descr...

  7. Charge State of the Globular Histone Core Controls Stability of the Nucleosome

    OpenAIRE

    Fenley, Andrew T.; Adams, D. A.; Onufriev, Alexey V.

    2010-01-01

    Presented here is a quantitative model of the wrapping and unwrapping of the DNA around the histone core of the nucleosome that suggests a mechanism by which this transition can be controlled: alteration of the charge state of the globular histone core. The mechanism is relevant to several classes of posttranslational modifications such as histone acetylation and phosphorylation; several specific scenarios consistent with recent in vivo experiments are considered. The model integrates a descr...

  8. Extended Kalman Filter with a Fuzzy Method for Accurate Battery Pack State of Charge Estimation

    OpenAIRE

    Saeed Sepasi; Leon R. Roose; Marc M. Matsuura

    2015-01-01

    As the world moves toward greenhouse gas reduction, there is increasingly active work around Li-ion chemistry-based batteries as an energy source for electric vehicles (EVs), hybrid electric vehicles (HEVs) and smart grids. In these applications, the battery management system (BMS) requires an accurate online estimation of the state of charge (SOC) in a battery pack. This estimation is difficult, especially after substantial battery aging. In order to address this problem, this paper utilizes...

  9. Device and Method for Continuously Equalizing the Charge State of Lithium Ion Battery Cells

    Science.gov (United States)

    Schwartz, Paul D. (Inventor); Martin, Mark N. (Inventor); Roufberg, Lewis M. (Inventor)

    2015-01-01

    A method of equalizing charge states of individual cells in a battery includes measuring a previous cell voltage for each cell, measuring a previous shunt current for each cell, calculating, based on the previous cell voltage and the previous shunt current, an adjusted cell voltage for each cell, determining a lowest adjusted cell voltage from among the calculated adjusted cell voltages, and calculating a new shunt current for each cell.

  10. Self/Anti-Self Charge Conjugate States for $j=1/2$ and $j=1$

    CERN Document Server

    Dvoeglazov, V V

    1997-01-01

    We briefly review recent achievements in the theory of neutral particles (the Majorana-McLennan-Case-Ahluwalia construct for self/anti-self charge conjugate states for j=1/2 and j=1 cases). Among new results we present a theoretical construct in which a fermion and an antifermion have the same intrinsic parity; discuss phase transformations and find relations between the Majorana-like field operator $\

  11. Charge state and energy loss of relativistic heavy ions in matter

    International Nuclear Information System (INIS)

    Relativistic heavy-ion collisions of few-electron projectiles ranging from argon up to uranium have been investigated in solid and gaseous media. Electron-loss and electron-capture cross sections, charge-state distributions, as well as energy loss and energy deposition have been measured and are compared with theoretical predictions. Especially fully-ionized heavy projectiles represent a unique possibility to test atomic-collision theories. (orig.)

  12. Design and Test of a Solid State Charged Particle Detector for Cubesat

    OpenAIRE

    Dowler, Michael; Aguero, Victor; Sears, Stephen; Twiggs, Robert; Albers, Jim; Lee, Kathy; Maahs, Gordon

    2002-01-01

    A solid state boron- ion implanted silicon Charged Particle Detector (CPD) was designed, built, and tested as one of the payloads for a Stanford University/Lockheed Martin Cubesat (10cm cube, 1 Kg) project intended for a low earth orbit. Design drivers to be discussed will include cost, size, mass and schedule. Two detectors were utilized with shielding to allow for two separate energy ranges to be detected. Stanford Research Institute facilities were used for testing. Design considerations w...

  13. Influence of incident charge state of fast ion (Pb{sup n+} at 4.6 MeV/u) on the secondary emission from mica surface; Influence de la charge incidente d`ion rapide (Pb{sup n+} A 4.6 MeV/u) sur l`emission secondaire sur une surface de mica

    Energy Technology Data Exchange (ETDEWEB)

    Brunelle, A.; Della-Negra, S.; Depauw, J.; Jacquet, D. [Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France); Rozet, J.P.; Vernhet, D. [GPS-PIIM, Paris-6 Univ., 75 - Paris (France); Bouffard, S.; Cassimi, A.; Gervais, B.; Grandin, J.P.; Leroy, C.; Rothard, H.; Buve, M. [CIRIL, Caen Univ., 14 - Caen (France)

    1999-11-01

    The damage induced by heavy ion in the mica has been studied. The first quantitative results allowed by atomic force microscopy realized at CIRIL on mica samples irradiated by fast heavy ions have shown clearly a dependence on the incident charge state. The evolution of track diameters with ion charge states presents a step-like behaviour with 2 plateaus on both sides of the equilibrium charge states. The secondary ion emission studied in the same experimental conditions shows that the ions emitted from the mica are not sensitive to the same phenomena like those involved in the damage creation. The secondary ion yields do not follow the same charge state dependence. (authors) 5 refs., 2 figs.

  14. Prospects of charged-oscillator quantum-state generation with Rydberg atoms

    Science.gov (United States)

    Stevenson, Robin; Minář, Jiří; Hofferberth, Sebastian; Lesanovsky, Igor

    2016-10-01

    We explore the possibility of engineering quantum states of a charged mechanical oscillator by coupling it to a stream of atoms in superpositions of high-lying Rydberg states. Our scheme relies on the driving of a two-phonon resonance within the oscillator by coupling it to an atomic two-photon transition. This approach effectuates a controllable open system dynamics on the oscillator that in principle permits versatile dissipative creation of squeezed and other nonclassical states which are central to sensing applications or for studies of fundamental questions concerning the boundary between classical and quantum-mechanical descriptions of macroscopic objects. We show that these features survive thermal coupling of the oscillator with the environment. We perform a detailed feasibility study finding that current state-of-the-art parameters result in atom-oscillator couplings which are too weak to efficiently implement the proposed oscillator state preparation protocol. Finally, we comment on ways to circumvent the present limitations.

  15. Carotenoid charge transfer states and their role in energy transfer processes in LH1-RC complexes from aerobic anoxygenic phototrophs.

    Science.gov (United States)

    Šlouf, Václav; Fuciman, Marcel; Dulebo, Alexander; Kaftan, David; Koblížek, Michal; Frank, Harry A; Polívka, Tomáš

    2013-09-26

    Light-harvesting complexes ensure necessary flow of excitation energy into photosynthetic reaction centers. In the present work, transient absorption measurements were performed on LH1-RC complexes isolated from two aerobic anoxygenic phototrophs (AAPs), Roseobacter sp. COL2P containing the carotenoid spheroidenone, and Erythrobacter sp. NAP1 which contains the carotenoids zeaxanthin and bacteriorubixanthinal. We show that the spectroscopic data from the LH1-RC complex of Roseobacter sp. COL2P are very similar to those previously reported for Rhodobacter sphaeroides, including the transient absorption spectrum originating from the intramolecular charge-transfer (ICT) state of spheroidenone. Although the ICT state is also populated in LH1-RC complexes of Erythrobacter sp. NAP1, its appearance is probably related to the polarity of the bacteriorubixanthinal environment rather than to the specific configuration of the carotenoid, which we hypothesize is responsible for populating the ICT state of spheroidenone in LH1-RC of Roseobacter sp. COL2P. The population of the ICT state enables efficient S1/ICT-to-bacteriochlorophyll (BChl) energy transfer which would otherwise be largely inhibited for spheroidenone and bacteriorubixanthinal due to their low energy S1 states. In addition, the triplet states of these carotenoids appear well-tuned for efficient quenching of singlet oxygen or BChl-a triplets, which is of vital importance for oxygen-dependent organisms such as AAPs. PMID:23130956

  16. Ion charge state distributions of vacuum arc plasmas: The origin of species

    International Nuclear Information System (INIS)

    Vacuum arc plasmas are produced at micrometer-size, nonstationary cathode spots. Ion charge state distributions (CSD close-quote s) are experimentally known for 50 elements, but the theoretical understanding is unsatisfactory. In this paper, CSD close-quote s of vacuum arc plasmas are calculated under the assumption that the spot plasma experiences an instantaneous transition from equilibrium to nonequilibrium while expanding. Observable charge state distributions are the result of a freezing process at this transition. open-quotes Frozenclose quotes CSD close-quote s have been calculated using Saha equations in the Debye-Hueckel approximation of the nonideal plasma for all metals of the Periodic Table and for boron, carbon, silicon, and germanium. The results are presented in a open-quotes periodic table of CSD.close quotes The table contains also the mean ion charge state, the neutral vapor fraction, and the effective plasma temperature and density at the freezing point for each element. The validity of the concepts of open-quotes instantaneous freezingclose quotes and open-quotes effective temperature and densityclose quotes is discussed for low and high currents and for the presence of a magnetic field. Temperature fluctuations have been identified to cause broadening of CSD close-quote s. copyright 1997 The American Physical Society

  17. State dependency of inhibitory control performance: an electrical neuroimaging study.

    Science.gov (United States)

    De Pretto, Michael; Sallard, Etienne; Spierer, Lucas

    2016-07-01

    Behavioral and brain responses to stimuli not only depend on their physical features but also on the individuals' neurocognitive states before stimuli onsets. While the influence of pre-stimulus fluctuations in brain activity on low-level perceptive processes is well established, the state dependency of high-order executive processes remains unclear. Using a classical inhibitory control Go/NoGo task, we examined whether and how fluctuations in the brain activity during the period preceding the stimuli triggering inhibition influenced inhibitory control performance. Seventeen participants completed the Go/NoGo task while 64-channel electroencephalogram was recorded. We compared the event-related potentials preceding the onset of the NoGo stimuli associated with inhibition failures false alarms (FA) vs. successful inhibition correct rejections (CR) with data-driven statistical analyses of global measures of the topography and strength of the scalp electric field. Distributed electrical source estimations were used to localize the origin of the event-related potentials modulations. We observed differences in the global field power of the event-related potentials (FA > CR) without concomitant topographic modulations over the 40 ms period immediately preceding NoGo stimuli. This result indicates that the same brain networks were engaged in the two conditions, but more strongly before FA than CR. Source estimations revealed that this effect followed from a higher activity before FA than CR within bilateral inferior frontal gyri and the right inferior parietal lobule. These findings suggest that uncontrolled quantitative variations in pre-stimulus activity within attentional and control brain networks influence inhibition performance. The present data thereby demonstrate the state dependency of cognitive processes of up to high-order executive levels. PMID:27116703

  18. Number sense and state-dependent valuation in cuttlefish.

    Science.gov (United States)

    Yang, Tsang-I; Chiao, Chuan-Chin

    2016-08-31

    Identifying the amount of prey available is an important part of an animal's foraging behaviour. The risk-sensitive foraging theory predicts that an organism's foraging decisions with regard to food rewards depending upon its satiation level. However, the precise interaction between optimal risk-tolerance and satiation level remains unclear. In this study, we examined, firstly, whether cuttlefish, with one of the most highly evolved nervous system among the invertebrates, have number sense, and secondly, whether their valuation of food reward is satiation state dependent. When food such as live shrimps is present, without training, cuttlefish turn toward the prey and initiate seizure behaviour. Using this visual attack behaviour as a measure, cuttlefish showed a preference for a larger quantity when faced with two-alternative forced choice tasks (1 versus 2, 2 versus 3, 3 versus 4 and 4 versus 5). However, cuttlefish preferred the small quantity when the choice was between one live and two dead shrimps. More importantly, when the choice was between one large live shrimp and two small live shrimps (a prey size and quantity trade-off), the cuttlefish chose the large single shrimp when they felt hunger, but chose the two smaller prey when they were satiated. These results demonstrate that cuttlefish are capable of number discrimination and that their choice of prey number depends on the quality of the prey and on their appetite state. The findings also suggest that cuttlefish integrate both internal and external information when making a foraging decision and that the cost of obtaining food is inversely correlated with their satiation level, a phenomenon similar to the observation that metabolic state alters economic decision making under risk among humans. PMID:27559063

  19. Light-Induced ESR Studies of Quadrimolecular Recombination Kinetics of Photogenerated Charge Carriers in Regioregular Poly(3-alkylthiophene)/C60 Composites: Alkyl Chain Dependence

    Science.gov (United States)

    Tanaka, Hisaaki; Hasegawa, Naoki; Sakamoto, Tomotaka; Marumoto, Kazuhiro; Kuroda, Shin-ichi

    2007-08-01

    Light-induced ESR (LESR) measurements have been performed on the composites of regioregular poly(3-alkylthiophene) (RR-P3AT) and C60 by using polymers having different alkyl chains (CmH2m+1 with m=6, 8, 10, 12). The quadrimolecular recombination (QR) kinetics of photogenerated charge carriers, previously reported, have been confirmed for all the composites from the excitation power (Iex) dependence of the LESR intensity showing an ˜Iex0.25 dependence. The time decay of LESR intensity is also consistent with the QR model. Considering that only bimolecular recombination is observed in regiorandom polymer composites, the occurrence of QR strongly suggests the formation of doubly charged states, either bipolarons or polaron pairs on the regioregular polymer chains. On the other hand, the QR rate constant γ has been found to exhibit weak alkyl chain dependence, contrary to the case of the field-effect mobility of pure regioregular polymers with systematic alkyl chain dependence. This implies the significant contribution of the polymer and fullerene interface in determining γ.

  20. The problem of dependency: immigration, gender, and the welfare state.

    Science.gov (United States)

    Eggebø, Helga

    2010-01-01

    This article discusses the regulation of marriage migration to Norway through an analysis of the subsistence requirement rule which entails that a person who wants to bring a spouse to Norway must achieve a certain level of income. Policy-makers present two main arguments for this regulation. First, the subsistence requirement is a means to prevent forced marriage. Second, its aim is to prevent family immigrants from becoming a burden on welfare budgets. The major concern of both these arguments is that of dependency, either on the family or on the welfare state. The article investigates the representations of the “problems” underpinning this specific policy proposal and argues that the rule in question, and immigration policy more generally, needs to be analyzed with reference to the broader concerns and aims of welfare state policy and gender equality policy. PMID:20821899

  1. The problem of dependency: immigration, gender, and the welfare state.

    Science.gov (United States)

    Eggebø, Helga

    2010-01-01

    This article discusses the regulation of marriage migration to Norway through an analysis of the subsistence requirement rule which entails that a person who wants to bring a spouse to Norway must achieve a certain level of income. Policy-makers present two main arguments for this regulation. First, the subsistence requirement is a means to prevent forced marriage. Second, its aim is to prevent family immigrants from becoming a burden on welfare budgets. The major concern of both these arguments is that of dependency, either on the family or on the welfare state. The article investigates the representations of the “problems” underpinning this specific policy proposal and argues that the rule in question, and immigration policy more generally, needs to be analyzed with reference to the broader concerns and aims of welfare state policy and gender equality policy.

  2. The quantum state-dependent gauge fields of Jacobi

    CERN Document Server

    Leifer, Peter

    2016-01-01

    It is commonly understood that the Yang-Mills non-Abelian gauge fields is the natural generalization of the well known Abelian gauge group symmetry $U(1)$ in the electrodynamics. Taking into account that the problems of the localization and divergences in QFT are not solved in the framework of the Standard Model (SM), I proposed a different approach to the quantum theory of the single self-interacting electron. In connection with this theory, I would like attract the attention to the state-dependent gauge transformations $U(1) \\times U(N-1)$ associated with the Jacobi vector fields of the geodesic variations in the complex projective Hilbert space $CP(N-1)$ of the unlocated quantum states (UQS's).

  3. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Koichi, E-mail: tanak@mmc.co.jp [Central Research Institute, Mitsubishi Materials Corporation, 1002-14 Mukohyama, Naka-shi, Ibaraki 311-0102 (Japan); Anders, André [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 53, Berkeley, California 94720 (United States)

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  4. Isotopic dependence of the nuclear charge radii and binding energies in the relativistic Hartree-Fock formalism

    Energy Technology Data Exchange (ETDEWEB)

    Niembro, R., E-mail: niembror@unican.es; Marcos, S.; Lopez-Quelle, M. [Universidad de Cantabria (Spain); Savushkin, L. N. [St. Petersburg University for Telecommunications (Russian Federation)

    2012-03-15

    Relativistic nonlinear models based on the Hartree and Hartree-Fock approximations, including the {sigma}, {omega}, {pi}, and {rho} mesons, are worked out to explore the behavior of the nuclear charge radii and the binding energies of several isotopic chains. We find a correlation between the magnitude of the anomalous kink effect (KE) in the Pb isotopic family and the compressibility modulus (K) of nuclear matter. The KE appears to be sensitive, in particular, to the mechanisms which control the K value. The influence of the symmetry energy on the Ca isotopic chain is also studied. The behavior of the charge radii of single-particle states for some special cases and its repercussion on the nuclear charge radius is analyzed. The effect of pairing correlations on the models improves considerably the quality of the results in both binding energy and KE.

  5. F-theory compactifications and central charges of BPS-states

    CERN Document Server

    Obikhod, Tetiana V

    2016-01-01

    F-theory, as Theory of Everything is compactified on Calabi-Yau threefolds or fourfolds. Using toric approximation of Batyrev and mirror symmetry of Calabi-Yau manifolds it is possible to present Calabi-Yau in the form of dual integer polyhedra. With the help of Gelfand, Zelevinsky, Kapranov algorithm were calculated the numbers of BPS-states in F-theory, and by application of Tate algorithm were determined the enhanced symmetries. As the result, any integral dual polyhedron representing a Calabi-Yau manifold, is characterized by its own set of topological invariants - the numbers of BPS states, whose central charges are classified by enhanced symmetries.

  6. Communication: Exciton analysis in time-dependent density functional theory: How functionals shape excited-state characters.

    Science.gov (United States)

    Mewes, Stefanie A; Plasser, Felix; Dreuw, Andreas

    2015-11-01

    Excited-state descriptors based on the one-particle transition density matrix referring to the exciton picture have been implemented for time-dependent density functional theory. State characters such as local, extended ππ(∗), Rydberg, or charge transfer can be intuitively classified by simple comparison of these descriptors. Strong effects of the choice of the exchange-correlation kernel on the physical nature of excited states can be found and decomposed in detail leading to a new perspective on functional performance and the design of new functionals.

  7. Fragile charge order in the nonsuperconducting ground state of the underdoped high-temperature superconductors.

    Science.gov (United States)

    Tan, B S; Harrison, N; Zhu, Z; Balakirev, F; Ramshaw, B J; Srivastava, A; Sabok-Sayr, S A; Sabok, S A; Dabrowski, B; Lonzarich, G G; Sebastian, Suchitra E

    2015-08-01

    The normal state in the hole underdoped copper oxide superconductors has proven to be a source of mystery for decades. The measurement of a small Fermi surface by quantum oscillations on suppression of superconductivity by high applied magnetic fields, together with complementary spectroscopic measurements in the hole underdoped copper oxide superconductors, point to a nodal electron pocket from charge order in YBa2Cu3(6+δ). Here, we report quantum oscillation measurements in the closely related stoichiometric material YBa2Cu4O8, which reveals similar Fermi surface properties to YBa2Cu3(6+δ), despite the nonobservation of charge order signatures in the same spectroscopic techniques, such as X-ray diffraction, that revealed signatures of charge order in YBa2Cu3(6+δ). Fermi surface reconstruction in YBa2Cu4O8 is suggested to occur from magnetic field enhancement of charge order that is rendered fragile in zero magnetic fields because of its potential unconventional nature and/or its occurrence as a subsidiary to more robust underlying electronic correlations. PMID:26199413

  8. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion

    Science.gov (United States)

    Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning

    2016-08-01

    Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility.

  9. Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Bairathi,; Banerjee, A; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandin, A V; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Campbell, J M; Cebra, D; Cervantes, M C; Chakaberia, I; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Hamad, A; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, X; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kollegger, T; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, W; Li, Z M; Li, X; Li, Y; Li, C; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, Y G; Ma, R; Ma, G L; Ma, L; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; Meehan, K; Minaev, N G; Mioduszewski, S; Mishra, D; Mohanty, B; Mondal, M M; Morozov, D; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Peterson, A; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, M K; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Skoby, M J; Smirnov, N; Smirnov, D; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, N; Szelezniak, M A; Tang, Z; Tang, A H; Tarnowsky, T; Tawfik, A N; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Trzeciak, B A; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wang, G; Wang, H; Wang, J S; Wang, Y; Wang, F; Webb, G; Webb, J C; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z G; Xie, W; Xin, K; Xu, Q H; Xu, N; Xu, H; Xu, Z; Xu, Y F; Yang, Q; Yang, Y; Yang, C; Yang, S; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I -K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J; Zhang, X P; Zhang, Z; Zhang, Y; Zhang, S; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2015-01-01

    We present measurements of $\\pi^-$ and $\\pi^+$ elliptic flow, $v_2$, at midrapidity in Au+Au collisions at $\\sqrt{s_{_{\\rm NN}}} =$ 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry, $A_{ch}$, based on data from the STAR experiment at RHIC. We find that $\\pi^-$ ($\\pi^+$) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at $\\sqrt{s_{_{\\rm NN}}} = \\text{27 GeV}$ and higher. At $\\sqrt{s_{_{\\rm NN}}} = \\text{200 GeV}$, the slope of the difference of $v_2$ between $\\pi^-$ and $\\pi^+$ as a function of $A_{ch}$ exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.

  10. Multiple Charge Transfer States at Ordered and Disordered Donor/Acceptor Interfaces

    Science.gov (United States)

    Fusella, Michael; Verreet, Bregt; Lin, Yunhui; Brigeman, Alyssa; Purdum, Geoffrey; Loo, Yueh-Lin; Giebink, Noel; Rand, Barry

    The presence of charge transfer (CT) states in organic solar cells is accepted, but their role in photocurrent generation is not well understood. Here we investigate solar cells based on rubrene and C60 to show that CT state properties are influenced by molecular ordering at the donor/acceptor (D/A) interface. Crystalline rubrene films are produced with domains of 100s of microns adopting the orthorhombic phase, as confirmed by grazing incidence XRD, with the (h00) planes parallel to the substrate. C60 grown atop these films adopts a highly oriented face-centered cubic phase with the (111) plane parallel to the substrate. For this highly ordered system we have discovered the presence of four CT states. Polarized external quantum efficiency (EQE) measurements assign three of these to crystalline origins with the remaining one well aligned with the disordered CT state. Varying the thickness of a disordered blend of rubrene:C60 atop the rubrene template modulates the degree of crystallinity at the D/A interface. Strikingly, this process alters the prominence of the four CT states measured via EQE, and results in a transition from single to multiple electroluminescence peaks. These results underscore the impact of molecular structure at the heterojunction on charge photogeneration.

  11. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Tassle, Aaron Justin [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  12. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Tassle, Aaron Justin

    2006-09-01

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  13. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    Energy Technology Data Exchange (ETDEWEB)

    Theophilou, Iris, E-mail: i.theophilou@fz-juelich.de [Peter Grunberg Institut (PGI) Forschungszentrum Jülich, D-52425 Jülich (Germany); Tassi, M.; Thanos, S. [Institute for Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, ‘Demokritos’ National Center for Scientific Research, 15310 Athens (Greece)

    2014-04-28

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations.

  14. Temperature dependence of the resonance peaks in the elastic scattering of fast negative charged particles in monocrystals

    International Nuclear Information System (INIS)

    Temperature dependence of angular distributions of fast negatively charged particles scattered in the monocrystal is considered. The consideration is carried out in the first order of the perturbation theory. An expression for the total cross section of the scattering with account of discreteness and thermal oscillations is obtained. It is shown that small-angle coherent processes described by the averaged potential in reality can realized in the case extremely high temperatures

  15. Charge transfer of edge states in zigzag silicene nanoribbons with Stone-Wales defects from first-principles

    Science.gov (United States)

    Ting, Xie; Rui, Wang; Shaofeng, Wang; Xiaozhi, Wu

    2016-10-01

    Stone-Wales (SW) defects are favorably existed in graphene-like materials with honeycomb lattice structure and potentially employed to change the electronic properties in band engineering. In this paper, we investigate structural and electronic properties of SW defects in silicene sheet and its nanoribbons as a function of their concentration using the methods of periodic boundary conditions with first-principles calculations. We first calculate the formation energy, structural properties, and electronic band structures of SW defects in silicene sheet, with dependence on the concentration of SW defects. Our results show a good agreement with available values from the previous first-principles calculations. The energetics, structural aspects, and electronic properties of SW defects with dependence on defect concentration and location in edge-hydrogenated zigzag silicene nanoribbons are obtained. For all calculated concentrations, the SW defects prefer to locate at the edge due to the lower formation energy. The SW defects at the center of silicene nanoribbons slightly influence on the electronic properties, whereas the SW defects at the edge of silicene nanoribbons split the degenerate edge states and induce a sizable gap, which depends on the concentration of defects. It is worth to find that the SW defects produce a perturbation repulsive potential, which leads the decomposed charge of edge states at the side with defect to transfer to the other side without defect.

  16. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles

    International Nuclear Information System (INIS)

    An accurate battery State of Charge estimation is of great significance for battery electric vehicles and hybrid electric vehicles. This paper presents an adaptive unscented Kalman filtering method to estimate State of Charge of a lithium-ion battery for battery electric vehicles. The adaptive adjustment of the noise covariances in the State of Charge estimation process is implemented by an idea of covariance matching in the unscented Kalman filter context. Experimental results indicate that the adaptive unscented Kalman filter-based algorithm has a good performance in estimating the battery State of Charge. A comparison with the adaptive extended Kalman filter, extended Kalman filter, and unscented Kalman filter-based algorithms shows that the proposed State of Charge estimation method has a better accuracy. -- Highlights: → Adaptive unscented Kalman filtering is proposed to estimate State of Charge of a lithium-ion battery for electric vehicles. → The proposed method has a good performance in estimating the battery State of Charge. → A comparison with three other Kalman filtering algorithms shows that the proposed method has a better accuracy.

  17. Thickness-dependent charge transport in few-layer MoS2 field-effect transistors

    Science.gov (United States)

    Lin, Ming-Wei; Kravchenko, Ivan I.; Fowlkes, Jason; Li, Xufan; Puretzky, Alexander A.; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai

    2016-04-01

    Molybdenum disulfide (MoS2) is currently under intensive study because of its exceptional optical and electrical properties in few-layer form. However, how charge transport mechanisms vary with the number of layers in MoS2 flakes remains unclear. Here, exfoliated flakes of MoS2 with various thicknesses were successfully fabricated into field-effect transistors (FETs) to measure the thickness and temperature dependences of electrical mobility. For these MoS2 FETs, measurements at both 295 K and 77 K revealed the maximum mobility for layer thicknesses between 5 layers (˜3.6 nm) and 10 layers (˜7 nm), with ˜70 cm2 V-1 s-1 measured for 5 layer devices at 295 K. Temperature-dependent mobility measurements revealed that the mobility rises with increasing temperature to a maximum. This maximum occurs at increasing temperature with increasing layer thickness, possibly due to strong Coulomb scattering from charge impurities or weakened electron-phonon interactions for thicker devices. Temperature-dependent conductivity measurements for different gate voltages revealed a metal-to-insulator transition for devices thinner than 10 layers, which may enable new memory and switching applications. This study advances the understanding of fundamental charge transport mechanisms in few-layer MoS2, and indicates the promise of few-layer transition metal dichalcogenides as candidates for potential optoelectronic applications.

  18. Anion-Dependent Aggregate Formation and Charge Behavior of Colloidal Fullerenes (n-C60)

    Science.gov (United States)

    The fate and transport of colloidal fullerenes (n-C60) in the environment is likely to be guided by electrokinetic and aggregation behavior. In natural water bodies inorganic ions exert significant effects in determining the size and charge of n-C60 nanoparticles. Although the ef...

  19. Charge State Formation of Energetic Ultraheavy Ions in a Hot Plasma

    Science.gov (United States)

    Kartavykh, Y. Y.; Dröge, W.; Klecker, B.; Kocharov, L.; Kovaltsov, G. A.; Möbius, E.

    2008-07-01

    We introduce a simplified method to calculate the cross sections and rates of ionization and recombination of accelerated ions with arbitrary nuclear charge Z and atomic mass number A. Calculations of equilibrium and nonequilibrium charge states of the element Tellurium (Te, Z = 52) are presented for the first time. The validity of the proposed method is demonstrated by showing that predictions for Si and Fe are in agreement at energies characteristic for energetic (>=0.15 MeV nucleon-1) ultraheavy ions with the results of a more sophisticated model. We find that while the charge states for Te come out higher than those for Fe under similar conditions, the Q/A values for Te fall consistently below those for Fe over the entire energy range and under all comparable conditions, thus extending the trend in Q/A that is observed when going to higher mass elements. Implications of our results for the observed enrichments of ultraheavy ions in solar energetic particle events are discussed.

  20. Effect of isospin-dependent cross-section on fragment production in the collision of charge asymmetric nuclei

    Indian Academy of Sciences (India)

    Anupriya Jain; Suneel Kumar

    2012-05-01

    To understand the role of isospin effects on fragmentation due to the collisions of charge asymmetric nuclei, we have performed a complete systematical study using isospin-dependent quantum molecular dynamics model. Here simulations have been carried out for ${}^{124}X_n + {}^{124}X_n$ ,where varies from 47 to 59 and for 40Y$_m$ + 40Y$_m$ , where varies from 14 to 23. Our study shows that isospin-dependent cross-section shows its influence on fragmentation in the collision of neutron-rich nuclei.

  1. State-of-the-art of battery state-of-charge determination

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Notten, P.H.L.; Regtien, P.P.L.

    2005-01-01

    From the early days on, humanity has depended on electricity, a phenomenon without which our technological advancements would not have been possible. With the increased need for mobility, people moved to portable power storage—first for wheeled applications, then for portable and finally nowadays we

  2. Electro-osmosis in kaolinite with pH-dependent surface charge modelling by homogenization

    Directory of Open Access Journals (Sweden)

    Sidarta A. Lima

    2010-03-01

    Full Text Available A new three-scale model to describe the coupling between pH-dependent flows and transient ion transport, including adsorption phenomena in kaolinite clays, is proposed. The kaolinite is characterized by three separate nano/micro and macroscopic length scales. The pore (micro-scale is characterized by micro-pores saturated by an aqueous solution containing four monovalent ions and charged solid particles surrounded by thin electrical double layers. The movement of the ions is governed by the Nernst-Planck equations, and the influence of the double layers upon the flow is dictated by the Helmholtz-Smoluchowski slip boundary condition on the tangential velocity. In addition, an adsorption interface condition for the Na+ transportis postulated to capture its retention in the electrical double layer. Thetwo-scalenano/micro model including salt adsorption and slip boundary condition is homogenized to the Darcy scale and leads to the derivation of macroscopic governing equations. One of the notable features of the three-scale model is there construction of the constitutive law of effective partition coefficient that governs the sodium adsorption in the double layer. To illustrate the feasibility of the three-scale model in simulating soil decontamination by electrokinetics, the macroscopic model is discretized by the finite volume method and the desalination of a kaolinite sample by electrokinetics is simulated.Neste artigo propomos um modelo em três escalas para descrever o acoplamento entre o fluxo eletroosmótico e o transporte de íons incluindo fenômenos de adsorção em uma caulinita. A argila é caracterizada por três escalas nano/micro e macroscópica. A escala microscópica é constituída por micro-poros saturados por uma solução aquosa contendo quatro íons monovalentes e partículas sólidas carregadas eletricamente circundadas por uma dupla camada elétrica fina. O movimento dos íons é governado pelas equações de Nernst-Planck e a

  3. Electronic States and Spatial Charge Distribution of Single Mn Impurity in Diluted Magnetic Semiconductors

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-Hua; ZOU Liang-Jian

    2006-01-01

    The electronic and magnetic properties as well as the spatial charge distribution of single Mn impurity in Ⅲ-V diluted magnetic semiconductors are obtained when the degeneracy of the p orbits contributed from the four nearest-neighbouring As(N) atoms is taken into account. We show that in the ground state, the Mn spin is strongly antiferromagnetically coupled to the surrounding As(N) atoms when the p - d hybridization Vpd is large and both the hole level Ev and the impurity level Ed are close to the Fermi energy. The spatial charge distribution of the Mn acceptor in the (110) plane is non-spherically symmetric, in good agreement with the recent STM images.

  4. Semilocal and Hybrid Density Embedding Calculations of Ground-State Charge-Transfer Complexes

    CERN Document Server

    Laricchia, S; Della Sala, F; 10.1063/1.4795825

    2013-01-01

    We apply the frozen density embedding method, using a full relaxation of embedded densities through a freeze-and-thaw procedure, to study the electronic structure of several benchmark ground-state charge-transfer complexes, in order to assess the merits and limitations of the approach for this class of systems. The calculations are performed using both semilocal and hybrid exchange-correlation (XC) functionals. The results show that embedding calculations using semilocal XC functionals yield rather large deviations with respect to the corresponding supermolecular calculations. Due to a large error cancellation effect, however, they can often provide a relatively good description of the electronic structure of charge-transfer complexes, in contrast to supermolecular calculations performed at the same level of theory. On the contrary, when hybrid XC functionals are employed, both embedding and supermolecular calculations agree very well with each other and with the reference benchmark results. In conclusion, fo...

  5. Search for light charged Higgs bosons in hadronic τ final states with the ATLAS detector

    International Nuclear Information System (INIS)

    Charged Higgs bosons are predicted in theories with a non-minimal Higgs sector like the Minimal Supersymmetric Extension of the Standard Model (MSSM). At the LHC, light charged Higgs Bosons might be produced in on-shell top quark decays t→ H+b, if mH±t-mb. In most of the MSSM parameter space, the decay H+ → τν is the dominant decay channel and suggests the possibility of using the unique signature of hadronic τ final states to suppress the backgrounds. The subject of this study is the estimation of the sensitivity of the ATLAS detector for charged Higgs boson searches in t anti t events. Leptons from the decay chain of the second top quark allow for efficient triggering. A search strategy is developed and estimates of signal significances and exclusion limits in the MSSM mh-max scenario are presented based on Monte Carlo simulations. For an integrated luminosity of 10 fb-1, the discovery of charged Higgs bosons is possible for tanβ>32. Exclusion limits are given for values of tanβ>17, significantly improving the current best limits from the Tevatron. The most important systematic uncertainties were found to be the errors on the jet energy scale and the missing transverse energy, resulting in a total systematic uncertainty of 40% on the signal. To reduce the systematic uncertainty for the most important Standard Model background, t anti t production, emphasis is put on estimating this background using data instead of Monte Carlo simulations. The t anti t background consists of two contributions, one with a correctly identified τ-jet in the final state, which is irreducible, and one where the hadronic τ decay is faked by a light parton jet. For each background a method has been developed to estimate its contribution with minimal use of Monte Carlo simulations. In this way, the systematic uncertainty on the background can be significantly reduced. (orig.)

  6. Inelastic Scattering of CO with He: Polarization Dependent Differential State-to-State Cross Sections.

    Science.gov (United States)

    Song, Lei; Groenenboom, Gerrit C; van der Avoird, Ad; Bishwakarma, Chandan Kumar; Sarma, Gautam; Parker, David H; Suits, Arthur G

    2015-12-17

    A joint theoretical and experimental study of state-to-state rotationally inelastic polarization dependent differential cross sections (PDDCSs) for CO (v = 0, j = 0, 1, 2) molecules colliding with helium is reported for collision energies of 513 and 840 cm(-1). In a crossed molecular beam experiment, velocity map imaging (VMI) with state-selective detection by (2 + 1) and (1 + 1') resonance enhanced multiphoton ionization (REMPI) is used to probe rotational excitation of CO due to scattering. By taking account of the known fractions of the j = 0, 1, and 2 states of CO in the rotationally cold molecular beam (Trot ≈ 3 K), close-coupling theory based on high-quality ab initio potential energy surfaces for the CO-He interaction is used to simulate the differential cross sections for the mixed initial states. With polarization-sensitive 1 + 1' REMPI detection and a direct analysis procedure described by Suits et al. ( J. Phys, Chem. A 2015 , 119 , 5925 ), alignment moments are extracted from the images and the latter are compared with images simulated by theory using the calculated DCS and alignment moments. In general, good agreement of theory with the experimental results is found, indicating the reliability of the experiment in reproducing state-to-state differential and polarization-dependent differential cross sections. PMID:26473516

  7. Electron configuration and charge state of electrically active Cu, Ag and Au ions in ZnSe

    International Nuclear Information System (INIS)

    The Hall effect, electrical conductivity and electron mobility are investigated at temperatures between 55 and 500 K in n-ZnSe crystals doped with Cu, Ag or Au. The presence of a small amount of Cu atoms leads to an inversion of the sign of the Hall coefficient at temperatures above 300 K. Anomalous temperature dependence of the electron mobility is observed in the samples with low Cu concentration (Zn+ (d10) and CuZn2+ (d9), and two acceptor levels near the valence band. Silver and gold exist in single-charged states AgZn+ and AuZn+ with d10 electron configuration forming single energy levels near the valence band. Au atoms form mainly interstitial Aui donors at low doping concentrations and substitutional AuZn and AuZn-based acceptors at high doping concentrations. Time stimulation of the amphoteric properties of Ag is discussed

  8. Investigation of field-dependent charge carrier generation and recombination in polymer based solar cells by transient extraction currents

    Energy Technology Data Exchange (ETDEWEB)

    Kniepert, Juliane; Blakesley, James; Neher, Dieter [University of Potsdam (Germany)

    2011-07-01

    There is an ongoing discussion as to whether photoinduced charge transfer in P3HT:PCBM solar cells leads to fully separated electrons and holes, independent of an electric field, or Coulombically bound interfacial charge pairs. While recent studies by R.A. Marsh et al. with transient absorption spectroscopy gave clear evidence for the formation and field-induced dissociation of bound polaron pairs, measurements by I.A. Howard et al. were in favour of hot exciton dissociation. Here, we present the results of bias-dependent Time Delayed Collection Field (TDCF) measurements to access directly the density of free charge carriers in P3HT:PCBM blends coated from dichlorobenzene. Solvent annealing was applied to yield a phase-separated morphology and the corresponding solar cells exhibit high values for the external quantum efficiency and fill factor. Our setup allowed us to follow the generation and recombination of photogenerated charges with a so far unattained time resolution of 40 ns. Our experiments show that the number of collected carriers is independent of the applied bias during pulsed illumination implying that extractable carriers in P3HT:PCBM blends are not generated by the field-assisted separation of bound polaron pairs. In addition, our experiments support the view that bimolecular recombination of free carriers is strongly suppressed in phase-separated P3HT:PBCM blends.

  9. Length-dependent charge generation from vertical arrays of high-aspect-ratio ZnO nanowires.

    Science.gov (United States)

    Rivera, Vivian Farías; Auras, Florian; Motto, Paolo; Stassi, Stefano; Canavese, Giancarlo; Celasco, Edvige; Bein, Thomas; Onida, Barbara; Cauda, Valentina

    2013-10-18

    Aqueous chemical growth of zinc oxide nanowires is a flexible and effective approach to obtain dense arrays of vertically oriented nanostructures with high aspect ratio. Herein we present a systematic study of the different synthesis parameters that influence the ZnO seed layer and thus the resulting morphological features of the free-standing vertically oriented ZnO nanowires. We obtained a homogeneous coverage of transparent conductive substrates with high-aspect-ratio nanowire arrays (length/diameter ratio of up to 52). Such nanostructured vertical arrays were examined to assess their electric and piezoelectric properties, and showed an electric charge generation upon mechanical compressive stress. The principle of energy harvesting with these nanostructured ZnO arrays was demonstrated by connecting them to an electronic charge amplifier and storing the generated charge in a series of capacitors. We found that the generated charge and the electrical behavior of the ZnO nanowires are strictly dependent on the nanowire length. We have shown the importance of controlling the morphological properties of such ZnO nanostructures for optimizing a nanogenerator device. PMID:24027171

  10. Pressure dependence of space charge deposition in piezoelectric polymer foams: simulations and experimental verification

    Science.gov (United States)

    Harris, Scott; Mellinger, Axel

    2012-06-01

    The piezoelectric activity of PQ-50 cellular polypropylene (PP) foam (an example of a so-called ferroelectret) is measured after repeated charging in a nitrogen atmosphere at a range of pressures between 61 and 381 kPa. The results are compared against simulations using a multilayer electromechanical model based on Townsend's model of Paschen breakdown and a realistic distribution of void heights determined from scanning electron micrographs. The modeled piezoelectric coefficients versus pressure are in good agreement with experimental data when adjusted Paschen coefficients are used, indicating that the Paschen curve for electric breakdown in gases needs to be modified for dielectric barrier discharges in microcavities. The highest d 33 coefficients were achieved for pressures above 251 kPa. For previously uncharged PP foam, the model predicts an optimal charging pressure of 186 kPa.

  11. The dependence of the nuclear charge form factor on short range correlations and surface fluctuation effects

    CERN Document Server

    Massen, S E; Grypeos, M E

    1995-01-01

    We investigate the effects of fluctuations of the nuclear surface on the harmonic oscillator elastic charge form factor of light nuclei, while simultaneously approximating the short-range correlations through a Jastrow correlation ~factor. Inclusion of surface-fluctuation effects within this description, by truncating the cluster expansion at the two-body part, is found to improve somewhat the fit to the elastic charge form-factor of ^{16}O and ^{40}Ca. However, the convergence of the cluster expansion is expected to deteriorate. An additional finding is that the surface-fluctuation correlations produce a drastic change in the asymptotic behavior of the point-proton form factor, which now falls off quite slowly (i.e. as const. \\cdot q^{-4}) at large values of the momentum transfer q.

  12. Phase state dependent current fluctuations in pure lipid membranes

    CERN Document Server

    Wunderlich, B; Idzko, A-L; Keyser, U F; Wixforth, A; Myles, V M; Heimburg, T; Schneider, M F

    2009-01-01

    Current fluctuations in pure lipid membranes have been shown to occur under the influence of transmembrane electric fields (electroporation) as well as a result from structural rearrangements of the lipid bilayer during phase transition (soft perforation). We demonstrate that the ion permeability during lipid phase transition exhibits the same qualitative temperature dependence as the macroscopic heat capacity of a D15PC/DOPC vesicle suspension. Microscopic current fluctuations show distinct characteristics for each individual phase state. While current fluctuations in the fluid phase show spike-like behaviour of short time scales (~ 2ms) with a narrow amplitude distribution, the current fluctuations during lipid phase transition appear in distinct steps with time scales in the order of ~ 20ms. 1 We propose a theoretical explanation for the origin of time scales and permeability based on a linear relationship between lipid membrane susceptibilities and relaxation times in the vicinity of the phase transition.

  13. Polarization Dependence of Born Effective Charge and Dielectric Constant in KNbO$_3$

    OpenAIRE

    Wang, Cheng-Zhang; Yu, Rici; Krakauer, Henry

    1996-01-01

    The Born effective charge Z^{*} and dielectric tensor \\epsilon_{\\infty} of KNbO_3 are found to be very sensitive to the atomic geometry, changing by as much as 27% between the paraelectric cubic and ferroelectric tetragonal and rhombohedral phases. Subtracting the bare ionic contribution reveals changes of the dynamic component of Z^{*} as large as 50%, for atomic displacements that are typically only a few percent of the lattice constant. Z^{*}, \\epsilon_{\\infty} and all phonon frequencies a...

  14. Search for AN Eta-Nuclear Bound State in the Double Charge Exchange Reaction OXYGEN-18

    Science.gov (United States)

    Johnson, John Doeppers

    1992-01-01

    Recent calculations have predicted that a bound state between an eta and a nucleus may occur as an intermediate state in pion double charge exchange (DCX). The existence of such a mesic nucleus would lead to a resonance-like structure in the DCX excitation function at fixed momentum transfer. LAMPF Experiment 1140 searched for an eta-nucleus bound state in the DCX reaction ^{18}O(pi ^{+}, pi^ {-})^{18}Ne(DIAS). An excitation function for this reaction was measured for energies ranging from 350 to 440 MeV and for momentum transfers of q = 0, 105 and 210 MeV/c. The calculated cross sections agree favorably with previously published data. Theoretical calculations predict that a resonance structure will be evidenced by an enhanced cross section at the eta production threshold for this reaction. The measured excitation function has found some evidence of structure in this region.

  15. On the effect of excited states in lattice calculations of the nucleon axial charge

    CERN Document Server

    Hansen, Maxwell T

    2016-01-01

    Excited-state contamination is one of the dominant uncertainties in lattice calculations of the nucleon axial-charge, $g_A$. Recently published results in leading-order chiral perturbation theory (ChPT) predict the excited-state contamination to be independent of the nucleon interpolator and positive. However, empirical results from numerical lattice calculations show negative contamination (downward curvature), indicating that present-day calculations are not in the regime where the leading-order ChPT predictions apply. In this paper we show that, under plausible assumptions, one can reproduce the behavior of lattice correlators by taking into account final-state $N \\pi$ interactions, in particular the effect of the Roper resonance, and by postulating a sign change in the infinite-volume $N \\to N \\pi$ axial-vector transition amplitude.

  16. Roughness-dependent dynamics of a point charge near a conducting plane

    Energy Technology Data Exchange (ETDEWEB)

    Gintautas, Vadas [Los Alamos National Laboratory; Hubler, Alfred [U ILLINOIS

    2008-01-01

    Nearly any surface in the real world is rough at some scale. Fmthermore, in most experiments there is some limit at which a surface is too rough to approximate by a smooth one. In this work the dynamics of a point charge near a rough surface are studied as the roughness of the surface is allowed to vary. The equation of motion of a charged pendulum near a rough, grounded, conducting plane is derived analytically and then analyzed both analytically and numerically . As the roughness is varied, a phase transition is observed in the fixed points of the pendulum. The consequences of a roughness phase transition on waveguide and electromagnetic scattering applications are considered. Also, the grounded plane may be considered to be a rough mirror and the point charge to be interacting with its image in this mirror. The quality of the image degrades with increasing roughness; the implications of this to interactions between systems in the real world and synthetic models are explored.

  17. Titanium-induced charge of Si(0 0 1) surface dependent on local configuration

    International Nuclear Information System (INIS)

    Highlights: • The charge transfer near deposited Ti on Si(0 0 1) surfaces was estimated by means of high-resolution X-ray photoemission spectroscopy and structurally characterized with scanning tunneling microscopy. • Negative chemical shift of Si due to distorted Ti-Si bonds was sensitive to the local structure of Ti near a Si dimer. • The shift was reduced when the Ti sank beneath the dimer, and silicidation resulted in a positive shift. • These are consistent with preliminary natural bonding orbital (NBO) calculation applied to inorganic cluster models. - Abstract: High-resolution X-ray photoemission spectroscopy (XPS) was applied to Ti-deposited Si(0 0 1) surfaces, which were structurally characterized by means of scanning tunneling microscopy (STM). Negative chemical shift of Si due to Ti deposition was assigned to the distorted Ti-Si bonds formed on the surface. The shift was reduced when a Ti sank beneath a Si dimer. Silicidation resulted in a positive shift to the Ti-Si bonding. The charge on the Si atoms near Ti was estimated through preliminary natural bonding orbital (NBO) calculation. We show that the shifts can be explained in terms of the sensitivity of charges of Si near Ti to the local structure near the dimer

  18. Uniaxial-Strain-Orientation Dependence of the Competition between Mott and Charge Ordered Phases and their Corresponding Superconductivity of β-(BDA-TTP)2I3

    Science.gov (United States)

    Nuruzzaman, Md.; Yokogawa, Keiichi; Yoshino, Harukazu; Yoshimoto, Haruo; Kikuchi, Koichi; Kaihatsu, Takayuki; Yamada, Jun-ichi; Murata, Keizo

    2012-12-01

    We studied the electronic transport properties of the charge transfer salt β-(BDA-TTP)2I3 [BDA-TTP: 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene] by applying uniaxial strains along the three crystallographic axes, and obtained three corresponding temperature-pressure phase diagrams. Three phase diagrams were quite dependent on the direction of compression. Following the preceding paper by Kikuchi et al., we speculate that the insulating states are of 1/2-filled Mott insulators for the a- and b-axes compressions, and of 1/4-filled charge ordered states for the c-axis compression as well as hydrostatic pressure. The superconducting phase under uniaxial strain was realized with Tc = 5 K at 1.9 GPa along the a-axis and with Tc = 5.6 K at 1.75 GPa along the b-axis. Superconductivity was also reproduced with a Tc of 9.5 K at 1.0 GPa for the c-axis compressions in the range of 0.85 to 1.53 GPa as previously reported. We studied tentative measurement on upper critical fields, Bc2's of these superconductivities and found that the extrapolated values, Bc2(0)'s, exceeded Pauli-limit by about 2--3 times. However, at least in terms of Bc2, the difference in superconductivity associated with two different insulating states was not clear.

  19. Generation of excited coherent states for a charged particle in a uniform magnetic field

    International Nuclear Information System (INIS)

    We introduce excited coherent states, |β,α;nгЂ‰≔a†n|β,αгЂ‰, where n is an integer and states |β,αгЂ‰ denote the coherent states of a charged particle in a uniform magnetic field. States |β,αгЂ‰ minimize the Schrödinger-Robertson uncertainty relation while having the nonclassical properties. It has been shown that the resolution of identity condition is realized with respect to an appropriate measure on the complex plane. Some of the nonclassical features such as sub-Poissonian statistics and quadrature squeezing of these states are investigated. Our results are compared with similar Agarwal’s type photon added coherent states (PACSs) and it is shown that, while photon-counting statistics of |β,α,nгЂ‰ are the same as PACSs, their squeezing properties are different. It is also shown that for large values of |β|, while they are squeezed, they minimize the uncertainty condition. Additionally, it has been demonstrated that by changing the magnitude of the external magnetic field, Bext, the squeezing effect is transferred from one component to another. Finally, a new scheme is proposed to generate states |β,α;nгЂ‰ in cavities. 

  20. Calculations of state-selective differential cross sections for charge transfer in collisions between O3+ and H2

    Institute of Scientific and Technical Information of China (English)

    Chi Bao-Qian; Liu Ling; Wang Jian-Guo

    2008-01-01

    The non-dissociative charge-transfer processes in collisions between O3+ and H2 are investigated by using the quantum-mechanical molecular-orbital coupled-channel (QMOCC) method. The adiabatic potentials and radial cou-pling matrix elements.utilized in the QMOCC calculations are obtained with the spin-coupled valence-bond approach. Electronic and vibrational state-selective differential cross sections are presented for projectile energies of 0.1, 1.0 and 10.0 eV/u in the H2 orientation angles of 45° and 89°. The electronic and the vibrational state-selective differential cross sections show similar behaviours: they decrease as the scattering angle increases, and beyond a specific angle the oscillating structures appear. Moreover, it is also found that the vibrational state-selective differential cross sections are strongly orientation-dependent, which provides a possibility to determine the orientations of molecule H2 by identifying the vibrational state-selective differential scattering processes.

  1. Observation of excited state charge transfer with fs/ps-CARS

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Alex Jason [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4'-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4{prime}-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles.

  2. Observation of excited state charge transfer with fs/ps-CARS

    International Nuclear Information System (INIS)

    Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4(prime)-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4(prime)-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles

  3. Future prospects for ECR plasma generators with improved charge state distributions

    International Nuclear Information System (INIS)

    The growing number and variety of fundamental, applied, and industrial uses for high intensity, high charge state ion beams continues to be the driving force behind efforts to develop Electron Cyclotron Resonance (ECR) ion sources with superior performance characteristics. Incumbent with the advent of sub-micron electronic devices and their fabrication has been the demand for improved process control and optimization. These demands have led to the development of methods for cleaning, chemical etching, and deposition of thin films based on the use of plasma devices including ECR sources. Despite the steady advance in the technology, ECR plasma heating has not yet reached its full potential in terms of charge state and intensity within a particular charge state, in part, because of the narrow band width, single-frequency microwave radiation commonly used to heat the plasma electrons. This heating technique, coupled with conventional minimum-B configuration magnetic fields used for confining the electrons, resulting in the formation of the thin, ECR surfaces within the plasma volumes of these sources. This report identifies fundamentally important methods for enhancing the performances of ECR plasma generators by transforming the ECR zones from surfaces to volumes. Two methods are readily available for increasing the sizes of these zones. These techniques include: (1) a tailored magnetic field configuration in combination with single-frequency microwave radiation to create a large uniformly distributed ECR volume and; (2) the use of broadband-frequency domain techniques derived from standard TWT technology, to transform the resonant plasma surfaces of traditional ECR ion sources into resonant plasma volumes

  4. Excess-electron and excess-hole states of charged alkali halide clusters

    Science.gov (United States)

    Honea, Eric C.; Homer, Margie L.; Whetten, R. L.

    1990-12-01

    Charged alkali halide clusters from a He-cooled laser vaporization source have been used to investigate two distinct cluster states corresponding to the excess-electron and excess-hole states of the crystal. The production method is UV-laser vaporization of an alkali metal rod into a halogen-containing He flow stream, resulting in variable cluster composition and cooling sufficient to stabilize weakly bound forms. Detection of charged clusters is accomplished without subsequent ionization by pulsed-field time-of-flight mass spectrometry of the skimmed cluster beam. Three types of positively charged sodium fluoride cluster are observed, each corresponding to a distinct physical situation: NanF+n-1 (purely ionic form), Nann+1F+n-1 (excess-electron form), and NanF+n (excess-hole form). The purely ionic clusters exhibit an abundance pattern similar to that observed in sputtering and fragmentation experiments and are explained by the stability of completed cubic microlattice structures. The excess-electron clusters, in contrast, exhibit very strong abundance maxima at n = 13 and 22, corresponding to the all-odd series (2n + 1 = jxkxl;j,k,l odd). Their high relative stability is explained by the ease of Na(0) loss except when the excess electron localizes in a lattice site to complete a cuboid structure. These may correspond to the internal F-center state predicted earlier. A localized electron model incorporating structural simulation results as account for the observed pattern. The excess-hole clusters, which had been proposed as intermediates in the ionization-induced fragmentation of neutral AHCs, exhibit a smaller variation in stability, indicating that the hole might not be well localized.

  5. Vacuum space charge effect in laser-based solid-state photoemission spectroscopy

    OpenAIRE

    Graf, J; Hellmann, S; Jozwiak, C.; Smallwood, C. L.; Hussain, Z.; Kaindl, R. A.; Kipp, L.; Rossnagel, K.; Lanzara, A.

    2010-01-01

    We report a systematic measurement of the space charge effect observed in the few-ps laser pulse regime in laser-based solid-state photoemission spectroscopy experiments. The broadening and the shift of a gold Fermi edge as a function of spot size, laser power, and emission angle are characterized for pulse lengths of 6 ps and 6 eV photon energy. The results are used as a benchmark for an $N$-body numerical simulation and are compared to different regimes used in photoemission spectroscopy. T...

  6. Vacuum space charge effect in laser-based solid-state photoemission spectroscopy

    OpenAIRE

    Graf, Jeff

    2010-01-01

    We report a systematic measurement of the space charge effect observed in the few-ps laser pulse regime in laser-based solid-state photoemission spectroscopy experiments. The broadening and the shift of a gold Fermi edge as a function of spot size, laser power, and emission angle are characterized for pulse lengths of 6 ps and 6 eV photon energy. The results are used as a benchmark for an N-body numerical simulation and are compared to different regimes used in photoemission spectroscopy. The...

  7. Random Hopping Among Localized States and Charge Fluctuation at Disordered Surfaces

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    We show that 1/f noise of charge fluctuation at disordered surfaces follows naturally from random hopping of electrons among localized states.Computer models are proposed with hopping mechanisms simplified.and the occurance of 1/fα power spectrum is robust.The lifetime distribution of electrons is found to be D(τ)=(τ-β and a connection between the lifetime distribution and the power spectrum is derived.It is shown that the 1/f noise comes from random superposition of oscillatory spectra.We also define an generalized random walk model to act as the underlying mechanism of 1/f noise in disordered systems.

  8. State of charge modeling of lithium-ion batteries using dual exponential functions

    Science.gov (United States)

    Kuo, Ting-Jung; Lee, Kung-Yen; Huang, Chien-Kang; Chen, Jau-Horng; Chiu, Wei-Li; Huang, Chih-Fang; Wu, Shuen-De

    2016-05-01

    A mathematical model is developed by fitting the discharging curve of LiFePO4 batteries and used to investigate the relationship between the state of charge and the closed-circuit voltage. The proposed mathematical model consists of dual exponential terms and a constant term which can fit the characteristics of dual equivalent RC circuits closely, representing a LiFePO4 battery. One exponential term presents the stable discharging behavior and the other one presents the unstable discharging behavior and the constant term presents the cut-off voltage.

  9. Study on battery state of charge correct algorithm of electric vehicle

    Institute of Scientific and Technical Information of China (English)

    KAN Ping; QIAN Lijun

    2012-01-01

    State of Charge (SOC) is used to adjust the initialization SOC value so as to make electric vehicle simulation results close to real vehicle performance. This paper firstly analyses the battery SOC correct algorithm, then uses ADVISOR which is a electric vehicle simulation software to simulate a hybrid electric car with three different cases of no SOC correct, linear SOC correct and zero delta SOC correct, as well as makes the compare and analysis for those simulation results. In the end, an overall conclusion to SOC correct algorithm is given.

  10. Temperature and Magnetic Field Effects on the Transport Controlled Charge State of a Single Quantum Dot

    Directory of Open Access Journals (Sweden)

    Moskalenko ES

    2010-01-01

    Full Text Available Abstract Individual InAs/GaAs quantum dots are studied by micro-photoluminescence. By varying the strength of an applied external magnetic field and/or the temperature, it is demonstrated that the charge state of a single quantum dot can be tuned. This tuning effect is shown to be related to the in-plane electron and hole transport, prior to capture into the quantum dot, since the photo-excited carriers are primarily generated in the barrier.

  11. Fe1+ transient charge state in ZnS : 57Co Moessbauer sources

    International Nuclear Information System (INIS)

    ZnS:57Co Moessbauer sources emit below 255 K a line attributed to Fe1+ ions in addition to the main Fe2+ spectrum. Above this temperature the Fe1+ charge state is either no longer generated, or more probably its life time becomes shorter than the nuclear life time of 57Fe (14.4 KeV). Down to 100 K the Fe1+ contribution is present as a single line, and at lower temperatures this line broadens and splits into a doublet with large line widths. (Author)

  12. Quantum entanglement of charges in bound states with finite-size dyons

    International Nuclear Information System (INIS)

    We show that the presence of finite-size monopoles can lead to a number of interesting physical processes involving quantum entanglement of charges. Taking as a model the classical solution of the N=2 SU(2) Yang-Mills theory, we study interaction between dyons and scalar particles in the adjoint and fundamental representation. We find that there are bound states of scalars and dyons, which, remarkably, are always an entangled configuration of the form vertical bar ψ> = vertical bar dyon+> vertical bar scalar-> ± vertical bar dyon-> vertical bar scalar+>. We determine the energy levels and the wave functions and also discuss their stability. (author)

  13. Vibrational autodetachment spectroscopy of Au-6 : Image-charge-bound states of a gold ring

    International Nuclear Information System (INIS)

    Spectral experiments on mass-selected negative cluster ions of gold and silver were performed in the wavelength range near the threshold for one-photon photodetachment of the extra electron. The Au-6 cluster ion displayed a uniquely well resolved spectrum consisting of a progression in a single vibrational mode. Details of this threshold photodetachment spectrum and the associated photoelectron energy distribution suggest an explanation based on autodetachment from totally symmetric vibrational levels of very weakly bound excited electronic state (bound by image charge forces) of the Au-6 cluster in the form of a planar, six-fold symmetric, gold ring

  14. Spin-charge separation of dark-state polaritons in a Rydberg medium

    Science.gov (United States)

    Shi, Xiao-Feng; Svetlichnyy, P.; Kennedy, T. A. B.

    2016-04-01

    The propagation of light fields through a quasi one-dimensional cold atomic gas, exciting atomic Rydberg levels of large principal quantum number under conditions of electromagnetically induced transparency, can lead to a stable two-mode Luttinger liquid system. Atomic van der Waals interactions induce a coupling of bosonic field modes that display both photonic and atomic character, the Rydberg dark-state polaritons (RDPs). It is shown that by tunable control of the van der Waals coupling, the RDP may decouple into independent ‘spin’ and ‘charge’ fields which propagate at different speeds, analogous to spin-charge separation of electrons in a one-dimensional metal.

  15. Excited state intramolecular charge transfer reaction in 4-(1-azetidinyl)benzonitrile: Solvent isotope effects

    Indian Academy of Sciences (India)

    Tuhin Pradhan; Piue Ghoshal; Ranjit Biswas

    2009-01-01

    Excited state intramolecular charge transfer reaction of 4-(1-azetidinyl) benzonitrile (P4C) in deuterated and normal methanol, ethanol and acetonitrile has been studied in order to investigate the solvent isotope effects on reaction rates and yields. These quantities (reaction rates and yields) along with several other properties such as quantum yield and radiative rates have been found to be insensitive to the solvent isotope substitution in all these solvents. The origin of the solvent isotope insensitivity of the reaction is discussed and correlated with the observed slowing down of the solvation dynamics upon isotope substitution.

  16. Measuring neutrino-induced exclusive charge-current final states on hydrogen at T2K

    CERN Document Server

    Coplowe, David; Barr, Giles

    2016-01-01

    By taking advantage of symmetries with respect to the plane containing the directions of the neutrino and outgoing lepton, it is possible to isolate neutrino interactions on hydrogen in composite nuclear targets. This technique enables us to study the `primary' neutrino-nucleon interaction and therefore gain access to fundamental model parameters free from nuclear effects. Using T2K Monte Carlo equivalent to $\\sim7\\times10^{21}$ POT, we present an update on the measurement of the exclusive charged-current $\\mu^-$, p, $\\pi^+$ final state on hydrogen.

  17. ESTIMATION METHOD ON THE BATTERY STATE OF CHARGE FOR HYBRID ELECTRIC VEHICLE

    Institute of Scientific and Technical Information of China (English)

    QIANG Jiaxi; AO Guoqiang; YANG Lin

    2008-01-01

    A combined algorithm for battery state of charge (SOC) estimation is proposed to solve the critical issue of hybrid electric vehicle (HEV). To obtain a more accurate SOC, both coulomb-accumulation and battery resistance-capacitor (RC) model are weighted combined to compensate the deficiencies of individual methods. In order to solve the key issue of coulomb-accumulation, the battery thermal model is used. Based on the principle of energy conservation, the heat generated from battery charge and discharge process is converted into the equivalent electricity to calculate charge and discharge efficiency under variable current. The extended Kalman filter (EKF) as a closed loop algorithm is applied to estimate the parameters of resistance-capacitor model. The input variables do not increase much computing difficulty. The proposed combined algorithm is implemented by adjusting the weighting factor of coulomb- accumulation and resistance-capacitor model. In the end, four different methods including Ah-efficiency, Ah-Equip, RC-SOC and Combined-SOC are compared in federal testing procedure (FTP) drive cycle. The experiment results show that the proposed method has good robustness and high accuracy which is suitable for HEV application.

  18. Time dependence of charge losses at the Si-SiO2 interface in p+n-silicon strip sensors

    CERN Document Server

    Poehlsen, Thomas; Klanner, Robert; Schwandt, Joern; Zhang, Jiaguo; 10.1016/j.nima.2013.03.035

    2013-01-01

    The collection of charge carriers generated in p+n strip sensors close to the Si-SiO2 interface before and after 1 MGy of X-ray irradiation has been investigated using the transient current technique with sub-nanosecond focused light pulses of 660 nm wavelength, which has an absorption length of 3.5 um in silicon at room temperature. The paper describes the measurement and analysis techniques used to determine the number of electrons and holes collected. Depending on biasing history, humidity and irradiation, incomplete collection of either electrons or holes is observed. The charge losses change with time. The time constants are different for electrons and holes and increase by two orders of magnitude when reducing the relative humidity from about 80 % to less than 1 %. An attempt to interpret these results is presented.

  19. Evidence of changes in renal charge selectivity in patients with type 1 (insulin-dependent) diabetes mellitus

    DEFF Research Database (Denmark)

    Kverneland, A; Feldt-Rasmussen, B; Vidal, P;

    1986-01-01

    Altered filtration of macromolecules due to decreased electrical charge of the glomerular basement membrane might be the initial step in the development of albuminuria in patients with Type 1 (insulin-dependent) diabetes mellitus. We therefore investigated the selectivity index, i.e. renal...... clearance of non-glycated plasma albumin/clearance of glycated plasma albumin in 38 patients with Type 1 diabetes mellitus. The two albumin molecules differed slightly in charge, non-enzymatic glycated albumin being more anionic at physiological pH compared with unmodified plasma albumin. Glycated albumin...... in plasma and urine was determined by a specific, sensitive and highly reproducible chromatographic procedure. In diabetic patients with normal urinary albumin excretion, the selectivity index was increased three-fold compared with that of non-diabetic subjects (2 p less than 0.01). A significant...

  20. Heavy Inertial Confinement Energy: Interactions Involoving Low charge State Heavy Ion Injection Beams

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, Robert D

    2006-04-14

    During the contract period, absolute cross sections for projectile ionization, and in some cases for target ionization, were measured for energetic (MeV/u) low-charge-state heavy ions interacting with gases typically found in high and ultra-high vacuum environments. This information is of interest to high-energy-density research projects as inelastic interactions with background gases can lead to serious detrimental effects when intense ion beams are accelerated to high energies, transported and possibly confined in storage rings. Thus this research impacts research and design parameters associated with projects such as the Heavy Ion Fusion Project, the High Current and Integrated Beam Experiments in the USA and the accelerator upgrade at GSI-Darmstadt, Germany. Via collaborative studies performed at GSI-Darmstadt, at the University of East Carolina, and Texas A&M University, absolute cross sections were measured for a series of collision systems using MeV/u heavy ions possessing most, or nearly all, of their bound electrons, e.g., 1.4 MeV/u Ar{sup +}, Xe{sup 3+}, and U{sup 4,6,10+}. Interactions involving such low-charge-state heavy ions at such high energies had never been previously explored. Using these, and data taken from the literature, an empirical model was developed for extrapolation to much higher energies. In order to extend our measurements to much higher energies, the gas target at the Experimental Storage Ring in GSI-Darmstadt was used. Cross sections were measured between 20 and 50 MeV/u for U{sup 28+}- H{sub 2} and - N{sub 2}, the primary components found in high and ultra-high vacuum systems. Storage lifetime measurements, information inversely proportional to the cross section, were performed up to 180 MeV/u. The lifetime and cross section data test various theoretical approaches used to calculate cross sections for many-electron systems. Various high energy density research projects directly benefit by this information. As a result, the general

  1. Charge state modification in Mn site substituted CMR manganites: strong deleterious influence on the ferromagnetic-metallic state

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi, L Seetha [XS and CGS, Materials Science Division, Indira Gandhi Centre For Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Doerr, K [Institute of Metallic Materials, IFW Dresden, Postach 270116, Dresden 01171 (Germany); Nenkov, K [Institute of Metallic Materials, IFW Dresden, Postach 270116, Dresden 01171 (Germany); Sastry, V S [XS and CGS, Materials Science Division, Indira Gandhi Centre For Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Mueller, K-H [Institute of Metallic Materials, IFW Dresden, Postach 270116, Dresden 01171 (Germany)

    2007-06-13

    The effect of charge state modification at the Mn site on the physical properties of CMR manganites is reported. With a view to avoiding additional complexity of local spin coupling effects, Mn site substitution of La{sub 0.67}Ca{sub 0.33}MnO{sub 3} is carried out with appropriate diamagnetic ions-Zn{sup 2+}, Zr{sup 4+}, Ta{sup 5+} and W{sup 6+}-of different valence states. The substitution results in size changes of the unit cell and enhanced local structural distortions, which increase in the order Zn, Zr, Ta and W. The ground state is ferromagnetic-metallic below a certain critical concentration x{sub c} of the substituents, beyond which the magnetic ground state shows a glassy behaviour. The phase transition temperatures (T{sub MI} and T{sub c}) decrease with substitution, but to different extents. The observed suppression rates of the Curie temperature, T{sub c}, of {approx}39 K/at.% and {approx}45 K/at.% respectively for Ta{sup 5+} and W{sup 6+} substituted compounds are the highest reported in the Mn site substituted CMR manganites. Besides the modification of majority carrier concentration due to the increased (decreased) Mn{sup 3+} concentration and enhanced local structural effects, the local electrostatic potential of the substituents seems to contribute to the unusually strong reduction in the itinerant ferromagnetism and the observed glassy states.

  2. VRLA Ultrabattery for high-rate partial-state-of-charge operation

    Science.gov (United States)

    Lam, L. T.; Louey, R.; Haigh, N. P.; Lim, O. V.; Vella, D. G.; Phyland, C. G.; Vu, L. H.; Furukawa, J.; Takada, T.; Monma, D.; Kano, T.

    The objective of this study is to produce and test the hybrid valve-regulated Ultrabattery designed specifically for hybrid-electric vehicle duty, i.e., high-rate partial-state-of-charge operation. The Ultrabattery developed by CSIRO Energy Technology is a hybrid energy-storage device, which combines an asymmetric supercapacitor, and a lead-acid battery in one unit cells, taking the best from both technologies without the need for extra, expensive electronic controls. The capacitor will enhance the power and lifespan of the lead-acid battery as it acts as a buffer during high-rate discharging and charging. Consequently, this hybrid technology is able to provide and absorb charge rapidly during vehicle acceleration and braking. The work programme of this study is divided into two main parts, namely, field trial of prototype Ultrabatteries in a Honda Insight HEV and laboratory tests of prototype batteries. In this paper, the performance of prototype Ultrabatteries under different laboratory tests is reported. The evaluation of Ultrabatteries in terms of initial performance and cycling performance has been conducted at both CSIRO and Furukawa laboratories. The initial performance of prototype Ultrabatteries, such as capacity, power, cold cranking and self-discharge has been evaluated based upon the US FreedomCAR Battery Test Manual (DOE/ID-11069, October 2003). Results show that the Ultrabatteries meet, or exceed, respective targets of power, available energy, cold cranking and self-discharge set for both minimum and maximum power-assist HEVs. The cycling performance of prototype Ultrabatteries has been evaluated using: (i) simplified discharge and charge profile to simulate the driving conditions of micro-HEV; (ii) 42-V profile to simulate the driving conditions of mild-HEV and (iii) EUCAR and RHOLAB profiles to simulate the driving conditions of medium-HEV. For comparison purposes, nickel-metal-hydride (Ni-MH) cells, which are presently used in the Honda Insight HEV

  3. Constraints on rapidity-dependent initial conditions from charged particle pseudorapidity densities and two-particle correlations

    CERN Document Server

    Ke, Weiyao; Bernhard, Jonah E; Bass, Steffen A

    2016-01-01

    We study the initial three-dimensional spatial configuration of the quark-gluon plasma produced in relativistic heavy-ion collisions using centrality and rapidity-dependent measurements of charged particle pseudorapidity densities and two-particle correlations. A cumulant-generating function is used to parametrize the rapidity dependence of local entropy deposition and extend arbitrary boost-invariant initial conditions to nonzero beam rapidities. The model is compared to p+Pb and Pb+Pb single-particle distributions and systematically optimized using Bayesian parameter estimation to extract high-probability initial condition parameters. The optimized initial conditions are then compared to a number of experimental observables including two-particle rapidity correlations, the rapidity dependence of anisotropic flow, and event-plane decorrelations.

  4. Re-creation of aerosol charge state found near HV power lines using a high voltage corona charger

    Science.gov (United States)

    Matthews, J. C.; Wright, M. D.; Biddiscombe, M. F.; Underwood, R.; Usmani, O. S.; Shallcross, D. E.; Henshaw, D. L.

    2015-10-01

    Corona ionisation from AC HV power lines (HVPL) can release ions into the environment, which have the potential to electrically charge pollutant aerosol in the atmosphere. It has been hypothesised that these charged particles have an enhanced probability of being deposited in human airways upon inhalation due to electrostatic attraction by image charge within the lung, with implications for human health. Carbonaceous aerosol particles from a Technegas generator were artificially charge-enhanced using a corona charger. Once generated, particles were passed through the charger, which was either on or off, and stored in a 15 litre conducting bag for ∼20 minutes to observe size and charge distribution changes over time. Charge states were estimated using two Sequential Mobility Particle Sizers measuring the size and mobility distributions. Charge-neutral particles were measured 7 times and positive particles 9 times, the average charge-neutral value of x was 1.00 (sd = 0.06) while the average positive value was 4.60 (0.72). The system will be used to generate positive or charge neutral particles for delivery to human volunteers in an inhalation study to assess the impact of charge on ultrafine (size < 100 nm) particle deposition.

  5. Capacity loss in rechargeable lithium cells during cycle life testing: The importance of determining state-of-charge

    Science.gov (United States)

    Dubarry, Matthieu; Svoboda, Vojtech; Hwu, Ruey; Liaw, Bor Yann

    Determining state-of-charge (SoC) in a battery has been an important subject for the industry for decades. Despite significant efforts in the past focusing on methodologies to accurately estimate SoC in a battery, the fundamental understanding of the SoC issue has not been clear, at least in the industry where testing, control, and operation are concerned. Recently, we have been working on developing reliable techniques to identify capacity loss mechanism in rechargeable lithium batteries and to quantify contributions to capacity loss from different origins. That prompted us to re-visit the SoC issue. Strictly speaking, SoC is a static thermodynamic property of battery chemistry, which should be determined at equilibrium. On the other hand, cell capacity is a quantity of practical interest often determined by kinetics; thus, it is rate dependent. We conducted a few experiments to illustrate the accurate estimate of SoC through proper measurements. We also explained the proper correlation between SoC and rate capacity. A better understanding of the charge and discharge behavior in a battery under different rates in relation to the SoC is therefore derived.

  6. Fractional charge and inter-Landau-level states at points of singular curvature

    Science.gov (United States)

    Biswas, Rudro R.; Thanh Son, Dam

    2016-08-01

    The quest for universal properties of topological phases is fundamentally important because these signatures are robust to variations in system-specific details. Aspects of the response of quantum Hall states to smooth spatial curvature are well-studied, but challenging to observe experimentally. Here we go beyond this prevailing paradigm and obtain general results for the response of quantum Hall states to points of singular curvature in real space; such points may be readily experimentally actualized. We find, using continuum analytical methods, that the point of curvature binds an excess fractional charge and sequences of quantum states split away, energetically, from the degenerate bulk Landau levels. Importantly, these inter-Landau-level states are bound to the topological singularity and have energies that are universal functions of bulk parameters and the curvature. Our exact diagonalization of lattice tight-binding models on closed manifolds demonstrates that these results continue to hold even when lattice effects are significant. An important technological implication of these results is that these inter-Landau-level states, being both energetically and spatially isolated quantum states, are promising candidates for constructing qubits for quantum computation.

  7. Beam energy dependence of charged pion ratio in $^{28}$Si + In reactions

    CERN Document Server

    Sako, M; Nakai, Y; Ichikawa, Y; Ieki, K; Imajo, S; Isobe, T; Matsushita, M; Murata, J; Nishimura, S; Sakurai, H; Sameshima, R D; Takada, E

    2014-01-01

    The double differential cross sections for $^{nat}$In($^{28}$Si, $\\pi ^{\\pm}$) reactions are measured at 400, 600, and 800 MeV/nucleon. Both $\\pi^+$ and $\\pi^-$ are found to be emitted isotropically from a single moving source. The $\\pi^- / \\pi^+$ yield ratio is determined as a function of the charged pion energy between 25 and 100 MeV. The experimental results significantly differ from the prediction of the standard transport model calculation using the code PHITS. This discrepancy suggests that more theoretical works are required to deduce firm information on the nuclear symmetry energy from the $\\pi^- / \\pi^+$ yield ratio.

  8. Charge-dependent correlations from event-by-event anomalous hydrodynamics

    CERN Document Server

    Hirono, Yuji; Kharzeev, Dmitri E

    2016-01-01

    We report on our recent attempt of quantitative modeling of the Chiral Magnetic Effect (CME) in heavy-ion collisions. We perform 3+1 dimensional anomalous hydrodynamic simulations on an event-by-event basis, with constitutive equations that contain the anomaly-induced effects. We also develop a model of the initial condition for the axial charge density that captures the statistical nature of random chirality imbalances created by the color flux tubes. Basing on the event-by-event hydrodynamic simulations for hundreds of thousands of collisions, we calculate the correlation functions that are measured in experiments, and discuss how the anomalous transport affects these observables.

  9. The transverse momentum dependence of charged kaon Bose–Einstein correlations in the SELEX experiment

    Directory of Open Access Journals (Sweden)

    G.A. Nigmatkulov

    2016-02-01

    Full Text Available We report the measurement of the one-dimensional charged kaon correlation functions using 600GeV/c Σ−, π− and 540GeV/c p beams from the SELEX (E781 experiment at the Fermilab Tevatron. K±K± correlation functions are studied for three transverse pair momentum, kT, ranges and parameterized by a Gaussian form. The emission source radii, R, and the correlation strength, λ, are extracted. The analysis shows a decrease of the source radii with increasing kaon transverse pair momentum for all beam types.

  10. Precise Determination of Charge Dependent Pion-Nucleon-Nucleon Coupling Constants

    CERN Document Server

    Perez, R Navarro; Arriola, E Ruiz

    2016-01-01

    We undertake a covariance error analysis of the pion-nucleon-nucleon coupling constants from the Granada-2013 np and pp database comprising a total of 6713 scattering data. Assuming a unique pion-nucleon coupling constant we obtain $f^2=0.0761(3)$. The effects of charge symmetry breaking on the $^3P_0$, $^3P_1$ and $^3P_2$ partial waves are analyzed and we find $f_{p}^2 = 0.0759(4)$, $f_{0}^2 = 0.079(1)$ and $f_{c}^2 = 0.0763(6)$ with minor correlations among the coupling constants. We successfully test normality for the residuals of the fit.

  11. Beam-Energy Dependence of Charge Balance Functions from Au+Au Collisions at RHIC

    OpenAIRE

    STAR Collaboration

    2015-01-01

    Balance functions have been measured in terms of relative pseudorapidity ($\\Delta \\eta$) for charged particle pairs at the Relativistic Heavy-Ion Collider (RHIC) from Au+Au collisions at $\\sqrt{s_{\\rm NN}}$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the Large Hadron Collider (LHC) from Pb+Pb collisions at $\\sqrt{s_{\\rm NN}}$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions beco...

  12. Simulation of Temperature-Dependent Charge Transport in Organic Semiconductors with Various Degrees of Disorder.

    Science.gov (United States)

    Heck, Alexander; Kranz, Julian J; Elstner, Marcus

    2016-07-12

    Different trends in the temperature dependence of the mobility can be observed in organic semiconductors, which constitutes a serious challenge for theoretical approaches. In this work, we apply an atomistic bottom-up simulation for the calculation of temperature-dependent mobilities of a broad selection of materials, ranging from single crystal to amorphous solid. We evaluate how well the method is able to distinguish temperature dependences of different materials and how the findings relate to experimental observations. The applied method is able to cover the full range of temperature dependencies from activated transport in amorphous materials to band-like transport in crystals. In well-characterized materials, we find good agreement with the experiment and a band-like temperature dependence. In less-ordered materials, we find discrepancies from the experiment that indicated that experimentally studied materials possess a higher degree of disorder than do the simulated defect-free morphologies. PMID:27224054

  13. Structure-dependent charge density as a determinant of antimicrobial activity of peptide analogues of defensin.

    Science.gov (United States)

    Bai, Yang; Liu, Shouping; Jiang, Ping; Zhou, Lei; Li, Jing; Tang, Charles; Verma, Chandra; Mu, Yuguang; Beuerman, Roger W; Pervushin, Konstantin

    2009-08-01

    Defensins are small (3-5 kDa) cysteine-rich cationic proteins found in both vertebrates and invertebrates constituting the front line of host innate immunity. Despite intensive research, bactericidal and cytotoxic mechanisms of defensins are still largely unknown. Moreover, we recently demonstrated that small peptides derived from defensins are even more potent bactericidal agents with less toxicity toward host cells. In this paper, structures of three C-terminal (R36-K45) analogues of human beta-defensin-3 were studied by 1H NMR spectroscopy and extensive molecular dynamics simulations. Because of indications that these peptides might target the inner bacterial membrane, they were reconstituted in dodecylphosphocholine or dodecylphosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] mixed micelles, and lipid bicelles mimicking the phospholipid-constituted bilayer membrane of mammalian and bacterial cells. The results show that the binding affinity and partitioning into the lipid phase and the ability to dimerize and accrete well-defined structures upon interactions with lipid membranes contribute to compactization of positive charges within peptide oligomers. The peptide charge density, mediated by corresponding three-dimensional structures, was found to directly correlate with the antimicrobial activity. These novel observations may provide a new rationale for the design of improved antimicrobial agents.

  14. Charge transport perpendicular to the high mobility plane in organic crystals: Bandlike temperature dependence maintained despite hundredfold anisotropy

    Science.gov (United States)

    Blülle, B.; Troisi, A.; Häusermann, R.; Batlogg, B.

    2016-01-01

    Charge carrier mobility in van der Waals bonded organic crystals is strongly dependent on the transfer integral between neighboring molecules, and therefore the anisotropy of charge transport is determined by the molecular arrangement within the crystal lattice. Here we report on temperature dependent transport measurements along all three principal crystal directions of the same rubrene single crystals of high purity. Hole mobilities are obtained from the carrier transit time measured with high-frequency admittance spectroscopy perpendicular to the molecular layers (μc) and from the transfer characteristics of two field-effect transistor (FET) structures oriented perpendicularly to each other in the layers (μa and μb). While the measurements of the field-effect channels confirm the previously reported high mobility and anisotropy within the a b plane, we find the mobility perpendicular to the molecular layers in the same crystals to be lower by about two orders of magnitude (μc˜0.2 cm2/Vs at 300 K ). Although the bandwidth is vanishingly small along the c direction and the transport cannot be coherent, we find μc to increase upon cooling. We show that the delocalization within the high mobility a b plane prevents the formation of small polarons and leads to the observed "bandlike" temperature dependence also in the direction perpendicular to the molecular layers, despite the incoherent transport mechanism.

  15. Charge transfer state in DBP:C70 organic solar cells

    DEFF Research Database (Denmark)

    Sherafatipour, Golenaz; Benduhn, Johannes; Spoltore, Donato;

    Organic solar cells (OSC) are green solar energy technology, which can be fabricated from organic compounds with cheep techniques and on flexible or transparent substrates such as plastic or glass. OSCs are cost efficient, and lightweight devices that can exhibit high power conversion efficiency...... of the CT states from which the maximum open circuit can be calculated and will set the base for modeling and optimizing the stability of the solar cells. 1. Cao, H. et al. Recent progress in degradation and stabilization of organic solar cells. J. Power Sources 264, 168–183 (2014). 2. Tvingstedt, K. et al....... Electroluminescence from charge transfer states in polymer solar cells. J. Am. Chem. Soc. 131, 11819–11824 (2009)....

  16. State-Of-Charge Estimation of Li-Ion Battery Using Extended Kalman Filter

    Directory of Open Access Journals (Sweden)

    Feng Jin

    2013-07-01

    Full Text Available The Li-ion battery is studied base on its equivalent circuit PNGV model. The model parameters are identified by HPPC test. The discrete state space equation is established according to the model. The basic theory of extended Kalman filter algorithm is studied and then the filtering algorithm is set up under the noisy environments. Finally, a kind of electric car is used for testing under the UDDS driving condition. The difference between the simulation value using extended Kalman filter under the noisy environment and the theoretical value is compared. The result indicated that the extended Kalman filter keeps an excellent precision in state of charge estimation of Li-ion battery and performs well when disturbance happens.

  17. Chiral and nonchiral edge states in quantum Hall systems with charge density modulation

    Science.gov (United States)

    Szumniak, Paweł; Klinovaja, Jelena; Loss, Daniel

    2016-06-01

    We consider a system of weakly coupled wires with quantum Hall effect (QHE) and in the presence of a spatially periodic modulation of the chemical potential along the wire, equivalent to a charge density wave (CDW). We investigate the competition between the two effects which both open a gap. We show that by changing the ratio between the amplitudes of the CDW modulation and the tunneling between wires, one can switch between nontopological CDW-dominated phase to topological QHE-dominated phase. Both phases host edge states of chiral and nonchiral nature robust to on-site disorder. However, only in the topological phase, the edge states are immune to disorder in the phase shifts of the CDWs. We provide analytical solutions for filling factor ν =1 and study numerically effects of disorder as well as present numerical results for higher filling factors.

  18. Self/anti-self charge conjugate states in the helicity basis

    Energy Technology Data Exchange (ETDEWEB)

    Dvoeglazov, Valeriy V. [UAF, Universidad de Zacatecas (Mexico)

    2013-07-23

    We construct self/anti-self charge conjugate (Majorana-like) states for the (1/2,0)⊕(0,1/2) representation of the Lorentz group, and their analogs for higher spins within the quantum field theory. The problem of the basis rotations and that of the selection of phases in the Dirac-like and Majorana-like field operators are considered. The discrete symmetries properties (P, C, T) are studied. Particular attention has been paid to the question of (anti)commutation of the Charge conjugation operator and the Parity in the helicity basis. Dynamical equations have also been presented. In the (1/2,0)⊕(0,1/2) representation they obey the Dirac-like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The chirality and the helicity (two concepts which are frequently confused in the literature) for Dirac and Majorana states have been discussed.

  19. A Symmetric Organic - Based Nonaqueous Redox Flow Battery and Its State of Charge Diagnostics by FTIR

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Wentao; Vemuri, Venkata Rama Ses; Milshtein, Jarrod D.; Laramie, Sydney; Dmello, Rylan D.; Huang, Jinhua; Zhang, Lu; Hu, Dehong; Vijayakumar, M.; Wang, Wei; Liu, Jun; Darling, Robert E.; Thompson, Levi; Smith, Kyle C.; Moore, Jeffrey S.; Brushett, Fikile; Wei, Xiaoliang

    2016-03-10

    Redox flow batteries have shown outstanding promise for grid-scale energy storage to promote utilization of renewable energy and improve grid stability. Nonaqueous battery systems can potentially achieve high energy density because of their broad voltage window. In this paper, we report a new organic redox-active material for use in a nonaqueous redox flow battery, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) that has high solubility (>2.6 M) in organic solvents. PTIO exhibits electrochemically reversible disproportionation reactions and thus can serve as both anolyte and catholyte redox materials in a symmetric flow cell. The PTIO flow battery has a moderate cell voltage of ~1.7 V and shows good cyclability under both cyclic voltammetry and flow cell conditions. Moreover, we demonstrate that FTIR can offer accurate estimation of the PTIO concentration in electrolytes and determine the state of charge of the PTIO flow cell, which suggests FTIR potentially as a powerful online battery status sensor. This study is expected to inspire more insights in this under-addressed area of state of charge analysis aiming at operational safety and reliability of flow batteries.

  20. Fuzzy modelling for the state-of-charge estimation of lead-acid batteries

    Science.gov (United States)

    Burgos, Claudio; Sáez, Doris; Orchard, Marcos E.; Cárdenas, Roberto

    2015-01-01

    This paper introduces a novel fuzzy model based structure for the characterisation of discharge processes in lead-acid batteries. This structure is based on a fuzzy model that characterises the relationship between the battery open-circuit voltage (Voc), the state of charge (SoC), and the discharge current. The model is identified and validated using experimental data that is obtained from an experimental system designed to test battery banks with several charge/discharge profiles. For model identification purposes, two standard experimental tests are implemented; one of these tests is used to identify the Voc-SoC curve, while the other helps to identify additional parameters of the model. The estimation of SoC is performed using an Extended Kalman Filter (EKF) with a state transition equation that is based on the proposed fuzzy model. Performance of the proposed estimation framework is compared with other parametric approaches that are inspired on electrical equivalents; e.g., Thevenin, Plett, and Copetti.

  1. A new state of charge determination method for battery management system

    Institute of Scientific and Technical Information of China (English)

    ZHU Chun-bo 朱春波; WANG Tie-cheng 王铁成; HURLEY W G

    2004-01-01

    State of Charge (SOC) determination is an increasingly important issue in battery technology. In addition to the immediate display of the remaining battery capacity to the user, precise knowledge of SOC exerts additional control over the charging/discharging process which in turn reduces the risk of over-voltage and gassing, which degrade the chemical composition of the electrolyte and plates. This paper describes a new approach to SOC determination for the lead-acid battery management system by combining Ah-balance with an EMF estimation algorithm, which predicts the battery' s EMF value while it is under load. The EMF estimation algorithm is based on an equivalent-circuit representation of the battery, with the parameters determined from a pulse test performed on the battery and a curve-fitting algorithm by means of least-square regression. The whole battery cycle is classified into seven states where the SOC is estimated with the Ah-balance method and the proposed EMF based algorithm. Laboratory tests and results are described in detail in the paper.

  2. Radiative charge transfer lifetime of the excited state of (NaCa)$^+$

    CERN Document Server

    Makarov, O P; Michels, H J; Smith, W W; Makarov, Oleg P.

    2003-01-01

    New experiments were proposed recently to investigate the regime of cold atomic and molecular ion-atom collision processes in a special hybrid neutral-atom--ion trap under high vacuum conditions. The collisional cooling of laser pre-cooled Ca$^+$ ions by ultracold Na atoms is being studied. Modeling this process requires knowledge of the radiative lifetime of the excited singlet A$^1\\Sigma^+$ state of the (NaCa)$^+$ molecular system. We calculate the rate coefficient for radiative charge transfer using a semiclassical approach. The dipole radial matrix elements between the ground and the excited states, and the potential curves were calculated using Complete Active Space Self-Consistent field and M\\"oller-Plesset second order perturbation theory (CASSCF/MP2) with an extended Gaussian basis, 6-311+G(3df). The semiclassical charge transfer rate coefficient was averaged over a thermal Maxwellian distribution. In addition we also present elastic collision cross sections and the spin-exchange cross section. The ra...

  3. A Lossy Counting-Based State of Charge Estimation Method and Its Application to Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2015-12-01

    Full Text Available Estimating the residual capacity or state-of-charge (SoC of commercial batteries on-line without destroying them or interrupting the power supply, is quite a challenging task for electric vehicle (EV designers. Many Coulomb counting-based methods have been used to calculate the remaining capacity in EV batteries or other portable devices. The main disadvantages of these methods are the cumulative error and the time-varying Coulombic efficiency, which are greatly influenced by the operating state (SoC, temperature and current. To deal with this problem, we propose a lossy counting-based Coulomb counting method for estimating the available capacity or SoC. The initial capacity of the tested battery is obtained from the open circuit voltage (OCV. The charging/discharging efficiencies, used for compensating the Coulombic losses, are calculated by the lossy counting-based method. The measurement drift, resulting from the current sensor, is amended with the distorted Coulombic efficiency matrix. Simulations and experimental results show that the proposed method is both effective and convenient.

  4. Variable Charge State Impurities in Coupled Kinetic Plasma-Kinetic Neutral Transport Simulations

    Science.gov (United States)

    Stotler, D. P.; Hager, R.; Kim, K.; Koskela, T.; Park, G.

    2015-11-01

    A previous version of the XGC0 neoclassical particle transport code with two fully stripped impurity species was used to study kinetic neoclassical transport in the DIII-D H-mode pedestal. To properly simulate impurities in the scrape-off layer and divertor and to account for radiative cooling, however, the impurity charge state distributions must evolve as the particles are transported into regions of different electron temperatures and densities. To do this, the charge state of each particle in XGC0 is included as a parameter in the list that represents the particle's location in phase space. Impurity ionizations and recombinations are handled with a dedicated collision routine. The associated radiative cooling is accumulated during the process and applied to the electron population later in the time step. The density profiles of the neutral impurities are simulated with the DEGAS 2 neutral transport code and then used as a background for electron impact ionization in XGC0 via a test particle Monte Carlo method analogous to that used for deuterium. This work supported by US DOE contracts DE-AC02-09CH11466.

  5. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Lu, W., E-mail: luwang@impcas.ac.cn; Qian, C.; Sun, L. T.; Zhang, X. Z.; Feng, Y. C.; Ma, B. H.; Zhao, H. W.; Zhan, W. L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China); Fang, X.; Guo, J. W.; Yang, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, B.; Ruan, L. [Institute of Electrical Engineering, CAS, Beijing 100190 (China); Xie, D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-02-15

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O{sup 7+}, 620 eμA of Ar{sup 11+}, 430 eμA of Ar{sup 12+}, 430 eμA of Xe{sup 20+}, and so on. The comparison will be discussed in the paper.

  6. State-dependent phenomena in cat masseter motoneurons.

    Science.gov (United States)

    Kohlmeier, K A; López-Rodríguez, F; Liu, R H; Morales, F R; Chase, M H

    1996-05-25

    In the present study we explored the mechanisms of carbachol-induced muscle atonia in the alpha-chloralose-anesthetized animal. We compared our findings to those that have been previously obtained in unanesthetized cats during muscle atonia occurring during natural active sleep. Accordingly, in cats anesthetized with alpha-chloralose, intracellular records were obtained from masseter motoneurons before and after carbachol-induced motor atonia. Following the induction of atonia, the membrane potential activity was dominated by high-frequency, discrete, hyperpolarizing potentials. These hyperpolarizing potentials were reversed in polarity by the intracellular injection of chloride ions and abolished by the application of strychnine. These findings indicate that they were inhibitory postsynaptic potentials (IPSPs) mediated by glycine. These IPSPs appeared exclusively during muscle atonia. In addition, masseter motoneurons were significantly hyperpolarized and their rheobase increased. There was a decrease in input resistance and membrane time constant. In the alpha-chloralose-anesthetized preparation, stimulation of the nucleus pontis oralis (NPO) induced IPSPs in masseter motoneurons following, but never prior to, the pontine injection of carbachol. Thus, this is the first demonstration that "reticular response-reversal' may be elicited in an anesthetized preparation. Another state-dependent phenomenon of active sleep, the occurrence of IPSPs in motoneurons that are temporally correlated with ponto-geniculo-occipital (PGO) waves, was also observed in this preparation only after carbachol administration. Based on the data in this report, we conclude that the inhibitory system that mediates atonia during the state of active sleep can be activated in an animal that is anesthetized with alpha-chloralose. Specifically, the neuronal groups that generate spontaneous IPSPs, those that mediate the phenomenon of reticular response-reversal, and those involved in the generation

  7. Photoinduced charge generation rates in soluble P3HT : PCBM nano-aggregates predict the solvent-dependent film morphology.

    Science.gov (United States)

    Roy, Palas; Jha, Ajay; Dasgupta, Jyotishman

    2016-02-01

    The device efficiency of bulk heterojunction (BHJ) solar cells is critically dependent on the nano-morphology of the solution-processed polymer : fullerene blend. Active control on blend morphology can only emanate from a detailed understanding of solution structures during the film casting process. Here we use photoinduced charge transfer (CT) rates to probe the effective length scale of the pre-formed solution structures and their energy disorder arising from a mixture of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in three different organic solvents. The observed solvent-dependent ultrafast biphasic rise of the transient polaron state in solution along with changes detected in the C=C stretching frequency of bound PCBM provides direct evidence for film-like P3HT : PCBM interfaces in solution. Using the diffusive component of the charge transfer rate, we deduce ∼3-times larger functional nano-domain size in toluene than in chlorobenzene thereby correctly predicting the relative polymer nanofiber widths observed in annealed films. We thus provide first experimental evidence for the postulated polymer : fullerene : solvent ternary phase that seeds the eventual morphology in spin-cast films. Our work motivates the design of new chemical additives to tune the grain size of the evolving polymer : fullerene domains within the solution phase. PMID:26763690

  8. Charge Dependence and Electric Quadrupole Effects on Single-Nucleon Removal in Relativistic and Intermediate Energy Nuclear Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  9. Analysis of Total Dose-Induced Dark Current in CMOS Image Sensors From Interface State and Trapped Charge Density Measurements

    International Nuclear Information System (INIS)

    The origin of total ionizing dose induced dark current in CMOS image sensors is investigated by comparing dark current measurements to interface state density and trapped charge density measurements. Two types of photodiode and several thick-oxide-FETs were manufactured using a 0.18-μm CMOS image sensor process and exposed to 10-keV X-ray from 3 krad to 1 Mrad. It is shown that the radiation induced trapped charge extends the space charge region at the oxide interface, leading to an enhancement of interface state SRH generation current. Isochronal annealing tests show that STI interface states anneal out at temperature lower than 100 C whereas about a third of the trapped charge remains after 30 min at 300 C. (authors)

  10. Photo-induced changes in charge-ordered state of Ti{sub 4}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, M [Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501 (Japan); Miyahara, M; Tanaka, K, E-mail: j51061@sakura.kudpc.kyoto-u.ac.j [Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)

    2009-02-01

    We have investigated photo-induced effects on the charge-ordered state of Ti{sub 4}O{sub 7} with pump-probe spectroscopy. Reflectivity of the probe light changes after the pulsed pump excitation, and then recovers. The photo-induced effects are observed only when the pump power exceeds a threshold value, indicative of cooperative nature of the formation process, and the recovery rate shows thermally activated behaviour. We propose that the photo-induced state is a metastable charge localized state where charge disorder is induced by a photon-assisted charge transfer process from Ti{sub 2}{sup 6+} dimers to the neighbouring Ti{sup 4+}ions. Moreover, it is found that subsequent cw laser irradiation converts the photo-induced state into the charge-ordered state. We interpret this result in terms of formation of Ti{sub 2}{sup 6+} dimers via an inverse charge transfer process assisted by the cw optical excitation.

  11. State-dependent approach to entropic measurement–disturbance relations

    Energy Technology Data Exchange (ETDEWEB)

    Coles, Patrick J., E-mail: pat@nus.edu.sg [Centre for Quantum Technologies, National University of Singapore, 2 Science Drive 3, 117543 Singapore (Singapore); Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L3G1 Waterloo, Ontario (Canada); Furrer, Fabian, E-mail: furrer@eve.phys.s.u-tokyo.ac.jp [Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2015-01-23

    Heisenberg's intuition was that there should be a trade-off between measuring a particle's position with greater precision and disturbing its momentum. Recent formulations of this idea have focused on the question of how well two complementary observables can be jointly measured. Here, we provide an alternative approach based on how enhancing the predictability of one observable necessarily disturbs a complementary one. Our measurement–disturbance relation refers to a clear operational scenario and is expressed by entropic quantities with clear statistical meaning. We show that our relation is perfectly tight for all measurement strengths in an existing experimental setup involving qubit measurements. - Highlights: • We present a novel state-dependent entropic measurement–disturbance relation. • The relation provides a trade-off between disturbance and predictive measurement error. • The disturbance can further include the effect on an isolated memory system. • We show tightness for qubit as well as position–momentum measurements.

  12. Energy Dependence of the Transverse Momentum Distributions of Charged Particles in pp Collisions Measured by ALICE

    CERN Document Server

    Abelev, Betty Bezverkhny; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agocs, Andras Gabor; Agostinelli, Andrea; Ahammed, Zubayer; Ahmad, Nazeer; Ahmad, Arshad; Ahmed, Ijaz; Ahn, Sul-Ah; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki Eskeli; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Fernando; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Bogolyubskiy, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Bornschein, Joerg; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile Ioan; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contin, Giacomo; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dainese, Andrea; Dang, Ruina; Danu, Andrea; Das, Kushal; Das, Debasish; Das, Indranil; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; Delagrange, Hugues; Deloff, Andrzej; Denes, Ervin Sandor; Deppman, Airton; Oliveira Valeriano De Barros, Gabriel; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; De Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Doenigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutt Mazumder, Abhee Kanti; D'Erasmo, Ginevra; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erazmus, Barbara Ewa; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigory; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanouil; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gorlich, Lidia Maria; Gomez Jimenez, Ramon; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Costin; Grigoras, Alina Gabriela; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Khan, Kamal; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard Richard; Hippolyte, Boris; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hutter, Dirk; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Vladimir; Ivanov, Marian; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Ketzer, Bernhard Franz; Khan, Palash; Khan, Mohammed Mohisin; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Dong Jo; Kim, Do Won; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratyev, Valery; Kondratyeva, Natalia; Konevskikh, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, Alexey; Kurepin, Alexander; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasilij; Kweon, Min Jung; Kwon, Youngil; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; La Pointe, Sarah Louise; La Rocca, Paola; Lea, Ramona; Lechman, Mateusz Arkadiusz; Lee, Sung Chul; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luzzi, Cinzia; Jacobs, Peter Martin; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martin Blanco, Javier; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mazer, Joel Anthony; Mazumder, Rakesh; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes Prado, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Nyanin, Alexander; Nyatha, Anitha; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Sun Kun; Oh, Saehanseul; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pachr, Milos; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares Vales, Carlos; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woojin; Passfeld, Annika; Patalakha, Dmitry; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piyarathna, Danthasinghe; Planinic, Mirko; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Pohjoisaho, Esko Heikki Oskari; Polishchuk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf, Sarah Julie; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Sudhir; Raniwala, Rashmi; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauch, Wolfgang Hans; Rauf, Aamer Wali; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, Angelo; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Sharma, Rohni; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Pradip Kumar; Roy, Christelle Sophie; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Santoro, Romualdo; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Scott, Patrick Aaron; Segato, Gianfranco; Selyuzhenkov, Ilya; Seo, Jeewon; Serci, Sergio; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Satish; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Soegaard, Carsten; Soltz, Ron Ariel; Song, Myunggeun; Song, Jihye; Soos, Csaba; Soramel, Francesca; Spacek, Michal; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Ter-Minasyan, Astkhik; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Torii, Hisayuki; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urciuoli, Guido Maria; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vande Vyvre, Pierre; Vannucci, Luigi; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vargas Trevino, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Sergey; Voloshin, Kirill; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wagner, Jan; Wang, Yifei; Wang, Yaping; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Kengo; Weber, Michael; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Xiang, Changzhou; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yang, Shiming; Yano, Satoshi; Yasnopolskiy, Stanislav; Yi, Jungyu; Yin, Zhongbao; Yoo, In-Kwon; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Fan; Zhang, Yonghong; Zhang, Haitao; Zhang, Xiaoming; Zhou, Daicui; Zhou, You; Zhou, Fengchu; Zhu, Xiangrong; Zhu, Jianlin; Zhu, Jianhui; Zhu, Hongsheng; Zichichi, Antonino; Zimmermann, Markus Bernhard; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2013-01-01

    Differential cross sections of charged particles in inelastic pp collisions as a function of $p_T$ have been measured at $\\sqrt{s}$ = 0.9, 2.76 and 7 TeV at the LHC. The $p_T$ spectra are compared to NLO-pQCD calculations. Though the differential cross section for an individual $\\sqrt{s}$ cannot be described by NLO-pQCD, the relative increase of cross section with $\\sqrt{s}$ is in agreement with NLO-pQCD. Based on these measurements and observations, procedures are discussed to construct pp reference spectra at $\\sqrt{s}$ = 2.76 and 5.02 TeV up to $p_T$ = 50 GeV/c as required for the calculation of the nuclear modification factor in nucleus-nucleus and proton-nucleus collisions.

  13. Scan-rate-dependent ion current rectification and rectification inversion in charged conical nanopores.

    Science.gov (United States)

    Momotenko, Dmitry; Girault, Hubert H

    2011-09-21

    Herein we report a theoretical study of diode-like behavior of negatively charged (e.g., glass or silica) nanopores at different potential scan rates (1-1000 V·s(-1)). Finite element simulations were used to determine current-voltage characteristics of conical nanopores at various electrolyte concentrations. This study demonstrates that significant changes in rectification behavior can be observed at high scan rates because the mass transport of ionic species appears sluggish on the time scale of the voltage scan. In particular, it explains the influence of the potential scan rate on the nanopore rectifying properties in the cases of classical rectification, rectification inversion, and the "transition" rectification domain where the rectification direction in the nanopore could be modulated according to the applied scan rate.

  14. Time dependence of the average charge and current in a dissipative mesoscopic circuit

    Institute of Scientific and Technical Information of China (English)

    嵇英华; 雷敏生; 欧阳楚英

    2002-01-01

    Taking into consideration the interactions between electrons and phonons, we have studied the temporal evolutionof the average charge and current in a dissipative mesoscopic RLC circuit. Our results show that a mesoscopic RLCcircuit can be treated as an interactive system between an electromagnetic harmonic oscillator and many lattice harmonicoscillators; this is called the bathing of the harmonic oscillators. The results also show that the quantum equation ofmotion of the linear mesoscopic RLC circuit is identical in form to its classical equation of motion, the only differencebetween them being their respective meanings.In order to thoroughly study the quantum properties of a dissipativemesoscopic circuit, we have to consider not only; the electromagnetic energy of the circuit, but also the crystal latticevibration energy and the interactive energy between electrons and phonons.

  15. Cell-penetrating compounds preferentially bind glycosaminoglycans over plasma membrane lipids in a charge density- and stereochemistry-dependent manner.

    Science.gov (United States)

    Prevette, Lisa E; Benish, Nicolas C; Schoenecker, Amber R; Braden, Kristin J

    2015-12-01

    Cell-penetrating compounds (CPCs) are often conjugated to drugs and genes to facilitate cellular uptake. We hypothesize that the electrostatic interaction between the positively charged amines of the cell-penetrating compounds and the negatively charged glycosaminoglycans (GAGs) extending from cell surfaces is the initiating step in the internalization process. The interactions of generation 5 PAMAM dendrimer, Tat peptide and 25 kDa linear PEI with four different GAGs have been studied using isothermal titration calorimetry to elucidate structure-function relationships that could lead to improved drug and gene delivery methods to a wide variety of cell types. Detailed thermodynamic analysis has determined that CPC-GAG binding constants range from 8.7×10(3) to 2.4×10(6)M(-1) and that affinity is dependent upon GAG charge density and stereochemistry and CPC molecular weight. The effect of GAG composition on affinity is likely due to hydrogen bonding between CPC amines and amides and GAG hydroxyl and amine groups. These results were compared to the association of CPCs with lipid vesicles of varying composition as model plasma membranes to finally clarify the relative importance of each cell surface component in initial cell recognition. CPC-lipid affinity increases with anionic lipid content, but GAG affinity is higher for all cell-penetrating compounds, confirming the role these heterogeneous polysaccharides play in cellular association and clustering.

  16. Normal-state charge dynamics of ternary platinum germanide superconductor La{sub 2}Pt{sub 3}Ge{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Song, S. J.; Moon, S. J. [Dept. of Physics, Hanyang University, Seoul (Korea, Republic of); Sung, N. H.; Cho, B. K. [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2015-12-15

    We report on the infrared spectroscopic studies of the normal-state electronic response of rare-earth ternary platinum germanide superconductor La{sub 2}Pt{sub 3}Ge{sub 5}. We analyzed the temperature-dependent optical conductivity spectra using the Drude-Lorentz oscillator model. We found that the two Drude responses with distinct scattering rates are required to explain the charge dynamics at 10 K while a single Drude mode could reproduce the far-infrared conductivity at higher temperatures. Our results indicated the two-band character of the electronic structure and highlighted the disparate temperature evolution of the electrodynamics of the two electronic states.

  17. Search for light charged Higgs bosons in hadronic {tau} final states with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Ehrich, Thies

    2010-07-07

    Charged Higgs bosons are predicted in theories with a non-minimal Higgs sector like the Minimal Supersymmetric Extension of the Standard Model (MSSM). At the LHC, light charged Higgs Bosons might be produced in on-shell top quark decays t{yields} H{sup +}b, if m{sub H{sup {+-}}}states to suppress the backgrounds. The subject of this study is the estimation of the sensitivity of the ATLAS detector for charged Higgs boson searches in t anti t events. Leptons from the decay chain of the second top quark allow for efficient triggering. A search strategy is developed and estimates of signal significances and exclusion limits in the MSSM m{sub h}-max scenario are presented based on Monte Carlo simulations. For an integrated luminosity of 10 fb{sup -1}, the discovery of charged Higgs bosons is possible for tan{beta}>32. Exclusion limits are given for values of tan{beta}>17, significantly improving the current best limits from the Tevatron. The most important systematic uncertainties were found to be the errors on the jet energy scale and the missing transverse energy, resulting in a total systematic uncertainty of 40% on the signal. To reduce the systematic uncertainty for the most important Standard Model background, t anti t production, emphasis is put on estimating this background using data instead of Monte Carlo simulations. The t anti t background consists of two contributions, one with a correctly identified {tau}-jet in the final state, which is irreducible, and one where the hadronic {tau} decay is faked by a light parton jet. For each background a method has been developed to estimate its contribution with minimal use of Monte Carlo simulations. In this way, the systematic uncertainty on the background can be significantly reduced. (orig.)

  18. On the Capacity of Compound State-Dependent Channels with States Known at the Transmitter

    CERN Document Server

    Piantanida, Pablo

    2010-01-01

    This paper investigates the capacity of compound state-dependent channels with non-causal state information available at only the transmitter. A new lower bound on the capacity of this class of channels is derived. This bound is shown to be tight for the special case of compound channels with stochastic degraded components, yielding the full characterization of the capacity. Specific results are derived for the compound Gaussian Dirty-Paper (GDP) channel. This model consists of an additive white Gaussian noise (AWGN) channel corrupted by an additive Gaussian interfering signal, known at the transmitter only, where the input and the state signals are affected by fading coefficients whose realizations are unknown at the transmitter. Our bounds are shown to be tight for specific cases. Applications of these results arise in a variety of wireless scenarios as multicast channels, cognitive radio and problems with interference cancellation.

  19. Energy loss and charge state distribution of calcium ions in dense moderately coupled carbon plasma; Energieverlust und Ladungsverteilung von Calciumionen in dichtem, schwach gekoppeltem Kohlenstoffplasma

    Energy Technology Data Exchange (ETDEWEB)

    Ortner, Alex

    2015-07-15

    inertially and thermally confined, as hydrodynamic expansion is limited and radiative cooling is suppressed. Typical disadvantages of direct laser heated plasmas like a hot and fast diluting plasma corona as well as spatial and temporal inhomogeneities due to the inherently non-uniform intensity distribution of the laser focal spot, are avoided. The used double hohlraum target allows to create a partially ionized plasma (Z{sub ion}=2-4) with electron densities close to solid state density (n{sub e}=8.10{sup 21} cm{sup -3}) and moderate temperatures (T=5-10 eV). The used hohlraum design has been studied in details and optimized by means of 2D hydrodynamic simulations. The energy loss of ions traveling through ionized matter strongly depends on their charge state, so a detailed understanding of the charge transfer processes in a wide range of plasma parameters is required. To determine the influence of the plasma temperature and density on the projectile charge state, a parametric study has been carried out covering a parameter space with ion densities of 10{sup 18}-10{sup 23} cm{sup -3} and temperatures of 10-200 eV. The projectile charge state distribution is determined by the ionization and recombination rates which are balancing each other out. Both, ionization and recombination rates, as well as atomic excitation and decay rates, depend on the plasma parameters in different ways. These effects have been simulated by a specially developed Monte-Carlo Code on the example of a calcium ion beam at an energy of 3.5 MeV/u in a carbon plasma. The main finding is that the mean charge state in plasma can be lower than in cold matter. This is a surprising result, because the projectile charge state is expected to increase in plasma due to the suppressed recombination rates with bound electrons. Actually, due to a resonance effect in the dielectronic recombination process the recombination rate is enhanced in partially ionized plasma, which leads to a lowering of the mean beam

  20. Pressure Dependence Transport Studies of the Possible Charge Kondo Effect in Tl-doped PbTe

    Science.gov (United States)

    Kurosaki, Yosuke; Shinagawa, Jun; Matsushita, Yana; Geballe, Ted; Fisher, Ian; Brown, Stuart

    2006-03-01

    Pb1-xTlxTe is noteworthy for a high superconducting transition temperature relative to carrier concentration, as well as normal state properties consistent with a charge-Kondo effect. Recent experiments also demonstrate that the onset of an observable superconducting Tc with Tl concentration at x˜0.3% coincides with features characteristic of charge Kondo [1], including dρ/dTlow temperatures and an unusual linear variation of the resistivity ρ(T)=ρ0+AT at higher temperatures. Together, these observations are consistent with an association between the two phenomena [2]. We report the effect of applied pressures up to P˜1.5GPa on ρ(T), Tc, and the Hall number pH≡RH-1 for x= 0.3%, 0.8%, and 1.3%. Tc is reduced sharply with pressure, dTc/dP=400-500mK/GPa as the low temperature Kondo- like upturn in ρ(T) is weakened. Also, dA/dP0. These observations are discussed in the context of the proposed charge-Kondo model for Pb1-xTlxTe. [1] Y. Matsushita, H. Bluhm, T.H. Geballe and I.R. Fisher, Phys.Rev.Lett. 94, 157002(2005).[2] M. Dzero and J. Schmalian, Phys.Rev.Lett. 94, 157003 (2005). This work is supported by NSF frant DMR-0520552.