WorldWideScience

Sample records for charge state dependent

  1. Projectile charge state dependent sputtering of solid surfaces

    CERN Document Server

    Hayderer, G

    2000-01-01

    dependence on the ion kinetic energy. This new type of potential sputtering not only requires electronic excitation of the target material, but also the formation of a collision cascade within the target in order to initiate the sputtering process and has therefore been termed kinetically assisted potential sputtering. In order to study defects induced by potential sputtering on the atomic scale we performed measurements of multiply charged Ar ion irradiated HOPG (highly oriented pyrolitic graphite) samples with scanning tunneling microscopy (STM). The only surface defects found in the STM images are protrusions. The mean diameter of the defects increases with projectile charge state while the height of the protrusions stays roughly the same indicating a possible pre-equilibrium effect of the stopping of slow multiply charged projectiles in HOPG. Total sputter yields for impact of slow singly and multiply charged ions on metal- (Au), oxide- (Al2O3, MgO) and alkali-halide surfaces (LiF) have been measured as a...

  2. Charge-state-dependent energy loss of slow ions. I. Experimental results on the transmission of highly charged ions

    Science.gov (United States)

    Wilhelm, Richard A.; Gruber, Elisabeth; Smejkal, Valerie; Facsko, Stefan; Aumayr, Friedrich

    2016-05-01

    We report on energy loss measurements of slow (v ≪v0 ), highly charged (Q >10 ) ions upon transmission through a 1-nm-thick carbon nanomembrane. We emphasize here the scaling of the energy loss with the velocity and charge exchange or loss. We show that a weak linear velocity dependence exists, whereas charge exchange dominates the kinetic energy loss, especially in the case of a large charge capture. A universal scaling of the energy loss with the charge exchange and velocity is found and discussed in this paper. A model for charge-state-dependent energy loss for slow ions is presented in paper II in this series [R. A. Wilhelm and W. Möller, Phys. Rev. A 93, 052709 (2016), 10.1103/PhysRevA.93.052709].

  3. Charge-state-dependent energy loss of slow ions. II. Statistical atom model

    Science.gov (United States)

    Wilhelm, Richard A.; Möller, Wolfhard

    2016-05-01

    A model for charge-dependent energy loss of slow ions is developed based on the Thomas-Fermi statistical model of atoms. Using a modified electrostatic potential which takes the ionic charge into account, nuclear and electronic energy transfers are calculated, the latter by an extension of the Firsov model. To evaluate the importance of multiple collisions even in nanometer-thick target materials we use the charge-state-dependent potentials in a Monte Carlo simulation in the binary collision approximation and compare the results to experiment. The Monte Carlo results reproduce the incident charge-state dependence of measured data well [see R. A. Wilhelm et al., Phys. Rev. A 93, 052708 (2016), 10.1103/PhysRevA.93.052708], even though the experimentally observed charge exchange dependence is not included in the model.

  4. Dependence of multiply charged ions on the polarization state in nanosecond laser-benzene cluster interaction

    Science.gov (United States)

    Wang, Weiguo; Zhao, Wuduo; Hua, Lei; Hou, Keyong; Li, Haiyang

    2016-05-01

    This paper investigated the dependence of multiply charged ions on the laser polarization state when benzene cluster was irradiated with 532 and 1064 nm nanosecond laser. A circle, square and flower distribution for C2+, C3+ and C4+ were observed with 532 nm laser respectively, while flower petals for C2+, C3+ and C4+ were observed at 1064 nm as the laser polarization varied. A theoretical calculation was performed to interpret the polarization state and wavelength dependence of the multiply charged ions. The simulated results agreed well with the experimental observation with considering the contribution from the cluster disintegration.

  5. Hydrogen-bonded Intramolecular Charge Transfer Excited State of Dimethylaminobenzophenone using Time Dependent Density Functional Theory

    Institute of Scientific and Technical Information of China (English)

    Yu-ling Chu; Zhong Yang; Zhe-feng Pan; Jing Liu; Yue-yi Han; Yong Ding; Peng Song

    2012-01-01

    Density functional theory and time-dependent density-functional theory have been used to investigate the photophysical properties and relaxation dynamics of dimethylaminobenzophenone (DMABP) and its hydrogen-bonded DMABP-MeOH dimer.It is found that,in nonpolar aprotic solvent,the transitions from S0 to S1 and S2 states of DMABP have both n→π* and π→π* characters,with the locally excited feature mainly located on the C=O group and the partial CT one characterized by electron transfer mainly from the dimethylaminophenyl group to the C=O group.But when the intermolecular hydrogen bond C=O…H-O is formed,the highly polar intramolecular charge transfer character switches over to the first excited state of DMABP-MeOH dimer and the energy difference between the two lowlying electronically excited states increases.To gain insight into the relaxation dynamics of DMABP and DMABP-MeOH dimer in the excited state,the potential energy curves for conformational relaxation are calculated.The formation of twisted intramolecular charge transfer state via diffusive twisting motion of the dimethylamino/dimethylaminophenyl groups is found to be the major relaxation process.In addition,the decay of the S1 state of DMABP-MeOH dimer to the ground state,through nonradiative intermolecular hydrogen bond stretching vibrations,is facilitated by the formation of the hydrogen bond between DMABP and alcohols.

  6. Energy and charge state dependences of transfer ionization to single capture ratio for fast multiply charged ions on helium

    Science.gov (United States)

    Unal, Ridvan

    The charge state and energy dependences of Transfer Ionization (TI) and Single Capture (SC) processes in collisions of multiply charged ions with He from intermediate to high velocities are investigated using coincident recoil ion momentum spectroscopy. The collision chamber is commissioned on the 15-degree port of a switching magnet, which allows the delivery of a beam with very little impurity. The target was provided from a supersonic He jet with a two-stage collimation. The two-stage, geometrically cooled, supersonic He jet has significantly reduced background contribution to the spectrum compared to a single stage He jet. In the case of a differentially pumped gas cell complex calculations based on assumptions for the correction due to the collisions with the contaminant beam led to corrections, which were up to 50%. The new setup allows one to make a direct separation of contaminant processes in the experimental data using the longitudinal momentum spectra. Furthermore, this correction is much smaller (about 8.8%) yielding better overall precision. The collision systems reported here are 1 MeV/u O(4--8)+ , 0.5--2.5 MeV/u F(4--9)+, 2.0 MeV/u Ti 15,17,18+, 1.6--1.75 MeV/u Cu18,20+ and 0.25--0.5 MeV/u I(15--25)+ ions interacting with helium. We have determined the sTIsSC ratio for high velocity highly charged ions on He at velocities in the range of 6 to 10 au and observed that the ratio is monotonically decreasing with velocity. Furthermore, we see a ratio that follows a q2 dependence up to approximately q = 9. Above q = 9 the experimental values exceed the q2 dependence prediction due to antiscreening. C. D. Lin and H. C. Tseng have performed coupled channel calculations for the energy dependence of TI and SC for F9+ + He and find values slightly higher than our measured values, but with approximately the same energy dependence. The new data, Si, Ti and Cu, go up only to q = 20 and show a smooth monotonically increasing TI/SC ratio. The TI/SC ratio for I (15

  7. Energy-dependent Charge States and Their Connection with Ion Abundances in Impulsive Solar Energetic Particle Events

    Science.gov (United States)

    DiFabio, R.; Guo, Z.; Möbius, E.; Klecker, B.; Kucharek, H.; Mason, G. M.; Popecki, M.

    2008-11-01

    Impulsive solar energetic particle (SEP) events show substantial enhancements of heavy ions and 3He over the composition in the Sun's atmosphere. Mass per charge dependent acceleration mechanisms have been proposed to account for this preferential acceleration. However, a problem emerged for all the preferential acceleration models with the measurement of ionization states near 1 MeV nucleon-1, which showed that ions from C to Mg are fully stripped, a challenge that had been recognized early on. Since all models relied on differences in the charge-to-mass ratio to enable preferential acceleration, the proposed mechanisms were incompatible with this observation. Recent observations of the ionic charge states at lower energies have revealed a dependence on energy, with the charge states decreasing for lower energy ions. This raises the possibility that the low-energy charge states reflect the plasma conditions at the acceleration site, while the high-energy charge states are due to stripping low in the solar corona. In a survey of impulsive events we show that the increase of the Fe charge states with energy is highly significant for the sample of events and thus most likely a general feature of impulsive events. To see whether there is a connection between the enhancements and charge states, we extended the ACE SEPICA charge-state observations to lower energies and combined them with the ion fluxes from ACE ULEIS for impulsive events observed between 1997 and 2000. We find a positive correlation between the abundance ratios and the charge states at low energy, while the charge states at the highest energy do not demonstrate such dependence. This supports the idea that the higher mass particles are preferentially accelerated before being stripped.

  8. Gap state charge induced spin-dependent negative differential resistance in tunnel junctions

    Science.gov (United States)

    Jiang, Jun; Zhang, X.-G.; Han, X. F.

    2016-04-01

    We propose and demonstrate through first-principles calculation a new spin-dependent negative differential resistance (NDR) mechanism in magnetic tunnel junctions (MTJ) with cubic cation disordered crystals (CCDC) AlO x or Mg1‑x Al x O as barrier materials. The CCDC is a class of insulators whose band gap can be changed by cation doping. The gap becomes arched in an ultrathin layer due to the space charge formed from metal-induced gap states. With an appropriate combination of an arched gap and a bias voltage, NDR can be produced in either spin channel. This mechanism is applicable to 2D and 3D ultrathin junctions with a sufficiently small band gap that forms a large space charge. It provides a new way of controlling the spin-dependent transport in spintronic devices by an electric field. A generalized Simmons formula for tunneling current through junction with an arched gap is derived to show the general conditions under which ultrathin junctions may exhibit NDR.

  9. Excited state intramolecular charge transfer reaction in nonaqueous electrolyte solutions: Temperature dependence

    International Nuclear Information System (INIS)

    Temperature dependence of the excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) in ethyl acetate (EA), acetonitrile (ACN), and ethanol at several concentrations of lithium perchlorate (LiClO4) has been investigated by using the steady state and time resolved fluorescence spectroscopic techniques. The temperature range considered is 267-343 K. The temperature dependent spectral peak shifts and reaction driving force (-ΔGr) in electrolyte solutions of these solvents can be explained qualitatively in terms of interaction between the reactant molecule and ion-atmosphere. Time resolved studies indicate that the decay kinetics of P4C is biexponential, regardless of solvents, LiClO4 concentrations, and temperatures considered. Except at higher electrolyte concentrations in EA, reaction rates in solutions follow the Arrhenius-type temperature dependence where the estimated activation energy exhibits substantial electrolyte concentration dependence. The average of the experimentally measured activation energies in these three neat solvents is found to be in very good agreement with the predicted value based on data in room temperature solvents. While the rate constant in EA shows a electrolyte concentration induced parabolic dependence on reaction driving force (-ΔGr), the former in ethanol and ACN increases only linearly with the increase in driving force (-ΔGr). The data presented here also indicate that the step-wise increase in solvent reorganization energy via sequential addition of electrolyte induces the ICT reaction in weakly polar solvents to crossover from the Marcus inverted region to the normal region.

  10. Projectile- and charge-state-dependent electron yields from ion penetration of solids as a probe of preequilibrium stopping power

    DEFF Research Database (Denmark)

    Rothard, H.; Schou, Jørgen; Groeneveld, K.-O.

    1992-01-01

    Kinetic electron-emission yields gamma from swift ion penetration of solids are proportional to the (electronic) stopping power gamma approximately Beta-S*, if the preequilibrium evolution of the charge and excitation states of the positively charged ions is taken into account. We show that the...... theory after having presented a summary of recent results on the projectile- and charge-state dependence of forward and backward electron yields gamma(F) and gamma(B) and the Meckbach factor R = gamma(F)/gamma(B). A simple extension of the yield equations is proposed and several assumptions are justified...

  11. Doping dependence of self-diffusion in germanium and the charge states of vacancies

    DEFF Research Database (Denmark)

    Südkamp, T.; Bracht, H.; Impellizzeri, G.;

    2013-01-01

    into account the dominance of doubly negatively charged vacancies under donor doping, the doping dependence of self-diffusion is best described with an inverse level ordering for singly and doubly negatively charged vacancies for all doping conditions. The level ordering explains the dominance of......Self-diffusion in boron-doped germanium has been studied at temperatures between 526 and 749 °C with secondary ion mass spectrometry. Self-diffusion under acceptor doping is retarded compared to intrinsic conditions. This demonstrates the contribution of charged vacancies in self-diffusion. Taking...... doubly charged vacancies under donor doping and their decreasing contribution with increasing acceptor doping until neutral vacancies mediate self-diffusion...

  12. Charge-state dependence of electron loss from H by collisions with heavy, highly stripped ions

    International Nuclear Information System (INIS)

    Theoretical calculations, confirmed by experimental measurements, are used to obtain a new scaling for electron loss from a hydrogen atom in collision with a heavy, highly stripped ion. The calculations cover the energy range 50 to 5000 keV/amu and charge states q from 1 to 50. The experiments are in the range 108 to 1140 keV/amu and charge states 3 to 22. A simple analytic expression that describes the electron-loss cross section for 1 < or = q < or = 50 in the energy range 50 to 5000 keV/amu is presented

  13. State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-ion Batteries.

    Science.gov (United States)

    Xu, Jun; Liu, Binghe; Hu, Dayong

    2016-01-01

    Understanding the mechanism of mechanical deformation/stress-induced electrical failure of lithium-ion batteries (LIBs) is important in crash-safety design of power LIBs. The state of charge (SOC) of LIBs is a critical factor in their electrochemical performance; however, the influence of SOC with mechanical integrity of LIBs remains unclear. This study investigates the electrochemical failure behaviors of LIBs with various SOCs under both compression and bending loadings, underpinned by the short circuit phenomenon. Mechanical behaviors of the whole LIB body, which is regarded as an intact structure, were analyzed in terms of structure stiffness. Results showed that the mechanical behaviors of LIBs depend highly on SOC. Experimental verification on the cathode and anode sheet compression tests show that higher SOC with more lithium inserted in the anode leads to higher structure stiffness. In the bending tests, failure strain upon occurrence of short circuit has an inverse linear relationship with the SOC value. These results may shed light on the fundamental physical mechanism of mechanical integrity LIBs in relation to inherent electrochemical status. PMID:26911922

  14. Evaluation of intramolecular charge transfer state of 4-, -dimethylamino cinnamaldehyde using time-dependent density functional theory

    Indian Academy of Sciences (India)

    Surajit Ghosh; K V S Girish; Subhadip Ghosh

    2013-07-01

    Intramolecular charge transfer of 4-,-dimethylamino cinnamaldehyde (DMACA) in vacuum and in five different aprotic solvents has been studied by using time-dependent density functional theory (TDDFT). Polarizable continuum model (PCM) was employed to consider solvent-solute interactions. The potential energy curves were constructed at different torsional angle of ,-dimethylamino moiety with respect to the adjacent phenyl ring. A large bathochromic shift in our calculated emission and absorption energies for polar solvents is a clear reminiscent of charge transfer nature of the excited state. Finally, the reported results are in agreement with experimental findings.

  15. Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns.

    Science.gov (United States)

    Huang, Yingying; Triscari, Joseph M; Tseng, George C; Pasa-Tolic, Ljiljana; Lipton, Mary S; Smith, Richard D; Wysocki, Vicki H

    2005-09-15

    Data mining was performed on 28 330 unique peptide tandem mass spectra for which sequences were assigned with high confidence. By dividing the spectra into different sets based on structural features and charge states of the corresponding peptides, chemical interactions involved in promoting specific cleavage patterns in gas-phase peptides were characterized. Pairwise fragmentation maps describing cleavages at all Xxx-Zzz residue combinations for b and y ions reveal that the difference in basicity between Arg and Lys results in different dissociation patterns for singly charged Arg- and Lys-ending tryptic peptides. While one dominant protonation form (proton localized) exists for Arg-ending peptides, a heterogeneous population of different protonated forms or more facile interconversion of protonated forms (proton partially mobile) exists for Lys-ending peptides. Cleavage C-terminal to acidic residues dominates spectra from singly charged peptides that have a localized proton and cleavage N-terminal to Pro dominates those that have a mobile or partially mobile proton. When Pro is absent from peptides that have a mobile or partially mobile proton, cleavage at each peptide bond becomes much more prominent. Whether the above patterns can be found in b ions, y ions, or both depends on the location of the proton holder(s) in multiply protonated peptides. Enhanced cleavages C-terminal to branched aliphatic residues (Ile, Val, Leu) are observed in both b and y ions from peptides that have a mobile proton, as well as in y ions from peptides that have a partially mobile proton; enhanced cleavages N-terminal to these residues are observed in b ions from peptides that have a partially mobile proton. Statistical tools have been designed to visualize the fragmentation maps and measure the similarity between them. The pairwise cleavage patterns observed expand our knowledge of peptide gas-phase fragmentation behaviors and may be useful in algorithm development that employs

  16. Gas-pressure dependence of charge-state fractions and mean charges of 1.4 MeV/u-uranium ions stripped in molecular hydrogen

    Science.gov (United States)

    Shevelko, V. P.; Winckler, N.; Tolstikhina, I. Yu.

    2016-06-01

    Using a recently created BREIT computer code (Balance Rate Equations for Ion Transportation), evolutions of the charge-state fractions Fq (x) and equilibrium mean charge states q bar are calculated for stripping of 1.4 MeV/u-U4+ ions in H2 gas for target thicknesses x ⩽ 100 μg /cm2 (⩽ 3 ·1019molecule /cm2) and gas pressures 10-4 ⩽ P ⩽ 500 mbar. Calculations of the non-equilibrium Fq (x) and equilibrium Fq0 distributions for ion charges 4 ⩽ q ⩽ 40 are performed by solving the balance (rate) equations with account for the multi-electron processes and the target-density effect. Calculated equilibrium mean charge state increases from q bar ≈ 27.6 at P =10-4 mbar to its saturated (maximum) value of q bar ≈ 32.7 at pressures P≳ 250 mbar while the equilibrium target thickness xeq increases from 20 to 50 μg /cm2 (from 0.6 to 1.5 in units of 1019molecule /cm2) in the H2-pressure range considered. From the present calculations it is concluded that the maximum mean charge state q bar which can be achieved in stripping of 1.4 MeV/u-U4+ ions in H2 gas is about q bar ≈ 33 at a gas pressure P≳ 250 mbar.

  17. Charge-state dependence of energy loss of MeV dimers in GaAs(100)

    International Nuclear Information System (INIS)

    Carbon and oxygen dimers with charge states 1+ and 3+ were implanted into GaAs along the [100] direction at an energy of 0.5 MeV/atom. The defect depth profiles are extracted from Rutherford backscattering spectrometry and channeling. The depth profile of carbon is extracted from secondary ion mass spectrometry measurements. The defect density produced by dimer ions is larger than monomer ions. The depth profile of carbon in dimer implanted GaAs is deeper than that of monomer implanted GaAs showing negative molecular effect. The defect depth profile of oxygen dimer implanted GaAs is deeper for 3+ than that for 1+ charge state. This indicates that energy loss of O23+ is smaller than that of O2+. It is attributed to charge asymmetry and a higher degree of alignment of O23+ along the [100] axis of GaAs

  18. Charge-state dependence of M-shell x-ray production in 67Ho by 2--12-MeV carbon ions

    International Nuclear Information System (INIS)

    Charge-state dependence of M-shell x-ray production cross sections of 67Ho bombarded by 2--12-MeV carbon ions, with and without K-shell vacancies, were measured using a windowless Si(Li) x-ray detector with a full-width-at-half-maximum resolution of 135 eV at 5.9 keV. Carbon ions of different charge states were produced using a postacceleration, nitrogen gas stripping cell. The carbon ions were then magnetically analyzed to select the desired charge state and energy before entering the target chamber. The total M-shell and Mζ, Mα,β, and Mγ x-ray cross sections were measured. The electron-capture (EC) contributions as well as the direct-ionization (DI) contributions can be determined by making a comprehensive study of the projectile-charge-state dependence of the target x-ray production cross sections for targets in which the single-collision realm is maintained. In this paper, both EC and DI contributions and the total M-shell x-ray production cross sections are compared to both the first Born theory and to the perturbed-stationary-state theory with energy-loss, Coulomb-deflection, and relativistic corrections

  19. Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel.

    Science.gov (United States)

    Amodeo, Giuseppe Federico; Scorciapino, Mariano Andrea; Messina, Angela; De Pinto, Vito; Ceccarelli, Matteo

    2014-01-01

    Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs) Molecular Dynamics (MD) simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities. PMID:25084457

  20. Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel.

    Directory of Open Access Journals (Sweden)

    Giuseppe Federico Amodeo

    Full Text Available Voltage Dependent Anion-selective Channels (VDACs are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs Molecular Dynamics (MD simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities.

  1. Time-dependent density functional study of the electronic spectra of oligoacenes in the charge states -1, 0, +1, and +2

    CERN Document Server

    Malloci, G; Cappellini, G; Joblin, C

    2007-01-01

    We present a systematic theoretical study of the five smallest oligoacenes (naphthalene, anthracene, tetracene, pentacene, and hexacene) in their anionic,neutral, cationic, and dicationic charge states. We used density functional theory (DFT) to obtain the ground-state optimised geometries, and time-dependent DFT (TD-DFT) to evaluate the electronic absorption spectra. Total-energy differences enabled us to evaluate the electron affinities and first and second ionisation energies, the quasiparticle correction to the HOMO-LUMO energy gap and an estimate of the excitonic effects in the neutral molecules. Electronic absorption spectra have been computed by combining two different implementations of TD-DFT: the frequency-space method to study general trends as a function of charge-state and molecular size for the lowest-lying in-plane long-polarised and short-polarised $\\pi\\to\\pi^\\star$ electronic transitions, and the real-time propagation scheme to obtain the whole photo-absorption cross-section up to the far-UV....

  2. High-charge-state ion sources

    International Nuclear Information System (INIS)

    Sources of high charge state positive ions have uses in a variety of research fields. For heavy ion particle accelerators higher charge state particles give greater acceleration per gap and greater bending strength in a magnet. Thus higher energies can be obtained from circular accelerators of a given size, and linear accelerators can be designed with higher energy gain per length using higher charge state ions. In atomic physics the many atomic transitions in highly charged ions supplies a wealth of spectroscopy data. High charge state ion beams are also used for charge exchange and crossed beam experiments. High charge state ion sources are reviewed

  3. State dependent choice

    OpenAIRE

    Manzini, Paola; Mariotti, Marco

    2015-01-01

    We propose a theory of choices that are influenced by the psychological state of the agent. The central hypothesis is that the psychological state controls the urgency of the attributes sought by the decision maker in the available alternatives. While state dependent choice is less restricted than rational choice, our model does have empirical content, expressed by simple ‘revealed preference’ type of constraints on observable choice data. We demonstrate the applicability of simple versions o...

  4. Metastable states of plasma particles close to a charged surface

    International Nuclear Information System (INIS)

    The free energy of the plasma particles and the charged surface that form an electroneutral system is calculated on the basis of the Poisson-Boltzmann equation. It is shown that, owing to correlation of light plasma particles near the charged surface and close to heavy particles of high charge, there can be metastable states in plasma. The corresponding phase charts of metastable states of the separate components of plasma, and plasma as a whole, are constructed. These charts depend on temperature, the charge magnitude, the size of the particles, and the share of the charge of the light carriers out of the total charge of the plasma particles

  5. State Dependence in Unemployment

    DEFF Research Database (Denmark)

    Ahmad, Nisar

    2014-01-01

    This study examines the extent state dependence among unemployed immigrants in a dynamic discrete choice framework. Three alternative methodologies are employed to control for the problem of the initial condition. The empirical findings show that there is a considerable correlation between the un...

  6. Charge states of ions, and mechanisms of charge ordering transitions

    International Nuclear Information System (INIS)

    To gain insight into the mechanism of charge ordering transitions, which conventionally are pictured as a disproportionation of an ion M as 2Mn+→M(n+1)+ + M(n−1)+, we (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new results for the putative charge ordering compound AgNiO2 and the dual charge state insulator AgO, and (3) analyze the cationic occupations of the actual (not formal) charge, and work to reconcile the conundrums that arise. We establish that several of the clearest cases of charge ordering transitions involve no disproportion (no charge transfer between the cations, and hence no charge ordering), and that the experimental data used to support charge ordering can be accounted for within density functional-based calculations that contain no charge transfer between cations. We propose that the charge state picture retains meaning and importance, at least in many cases, if one focuses on Wannier functions rather than atomic orbitals. The challenge of modeling charge ordering transitions with model Hamiltonians isdiscussed. (paper)

  7. Temperature Dependent Kinetics DNA Charge Transport

    Science.gov (United States)

    Wohlgamuth, Chris; McWilliams, Marc; Slinker, Jason

    2012-10-01

    Charge transport (CT) through DNA has been extensively studied, and yet the mechanism of this process is still not yet fully understood. Besides the benefits of understanding charge transport through this fundamental molecule, further understanding of this process will elucidate the biological implications of DNA CT and advance sensing technology. Therefore, we have investigated the temperature dependence of DNA CT by measuring the electrochemistry of DNA monolayers modified with a redox-active probe. By using multiplexed electrodes on silicon chips, we compare square wave voltammetry of distinct DNA sequences under identical experimental conditions. We vary the probe length within the well matched DNA duplex in order to investigate distance dependent kinetics. This length dependent study is a necessary step to understanding the dominant mechanism behind DNA CT. Using a model put forth by O'Dea and Osteryoung and applying a nonlinear least squares analysis we are able to determine the charge transfer rates (k), transfer coefficients (α), and the total surface concentration (&*circ;) of the DNA monolayer. Arrhenius like behavior is observed for the multiple probe locations, and the results are viewed in light of and compared to the prominent charge transport mechanisms.

  8. Numerical calculation of impurity charge state distributions

    Energy Technology Data Exchange (ETDEWEB)

    Crume, E. C.; Arnurius, D. E.

    1977-09-01

    The numerical calculation of impurity charge state distributions using the computer program IMPDYN is discussed. The time-dependent corona atomic physics model used in the calculations is reviewed, and general and specific treatments of electron impact ionization and recombination are referenced. The complete program and two examples relating to tokamak plasmas are given on a microfiche so that a user may verify that his version of the program is working properly. In the discussion of the examples, the corona steady-state approximation is shown to have significant defects when the plasma environment, particularly the electron temperature, is changing rapidly.

  9. Charge State Model of Solar Energetic Particles

    Science.gov (United States)

    Del Peral, L.; Pérez-Peraza, J. A.; Rodríguez Frías, M. D.

    2013-05-01

    Charge states of heavy ions in Solar Energetic Particle (SEP) events observed at the Earth's neighborhood with experiments on board satellites give us information about physical properties of plasma where acceleration occurs. SEP detection is performed near the Earth, therefore not only physical condition of the plasma source of accelerated particles have to be taken into account. We have developed a charge state model in order to explain the evolution of particle charge states under solar acceleration. Charge-interchange processes between the accelerated ions and the plasma matter in the acceleration region are considered on basis of electron loss and capture cross sections at high energies. We have applied the model to observational data from satellites measuring charge states of SEPs. In contrast with other models that use ionization and recombination cross-sections that require application of thermal equilibrium, our model assumes that the acceleration is so fast that thermal equilibrium can not be applied to the change interchange processes. Therefore we employ in our model high energy cross-sections for electron capture and loss, since the population which is being accelerated acquires a non-thermal spectrum. We have developed temperature dependent cross-sections. Acceleration begins from a thermal distribution. As soon as the particles increase their energy by the acceleration process, they acquire an energy spectrum which differs from the Maxwellian thermal one while interacting with the background thermal matter. Figure 1 presents the results of our model that fit experimental charge states of Fe ions from two impulsive SEP events detected by the SEPICA satellite in July 1999. We obtain good fitting for source temperature of 1.8 \\cdot 106 K and density of 5\\cdot108 cm-3 and acceleration efficiency of 1.8\\cdot 10-2 s-1 for the July 20th 1999 event and 3.3\\cdot 10-2 s-1 for the July 3rd 1999. Good concordance between experimental data and our model have

  10. Aerosol charge state characterisation using an ELPI

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, J C; Wright, M D; Henshaw, D L [University of Bristol (United Kingdom); Biddiscombe, M F; Usmani, O S, E-mail: j.c.matthews@bristol.ac.uk [NHLI, Imperial College London and Royal Brompton Hospital (United Kingdom)

    2011-06-23

    A new technique has been developed to measure the size distribution and charge state of highly charged aerosols using an Electrical Low Pressure Impactor (ELPI). The internal charger was switched alternately on and off and the time between stable charge states found to be {approx} 10 s. The size distribution of aerosols was found when the charger was on, from which the charge distribution can be estimated when the charger is off using the current at each impactor stage. This method was tested in background conditions, when a candle was burning and when a negative air ioniser was used. The ELPI electrometers were not sensitive enough to accurately measure the charge state on background and candle air, but gave a value for air charged by an ioniser. Comparing results from the ELPI with other techniques showed inaccuracies in this method that need to be addressed before further use of this technique.

  11. Aerosol charge state characterisation using an ELPI

    Science.gov (United States)

    Matthews, J. C.; Wright, M. D.; Biddiscombe, M. F.; Usmani, O. S.; Henshaw, D. L.

    2011-06-01

    A new technique has been developed to measure the size distribution and charge state of highly charged aerosols using an Electrical Low Pressure Impactor (ELPI). The internal charger was switched alternately on and off and the time between stable charge states found to be ~ 10 s. The size distribution of aerosols was found when the charger was on, from which the charge distribution can be estimated when the charger is off using the current at each impactor stage. This method was tested in background conditions, when a candle was burning and when a negative air ioniser was used. The ELPI electrometers were not sensitive enough to accurately measure the charge state on background and candle air, but gave a value for air charged by an ioniser. Comparing results from the ELPI with other techniques showed inaccuracies in this method that need to be addressed before further use of this technique.

  12. Charge transfer processes of low charge state heavy ions

    International Nuclear Information System (INIS)

    In this paper, some aspects of the collision processes of accelerated heavy ions in very low charge state is reviewed, and the beam loss due to such collisions is estimated. The processes included in ion-atom collisions are electron capture, the electron stripping of ions, and target ionization. The stripping cross sections decrease slowly at high energy, and are much larger than the electron capture cross sections. At low energy, the electron capture is dominant, and this process plays a principal role near ion sources and preacceleration regions. This has not been taken into account properly. In order to keep the beam loss less than 0.1 percent, it is estimated that the average vacuum of about 10-7 to 10-8 Torr is required. An empirical formula to calculate the stripping cross sections of heavy ions in low charge state in collisions is derived. The beam loss due to ion-atom collisions can be estimated. The charge transfer and stripping processes in ion-ion collisions are also discussed. The typical processes in ion-ion collisions are almost same as those in ion-atom collisions. In order to minimize the ion beam loss due to charge-changing processes, it is important to choose the heavy ions with closed shell configurations, which correspond to the slightly more ionized states than the singly ionized state. (Kato, T.)

  13. Environment Dependent Charge Potential for Water

    OpenAIRE

    Muralidharan, Krishna; Valone, Steven M.; Atlas, Susan R.

    2007-01-01

    We present a new interatomic potential for water captured in a charge-transfer embedded atom method (EAM) framework. The potential accounts for explicit, dynamical charge transfer in atoms as a function of the local chemical environment. As an initial test of the charge-transfer EAM approach for a molecular system, we have constructed a relatively simple version of the potential and examined its ability to model the energetics of small water clusters. The excellent agreement between our resul...

  14. Solute location in a nanoconfined liquid depends on charge distribution

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Jacob A.; Thompson, Ward H., E-mail: wthompson@ku.edu [Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (United States)

    2015-07-28

    Nanostructured materials that can confine liquids have attracted increasing attention for their diverse properties and potential applications. Yet, significant gaps remain in our fundamental understanding of such nanoconfined liquids. Using replica exchange molecular dynamics simulations of a nanoscale, hydroxyl-terminated silica pore system, we determine how the locations explored by a coumarin 153 (C153) solute in ethanol depend on its charge distribution, which can be changed through a charge transfer electronic excitation. The solute position change is driven by the internal energy, which favors C153 at the pore surface compared to the pore interior, but less so for the more polar, excited-state molecule. This is attributed to more favorable non-specific solvation of the large dipole moment excited-state C153 by ethanol at the expense of hydrogen-bonding with the pore. It is shown that a change in molecule location resulting from shifts in the charge distribution is a general result, though how the solute position changes will depend upon the specific system. This has important implications for interpreting measurements and designing applications of mesoporous materials.

  15. Charge independence and charge symmetry breaking interactions and the Coulomb energy anomaly in isobaric analog states

    International Nuclear Information System (INIS)

    Effects of CIB (charge independence breaking) and CSB (charge symmetry breaking) interactions on the Coulomb displacement energies of isobaric analog states are investigated for 48Ca, 90Zr and 208Pb. Mass number dependence of the Coulomb energy anomalies is well explained when CIB and CSB interactions are used which reproduce the differences of the scattering lengths as well as those of the effective ranges of low energy nucleon-nucleon scattering. (author) 17 refs., 3 figs., 3 tabs

  16. Charge State Hysteresis in Semiconductor Quantum Dots

    OpenAIRE

    Yang, C. H.; Rossi, A; Lai, N. S.; Leon, R.; Lim, W. H.; Dzurak, A.S.

    2014-01-01

    Semiconductor quantum dots provide a two-dimensional analogy for real atoms and show promise for the implementation of scalable quantum computers. Here, we investigate the charge configurations in a silicon metal-oxide-semiconductor double quantum dot tunnel coupled to a single reservoir of electrons. By operating the system in the few-electron regime, the stability diagram shows hysteretic tunnelling events that depend on the history of the dots charge occupancy. We present a model which acc...

  17. Arrival direction dependence of muon charge ratio

    International Nuclear Information System (INIS)

    In order to study the geomagnetic influence on the charge ratio of cosmic ray muons observed at large zenith angles, the caculations of the motion of muons in the atmosphere have been carried out. The survival probabilities are computed as the function of momenta at sea level, zenith and azimuthal angles. The derived survival probabilities have been used together with a simplified model to give some qualitative estimations of the geomagnetic effects on the charge ratio in the case of the MUTRON spectrometer. It turns out that the geomagnetic effect on the charge ratio at sea level is still not negligible for muons of high momenta when the observations are made at large zenith angles or in east-west directions. (author)

  18. Intramolecular Charge Transfer States in the Condensed Phase

    Science.gov (United States)

    Williams, C. F.; Herbert, J. M.

    2009-06-01

    Time-Dependent Density Functional Theory (TDDFT) with long range corrected functionals can give accurate results for the energies of electronically excited states involving Intramolecular Charge Transfer (ICT) in large molecules. If this is combined with a Molecular Mechanics (MM) representation of the surrounding solvent this technique can be used to interpret the results of condensed phase UV-Vis Spectroscopy. Often the MM region is represented by a set of point charges, however this means that the solvent cannot repolarize to adapt to the new charge distribution as a result of ICT and so the excitation energies to ICT states are overestimated. To solve this problem an algorithm that interfaces TDDFT with the polarizable force-field AMOEBA is presented; the effect of solvation on charge transfer in species such as 4,4'dimethylaminobenzonitrile (DMABN) is discussed. M.A. Rohrdanz, K.M. Martins, and J.M. Herbert, J. Chem. Phys. 130 034107 (2008).

  19. Charge Distribution Dependency on Gap Thickness of CMS Endcap RPC

    CERN Document Server

    Park, Sung K; Lee, Kyongsei

    2016-01-01

    We report a systematic study of charge distribution dependency of CMS Resistive Plate Chamber (RPC) on gap thickness. Prototypes of double-gap RPCs with six different gap thickness ranging from from 1.0 to 2.0 mm in 0.2-mm steps have been built with 2-mm-thick phenolic high-pressure-laminated plates. The efficiencies of the six gaps are measured as a function of the effective high voltages. We report that the strength of the electric fields of the gap is decreased as the gap thickness is increased. The distributions of charges in six gaps are measured. The space charge effect is seen in the charge distribution at the higher voltages. The logistic function is used to fit the charge distribution data. Smaller charges can be produced within smaller gas gap. But the digitization threshold should be also lowered to utilize these smaller charges.

  20. AC impedance behaviour and state-of-charge dependence of Zr0.5Ti0.5V0.6Cr0.2Ni1.2 metal-hydride electrodes

    Indian Academy of Sciences (India)

    S Rodrigues; N Munichandraiah; A K Shukla

    2001-10-01

    Metal-hydride electrodes made of an AB2 alloy of the composition Zr0.5Ti0.5V0.6Cr0.2Ni1.2 are studied for AC impedance behaviour at several of their state-of-charge values. Impedance data at any state-of-charge comprise two RC-time constants and accordingly are analysed by using a nonlinear-least-square-fitting procedure. Resistance of the electrode and frequency maximum (*) of the lowfrequency semicircle are found useful for predicting state-of-charge of the metalhydride electrodes.

  1. Application of carbon stripping foil to HIRFL-CSR and measurement of charge state distribution

    International Nuclear Information System (INIS)

    Charged ions may be injected into the CSRm by means of the charge stripping injection or the multiple multi-turn injection. The charge state distribution of the ions passing through the carbon foil has great influence on the performance of the accelerator and thus plays a key role in the charge stripping injection. It's found that the charge state distribution is dependent on the thicknesses of the carbon foil and the energy of the ions. In present work, the carbon stripper was applied to HIRFL-CSR and the best optional charge state distribution was measured. (authors)

  2. Contagion and state dependent mutations

    OpenAIRE

    Szeidl, Adam; Lee, In Ho; Valentinyi, Akos

    2000-01-01

    Early results of evolutionary game theory showed that the risk dominant equilibrium is uniquely selected on the long run by the best response dynamics with mutation. Bergin and Lipman (1996) qualified this result by showing that for a given population size the evolutionary process can select any strict Nash equilibrium if the probability of choosing a nonbest reply is state-dependent. This paper shows that the unique selection of the risk dominant equilibrium is robust with respect to state d...

  3. Dependence structure of market states

    OpenAIRE

    Desislava Chetalova; Marcel Wollschl\\"ager; Rudi Sch\\"afer

    2015-01-01

    We study the dependence structure of market states by estimating empirical pairwise copulas of daily stock returns. We consider both original returns, which exhibit time-varying trends and volatilities, as well as locally normalized ones, where the non-stationarity has been removed. The empirical pairwise copula for each state is compared with a bivariate K-copula. This copula arises from a recently introduced random matrix model, in which non-stationary correlations between returns are model...

  4. Efficient charge generation by relaxed charge-transfer states at organic interfaces

    KAUST Repository

    Vandewal, Koen

    2013-11-17

    Interfaces between organic electron-donating (D) and electron-accepting (A) materials have the ability to generate charge carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold via weakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C60 and polymer:polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy. © 2014 Macmillan Publishers Limited.

  5. PRESSURE DEPENDENCE OF DYNAMICAL CHARGES AND IONICITY OF SEMICONDUCTORS

    OpenAIRE

    Cardona, M.

    1984-01-01

    The advent of the diamond anvil cell has made possible very accurate determinations of the pressure dependence of phonon frequencies by means of Raman scattering. In polar materials pairs of longitudinal and transverse phonons are observed. The pressure dependence of the separation between these lines gives direct information on the dependence of the dynamic effective charge on lattice constant which can be taken as a measure of the dependence of the bond-ionicities on a0. We discuss experime...

  6. State approaches to the system benefits charge

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J M

    1997-07-01

    This report documents the consideration and implementation of a non-bypassable system benefits charge (SBC) in six states through mid-May 1997. The SBC is being established to sustain important public-policy programs during the electric industry restructuring process. The states covered include Arizona, California, Massachusetts, New York, Rhode Island, and Wisconsin. This report was prepared for the Office of Energy and Resource Planning, Utah Department of Natural Resources, under the National Renewable Energy Laboratory`s Sustainable Technology Energy Partnerships Initiative, Second Round (STEP-2). The purpose of the report is to provide decision makers in Utah, including the Utah Public Service Commission and the state legislature, with relevant information on the SBC for use in their deliberation on the matter. The issues faced by the six states are the SBC in general; surcharge rate or funding levels; administrative structure and procedures; and actions, guidelines, and principles by program area.

  7. State-Dependent Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Ciann-Dong Yang

    2014-10-01

    Full Text Available This paper proposes a new mixed quantum mechanics (QM—molecular mechanics (MM approach, where MM is replaced by quantum Hamilton mechanics (QHM, which inherits the modeling capability of MM, while preserving the state-dependent nature of QM. QHM, a single mechanics playing the roles of QM and MM simultaneously, will be employed here to derive the three-dimensional quantum dynamics of diatomic molecules. The resulting state-dependent molecular dynamics including vibration, rotation and spin are shown to completely agree with the QM description and well match the experimental vibration-rotation spectrum. QHM can be incorporated into the framework of a mixed quantum-classical Bohmian method to enable a trajectory interpretation of orbital-spin interaction and spin entanglement in molecular dynamics.

  8. Volume Dependence of the Axial Charge of the Nucleon

    OpenAIRE

    Hall, N. L.; Thomas, A. W.; Young, R.D.(ARC Centre of Excellence for Particle Physics at the Terascale and CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia); Zanotti, J. M.

    2012-01-01

    It is shown that the strong volume-dependence of the axial charge of the nucleon seen in lattice QCD calculations can be understood quantitatively in terms of the pion-induced interactions between neighbouring nucleons. The associated wave function renormalization leads to an increased suppression of the axial charge as the strength of the interaction increases, either because of a decrease in lattice size or in pion mass.

  9. Instantaneous charge state of Uranium projectiles in fully ionized plasmas from energy loss experiments

    CERN Document Server

    Morales, Roberto; Casas, David

    2016-01-01

    The instantaneous charge state of uranium ions traveling through a fully ionized hydrogen plasma has been theoretically studied and compared with one of the first energy loss experiments in plasmas, carried out at GSI-Darmstadt by Hoffmann \\textit{et al.} in the 90's. For this purpose, two different methods to estimate the instantaneous charge state of the projectile have been employed: (1) rate equations using ionization and recombination cross sections, and (2) equilibrium charge state formulas for plasmas. Also, the equilibrium charge state has been obtained using these ionization and recombination cross sections, and compared with the former equilibrium formulas. The equilibrium charge state of projectiles in plasmas is not always reached, it depends mainly on the projectile velocity and the plasma density. Therefore, a non-equilibrium or an instantaneous description of the projectile charge is necessary. The charge state of projectile ions cannot be measured, except after exiting the target, and experime...

  10. Charge-state evolution of highly charged ions transmitted through microcapillaries

    OpenAIRE

    Tokesi, K.; Wirtz, Ludger; Lemell, C.; Burgdorfer, J.

    2000-01-01

    The charge-state evolution of highly charged ions transmitted through microcapillaries is studied theoretically by a classical trajectory Monte Carlo simulation.: The interaction of highly charged ions with the internal surface of the capillary is treated within the framework of dielectric response theory. We analyze the distance of closest approach and the angular distributions of the highly charged ions at the exit of the microcapillary. We find the charge-state fraction of transmitted N6+ ...

  11. Charge state and incident energy dependence of K X-ray emission as a function of target thickness for 50-165 MeV Cu ions incident on 11-250 μg/cm 2 Cu

    Science.gov (United States)

    Momoi, T.; Shima, K.; Umetani, K.; Moriyama, M.; Ishihara, T.; Mikumo, T.

    1986-05-01

    Thin self-supporting Cu targets in 11-250 μg/cm 2 thickness were bombarded with 50-165 MeV Cu qi+ ions (7 ⩽ qi⩽ 24) to investigate the target thickness dependence of inner shell vacancy production processes in the symmetric collision of Cu + Cu. Doppler-shifted projectile K X-rays were discriminated from the target K X-rays, and the projectile and target K X-ray yields were separately measured as a function of target thickness. The K X-ray yields emitted from the projectile and the target Cu atoms are strongly dependent on the projectile initial charge state and target thickness for all the investigated collision systems of Cu qi+ + Cu. From the observed K X-ray yields, K-shell vacancy production cross sections averaged over the target thickness t of projectile overlineσ KV and target overlineσ ∗KV were separately derived taking into account the fluorescence yield that can be estimated from the Kα X-ray energy shift. When the values of overlineσ KV and overlineσ ∗KV are extrapolated to zero foil thickness, the K shell vacancy formed in the collision has been found to be equally shared between projectile and target in a single collision. With the increase of penetration depth, however, the values of overlineσ ∗KV are greater than those of overlineσ KV presumably due to electron transfer of a target K electron to the projectile K vacancy. the evolution process of projectile excited states as a function of target thickness and the resulting variation of projectile and target K X-ray emissions are discussed.

  12. Charge and Energy Dependences of Ionization and Transfer for Helium in Collisions with Fast Charged Projectiles

    Institute of Scientific and Technical Information of China (English)

    FU Hong-Bin; WANG Bao-Hong; DING Bao-Wei; LIU Zhao-Yuan

    2009-01-01

    The classical method within the independent electron model is employed to investigate (i) charge dependences of single and double ionization for helium by various charged ions Aq+ (q = 1 - 8) at impact energies of 0.64 and 1.44 MeV/u, respectively, (ii) energy dependences of transfer ionization for helium by 0.5-3 MeV/u A8,9+ ions impact. The Lenz-Jensen model of the atom is applied instead of the Bohr model of the atom, and the impact-parameter dependences are also introduced into the calculations. Satisfactory agreement is found between theoretical and experimental data.

  13. Ionic charge state measurements in solar energetic particle events

    International Nuclear Information System (INIS)

    With the launch of the Advanced Composition Explorer, it has become possible through the SEPICA instrument to make direct ionic charge state measurements for individual Solar Energetic Particle events. In large events, the charge state may even be measured as a function of time, revealing changes that may be created by phenomena such as injections from different acceleration mechanisms, or confinement by magnetic field structures. The charge state can be a sensitive indicator of separate SEP populations. Several examples of SEP events will be presented. One of these, the November, 1997 event, displayed a trend in which the mean charge state for several ions increased with energy. These measurements may be the result of several processes, including a mixture of plasma with different source and acceleration histories, and abundance formation and possibly additional charge state modification by collisional or other means in the corona. A wide range of iron charge states have been measured for a variety of SEP events, ranging from =10+ to 20+. The mean charge states of C, O, Ne, Mg and Si all increased as the iron charge state increased. In events with the highest iron charge states, there were abundance enhancements in Ne with respect to oxygen in those cases, even though the mass/charge of the O and Ne were similar. In events with the lowest iron charge states, all these ions except Mg showed mean charge states generally consistent with coronal material of an equilibrium temperature of 1.3-1.6 million degrees K

  14. Are There Topologically Charged States Associated with Quantum Electrodynamics ?

    CERN Document Server

    Marino, E C

    1994-01-01

    We present a formulation of Quantum Electrodynamics in terms of an antisymmetric tensor gauge field. In this formulation the topological current of this field appears as a source for the electromagnetic field and the topological charge therefore acts physically as an electric charge. The charged states of QED lie in the sector where the topological charge is identical to the matter charge. The antisymmetric field theory, however, admits new sectors where the topological charge is more general. These nontrivial, electrically charged, sectors contain massless states orthogonal to the vacuum which are created by a gauge invariant operator and can be interpreted as coherent states of photons. We evaluate the correlation functions of these states in the absence of matter. The new states have a positive definite norm and do interact with the charged states of QED in the usual way. It is argued that if these new sectors are in fact realized in nature then a very intense background electromagnetic field is necessary ...

  15. Optimal Charging Strategy for EVs with Batteries at Different States of Health

    OpenAIRE

    Tianxiang, Jiang; Putrus, Ghanim; Zhiwei, Gao; Conti, Matteo; McDonald, Stephen

    2013-01-01

    The electric vehicle (EV) is targeted as an efficient method of decreasing CO2 emission and reducing dependence on fossil fuel. Compared with filling up the internal combustion engine (ICE) vehicle, the EV power charging time is usually long. However,to the best of our knowledge, the current charging strategy does not consider the battery state of health (SOH). It is noted that a high charging current rate may damage the battery life. Motivated by this, an optimal charging strategy is propose...

  16. Quantum superposition of charge states on capacitively coupled superconducting islands

    OpenAIRE

    Heij, C. P.; Dixon, D C; van der Wal, C H; Hadley, P.; Mooij, J.E.

    2003-01-01

    We investigate the ground state properties of a system containing two superconducting islands coupled capacitively by a wire. The ground state is a macroscopic superposition of charge states, even though the islands cannot exchange charge carriers. The ground state of the system is probed by measuring the switching current of a Bloch transistor containing one of the islands. Calculations based on superpositions of charge states on both islands show good agreement with the experiments. The abi...

  17. Cation charge dependence of the forces driving DNA assembly.

    Science.gov (United States)

    DeRouchey, Jason; Parsegian, V Adrian; Rau, Donald C

    2010-10-20

    Understanding the strength and specificity of interactions among biologically important macromolecules that control cellular functions requires quantitative knowledge of intermolecular forces. Controlled DNA condensation and assembly are particularly critical for biology, with separate repulsive and attractive intermolecular forces determining the extent of DNA compaction. How these forces depend on the charge of the condensing ion has not been determined, but such knowledge is fundamental for understanding the basis of DNA-DNA interactions. Here, we measure DNA force-distance curves for a homologous set of arginine peptides. All forces are well fit as the sum of two exponentials with 2.4- and 4.8-Å decay lengths. The shorter-decay-length force is always repulsive, with an amplitude that varies slightly with length or charge. The longer-decay-length force varies strongly with cation charge, changing from repulsion with Arg¹ to attraction with Arg². Force curves for a series of homologous polyamines and the heterogeneous protein protamine are quite similar, demonstrating the universality of these forces for DNA assembly. Repulsive amplitudes of the shorter-decay-length force are species-dependent but nearly independent of charge within each species. A striking observation was that the attractive force amplitudes for all samples collapse to a single curve, varying linearly with the inverse of the cation charge. PMID:20959102

  18. Effects of Solvent on the Maximum Charge State and Charge State Distribution of Protein Ions Produced by Electrospray Ionization

    OpenAIRE

    Iavarone, Anthony T.; Jurchen, John C.; Williams, Evan R.

    2000-01-01

    The effects of solvent composition on both the maximum charge states and charge state distributions of analyte ions formed by electrospray ionization were investigated using a quadrupole mass spectrometer. The charge state distributions of cytochrome c and myoglobin, formed from 47%/50%/3% water/solvent/acetic acid solutions, shift to lower charge (higher m/z) when the 50% solvent fraction is changed from water to methanol, to acetonitrile, to isopropanol. This is also the order of increasing...

  19. Equilibrium charge-state distributions of highly stripped ions in carbon foils

    International Nuclear Information System (INIS)

    Asymmetric equilibrium charge-state distributions observed for heavy ions (Z approx. >= 7) in carbon foils at high velocities (v > 3.6 x 108 Z0sup(.)45 cm s-1) are closely approximated by a simple statistical distribution: the reduced chi-squared model. The dependences of the mean charge and of the standard deviation of the charge on the projectile velocity are obtained by a previously-known and a newly-proposed relation, respectively. Finally charge-state fractions may be easily predicted using a simple formula depending only on the atomic number and on the velocity of the projectile. (orig.)

  20. Quantum superposition of charge states on capacitively coupled superconducting islands

    NARCIS (Netherlands)

    Heij, C.P.; Dixon, D.C.; Wal, C.H. van der; Hadley, P.; Mooij, J.E.

    2003-01-01

    We investigate the ground state properties of a system containing two superconducting islands coupled capacitively by a wire. The ground state is a macroscopic superposition of charge states, even though the islands cannot exchange charge carriers. The ground state of the system is probed by measuri

  1. 77 FR 60005 - Schedule of Charges Outside the United States

    Science.gov (United States)

    2012-10-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Schedule of Charges Outside the United States AGENCY: Federal Aviation... of charges for services of FAA Flight Standards Aviation Safety Inspectors outside the United...

  2. State-dependent visual processing

    Directory of Open Access Journals (Sweden)

    Juliane eBritz

    2011-12-01

    Full Text Available The temporal dynamics and anatomical correlates underlying human visual cognition are traditionally assessed as a function of stimulus properties and task demands. Any non-stimulus related activity is commonly dismissed as noise and eliminated to extract an evoked signal that is only a small fraction of the magnitude of the measured signal. We review studies that challenge this view by showing that non-stimulus related activity is not mere noise but that it has a well structured organization which can largely determine the processing of upcoming stimuli. We review evidence from human electrophysiology that shows how different aspects of pre-stimulus activity such as pre-stimulus EEG frequency power and phase and pre-stimulus EEG microstates can determine qualitative and quantitative properties of both lower and higher level visual processing. These studies show that low-level sensory processes depend on the momentary excitability of sensory cortices whereas perceptual processes leading to stimulus awareness depend on momentary pre-stimulus activity in higher-level non-visual brain areas. Speed and accuracy of stimulus identification have likewise been shown to be modulated by pre-stimulus brain states.

  3. The lowest-energy charge-transfer state and its role in charge separation in organic photovoltaics.

    Science.gov (United States)

    Nan, Guangjun; Zhang, Xu; Lu, Gang

    2016-06-29

    Energy independent, yet higher than 90% internal quantum efficiency (IQE), has been observed in many organic photovoltaics (OPVs). However, its physical origin remains largely unknown and controversial. The hypothesis that the lowest charge-transfer (CT) state may be weakly bound at the interface has been proposed to rationalize the experimental observations. In this paper, we study the nature of the lowest-energy CT (CT1) state, and show conclusively that the CT1 state is localized in typical OPVs. The electronic couplings in the donor and acceptor are found to determine the localization of the CT1 state. We examine the geminate recombination of the CT1 state and estimate its lifetime from first principles. We identify the vibrational modes that contribute to the geminate recombination. Using material parameters determined from first principles and experiments, we carry out kinetic Monte Carlo simulations to examine the charge separation of the localized CT1 state. We find that the localized CT1 state can indeed yield efficient charge separation with IQE higher than 90%. Dynamic disorder and configuration entropy can provide the energetic and entropy driving force for charge separation. Charge separation efficiency depends more sensitively on the dimension and crystallinity of the acceptor parallel to the interface than that normal to the interface. Reorganization energy is found to be the most important material parameter for charge separation, and lowering the reorganization energy of the donor should be pursued in the materials design. PMID:27306609

  4. Linking diffusion kinetics to defect electronic structure in metal oxides: Charge-dependent vacancy diffusion in alumina

    International Nuclear Information System (INIS)

    We study the diffusion of charged vacancies in α-Al2O3 crystal using the first-principles calculation method. We predict that the migration energy for vacancy diffusion strongly depends on the charge state of the vacancy involved. Importantly, we reveal that this charge-dependent vacancy diffusion is directly related to the electron occupancy and energy level change of the defect states of the charged vacancy in alumina. Hence, our study establishes a direct link between the diffusion kinetics and electronic structure of metal oxides

  5. Cation Charge Dependence of the Forces Driving DNA Assembly

    OpenAIRE

    DeRouchey, Jason; Parsegian, V. Adrian; Rau, Donald C.

    2010-01-01

    Understanding the strength and specificity of interactions among biologically important macromolecules that control cellular functions requires quantitative knowledge of intermolecular forces. Controlled DNA condensation and assembly are particularly critical for biology, with separate repulsive and attractive intermolecular forces determining the extent of DNA compaction. How these forces depend on the charge of the condensing ion has not been determined, but such knowledge is fundamental fo...

  6. Solid state cloaking for electrical charge carrier mobility control

    Science.gov (United States)

    Zebarjadi, Mona; Liao, Bolin; Esfarjani, Keivan; Chen, Gang

    2015-07-07

    An electrical mobility-controlled material includes a solid state host material having a controllable Fermi energy level and electrical charge carriers with a charge carrier mobility. At least one Fermi level energy at which a peak in charge carrier mobility is to occur is prespecified for the host material. A plurality of particles are distributed in the host material, with at least one particle disposed with an effective mass and a radius that minimize scattering of the electrical charge carriers for the at least one prespecified Fermi level energy of peak charge carrier mobility. The minimized scattering of electrical charge carriers produces the peak charge carrier mobility only at the at least one prespecified Fermi level energy, set by the particle effective mass and radius, the charge carrier mobility being less than the peak charge carrier mobility at Fermi level energies other than the at least one prespecified Fermi level energy.

  7. Formation of High Charge State Heavy Ion Beams with intense Space Charge

    International Nuclear Information System (INIS)

    High charge-state heavy-ion beams are of interest and used for a number of accelerator applications. Some accelerators produce the beams downstream of the ion source by stripping bound electrons from the ions as they pass through a foil or gas. Heavy-ion inertial fusion (HIF) would benefit from low-emittance, high current ion beams with charge state >1. For these accelerators, the desired dimensionless perveance upon extraction from the emitter is ∼10-3, and the electrical current of the beam pulse is ∼1 A. For accelerator applications where high charge state and very high current are desired, space charge effects present unique challenges. For example, in a stripper, the separation of charge states creates significant nonlinear space-charge forces that impact the beam brightness. We will report on the particle-in-cell simulation of the formation of such beams for HIF, using a thin stripper at low energy.

  8. Influence of Multiple Ionization on Charge State Distributions

    Science.gov (United States)

    Hahn, Michael; Savin, Daniel Wolf

    2015-08-01

    The spectrum emitted by a plasma depends on the charge state distribution (CSD) of the gas. For collisionally ionized plasmas, the CSD is is determined by the corresponding rates for electron-impact ionization and recombination. In astrophysics, such plasmas are formed in stars, supernova remnants, galaxies, and galaxy clusters. Current CSD calculations generally do not account for electron-impact multiple ionization (EIMI), a process in which multiple electrons are ejected by a single electron-ion collision. We have estimated the EIMI cross sections for all charge states of iron using a combination of the available experimental data and semi-empirical formulae. We then modeled the CSD and observed the influence of EIMI compared to only including single ionization. One case of interest for astrophysics is nanoflare heating, which is a leading theory to explain the heating of the solar corona. In order to determine whether this theory can indeed explain coronal heating, spectroscopic measurements are being compared to model nanoflare spectra. Such models have attempted to predict the spectra of impulsively heated plasmas in which the CSD is time dependent. These nonequilbirium ionization calculations have so far ignored EIMI, but our findings suggest that EIMI can have a significant effect on the CSD of a nanoflare-heated plasma, changing the ion abundances by up to about 50%.

  9. Charge distribution dependency on gap thickness of CMS endcap RPC

    CERN Document Server

    Park, Sung Keun

    2016-01-01

    We present a systematic study of charge distribution dependency of CMS Resistive Plate Chamber (RPC) on gap thickness.Prototypes of double-gap with five different gap thickness from 1.8mm to 1.0mm in 0.2mm steps have been built with 2mm thick phenolic high-pressure-laminated (HPL) plates. The charges of cosmic-muon signals induced on the detector strips are measured as a function of time using two four-channel 400-MHz fresh ADCs. In addition, the arrival time of the muons and the strip cluster sizes are measured by digitizing the signal using a 32-channel voltage-mode front-end-electronics and a 400-MHz 64-channel multi-hit TDC. The gain and the input impedance of the front-end-electronics were 200mV/mV and 20 Ohm, respectively.

  10. Charge-State Distributions of Accelerated ^{48}Ca Ions

    CERN Document Server

    Skobelev, N K; Astabatyan, R A; Vincour, J; Kulko, A A; Lobastov, S P; Lukyanov, S M; Markaryan, E R; Maslov, V A; Penionzhkevich, Yu E; Sobolev, Yu G; Ugryumov, V Yu

    2003-01-01

    A stepped pole broad-range magnetic analyzer has been used to measure the charge-state distributions of accelerated ^{48}Ca ions at the two incident energies 242.8 and 264.5 MeV after passing through thin carbon or gold target foils. The measured charge-state distributions and the mean equilibrium charge of the ^{48}Ca ions are compared with various calculations. It has been shown that the calculations can be used only for evaluation purposes.

  11. 78 FR 61446 - Schedule of Charges Outside the United States

    Science.gov (United States)

    2013-10-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Schedule of Charges Outside the United States AGENCY: Federal Aviation... for services of FAA Flight Standards Aviation Safety Inspectors outside the United States....

  12. Charge-displacement analysis for excited states

    Energy Technology Data Exchange (ETDEWEB)

    Ronca, Enrico, E-mail: enrico@thch.unipg.it; Tarantelli, Francesco, E-mail: francesco.tarantelli@unipg.it [Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123 Perugia (Italy); Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, I-06123 Perugia (Italy); Pastore, Mariachiara, E-mail: chiara@thch.unipg.it; Belpassi, Leonardo; De Angelis, Filippo [Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123 Perugia (Italy); Angeli, Celestino; Cimiraglia, Renzo [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, via Borsari 46, I-44100 Ferrara (Italy)

    2014-02-07

    We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations. The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.

  13. Plasma as a high-charge-state projectile stripping medium

    International Nuclear Information System (INIS)

    The classical trajectory Monte Carlo model has been used to computationally study the charge-state distributions that result from interactions between a high-energy, multielectron projectile and neutral and fully ionized targets. These studies are designed to determine the properties of a plasma for producing highly stripped ions as a possible alternative to gas and foil strippers that are commonly used to enhance the charge states of energetic ion beams. The results of these studies clearly show that a low-atomic-number, highly ionized plasma can yield higher charge states than a neutral target of the same density. The effect is principally attributable to the reduction in the number of available electron-capture channels. In this article, we compare the charge-state distributions that result during passage of a 20-MeV Pb projectile through neutral gas and fully ionized (singly charged) plasma strippers and estimate the effects of multiple scattering on the quality of the beam

  14. Charge sensitive amplifies. The state of arts

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kunishiro [Clear Pulse Co., Tokyo (Japan)

    1996-07-01

    In the radiation detectors, signals are essentially brought with charges produced by radiation, then it is naturally the best way to use a charge sensitive amplifier (CSA) system to extract those signals. The CSA is thought to be the best amplifier suitable to almost all the radiation detectors, if neglecting economical points of view. The CSA has been only applied to special fields like radiation detection because the concept of `charges` is not so universal against the concepts of `voltage` and `current`. The CSA, however, is low in noise and a high speed amplifier and may be applicable not only to radiation measurement but also piezoelectric devices and also bolometers. In this article, noise in the CSA, basic circuit on the CSA, concepts of `equivalent noise charge` (ENC), a method for the ENC, and importance of the `open-loop gain` in the CSA to achieve better performance of it and how to realize in a practical CSA were described. And, characteristics on a counting rate of the CSA, various circuit used in the CSA, and CSAs which are commercially available at present and special purpose CSAs were also introduced. (G.K.)

  15. Coulomb charging energy of vacancy-induced states in graphene

    Science.gov (United States)

    Miranda, V. G.; Dias da Silva, Luis G. G. V.; Lewenkopf, C. H.

    2016-08-01

    Vacancies in graphene have been proposed to give rise to π -like magnetism in carbon materials, a conjecture which has been supported by recent experimental evidence. A key element in this "vacancy magnetism" is the formation of magnetic moments in vacancy-induced electronic states. In this work we compute the charging energy U of a single-vacancy-generated localized state for bulk graphene and graphene ribbons. We use a tight-binding model to calculate the dependency of the charging energy U on the amplitudes of the localized wave function on the graphene lattice sites. We show that for bulk graphene U scales with the system size L as (lnL) -2, confirming the predictions in the literature, based on heuristic arguments. In contrast, we find that for realistic system sizes U is of the order of eV, a value that is orders of magnitude higher than the previously reported estimates. Finally, when edges are considered, we show that U is very sensitive to the vacancy position with respect to the graphene flake boundaries. In the case of armchair nanoribbons, we find a strong enhancement of U in certain vacancy positions as compared to the value for vacancies in bulk graphene.

  16. Recoil ion charge state distribution following the beta(sup +) decay of {sup 21}Na

    Energy Technology Data Exchange (ETDEWEB)

    Scielzo, Nicholas D.; Freedman, Stuart J.; Fujikawa, Brian K.; Vetter, Paul A.

    2003-01-03

    The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions.

  17. Recoil ion charge state distribution following the beta(sup +) decay of 21Na

    International Nuclear Information System (INIS)

    The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions

  18. Spin Charge Separation in the Quantum Spin Hall State

    OpenAIRE

    Qi, Xiao-Liang; Zhang, Shou-Cheng

    2007-01-01

    The quantum spin Hall state is a topologically non-trivial insulator state protected by the time reversal symmetry. We show that such a state always leads to spin-charge separation in the presence of a $\\pi$ flux. Our result is generally valid for any interacting system. We present a proposal to experimentally observe the phenomenon of spin-charge separation in the recently discovered quantum spin Hall system.

  19. Spin Charge Separation in the Quantum Spin Hall State

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Liang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum spin Hall state is a topologically non-trivial insulator state protected by the time reversal symmetry. We show that such a state always leads to spin-charge separation in the presence of a {pi} flux. Our result is generally valid for any interacting system. We present a proposal to experimentally observe the phenomenon of spin-charge separation in the recently discovered quantum spin Hall system.

  20. Temperature dependence of charge carrier generation in organic photovoltaics.

    Science.gov (United States)

    Gao, Feng; Tress, Wolfgang; Wang, Jianpu; Inganäs, Olle

    2015-03-27

    The charge generation mechanism in organic photovoltaics is a fundamental yet heavily debated issue. All the generated charges recombine at the open-circuit voltage (V_{OC}), so that investigation of recombined charges at V_{OC} provides a unique approach to understanding charge generation. At low temperatures, we observe a decrease of V_{OC}, which is attributed to reduced charge separation. Comparison between benchmark polymer:fullerene and polymer:polymer blends highlights the critical role of charge delocalization in charge separation and emphasizes the importance of entropy in charge generation. PMID:25860774

  1. The axial charges of the hidden-charm pentaquark states

    CERN Document Server

    Wang, Guang-Juan; Zhu, Shi-Lin

    2016-01-01

    With the chiral quark model, we have calculated the axial charges of the pentaquark states with $(I,I_3)=(\\frac{1}{2},\\frac{1}{2})$ and $J^{P}=\\frac{1}{2}^{\\pm},\\frac{3}{2}^{\\pm},\\frac{5}{2}^{\\pm}$. The $P_c$ states with the same $J^P$ quantum numbers but different color-spin-flavor configurations have very different axial charges, which encode important information on their underlying structures. For some of the $J^{P}=\\frac{3}{2}^{\\pm}$ or $\\frac{5}{2}^{\\pm}$ pentaquark states, their axial charges are much smaller than that of the proton.

  2. Charging state of atmospheric nanoparticles during the nucleation burst events

    Science.gov (United States)

    Vana, M.; Tamm, E.; Hõrrak, U.; Mirme, A.; Tammet, H.; Laakso, L.; Aalto, P. P.; Kulmala, M.

    2006-12-01

    In this work, the charging state of atmospheric nanoparticles was estimated through simultaneous measurements of aerosol size distribution and air ions mobility distribution with the aim to elucidate the formation mechanisms of atmospheric aerosols. The measurements were performed as a part of the QUEST 2 campaign at a boreal forest station in Finland. The overlapping part of the measurement ranges of the particle size spectrometers and air ion mobility spectrometers in the mass diameter interval of 2.6-40 nm was used to assess the percentage of charged particles (charging probability). This parameter was obtained as the slope of the linear regression line on the scatterplot of the measured concentrations of total (neutral + charged) and charged particles for the same diameter interval. Charging probabilities as a function of particle diameter were calculated for different days and were compared with the steady state charging probabilities of the particles in the bipolar ion atmosphere. For the smallest particles detectable by the particle size spectrometers (2.6-5 nm), the high percentages of negatively charged particles were found during the nanometer particle concentration bursts. These values considerably exceeded the values for the steady charging state and it was concluded that negative cluster ions preferably act as condensation nuclei. This effect was found to be the highest in the case of comparatively weak nucleation bursts of nanoparticles, when the rate of the homogeneous nucleation and the concentration of freshly nucleated particles were low. The nucleation burst days were classified according to the concentration of the generated smallest detectable new particles (weak and strong bursts). Approximately the same classification was obtained based on the charge asymmetry on particles with respect to the charge sign (polarity). The probabilities of negative and positive charge on the particles with the diameter of 5-20 nm were found to be nearly equal

  3. Dependence of Fission-Fragment Primary Charge on Nuclear Structure

    International Nuclear Information System (INIS)

    Assuming a quasi-static scission configuration the potential energy of this configuration has been calculated. The energy release between saddle point and scission point has been maximized using the liquid drop model and taking into account the mass dependence of the deform ability of the fission fragments. The leading terms that determine the charge distribution depend on the Coulomb and the asymmetry energy of the scission configuration. The deformability of the fragments shows dependence from nuclear structure. A term proportional to the difference of the deformation energies of the two fragments gives rise to a strong influence from this nuclear structure effect. In the region of closed shells the difference in the deformation energies is much the same as the total deformation energy. A term comparable to the Coulomb energy term has to be taken into account in these mass regions. The calculated Zp-values have been compared to experimental results for U235. Calculated Zp-values for Cf252 are given. (author)

  4. Even and Odd Charge Coherent States: Higher-Order Nonclassical Properties and Generation Scheme

    Science.gov (United States)

    Duc, Truong Minh; Dinh, Dang Huu; Dat, Tran Quang

    2016-06-01

    We examine the higher-order nonclassical properties of the even and odd charge coherent states as well as proposing a scheme to generate these states whose modes can freely travel in open space. We show that the even and odd charge coherent states exhibit both higher-order antibunching and higher-order squeezing. While the two-mode higher-order antibunching occurs in any order and essentially depends on the charge number, the two-mode higher-order squeezing appears only in the even orders. We also prove that these states are genuinely entangled, and they can be generated by means of cross-Kerr media, beam splitters, phase shifts and threshold detectors. We find that the fidelity and the corresponding success probability to generate these states are dependent on the correlative parameters.

  5. A high charge state heavy ion beam source for HIF

    International Nuclear Information System (INIS)

    A high current low emittance high charge state heavy ion beam source is being developed. This is designed to deliver HIF (heavy ion fusion) driver accelerator scale beam. Using high-charge-state beam in a driver accelerator for HIF may increase the acceleration efficiency, leading to a reduction in the driver accelerator size and cost. The proposed source system which consists of the gas beam electron stripper followed by a high charge state beam separator, can be added to existing single charge state, low emittance, high brightness ion sources and injectors. We shall report on the source physics design using 2D beam envelope simulations and experimental feasibility studies' results using a neutral gas stripper and a beam separator at the exit of the LBL 2 MV injector

  6. Gauge Transformations For Self/Anti-Self Charge Conjugate States

    CERN Document Server

    Dvoeglazov, V V

    1998-01-01

    Gauge transformations of type-II spinors are considered in the Majorana-Ahluwalia construct for self/anti-self charge conjugate states. Some speculations on the relations of this model with the earlier ones are given.

  7. Measurements of aerosol charging states in Helsinki, Finland

    Directory of Open Access Journals (Sweden)

    S. Gagné

    2011-05-01

    Full Text Available The charging state of aerosol populations was measured with an Ion-DMPS in Helsinki, Finland between December 2008 and February 2010. Based on the charging states, we calculated the ion-induced nucleation fraction to be around 0.8 % ± 0.9 %. We review the role of ion-induced nucleation and propose different explanations for a low ion-induced nucleation participation in urban areas. We present a new method to retrieve the average charging state for an event, and a given size. We also use a new theoretical framework that allows for different concentrations of small cluster ions for different polarities (polarity asymmetry. We extrapolate the ion-induced fraction using polarity symmetry and asymmetry. Finally, a method to calculate the growth rates from the variation of the charging state as a function of the particle diameter using polarity symmetry and asymmetry is presented and used on a selection of new particle formation events.

  8. Heavy ion charge-state distribution effects on energy loss in plasmas

    Science.gov (United States)

    Barriga-Carrasco, Manuel D.

    2013-10-01

    According to dielectric formalism, the energy loss of the heavy ion depends on its velocity and its charge density. Also, it depends on the target through its dielectric function; here the random phase approximation is used because it correctly describes fully ionized plasmas at any degeneracy. On the other hand, the Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler is used to determine its mean charge state . This latter criterion implies that the mean charge state depends on the electron density and temperature of the plasma. Also, the initial charge state of the heavy ion is crucial for calculating inside the plasma. Comparing our models and estimations with experimental data, a very good agreement is found. It is noticed that the energy loss in plasmas is higher than that in the same cold gas cases, confirming the well-known enhanced plasma stopping (EPS). In this case, EPS is only due to the increase in projectile effective charge Qeff, which is obtained as the ratio between the energy loss of each heavy ion and that of the proton in the same plasma conditions. The ratio between the effective charges in plasmas and in cold gases is higher than 1, but it is not as high as thought in the past. Finally, another significant issue is that the calculated effective charge in plasmas Qeff is greater than the mean charge state , which is due to the incorporation of the BK charge distribution. When estimations are performed without this distribution, they do not fit well with experimental data.

  9. Explosion and final state of the charged black hole bomb

    CERN Document Server

    Sanchis-Gual, Nicolas; Montero, Pedro J; Font, José A; Herdeiro, Carlos

    2015-01-01

    A Reissner-Nordstr\\"om black hole (BH) is superradiantly unstable against spherical perturbations of a charged scalar field, enclosed in a cavity, with frequency lower than a critical value. We use numerical relativity techniques to follow the development of this unstable system -- dubbed charged BH bomb -- into the non-linear regime, solving the full Einstein--Maxwell--Klein-Gordon equations, in spherical symmetry. We show that: $i)$ the process stops before all the charge is extracted from the BH; $ii)$ the system settles down into a hairy BH: a charged horizon in equilibrium with a scalar field condensate, whose phase is oscillating at the (final) critical frequency. For low scalar field charge, $q$, the final state is approached smoothly and monotonically. For large $q$, however, the energy extraction overshoots and an explosive phenomenon, akin to a $bosenova$, pushes some energy back into the BH. The charge extraction, by contrast, does not reverse.

  10. Equilibrium charge state distributions of high energy heavy ions

    International Nuclear Information System (INIS)

    Equilibrium charge state fractions have been measured for N, O, Ne, S, Ar and Kr ions at 1.04 MeV/nucleon after passing through various stripping materials. Further data were obtained at higher energy for S ions (4.12 MeV/nucleon) and Ar ions (4.12 and 9.6 MeV/nucleon). The mean charge fractions can be fitted to universal curves for both solid and gaseous strippers. Measurements of the equilibrium fraction of krypton ions at 1.04 MeV/nucleon passing through heavy vapours have shown that a higher average charge state is obtained than for lighter gaseous strippers. (Auth.)

  11. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several {mu}s) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution.

  12. Charge states of energetic oxygen and sulfur ions in Jupiter's magnetosphere

    Science.gov (United States)

    Clark, G.; Mauk, B. H.; Paranicas, C.; Kollmann, P.; Smith, H. T.

    2016-03-01

    Pitch angle distributions of proton and energetic heavy ion fluxes near Europa's orbit have been measured by the Galileo Energetic Particles Detector (EPD). At similar energies, these distributions have important differences. If their source and transport processes are similar, as we hypothesize here, then it is difficult to reconcile their different pitch angle distributions. By looking at the same question, other researchers have proposed that the heavies are multiply charged, leading to differences in how the particles are lost. This could not be confirmed directly with EPD because that detector does not separate heavy ion measurements by charge state. However, indirect analyses of the data have extracted the charge state of a few sulfur events. We present here a complete list of ion injections observed with EPD over the whole mission. Energetic sulfur and oxygen charge states can be inferred through a dispersion analysis of dynamic injections that makes use of the charge-dependent nature of the gradient-curvature azimuthal drift. We find that sulfur is predominantly multiply charged, whereas oxygen is more evenly distributed between singly and doubly charged states. In addition to current theories on energetic heavy ion transport near the Europa region, we propose that charge gain for the oxygen ions (electron stripping) may play an important role in the character of energetic particles in that region.

  13. ARCHITECTURE OF A CHARGE-TRANSFER STATE REGULATING LIGHT HARVESTING IN A PLANT ANTENNA PROTEIN

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Graham; Ahn, Tae Kyu; Avenson, Thomas J.; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K.; Bassi, Roberto; Fleming, Graham R.

    2008-04-02

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge-transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). In this work, we present evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a de-localized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can `tune? the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophylls-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  14. Charge dependence of the plasma travel length in atmospheric-pressure plasma

    Science.gov (United States)

    Yambe, Kiyoyuki; Konda, Kohmei; Masuda, Seiya

    2016-06-01

    Plasma plume is generated using a quartz tube, helium gas, and foil electrode by applying AC high voltage under the atmosphere. The plasma plume is released into the atmosphere from inside of the quartz tube and is seen as the continuous movement of the plasma bullet. The travel length of plasma bullet is defined from plasma energy and force due to electric field. The drift velocity of plasma bullet has the upper limit under atmospheric-pressure because the drift velocity is determined from the balance between electric field and resistive force due to collisions between plasma and air. The plasma plume charge depends on the drift velocity. Consequently, in the laminar flow of helium gas flow state, the travel length of the plasma plume logarithmically depends on the plasma plume charge which changes with both the electric field and the resistive force.

  15. Charged-state dynamics in Kelvin probe force microscopy

    OpenAIRE

    Ondráček, Martin; Hapala, Prokop; Jelínek, Pavel

    2016-01-01

    We present a numerical model which allows us to study the Kelvin force probe microscopy response to the charge switching in quantum dots at various time scales. The model provides more insight into the behavior of frequency shift and dissipated energy under different scanning conditions measuring a temporarily charged quantum dot on surface. Namely, we analyze the dependence of the frequency shift, its fluctuation and of the dissipated energy, on the resonance frequency of tip and electron tu...

  16. Modulation of nitrogen vacancy charge state and fluorescence in nanodiamonds using electrochemical potential

    Science.gov (United States)

    Karaveli, Sinan; Gaathon, Ophir; Wolcott, Abraham; Sakakibara, Reyu; Shemesh, Or A.; Peterka, Darcy S.; Boyden, Edward S.; Owen, Jonathan S.; Yuste, Rafael; Englund, Dirk

    2016-04-01

    The negatively charged nitrogen vacancy (NV-) center in diamond has attracted strong interest for a wide range of sensing and quantum information processing applications. To this end, recent work has focused on controlling the NV charge state, whose stability strongly depends on its electrostatic environment. Here, we demonstrate that the charge state and fluorescence dynamics of single NV centers in nanodiamonds with different surface terminations can be controlled by an externally applied potential difference in an electrochemical cell. The voltage dependence of the NV charge state can be used to stabilize the NV- state for spin-based sensing protocols and provides a method of charge state-dependent fluorescence sensing of electrochemical potentials. We detect clear NV fluorescence modulation for voltage changes down to 100 mV, with a single NV and down to 20 mV with multiple NV centers in a wide-field imaging mode. These results suggest that NV centers in nanodiamonds could enable parallel optical detection of biologically relevant electrochemical potentials.

  17. Path Integral Control and State Dependent Feedback

    OpenAIRE

    Thijssen, Sep; Kappen, H. J.

    2014-01-01

    In this paper we address the problem to compute state dependent feedback controls for path integral control problems. To this end we generalize the path integral control formula and utilize this to construct parameterized state dependent feedback controllers. In addition, we show a novel relation between control and importance sampling: better control, in terms of control cost, yields more efficient importance sampling, in terms of effective sample size. The optimal control provides a zero-va...

  18. State Dependence in Unemployment among Danish Immigrants

    OpenAIRE

    Ahmad, Nisar

    2009-01-01

    This study examines the extent state dependence among unemployed Danish immigrants in a dynamic discrete choice framework. Three alternative methodologies are employed to control for the problem of the initial condition. The empirical findings show that there is a considerable correlation between the unobserved individual heterogeneity and the initial condition and that the degree of state dependence is overstated if we do not address this problem. The results show that an individual who was ...

  19. Interfacial Charge Transfer States in Condensed Phase Systems.

    Science.gov (United States)

    Vandewal, Koen

    2016-05-27

    Intermolecular charge transfer (CT) states at the interface between electron-donating (D) and electron-accepting (A) materials in organic thin films are characterized by absorption and emission bands within the optical gap of the interfacing materials. CT states efficiently generate charge carriers for some D-A combinations, and others show high fluorescence quantum efficiencies. These properties are exploited in organic solar cells, photodetectors, and light-emitting diodes. This review summarizes experimental and theoretical work on the electronic structure and interfacial energy landscape at condensed matter D-A interfaces. Recent findings on photogeneration and recombination of free charge carriers via CT states are discussed, and relations between CT state properties and optoelectronic device parameters are clarified. PMID:26980308

  20. Devitrification of the glassy state in suspensions of charged platelets

    NARCIS (Netherlands)

    Mourad, M.C.D.; Verhoeff, A.A.; Belov, D.V.; Petukhov, A.V.; Lekkerkerker, H.N.W.

    2009-01-01

    Colloidal suspensions of charged gibbsite platelets at salt concentrations of 10−2 M and below and with a sufficiently high particle concentration form a kinetically arrested, glassy state. We study the evolution of the glassy state in suspensions of three different gibbsite systems. Despite differe

  1. An EBIS for charge state breeding in the SPES project

    Indian Academy of Sciences (India)

    V Variale; G Brautti; T Clauser; A Rainò; V Stagno; G Lamanna; V Valentino; A Boggia; Y Boimelshtein; P Logatchov; B Skarbo; M Tiunov

    2002-11-01

    The ‘charge state breeder’, BRIC (breeding ion charge) is in construction at the INFN section of Bari (Italy). It is based on EBIS scheme and it is designed to accept radioactive ion beam (RIB) with charge state +1 in a slow injection mode. This experiment can be considered as a first step towards the design and construction of a charge breeder for the SPES project. The new feature of BRIC, with respect to the classical EBIS, is given by the insertion, in the ion chamber, of a rf-quadrupole aiming at filtering the unwanted masses and then making a more efficient containment of the wanted ions. In this paper, the breeder design, the simulation results of the electron and ion beam propagation and the construction problems of the device will be reported.

  2. Charge properties of cuprates: ground state and excitations

    OpenAIRE

    Waidacher, Christoph

    2000-01-01

    This thesis analyzes charge properties of (undoped) cuprate compounds from a theoretical point of view. The central question considered here is: How does the dimensionality of the CU-O sub-structure influence its charge degrees of freedom? The model used to describe the Cu-O sub-structure is the three- (or multi-) band Hubbard model. Analytical approaches are employed (ground-state formalism for strongly correlated systems, Mori-Zwanzig projection technique) as well as numerical simulations (...

  3. Balance functions: Multiplicity and transverse momentum dependence of the charge dependent correlations in ALICE

    CERN Document Server

    Rodriguez Manso, Alis; Christakoglou, Panos

    The measurement of charge-dependent correlations between positively and negatively charged particles as a function of pseudorapidity and azimuthal angle, known as the balance functions, provide insight to the properties of matter created in high-energy collisions. The balance functions are argued to probe the creation time of the particles and are also sensitive to the collective motion of the system. In this thesis, I present the results of the measured balance functions in p--Pb collisions at √sNN = 5.02~TeV obtained with the ALICE detector at the LHC. The results are compared with balance functions measured in pp and Pb--Pb collisions at √s=7~TeV and √sNN = 2.76~TeV$, respectively. The width of the balance functions in both pseudorapidity and azimuthal angle for non-identified charged particles decreases with increasing multiplicity in all three systems, for particles with low transverse momentum value pT < 2~GeV/c. For higher values of transverse momentum the balance functions become narrower and...

  4. Charge-state dynamics in electrostatic force spectroscopy

    Science.gov (United States)

    Ondráček, Martin; Hapala, Prokop; Jelínek, Pavel

    2016-07-01

    We present a numerical model that allows us to study the response of an oscillating probe in electrostatic force spectroscopy to charge switching in quantum dots at various time scales. The model provides more insight into the behavior of frequency shift and dissipated energy under different scanning conditions when measuring a temporarily charged quantum dot on a surface. Namely, we analyze the dependence of the frequency shift, the dissipated energy, and their fluctuations on the resonance frequency of the tip and on the electron tunneling rates across the tip–quantum dot and quantum dot–sample junctions. We discuss two complementary approaches to simulating the charge dynamics, a stochastic and a deterministic one. In addition, we derive analytic formulas valid for small amplitudes, describing relations between the frequency shift, dissipated energy, and the characteristic rates driving the charging and discharging processes.

  5. Silicon radiation detectors with oxide charge state compensation

    Science.gov (United States)

    Walton, J. T.; Goulding, F. S.

    1987-01-01

    This paper discusses the use of boron implantation on high resistivity P type silicon before oxide growth to compensate for the presence of charge states in the oxide and oxide/silicon interface. The presence of these charge states on high resistivity P type silicon produces an inversion layer which causes high leakage currents on N(+)P junctions and high surface conductance. Compensating the surface region by boron implantation is shown to result in oxide passivated N(+)P junctions with very low leakage currents and with low surface conductance.

  6. Charge-state-specific EUV spectra of Xe ions

    International Nuclear Information System (INIS)

    Charge state specific extreme ultraviolet spectra from xenon ions have been recorded at Tokyo Metropolitan University. The Electron Cyclotron Resonance Source spectra were produced from charge exchange collisions between the xenon ions and rare gas target atoms. Atomic structure calculations were performed for Xe 16+ − Xe20+ using the Hartree-Fock with Configuration Interaction code of Cowan and showed that the spectra arise from 4p-4d and 4d-4f transitions. In addition it was necessary to allow for selective capture processes that occur in these slow collisions. The energies of the capture states involved in the single electron process are estimated using the classical over barrier model.

  7. Silicon radiation detectors with oxide charge state compensation

    International Nuclear Information System (INIS)

    This paper discusses the use of boron implantation on high resistivity P-type silicon before oxide growth to compensate for the presence of charge states in the oxide and oxide/silicon interface. The presence of these charge states on high resistivity P-type silicon produces an inversion layer which causes high leakage currents on N+P junctions and high surface conductance. Compensating the surface region by boron implantation is shown to result in oxide passivated N+P junctions with very low leakage currents and with low surface conductance

  8. The Asymmetric Information Model of State Dependence

    OpenAIRE

    Nickolay V. Moshkin; Ron Shachar

    2002-01-01

    Marketing researchers and practitioners are interested in consumer loyalty because of its managerial consequences. Previous empirical studies find that consumers are loyal not only to a brand, but also to a firm (umbrella brand). That is, even when firms offer products, consumers tend to continue to purchase from the same firm. This repeat-purchase behavior might result from or from . The meaning of state dependence is that the current choice behaviorally depends on the previous one. The trad...

  9. Pressure dependence of the charge-density-wave gap in rare-earth tritellurides.

    Science.gov (United States)

    Sacchetti, A; Arcangeletti, E; Perucchi, A; Baldassarre, L; Postorino, P; Lupi, S; Ru, N; Fisher, I R; Degiorgi, L

    2007-01-12

    We investigate the pressure dependence of the optical properties of CeTe3, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the midinfrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice compression removes the perfect nesting condition of the Fermi surface and therefore diminishes the impact of the CDW transition on the electronic properties of RTe3. PMID:17358625

  10. Pressure Dependence of the Charge-Density-Wave Gap in Rare-Earth Tri-Tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Sacchetti, A.; /Zurich, ETH; Arcangeletti, E.; Perucchi, A.; Baldassarre, L.; Postorino, P.; Lupi, S.; /Rome U.; Ru, N.; Fisher, I.R.; /Stanford U., Geballe Lab.; Degiorgi, L.; /Zurich, ETH

    2009-12-14

    We investigate the pressure dependence of the optical properties of CeTe{sub 3}, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice compression removes the perfect nesting condition of the Fermi surface and therefore diminishes the impact of the CDW transition on the electronic properties of RTe{sub 3}.

  11. Pressure dependence of the charge-density-wave gap in rare-earth tri-tellurides

    OpenAIRE

    A. Sacchetti; Arcangeletti, E.; Perucchi, A.; Baldassarre, L.; Postorino, P.; Lupi, S.; Ru, N.; Fisher, I. R.; Degiorgi, L.

    2006-01-01

    We investigate the pressure dependence of the optical properties of CeTe$_3$, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice com...

  12. Dynamic battery cell model and state of charge estimation

    Science.gov (United States)

    Wijewardana, S.; Vepa, R.; Shaheed, M. H.

    2016-03-01

    Mathematical modelling and the dynamic simulation of battery storage systems can be challenging and demanding due to the nonlinear nature of the battery chemistry. This paper introduces a new dynamic battery model, with application to state of charge estimation, considering all possible aspects of environmental conditions and variables. The aim of this paper is to present a suitable convenient, generic dynamic representation of rechargeable battery dynamics that can be used to model any Lithium-ion rechargeable battery. The proposed representation is used to develop a dynamic model considering the thermal balance of heat generation mechanism of the battery cell and the ambient temperature effect including other variables such as storage effects, cyclic charging, battery internal resistance, state of charge etc. The results of the simulations have been used to study the characteristics of a Lithium-ion battery and the proposed battery model is shown to produce responses within 98% of known experimental measurements.

  13. Charge-dependent and A-dependent effects in isotope shifts of Coulomb displacement energies

    International Nuclear Information System (INIS)

    Coulomb displacement energies in a series of isotopes generally decrease with A. This decrease can arise from an increase with A of the average distance of interaction between pairs of protons. In the shell model a decrease can also result from charge-independence-breaking effects if the neutron-proton interaction for the valence nucleons is more attractive than the neutron-neutron interaction. Using the model recently proposed by Sherr and Talmi for the 1d/sub 3/2/ shell, existing data for this shell and also the 1d/sub 5/2/ and 1f/sub 7/2/ shells were analyzed allowing all matrix elements to vary as A/sup -lambda/3/. Least squares calculations of the rms deviation sigma were carried out for varying values of lambda from -2 to +2. It was found that although there was a minimum in sigma vs lambda it was too shallow to exclude any lambda for -1 to +1 in the 1d/sub 3/2/ and 1f/sub 7/2/ shells or 0 to +1 in the 1d/sub 5/2/ shell. It is therefore not possible to distinguish between A dependence and charge dependence in this model. The magnitude of the latter as expressed in terms of (np-nn) matrix elements depends strongly on the former. As lambda increases from -1 to +1, these (np-nn) matrix elements decrease roughly linearly in absolute magnitude and eventually change sign. For lambda = 0 they have appreciable and reasonable magnitudes for the 1d/sub 3/2/ and 1f/sub 7/2/ shells but for the 1d/sub 5/2/ shell the values are too small to be considered significant

  14. Fast electronic resistance switching involving hidden charge density wave states

    Science.gov (United States)

    Vaskivskyi, I.; Mihailovic, I. A.; Brazovskii, S.; Gospodaric, J.; Mertelj, T.; Svetin, D.; Sutar, P.; Mihailovic, D.

    2016-05-01

    The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T-TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states.

  15. Fast electronic resistance switching involving hidden charge density wave states.

    Science.gov (United States)

    Vaskivskyi, I; Mihailovic, I A; Brazovskii, S; Gospodaric, J; Mertelj, T; Svetin, D; Sutar, P; Mihailovic, D

    2016-01-01

    The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T-TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states. PMID:27181483

  16. Charged Cylindrical Polytropes with Generalized Polytropic Equation of State

    CERN Document Server

    Azam, M; Noureen, I; Rehman, M A

    2016-01-01

    We study the general formalism of polytropes in relativistic regime with generalized polytropic equations of state in the vicinity of cylindrical symmetry. We take charged anisotropic fluid distribution of matter with conformally flat condition for the development of general framework of polytropes. We discussed the stability of the model by Whittaker formula and concluded that one of the developed model is physically viable.

  17. Charge-state enhancement for radioactive beam post-acceleration

    International Nuclear Information System (INIS)

    A critical question for an ISOL-type radioactive-beam facility, such as that being discussed by the North American Isospin Laboratory Committee, is the efficiency and q/m of the ion source for the radioactive species. ISOLDE at CERN demonstrated that high efficiency is obtained for a wide variety of species in the 1+ charge state. These ion sources also generally have excellent transverse emittances and low energy spreads. One possibility is to use this proven technology plus an ionizer stage to increase the output of such sources to 2, 3, or 4+ with high efficiency. We are currently investigating technical options for such charge-state enhancement. There is a proposal by a Heidelberg/ISOLDE collaboration to build a open-quotes charge-state breederclose quotes as part of an experiment called REX-ISOLDE. This concept would deliver batches of radioactive ions with low duty cycle, optimized for relatively low-intensity secondary beams, on the order of 106/sec. We are independently doing simulations of an alternative approach, called the Electron-Beam Charge-State Amplifier (EBQA), which would yield DC beams with improved transverse emittance and would not have the intensity limitation of the batch transfer process. The cost and efficiency of the EBQA will have to be compared with those of a normally-conducting CW RFQ followed by ion stripping, as alternatives for the first stage of a secondary ion accelerator

  18. A low-charge-state injector linac for ATLAS

    International Nuclear Information System (INIS)

    The design of a low-charge-state linac which is capable of accelerating, for example, 132Sn1+ for injection into the existing heavy-ion linac ATLAS is discussed. The injector linac is intended for radioactive beam applications, and will accelerate a low- charge-state beam to energies of 500 keV/nucleon, at which point the ions can be stripped to charge states sufficiently high to be injected into ATLAS. A primary design goal has been to extend the very good longitudinal beam quality typical of ATLAS to low charge state beams. The proposed injector linac consists of several elements. First is a gridded-gap four-harmonic buncher and a short (normally-conducting) 12 MHz RFQ structure, both operating on a 350 kV open-air variable-voltage platform. Then comes an array of 24 Mhz and 48 Mhz superconducting interdigital accelerating structures interspersed with superconducting quadrupole transverse focusing elements. Numerical ray-tracing studies indicate that a transverse acceptance greater than 0.25π mm-mrad can be obtained while simultaneously limiting longitudinal emittance growth to a very few keV-nsec

  19. Concentration dependence of the transport energy level for charge carriers in organic semiconductors

    Science.gov (United States)

    Oelerich, J. O.; Huemmer, D.; Weseloh, M.; Baranovskii, S. D.

    2010-10-01

    The concept of the transport energy (TE) has proven to be one of the most powerful theoretical approaches to describe charge transport in organic semiconductors. In the recent paper L. Li, G. Meller, and H. Kosina [Appl. Phys. Lett. 92, 013307 (2008)] have studied the effect of the partially filled localized states on the position of the TE level. We show that the position of the TE is essentially different to the one suggested by L. Li, G. Meller, and H. Kosina [Appl. Phys. Lett. 92, 013307 (2008)] We further modify the standard TE approach taking into account the percolation nature of the transport path. Our calculations show that the TE becomes dependent on the concentration of charge carriers n at much higher n values than those, at which the carrier mobility already strongly depends on n. Hence the calculations of the concentration-dependent carrier mobility cannot be performed within the approach, in which only the concentration dependence of the TE is taken into account.

  20. State Dependence in Unemployment among Danish Immigrants

    DEFF Research Database (Denmark)

    Ahmad, Nisar

    2009-01-01

    This study examines the extent state dependence among unemployed Danish immigrants in a dynamic discrete choice framework. Three alternative methodologies are employed to control for the problem of the initial condition. The empirical findings show that there is a considerable correlation between...

  1. State Dependence in Unemployment among Danish Immigrants

    DEFF Research Database (Denmark)

    Ahmad, Nisar

    This study examines the extent state dependence among unemployed Danish immigrants in a dynamic discrete choice framework. Three alternative methodologies are employed to control for the problem of the initial condition. The empirical findings show that there is a considerable correlation between...

  2. Propagation Distance Required to Reach Steady-State Detonation Velocity in Finite-Sized Charges

    OpenAIRE

    Li, Jianling; Mi, XiaoCheng; Higgins, Andrew J.

    2014-01-01

    The decay of a detonation wave from its initial CJ velocity to its final, steady state velocity upon encountering a finite thickness or diameter charge is investigated numerically and theoretically. The numerical simulations use an ideal gas equation of state and pressure dependent reaction rate in order to ensure a stable wave structure. The confinement is also treated as an ideal gas with variable impedance. The velocity decay along the centerline is extracted from the simulations and compa...

  3. Vacuum improvements for ultra high charge state ion acceleration

    International Nuclear Information System (INIS)

    The installation of a second cryo panel has significantly improved the vacuum in the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. The neutral pressure in the extraction region decreased from 1.2 x 10-6 down to about 7 x 10-7 Torr. The vacuum improvement reduces beam loss from charge changing collisions and enhances the cyclotron beam transmission, especially for the high charge state heavy ions. Tests with improved vacuum show the cyclotron transmission increased more than 50% (from 5.7% to 9.0%) for a Xe27+ at 603 MeV, more than doubled for a Bi41+ beam (from 1.9% to 4.6%) at 904 MeV and tripled for a U47+ beam (from 1.2% to 3.6%) at 1,115 MeV. At about 5 NeV/nucleon 92 enA (2.2 pnA) for Bi41+ and 14 enA (0.3 pnA) for U47+ were extracted ut of the 88-Inch Cyclotron Ion beams with charge states as high as U64+ have been produced by the LBNL AECR-U ion source and accelerated through the cyclotron for the first time. The beam losses for a variety of ultra high charge state ions were measured as a function of cyclotron pressure and compared with the calculations from the existing models

  4. Fractional charge and spin states in topological insulator constrictions

    Science.gov (United States)

    Klinovaja, Jelena; Loss, Daniel

    2015-09-01

    We theoretically investigate the properties of two-dimensional topological insulator constrictions both in the integer and fractional regimes. In the presence of a perpendicular magnetic field, the constriction functions as a spin filter with near-perfect efficiency and can be switched by electric fields only. Domain walls between different topological phases can be created in the constriction as an interface between tunneling, magnetic fields, charge density wave, or electron-electron interaction dominated regions. These domain walls host non-Abelian bound states with fractional charge and spin and result in degenerate ground states with parafermions. If a proximity gap is induced bound states give rise to an exotic Josephson current with 8 π periodicity.

  5. Beam Energy and System Size Dependence of Dynamical Net Charge Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    STAR Coll

    2008-07-21

    We present measurements of net charge fluctuations in Au + Au collisions at {radical}s{sub NN} = 19.6, 62.4, 130, and 200 GeV, Cu + Cu collisions at {radical}s{sub NN} = 62.4, 200 GeV, and p + p collisions at {radical}s = 200 GeV using the dynamical net charge fluctuations measure {nu}{sub {+-},dyn}. We observe that the dynamical fluctuations are non-zero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate 1/N{sub ch} scaling, but display approximate 1/N{sub part} scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.

  6. Beam-energy and system-size dependence of dynamical net charge fluctuations

    Science.gov (United States)

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón De La Barca; Callner, J.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Chung, S. U.; Clarke, R. F.; Codrington, M. J. M.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; de Moira, M. M.; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; de Souza, R. Derradi; Didenko, L.; Dictel, T.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, F.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Edwards, W. R.; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kumar, A.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; Lapointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Levine, M. J.; Li, C.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H. S.; Matulenko, Yu. A.; McShane, T. S.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Nepali, C.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Poskanzer, A. M.; Potekhin, M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Rykov, V.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X.-H.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T. J. M.; de Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Tram, V. N.; Trattner, A. L.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; van der Kolk, N.; van Leeuwen, M.; Molen, A. M. Vander; Varma, R.; Vasconcelos, G. M. S.; Vasilevski, I. M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, Q.; Wang, X.; Wang, X. L.; Wang, Y.; Webb, J. C.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, J.; Wu, Y.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yepes, P.; Yoo, I.-K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, H.; Zhang, S.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J. X.

    2009-02-01

    We present measurements of net charge fluctuations in Au+Au collisions at sNN=19.6, 62.4, 130, and 200 GeV, Cu+Cu collisions at sNN=62.4 and 200 GeV, and p+p collisions at s=200 GeV using the dynamical net charge fluctuations measure ν+-,dyn. We observe that the dynamical fluctuations are nonzero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate 1/Nch scaling but display approximate 1/Npart scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.

  7. Local charge states in hexagonal boron nitride with Stone-Wales defects.

    Science.gov (United States)

    Wang, Rui; Yang, Jiali; Wu, Xiaozhi; Wang, Shaofeng

    2016-04-14

    A Stone-Wales (SW) defect is the simplest topological defect in graphene-like materials and can be potentially employed to design electronic devices . In this paper, we have systematically investigated the formation, structural, and electronic properties of the neutral and charged SW defects in hexagonal boron nitride (BN) using first-principles calculations. The transition states and energy barrier for the formation of SW defects demonstrate that the defected BN is stable. Our calculations show that there are two in-gap defect levels, which originate from the asymmetrical pentagon-heptagon pairs. The local defect configurations and electronic properties are sensitive to their charge states induced by the defect levels. The electronic band structures show that the negative and positive charged defects are mainly determined by shifting the conduction band minimum (CBM) and valence band maximum (VBM) respectively, and the SW-defected BN can realize -1 and +1 spin-polarized charge states. The effects of carbon (C) substitution on neutral and charged SW-defected BN have also been studied. Our results indicate that the C substitution of B in BN is in favour of the formation of SW defects. Structural and electronic calculations show rich charge-dependent properties of C substitutions in SW-defected BN, thus our theoretical study is important for various applications in the design of BN nanostructure-based devices. PMID:27030259

  8. A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins

    International Nuclear Information System (INIS)

    A general formalism to compute configurational properties of proteins and other heteropolymers with an arbitrary sequence of charges and non-uniform excluded volume interaction is presented. A variational approach is utilized to predict average distance between any two monomers in the chain. The presented analytical model, for the first time, explicitly incorporates the role of sequence charge distribution to determine relative sizes between two sequences that vary not only in total charge composition but also in charge decoration (even when charge composition is fixed). Furthermore, the formalism is general enough to allow variation in excluded volume interactions between two monomers. Model predictions are benchmarked against the all-atom Monte Carlo studies of Das and Pappu [Proc. Natl. Acad. Sci. U. S. A. 110, 13392 (2013)] for 30 different synthetic sequences of polyampholytes. These sequences possess an equal number of glutamic acid (E) and lysine (K) residues but differ in the patterning within the sequence. Without any fit parameter, the model captures the strong sequence dependence of the simulated values of the radius of gyration with a correlation coefficient of R2 = 0.9. The model is then applied to real proteins to compare the unfolded state dimensions of 540 orthologous pairs of thermophilic and mesophilic proteins. The excluded volume parameters are assumed similar under denatured conditions, and only electrostatic effects encoded in the sequence are accounted for. With these assumptions, thermophilic proteins are found—with high statistical significance—to have more compact disordered ensemble compared to their mesophilic counterparts. The method presented here, due to its analytical nature, is capable of making such high throughput analysis of multiple proteins and will have broad applications in proteomic studies as well as in other heteropolymeric systems

  9. A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Sawle, Lucas; Ghosh, Kingshuk, E-mail: kghosh@du.edu [Department of Physics and Astronomy, University of Denver, Denver, Colorado 80208 (United States)

    2015-08-28

    A general formalism to compute configurational properties of proteins and other heteropolymers with an arbitrary sequence of charges and non-uniform excluded volume interaction is presented. A variational approach is utilized to predict average distance between any two monomers in the chain. The presented analytical model, for the first time, explicitly incorporates the role of sequence charge distribution to determine relative sizes between two sequences that vary not only in total charge composition but also in charge decoration (even when charge composition is fixed). Furthermore, the formalism is general enough to allow variation in excluded volume interactions between two monomers. Model predictions are benchmarked against the all-atom Monte Carlo studies of Das and Pappu [Proc. Natl. Acad. Sci. U. S. A. 110, 13392 (2013)] for 30 different synthetic sequences of polyampholytes. These sequences possess an equal number of glutamic acid (E) and lysine (K) residues but differ in the patterning within the sequence. Without any fit parameter, the model captures the strong sequence dependence of the simulated values of the radius of gyration with a correlation coefficient of R{sup 2} = 0.9. The model is then applied to real proteins to compare the unfolded state dimensions of 540 orthologous pairs of thermophilic and mesophilic proteins. The excluded volume parameters are assumed similar under denatured conditions, and only electrostatic effects encoded in the sequence are accounted for. With these assumptions, thermophilic proteins are found—with high statistical significance—to have more compact disordered ensemble compared to their mesophilic counterparts. The method presented here, due to its analytical nature, is capable of making such high throughput analysis of multiple proteins and will have broad applications in proteomic studies as well as in other heteropolymeric systems.

  10. Application of Genetic Neural Network in Power Battery Charging State-of-Charge Estimation

    OpenAIRE

    Yongqin Zhou; Chao Bai; Jinlei Sun

    2011-01-01

    With global non-renewable resources and environmental issues becoming more apparent, the development of new energy vehicles have become the trend of auto industry. Hybrid vehicle becomes the key development of new energy vehicles with its long distance, low pollution, low fuel consumption characteristics and so on. The battery performances directly influence the quality of the whole vehicle performance. Considering the importance of the battery state of charge (SOC) estimation and the nonline...

  11. Context-dependent stated choice experiments

    OpenAIRE

    Molin, E.J.E.

    2014-01-01

    Context-dependent stated choice experiments request participants to make choices between choice alternatives assuming that a certain context applies. This requires the construction of two experiments: a regular experiment with choice alternatives and a context experiment that varies the context variables. These are then combined by nesting the choice alternatives under the context descriptions. This extended SC experiment allows to examine how parameters estimated for attributes vary with con...

  12. The United States facing their petroleum dependence

    International Nuclear Information System (INIS)

    In the framework of ''the energy crisis of 2000-2001'', the Cheney report and the petroleum dependence, this study presents a critical examination of the United States petroleum situation, its perception in the american political milieu and the public policies implementing during the last ten years. The first section is devoted to the petroleum supply. In the second section, the american petroleum policy and the energy safety are studied. (A.L.B.)

  13. Multiple charge states of titanium ions in laser produced plasma

    International Nuclear Information System (INIS)

    An intense laser radiation (1012 to 1014 W/cm-2) focused on the solid target creates a hot (≥ 1 KeV) and dense plasma having high ionization state. The multiple charged ions with high current densities produced during laser matter interaction have potential application in accelerators as an ion source. This paper presents generation and detection of highly stripped titanium ions (Ti) in laser produced plasma. An Nd:glass laser (KAMETRON) delivering 50 J energy (λ = 0.53 μm) in 2.5 ns was focused onto a titanium target to produce plasma. This plasma was allowed to drift across a space ∼ 3m through a diagnostic hole in the focusing mirror before ions are finally detected with the help of electrostatic ion analyzer. Maximum current density was detected for the charge states of +16 and +17 of Ti ions for laser intensity of ∼ 1014 W/cm-2. (author)

  14. Pion charge-exchange reactions: The analog state transitions

    International Nuclear Information System (INIS)

    The general features of pion charge-exchange reactions leading to nuclear-isobaric-analog states (IAS) and double-isobaric-analog states (DIAS), as they have emerged from studies over the past ten years, are reviewed. The energy range investigated is 20 to 550 MeV for IAS transitions and 20 to 300 MeV for DIAS transitions. These data are seen to play an important role in characterizing the pion optical potential, in determining the Δ-N interaction in nuclei, and in the study of nucleon correlations in nuclei. Recent progress achieved in understanding the role of such correlations in double-charge-exchange reactions is reviewed. 55 refs., 43 figs., 3 tabs

  15. The velocity dependence of X-ray emission due to Charge Exchange in the Cygnus Loop

    Science.gov (United States)

    Cumbee, Renata; Lyons, David; Mullen, Patrick Dean; Shelton, Robin L.; Stancil, Phillip C.; Schultz, David R.

    2016-01-01

    The fundamental collisional process of charge exchange (CX) has been been established as a primary source of X-ray emission from the heliosphere [1], planetary exospheres [2], and supernova remnants [3,4]. In this process, X-ray emission results from the capture of an electron by a highly charged ion from a neutral atom or molecule, to form a highly-excited, high charge state ion. As the captured electron cascades down to the lowest energy level, photons are emitted, including X-rays.To provide reliable CX-induced X-ray spectral models to realistically simulate these environments, line ratios and spectra are computed using theoretical CX cross-sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, and classical-trajectory Monte Carlo methods for various collisional velocities relevant to astrophysics for collisions of bare and H-like C to Al ions with H, He, and H2. Using these line ratios, XSPEC models of CX emission in the northeast rim of the Cygnus Loop supernova remnant will be shown as an example with ion velocity dependence.[1] Henley, D. B. & Shelton, R. L. 2010, ApJSS, 187, 388[2] Dennerl, K. et al. 2002, A&A 386, 319[3] Katsuda, S. et al. 2011, ApJ 730 24[4] Cumbee, R. S. et al. 2014, ApJ 787 L31This work was partially supported by NASA grant NNX09AC46G.

  16. Calculations on charge state and energy loss of argon ions in partially and fully ionized carbon plasmas.

    Science.gov (United States)

    Barriga-Carrasco, Manuel D; Casas, David; Morales, Roberto

    2016-03-01

    The energy loss of argon ions in a target depends on their velocity and charge density. At the energies studied in this work, it depends mostly on the free and bound electrons in the target. Here the random-phase approximation is used for analyzing free electrons at any degeneracy. For the plasma-bound electrons, an interpolation between approximations for low and high energies is applied. The Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler et al. is used to determine its equilibrium charge state Q(eq). This latter criterion implies that the equilibrium charge state depends slightly on the electron density and temperature of the plasma. On the other hand, the effective charge Q(eff) is obtained as the ratio between the energy loss of the argon ion and that of the proton for the same plasma conditions. This effective charge Q(eff) is larger than the equilibrium charge state Q(eq) due to the incorporation of the BK charge distribution. Though our charge-state estimations are not exactly the same as the experimental values, our energy loss agrees quite well with the experiments. It is noticed that the energy loss in plasmas is higher than that in the same cold target of about, ∼42-62.5% and increases with carbon plasma ionization. This confirms the well-known enhanced plasma stopping. It is also observed that only a small part of this energy loss enhancement is due to an increase of the argon charge state, namely only ∼2.2 and 5.1%, for the partially and the fully ionized plasma, respectively. The other contribution is connected with a better energy transfer to the free electrons at plasma state than to the bound electrons at solid state of about, ∼38.8-57.4%, where higher values correspond to a fully ionized carbon plasma. PMID:27078472

  17. Calculations on charge state and energy loss of argon ions in partially and fully ionized carbon plasmas

    Science.gov (United States)

    Barriga-Carrasco, Manuel D.; Casas, David; Morales, Roberto

    2016-03-01

    The energy loss of argon ions in a target depends on their velocity and charge density. At the energies studied in this work, it depends mostly on the free and bound electrons in the target. Here the random-phase approximation is used for analyzing free electrons at any degeneracy. For the plasma-bound electrons, an interpolation between approximations for low and high energies is applied. The Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler et al. is used to determine its equilibrium charge state Qeq. This latter criterion implies that the equilibrium charge state depends slightly on the electron density and temperature of the plasma. On the other hand, the effective charge Qeff is obtained as the ratio between the energy loss of the argon ion and that of the proton for the same plasma conditions. This effective charge Qeff is larger than the equilibrium charge state Qeq due to the incorporation of the BK charge distribution. Though our charge-state estimations are not exactly the same as the experimental values, our energy loss agrees quite well with the experiments. It is noticed that the energy loss in plasmas is higher than that in the same cold target of about, ˜42 -62.5 % and increases with carbon plasma ionization. This confirms the well-known enhanced plasma stopping. It is also observed that only a small part of this energy loss enhancement is due to an increase of the argon charge state, namely only ˜2.2 and 5.1 % , for the partially and the fully ionized plasma, respectively. The other contribution is connected with a better energy transfer to the free electrons at plasma state than to the bound electrons at solid state of about, ˜38.8 -57.4 % , where higher values correspond to a fully ionized carbon plasma.

  18. Quark Mass Dependence of Nucleon Magnetic Moment and Charge Radii

    Institute of Scientific and Technical Information of China (English)

    MA Wei-Xing; ZHOU Li-Juan; GU Yun-Ting; PING Rong-Gang

    2005-01-01

    Understanding hadron structure within the framework of QCD is an extremely challenging problem. Our purpose here is to explain the model-independent consequences of the approximated chiral symmetry of QCD for two famous results concerning the quark structure of the nucleon. We show that both the apparent success of the constituent quark model in reproducing the ratio of proton to neutron magnetic moments and the apparent success of the Foldy term in reproducing the observed charge radius of the neutron are coincidental. That is, a relatively small change of the current quark mass would spoil both results.

  19. Charge-dependent directed flow in asymmetric nuclear collisions

    CERN Document Server

    Voronyuk, V; Voloshin, S A; Cassing, W

    2014-01-01

    The directed flow of identified hadrons is studied within the parton-hadron-string-dynamics (PHSD) approach for the asymmetric system Cu+Au in non-central collisions at $\\sqrt{s_{NN}}$ = 200 GeV. It is emphasized that due to the difference in the number of protons of the colliding nuclei an electric field emerges which is directed from the heavy to the light nucleus. This strong electric field is only present for about 0.25 fm/c at $\\sqrt{s_{NN}}$ = 200 GeV and leads to a splitting of the directed flow $v_1$ for particles with the same mass but opposite electric charges in case of an early presence of charged quarks and antiquarks. The microscopic calculations of the directed flow for $\\pi^\\pm, K^\\pm, p$ and $\\bar{p}$ are carried out in the PHSD by taking into account the electromagnetic field induced by the spectators as well as its influence on the hadronic and partonic quasiparticle trajectories. It is shown that the splitting of the directed flow as a function of pseudorapidity $\\eta$ and in particular as...

  20. Characterization of Final State Interaction Strength in Plastic Scintillator by Muon-Neutrino Charged Current Charged Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Eberly, Brandon M. [Univ. of Pittsburgh, PA (United States)

    2014-01-01

    Precise knowledge of neutrino-nucleus interactions is increasingly important as neutrino oscillation measurements transition into the systematics-limited era. In addition to modifying the initial interaction, the nuclear medium can scatter and absorb the interaction by-products through final state interactions, changing the types and kinematic distributions of particles seen by the detector. Recent neutrino pion production data from MiniBooNE is inconsistent with the final state interaction strength predicted by models and theoretical calculations, and some models fit best to the MiniBooNE data only after removing final state interactions entirely. This thesis presents a measurement of dσ/dTπ and dσ/dθπ for muon-neutrino charged current charged pion production in the MINER A scintillator tracker. MINER A is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. The analysis is limited to neutrino energies between 1.5-10 GeV. Dependence on invariant hadronic mass W is studied through two versions of the analysis that impose the limits W < 1.4 GeV and W < 1.8 GeV. The lower limit on W increases compatibility with the MiniBooNE pion data. The shapes of the differential cross sections, which depend strongly on the nature of final state interactions, are compared to Monte Carlo and theoretical predictions. It is shown that the measurements presented in this thesis favor models that contain final state interactions. Additionally, a variety of neutrino-nucleus interaction models are shown to successfully reproduce the thesis measurements, while simultaneously failing to describe the shape of the MiniBooNE data.

  1. Excited State Structural Dynamics of Carotenoids and Charge Transfer Systems

    International Nuclear Information System (INIS)

    This dissertation describes the development and implementation of a visible/near infrared pump/mid-infrared probe apparatus. Chapter 1 describes the background and motivation of investigating optically induced structural dynamics, paying specific attention to solvation and the excitation selection rules of highly symmetric molecules such as carotenoids. Chapter 2 describes the development and construction of the experimental apparatus used throughout the remainder of this dissertation. Chapter 3 will discuss the investigation of DCM, a laser dye with a fluorescence signal resulting from a charge transfer state. By studying the dynamics of DCM and of its methyl deuterated isotopomer (an otherwise identical molecule), we are able to investigate the origins of the charge transfer state and provide evidence that it is of the controversial twisted intramolecular (TICT) type. Chapter 4 introduces the use of two-photon excitation to the S1 state, combined with one-photon excitation to the S2 state of the carotenoid beta-apo-8'-carotenal. These 2 investigations show evidence for the formation of solitons, previously unobserved in molecular systems and found only in conducting polymers Chapter 5 presents an investigation of the excited state dynamics of peridinin, the carotenoid responsible for the light harvesting of dinoflagellates. This investigation allows for a more detailed understanding of the importance of structural dynamics of carotenoids in light harvesting

  2. Charge state distributions of oxygen and carbon in the energy range 1 to 300 keV/e observed with AMPTE/CCE in the magnetosphere

    International Nuclear Information System (INIS)

    Observations of charge state distributions of oxygen and carbon are presented that were obtained with the charge-energy-mass spectrometer (CHEM) onboard the AMPTE/CCE space-craft. Data were selected for two different local time sectors (apogee at 1300 LT and 0300 LT, respectively), three L-ranges (48), and quiet to moderately disturbed days (Kp< or =4). The charge state distributions reveal the existence of all charge states of oxygen and carbon in the magnetosphere. The relative importance of the different charge states strongly depends on L and much less on local time. The observations confirm that the solar wind and the ionosphere contribute to the oxygen population, whereas carbon only originates from the solar wind. The L-dependence of the charge state distributions can be interpreted in terms of these different ion sources and of charge exchange and diffusion processes that largely influence the distribution of oxygen and carbon in the magnetosphere

  3. Probing the temperature dependence of proton transfer to charged platinum electrodes by reactive molecular dynamics trajectory studies

    International Nuclear Information System (INIS)

    We have performed reactive trajectory calculations of proton discharge on charged platinum surfaces as a function of temperature and charge. A recently developed 9-state empirical valence bond model has been employed. The temperature dependence follows an Arrhenius law with activation energies in the range of 0.1 eV. The activation energy for the discharge reaction decreases significantly with increasing driving force as modeled by an increasingly negative surface charge on the electrode. The analysis shows that the average orientation of molecules in the adsorbed water layer reacts to the approaching proton. Within increasing temperature, configurations become more prevalent which facilitate fast proton transfer by Grotthuss style proton hops from the second to the first layer. This effect becomes more pronounced near more negatively charged surfaces and leads to the computed reduction of the activation energy

  4. Charge Order Induced in an Orbital Density-Wave State

    Science.gov (United States)

    Singh, Dheeraj Kumar; Takimoto, Tetsuya

    2016-04-01

    Motivated by recent angle resolved photoemission measurements [D. V. Evtushinsky et al., Phys. Rev. Lett. 105, 147201 (2010)] and evidence of the density-wave state for the charge and orbital ordering [J. García et al., Phys. Rev. Lett. 109, 107202 (2012)] in La0.5Sr1.5MnO4, the issue of charge and orbital ordering in a two-orbital tight-binding model for layered manganite near half doping is revisited. We find that the charge order with the ordering wavevector 2{Q} = (π ,π ) is induced by the orbital order of d-/d+-type having B1g representation with a different ordering wavevector Q, where the orbital order as the primary order results from the strong Fermi-surface nesting. It is shown that the induced charge order parameter develops according to TCO - T by decreasing the temperature below the orbital ordering temperature TCO, in addition to the usual mean-field behavior of the orbital order parameter. Moreover, the same orbital order is found to stabilize the CE-type spin arrangement observed experimentally below TCE < TCO.

  5. Synchrotron injectors based on high charge state ion sources

    International Nuclear Information System (INIS)

    The performance of any injector contemplated to replace the electrostatic tandem accelerators some time in the future should evidently match or surpass the characteristics of the tandems. It is a fortunate coincidence that the performance of the BNL tandem satisfies in most respects the requirements of the proposed collider, although originally tandems were not built with this application in mind. Requests for heavy ion beams with parameters suitable for injection into the rings of a heavy ion collider have appeared rather recently, at a stage when the high charge state ion sources, which in principle are capable of producing many ion species, have not yet reached such a level of performance. Therefore, consideration of such sources as part of a future injector replacing the tandem accelerators will have to rely on the extrapolation of results from existing models, developed for a different purpose. At the same time, present and future collider requirements for heavy ion beams should serve as a stimulus for the development of sources producing ions with adequate charge states and intensities. Injectors based on such sources may present a better alternative than the tandem accelerators because a higher charge-to-mass ratio of ions from the source results in a more efficient and less costly accelerator. In this report, two candidates for a high charge state, heavy ion source will be considered: an EBIS and an ECR. Other approaches, e.g. laser ion sources, are much further away in the development of a device to be used in a synchrotron injector. 25 refs., 7 figs., 4 tabs

  6. The Ionic Charge State Composition at High Energies in Large Solar Energetic Particle Events in Solar Cycle 23

    OpenAIRE

    Leske, R. A.; Mewaldt, R. A.; Cummings, A. C.; Stone, E. C.; von Rosenvinge, T. T.

    2001-01-01

    The ionic charge states of solar energetic particles (SEPs) depend upon the temperature of the source material and on the environment encountered during acceleration and transport during which electron stripping may occur. Measurements of SEP charge states at relatively high energies (≳15 MeV/nucleon) are possible with the Mass Spectrometer Telescope (MAST) on the Solar, Anomalous, and Magnetospheric Particle Explorer satellite by using the Earth's magnetic field as a particle rigidity filter...

  7. Time-dependent charge distributions in polymer films under electron beam irradiation

    International Nuclear Information System (INIS)

    The time-dependent charge distribution in polymer film under electron beam irradiation is studied by both experiment and numerical simulation. In the experiment, the distribution is measured with the piezoinduced pressure wave propagation method. In the simulation, the initial charge distribution is obtained by the Monte Carlo method of electron scattering, and the charge drift in the specimen is simulated by taking into account the Poisson equation, the charge continuity equation, Ohm's law, and the radiation-induced conductivity. The results obtained show that the negative charge deposited in the polymer film, whose top and bottom surfaces are grounded, drifts toward both grounded electrodes and that twin peaks appear in the charge distribution. The radiation-induced conductivity plays an important role in determining the charge distribution in the polymer films under electron beam irradiation

  8. Effect of ground state correlations on the charge transition densities of vibrational states

    International Nuclear Information System (INIS)

    The effect of ground state correlations on the charge transition densities of vibrational states in spherical nuclei is studied. The problem for the ground state correlations beyond RPA leads to a non-linear system of equations, which is solved numerically. The influence of the correlations on the pairing is taken into account too. The inclusion of ground state correlations beyond RPA results in an essential suppression of the charge transition density in the nuclear interior in comparison with the RPA calculations and enables one to reproduce the experimental data. 30 refs., 7 figs., 3 tabs

  9. Charged oscillator quantum state generation with Rydberg atoms

    CERN Document Server

    Stevenson, Robin; Hofferberth, Sebastian; Lesanovsky, Igor

    2016-01-01

    We explore the possibility of engineering quantum states of a charged mechanical oscillator by coupling it to a stream of atoms in superpositions of high-lying Rydberg states. Our scheme relies on the driving of a two-phonon resonance within the oscillator by coupling it to an atomic two-photon transition. This approach effectuates a controllable open system dynamics on the oscillator that permits the creation of squeezed and other non-classical states. We show that these features are robust to thermal noise arising from a coupling of the oscillator with the environment. The possibility to create non-trivial quantum states of mechanical systems, provided by the proposed setup, is central to applications such as sensing and metrology and moreover allows the exploration of fundamental questions concerning the boundary between classical and quantum mechanical descriptions of macroscopic objects.

  10. Ground state of charged Base and Fermi fluids in strong coupling

    International Nuclear Information System (INIS)

    The ground state and excited states of the charged Bose gas were studied (wave function, equation of state, thermodynamics, application of Feynman theory). The ground state of the charged Fermi gas was also investigated together with the miscibility of charged Bose and Fermi gases at 0 deg K (bosons-bosons, fermions-bosons and fermions-fermions)

  11. Charge state breeding experiences and plans at TRIUMF

    Science.gov (United States)

    Ames, F.; Marchetto, M.; Mjøs, A.; Morton, A. C.

    2016-02-01

    At the Isotope Separation and ACceleration (ISAC) facility at TRIUMF, an electron cyclotron resonance ion source (ECRIS) has been set up for the charge state breeding of radioactive ions. In order to reduce background from stable ions generated in the ECRIS, several measures, including changing materials for the plasma chamber and the surrounding components, have been implemented. Further reduction has been achieved by using the post-accelerator chain as a mass filter. Since the implementation of those measures in 2013, physics experiments with accelerated radioactive isotopes of Rb, Sr, K, and Mg have been performed. In most cases, a charge breeding efficiency of several percent has been achieved. With the planned expansion of the isotope production capabilities at TRIUMF within the Advanced Rare IsotopE Laboratory project, two new target stations, one using photo-fission induced by a high-power electron beam at 50 MeV and the other one using 480 MeV protons as at ISAC, will be put into operation within the next 5 yr. Additionally, a new electron beam ion source (EBIS) based charge state breeding system will be installed. Background from such a source is expected to be much lower. The drawback is that for the efficient operation of such a system, pulsed beam operation is required, which makes the installation of an additional ion buncher in front of the EBIS necessary.

  12. Charge state breeding experiences and plans at TRIUMF

    International Nuclear Information System (INIS)

    At the Isotope Separation and ACceleration (ISAC) facility at TRIUMF, an electron cyclotron resonance ion source (ECRIS) has been set up for the charge state breeding of radioactive ions. In order to reduce background from stable ions generated in the ECRIS, several measures, including changing materials for the plasma chamber and the surrounding components, have been implemented. Further reduction has been achieved by using the post-accelerator chain as a mass filter. Since the implementation of those measures in 2013, physics experiments with accelerated radioactive isotopes of Rb, Sr, K, and Mg have been performed. In most cases, a charge breeding efficiency of several percent has been achieved. With the planned expansion of the isotope production capabilities at TRIUMF within the Advanced Rare IsotopE Laboratory project, two new target stations, one using photo-fission induced by a high-power electron beam at 50 MeV and the other one using 480 MeV protons as at ISAC, will be put into operation within the next 5 yr. Additionally, a new electron beam ion source (EBIS) based charge state breeding system will be installed. Background from such a source is expected to be much lower. The drawback is that for the efficient operation of such a system, pulsed beam operation is required, which makes the installation of an additional ion buncher in front of the EBIS necessary

  13. Charge state breeding experiences and plans at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Ames, F., E-mail: ames@triumf.ca; Marchetto, M.; Mjøs, A.; Morton, A. C. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T2A3 (Canada)

    2016-02-15

    At the Isotope Separation and ACceleration (ISAC) facility at TRIUMF, an electron cyclotron resonance ion source (ECRIS) has been set up for the charge state breeding of radioactive ions. In order to reduce background from stable ions generated in the ECRIS, several measures, including changing materials for the plasma chamber and the surrounding components, have been implemented. Further reduction has been achieved by using the post-accelerator chain as a mass filter. Since the implementation of those measures in 2013, physics experiments with accelerated radioactive isotopes of Rb, Sr, K, and Mg have been performed. In most cases, a charge breeding efficiency of several percent has been achieved. With the planned expansion of the isotope production capabilities at TRIUMF within the Advanced Rare IsotopE Laboratory project, two new target stations, one using photo-fission induced by a high-power electron beam at 50 MeV and the other one using 480 MeV protons as at ISAC, will be put into operation within the next 5 yr. Additionally, a new electron beam ion source (EBIS) based charge state breeding system will be installed. Background from such a source is expected to be much lower. The drawback is that for the efficient operation of such a system, pulsed beam operation is required, which makes the installation of an additional ion buncher in front of the EBIS necessary.

  14. Dependence of plasmon excitation energy on filler material in interaction of charged particle with filled nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Bahari, A., E-mail: bahari.a@lu.ac.i [Department of Physics, Lorestan University, Lorestan (Iran, Islamic Republic of); Mohamadi, A. [Department of Physics, Shiraz Payaem Noor University, Fars (Iran, Islamic Republic of)

    2010-10-15

    The interaction of charged particles with filled single-walled metallic nanotubes (SWMNT) has been investigated. Numerical results for the plasmon energy as a function of the wave vector are presented when the charged particle is outside the nanotube. Dependence of the plasmon energy on ratio of plasma frequency of the filler and SWMNT has been shown.

  15. Electric field-dependent charge transport in organic semiconductors

    OpenAIRE

    Li, Ling; Van Winckel, Steven; Genoe, Jan; Heremans, Paul

    2009-01-01

    An analytical description is elaborated for the variable range hopping conduction mechanism in the presence of temperature and electric fields for quasi-three-dimensional organic semiconductor systems. In the proposed description, it is assumed that the localized states are randomly distributed in energy and space coordinates. The expression for the hopping conductivity is obtained for the Gaussian density of states. The model is applied to the analysis of both temperature and electric field-...

  16. Measurement of Nuclear Dependence in Inclusive Charged Current Neutrino Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tice, Brian George [Rutgers Univ., New Brunswick, NJ (United States)

    2014-01-01

    Neutrino experiments use heavy nuclei (C, Fe, Pb) to achieve necessary statistics. However, the use of heavy nuclei exposes these experiments to the nuclear dependence of neutrino-nucleus cross sections, which are poorly known and difficult to model. This dissertation presents an analysis of the nuclear dependence of inclusive chargedcurrent neutrino scattering using events in carbon, iron, lead, and scintillator targets of the MINERvA detector. MINERvA (Main INjector ExpeRiment for -A) is a few-GeV neutrinonucleus scattering experiment at Fermilab.

  17. Observation of high iron charge states at low energies in solar energetic particle events

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Z.; Möbius, E.; Bochsler, P.; Connell, J. J.; Popecki, M. A. [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); Klecker, B. [Max-Planck-Institut für Extraterrestrische Physik, Postfach 1312, D-85741 Garching (Germany); Kartavykh, Y. Y. [Ioffe Physical-Technical Institute, St-Petersburg 194021 (Russian Federation); Mason, G. M., E-mail: zwm2@unh.edu [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States)

    2014-04-10

    The ionic charge states of solar energetic particles (SEPs) provide direct information about the source plasma, the acceleration environment, and their transport. Recent studies report that both gradual and impulsive SEP events show mean iron charge states (Q {sub Fe}) ∼ 10-14 at low energies E ≤ 0.1 MeV nuc{sup –1}, consistent with their origin from typical corona material at temperatures 1-2 MK. Observed increases of (Q {sub Fe}) up to 20 at energies 0.1-0.5 MeV nuc{sup –1} in impulsive SEPs are attributed to stripping during acceleration. However, Q {sub Fe} > 16 is occasionally found in the solar wind, particularly coming from active regions, in contrast to the exclusively reported (Q {sub Fe}) ≤ 14 for low energy SEPs. Here we report results from a survey of all 89 SEP events observed with Advanced Composition Explorer Solar Energetic Particle Ionic Charge Analyzer (SEPICA) in 1998-2000 for iron charge states augmented at low energy with Solar and Heliospheric Observatory CELIAS suprathermal time-of-flight (STOF). Nine SEP events with (Q {sub Fe}) ≥ 14 throughout the entire SEPICA and STOF energy range have been identified. Four of the nine events are impulsive events identified through velocity dispersion that are consistent with source temperatures ≥2 MK up to ∼4 MK. The other five events show evidence of interplanetary acceleration. Four of them involve re-acceleration of impulsive material, whose original energy dependent charge states appear re-distributed to varying extent bringing higher charge states to lower energy. One event, which shows flat but elevated (Q {sub Fe}) ∼ 14.2 over the entire energy range, can be associated with interplanetary acceleration of high temperature material. This event may exemplify a rare situation when a second shock plows through high temperature coronal mass ejection material.

  18. Charged particle creation in the steady state universe

    International Nuclear Information System (INIS)

    The birth of a particle of charge q(0), initial mass m(0), and radius a in the steady state universe is studied. With the particle's birth, in accord with causality, gravity, and Coulomb fields propagate away from it with the speed of light. Field energies are supplied by the particle's mass which subsequently decays in time. Asymptotic solution to a nonlinear equation for the remaining mass gives the criterion m(0) is greater that q(0)2/2ac2 as a necessary condition for the initial mass to survive the field expansion. The resulting radius of a classical charged particle is found to be greater than the standard value obtained by equating self- and rest-mass energies of the initial particle. 12 refs

  19. MULTIPLY CHARGED IONS COLLISIONS WITH ATOMS INTO EXCITED STATES

    Institute of Scientific and Technical Information of China (English)

    PanGuangyan

    1990-01-01

    The emission spectra in collisions between Ions and Atoms have been measured by an Optical Multichannel Analysis System (OMA).The experimental results demonstrate that there are two channels of excitation in collision between single charged ions and atoms and three channels of excitation in collision between double charged ions and atoms.Emission cross cestions and excitation cross sections have been obtained.K.Kadota et al and R.Shingal et al suggested that,under the appropriate conditions,the H42+-Li and He2++Na collision systems can be used efficiently to produce a laser of Lyman-α(30,4nm) and Lyman-β(25.6nm)lines via cascade to He+(2P)state.

  20. Charge and electronic states of cuprite: Experiment and theory

    Science.gov (United States)

    Kim, Miyoung

    The bonding characteristics of cuprite have been studied by the using convergent beam electron diffraction (CBED) method. The low-order structure factors are closely related to the valence electron density, and the CBED is one of the most accurate methods of measuring the low order structure factors. The multipole model is used for converting the structure factors into charge density. The multipole expansion takes into account non-spherical valence electron density due to atomic bonding based on the crystal symmetry. The charge transfer from copper to oxygen is determined from the multipole fitting parameters. The hybridization state between 4s-3d orbitals of copper is also estimated. Electronic states of CU2O are investigated by studying the fine structure of the electron-energy loss spectrum (EELS). The cross section of the near edge structure is proportional to the density of state times an atomic transition site-projected matrix element which generally varies slowly in the region of interest. Both the fine structure of Cu- L2'3 and O-K of Cu2O are significantly different from those of CuO, which shows the sensitivity of EELS fine structure to the crystal bonding. Full-potential Linearized Augmented Plane Wave (FLAPW) calculations have been used to compare experimental results with theory. The structure factors and bonding charge density are compared with the results obtained by the CBED method, and the density of states is compared with the EELS. The FLAPW method has also been used in the local density approximations CLDA) to calculate values of the mean inner Coulomb potential V 0 for Si, Ge and MgO. These values are compared with recent measurements by electron holography. The supercell calculations are performed for crystal slabs, so that the effects of different crystal orientations and surface structures on V0 can be evaluated.

  1. Vehicle trajectory optimization for hybrid vehicles taking into account battery state-of-charge

    OpenAIRE

    MENSING, Felicitas; TRIGUI, Rochdi; Bideaux, Eric

    2012-01-01

    Hybrid vehicles are found to be one solution to reduce fuel consumption in the transportation sector. Eco-driving is a concept that is immediately applicable by drivers to improve the efficiency of their vehicle. In this work the potential of eco-driving for hybrid drive train vehicles is discussed. The operation of hybrid vehicles is strongly dependent on their energy management and therefore on battery state-of-charge. Here, the velocity trajectory will be optimized taking into account b...

  2. Stochastic approximation with state-dependent noise

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The purpose of stochastic approximation (SA) is to find the roots of f(·) or the maximizer (minimizer) of L(·) when the unknown function f(·) or L(·) can be observed but with noise. SA is an important tool in dealing with many problems arising from systems and control, whose solutions often rely on convergence of the SA algorithm applied. Here the pathwise convergence of SA algorithms is considered, when the observation noise may depend on state by which we mean those x at which f(x) or L(x) are observed. The conditions imposed on the observation noise are the weakest in comparison with the existing ones. When the algorithm is to find the roots of f(·), the superiority of the condition given in the paper over those used in literature consists in the fact that the present condition is directly verifiable, needless to see the behaviour of the algorithm. When the algorithm is to find the maximizer (minimizer) of L(·), the present conditioin allows the observation noise to depend on the state. The conditions imposed on f(·) and L(·) are truly general: f(·) is required to be measurable and locally bounded if the roots of f(·) are sought, and the gradient of L(·) is required to be locally Lipschitz continuous if the maximizer (minimizer) of L(·) is searched.

  3. Density Dependence of Charge-4 Vortex Splitting in Bose–Einstein Condensates

    Science.gov (United States)

    Shibayama, Hitoshi; Tsukada, Akinori; Yoshihara, Takahisa; Kuwamoto, Takeshi

    2016-05-01

    We studied the axial-direction density dependence of the splitting of a charge-4 vortex created in 87Rb Bose–Einstein condensates. Vortices were generated by topological phase imprinting, and the axial density of the condensates was controlled by an optical potential. Linear and triangular arrangements of four single-charged vortices that emerged through the charge-4 vortex collapse were observed. The splitting of the charge-4 vortices was suppressed by maintaining the density outside the l = 2 unstable mode regions where linear arrangements were formed. In addition, we studied vortex dynamics in a high density region for which investigations have not been previously performed.

  4. Contactless Spectral-dependent Charge Carrier Lifetime Measurements in Silicon Photovoltaic Materials

    Science.gov (United States)

    Roller, John; Hamadani, Behrang; Dagenais, Mario

    Charge carrier lifetime measurements in bulk or unfinished photovoltaic (PV) materials allow for a more accurate estimate of power conversion efficiency in completed solar cells. In this work, carrier lifetimes in PV-grade silicon wafers are obtained by way of quasi-steady state photoconductance measurements. These measurements use a contactless RF system coupled with varying narrow spectrum input LEDs, ranging in wavelength from 460 nm to 1030 nm. Spectral dependent lifetime measurements allow for determination of bulk and surface properties of the material, including the intrinsic bulk lifetime and the surface recombination velocity. The effective lifetimes are fit to an analytical physics-based model to determine the desired parameters. Passivated and non-passivated samples are both studied and are shown to have good agreement with the theoretical model.

  5. Evolution of PAHs in photodissociation regions: Hydrogenation and charge states

    CERN Document Server

    Montillaud, J; Toublanc, D

    2013-01-01

    Various studies have emphasized variations of the charge state and composition of the interstellar polycyclic aromatic hydrocarbon (PAH) population in photodissociation regions (PDRs). We aim to model the spatial evolution of the charge and hydrogenation states of PAHs in PDRs. We focus on the specific case of the north-west (NW) PDR of NGC 7023 and also discuss the case of the diffuse interstellar medium (ISM). The physical conditions in NGC 7023 NW are modelled using a state-of-the-art PDR code. We then use a new PAH chemical evolution model that includes recent experimental data on PAHs and describes multiphoton events. We consider a family of compact PAHs bearing up to 96 carbon atoms. The calculated ionization ratio is in good agreement with observations in NGC 7023 NW. Within the PDR, PAHs evolve into three major populations: medium-sized PAHs (5090) can be superhydrogenated, and smaller species (Nc<50) are fully dehydrogenated. In the cavity, where the fullerene C60 was recently detected, all the st...

  6. Polarization dependence of charge-transfer excitations in La2CuO4

    Science.gov (United States)

    Lu, Li; Chabot-Couture, Guillaume; Hancock, Jason; Vajk, Owen; Yu, Guichuan; Ishii, Kenji; Mizuki, Jun'ichiro; Casa, Diego; Gog, Thomas; Greven, Martin

    2006-03-01

    We have carried out an extensive resonant inelastic x-ray scattering (RIXS) study of La2CuO4 at the Cu K-edge. Multiple charge-transfer excitations have been identified using the incident photon energy dependence of the cross section and studied carefully with polarizations E//c and E //ab. An analysis of the incident photon energy dependence, the polarization dependence, as well as the K-edge absorption spectra, indicates that the RIXS spectra reveal rich physics about the K-edge absorption process and momentum-dependent charge-transfer excitations in cuprates.

  7. Brain state-dependent neuronal computation

    Directory of Open Access Journals (Sweden)

    Pascale eQuilichini

    2012-10-01

    Full Text Available Neuronal firing pattern, which includes both the frequency and the timing of action potentials, is a key component of information processing in the brain. Although the relationship between neuronal output (the firing pattern and function (during a task/behavior is not fully understood, there is now considerable evidence that a given neuron can show very different firing patterns according to brain state. Thus, such neurons assembled into neuronal networks generate different rhythms (e.g. theta, gamma, sharp wave ripples, which sign specific brain states (e.g. learning, sleep. This implies that a given neuronal network, defined by its hard-wired physical connectivity, can support different brain state-dependent activities through the modulation of its functional connectivity. Here, we review data demonstrating that not only the firing pattern, but also the functional connections between neurons, can change dynamically. We then explore the possible mechanisms of such versatility, focusing on the intrinsic properties of neurons and the properties of the synapses they establish, and how they can be modified by neuromodulators, i.e. the different ways that neurons can use to switch from one mode of communication to the other.

  8. High-Intensity, High Charge-State Heavy Ion Sources

    CERN Document Server

    Alessi, J

    2004-01-01

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions will be reviewed. These sources include ECR, EBIS, and Laser ion sources. The benefits and limitations for these type sources will be described, for both dc and pulsed applications. Possible future improvements in these type sources will also be discussed.

  9. Fractional quantum Hall states in charge-imbalanced bilayer systems

    OpenAIRE

    Thiebaut, N.; Regnault, N.; Goerbig, M. O.

    2013-01-01

    We study the fractional quantum Hall effect in a bilayer with charge-distribution imbalance induced, for instance, by a bias gate voltage. The bilayer can either be intrinsic or it can be formed spontaneously in wide quantum wells, due to the Coulomb repulsion between electrons. We focus on fractional quantum Hall effect in asymmetric bilayer systems at filling factor nu=4/11 and show that an asymmetric Halperin-like trial wavefunction gives a valid description of the ground state of the system.

  10. Local solid-state modification of nanopore surface charges

    CERN Document Server

    Kox, Ronald; Chen, Chang; Arjmandi, Nima; Lagae, Liesbet; Borghs, Gustaaf; 10.1088/0957-4484/21/33/335703

    2012-01-01

    The last decade, nanopores have emerged as a new and interesting tool for the study of biological macromolecules like proteins and DNA. While biological pores, especially alpha-hemolysin, have been promising for the detection of DNA, their poor chemical stability limits their use. For this reason, researchers are trying to mimic their behaviour using more stable, solid-state nanopores. The most successful tools to fabricate such nanopores use high energy electron or ions beams to drill or reshape holes in very thin membranes. While the resolution of these methods can be very good, they require tools that are not commonly available and tend to damage and charge the nanopore surface. In this work, we show nanopores that have been fabricated using standard micromachning techniques together with EBID, and present a simple model that is used to estimate the surface charge. The results show that EBID with a silicon oxide precursor can be used to tune the nanopore surface and that the surface charge is stable over a...

  11. High Energy Ionic Charge State Composition In Recent Large Solar Energetic Particle Events

    OpenAIRE

    Labrador, A. W.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; von Rosenvinge, T. T.

    2003-01-01

    The ionic charge states of solar energetic particles (SEPs) provide information on the temperature of source materials and on conditions during acceleration and transport. SAMPEX/MAST measures mean ionic charge states at > 15 MeV/nuc using the geomagnetic rigidity filter technique. Charge state measurements by MAST for gradual SEP events suggest a continuum of charge states correlated with abundance ratios for a variety of elements, similar to what is observed at lower energies. In case...

  12. Temperature dependence of charge transport in conjugated single molecule junctions

    Science.gov (United States)

    Huisman, Eek; Kamenetska, Masha; Venkataraman, Latha

    2011-03-01

    Over the last decade, the break junction technique using a scanning tunneling microscope geometry has proven to be an important tool to understand electron transport through single molecule junctions. Here, we use this technique to probe transport through junctions at temperatures ranging from 5K to 300K. We study three amine-terminated (-NH2) conjugated molecules: a benzene, a biphenyl and a terphenyl derivative. We find that amine groups bind selectively to undercoordinate gold atoms gold all the way down to 5K, yielding single molecule junctions with well-defined conductances. Furthermore, we find that the conductance of a single molecule junction increases with temperature and we present a mechanism for this temperature dependent transport result. Funded by a Rubicon Grant from The Netherlands Organisation for Scientific Research (NWO) and the NSEC program of NSF under grant # CHE-0641523.

  13. Localized charged states and phase separation near second order phase transition

    OpenAIRE

    Kabanov, V. V.; Mamin, R. F.; Shaposhnikova, T. S.

    2008-01-01

    Localized charged states and phase segregation are described in the framework of the phenomenological Ginzburg-Landau theory of phase transitions. The Coulomb interactions determines the charge distribution and the characteristic length of the phase separated states. The phase separation with charge segregation becomes possible because of the large dielectric constant and the small density of extra charge in the range of charge localization. The phase diagram is calculated and the energy gain...

  14. Analysis of Ion Charge States in Solar Wind and CMEs

    Indian Academy of Sciences (India)

    Arati Dasgupta; J. M. Laming

    2008-03-01

    We discuss needs in dielectronic recombination data motivated by recent work directed at a quantitative understanding of ion charge states of various elements observed in situ in the solar wind and CMEs. The competing processes of ionization and recombination lead to departures from collision ionization equilibrium. The use of this as a diagnostic of acceleration and heating processes of the solar wind and CMEs is sensitive to the accuracy of the atomic rates in a way that steady state ionization equilibrium plasmas are not. The most pressing need is dielectronic recombination rates for ions Fe8+-12+. These are among the dominant species observed in various regions of the solar wind and CMEs, and in remotely sensed EUV spectra.

  15. Determination of Thermal State of Charge in Solar Heat Receivers

    Science.gov (United States)

    Glakpe, E. K.; Cannon, J. N.; Hall, C. A., III; Grimmett, I. W.

    1996-01-01

    The research project at Howard University seeks to develop analytical and numerical capabilities to study heat transfer and fluid flow characteristics, and the prediction of the performance of solar heat receivers for space applications. Specifically, the study seeks to elucidate the effects of internal and external thermal radiation, geometrical and applicable dimensionless parameters on the overall heat transfer in space solar heat receivers. Over the last year, a procedure for the characterization of the state-of-charge (SOC) in solar heat receivers for space applications has been developed. By identifying the various factors that affect the SOC, a dimensional analysis is performed resulting in a number of dimensionless groups of parameters. Although not accomplished during the first phase of the research, data generated from a thermal simulation program can be used to determine values of the dimensionless parameters and the state-of-charge and thereby obtain a correlation for the SOC. The simulation program selected for the purpose is HOTTube, a thermal numerical computer code based on a transient time-explicit, axisymmetric model of the total solar heat receiver. Simulation results obtained with the computer program are presented the minimum and maximum insolation orbits. In the absence of any validation of the code with experimental data, results from HOTTube appear reasonable qualitatively in representing the physical situations modeled.

  16. Solid State Rechargeable Organic Batteries Based on Polymer Composites of Charge-transfer Materials

    Directory of Open Access Journals (Sweden)

    R.K. Gupta

    2004-01-01

    Full Text Available Solid-state galvanic cells based on charge-transfer complexes have been extensively used. However, the low mechanical strengths of these materials have restricted their applications. To overcome this problem, the polymer composite of these materials have been prepared and used in fabrication of solid-state batteries. The pressed pellet of these materials has been used as cathode in contact with zinc as anode metal. The electrochemical characterization of these cells such as open-circuit voltages, short-circuit currents, their time and temperature dependence and rechargeability of these cells have been studied. The impedance analyses have been done to understand the nature of the electrode reaction.

  17. Charge-transfer photodissociation of adsorbed molecules via electron image states

    CERN Document Server

    Jensen, E T

    2007-01-01

    The 248nm and 193nm photodissociation of submonolayer quantities of CH$_3$Br and CH$_3$I adsorbed on thin layers of n-hexane indicate that the dissociation is caused by dissociative electron attachment from sub-vacuum level photoelectrons created in the copper substrate. The characteristics of this photodissociation-- translation energy distributions and coverage dependences show that the dissociation is mediated by an image potential state which temporarily traps the photoelectrons near the n-hexane--vacuum interface, and then the charge transfers from this image state to the affinity level of a co-adsorbed halomethane which then dissociates.

  18. Clouding in fatty acid dispersions for charge-dependent dye extraction.

    Science.gov (United States)

    Garenne, David; Navailles, Laurence; Nallet, Frédéric; Grélard, Axelle; Dufourc, Erick J; Douliez, Jean-Paul

    2016-04-15

    The clouding phenomenon in non-ionic surfactant systems is a common feature that remains rare for ionic detergents. Here, we show that fatty acid (negatively charged) systems cloud upon cooling hot dispersions depending on the concentration or when adding excess guanidine hydrochloride. The clouding of these solutions yields the formation of enriched fatty acid droplets in which they exhibit a polymorphism that depends on the temperature: upon cooling, elongated wormlike micelles transit to rigid stacked bilayers inside droplets. Above this transition temperature, droplets coalesce yielding a phase separation between a fatty acid-rich phase and water, allowing extraction of dyes depending on their charge and lipophilicity. Positively charged and zwitterionic dyes were sequestered within the droplets (and then in the fatty acid-rich upper phase) whereas the negatively charged ones were found in both phases. Our results show an additional case of negatively charged surfactant which exhibit clouding phenomenon and suggest that these systems could be used for extracting solutes depending on their charge and lipophilicity. PMID:26828279

  19. Charge structure of the hadronic final state in deep-inelastic muon-nucleon scattering

    Science.gov (United States)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Bedełek, J.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Ftáčnik, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jachołkowska, A.; Janata, F.; Jancsó, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettinghale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Schneider, A.; Scholz, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1988-09-01

    The general charge properties of the hadronic final state produced in μ + p and μ + d interactions at 280 GeV are investigated. Quark charge retention and local charge compensation is observed. The ratio F {2/ n }/ F {2/ p } of the neutron to proton structure function is derived from the measurement of the average hadronic charge in μ d interactions.

  20. Energy loss and charge state distribution of calcium ions in dense moderately coupled carbon plasma

    International Nuclear Information System (INIS)

    thermally confined, as hydrodynamic expansion is limited and radiative cooling is suppressed. Typical disadvantages of direct laser heated plasmas like a hot and fast diluting plasma corona as well as spatial and temporal inhomogeneities due to the inherently non-uniform intensity distribution of the laser focal spot, are avoided. The used double hohlraum target allows to create a partially ionized plasma (Zion=2-4) with electron densities close to solid state density (ne=8.1021 cm-3) and moderate temperatures (T=5-10 eV). The used hohlraum design has been studied in details and optimized by means of 2D hydrodynamic simulations. The energy loss of ions traveling through ionized matter strongly depends on their charge state, so a detailed understanding of the charge transfer processes in a wide range of plasma parameters is required. To determine the influence of the plasma temperature and density on the projectile charge state, a parametric study has been carried out covering a parameter space with ion densities of 1018-1023 cm-3 and temperatures of 10-200 eV. The projectile charge state distribution is determined by the ionization and recombination rates which are balancing each other out. Both, ionization and recombination rates, as well as atomic excitation and decay rates, depend on the plasma parameters in different ways. These effects have been simulated by a specially developed Monte-Carlo Code on the example of a calcium ion beam at an energy of 3.5 MeV/u in a carbon plasma. The main finding is that the mean charge state in plasma can be lower than in cold matter. This is a surprising result, because the projectile charge state is expected to increase in plasma due to the suppressed recombination rates with bound electrons. Actually, due to a resonance effect in the dielectronic recombination process the recombination rate is enhanced in partially ionized plasma, which leads to a lowering of the mean beam charge state. Another result of this study is that the energy

  1. Axial ion charge state distribution in the vacuum arc plasma jet

    International Nuclear Information System (INIS)

    We report on our experimental studies of the ion charge state distribution (CSD) of vacuum arc plasmas using a time-of-flight diagnostic method. The dependence of the CSD on the axial distance from the plasma source region was measured for a titanium vacuum arc. It was found that the axial CSD profile is nonuniform. Generally, the mean charge state increases approximately linearly with axial distance from about 1.7 at 12 cm up to 1.9 at 25 cm from the plasma source. A model for ion transport in the free boundary plasma jet is proposed which is based on the existence of an electric field in the quasineutral plasma. This model qualitatively explains the experimental results. (c) 2000 American Institute of Physics

  2. Application of Genetic Neural Network in Power Battery Charging State-of-Charge Estimation

    Directory of Open Access Journals (Sweden)

    Yongqin Zhou

    2011-03-01

    Full Text Available With global non-renewable resources and environmental issues becoming more apparent, the development of new energy vehicles have become the trend of auto industry. Hybrid vehicle becomes the key development of new energy vehicles with its long distance, low pollution, low fuel consumption characteristics and so on. The battery performances directly influence the quality of the whole vehicle performance. Considering the importance of the battery state of charge (SOC estimation and the nonlinear relationship between the battery SOC and the external characteristic, genetic algorithm (GA and back propagation (BP neural network are proposed. Because of the strong global search capability of the genetic algorithm and the generalization ability of BP neural network, the hybrid vehicle Ni-MH power battery GA-BP charging model is designed. In this approach, the network training speed is superior to the traditional BP network. According to the real-time data of the batteries, the optimal solution can be concluded in a short time and with high estimation precision.

  3. Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics

    International Nuclear Information System (INIS)

    Highlights: ► Analyzed National Household Travel Survey to simulate driving and charging patterns. ► Average compact PHEVs used 49 kW h of electricity and 6.8 L of gasoline per week. ► Percent of electrically driven miles increased from 64.3 in 2001 to 66.7 in 2009. ► Investigated demographic effects of sex, age, income, and household location. ► Analysis shows higher utility factors for females versus males and high age variation. -- Abstract: Plug-in hybrid electric vehicles (PHEVs) are one promising technology for addressing concerns around petroleum consumption, energy security and greenhouse gas emissions. However, there is much uncertainty in the impact that PHEVs can have on energy consumption and related emissions, as they are dependent on vehicle technology, driving patterns, and charging behavior. A methodology is used to simulate PHEV charging and gasoline consumption based on driving pattern data in USDOT’s National Household Travel Survey. The method uses information from each trip taken by approximately 170,000 vehicles to track their battery state of charge throughout the day, and to determine the timing and quantity of electricity and gasoline consumption for a fleet of PHEVs. Scenarios were developed to examine the effects of charging location, charging rate, time of charging and battery size. Additionally, demographic information was examined to see how driver and household characteristics influence consumption patterns. Results showed that a compact vehicle with a 10.4 kW h useable battery (approximately a 42 mile [68 km] all electric range) travels between 62.5% and 75.7% on battery electricity, depending on charging scenario. The percent of travel driven electrically (Utility Factor, UF) in a baseline charging scenario increased from 64.3% using 2001 NHTS data to 66.7% using 2009 data. The average UF was 63.5% for males and 72.9% for females and in both cases they are highly sensitive to age. Vehicle charging load profiles across

  4. The Effect of Interfacial Geometry on Charge-Transfer States in the Phthalocyanine/Fullerene Organic Photovoltaic System.

    Science.gov (United States)

    Lee, Myeong H; Geva, Eitan; Dunietz, Barry D

    2016-05-19

    The dependence of charge-transfer states on interfacial geometry at the phthalocyanine/fullerene organic photovoltaic system is investigated. The effect of deviations from the equilibrium geometry of the donor-donor-acceptor trimer on the energies of and electronic coupling between different types of interfacial electronic excited states is calculated from first-principles. Deviations from the equilibrium geometry are found to destabilize the donor-to-donor charge transfer states and to weaken their coupling to the photoexcited donor-localized states, thereby reducing their ability to serve as charge traps. At the same time, we find that the energies of donor-to-acceptor charge transfer states and their coupling to the donor-localized photoexcited states are either less sensitive to the interfacial geometry or become more favorable due to modifications relative to the equilibrium geometry, thereby enhancing their ability to serve as gateway states for charge separation. Through these findings, we eludicate how interfacial geometry modifications can play a key role in achieving charge separation in this widely studied organic photovoltaic system. PMID:26237431

  5. Spin-charge separation and anomalous correlation functions in the edge states of quantum hall liquids

    CERN Document Server

    Lee, H C

    1998-01-01

    First, we have investigated chiral edges of a quantum Hall liquids at filling factor nu=2. The separation of spin and charge degrees of freedom becomes manifest in the presence of long- range Coulomb interaction. Due to the spin-charge separation the tunneling density of states takes the form D(omega) approx ( -lnl omega l) sup 1 sup / sup 2. Experimentally, the spin-charge separation can be revealed in the temperature and voltage dependence of the tunneling current into Fermi liquid reservoir. Second, the charge and spin correlation functions of partially spin-polarized edge electrons of a quantum Hall bar are studied using effective Hamiltonian and bosonization techniques. In the presence of the Coulomb interaction between the edges with opposite chirality we find a different crossover behavior in spin and charge correlation functions. The crossover of the spin correlation function in the Coulomb dominated regime is characterized by an anomalous exponent, which originates from the finite value of the effect...

  6. Model for charge/discharge-rate-dependent plastic flow in amorphous battery materials

    Science.gov (United States)

    Khosrownejad, S. M.; Curtin, W. A.

    2016-09-01

    Plastic flow is an important mechanism for relaxing stresses that develop due to swelling/shrinkage during charging/discharging of battery materials. Amorphous high-storage-capacity Li-Si has lower flow stresses than crystalline materials but there is evidence that the plastic flow stress depends on the conditions of charging and discharging, indicating important non-equilibrium aspects to the flow behavior. Here, a mechanistically-based constitutive model for rate-dependent plastic flow in amorphous materials, such as LixSi alloys, during charging and discharging is developed based on two physical concepts: (i) excess energy is stored in the material during electrochemical charging and discharging due to the inability of the amorphous material to fully relax during the charging/discharging process and (ii) this excess energy reduces the barriers for plastic flow processes and thus reduces the applied stresses necessary to cause plastic flow. The plastic flow stress is thus a competition between the time scales of charging/discharging and the time scales of glassy relaxation. The two concepts, as well as other aspects of the model, are validated using molecular simulations on a model Li-Si system. The model is applied to examine the plastic flow behavior of typical specimen geometries due to combined charging/discharging and stress history, and the results generally rationalize experimental observations.

  7. Charge-Dependent Dynamics of Polyelectrolyte Dendrimer and Its Correlation with Invasive Water

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ren [ORNL; Hong, Kunlun [ORNL; Li, Xin [ORNL; Liu, Emily [Rensselaer Polytechnic Institute (RPI); Liu, Yun [National Institute of Standards and Technology (NIST); Porcar, L. [National Institute of Standards and Technology (NIST); Smith, Gregory Scott [ORNL; Wu, Bin [ORNL; Mamontov, Eugene [ORNL; Egami, T. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Kolesnikov, Alexander I [ORNL; Diallo, Souleymane Omar [Oak Ridge National Laboratory (ORNL)

    2013-01-01

    Atomistic molecular dynamics (MD) simulations were carried out to investigate the local dynamics of polyelectrolyte dendrimers dissolved in deuterium oxide (D2O) and its dependence on molecular charge. Enhanced segmental dy-namics upon increase in molecular charge is observed, consistent with quasielastic neutron scattering (QENS) measurements. A strong coupling between the intra-dendrimer local hydration level and segmental dynamics is also revealed. Compelling evidence shows these findings originate from the electrostatic interaction between the hydrocarbon components of dendrimer and invasive water. This combined study provides fundamental insight into the dynamics of charged polyelectrolytes and the solvating water molecules.

  8. High Intensity High Charge State ECR Ion Sources

    CERN Document Server

    Leitner, Daniela

    2005-01-01

    The next-generation heavy ion beam accelerators such as the proposed Rare Isotope Accelerator (RIA), the Radioactive Ion Beam Factory at RIKEN, the GSI upgrade project, the LHC-upgrade, and IMP in Lanzhou require a great variety of high charge state ion beams with a magnitude higher beam intensity than currently achievable. High performance Electron Cyclotron Resonance (ECR) ion sources can provide the flexibility since they can routinely produce beams from hydrogen to uranium. Over the last three decades, ECR ion sources have continued improving the available ion beam intensities by increasing the magnetic fields and ECR heating frequencies to enhance the confinement and the plasma density. With advances in superconducting magnet technology, a new generation of high field superconducting sources is now emerging, designed to meet the requirements of these next generation accelerator projects. The talk will briefly review the field of high performance ECR ion sources and the latest developments for high intens...

  9. Low charge state heavy ion production with sub-nanosecond laser

    International Nuclear Information System (INIS)

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target

  10. Low charge state heavy ion production with sub-nanosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Kanesue, T., E-mail: tkanesue@bnl.gov; Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Kumaki, M. [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Ikeda, S. [Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa 226-8503 (Japan)

    2016-02-15

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

  11. Low charge state heavy ion production with sub-nanosecond laser

    Science.gov (United States)

    Kanesue, T.; Kumaki, M.; Ikeda, S.; Okamura, M.

    2016-02-01

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

  12. Investigation of ground state charge transfer complex between paracetamol and p-chloranil through DFT and UV-visible studies

    Science.gov (United States)

    Shukla, Madhulata; Srivastava, Nitin; Saha, Satyen

    2012-08-01

    The present report deals with the theoretical investigation on ground state structure and charge transfer (CT) transitions in paracetamol (PA)/p-chloranil (CA) complex using Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TD-DFT) method. It is found that Cdbnd O bond length of p-chloranil increases on complexation with paracetamol along with considerable amount of charge transfer from PA to CA. TD-DFT calculations have been performed to analyse the observed UV-visible spectrum of PA-CA charge transferred complex. Interestingly, in addition to expected CT transition, a weak symmetry relieved π-π* transition in the chloranil is also observed.

  13. Energy loss of high velocity 6Li2+ ions in carbon foils in charge state non-equilibrium region

    International Nuclear Information System (INIS)

    Mean energy losses of high velocity H-like Li ions in thin carbon foils were measured in the charge state non-equilibrium region. Owing to the screening effect of the bound electron, the fixed-charge stopping power for 6Li2+ was smaller than that for 6Li3+. The projectile atomic number dependence of the fixed-charge stopping powers for H-like ions is discussed including our previous data of He, C and O ions with the same velocity. The present result is also compared with the theoretical prediction. (orig.)

  14. Charge Independent(CI) and Charge Dependent(CD) correlations vs. Centrality from $\\Delta \\phi \\Delta \\eta$ Charged Pairs in Minimum Bias Au + Au Collisions at 200 Gev

    CERN Document Server

    Abelev, B I; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Beavis, D R; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Braidot, E; Brandin, A V; Bültmann, S; Burton, T P; Bystersky, M; Cai, X Z; Caines, H; Calderón de la Barca-Sanchez, M; Callner, J; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, S U; Clarke, R F; Codrington, M J M; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; De Moura, M M; Dedovich, T G; De Phillips, M; Derevshchikov, A A; Derradide Souza, R; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunlop, J C; Dutta-Majumdar, M R; Edwards, W R; Efimov, L G; Elhalhuli, E; Elnimr, M; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Yu; Gagliardi, C A; Gaillard, L; Gangadharan, D R; Ganti, M S; García-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Sen-Gupta, A; Gupta, N; Guryn, W; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Heppelmann, S; Hippolyte, B; Hirsch, A; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, H Z; Hughes, E W; Humanic, T J; Igo, G; Iordanova, A; Jacobs, W W; Jakl, P; Jin, F; Jones, P G; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kravtsov, P; Kravtsov, V I; Krüger, K; Kuhn, C; Kumar, A; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; Lange, S; La Pointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Le Vine, M J; Li, C; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Matis, H S; Matulenko, Yu A; McShane, T S; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mischke, A; Mitchell, J; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, C; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, Grazyna Janina; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Pal, S K; Panebratsev, Yu A; Pawlak, T; Peitzmann, T; Perevozchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Porile, N; Poskanzer, A M; Potekhin, M; Potukuchi, B V K S; Prindle, D; Pruneau, C; Pruthi, N K; Putschke, J; Qattan, I A; Raniwala, R; Raniwala, S; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Rykov, V; Sahoo, R; Sakai, S; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Shi, X-H; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Snellings, R; Sørensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tokarev, M; Tram, V N; Trattner, A L; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; Van der Kolk, N; Van Leeuwen, M; Van der Molen, A M; Varma, R; Vasconcelos, G M S; Vasilevski, I M; Vasilev, A N; Videbaek, F; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, Q; Wang, X; Wang, X L; Wang, Y; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, J; Wu, Y; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, H; Zhang, S; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zuo, J X

    2008-01-01

    We report high precision charged-particle pair (2-D) correlation analyses in the space of $\\Delta \\phi$ (azimuth) and $\\Delta \\eta$ (pseudorapidity), for minimum bias Au + Au collisions at $\\sqrt{s_{NN}}$ = 200 GeV as a function of centrality (0-80%). The intermediate transverse momenta region chosen $0.8 < p_t < 4.0$ GeV/c corresponds to an emission source size $\\sim2$fm obtained from HBT measurements and should resolve substructures at the scale of $\\sim2$fm. The difference and the sum of unlike-sign and like-sign charged pairs form Charge Dependent (CD) correlations and Charge Independent (CI) correlations respectively. The CD displays the initial correlation at hadronization of the opposite sign pairs emitted from the same space-time region as modified by further medium interactions before kinetic freeze-out. Our analysis of the CD correlations shows approximately jet-like structure, independent of centrality and is consistent with the initial correlation which is predicted by Pythia (or HIJING) jet...

  15. Dynamics of the excited state intramolecular charge transfer

    International Nuclear Information System (INIS)

    The 6-dodecanoyl-2-dimethylaminonaphtalene (laurdan), a derivative of 6-propanoyl- 2-dimethylaminonaphthalene (prodan), has been used as a fluorescent probe in cell imaging, especially in visualizing the lipid rafts by the generalized polarization (GP) images, where GP=(I440-I490)/(I440+I490) with I being the fluorescence intensity. The fluorescence spectrum of laurdan is sensitive to its dipolar environment due to the intramolecular charge transfer (ICT) process in S1 state, which results in a dual emission from the locally excited (LE) and the ICT states. The ICT process and the solvation of the ICT state are very sensitive to the dipolar nature of the environment. In this work, the ICT of laurdan in ethanol has been studied by femtosecond time resolved fluorescence (TRF), especially TRF spectra measurement without the conventional spectral reconstruction method. TRF probes the excited states exclusively, a unique advantage over the pump/probe transient absorption technique, although time resolution of the TRF is generally lower than transient absorption and the TRF spectra measurement was possible only though the spectral reconstruction. Over the years, critical advances in TRF technique have been made in our group to achieve <50 fs time resolution with direct full spectra measurement capability. Detailed ICT and the subsequent solvation processes can be visualized unambiguously from the TRF spectra. Fig. 1 shows the TRF spectra of laurdan in ethanol at several time delays. Surprisingly, two bands at 433 and 476 nm are clearly visible in the TRF spectra of laurdan even at T = 0 fs. As time increases, the band at 476 nm shifts to the red while its intensity increases. The band at 433 nm also shifts slightly to the red, but loses intensity as time increases. The intensity of the 476 nm band reaches maximum at around 5 ps, where it is roughly twice as intense as that at 0 fs, and stays constant until lifetime decay is noticeable. The spectra were fit by two log

  16. Coverage Dependent Charge Reduction of Cationic Gold Clusters on Surfaces Prepared Using Soft Landing of Mass-selected Ions

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2012-11-29

    was found to be Au11L52+ at lower coverage and Au11L5+ at higher coverage, respectively. A coverage-dependent electron tunneling mechanism is proposed to account for the observed reduction of charge of mass-selected multiply charged gold clusters soft landed on SAMs. The results demonstrate that one of the critical parameters that influence the chemical and physical properties of supported metal clusters, ionic charge state, may be controlled by selecting the coverage of charged species soft landed onto surfaces.

  17. Electron capture to autoionizing states of multiply charged ions

    International Nuclear Information System (INIS)

    The present thesis investigates electron capture reactions resulting from slow collisions (V q+) and neutral gas targets (B). The energy spectra of the emitted electrons are measured; detection angle is 500. Mainly, autoionizing double capture resulting from collisions with two-electron targets (He, H2) is studied; then, the emitted electrons stem from doubly excited projectile states. The projectiles used are bare C6+, the H-like and He-like ions of C, N and O, He-like Ne8+ and Ne-like Ar8+. Excited metastable projectiles used are C5+(2s), He-like projectiles Aq+(1s2s3S) and Ar8+(...2p53s). Comparison is made with the predictions of a recently proposed extended classical barrier model, that was developed in connection with the work. This model assumes sequential capture of the electrons ('two-step' process); it predicts the realized binding enegies of the captured electrons - which may be directly determined from the autoionization spectra using only the projectile charge, the ionization potentials of the target and the collision velocity as parameters. No adjustable parameter enters into the calculations. The term energies and decay modes of the highly excited product ions themselves are studied. Generally, the autoionizing decay of these states is found to proceed preferentially to the directly adjacent lower singly excited state. Experimental evidence is presented, that triply excited states decay by successive emission of two electrons, whenever this is energetically possible. Finally, the L-MM decay in few-electron systems is considered. 314 refs.; 96 figs.; 29 tabs

  18. How to construct self/anti-self charge conjugate states?

    International Nuclear Information System (INIS)

    We construct self/anti–self charge conjugate (Majorana–like) states for the (1/2, 0)⊕(0, 1/2) representation of the Lorentz group, and their analogs for higher spins within the quantum field theory. The problem of the basis rotations and that of the selection of phases in the Dirac–like and Majorana–like field operators are considered. The discrete symmetries properties (P, C, T) are studied. The corresponding dynamical equations are presented. In the (1/2, 0) ⊕ (0, 1/2) representation they obey the Dirac–like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The particular attention has been paid to the questions of chirality and helicity (two concepts which are frequently confused in the literature) for Dirac and Majorana states. We further review several experimental consequences which follow from the previous works of M. Kirchbach et al. on neutrinoless double beta decay, and G. J. Ni et al. on meson lifetimes

  19. Charge-transport anisotropy in black phosphorus: critical dependence on the number of layers.

    Science.gov (United States)

    Banerjee, Swastika; Pati, Swapan K

    2016-06-28

    Phosphorene is a promising candidate for modern electronics because of the anisotropy associated with high electron-hole mobility. Additionally, superior mechanical flexibility allows the strain-engineering of various properties including the transport of charge carriers in phosphorene. In this work, we have shown the criticality of the number of layers to dictate the transport properties of black phosphorus. Trilayer black phosphorus (TBP) has been proposed as an excellent anisotropic material, based on the transport parameters using Boltzmann transport formalisms coupled with density functional theory. The mobilities of both the electron and the hole are found to be higher along the zigzag direction (∼10(4) cm(2) V(-1) s(-1) at 300 K) compared to the armchair direction (∼10(2) cm(2) V(-1) s(-1)), resulting in the intrinsic directional anisotropy. Application of strain leads to additional electron-hole anisotropy with 10(3) fold higher mobility for the electron compared to the hole. Critical strain for maximum anisotropic response has also been determined. Whether the transport anisotropy is due to the spatial or charge-carrier has been determined through analyses of the scattering process of electrons and holes, and their recombination as well as relaxation dynamics. In this context, we have derived two descriptors (S and F(k)), which are general enough for any 2D or quasi-2D systems. Information on the scattering involving purely the carrier states also helps to understand the layer-dependent photoluminescence and electron (hole) relaxation in black phosphorus. Finally, we justify trilayer black phosphorus (TBP) as the material of interest with excellent transport properties. PMID:27257640

  20. Kelvin-probe force microscopy of the pH-dependent charge of functional groups

    Science.gov (United States)

    Stone, Alexander D. D.; Mesquida, Patrick

    2016-06-01

    Kelvin-probe Force Microscopy (KFM) is an established method to map surface potentials or surface charges at high, spatial resolution. However, KFM does not work in water, which restricts its applicability considerably, especially when considering common, functional chemical groups in biophysics such as amine or carboxy groups, whose charge depends on pH. Here, we demonstrate that the KFM signal of such groups taken in air after exposure to water correlates qualitatively with their expected charge in water for a wide range of pH values. The correlation was tested with microcontact-printed thiols exposing amine and carboxy groups. Furthermore, it was shown that collagen fibrils, as an example of a biological material, exhibit a particular, pH-sensitive surface charge pattern, which could be caused by the particular arrangement of ionizable residues on the collagen fibril surface.

  1. Investigation of the W and Q 2 dependence of charged pion distributions in μ p scattering

    Science.gov (United States)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Giubellino, P.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Hoppe, C.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1986-03-01

    The W and Q 2 dependence of the fragmentation functions and of the average multiplicity of charged pions is investigated, using data from the NA9 experiment at the CERN SPS on muon-proton scattering at 280 GeV. A significant increase of pion production with increasing W is observed at fixed Q 2, leading to a rise of the average charged pion multiplicity, linear in ln W 2, and of the pion fragmentation function in the central region, i.e. at small | x F |. This increase can be understood from the kinematic widening of the cms rapidity range proportional to ln W 2 and the observed W independent height of the rapidity distribution. At fixed W, a rise of the average charged pion multiplicity with Q 2 is observed. This rise appears to be weaker than that observed for all charged hadrons implying a stronger rise with Q 2 for kaons and protons.

  2. Local equilibria and state transfer of charged classical particles on a helix in an electric field

    CERN Document Server

    Plettenberg, J; Zampetaki, A V; Schmelcher, P

    2016-01-01

    We explore the effects of a homogeneous external electric field on the static properties and dynamical behavior of two charged particles confined to a helix. In contrast to the field-free setup which provides a separation of the center-of-mass and relative motion, the existence of an external force perpendicular to the helix axis couples the center-of-mass to the relative degree of freedom leading to equilibria with a localized center of mass. By tuning the external field various fixed points are created and/or annihilated through different bifurcation scenarios. We provide a detailed analysis of these bifurcations based on which we demonstrate a robust state transfer between essentially arbitrary equilibrium configurations of the two charges that can be induced by making the external force time-dependent.

  3. Quark charge retention in final state hadrons form deep inelastic muon scattering

    International Nuclear Information System (INIS)

    The net charge of final state hadrons in both the current and target fragmentation regions has been measured in a 280 GeV/c muon-proton scattering experiment. A clean kinematic separation of the two regions in the centre-of-mass rapidity is demonstrated. The dependence on chisub(Bj) of the mean net charges is found to be consistent with a large contribution of sea quarks at small chisub(Bj) and with the dominance of valence quarks at large chisub(Bj) thus giving clear confirmation of the quark-parton model. It is also shown that the leading forward hadron has a high probability of containing the struck quark. (orig.)

  4. Isospin and Z$^{1/3}$ Dependence of the Nuclear Charge Radii

    CERN Document Server

    Zhang, S Q; Zhou, S G; Zeng, J Y

    2002-01-01

    Based on the systematic investigation of the data available for $A \\geq 40$, a $Z^{1/3}$ dependence for the nuclear charge radii is shown to be superior to the generally accepted $A^{1/3}$ law. A delicate scattering of data around $R_c/Z^{1/3}$ is infered as owing to the isospin effect and a linear dependence of $R_c/Z^{1/3}$ on $N/Z$ (or $(N-Z)/2$) is found. This inference is well supported by the microscopic Relativistic Continuum Hartree-Bogoliubov (RCHB) calculation conducted for the proton magic Ca, Ni, Zr, Sn and Pb isotopes including the exotic nuclei close to the neutron drip line. With the linear isospin dependence provided by the data and RCHB theory, a new isospin dependent $Z^{1/3}$ formula for the nuclear charge radii is proposed.

  5. Charge order from orbital-dependent coupling evidenced by NbSe2.

    Science.gov (United States)

    Flicker, Felix; van Wezel, Jasper

    2015-01-01

    Niobium diselenide has long served as a prototype of two-dimensional charge ordering, believed to arise from an instability of the electronic structure analogous to the one-dimensional Peierls mechanism. Despite this, various anomalous properties have recently been identified experimentally, which cannot be explained by Peierls-like weak-coupling theories. Here, we consider instead a model with strong electron-phonon coupling, taking into account both the full momentum and orbital dependence of the coupling matrix elements. We show that both are necessary for a consistent description of the full range of experimental observations. We argue that NbSe2 is typical in this sense, and that any charge-ordered material in more than one dimension will generically be shaped by the momentum and orbital dependence of its electron-phonon coupling as well as its electronic structure. The consequences will be observable in many charge-ordered materials, including cuprate superconductors. PMID:25948390

  6. Influence of charge changing collisions on charge state distributions (CSD) in non-equilibrium plasmas

    International Nuclear Information System (INIS)

    For an optimal design of ion sources and for some aspects of plasma diagnostics it is important to study the influence of all processes and parameters that are essential for the production and loss of multiply charged ions. Till now all existing calculations of CSD neglected charge transfer because of missing data. Now many of the very big charge transfer cross sections are measured and so we are able to include them into our calculations. (orig.)

  7. A new auto-coherent bias dependent charge model for MESFETs and HEMTs

    OpenAIRE

    Valkov, S.; Derzkii, D.; Temcamani, F.; Pouvil, P.

    1996-01-01

    A nonlinear model of MESFETs and HEMTs capacitances suitable for implementation in commercial circuit design software is presented. The model is based upon the deter­mination of the nonlinear bias dependent charge equations. A comparison is made between capacitance values coming from PHEMT characterization and capacitance values derived from the model.

  8. Time-dependent ion selectivity in capacitive charging of porous electrodes

    NARCIS (Netherlands)

    Zhao, R.; Soestbergen, M.; Rijnaarts, H.H.M.; Wal, van der A.F.; Bazant, M.Z.; Biesheuvel, P.M.

    2012-01-01

    In a combined experimental and theoretical study, we show that capacitive charging of porous electrodes in multicomponent electrolytes may lead to the phenomenon of time-dependent ion selectivity of the electrical double layers (EDLs) in the electrodes. This effect is found in experiments on capacit

  9. Defect states and disorder in charge transport in semiconductor nanowires

    OpenAIRE

    Ko, Dongkyun; Zhao, X. W.; Reddy, Kongara M.; Restrepo, O. D.; Mishra, R; Beloborodov, I. S.; Trivedi, Nandini; Padture, Nitin P.; W. Windl; Yang, F. Y.; Johnston-Halperin, E.

    2011-01-01

    We present a comprehensive investigation into disorder-mediated charge transport in InP nanowires in the statistical doping regime. At zero gate voltage transport is well described by the space charge limited current model and Efros-Shklovskii variable range hopping, but positive gate voltage (electron accumulation) reveals a previously unexplored regime of nanowire charge transport that is not well described by existing theory. The ability to continuously tune between these regimes provides ...

  10. Fractional Charge and Quantized Current in the Quantum Spin Hall State

    OpenAIRE

    Qi, Xiao-Liang; Hughes, Taylor L.; Zhang, Shou-Cheng

    2007-01-01

    A profound manifestation of topologically non-trivial states of matter is the occurrence of fractionally charged elementary excitations. The quantum spin Hall insulator state is a fundamentally novel quantum state of matter that exists at zero external magnetic field. In this work, we show that a magnetic domain wall at the edge of the quantum spin Hall insulator carries one half of the unit of electron charge, and we propose an experiment to directly measure this fractional charge on an indi...

  11. Resonance charge exchange between excited states in slow proton-hydrogen collisions

    International Nuclear Information System (INIS)

    The theory of resonance charge exchange in slow collisions of a proton with a hydrogen atom in the excited state is developed. It extends the Firsov-Demkov theory of resonance charge exchange to the case of degenerate initial and final states. The theory is illustrated by semiclassical and quantum calculations of charge exchange cross sections between states with n=2 in parabolic and spherical coordinates. The results are compared with existing close-coupling calculations.

  12. Universal Bounds on Charged States in 2d CFT and 3d Gravity

    CERN Document Server

    Benjamin, Nathan; Fitzpatrick, A Liam; Kachru, Shamit

    2016-01-01

    We derive an explicit bound on the dimension of the lightest charged state in two dimensional conformal field theories with a global abelian symmetry. We find that the bound scales with $c$ and provide examples that parametrically saturate this bound. We also prove than any such theory must contain a state with charge-to-mass ratio above a minimal lower bound. We comment on the implications for charged states in three dimensional theories of gravity.

  13. Identifying the magnetoconductance responses by the induced charge transfer complex states in pentacene-based diodes

    Science.gov (United States)

    Huang, Wei-Shun; Lee, Tsung-Hsun; Guo, Tzung-Fang; Huang, J. C. A.; Wen, Ten-Chin

    2012-07-01

    We investigate the magnetoconductance (MC) responses in photocurrent, unipolar injection, and bipolar injection regimes in pentacene-based diodes. Both photocurrent and bipolar injection contributed MC responses show large difference in MC line shape, which are attributed to triplet-polaron interaction modulated by the magnetic field dependent singlet fission and the intersystem crossing of the polaron pair, respectively. By blending 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane into pentacene, all the MC responses are suppressed but the MC response at unipolar injection regime is enhanced, which is attributed to the induced charge transfer complex states (CT complex states). This work identify the MC responses between single carrier contributed MC and exciton related MC by the induced CT complex states.

  14. Propagation Distance Required to Reach Steady-State Detonation Velocity in Finite-Sized Charges

    CERN Document Server

    Li, Jianling; Higgins, Andrew J

    2014-01-01

    The decay of a detonation wave from its initial CJ velocity to its final, steady state velocity upon encountering a finite thickness or diameter charge is investigated numerically and theoretically. The numerical simulations use an ideal gas equation of state and pressure dependent reaction rate in order to ensure a stable wave structure. The confinement is also treated as an ideal gas with variable impedance. The velocity decay along the centerline is extracted from the simulations and compared to predictions base on a front evolution equation that uses the steady state detonation velocity-front curvature relation ($D_n-\\kappa$). This model fails to capture the finite signaling speed of the leading rarefaction resulting from the interaction with the yielding confinement. This signaling speed is verified to be the maximum signal velocity occurring in the ideal ZND wave structure of the initial CJ velocity. A simple heuristic model based on the rarefaction generated by a one-dimensional interaction between the...

  15. Thermal State-of-Charge in Solar Heat Receivers

    Science.gov (United States)

    Hall, Carsie, A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1998-01-01

    A theoretical framework is developed to determine the so-called thermal state-of-charge (SOC) in solar heat receivers employing encapsulated phase change materials (PCMS) that undergo cyclic melting and freezing. The present problem is relevant to space solar dynamic power systems that would typically operate in low-Earth-orbit (LEO). The solar heat receiver is integrated into a closed-cycle Brayton engine that produces electric power during sunlight and eclipse periods of the orbit cycle. The concepts of available power and virtual source temperature, both on a finite-time basis, are used as the basis for determining the SOC. Analytic expressions for the available power crossing the aperture plane of the receiver, available power stored in the receiver, and available power delivered to the working fluid are derived, all of which are related to the SOC through measurable parameters. Lower and upper bounds on the SOC are proposed in order to delineate absolute limiting cases for a range of input parameters (orbital, geometric, etc.). SOC characterization is also performed in the subcooled, two-phase, and superheat regimes. Finally, a previously-developed physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) system is used in order to predict the SOC as a function of measurable parameters.

  16. Spectroscopic and theoretical evidence for the photoinduced twisted intramolecular charge transfer state formation in N,N-dimethylaminonaphthyl-(acrylo)-nitrile

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rupashree Balia; Mahanta, Subrata; Kar, Samiran [Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009 (India); Guchhait, Nikhil [Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009 (India)], E-mail: nikhil.guchhait@rediffmail.com

    2008-09-15

    The phenomenon of excited state twisted intramolecular charge transfer (TICT) process in N,N-dimethylaminonaphthyl-(acrylo)-nitrile (DMANAN) has been reported on the basis of steady-state absorption and fluorescence spectroscopy in combination with quantum chemical calculations. The absorption and fluorescence characteristics of DMANAN in solvents of different polarity reveal the presence of a single species in the ground state which forms the intramolecular charge transfer state upon photoexcitation. The observed dual fluorescence is assigned to a high-energy emission from the locally excited or the Franck-Condon state and the red-shifted emission from the charge transfer (CT) state. In polar protic solvents, hydrogen-bonding interaction on CT emission has been established from the linear dependency of the position of the low-energy emission maxima on hydrogen-bonding parameter ({alpha}). The experimental findings have been correlated with the theoretical results based on TICT model obtained at density functional theory (DFT) level. The theoretical potential energy surface for the first excited state along both the donor and acceptor twist coordinates in the gas phase obtained by time dependent density functional theory (TDDFT) method and in polar solvent by time dependent density functional theory-polarized continuum model (TDDFT-PCM) method predicts well the experimental spectral properties.

  17. Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions

    Science.gov (United States)

    Schwarz, Florian; Kastlunger, Georg; Lissel, Franziska; Egler-Lucas, Carolina; Semenov, Sergey N.; Venkatesan, Koushik; Berke, Heinz; Stadler, Robert; Lörtscher, Emanuel

    2016-02-01

    Charge transport through single molecules can be influenced by the charge and spin states of redox-active metal centres placed in the transport pathway. These intrinsic properties are usually manipulated by varying the molecule's electrochemical and magnetic environment, a procedure that requires complex setups with multiple terminals. Here we show that oxidation and reduction of organometallic compounds containing either Fe, Ru or Mo centres can solely be triggered by the electric field applied to a two-terminal molecular junction. Whereas all compounds exhibit bias-dependent hysteresis, the Mo-containing compound additionally shows an abrupt voltage-induced conductance switching, yielding high-to-low current ratios exceeding 1,000 at bias voltages of less than 1.0 V. Density functional theory calculations identify a localized, redox-active molecular orbital that is weakly coupled to the electrodes and closely aligned with the Fermi energy of the leads because of the spin-polarized ground state unique to the Mo centre. This situation provides an additional slow and incoherent hopping channel for transport, triggering a transient charging effect in the entire molecule with a strong hysteresis and large high-to-low current ratios.

  18. Boson ground state fields in electroweak theory with non-zero charge densities

    OpenAIRE

    Syska, J.

    2002-01-01

    The "non-linear" self-consistent theory of classical fields in the electroweak model is proposed. Homogeneous boson ground state solutions in the GSW model at the presence of a non-zero extended fermionic charge densities are reviewed and fully reinterpreted to make the theory with non-zero charge densities fruitful. Consequences of charge density fluctuations are proposed.

  19. Localization-dependent charge separation efficiency at an organic/inorganic hybrid interface

    Science.gov (United States)

    Foglia, Laura; Bogner, Lea; Wolf, Martin; Stähler, Julia

    2016-02-01

    By combining complementary optical techniques, photoluminescence and time-resolved excited state absorption, we achieve a comprehensive picture of the relaxation processes in the organic/inorganic hybrid system SP6/ZnO. We identify two long-lived excited states of the organic molecules of which only the lowest energy one, localized on the sexiphenyl backbone of the molecule, is found to efficiently charge separate to the ZnO conduction band or radiatively recombine. The other state, most likely localized on the spiro-linked biphenyl, relaxes only by intersystem crossing to a long-lived, probably triplet state, thus acting as a sink of the excitation and limiting the charge separation efficiency.

  20. Time-dependent harmonic oscillators and squeezed states

    International Nuclear Information System (INIS)

    Utilizing time-dependent operators whose associated states are squeezed states, it is shown that the general time-dependent harmonic-oscillator Hamiltonian belongs to the class of quadratic Hamiltonians that generate squeezed states. An illustrative example is also considered. (Author)

  1. Photo-induced changes in charge-ordered state of Ti4O7

    International Nuclear Information System (INIS)

    We have investigated photo-induced effects on the charge-ordered state of Ti4O7 with pump-probe spectroscopy. Reflectivity of the probe light changes after the pulsed pump excitation, and then recovers. The photo-induced effects are observed only when the pump power exceeds a threshold value, indicative of cooperative nature of the formation process, and the recovery rate shows thermally activated behaviour. We propose that the photo-induced state is a metastable charge localized state where charge disorder is induced by a photon-assisted charge transfer process from Ti26+ dimers to the neighbouring Ti4+ions. Moreover, it is found that subsequent cw laser irradiation converts the photo-induced state into the charge-ordered state. We interpret this result in terms of formation of Ti26+ dimers via an inverse charge transfer process assisted by the cw optical excitation.

  2. State dependent computation using coupled recurrent networks

    CERN Document Server

    Rutishauser, Ueli

    2008-01-01

    Although conditional branching between possible behavioural states is a hallmark of intelligent behavior, very little is known about the neuronal mechanisms that support this processing. In a step toward solving this problem we demonstrate by theoretical analysis and simulation how networks of richly inter-connected neurons, such as those observed in the superficial layers of the neocortex, can embed reliable robust finite state machines. We show how a multi-stable neuronal network containing a number of states can be created very simply, by coupling two recurrent networks whose synaptic weights have been configured for soft winner-take-all (sWTA) performance. These two sWTAs have simple, homogenous locally recurrent connectivity except for a small fraction of recurrent cross-connections between them, which are used to embed the required states. This coupling between the maps allows the network to continue to express the current state even after the input that elicted that state is withdrawn. In addition, a s...

  3. Thermodynamic stability of charged BTZ black holes: Ensemble dependency problem and its solution

    CERN Document Server

    Hendi, S H; Mamasani, R

    2015-01-01

    Motivated by the wide applications of thermal stability and phase transition, we investigate thermodynamic properties of charged BTZ black holes. We apply the standard method to calculate the heat capacity and the Hessian matrix and find that thermal stability of charged BTZ solutions depends on the choice of ensemble. To overcome this problem, we take into account cosmological constant as a thermodynamical variable. By this modification, we show that the ensemble dependency is eliminated and thermal stability conditions are the same in both ensembles. Then, we generalize our solutions to the case of nonlinear electrodynamics. We show how nonlinear matter field modifies the geometrical behavior of the metric function. We also study phase transition and thermal stability of these black holes in context of both canonical and grand canonical ensembles. We show that by considering the cosmological constant as a thermodynamical variable and modifying the Hessian matrix, the ensemble dependency of thermal stability...

  4. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    Science.gov (United States)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact

  5. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    International Nuclear Information System (INIS)

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na+ and K+ ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications

  6. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  7. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    Science.gov (United States)

    Yao, Yi; Berkowitz, Max L.; Kanai, Yosuke

    2015-12-01

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na+ and K+ ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  8. Temperature dependence of the charge carrier mobility in gated quasi-one-dimensional systems

    OpenAIRE

    Gallos, L. K.; Movaghar, B.; Siebbeles, L.D.A.

    2003-01-01

    The many-body Monte Carlo method is used to evaluate the frequency dependent conductivity and the average mobility of a system of hopping charges, electronic or ionic on a one-dimensional chain or channel of finite length. Two cases are considered: the chain is connected to electrodes and in the other case the chain is confined giving zero dc conduction. The concentration of charge is varied using a gate electrode. At low temperatures and with the presence of an injection barrier, the mobilit...

  9. Relativistic mean field theory with density dependent coupling constants for nuclear matter and finite nuclei with large charge asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Typel, S.; Wolter, H.H. [Sektion Physik, Univ. Muenchen, Garching (Germany)

    1998-06-01

    Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)

  10. Charge structure of the hadronic final state in deep-inelastic muon-nucleon scattering

    International Nuclear Information System (INIS)

    The general charge properties of the hadronic final state produced in μ+p and μ+d interactions at 280 GeV are investigated. Quark charge retention and local charge compensation is observed. The ratio F2n/F2p of the neutron to proton structure function is derived from the measurement of the average hadronic charge in μd interactions. (orig.)

  11. Pressure dependence of the optical properties of the charge-density-wave compound LaTe$_2$

    OpenAIRE

    Lavagnini, M.; A. Sacchetti; Degiorgi, L.; Arcangeletti, E.; Baldassarre, L.; Postorino, P.; Lupi, S.; Perucchi, A.; Shin, K Y; Fisher, I. R.

    2007-01-01

    We report the pressure dependence of the optical response of LaTe$_2$, which is deep in the charge-density-wave (CDW) ground state even at 300 K. The reflectivity spectrum is collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 7 GPa. We extract the energy scale due to the single particle excitation across the CDW gap and the Drude weight. We establish that the gap decreases upon compressing the lattice, while the Drude weight increases. This signals...

  12. Combined State of Charge and State of Health estimation over lithium-ion battery cell cycle lifespan for electric vehicles

    Science.gov (United States)

    Zou, Yuan; Hu, Xiaosong; Ma, Hongmin; Li, Shengbo Eben

    2015-01-01

    A combined SOC (State Of Charge) and SOH (State Of Health) estimation method over the lifespan of a lithium-ion battery is proposed. First, the SOC dependency of the nominal parameters of a first-order RC (resistor-capacitor) model is determined, and the performance degradation of the nominal model over the battery lifetime is quantified. Second, two Extended Kalman Filters with different time scales are used for combined SOC/SOH monitoring: the SOC is estimated in real-time, and the SOH (the capacity and internal ohmic resistance) is updated offline. The time scale of the SOH estimator is determined based on model accuracy deterioration. The SOC and SOH estimation results are demonstrated by using large amounts of testing data over the battery lifetime.

  13. Time-dependent Displaced and Squeezed Number States

    CERN Document Server

    Kim, S P

    2004-01-01

    We generalize the wave functions of the displaced and squeezed number states, found by Nieto, to a time-dependent harmonic oscillator with variable mass and frequency. These time-dependent displaced and squeezed number states are obtained by first squeezing and then displacing the exact number states and are exact solutions of the Schr\\"{o}dinger equation. Further, these wave functions are the time-dependent squeezed harmonic-oscillator wave functions centered at classical trajectories.

  14. Frequency dependent magneto-transport in charge transfer Co(II) complex

    International Nuclear Information System (INIS)

    A charge transfer chelated system containing ferromagnetic metal centers is the ideal system to investigate the magneto-transport and magneto-dielectric effects due to the presence of both electronic as well as magnetic properties and their coupling. Magneto-transport properties in materials are usually studied through dc charge transport under magnetic field. As frequency dependent conductivity is an essential tool to understand the nature of carrier wave, its spatial extension and their mutual interaction, in the present work, we have investigated frequency dependent magneto-transport along with magnetization behavior in [Co2(II)-(5-(4-PhMe)-1,3,4-oxadiazole-H+-2-thiolate)5](OAc)4 metal complex to elucidate the nature of above quantities and their response under magnetic field in the transport property. We have used the existing model for ac conduction incorporating the field dependence to explain the frequency dependent magneto-transport. It is seen that the frequency dependent magneto-transport could be well explained using the existing model for ac conduction. -Highlights: • Chelated Co(II) complex is synthesized for magneto-transport applications. • Frequency dependent magneto-transport and magnetization behavior are studied. • Nature of carrier wave, its spatial extension is investigated under magnetic field. • Existing model for ac conduction is used with magnetic field dependence

  15. Energy and centrality dependences of charged multiplicity pseudorapidity density in relativistic nuclear collisions

    CERN Document Server

    Zhou Dai Mei; Sá Ben-Hao; Li Zhong Dao

    2002-01-01

    Using a hadron and string cascade model, JPCIAE, and the corresponding Monte Carlo events generator, the energy and centrality dependences of charged particle pseudorapidity density in relativistic nuclear collisions were studied. Within the framework of this model, both the relativistic p anti p experimental data and the PHOBOS and PHENIX Au + Au data could be reproduced fairly well without retuning the model parameters. The author shows that since is not a well defined physical variable both experimentally and theoretically, the charged particle pseudorapidity density per participant pair can increase and also can decrease with increasing of , so it may be hard to use charged particle pseudorapidity density per participant pair as a function of to distinguish various theoretical models for particle production

  16. Energy and centrality dependences of charged multiplicity pseudorapidity density in relativistic nuclear collisions

    International Nuclear Information System (INIS)

    Using a hadron and string cascade model, JPCIAE, and the corresponding Monte Carlo events generator, the energy and centrality dependences of charged particle pseudorapidity density in relativistic nuclear collisions were studied. Within the framework of this model, both the relativistic p anti p experimental data and the PHOBOS and PHENIX Au + Au data could be reproduced fairly well without retuning the model parameters. The author shows that since part> is not a well defined physical variable both experimentally and theoretically, the charged particle pseudorapidity density per participant pair can increase and also can decrease with increasing of part>, so it may be hard to use charged particle pseudorapidity density per participant pair as a function of part> to distinguish various theoretical models for particle production

  17. A compact electron beam ion source with integrated Wien filter providing mass and charge state separated beams of highly charged ions

    International Nuclear Information System (INIS)

    A Wien filter was designed for and tested with a room temperature electron beam ion source (EBIS). Xenon charge state spectra up to the charge state Xe46+ were resolved as well as the isotopes of krypton using apertures of different sizes. The complete setup consisting of an EBIS and a Wien filter has a length of less than 1 m substituting a complete classical beamline setup. The Wien filter is equipped with removable permanent magnets. Hence total beam current measurements are possible via simple removal of the permanent magnets. In dependence on the needs of resolution a weak (0.2 T) or a strong (0.5 T) magnets setup can be used. In this paper the principle of operation and the design of the Wien filter meeting the requirements of an EBIS are briefly discussed. The first ion beam extraction and separation experiments with a Dresden EBIS are presented.

  18. A compact electron beam ion source with integrated Wien filter providing mass and charge state separated beams of highly charged ions.

    Science.gov (United States)

    Schmidt, M; Peng, H; Zschornack, G; Sykora, S

    2009-06-01

    A Wien filter was designed for and tested with a room temperature electron beam ion source (EBIS). Xenon charge state spectra up to the charge state Xe46+ were resolved as well as the isotopes of krypton using apertures of different sizes. The complete setup consisting of an EBIS and a Wien filter has a length of less than 1 m substituting a complete classical beamline setup. The Wien filter is equipped with removable permanent magnets. Hence total beam current measurements are possible via simple removal of the permanent magnets. In dependence on the needs of resolution a weak (0.2 T) or a strong (0.5 T) magnets setup can be used. In this paper the principle of operation and the design of the Wien filter meeting the requirements of an EBIS are briefly discussed. The first ion beam extraction and separation experiments with a Dresden EBIS are presented. PMID:19566197

  19. State of charge monitoring methods for vanadium redox flow battery control

    Science.gov (United States)

    Skyllas-Kazacos, Maria; Kazacos, Michael

    2011-10-01

    During operation of redox flow batteries, differential transfer of ions and electrolyte across the membrane and gassing side reactions during charging, can lead to an imbalance between the two half-cells that results in loss of capacity. This capacity loss can be corrected by either simple remixing of the two solutions, or by chemical or electrochemical rebalancing. In order to develop automated electrolyte management systems therefore, the state-of-charge of each half-cell electrolyte needs to be known. In this study, two state-of-charge monitoring methods are investigated for use in the vanadium redox flow battery. The first method utilizes conductivity measurements to independently measure the state-of-charge of each half-cell electrolyte. The second method is based on spectrophotometric principles and uses the different colours of the charged and discharged anolyte and catholyte to monitor system balance and state-of charge of each half-cell of the VRB during operation.

  20. Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations

    International Nuclear Information System (INIS)

    Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom’s local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the SN2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM/MM interactions

  1. Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kuechler, Erich R. [BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8087 (United States); Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Giese, Timothy J.; York, Darrin M. [BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8087 (United States)

    2015-12-21

    Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom’s local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the S{sub N}2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM

  2. Adding high time resolution to charge-state-specific ion energy measurements for pulsed copper vacuum arc plasmas

    CERN Document Server

    Tanaka, Koichi; Zhou, Xue; Anders, André

    2015-01-01

    Charge-state-resolved ion energy-time-distributions of pulsed Cu arc plasma were obtained by using direct (time dependent) acquisition of the ion detection signal from a commercial ion mass-per-charge and energy-per-charge analyzer. We find a shift of energies of Cu2+, Cu3+ and Cu4+ ions to lower values during the first few hundred microseconds after arc ignition, which is evidence for particle collisions in the plasma. The generation of Cu1+ ions in the later part of the pulse, measured by the increase of Cu1+ signal intensity and an associated slight reduction of the mean charge state point to charge exchange reactions between ions and neutrals. At the very beginning of the pulse, when the plasma expands into vacuum and the plasma potential strongly fluctuates, ions with much higher energy (over 200 eV) were observed. Early in the pulse, the ion energies observed are approximately proportional to the ion charge state, and we conclude that the acceleration mechanism is primarily based on acceleration in an e...

  3. Determination of the charge state distribution of a highly ionized coronal Au plasma

    International Nuclear Information System (INIS)

    We present the first definitive measurement of the charge state distribution of a highly ionized gold plasma in coronal equilibrium. The experiment utilized the Livermore electron beam ion trap EBIT-II in a novel configuration to create a plasma with a Maxwellian temperature of 2.5 keV. The charge balance in the plasma was inferred from spectral line emission measurements which accounted for charge exchange effects. The measured average ionization state was 46.8±0.75. This differs from the predictions of two modeling codes by up to four charge states

  4. Energy-Dependent Ionization States of Shock-Accelerated Particles in the Solar Corona

    Science.gov (United States)

    Reames, Donald V.; Ng, C. K.; Tylka, A. J.

    2000-01-01

    We examine the range of possible energy dependence of the ionization states of ions that are shock-accelerated from the ambient plasma of the solar corona. If acceleration begins in a region of moderate density, sufficiently low in the corona, ions above about 0.1 MeV/amu approach an equilibrium charge state that depends primarily upon their speed and only weakly on the plasma temperature. We suggest that the large variations of the charge states with energy for ions such as Si and Fe observed in the 1997 November 6 event are consistent with stripping in moderately dense coronal. plasma during shock acceleration. In the large solar-particle events studied previously, acceleration occurs sufficiently high in the corona that even Fe ions up to 600 MeV/amu are not stripped of electrons.

  5. Observation of Spin-Dependent Charge Symmetry Breaking in $\\Lambda N$ Interaction: Gamma-Ray Spectroscopy of $^4_{\\Lambda }$He

    CERN Document Server

    Yamamoto, T O; Akazawa, Y; Amano, N; Aoki, K; Botta, E; Chiga, N; Ekawa, H; Evtoukhovitch, P; Feliciello, A; Fujita, M; Gogami, T; Hasegawa, S; Hayakawa, S H; Hayakawa, T; Honda, R; Hosomi, K; Hwang, S H; Ichige, N; Ichikawa, Y; Ikeda, M; Imai, K; Ishimoto, S; Kanatsuki, S; Kim, M H; Kim, S H; Kinbara, S; Koike, T; Lee, J Y; Marcello, S; Miwa, K; Moon, T; Nagae, T; Nagao, S; Nakada, Y; Nakagawa, M; Ogura, Y; Sakaguchi, A; Sako, H; Sasaki, Y; Sato, S; Shiozaki, T; Shirotori, K; Sugimura, H; Suto, S; Suzuki, S; Takahashi, T; Tamura, H; Tanabe, K; Tanida, K; Tsamalaidze, Z; Ukai, M; Yamamoto, Y; Yang, S B

    2015-01-01

    The energy spacing between the ground-state spin doublet of $^4_\\Lambda $He(1$^+$,0$^+$) was determined to be $1406 \\pm 2 \\pm 2$ keV, by measuring $\\gamma$ rays for the $1^+ \\to 0^+$ transition with a high efficiency germanium detector array in coincidence with the $^4$He$(K^-,\\pi^-)$ $^4_\\Lambda $He reaction at J-PARC. In comparison to the corresponding energy spacing in the mirror hypernucleus $^4_\\Lambda $H, the present result clearly indicates the existence of charge symmetry breaking (CSB) in $\\Lambda N$ interaction. It is also found that the CSB effect is large in the $0^+$ ground state but is by one order of magnitude smaller in the $1^+$ excited state, demonstrating that the $\\Lambda N$ CSB interaction has spin dependence.

  6. Energy dependence of muon charge ratio for incident momentum range < 1 GeV/c

    International Nuclear Information System (INIS)

    Full text: The charge ratio of the atmospheric muons is a quantity sensitive to hadronic interactions of cosmic rays and to the influence of the geomagnetic field. Experimental information is of current interest for tuning models used for the calculation of atmospheric neutrino fluxes. We are performing measurements of the charge ratio based on the observation of the lifetime of the muons stopped in the absorber layers (aluminum support) of the detector WILLI, mounted in a rotatable frame and installed at IFIN-HH Bucharest (vertical geomagnetic cut-off rigidity of 5.6 GV). Our method to determine the muon charge ratio by measuring the lifetime of muons stopped in the matter, overcomes the uncertainties appearing in measurements based on magnetic spectrometers, which are affected by systematic effects at low muon energies, due to problems in the particle and trajectory identification. The results obtained with the rotatable WILLI detector, inclined at 45 angle (i.e. a mean zenith angle of detected muons of 35 angle), relevant to the atmospheric neutrino anomaly, show a pronounced east-west effect. The energy dependence of the muon charge ratio indicates an increasing asymmetry of the muon charge ratio with decreasing incident energy. (author)

  7. High Energy Ionic Charge State Composition in Large Solar Energetic Particle Events

    OpenAIRE

    Labrador, A. W.; Leske, R. A.; Mewaldt, R. A.; Cummings, A. C.; Stone, E. C.; von Rosenvinge, T. T.

    2001-01-01

    Measurements of ionic charge states in solar energetic particle (SEP) events have been made at relatively high energies (> 15 MeV/nucleon) with the Mass Spectrometer Telescope (MAST) on board the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) satellite using the Earth's magnetic field as a particle rigidity filter. We have examined the largest SEP events of solar cycle 23 and determined ionic charge states of Fe and other elements in several of these events. The mean charge s...

  8. Equilibrium charge state distributions of 14N and 20Ne ions emerging from solids

    International Nuclear Information System (INIS)

    A new technique of backscattering has been developed for the measurement of equilibrium charge state distributions of ions emerging from a solid medium. By this method, equilibrium charge fractions for nitrogen in the energy range from 0.8 to 1.7 MeV and for neon from 1.5 to 4.4 MeV have been measured. The influence of inner shell vacancies produced by violent collisions on the charge state equilibrium is discussed. (Auth.)

  9. Analytical bounds on SET charge sensitivity for qubit readout in a solid-state quantum computer

    International Nuclear Information System (INIS)

    Full text: Quantum Computing promises processing powers orders of magnitude beyond what is possible in conventional silicon-based computers. It harnesses the laws of quantum mechanics directly, exploiting the in built potential of a wave function for massively parallel information processing. Highly ordered and scaleable arrays of single donor atoms (quantum bits, or qubits), embedded in Si, are especially promising; they are a very natural fit to the existing, highly sophisticated, Si industry. The success of Si-based quantum computing depends on precisely initializing the quantum state of each qubit, and on precise reading out its final form. In the Kane architecture the qubit states are read out by detecting the spatial distribution of the donor's electron cloud using a sensitive electrometer. The single-electron transistor (SET) is an attractive candidate readout device for this, since the capacitive, or charging, energy of a SET's metallic central island is exquisitely sensitive to its electronic environment. Use of SETs as high-performance electrometers is therefore a key technology for data transfer in a solid-state quantum computer. We present an efficient analytical method to obtain bounds on the charge sensitivity of a single electron transistor (SET). Our classic Green-function analysis provides reliable estimates of SET sensitivity optimizing the design of the readout hardware. Typical calculations, and their physical meaning, are discussed. We compare them with the measured SET-response data

  10. Quantum State Transfer between Charge and Flux Qubits in Circuit-QED

    Institute of Scientific and Technical Information of China (English)

    WU Qin-Qin; LIAO Jie-Qiao; KUANG Le-Man

    2008-01-01

    @@ We propose a scheme to implement quantum state transfer in a hybrid circuit quantum electrodynamics (QED)system which consists of a superconducting charge qubit, a flux qubit, and a transmission line resonator (TLR).It is shown that quantum state transfer between the charge qubit and the flux qubit can be realized by using the TLR as the data bus.

  11. Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Danilov, D.; Regtien, P.P.L.; Notten, P.H.L.

    2008-01-01

    Battery Management Systems – Universal State-of-Charge indication for portable applications describes the field of State-of-Charge (SoC) indication for rechargeable batteries. With the emergence of battery-powered devices with an increasing number of power-hungry features, accurately estimating the

  12. Electric Double Layer electrostatics of spherical polyelectrolyte brushes with pH-dependent charge density

    Science.gov (United States)

    Li, Hao; Chen, Guang; Sinha, Shayandev; Das, Siddhartha; Soft Matter, Interfaces,; Energy Laboratory (Smiel) Team

    Understanding the electric double layer (EDL) electrostatics of spherical polyelectrolyte (PE) brushes, which are spherical particles grafted with PE layers, is essential for appropriate use of PE-grfated micro-nanoparticles for targeted drug delivery, oil recovery, water harvesting, emulsion stabilization, emulsion breaking, etc. Here we elucidate the EDL electrostatics of spherical PE brushes for the case where the PE exhibits pH-dependent charge density. This pH-dependence necessitates the consideration of explicit hydrogen ion concentration, which in turn dictates the distribution of monomers along the length of the grafted PE. This monomer distribution is shown to be a function of the nature of the sphere (metallic or a charged or uncharged dielectric or a liquid-filled sphere). All the calculations are performed for the case where the PE electrostatics can be decoupled from the PE elastic and excluded volume effects. Initial predictions are also provided for the case where such decoupling is not possible.

  13. Long-lived charge-separated states in ligand-stabilized silver clusters

    KAUST Repository

    Pelton, Matthew

    2012-07-25

    Recently developed synthesis methods allow for the production of atomically monodisperse clusters of silver atoms stabilized in solution by aromatic thiol ligands, which exhibit intense absorption peaks throughout the visible and near-IR spectral regions. Here we investigated the time-dependent optical properties of these clusters. We observed two kinetic processes following ultrafast laser excitation of any of the absorption peaks: a rapid decay, with a time constant of 1 ps or less, and a slow decay, with a time constant that can be longer than 300 ns. Both time constants decrease as the polarity of the solvent increases, indicating that the two processes correspond to the formation and recombination, respectively, of a charge-separated state. The long lifetime of this state and the broad optical absorption spectrum mean that the ligand-stabilized silver clusters are promising materials for solar energy harvesting. © 2012 American Chemical Society.

  14. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries

    International Nuclear Information System (INIS)

    The coulomb counting method is expedient for state-of-charge (SOC) estimation of lithium-ion batteries with high charging and discharging efficiencies. The charging and discharging characteristics are investigated and reveal that the coulomb counting method is convenient and accurate for estimating the SOC of lithium-ion batteries. A smart estimation method based on coulomb counting is proposed to improve the estimation accuracy. The corrections are made by considering the charging and operating efficiencies. Furthermore, the state-of-health (SOH) is evaluated by the maximum releasable capacity. Through the experiments that emulate practical operations, the SOC estimation method is verified to demonstrate the effectiveness and accuracy.

  15. Charge transport in colloidal ZnO nanocrystal solids: The significance of surface states

    International Nuclear Information System (INIS)

    We investigate charge transport behaviour in colloidal ZnO nanocrystal solids with different surface states. Our results show that the logarithm of the conductivity scales with −T−1/4, suggestive of Mott variable-range hopping. Analysis of the density of states at the Femi level suggests that the charge hopping occurs through surface or defect states, rather than by direct hopping between quantum-confined conduction band states of the nanocrystals

  16. Time-dependent ion selectivity in capacitive charging of porous electrodes

    OpenAIRE

    Zhao, R.; Van Soestbergen, M.; Rijnaarts, H. H. M.; Wal, van der, A.C.; Bazant, M.Z.; Biesheuvel, P. M.

    2012-01-01

    In a combined experimental and theoretical study, we show that capacitive charging of porous electrodes in multicomponent electrolytes may lead to the phenomenon of time-dependent ion selectivity of the electrical double layers (EDLs) in the electrodes. This effect is found in experiments on capacitive deionization of water containing NaCl/CaCl[subscript 2] mixtures, when the concentration of Na[superscript +] ions in the water is five times the Ca[superscript 2+]-ion concentration. In this e...

  17. Scaling of Temperature Dependence of Charge Mobility in Molecular Holstein Chains

    OpenAIRE

    Tikhonov, D. A.; Fialko, N. S.; Sobolev, E. V.; Lakhno, V. D.

    2013-01-01

    The temperature dependence of a charge mobility in a model DNA based on Holstein Hamiltonian is calculated for 4 types of homogeneous sequences It has turned out that upon rescaling all 4 types are quite similar. Two types of rescaling, i.e. those for low and intermediate temperatures, are found. The curves obtained are approximated on a logarithmic scale by cubic polynomials. We believe that for model homogeneous biopolymers with parameters close to the designed ones, one can assess the valu...

  18. Effect of Mono- and Multivalent Salts on Angle-dependent Attractions between Charged Rods

    OpenAIRE

    Lee, Kun-Chun; Borukhov, Itamar; Gelbart, William M.; Liu, Andrea J.; Stevens, Mark J.

    2003-01-01

    Using molecular dynamics simulations we examine the effective interactions between two like-charged rods as a function of angle and separation. In particular, we determine how the competing electrostatic repulsions and multivalent-ion-induced attractions depend upon concentrations of simple and multivalent salt. We find that with increasing multivalent salt the stable configuration of two rods evolves from isolated rods to aggregated perpendicular rods to aggregated parallel rods; at sufficie...

  19. Electro-osmosis in kaolinite with pH-dependent surface charge modelling by homogenization

    OpenAIRE

    Sidarta A. Lima; Marcio A. Murad; Christian Moyne; Didier Stemmelen

    2010-01-01

    A new three-scale model to describe the coupling between pH-dependent flows and transient ion transport, including adsorption phenomena in kaolinite clays, is proposed. The kaolinite is characterized by three separate nano/micro and macroscopic length scales. The pore (micro)-scale is characterized by micro-pores saturated by an aqueous solution containing four monovalent ions and charged solid particles surrounded by thin electrical double layers. The movement of the ions is governed by the ...

  20. Humidity Dependence of Charge Transport through DNA Revealed by Silicon-Based Nanotweezers Manipulation

    OpenAIRE

    Yamahata, Christophe; Collard, Dominique; Takekawa, Tetsuya; Kumemura, Momoko; Hashiguchi, Gen; Fujita, Hiroyuki

    2007-01-01

    The study of the electrical properties of DNA has aroused increasing interest since the last decade. So far, controversial arguments have been put forward to explain the electrical charge transport through DNA. Our experiments on DNA bundles manipulated with silicon-based actuated tweezers demonstrate undoubtedly that humidity is the main factor affecting the electrical conduction in DNA. We explain the quasi-Ohmic behavior of DNA and the exponential dependence of its conductivity with relati...

  1. Interplay between strain, defect charge state, and functionality in complex oxides

    Science.gov (United States)

    Aschauer, Ulrich; Spaldin, Nicola A.

    2016-07-01

    We use first-principles calculations to investigate the interplay between strain and the charge state of point defect impurities in complex oxides. Our work is motivated by recent interest in using defects as active elements to provide novel functionality in coherent epitaxial films. Using oxygen vacancies as model point defects, and CaMnO3 and MnO as model materials, we calculate the changes in internal strain caused by changing the charge state of the vacancies, and conversely the effect of strain on charge-state stability. Our results show that the charge state is a degree of freedom that can be used to control the interaction of defects with strain and hence the concentration and location of defects in epitaxial films. We propose the use of field-effect gating to reversibly change the charge state of defects and hence the internal strain and corresponding strain-induced functionalities.

  2. Elections, Information, and State-Dependent Candidate Quality

    DEFF Research Database (Denmark)

    Jensen, Thomas

    The quality of political candidates often depends on the current state of the world, for example because their personal characteristics are more valuable in some situations than in others. We explore the implications of state-dependent candidate quality in a model of electoral competition where v...

  3. State-dependent impulses boundary value problems on compact interval

    CERN Document Server

    Rachůnková, Irena

    2015-01-01

    This book offers the reader a new approach to the solvability of boundary value problems with state-dependent impulses and provides recently obtained existence results for state dependent impulsive problems with general linear boundary conditions. It covers fixed-time impulsive boundary value problems both regular and singular and deals with higher order differential equations or with systems that are subject to general linear boundary conditions. We treat state-dependent impulsive boundary value problems, including a new approach giving effective conditions for the solvability of the Dirichlet problem with one state-dependent impulse condition and we show that the depicted approach can be extended to problems with a finite number of state-dependent impulses. We investigate the Sturm–Liouville boundary value problem for a more general right-hand side of a differential equation. Finally, we offer generalizations to higher order differential equations or differential systems subject to general linear boundary...

  4. Localized state and charge transfer in nitrogen-doped graphene

    OpenAIRE

    Joucken, Frederic; Tison, Yann; Lagoute, Jerome; Dumont, Jacques; Cabosart, Damien; Zheng, Bing; Repain, Vincent; Chacon, Cyril; Girard, Yann; Botello-Mendez, Andres Rafael; Rousset, Sylvie; Sporken, Robert; Charlier, Jean-Christophe; Henrard, Luc

    2012-01-01

    Nitrogen-doped epitaxial graphene grown on SiC(000?1) was prepared by exposing the surface to an atomic nitrogen flux. Using Scanning Tunneling Microscopy (STM) and Spectroscopy (STS), supported by Density Functional Theory (DFT) calculations, the simple substitution of carbon by nitrogen atoms has been identifi?ed as the most common doping con?guration. High-resolution images reveal a reduction of local charge density on top of the nitrogen atoms, indicating a charge transfer to the neighbor...

  5. Informational Asymmetries in Laboratory Asset Markets with State Dependent Fundamentals

    OpenAIRE

    Keser, Claudia; Markstädter, Andreas

    2014-01-01

    We investigate the formation of market prices in a new experimental setting involving multi-period asset markets with state-dependent fundamentals. We are particularly interested in two informational aspects: (1) the role of traders who are informed about the true state and (2) the provision of Bayesian updates of the assets state-dependent fundamental value (BFVs) to all traders. We find that bubbles are a rare phenomenon in all our treatments. Markets with asymmetrically informed traders co...

  6. Low charge state heavy ion production with sub-nanosecond laser.

    Science.gov (United States)

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target. PMID:26931977

  7. Anomalous charge and negative-charge-transfer insulating state in cuprate chain-compound KCuO_2

    OpenAIRE

    Choudhury, D.; Rivero, P.; Meyers, D.; Liu, X.; Cao, Y; Middey, S.; Whitaker, M. J.; Barraza-Lopez, S.; Freeland, J. W.; Greenblatt, M.; Chakhalian, J.

    2015-01-01

    Using a combination of X-ray absorption spectroscopy experiments with first principle calculations, we demonstrate that insulating KCuO_2 contains Cu in an unusually-high formal-3+ valence state, the ligand-to-metal (O to Cu) charge transfer energy is intriguingly negative (Delta~ -1.5 eV) and has a dominant (~60%) ligand-hole character in the ground state akin to the high Tc cuprate Zhang-Rice state. Unlike most other formal Cu^{3+} compounds, the Cu 2p XAS spectra of KCuO_2 exhibits pronoun...

  8. Charge Transfer States in Dilute Donor-Acceptor Blend Organic Heterojunctions.

    Science.gov (United States)

    Liu, Xiao; Ding, Kan; Panda, Anurag; Forrest, Stephen R

    2016-08-23

    We study the charge transfer (CT) states in small-molecule blend heterojunctions comprising the nonpolar donor, tetraphenyldibenzoperiflanthene (DBP), and the acceptor, C70, using electroluminescence and steady-state and time-resolved photoluminescence spectroscopy along with density functional theory calculations. We find that the CT exciton energy blue shifts as the C70 concentration in the blend is either decreased or increased away from 50 vol %. At 20 K, the increase in CT state lifetime is correlated with the increasing diameter of C70 nanocrystallites in the blends. A quantum confinement model is used to quantitatively describe the dependence of both CT energy and lifetime on the C70 or DBP domain size. Two discrete CT emission peaks are observed for blends whose C70 concentration is >65%, at which point C70 nanocrystallites with diameters >4 nm appear in high-resolution transmission electron micrographs. The presence of two CT states is attributed to coexistence of crystalline C70 and amorphous phases in the blends. Furthermore, analysis of CT dissociation efficiency versus photon energy suggests that the >90% dissociation efficiency of delocalized CT2 states from the crystalline phase significantly contributes to surprisingly efficient photogeneration in highly dilute (>80% C70) DBP/C70 heterojunctions. PMID:27487403

  9. The velocity dependence of X-ray emission due to Charge Exchange: Applications in the Cygnus Loop

    Science.gov (United States)

    Cumbee, Renata; Lyons, David; Mullen, Patrick; Shelton, Robin L.; Stancil, Phillip C.; Schultz, David R.

    2016-04-01

    The fundamental collisional process of charge exchange (CX) has been been established as a primary source of X-ray emission from the heliosphere [1], planetary exospheres [2], and supernova remnants [3,4]. In this process, X-ray emission results from the capture of an electron by a highly charged ion from a neutral atom or molecule, to form a highly-excited, high charge state ion. As the captured electron cascades down to the lowest energy level, photons are emitted, including X-rays.To provide reliable CX-induced X-ray spectral models to realistically simulate high-energy astrophysical environments, line ratios and spectra are computed using theoretical CX cross-sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, and classical-trajectory Monte Carlo methods for various collisional velocities. Collisions of bare and H-like C to Al ions with H, He, and H2 are considered. Using these line ratios, XSPEC models of CX emission in the northeast rim of the Cygnus Loop supernova remnant will be shown as an example with ion velocity dependence.[1] Henley, D. B. & Shelton, R. L. 2010, ApJSS, 187, 388[2] Dennerl, K. et al. 2002, A&A 386, 319[3] Katsuda, S. et al. 2011, ApJ 730 24[4] Cumbee, R. S. et al. 2014, ApJ 787 L31

  10. Energy dependence of the charged multiplicity in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2008-03-15

    The charged multiplicity distributions and the mean charged multiplicity have been investigated in inclusive neutral current deep inelastic ep scattering with the ZEUS detector at HERA, using an integrated luminosity of 38.6 pb{sup -1}. The measurements were performed in the current region of the Breit frame, as well as in the current fragmentation region of the hadronic centre-of-mass frame. The KNO-scaling properties of the data were investigated and the energy dependence was studied using different energy scales. The data are compared to results obtained in e{sup +}e{sup -} collisions and to previous DIS measurements as well as to leading-logarithm parton-shower Monte Carlo predictions. (orig.)

  11. Glomerular size and charge selectivity in insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Deckert, T; Feldt-Rasmussen, B; Djurup, R;

    1988-01-01

    The pathogenesis of clinical nephropathy in Type 1 (insulin-dependent) diabetes was investigated by measuring renal fractional clearances of albumin, total IgG, IgG4 and beta 2-microglobulin, four plasma proteins which differ in size and charge. Seventy patients and eleven control subjects were...... studied. In diabetic patients with normal urinary albumin excretion (less than 30 mg/24 hr), fractional IgG clearance was two to three times higher than in control subjects, whereas fractional clearance of the anionic plasma proteins IgG4 and albumin was similar to that of control subjects. These...... alterations indicate an increase in anionic pore charge within the glomerular basement membrane concomitant with an increase in either pore size or impairment of tubular reabsorption. Diabetic patients, whose urinary albumin excretion has started to rise (30 to 100 mg/24 hr), had unchanged fractional Ig...

  12. Measurement of the $Z/A$ dependence of neutrino charged-current total cross-sections

    CERN Document Server

    Kayis-Topaksu, A; Van Dantzig, R; De Jong, M; Konijn, J; Melzer, O; Oldeman, R G C; Pesen, E; Van der Poel, C A F J; Spada, F R; Visschers, J L; Güler, M; Serin-Zeyrek, M; Kama, S; Sever, R; Tolun, P; Zeyrek, M T; Armenise, N; Catanesi, M G; De Serio, M; Ieva, M; Muciaccia, M T; Radicioni, E; Simone, S; Bülte, A; Winter, Klaus; El-Aidi, R; Van de Vyver, B; Vilian, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Artamonov, A V; Brunner, J; Chizhov, M; Cussans, D G; Doucet, M; Fabre, Jean-Paul; Hristova, I R; Kawamura, T; Kolev, D; Litmaath, M; Meinhard, H; Panman, J; Papadopoulos, I M; Ricciardi, S; Rozanov, A; Saltzberg, D; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Arik, E; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Rondeshagen, D; Wolff, T; Hoshino, K; Kawada, J; Komatsu, M; Miyanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Ereditato, A; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Pistillo, C; Santorelli, R; Scotto-Lavina, L; Strolin, P; Tioukov, V; Nakamura, K; Okusawa, T; Dore, U; Loverre, P F; Ludovici, L; Maslennikov, A L; Righini, P; Rosa, G; Santacesaria, R; Satta, A; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2003-01-01

    A relative measurement of total cross-sections is reported for polyethylene, marble, iron, and lead targets for the inclusive charged-current reaction nu_mu + N -> mu^- + X. The targets, passive blocks of ~100kg each, were exposed simultaneously to the CERN SPS wide-band muon-neutrino beam over a period of 18 weeks. Systematics effects due to differences in the neutrino flux and detector efficiency for the different target locations were minimised by changing the position of the four targets on their support about every two weeks. The relative neutrino fluxes on the targets were monitored within the same experiment using charged-current interactions in the calorimeter positioned directly downstream of the four targets. From a fit to the Z/A dependence of the total cross-sections a value is deduced for the effective neutron-to-proton cross-section ratio.

  13. Measurement of the Z/A dependence of neutrino charged-current total cross-sections

    CERN Document Server

    Kayis-Topasku, A; Dantzig, R V

    2003-01-01

    A relative measurement of total cross-sections is reported for polyethylene, marble, iron, and lead targets for the inclusive charged-current reaction nu submu + N -> mu sup - + X. The targets, passive blocks of propor to 100 kg each, were exposed simultaneously to the CERN SPS wide-band muon-neutrino beam over a period of 18 weeks. Systematic effects due to differences in the neutrino flux and detector efficiency for the different target locations were minimised by changing the position of the four targets on their support about every two weeks. The relative neutrino fluxes on the targets were monitored within the same experiment using charged-current interactions in the calorimeter positioned directly downstream of the four targets. From a fit to the Z/A dependence of the total cross-sections a value is deduced for the effective neutron-to-proton cross-section ratio. (orig.)

  14. Detection and control of charge states in a quintuple quantum dot

    OpenAIRE

    Ito, Takumi; Otsuka, Tomohiro; Amaha, Shinichi; Delbecq, Matthieu R.; NAKAJIMA, TAKASHI; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Noiri, Akito; Kawasaki, Kento; Tarucha, Seigo

    2016-01-01

    A semiconductor quintuple quantum dot with two charge sensors and an additional contact to the center dot from an electron reservoir is fabricated to demonstrate the concept of scalable architecture. This design enables formation of the five dots as confirmed by measurements of the charge states of the three nearest dots to the respective charge sensor. The gate performance of the measured stability diagram is well reproduced by a capacitance model.These results provide an important step towa...

  15. Charge-collection efficiency of GaAs field effect transistors fabricated with a low temperature grown buffer layer: dependence on charge deposition profile

    International Nuclear Information System (INIS)

    The results presented here reveal a surprising dependence of the charge-collection efficiency of LT GaAs FETs (field effect transistors) on the depth profile of the deposited charge. Investigation of the temporal dependence of the signal amplitude, carrier density contours, and potential contours reveals different mechanisms for charge collection arising from carriers deposited above and below the LT GaAs buffer layer, respectively. In particular, carriers deposited below the LT GaAs buffer layer dissipate slowly and give rise to a persistent charge collection that is associated with a bipolar-like gain process. These results may be of significance in understanding the occurrence of single-event upsets from protons, neutrons, and large-angle, glancing heavy-ion strikes. (authors)

  16. Pressure dependence of the optical properties of the charge-density-wave compound LaTe2

    Energy Technology Data Exchange (ETDEWEB)

    Lavagnini, M.; Sacchetti, A.; Degiorgi, L.; /Zurich, ETH; Arcangeletti, E.; Baldassarre, L.; Postorino, P.; Lupi, S.; /Rome U.; Perucchi, A.; /INFM, Trieste; Shin, K.Y.; Fisher, I.R.; /Stanford U., Geballe Lab.

    2009-12-14

    We report the pressure dependence of the optical response of LaTe{sub 2}, which is deep in the charge-density-wave (CDW) ground state even at 300 K. The reflectivity spectrum is collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 7 GPa. We extract the energy scale due to the single particle excitation across the CDW gap and the Drude weight. We establish that the gap decreases upon compressing the lattice, while the Drude weight increases. This signals a reduction in the quality of nesting upon applying pressure, therefore inducing a lesser impact of the CDW condensate on the electronic properties of LaTe{sub 2}. The consequent suppression of the CDW gap leads to a release of additional charge carriers, manifested by the shift of weight from the gap feature into the metallic component of the optical response. On the contrary, the power-law behavior, seen in the optical conductivity at energies above the gap excitation and indicating a weakly interacting limit within the Tomonaga-Luttinger liquid scenario, seems to be only moderately dependent on pressure.

  17. EVOLUTION OF THE RELATIONSHIPS BETWEEN HELIUM ABUNDANCE, MINOR ION CHARGE STATE, AND SOLAR WIND SPEED OVER THE SOLAR CYCLE

    International Nuclear Information System (INIS)

    The changing relationships between solar wind speed, helium abundance, and minor ion charge state are examined over solar cycle 23. Observations of the abundance of helium relative to hydrogen (AHe ≡ 100 × nHe/nH) by the Wind spacecraft are used to examine the dependence of AHe on solar wind speed and solar activity between 1994 and 2010. This work updates an earlier study of AHe from 1994 to 2004 to include the recent extreme solar minimum and broadly confirms our previous result that AHe in slow wind is strongly correlated with sunspot number, reaching its lowest values in each solar minima. During the last minimum, as sunspot numbers reached their lowest levels in recent history, AHe continued to decrease, falling to half the levels observed in slow wind during the previous minimum and, for the first time observed, decreasing even in the fastest solar wind. We have also extended our previous analysis by adding measurements of the mean carbon and oxygen charge states observed with the Advanced Composition Explorer spacecraft since 1998. We find that as solar activity decreased, the mean charge states of oxygen and carbon for solar wind of a given speed also fell, implying that the wind was formed in cooler regions in the corona during the recent solar minimum. The physical processes in the coronal responsible for establishing the mean charge state and speed of the solar wind have evolved with solar activity and time.

  18. Charge state distributions of oxygen and carbon in the energy range 1 to 300 keV/e observed with AMPTE/CCE in the magnetosphere

    Science.gov (United States)

    Kremser, G.; Stuedemann, W.; Wilken, B.; Gloeckler, G.; Hamilton, D. C.

    1985-01-01

    Observations of charge state distributions of oxygen and carbon are presented that were obtained with the charge-energy-mass spectrometer onboard the AMPTE/CCE spacecraft. Data were selected for two different local time sectors (apogee at 1300 LT and 0300 LT, respectively), three L-ranges (4-6, 6-8, and greater than 8), and quiet to moderately disturbed days (Kp less than or equal to 4). The charge state distributions reveal the existence of all charge states of oxygen and carbon in the magnetosphere. The relative importance of the different charge states strongly depends on L and much less on local time. The observations confirm that the solar wind and the ionosphere contribute to the oxygen population, whereas carbon only originates from the solar wind. The L-dependence of the charge state distributions can be interpreted in terms of these different ion sources and of charge exchange and diffusion processes that largely influence the distribution of oxygen and carbon in the magnetosphere.

  19. Energy dependence of the transverse momentum distributions of charged particles in pp collisions measured by ALICE

    Czech Academy of Sciences Publication Activity Database

    Abelev, B.; Adam, J.; Adamová, Dagmar; Bielčíková, Jana; Kushpil, Svetlana; Kushpil, Vasilij; Mareš, Jiří A.; Šumbera, Michal; Vajzer, Michal; Závada, Petr

    2013-01-01

    Roč. 73, č. 12 (2013), s. 1-12. ISSN 1434-6044 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : energy dependence * transverse momentum * momentum spectrum * charged particle * p p * scattering Subject RIV: BF - Elementary Particles and High Energy Physics; BG - Nuclear, Atomic and Molecular Physics, Colliders (UJF-V) Impact factor: 5.436, year: 2013 http://link.springer.com/article/10.1140%2Fepjc%2Fs10052-013-2662-9

  20. The transverse momentum dependencies of charged kaon Bose-Einstein correlations in the SELEX experiment

    CERN Document Server

    Nigmatkulov, G A; Akgun, U; Alkhazov, G; Amaro-Reyes, J; Asratyan, A; Atamantchouk, A G; Ayan, A S; Balatz, M Y; Blanco-Covarrubias, A; Bondar, N F; Cooper, P S; Dauwe, L J; Davidenko, G V; Dersch, U; Dolgolenko, A G; Dzyubenko, G B; Edelstein, R; Emediato, L; Endler, A M F; Engelfried, J; Eschrich, I; Escobar, C O; Estrada, N; Evdokimov, A V; Filimonov, I S; Flores-Castillo, A; Garcia, F G; Golovtsov, V L; Gouffon, P; Gülmez, E; Iori, M; Jun, S Y; Kaya, M; Kilmer, J; Kim, V T; Kochenda, L M; Konorov, I; Kozhevnikov, A P; Krivshich, A G; Krüger, H; Kubantsev, M A; Kubarovsky, V P; Kulyavtsev, A I; Kuropatrkin, N P; Kurshetsov, V F; Kushnirenko, A; Lach, J; Landsberg, L G; Larin, I; Leikin, E M; López-Hinojosa, G; Lungov, T; Maleev, V P; Mao, D; Mathew, P; Mattson, M; Matveev, V; McCliment, E; Moinester, M A; Molchanov, V V; Morelos, A; Nemitkin, A V; Neoustroev, P V; Newsom, C; Nilov, A P; Nurushev, S B; Ocherashvili, A; Onel, Y; Ozkorucuklu, S; Penzo, A; Petrenko, S V; Procario, M; Prutskoi, V A; Razmyslovich, B V; Romanov, D A; Rud, V I; Russ, J; Sánchez-López, J L; Savchenko, A A; Simon, J; Sinev, G V; Sitnikov, A I; Smith, V J; Srivastava, M; Steiner, V; Stepanov, V; Stutte, L; Svoiski, M; Tarasov, V V; Terentyev, N K; Torres, I; Uvarov, L N; Vasiliev, A N; Vavilov, D V; Vázquez-Jáuregui, E; Verebryusov, V S; Victorov, V A; Vishnyakov, V E; Vorobyov, A A; Vorwalter, K; You, J; Zukanovich-Funchal, R

    2015-01-01

    We report on the measurement of the charged kaon correlation functions $k_T$ dependencies using 600 GeV/$c$ $\\Sigma^-$, $\\pi^-$ and 540 GeV/$c$ $p$ beams from the SELEX (E781) experiment at Tevatron. One-dimentional $K^{ch}K^{ch}$ correlation functions are constructed in three transverse momentum ranges. The emission source parameters $\\lambda$ and $R$ are extracted. The analysis shows a decrease of the source radii with the kaon pair transverse momentum for all beam types

  1. Quantum work statistics of charged Dirac particles in time-dependent fields

    International Nuclear Information System (INIS)

    The quantum Jarzynski equality is an important theorem of modern quantum thermodynamics. We show that the Jarzynski equality readily generalizes to relativistic quantum mechanics described by the Dirac equation. After establishing the conceptual framework we solve a pedagogical, yet experimentally relevant, system analytically. As a main result we obtain the exact quantum work distributions for charged particles traveling through a time-dependent vector potential evolving under Schroedinger as well as under Dirac dynamics, and for which the Jarzynski equality is verified. Thus, special emphasis is put on the conceptual and technical subtleties arising from relativistic quantum mechanics

  2. Time-dependent ion selectivity in capacitive charging of porous electrodes.

    Science.gov (United States)

    Zhao, R; van Soestbergen, M; Rijnaarts, H H M; van der Wal, A; Bazant, M Z; Biesheuvel, P M

    2012-10-15

    In a combined experimental and theoretical study, we show that capacitive charging of porous electrodes in multicomponent electrolytes may lead to the phenomenon of time-dependent ion selectivity of the electrical double layers (EDLs) in the electrodes. This effect is found in experiments on capacitive deionization of water containing NaCl/CaCl(2) mixtures, when the concentration of Na(+) ions in the water is five times the Ca(2+)-ion concentration. In this experiment, after applying a voltage difference between two porous carbon electrodes, first the majority monovalent Na(+) cations are preferentially adsorbed in the EDLs, and later, they are gradually replaced by the minority, divalent Ca(2+) cations. In a process where this ion adsorption step is followed by washing the electrode with freshwater under open-circuit conditions, and subsequent release of the ions while the cell is short-circuited, a product stream is obtained which is significantly enriched in divalent ions. Repeating this process three times by taking the product concentrations of one run as the feed concentrations for the next, a final increase in the Ca(2+)/Na(+)-ratio of a factor of 300 is achieved. The phenomenon of time-dependent ion selectivity of EDLs cannot be explained by linear response theory. Therefore, a nonlinear time-dependent analysis of capacitive charging is performed for both porous and flat electrodes. Both models attribute time-dependent ion selectivity to the interplay between the transport resistance for the ions in the aqueous solution outside the EDL, and the voltage-dependent ion adsorption capacity of the EDLs. Exact analytical expressions are presented for the excess ion adsorption in planar EDLs (Gouy-Chapman theory) for mixtures containing both monovalent and divalent cations. PMID:22819395

  3. State-Dependent Divergences in the Entanglement Entropy

    CERN Document Server

    Marolf, Donald

    2016-01-01

    We show the entanglement entropy in certain quantum field theories to contain state-dependent divergences. Both perturbative and holographic examples are exhibited. However, quantities such as the relative entropy and the generalized entropy of black holes remain finite, due to cancellation of divergences. We classify all possible state-dependent divergences that can appear in both perturbatively renormalizeable and holographic covariant $d\\le 6$ quantum field theories.

  4. Risk, resources and state-dependent adaptive behavioural syndromes

    OpenAIRE

    Luttbeg, Barney; Sih, Andrew

    2010-01-01

    Many animals exhibit behavioural syndromes—consistent individual differences in behaviour across two or more contexts or situations. Here, we present adaptive, state-dependent mathematical models for analysing issues about behavioural syndromes. We find that asset protection (where individuals with more ‘assets’ tend be more cautious) and starvation avoidance, two state-dependent mechanisms, can explain short-term behavioural consistency, but not long-term stable behavioural types (BTs). Thes...

  5. The low-lying πσ* state and its role in the intramolecular charge transfer of aminobenzonitriles and aminobenzethyne

    International Nuclear Information System (INIS)

    Electronic absorption spectra of the low-lying ππ* and πσ* states of several aminobenzonitriles and 4-dimethylaminobenzethyne have been studied by time-resolved transient absorption and time-dependent density functional theory calculation. In acetonitrile, the lifetime of the πσ*-state absorption is very short (picoseconds or subpicosecond) for molecules that exhibit intramolecular charge transfer (ICT), and very long (nanoseconds) for those that do not. Where direct comparison of the temporal characteristics of the πσ*-state and the ICT-state transients could be made, the formation rate of the ICT state is identical to the decay rate of the πσ* state within the experimental uncertainty. These results are consistent with the πσ*-mediated ICT mechanism, La (ππ*)→πσ*→ICT, in which the decay rate of the πσ* state is determined by the rate of the solvent-controlled πσ*→ICT charge-shift reaction. The ππ*→πσ* state crossing does not occur in 3-dimethylaminobenzonitrile or 2-dimethylaminobenzonitrile, as predicted by the calculation, and 4-aminobenzonitrile and 4-dimethylaminobenzethyne does not exhibit the ICT reaction, consistent with the higher energy of the ICT state relative to the πσ* state

  6. Charge State Evolution of Uranium in Electron Beam Ion Trap

    Institute of Scientific and Technical Information of China (English)

    LIU Ya-Feng; YAO Ke; Roger Hutton; ZOU Ya-Ming

    2005-01-01

    @@ We present a calculation scheme with significant modifications and improvements for determining the ionization balance and the ion temperature evolution in an electron beam ion trap (EBIT). The scheme is applied to uranium and nitrogen ions using a specific set of EBIT operating parameters. The calculation results are compared to the experimental data. Rates for the individual atomic processes in EBIT, especially single and multiple charge exchange processes, are discussed. The time evolution of the ion temperatures for uranium and its coolant nitrogen are also given.

  7. Laser generation of Au ions with charge states above 50(+)

    Czech Academy of Sciences Publication Activity Database

    Láska, Leoš; Jungwirth, Karel; Krása, Josef; Krouský, Eduard; Rohlena, Karel; Skála, Jiří; Velyhan, Andriy; Margarone, D.; Torrisi, L.; Ryc, L.; Ullschmied, Jiří

    2008-01-01

    Roč. 79, - (2008), 02C715/1-02C715/4. ISSN 0034-6748 R&D Projects: GA MŠk(CZ) LC528; GA ČR GA202/05/2475; GA AV ČR IAA100100715 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser produced plasma * highly charged Au ions * deconvolution of IC signals Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.738, year: 2008

  8. Anisometric Charge Dependent Swelling of Porous Carbon in an Ionic Liquid

    CERN Document Server

    Kaasik, F; Hantel, M M; Perre, E; Aabloo, A; Lust, E; Bazant, M Z; Presser, V

    2013-01-01

    In situ electrochemical dilatometry was used to study, for the first time, the expansion behavior of a porous carbon electrode in a pure ionic liquid, 1-ethyl-3-methyl-imidazolium-tetrafluoroborate. For a single electrode, an applied potential of -2 V and +2 V against the potential of zero charge resulted in maximum strain of 1.8 % and 0.5 %, respectively. During cyclic voltammetry, the characteristic expansion behavior strongly depends on the scan rate, with increased scan rates leading to a decrease of the expansion. Chronoamperometry was used to determine the equilibrium specific capacitance and expansion. The obtained strain versus accumulated charge relationship can be fitted with a simple quadratic function. Cathodic and anodic expansion data collapses on one parabola when normalizing the surface charge by the ratio of ion volume and average pore size. There is also a transient spike in the height change when polarity is switched from positive to negative that is not observed when changing the potential...

  9. Charge state distribution studies of the metal vapor vacuum arc ion source

    International Nuclear Information System (INIS)

    We have studied the charge state distribution of the ion beam produced by the MEVVA (metal vapor vacuum arc) high current metal ion source. Beams produced from a wide range of cathode materials have been examined and the charge state distributions have been measured as a function of many operational parameters. In this paper we review the charge state data we have accumulated, with particular emphasis on the time history of the distribution throughout the arc current pulse duration. We find that in general the spectra remain quite constant throughout most of the beam pulse, so long as the arc current is constant. There is an interesting early-time transient behavior when the arc is first initiated and the arc current is still rising, during which time the ion charge states produced are observed to be significantly higher than during the steady current region that follows. 12 refs., 5 figs

  10. Implementation of the reduced charge state method of calculating impurity transport

    International Nuclear Information System (INIS)

    A recent review article by Hirshman and Sigmar includes expressions needed to calculate the parallel friction coefficients, the essential ingredients of the plateau-Pfirsch-Schluter transport coefficients, using the method of reduced charge states. These expressions have been collected and an expanded notation introduced in some cases to facilitate differentiation between reduced charge state and full charge state quantities. A form of the Coulomb logarithm relevant to the method of reduced charge states is introduced. This method of calculating the f/sub ij//sup ab/ has been implemented in the impurity transport simulation code IMPTAR and has resulted in an overall reduction in computation time of approximately 25% for a typical simulation of impurity transport in the Impurity Study Experiment (ISX-B). Results obtained using this treatment are almost identical to those obtained using an earlier approximate theory of Hirshman

  11. High Energy Ionic Charge State Composition in the October/November 2003 and January 20, 2005 SEP Events

    OpenAIRE

    Labrador, A. W.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; von Rosenvinge, T. T.

    2005-01-01

    The ionic charge states of solar energetic particles (SEPs) probe source-material temperatures and acceleration and transport conditions. The MAST instrument on SAMPEX measures SEP ionic charge states at energies greater than ~15 MeV/nuc and at iron energies up to ~90 MeV/nuc using the geomagnetic filter technique. Charge state measurements for large gradual SEP events by MAST and by other experiments suggest that event-to-event variations in the mean charge states of abundant ele...

  12. Optimization of a charge-state analyzer for ECRIS beams

    CERN Document Server

    Saminathan, S; Kremers, H R; Mironov, V; Mulder, J; Brandenburg, S

    2012-01-01

    A detailed experimental and simulation study of the extraction of a 24 keV He-ion beam from an ECR ion source and the subsequent beam transport through an analyzing magnet is presented. We find that such a slow ion beam is very sensitive to space-charge forces, but also that the neutralization of the beam's space charge by secondary electrons is virtually complete for beam currents up to at least 0.5 mA. The beam emittance directly behind the extraction system is 65 pi mm mrad and is determined by the fact that the ion beam is extracted in the strong magnetic fringe field of the ion source. The relatively large emittance of the beam and its non-paraxiality lead, in combination with a relatively small magnet gap, to significant beam losses and a five-fold increase of the effective beam emittance during its transport through the analyzing magnet. The calculated beam profile and phase-space distributions in the image plane of the analyzing magnet agree well with measurements. The kinematic and magnet aberrations...

  13. Ligand-induced dependence of charge transfer in nanotube-quantum dot heterostructures.

    Science.gov (United States)

    Wang, Lei; Han, Jinkyu; Sundahl, Bryan; Thornton, Scott; Zhu, Yuqi; Zhou, Ruiping; Jaye, Cherno; Liu, Haiqing; Li, Zhuo-Qun; Taylor, Gordon T; Fischer, Daniel A; Appenzeller, Joerg; Harrison, Robert J; Wong, Stanislaus S

    2016-08-25

    As a model system to probe ligand-dependent charge transfer in complex composite heterostructures, we fabricated double-walled carbon nanotube (DWNT)-CdSe quantum dot (QD) composites. Whereas the average diameter of the QDs probed was kept fixed at ∼4.1 nm and the nanotubes analyzed were similarly oxidatively processed, by contrast, the ligands used to mediate the covalent attachment between the QDs and DWNTs were systematically varied to include p-phenylenediamine (PPD), 2-aminoethanethiol (AET), and 4-aminothiophenol (ATP). Herein, we have put forth a unique compilation of complementary data from experiment and theory, including results from transmission electron microscopy (TEM), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, Raman spectroscopy, electrical transport measurements, and theoretical modeling studies, in order to fundamentally assess the nature of the charge transfer between CdSe QDs and DWNTs, as a function of the structure of various, intervening bridging ligand molecules. Specifically, we correlated evidence of charge transfer as manifested by changes and shifts associated with NEXAFS intensities, Raman peak positions, and threshold voltages both before and after CdSe QD deposition onto the underlying DWNT surface. Importantly, for the first time ever in these types of nanoscale composite systems, we have sought to use theoretical modeling to justify and account for our experimental results. Our overall data suggest that (i) QD coverage density on the DWNTs varies, based upon the different ligand pendant groups used and that (ii) the presence of a π-conjugated carbon framework within the ligands themselves coupled with the electron affinity of their pendant groups collectively play important roles in the resulting charge transfer from QDs to the underlying CNTs. PMID:27368081

  14. Metal-organic charge transfer can produce biradical states and is mediated by conical intersections

    OpenAIRE

    Tishchenko, Oksana; Li, Ruifang; Truhlar, Donald G.

    2010-01-01

    The present paper illustrates key features of charge transfer between calcium atoms and prototype conjugated hydrocarbons (ethylene, benzene, and coronene) as elucidated by electronic structure calculations. One- and two-electron charge transfer is controlled by two sequential conical intersections. The two lowest electronic states that undergo a conical intersection have closed-shell and open-shell dominant configurations correlating with the 4s2 and 4s13d1 states of Ca, respectively. Unlike...

  15. Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications

    OpenAIRE

    Pop, V.; Bergveld, H.J.; Danilov, D.; Regtien, P.P.L.; Notten, P.H.L.

    2008-01-01

    Battery Management Systems – Universal State-of-Charge indication for portable applications describes the field of State-of-Charge (SoC) indication for rechargeable batteries. With the emergence of battery-powered devices with an increasing number of power-hungry features, accurately estimating the battery SoC, and even more important the remaining time of use, becomes more and more important. Therefore, many leading semiconductor companies, e.g. NXP Semiconductors, Texas Instruments, Microch...

  16. The charge state of the ions produced by a saddle field ion source

    International Nuclear Information System (INIS)

    The thesis is concerned with an analysis of the charge state and energy of the ions produced by a saddle field ion source, and its application to the measurement of the sputtering yield. The subject is discussed under the topic headings: production of multicharged ions, saddle field ion sources, experimental conditions, ionic charge state, energy for argon, and sputtering yield of gold for Ar+ and Ar2+ ions. (U.K.)

  17. Charge trapping phenomena of tetraethylorthosilicate thin film containing Si nanocrystals synthesized by solid-state reaction

    International Nuclear Information System (INIS)

    In this work, we report on the fabrication of tetraethylorthosilicate (TEOS) thin dielectric film containing silicon nanocrystals (Si nc), synthesized by solid-state reaction, in a capacitor structure. A metal-insulator-semi-conductor (MIS) capacitor, with 28 nm thick Si nc in a TEOS thin film, has been fabricated. For this MIS, both electron and hole trapping in the Si nc are possible, depending on the polarity of the bias voltage. A VFB shift greater than 1 V can be experienced by a bias voltage of 16 V applied to the metal electrode for 1 s. Though there is no top control oxide, the discharge time for 10% of charges can be up to 4480 s when it is biased at 16 V for 1 s. It is further demonstrated that charging and discharging mechanisms are due to the Si nc rather than the TEOS oxide defects. This form of Si nc in a TEOS thin film capacitor provides the possibility of memory applications at low cost

  18. Salt effects on lamellar repeat distance depending on head groups of neutrally charged lipids.

    Science.gov (United States)

    Hishida, Mafumi; Yamamura, Yasuhisa; Saito, Kazuya

    2014-09-01

    Change in lamellar repeat distances of neutrally charged lipids upon addition of monovalent salts was measured with small-angle X-ray scattering for combinations of two lipids (PC and PE lipids) and six salts. Large dependence on lipid head group is observed in addition to those on added cation and anion. The ion and lipid dependences have little correlation with measured surface potentials of lipid membranes. These results indicate that the lamellar swelling by salt is not explained through balance among interactions considered previously (van der Waals interaction, electrostatic repulsion emerged by ion binding, etc.). It is suggested that effect of water structure, which is affected by not only ions but also lipid itself, should be taken into account for understanding membrane-membrane interactions, as in the Hofmeister effect. PMID:25126900

  19. Control of Thermodynamical System with Input-Dependent State Delays

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Krstic, Miroslav

    2013-01-01

    -negligible amount of time to travel to the consumers, giving rise to input-dependent state delays. We first present a simple bilinear model of the system, followed by a state feedback control design that is able to stabilize the system at a chosen equilibrium in spite of the delays. We also present a heuristic...

  20. A new temperature-dependent equation of state of solids

    Indian Academy of Sciences (India)

    Kamal Kapoor; Anuj Kumar; Narsingh Dass

    2014-03-01

    In the present paper, a temperature-dependent equation of state (EOS) of solids is discussed which is found to be applicable in high-pressure and high-temperature range. Present equation of state has been applied in 18 solids. The calculated data are found in very good agreement with the data available from other sources.

  1. Measurements of charged two-particle exclusive states in photon-photon interactions

    International Nuclear Information System (INIS)

    A description is given of an experiment performed at the PEP electron-positron storage ring, using the DELCO detector, to measure the formation of charged particle pairs from interactions of pairs of virtual photons radiated from the colliding electron beams. The final states which are measured are electron-positron pairs, charged pion pairs, charged kaon pairs, and proton pairs. Electron-positron pairs are separated from other data by use of gas Cerenkov counters. The shapes of all kinematic distributions are found to agree with predictions of quantum electrodynamics. These data also are used as an accurate normalization for subtraction of the muon-pair background and for measurement of the cross sections of the three hadronic channels. Pion pairs are measured in the mass range from 0.6 to 2.0 GeV, where production of the f (1270) resonance is observed to interfere with significant continuum production. The continuum is well described by single-pion exchange, allowing a measurement of the f two-photon partial width of 3.47 +- 0.37 keV. No a priori assumption is made about the ratio of helicity amplitudes, and the phenomenological model used in fitting the data is constrained to satisfy elastic unitarity. If unitarity is not required, then the fitted partial width is a factor of 0.83 lower than the quoted value. The Q2 dependence of the cross section is found to be consistent with predictions of the Generalized Vector Dominance Model. Kaon pairs and proton pairs are identified by time-of-flight measurements. Kaon pairs are measured in the mass range from 1.3 to 2.0 GeV, where production of the f' (1520) resonance is observed. The ratio of the f and f' two-photon partial widths is found to be consistent with SU(3) quark model predictions with a mixing angle of 28 +- 4 degrees. Twenty-three proton pairs are observed

  2. The charge state distributions of 0.5-2.9 MeV Be, Al, Cl, Ti and Ni ions measured after carbon foil stripping

    International Nuclear Information System (INIS)

    Equilibrium charge state distributions have been measured for Be, Al, Cl, Ti and Ni ions stripped in the high-voltage terminal of an electrostatic tandem accelerator using a 2 μg/cm2 carbon foil. The series of measurements were made with a terminal voltage ranging from typically 1.5 to 2.9 MV. The charge state distributions were measured on the high-energy side of the accelerator, just in front of the analysing magnet, in order to take charge state-dependent transmission through the high-energy side of the accelerator into account. The obtained charge state distributions will be used for accelerator mass spectrometry measurements to find the optimum terminal voltage of the accelerator. (orig.)

  3. DEPTH-CHARGE static and time-dependent perturbation/sensitivity system for nuclear reactor core analysis. Revision I. [DEPTH-CHARGE code

    Energy Technology Data Exchange (ETDEWEB)

    White, J.R.

    1985-04-01

    This report provides the background theory, user input, and sample problems required for the efficient application of the DEPTH-CHARGE system - a code black for both static and time-dependent perturbation theory and data sensitivity analyses. The DEPTH-CHARGE system is of modular construction and has been implemented within the VENTURE-BURNER computational system at Oak Ridge National Laboratory. The DEPTH module (coupled with VENTURE) solves for the three adjoint functions of Depletion Perturbation Theory and calculates the desired time-dependent derivatives of the response with respect to the nuclide concentrations and nuclear data utilized in the reference model. The CHARGE code is a collection of utility routines for general data manipulation and input preparation and considerably extends the usefulness of the system through the automatic generation of adjoint sources, estimated perturbed responses, and relative data sensitivity coefficients. Combined, the DEPTH-CHARGE system provides, for the first time, a complete generalized first-order perturbation/sensitivity theory capability for both static and time-dependent analyses of realistic multidimensional reactor models. This current documentation incorporates minor revisions to the original DEPTH-CHARGE documentation (ORNL/CSD-78) to reflect some new capabilities within the individual codes.

  4. Dynamics of the Rydberg state population of slow highly charged ions impinging a solid surface at arbitrary collision geometry

    Science.gov (United States)

    Nedeljković, N. N.; Majkić, M. D.; Božanić, D. K.; Dojčilović, R. J.

    2016-06-01

    We consider the population dynamics of the intermediate Rydberg states of highly charged ions (core charge Z\\gg 1, principal quantum number {n}{{A}}\\gg 1) interacting with solid surfaces at arbitrary collision geometry. The recently developed resonant two-state vector model for the grazing incidence (2012 J. Phys. B: At. Mol. Opt. Phys. 45 215202) is extended to the quasi-resonant case and arbitrary angle of incidence. According to the model, the population probabilities depend both on the projectile parallel and perpendicular velocity components, in a complementary way. A cascade neutralization process for {{{Xe}}}Z+ ions, for Z=15{--}45, interacting with a conductive-surface is considered by taking into account the population dynamics. For an arbitrary collision geometry and given range of ionic velocities, a micro-staircase model for the simultaneous calculation of the kinetic energy gain and the charge state of the ion in front of the surface is proposed. The relevance of the obtained results for the explanation of the formation of nanostructures on solid surfaces by slow highly charged ions for normal incidence geometry is briefly discussed.

  5. On the nature of the low temperature insulating state of ferromagnetic and charge ordered manganites

    International Nuclear Information System (INIS)

    Based on electroresistance (ER) measurements founded on a current induced resistivity switching (CIRS) phenomena, we establish the presence of a 'colossal' ER in the low temperature ferromagnetic insulating (FMI) phase exhibited by certain hole doped manganites. Notably, concomitant with the build-up of ER, is a sharp drop in the magnetoresistance (MR). This intelligibly demonstrates an effective decoupling of the mechanisms underlying ER and MR in the FMI phase. ER (CIRS) and MR were measured on single crystals of two widely different FMI manganites: La0.82Ca0.18MnO3 and Nd0.7Pb0.3MnO3. The samples have Curie temperatures, TC∼165 and 150 K, and the FMI state is realized for temperatures, T≤100 and 130 K, respectively. The ER, arising from a strong nonlinear dependence of resistivity (ρ) on current density (j), attains a value ≅100% in the FMI state. The severity of the nonlinear behavior of resistivity at high current densities is progressively enhanced with decreasing temperature. The MR, however, collapses (<20%) even in magnetic field, H=14 T. Comparison with magnetotransport data on charge ordered insulating (COI) manganites reveal discernible differences in response to applied current and magnetic field. This is credible proof that the nature of the insulating state, in the FMI and COI phases, is different

  6. Charge state distributions and charge-changing cross sections of heavy ions in the energy range up to 10 MeV/u

    International Nuclear Information System (INIS)

    Charge state distributions and charge-changing cross sections have been measured for heavy ions with atomic numbers between 18 and 92, in charge states from +9 to +68, and at energies in the range from 0.2 to 10 MeV/u using various gaseous and solid target materials. The experimental cross sections are compared with the theory of Bohr and Lindhard. The accuracy of predictions by means of known empirical formulae for average equilibrium charge states is briefly discussed. (author)

  7. Fluorescence behavior of intramolecular charge transfer state in trans-ethyl p-(dimethylamino)cinamate

    International Nuclear Information System (INIS)

    Steady-state and time-resolved emission studies have been performed to investigate the intramolecular charge transfer (ICT) behavior of trans-ethyl p-(dimethylamino)cinamate (EDAC) in various solvents. Large fluorescence spectral shift in more polar solvents indicates an efficient charge transfer from the donor site to the acceptor moiety in the excited state compared to the ground state. The excited state properties in hydrogen-bonding solvents are markedly different from other solvents indicating the possible competition of intermolecular hydrogen bond formation with the electron donor site and ICT

  8. Inline state of health estimation of lithium-ion batteries using state of charge calculation

    Science.gov (United States)

    Sepasi, Saeed; Ghorbani, Reza; Liaw, Bor Yann

    2015-12-01

    The determination of state-of-health (SOH) and state-of-charge (SOC) is challenging and remains as an active research area in academia and industry due to its importance for Li-ion battery applications. The estimation process poses more challenges after substantial battery aging. This paper presents an inline SOH and SOC estimation method for Li-ion battery packs, specifically for those based on LiFePO4 chemistry. This new hybridized SOC and SOH estimator can be used for battery packs. Inline estimated model parameters were used in a compounded SOC + SOH estimator consisting of the SOC calculation based on coulomb counting method as an expedient approach and an SOH observer using an extended Kalman filter (EKF) technique for calibrating the estimates from the coulomb counting method. The algorithm's low SOC and SOH estimation error, fast response time, and less-demanding computational requirement make it practical for on-board estimations. The simulation and experimental results, along with the test bed structure, are presented to validate the proposed methodology on a single cell and a 3S1P LiFePO4 battery pack.

  9. Electroluminescence from charge transfer states in Donor/Acceptor solar cells

    DEFF Research Database (Denmark)

    Sherafatipour, Golenaz; Madsen, Morten

    Charge photocurrent generation is a key process in solar energy conversion systems. Effective dissociation of the photo-generated electron-hole pairs (excitons) has a strong influence on the efficiency of the organic solar cells. Charge dissociation takes place at the donor/acceptor interface via...... donor/acceptor interface is detected. As a less studied system, we examine here the interfacial charge transfer state recombination in DBP:C70 thin-films. The weak EL from the small molecule solar cell biased in the forward direction gives valuable information about the CT state recombination, from......-generated charges is a major limitation for the efficiency of the organic solar cells, a thorough understanding of this loss mechanism is crucial to improve the performance of the devices. Furthermore, examining this interfacial state is of great importance in order to maximize open-circuit voltage and photocurrent...

  10. Depth-charge static and time-dependence perturbation/sensitivity system for nuclear reactor core analysis

    International Nuclear Information System (INIS)

    This report provides the background theory, user input, and sample problems required for the efficient application of the DEPTH-CHARGE system - a code block for both static and time-dependence perturbation theory and data sensitivity analyses. The DEPTH-CHARGE system is of modular construction and has been implemented within the VENTURE-BURNER computational system at Oak Ridge National Labortary. The DEPTH-CHARGE system provides, for the first time, a complete generalized first-order perturbation/sensitivity theory capability for both static and time-dependent analysis of realistic multidimensional reactor models

  11. Depth-charge static and time-dependence perturbation/sensitivity system for nuclear reactor core analysis. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    White, J.R.

    1981-09-01

    This report provides the background theory, user input, and sample problems required for the efficient application of the DEPTH-CHARGE system - a code block for both static and time-dependence perturbation theory and data sensitivity analyses. The DEPTH-CHARGE system is of modular construction and has been implemented within the VENTURE-BURNER computational system at Oak Ridge National Labortary. The DEPTH-CHARGE system provides, for the first time, a complete generalized first-order perturbation/sensitivity theory capability for both static and time-dependent analysis of realistic multidimensional reactor models.

  12. Different electronic charges in two-component superconductor by coherent state

    International Nuclear Information System (INIS)

    Recently, the different electronic charges, which are related to the different coupling constants with magnetic field, in the two-component superconductor have been studied in the frame of Ginzburg–Landau theory. In order to study the electronic charges in detail we suggest the wave function in the two-component superconductor to be in the coherent state. We find the different electronic charges exist not only in the coherent state but also in the incoherent state. But the ratio of the different charges in the coherent state is different from the ratio in the incoherence. The expressions of the coupling constants are given directly based on the coherence effects. We also discuss the winding number in such a system. - Highlights: • Suggest the wave function in two-component superconductor is coherent. • Interpret the existence of different electric charges by the coherent states. • Derive a new expression for the supercurrent. • Reveal the relation between different electric charges and winding number

  13. Different electronic charges in two-component superconductor by coherent state

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xuguang, E-mail: shixg@bjfu.edu.cn

    2015-07-17

    Recently, the different electronic charges, which are related to the different coupling constants with magnetic field, in the two-component superconductor have been studied in the frame of Ginzburg–Landau theory. In order to study the electronic charges in detail we suggest the wave function in the two-component superconductor to be in the coherent state. We find the different electronic charges exist not only in the coherent state but also in the incoherent state. But the ratio of the different charges in the coherent state is different from the ratio in the incoherence. The expressions of the coupling constants are given directly based on the coherence effects. We also discuss the winding number in such a system. - Highlights: • Suggest the wave function in two-component superconductor is coherent. • Interpret the existence of different electric charges by the coherent states. • Derive a new expression for the supercurrent. • Reveal the relation between different electric charges and winding number.

  14. Study of photon emission by electron capture during solar nuclei acceleration. 1: temperature-dependent cross section for charge changing processes

    International Nuclear Information System (INIS)

    The study of charge changing cross sections of fast ions colliding with matter provides the fundamental basis for the analysis of the charge states produced in such interactions. Given the high degree of complexity of the phenomena, there is no theoretical treatment able to give a comprehensive description. In fact, the involved processes are very dependent on the basic parameters of the projectile, such as velocity charge state and atomic number, and on the target parameters, the physical state (molecular, atomic or ionized matter) and density. The target velocity may have also influence on the process through the temperature of the traversed medium. In addition, multiple electron transfer in single collisions intrincates more the phenomena. Though in simplified cases such as protons moving through atomic hydrogen considerable agreement has been obtained between theory and experiments. However, in general the available theoretical approaches have only limited validity in restricted regions of the basic parameters. Since most measurements of charge changing cross sections are performed in atomic matter at ambient temperature, models are commonly based on the assumption of targets at rest. However at astrophysical scales, temperature displays a wide range in atomic and ionized matter. Therefore, due to the lack of experimental data , an attempt is made here to quantify temperature dependent cross sections on the basis to somewhat arbitrary but physically reasonable assumptions

  15. An intramolecular charge transfer state of carbonyl carotenoids: implications for excited state dynamics of apo-carotenals and retinal

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Kaligotla, S.; Chábera, P.; Frank, H.A.

    2011-01-01

    Roč. 13, č. 22 (2011), s. 1463-9076. ISSN 1463-9076 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoid * retinal * excited-state dynamics * charge-transfer state Subject RIV: BO - Biophysics Impact factor: 3.573, year: 2011

  16. Exceptionally Long-Lived Charge Separated State in Zeolitic Imidazolate Framework: Implication for Photocatalytic Applications.

    Science.gov (United States)

    Pattengale, Brian; Yang, Sizhuo; Ludwig, John; Huang, Zhuangqun; Zhang, Xiaoyi; Huang, Jier

    2016-07-01

    Zeolitic imidazolate frameworks (ZIFs) have emerged as a novel class of porous metal-organic frameworks (MOFs) for catalysis application because of their exceptional thermal and chemical stability. Inspired by the broad absorption of ZIF-67 in UV-vis-near IR region, we explored its excited state and charge separation dynamics, properties essential for photocatalytic applications, using optical (OTA) and X-ray transient absorption (XTA) spectroscopy. OTA results show that an exceptionally long-lived excited state is formed after photoexcitation. This long-lived excited state was confirmed to be the charge-separated (CS) state with ligand-to-metal charge-transfer character using XTA. The surprisingly long-lived CS state, together with its intrinsic hybrid nature, all point to its potential application in heterogeneous photocatalysis and energy conversion. PMID:27322216

  17. Looking for new charged states at the LHC: Signatures of Magnetic and Rayleigh Dark Matter

    CERN Document Server

    Liu, Jia; Weiner, Neal; Yavin, Itay

    2013-01-01

    Magnetic and Rayleigh dark matter are models describing weak interactions of dark matter with electromagnetism through non-renormalizable operators of dimensions 5 and 7, respectively. Such operators motivate the existence of heavier states that couple to dark matter and are also charged under the electroweak interactions. The recent hints of a gamma-ray line in the Fermi data suggest that these states may be light enough to be produced at the LHC. We categorize such states according to their charges and decay modes, and we examine the corresponding LHC phenomenology. We emphasize unconstrained models that can be discovered in targeted searches at the upgraded LHC run, while also enumerating models excluded by current data. Generally, models with SU(2)-singlet states or models where the charged states decay predominantly to tau leptons and/or gauge bosons are still viable. We propose searches to constrain such models and, in particular, find superior performance over existing proposals for multi-tau analyses....

  18. Techniques for enhancing the performance of high charge state ECR ion sources

    International Nuclear Information System (INIS)

    Electron Cyclotron Resonance ion source (ECRIS), which produces singly to highly charged ions, is widely used in heavy ion accelerators and is finding applications in industry. It has progressed significantly in recent years thanks to a few techniques, such as multiple-frequency plasma heating, higher mirror magnetic fields and a better cold electron donor. These techniques greatly enhance the production of highly charged ions. More than 1 emA of He2+ and O6+, hundreds of eμA of O7+, Ne8+, Ar12+, more than 100 eμA of intermediate heavy ions with charge states up to Ne9+, Ar13+, Ca13+, Fe13+, Co14+ and Kr18+, tens of eμA of heavy ions with charge states up to Xe28+, Au35+, Bi34+ and U34+ were produced at cw mode operation. At an intensity of about 1 eμA, the charge states for the heavy ions increased up to Xe36+, Au46+, Bi47+ and U48+. More than an order of magnitude enhancement of fully stripped argon ions was achieved (I≥0.1 and h;eμA). Higher charge state ions up to Kr35+, Xe46+ and U64+ at low intensities were produced for the first time from an ECRIS. copyright 1999 American Institute of Physics

  19. Beam energy dependence of pseudorapidity distributions of charged particles produced in relativistic heavy-ion collisions

    Science.gov (United States)

    Basu, Sumit; Nayak, Tapan K.; Datta, Kaustuv

    2016-06-01

    Heavy-ion collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN probe matter at extreme conditions of temperature and energy density. Most of the global properties of the collisions can be extracted from the measurements of charged-particle multiplicity and pseudorapidity (η ) distributions. We have shown that the available experimental data on beam energy and centrality dependence of η distributions in heavy-ion (Au +Au or Pb +Pb ) collisions from √{sNN}=7.7 GeV to 2.76 TeV are reasonably well described by the AMPT model, which is used for further exploration. The nature of the η distributions has been described by a double Gaussian function using a set of fit parameters, which exhibit a regular pattern as a function of beam energy. By extrapolating the parameters to a higher energy of √{sNN}=5.02 TeV, we have obtained the charged-particle multiplicity densities, η distributions, and energy densities for various centralities. Incidentally, these results match well with some of the recently published data by the ALICE Collaboration.

  20. Thickness dependence of surface morphology and charge carrier mobility in organic field-effect transistors

    International Nuclear Information System (INIS)

    With the aim of understanding the relationships between organic small molecule field-effect transistors (FETs) and organic conjugated polymer FETs, we investigate the thickness dependence of surface morphology and charge carrier mobility in pentacene and regioregular poly (3-hexylthiophene) (RR-P3HT) field-effect transistors. On the basis of the results of surface morphologies and electrical properties, we presume that the charge carrier mobility is largely related to the morphology of the organic active layer. We observe that the change trends of the surface morphologies (average size and average roughness) of pentacene and RR-P3HT thin films are mutually opposite, as the thickness of the organic layer increases. Further, we demonstrate that the change trends of the field-effect mobilities of pentacene and RR-P3HT FETs are also opposite to each other, as the thickness of the organic layer increases within its limit. (cross-disciplinary physics and related areas of science and technology)

  1. Energy-resolved collision-induced dissociation of non-covalent ions: charge- and guest-dependence of decomplexation reaction efficiencies.

    Science.gov (United States)

    Carroy, Glenn; Lemaur, Vincent; De Winter, Julien; Isaacs, Lyle; De Pauw, Edwin; Cornil, Jérôme; Gerbaux, Pascal

    2016-05-14

    Supramolecular chemistry, and especially host-guest chemistry, has been the subject of great interest in the past few decades leading to the synthesis of host cage molecules such as calixarenes, cyclodextrins and more recently cucurbiturils. Mass spectrometry methods are increasingly used to decipher at the molecular level the non-covalent interactions between the different associated molecules. The present article illustrates that the association between mass spectrometry and computational chemistry techniques proves very complementary to depict the gas-phase dissociation processes of ionic non-covalent complexes when subjected to collisional activation. The selected system associates a nor-seco-cucurbit[10]uril bitopic receptor with different amino compounds (adamantylamine, para-xylylenediamine, and para-phenylenediamine). When subjected to CID experiments, the ternary complexes undergo fragmentation via dissociation of non-covalently bound partners. Interestingly, depending on their charge state, the collisionally excited complexes can selectively expel either a neutral guest molecule or a protonated guest molecule. Moreover, based on energy-resolved CID experiments, it is possible to evaluate the guest molecule dependence on the gas phase dissociation efficiency. We observed that the relative order of gas phase dissociation is charge state dependent, with the adamantylamine-containing complexes being the weakest when triply charged and the strongest when doubly charged. The energetics of the gas-phase dissociation reactions have been estimated by density functional theory (DFT) calculations. We succeeded in theoretically rationalizing the experimental collision-induced dissociation results with a special emphasis on: (i) the charge state of the expelled guest molecule and (ii) the nature of the guest molecule. PMID:27086657

  2. State-dependent pairing fields in rotating nuclei

    International Nuclear Information System (INIS)

    In the present thesis the properties of state-dependent pairing and its influence on the nuclear rotation were studied. For this the HFBC equations were solved by a new developed method in a model with a Nilsson operator for the single-particle part and the surface-delta interaction for the generation of the self-consistently calculated pairing fields. The agreement with the experimental data was improved in all considered cases by regarding the higher multipoles (state-dependent pairing). (orig./HSI)

  3. New evidence for charge-sign dependent modulation during the solar minimum of 2006 to 2009

    CERN Document Server

    Di Felice, V; Vos, E E; Potgieter, M S

    2016-01-01

    The PAMELA space experiment, in orbit since 2006, has measured cosmic rays through the most recent A < 0 solar minimum activity period. During this entire time, galactic electrons and protons have been detected down to 70 MV and 400 MV, respectively, and their differential intensity variation in time has been monitored with unprecedented accuracy. These observations are used to show how differently electrons and protons responded to the quiet modulation conditions that prevailed from 2006 to 2009. It is well known that particle drifts, as one of four major mechanisms for the solar modulation of cosmic rays, cause charge-sign dependent solar modulation. Solar minimum activity periods provide optimal conditions to study these drift effects. The observed behaviour is compared to the solutions of a three-dimensional model for cosmic rays in the heliosphere, including drifts. The numerical results confirm that the difference in the evolution of electron and proton spectra during the last prolonged solar minimum...

  4. Wiretap Channel with Action-Dependent Channel State Information

    Directory of Open Access Journals (Sweden)

    Bin Dai

    2013-01-01

    Full Text Available In this paper, we investigate the model of wiretap channel with action-dependent channel state information. Given the message to be communicated, the transmitter chooses an action sequence that affects the formation of the channel states, and then generates the channel input sequence based on the state sequence and the message. The main channel and the wiretap channel are two discrete memoryless channels (DMCs, and they are connected with the legitimate receiver and the wiretapper, respectively. Moreover, the transition probability distribution of the main channel depends on the channel state. Measuring wiretapper’s uncertainty about the message by equivocation, inner and outer bounds on the capacity-equivocation region are provided both for the case where the channel inputs are allowed to depend non-causally on the state sequence and the case where they are restricted to causal dependence. Furthermore, the secrecy capacities for both cases are bounded, which provide the best transmission rate with perfect secrecy. The result is further explained via a binary example.

  5. Battery State-of-Charge and Parameter Estimation Algorithm Based on Kalman Filter

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Sucic, Stjepan; Guerrero, Josep M.

    2013-01-01

    actual state of charge (SOC) and state of health (SOH). Therefore, a modern battery management systems (BMSs) should incorporate functions that accommodate real time tracking of these nonlinearities. For that purpose, Kalman filter based algorithms emerged as a convenient solution due to their ability to...

  6. Charge density-dependent modifications of hydration shell waters by Hofmeister ions.

    Science.gov (United States)

    Guo, Feng; Friedman, Joel M

    2009-08-12

    Gadolinium (Gd(3+)) vibronic sideband luminescence spectroscopy (GVSBLS) is used to probe, as a function of added Hofmeister series salts, changes in the OH stretching frequency derived from first-shell waters of aqueous Gd(3+) and of Gd(3+) coordinated to three different types of molecules: (i) a chelate (EDTA), (ii) structured peptides (mSE3/SE2) of the lanthanide-binding tags (LBTs) family with a single high-affinity binding site, and (iii) a calcium-binding protein (calmodulin) with four binding sites. The vibronic sideband (VSB) corresponding to the OH stretching mode of waters coordinated to Gd(3+), whose frequency is inversely correlated with the strength of the hydrogen bonding to neighboring waters, exhibits an increase in frequency when Gd(3+) becomes coordinated to either EDTA, calmodulin, or mSE3 peptide. In all of these cases, the addition of cation chloride or acetate salts to the solution increases the frequency of the vibronic band originating from the OH stretching mode of the coordinated waters in a cation- and concentration-dependent fashion. The cation dependence of the frequency increase scales with charge density of the cations, giving rise to an ordering consistent with the Hofmeister ordering. On the other hand, water Raman spectroscopy shows no significant change upon addition of these salts. Additionally, it is shown that the cation effect is modulated by the specific anion used. The results indicate a mechanism of action for Hofmeister series ions in which hydrogen bonding among hydration shell waters is modulated by several factors. High charge density cations sequester waters in a configuration that precludes strong hydrogen bonding to neighboring waters. Under such conditions, anion effects emerge as anions compete for hydrogen-bonding sites with the remaining free waters on the surface of the hydration shell. The magnitude of the anion effect is both cation and Gd(3+)-binding site specific. PMID:19603752

  7. State-dependent architecture of thalamic reticular sub-networks

    OpenAIRE

    Halassa, Michael M.; Chen, Zhe; Wimmer, Ralf D.; Brunetti, Philip M.; Zhao, Shengli; Zikopoulos, Basilis; Wang, Fan; Brown, Emery N.; Wilson, Matthew A

    2014-01-01

    Behavioral state is known to influence interactions between thalamus and cortex, which are important for sensation, action and cognition. The thalamic reticular nucleus (TRN) is hypothesized to regulate thalamo-cortical transmission, but the underlying functional architecture of this process and its state-dependence are unknown. By combining the first TRN ensemble recording with psychophysics and connectivity-based optogenetic tagging, we find that the TRN is composed of distinct sub-networks...

  8. Thermal state of the general time-dependent harmonic oscillator

    Indian Academy of Sciences (India)

    Jeong-Ryeol Choi

    2003-07-01

    Taking advantage of dynamical invariant operator, we derived quantum mechanical solution of general time-dependent harmonic oscillator. The uncertainty relation of the system is always larger than ħ=2 not only in number but also in the thermal state as expected. We used the diagonal elements of density operator satisfying Leouville–von Neumann equation to calculate various expectation values in the thermal state. We applied our theory to a special case which is the forced Caldirola–Kanai oscillator.

  9. Charging of a conducting sphere in a weakly ionized collisional plasma: Temporal dynamics and stationary state

    International Nuclear Information System (INIS)

    We consider the interaction of a isolated conducting sphere with a collisional weakly ionized plasma in an external field. We assume that the plasma consists of two species of ions neglecting of electrons. We take into account charging of the sphere due to sedimentation of plasma ions on it, the field of the sphere charge and the space charge, as well as recombination and molecular diffusion. The nonstationary problem of interaction of the sphere with the surrounding plasma is solved numerically. The temporal dynamics of the sphere charge and plasma perturbations is analyzed, as well as the properties of the stationary state. It is shown that the duration of transient period is determined by the recombination time and by the reverse conductivity of ions. The temporal dynamics of the sphere charge and plasma perturbations is determined by the intensity of recombination processes relative to the influence of the space charge field and diffusion. The stationary absolute value of the sphere charge increases linearly with the external electric field, decreases with the relative intensity of recombination processes and increases in the presence of substantial diffusion. The scales of the perturbed region in the plasma are determined by the radius of the sphere, the external field, the effect of diffusion, and the relative intensity of recombination processes. In the limiting case of the absence of molecular diffusion and a strong external field, the properties of the stationary state coincide with those obtained earlier as a result of approximate solution

  10. Administrative charges in pensions in Chile, Malaysia, Zambia, and the United States

    OpenAIRE

    Valdes-Prieto, Salvador

    1994-01-01

    The author offers a framework for an international comparison of charges in mandatory and private pension systems, and in state-run and privately managed systems. Such comparisons make it possible to determine which combinations of quality and cost make the most sense in pension services. He finds that: 1) Charges in the private annuity industry are much higher than other components of the pension package, and much higher than publicly provided annuities in the US; 2) comparing the collection...

  11. Photoinduced charge generation rates in soluble P3HT : PCBM nano-aggregates predict the solvent-dependent film morphology

    Science.gov (United States)

    Roy, Palas; Jha, Ajay; Dasgupta, Jyotishman

    2016-01-01

    The device efficiency of bulk heterojunction (BHJ) solar cells is critically dependent on the nano-morphology of the solution-processed polymer : fullerene blend. Active control on blend morphology can only emanate from a detailed understanding of solution structures during the film casting process. Here we use photoinduced charge transfer (CT) rates to probe the effective length scale of the pre-formed solution structures and their energy disorder arising from a mixture of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in three different organic solvents. The observed solvent-dependent ultrafast biphasic rise of the transient polaron state in solution along with changes detected in the C&z.dbd;C stretching frequency of bound PCBM provides direct evidence for film-like P3HT : PCBM interfaces in solution. Using the diffusive component of the charge transfer rate, we deduce ~3-times larger functional nano-domain size in toluene than in chlorobenzene thereby correctly predicting the relative polymer nanofiber widths observed in annealed films. We thus provide first experimental evidence for the postulated polymer : fullerene : solvent ternary phase that seeds the eventual morphology in spin-cast films. Our work motivates the design of new chemical additives to tune the grain size of the evolving polymer : fullerene domains within the solution phase.The device efficiency of bulk heterojunction (BHJ) solar cells is critically dependent on the nano-morphology of the solution-processed polymer : fullerene blend. Active control on blend morphology can only emanate from a detailed understanding of solution structures during the film casting process. Here we use photoinduced charge transfer (CT) rates to probe the effective length scale of the pre-formed solution structures and their energy disorder arising from a mixture of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in three

  12. A vacuum spark ion source: High charge state metal ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Nikolaev, A. G.; Frolova, V. P. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Oks, E. M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Tomsk State University of Control System and Radioelectronics, Tomsk 634050 (Russian Federation)

    2016-02-15

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  13. Charge State Evolution in the Solar Wind. III. Model Comparison with Observations

    Science.gov (United States)

    Landi, E.; Oran, R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.; van der Holst, B.

    2014-08-01

    We test three theoretical models of the fast solar wind with a set of remote sensing observations and in-situ measurements taken during the minimum of solar cycle 23. First, the model electron density and temperature are compared to SOHO/SUMER spectroscopic measurements. Second, the model electron density, temperature, and wind speed are used to predict the charge state evolution of the wind plasma from the source regions to the freeze-in point. Frozen-in charge states are compared with Ulysses/SWICS measurements at 1 AU, while charge states close to the Sun are combined with the CHIANTI spectral code to calculate the intensities of selected spectral lines, to be compared with SOHO/SUMER observations in the north polar coronal hole. We find that none of the theoretical models are able to completely reproduce all observations; namely, all of them underestimate the charge state distribution of the solar wind everywhere, although the levels of disagreement vary from model to model. We discuss possible causes of the disagreement, namely, uncertainties in the calculation of the charge state evolution and of line intensities, in the atomic data, and in the assumptions on the wind plasma conditions. Last, we discuss the scenario where the wind is accelerated from a region located in the solar corona rather than in the chromosphere as assumed in the three theoretical models, and find that a wind originating from the corona is in much closer agreement with observations.

  14. Charge state evolution in the solar wind. III. Model comparison with observations

    Energy Technology Data Exchange (ETDEWEB)

    Landi, E.; Oran, R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.; Van der Holst, B. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2014-08-01

    We test three theoretical models of the fast solar wind with a set of remote sensing observations and in-situ measurements taken during the minimum of solar cycle 23. First, the model electron density and temperature are compared to SOHO/SUMER spectroscopic measurements. Second, the model electron density, temperature, and wind speed are used to predict the charge state evolution of the wind plasma from the source regions to the freeze-in point. Frozen-in charge states are compared with Ulysses/SWICS measurements at 1 AU, while charge states close to the Sun are combined with the CHIANTI spectral code to calculate the intensities of selected spectral lines, to be compared with SOHO/SUMER observations in the north polar coronal hole. We find that none of the theoretical models are able to completely reproduce all observations; namely, all of them underestimate the charge state distribution of the solar wind everywhere, although the levels of disagreement vary from model to model. We discuss possible causes of the disagreement, namely, uncertainties in the calculation of the charge state evolution and of line intensities, in the atomic data, and in the assumptions on the wind plasma conditions. Last, we discuss the scenario where the wind is accelerated from a region located in the solar corona rather than in the chromosphere as assumed in the three theoretical models, and find that a wind originating from the corona is in much closer agreement with observations.

  15. A vacuum spark ion source: High charge state metal ion beams

    International Nuclear Information System (INIS)

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described

  16. A vacuum spark ion source: High charge state metal ion beams

    Science.gov (United States)

    Yushkov, G. Yu.; Nikolaev, A. G.; Oks, E. M.; Frolova, V. P.

    2016-02-01

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  17. Charge and agglomeration dependent in vitro uptake and cytotoxicity of zinc oxide nanoparticles.

    Science.gov (United States)

    Abdelmonem, Abuelmagd M; Pelaz, Beatriz; Kantner, Karsten; Bigall, Nadja C; Del Pino, Pablo; Parak, Wolfgang J

    2015-12-01

    The influence of the surface charge and the state of agglomeration of ZnO nanoparticles on cellular uptake and viability are investigated. For this purpose, ZnO nanoparticles were synthesized by colloidal routes and their physicochemical properties were investigated in detail. Three different surface modifications were investigated, involving coatings with the amphiphilic polymer poly(isobutylene-alt-maleic anhydride)-graft-dodecyl, mercaptoundecanoic acid, and L-arginine, which provide the nanoparticles with either a negative or a positive zeta-potential. The hydrodynamic diameters and zeta-potentials of all three nanoparticle species were investigated at different pH values and NaCl concentrations by means of dynamic light scattering and laser Doppler anemometry, respectively. The three differently modified ZnO nanoparticle species of similar sizes were also investigated in respect to their cellular uptake by 3T3 fibroblasts and HeLa cells, and their effect on cell viability. PMID:26387023

  18. Challenging Adiabatic Time-dependent Density Functional Theory with a Hubbard Dimer: The Case of Time-Resolved Long-Range Charge Transfer

    CERN Document Server

    Fuks, Johanna I

    2014-01-01

    We explore an asymmetric two-fermion Hubbard dimer to test the accuracy of the adiabatic approximation of time-dependent density functional theory in modelling time-resolved charge transfer. We show that the model shares essential features of a ground state long-range molecule in real-space, and by applying a resonant field we show that the model also reproduces essential traits of the CT dynamics. The simplicity of the model allows us to propagate with an "adiabatically-exact" approximation, i.e. one that uses the exact ground-state exchange-correlation functional, and compare with the exact propagation. This allows us to study the impact of the time-dependent charge-transfer step feature in the exact correlation potential of real molecules on the resulting dynamics. Tuning the parameters of the dimer allows a study both of charge-transfer between open-shell fragments and between closed-shell fragments. We find that the adiabatically-exact functional is unable to properly transfer charge, even in situations ...

  19. Decay of Bloch oscillations in the charge-density-wave ordered phase of an all electronic charge density wave state

    Science.gov (United States)

    Matveev, Oleg; Shvaika, Andrij; Devereaux, Thomas; Freericks, James

    The charge-density-wave phase of the Falicov-Kimball model displays a number of anomalous behavior including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field. Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for this nonlinear response. We examine both the current and the order parameter of the conduction electrons as the ordered system is driven by a dc electric field. Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, Lviv, Ukraine.

  20. VR-SCOSMO: A smooth conductor-like screening model with charge-dependent radii for modeling chemical reactions.

    Science.gov (United States)

    Kuechler, Erich R; Giese, Timothy J; York, Darrin M

    2016-04-28

    To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational, produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state. PMID:27131539

  1. VR-SCOSMO: A smooth conductor-like screening model with charge-dependent radii for modeling chemical reactions

    Science.gov (United States)

    Kuechler, Erich R.; Giese, Timothy J.; York, Darrin M.

    2016-04-01

    To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational, produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state.

  2. On the physics of high charge state ion production in ECR ion sources

    International Nuclear Information System (INIS)

    Full text: In a previous research we have demonstrated that metal-dielectric (MD) structures have high capabilities of to enhance the high-charge-state ion production in ECR Ion Sources. In order to explain this effect, dedicated experiments have been performed, in which changes of main plasma parameters in the presence of a MD structure have been observed and an explanation for the mechanism of 'MD-effect' was given. In this contribution we present a new experiment, where we have concentrated on the question whether the effect of the high-charge-state enhancement by the MD structures is due to the presence of just a dielectric layer in the plasma chamber (e.g. working simply as a breaking of the non ambipolar wall currents) or whether details of the structure of the MD-layer play an essential role. By comparing ion charge state distributions (CSD) and Bremsstrahlung spectra for two MD cylinders, of drastically different layer thicknesses, the importance of the MD effect, and hence of the detailed structure of this type of layer for the production of very highly charged ions is demonstrated. The effect of the two different MD cylinders on the charge state distributions (CSD) of extracted argon ion is presented. It is obvious that both cylinders influence the CSD in a totally different manner. Whereas the thin MD-liner serves to strongly enhance the currents of ions with charge states higher than 9+, the thick MD-liner acted in the opposite way, i.e. enhancing the lower charge states. The experiments reported here demonstrate the role of the MD physics for obtaining an enhanced high charge state ion production in ECRIS. Following established scaling laws, the observed shift of the mean charge state in this experiment is equivalent to a frequency upgrade of an ECRIS from e.g. 14 GHZ to 18 GHz. It has also been demonstrated that than the simple fact of restoring ambipolarity by breaking the Simon short circuits cannot explain this effect. Therefore, the method may

  3. State-dependent rotations of spins by weak measurements

    Science.gov (United States)

    Miller, D. J.

    2011-03-01

    It is shown that a weak measurement of a quantum system produces a new state of the quantum system which depends on the prior state, as well as the (uncontrollable) measured position of the pointer variable of the weak-measurement apparatus. The result imposes a constraint on hidden-variable theories which assign a different state to a quantum system than standard quantum mechanics. The constraint means that a crypto-nonlocal hidden-variable theory can be ruled out in a more direct way than previously done.

  4. Bond Length Dependence on Quantum States as Shown by Spectroscopy

    Science.gov (United States)

    Lim, Kieran F.

    2005-01-01

    A discussion on how a spreadsheet simulation of linear-molecular spectra could be used to explore the dependence of rotational band spacing and contours on average bond lengths in the initial and final quantum states is presented. The simulation of hydrogen chloride IR, iodine UV-vis, and nitrogen UV-vis spectra clearly show whether the average…

  5. The average equilibrium charge-states of heavy ions with Z > 60 stripped in He and H2

    International Nuclear Information System (INIS)

    The equilibrium charges of heavy ions (61 < Z < 101) with energies from 5 to 100 MeV stripped in He and H2 have been measured. New empirical formulae for the average charge state are presented. (orig.)

  6. Electroosmotic transport in polyelectrolyte-grafted nanochannels with pH-dependent charge density

    Science.gov (United States)

    Chen, Guang; Das, Siddhartha

    2015-05-01

    "Smart" polyelectrolyte-grafted or "soft" nanochannels with pH-responsiveness have shown great promise for applications like manipulation of ion transport, ion sensing and selection, current rectification, and many more. In this paper, we develop a theory to study the electroosmotic transport in a polyelectrolyte-grafted (or soft) nanochannel with pH-dependent charge density. In one of our recent studies, we have identified that explicit consideration of hydrogen ion concentration is mandatory for appropriately describing the electrostatics of such systems and the resulting monomer concentration must obey a non-unique, cubic distribution. Here, we use this electrostatic calculation to study the corresponding electroosmotic transport. We establish that the effect of pH in the electroosmotic transport in polyelectrolyte-grafted nanochannels introduces two separate issues: first is the consideration of the hydrogen and hydroxyl ion concentrations in describing the electroosmotic body force, and second is the consideration of the appropriate drag force that bears the signature of this cubic monomeric distribution. Our results indicate that the strength of the electroosmotic velocity for the pH-dependent case is always smaller than that for the pH-independent case, with the extent of this difference being a function of the system parameters. Such nature of the electroosmotic transport will be extremely significant in suppressing the electroosmotic flow strength with implications in large number applications such as capillary electrophoresis induced separation, electric field mediated DNA elongation, electrophoretic DNA nanopore sequencing, and many more.

  7. Size dependence of the surface charge density in EDL-MF

    Science.gov (United States)

    Tourinho, F. A.; Campos, A. F. C.; Aquino, R.; Lara, M. C. F. L.; Depeyrot, J.

    2002-11-01

    We determine the surface charge density of electric double layered magnetic fluids based on manganese ferrite nanoparticles of two different sizes using simultaneous potentiometric-conductimetric titrations. The saturation superficial density of charge is reduced for smaller particles.

  8. Size dependence of the surface charge density in EDL-MF

    International Nuclear Information System (INIS)

    We determine the surface charge density of electric double layered magnetic fluids based on manganese ferrite nanoparticles of two different sizes using simultaneous potentiometric-conductimetric titrations. The saturation superficial density of charge is reduced for smaller particles

  9. Ionic charge state distribution of helium, carbon, oxygen, and iron in an energetic storm particle enhancement

    Science.gov (United States)

    Hovestadt, D.; Klecker, B.; Hoefner, H.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.

    1982-01-01

    An analysis is presented of the ionic charge state distribution of He, C, O and Fe in the energetic storm particle event of September 28-29, 1978. Data were obtained with the ULEZEQ electrostatic analyzer-proportional counter on board the ISEE 3 spacecraft. The He(+)/He(++) ratio between 0.4 and 1 MeV/n is shown to be significantly lower during the energetic storm particle event than during the preceding period of solar flare particle enhancement, with a temporal evolution similar to that of the Fe/He ratio as reported by Klecker et al. (1981). Increases in the mean charge state for oxygen by about 3% and for iron by about 16% are also noted. The temporal variations in charge states are accounted for in terms of first-order Fermi acceleration of the pre-existing solar flare particles by a propagating interplanetary shock wave.

  10. The role of the charge state of PAHs in ultraviolet extinction

    CERN Document Server

    Cecchi-Pestellini, C; Mulas, G; Joblin, C; Williams, D A

    2008-01-01

    Aims: We explore the relation between charge state of polycyclic aromatic hydrocarbons (PAHs) and extinction curve morphology. Methods: We fit extinction curves with a dust model including core-mantle spherical particles of mixed chemical composition (silicate core, sp^2 and sp^3 carbonaceous layers), and an additional molecular component. We use exact methods to calculate the extinction due to classical particles and accurate computed absorption spectra of PAHs in different charge states, for the contribution due to the molecular component. Eesults: A combination of classical dust particles and mixtures of real PAHs satisfactorily matches the observed interstellar extinction curves. Variations in the charge state of PAHs produce changes consistent with the varying relative strengths of the bump and non-linear far-UV rise.

  11. Charge state distribution analysis of Al and Pb ions from the laser ion source at IMP

    International Nuclear Information System (INIS)

    A prototype laser ion source that could demonstrate the possibility of producing intense pulsed high charge state ion beams has been established with a commercial Nd:YAG laser (Emax=3 J, 1064 nm, 8-10 ns) to produce laser plasma for the research of Laser Ion Source (LIS). At the laser ion source test bench, high purity (99.998%) aluminum and lead targets have been tested for laser plasma experiment. An Electrostatic Ion Analyzer (EIA) and Electron Multiply Tube (EMT) detector were used to analyze the charge state and energy distribution of the ions produced by the laser ion source. The maximum charge states of Al12+ and Pb7+ were achieved. The results will be presented and discussed in this paper. (authors)

  12. Charge state distribution analysis of Al and Pb ions from the laser ion source at IMP

    CERN Document Server

    Shan, Sha; Zhang-Min, Li; Xiao-Hong, Guo; Lun-Cai, Zhou; Guo-Zhu, Cai; Liang-ting, Sun; Xue-Zhen, Zhang; Huan-Yu, Zhao; Xi-Meng, Chen; Hong-Wei, Zhao

    2013-01-01

    A prototype laser ion source that could demonstrate the possibility of producing intense pulsed high charge state ion beams has been established with a commercial Nd:YAG laser (E max = 3 J, 1064 nm, 8-10 ns) to produce laser plasma for the research of Laser Ion Source (LIS). At the laser ion source test bench, high purity (99.998 %) aluminum and lead targets have been tested for laser plasma experiment. An Electrostatic Ion Analyzer (EIA) and Electron Multiply Tube (EMT) detector were used to analyze the charge state and energy distribution of the ions produced by the laser ion source. The maximum charge states of Al12+ and Pb7+ were achieved. The results will be presented and discussed in this paper.

  13. Charge Transfer and Triplet States in High Efficiency OPV Materials and Devices

    Science.gov (United States)

    Dyakonov, Vladimir

    2013-03-01

    The advantage of using polymers and molecules in electronic devices, such as light-emitting diodes (LED), field-effect transistors (FET) and, more recently, solar cells (SC) is justified by the unique combination of high device performance and processing of the semiconductors used. Power conversion efficiency of nanostructured polymer SC is in the range of 10% on lab scale, making them ready for up-scaling. Efficient charge carrier generation and recombination in SC are strongly related to dissociation of the primary singlet excitons. The dissociation (or charge transfer) process should be very efficient in photovoltaics. The mechanisms governing charge carrier generation, recombination and transport in SC based on the so-called bulk-heterojunctions, i.e. blends of two or more semiconductors with different electron affinities, appear to be very complex, as they imply the presence of the intermediate excited states, neutral and charged ones. Charge transfer states, or polaron pairs, are the intermediate states between free electrons/holes and strongly bound excitons. Interestingly, the mostly efficient OLEDs to date are based on the so-called triplet emitters, which utilize the triplet-triplet annihilation process. In SC, recent investigations indicated that on illumination of the device active layer, not only mobile charges but also triplet states were formed. With respect to triplets, it is unclear how these excited states are generated, via inter-system crossing or via back transfer of the electron from acceptor to donor. Triplet formation may be considered as charge carrier loss channel; however, the fusion of two triplets may lead to a formation of singlet excitons instead. In such case, a generation of charges by utilizing of the so far unused photons will be possible. The fundamental understanding of the processes involving the charge transfer and triplet states and their relation to nanoscale morphology and/or energetics of blends is essential for the

  14. Charge-ordering cascade with spin-orbit Mott dimer states in metallic iridium ditelluride.

    Science.gov (United States)

    Ko, K-T; Lee, H-H; Kim, D-H; Yang, J-J; Cheong, S-W; Eom, M J; Kim, J S; Gammag, R; Kim, K-S; Kim, H-S; Kim, T-H; Yeom, H-W; Koo, T-Y; Kim, H-D; Park, J-H

    2015-01-01

    Spin-orbit coupling results in technologically-crucial phenomena underlying magnetic devices like magnetic memories and energy-efficient motors. In heavy element materials, the strength of spin-orbit coupling becomes large to affect the overall electronic nature and induces novel states such as topological insulators and spin-orbit-integrated Mott states. Here we report an unprecedented charge-ordering cascade in IrTe2 without the loss of metallicity, which involves localized spin-orbit Mott states with diamagnetic Ir(4+)-Ir(4+) dimers. The cascade in cooling, uncompensated in heating, consists of first order-type consecutive transitions from a pure Ir(3+) phase to Ir(3+)-Ir(4+) charge-ordered phases, which originate from Ir 5d to Te 5p charge transfer involving anionic polymeric bond breaking. Considering that the system exhibits superconductivity with suppression of the charge order by doping, analogously to cuprates, these results provide a new electronic paradigm of localized charge-ordered states interacting with itinerant electrons through large spin-orbit coupling. PMID:26059464

  15. Ion charge state distributions of pulsed vacuum arc plasmas in strong magnetic fields

    International Nuclear Information System (INIS)

    Vacuum arc plasmas with discharge currents of 300 A and duration 250 μs have been produced in strong magnetic fields up to 4 T. Ion charge state distributions have been measured for C, Al, Ag, Ta, Pt, Ho, and Er with a time-of-flight charge-mass spectrometer. Our previous measurements have been confirmed which show that ion charge states can be considerably enhanced when increasing the magnetic field up to about 1 T. The new measurements address the question of whether or not the additional increase continues at even higher magnetic field strength. It has been found that the increase becomes insignificant for field strengths greater than 1 T. Ion charge state distributions are almost constant for magnetic field strengths between 2 and 4 T. The results are explained by comparing the free expansion length with the freezing length. The most significant changes of charge state distributions are observed when these lengths are similar. copyright 1998 American Institute of Physics

  16. Ion charge state distributions of pulsed vacuum arc plasmas in strong magnetic fields

    International Nuclear Information System (INIS)

    Vacuum arc plasmas with discharge currents of 300 A and duration 250 μs have been produced in strong magnetic fields up to 4 T. Ion charge state distributions have been measured for C, Al, Ag, Ta, Pt, Ho, and Er with a time-of-flight charge-mass-spectrometer. Our previous measurements have been confirmed which show that ion charge states can be considerably enhanced when increasing the magnetic field up to about 1 T. The new measurements address the question of whether or not the additional increase continues at even higher magnetic field strength. It has been found that the increase becomes insignificant for field strengths greater than 1 T. Ion charge state distributions are almost constant for magnetic field strengths between 2 and 4 T. The results are explained by comparing the free expansion length with the freezing length. The most significant changes of charge state distributions are observed when these lengths are similar. copyright 1998 American Institute of Physics

  17. Improvement of Charge Collection and Performance Reproducibility in Inverted Organic Solar Cells by Suppression of ZnO Subgap States.

    Science.gov (United States)

    Wu, Bo; Wu, Zhenghui; Yang, Qingyi; Zhu, Furong; Ng, Tsz-Wai; Lee, Chun-Sing; Cheung, Sin-Hang; So, Shu-Kong

    2016-06-15

    Organic solar cells (OSCs) with inverted structure usually exhibit higher power conversion efficiency (PCE) and are more stable than corresponding devices with regular configuration. Indium tin oxide (ITO) surface is often modified with solution-processed low work function metal oxides, such as ZnO, serving as the transparent cathode. However, the defect-induced subgap states in the ZnO interlayer hamper the efficient charge collection and the performance reproducibility of the OSCs. In this work, we demonstrate that suppression of the ZnO subgap states by modification of its surface with an ultrathin Al layer significantly improves the charge extraction and performance reproducibility, achieving PCE of 8.0%, which is ∼15% higher than that of a structurally identical control cell made with a pristine ZnO interlayer. Light intensity-dependent current density-voltage characteristic, photothermal deflection spectroscopy, and X-ray photoelectron spectroscopy measurements point out the enhancement of charge collection efficiency at the organic/cathode interface, due to the suppression of the subgap states in the ZnO interlayer. PMID:27224960

  18. Anion-Dependent Aggregate Formation and Charge Behavior of Colloidal Fullerenes (n-C60)

    Science.gov (United States)

    Mukherjee, B.; Weaver, J. W.

    2009-12-01

    The fate and transport of colloidal fullerenes (n-C60) in the environment are likely to be guided by their electrokinetic and aggregation behavior. In natural water bodies inorganic ions exert significant effects in determining the size and charge of dispersed n-C60. Although the effects of cations on the behavior of n-C60 have been studied extensively; studies on the effect of anions are relatively few and thus were the focus of our investigation. The effects of anions (e.g., Cl- , SO42-) on average aggregate size (DH) and zeta potential (ZP) of n-C60 were found to be absent in presence of monovalent cations (e.g., Na+) over the tested range of pH (3-to-12) and ionic strength (0-to-20 mM). Similar observations were noted in the presence of multivalent cations (e.g., Mg2+) near acidic and neutral pH conditions. However, under alkaline conditions (pH~10) a strong anion-dependent reversal of surface charge was noted. The ZP of n-C60 changed from -65 mV, when dispersed in DI water, to +4 mV and +40 mV in the presence of SO42- and Cl-, respectively in a 10mM salt concentration (i.e., MgCl2 and MgSO4). The corresponding DH of the dispersed n-C60 changed simultaneously from 115 nm, in DI water, to 1450 nm and 225 nm for the MgSO4 and MgCl2 electrolytes. These findings provide a better understanding of interfacial interaction characteristics of n-C60 NPs, and may lead to remediation strategies for n-C60 NPs in the environment.

  19. State-Dependent Implication and Equivalence in Quantum Logic

    Directory of Open Access Journals (Sweden)

    Fedor Herbut

    2012-01-01

    Full Text Available Ideal occurrence of an event (projector leads to the known change of a state (density operator into (the Lüders state. It is shown that two events and give the same Lüders state if and only if the equivalence relation is valid. This relation determines equivalence classes. The set of them and each class, are studied in detail. It is proved that the range projector of the Lüders state can be evaluated as , where denotes the greatest lower bound, and is the null projector of . State-dependent implication extends absolute implication (which, in turn, determines the entire structure of quantum logic. and are investigated in a closely related way to mutual benefit. Inherent in the preorder is the state-dependent equivalence , defining equivalence classes in a given Boolean subalgebra. The quotient set, in which the classes are the elements, has itself a partially ordered structure, and so has each class. In a complete Boolean subalgebra, both structures are complete lattices. Physical meanings are discussed.

  20. Charge sensing of excited states in an isolated double quantum dot

    DEFF Research Database (Denmark)

    C. Johnson, A.; M. Marcus, C.; P. Hanson, M.;

    2005-01-01

    Pulsed electrostatic gating combined with capacitive charge sensing is used to perform excited state spectroscopy of an electrically isolated double-quantum-dot system. The tunneling rate of a single charge moving between the two dots is affected by the alignment of quantized energy levels......; measured tunneling probabilities thereby reveal spectral features. Two pulse sequences are investigated, one of which, termed latched detection, allows measurement of a single tunneling event without repetition. Both provide excited-state spectroscopy without electrical contact to the double-dot system....

  1. Method of estimating the State-of-Charge and of the use time left of a rechageable battery, and apparatus for executing such a method

    OpenAIRE

    Bergveld, Hendrik Johannes; Pop, Valer; Notten, Petrus Henricus Laurentius

    2006-01-01

    Disclosed is a method of estimating the state-of-charge of a rechargeable battery, taking into account the factors battery spread and ageing. The method comprises the steps of: determining the starting state-of-charge of the battery by measuring the voltage across the battery and converting this measured value into a state-of-charge value; charging the battery; integrating the charge current and determining the accumulated charge during charging of the battery and adding said value to the sta...

  2. Measurements of charged two-particle exclusive states in photon-photon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.P.

    1986-03-01

    A description is given of an experiment performed at the PEP electron-positron storage ring, using the DELCO detector, to measure the formation of charged particle pairs from interactions of pairs of virtual photons radiated from the colliding electron beams. The final states which are measured are electron-positron pairs, charged pion pairs, charged kaon pairs, and proton pairs. Electron-positron pairs are separated from other data by use of gas Cerenkov counters. The shapes of all kinematic distributions are found to agree with predictions of quantum electrodynamics. These data also are used as an accurate normalization for subtraction of the muon-pair background and for measurement of the cross sections of the three hadronic channels. Pion pairs are measured in the mass range from 0.6 to 2.0 GeV, where production of the f (1270) resonance is observed to interfere with significant continuum production. The continuum is well described by single-pion exchange, allowing a measurement of the f two-photon partial width of 3.47 +- 0.37 keV. No a priori assumption is made about the ratio of helicity amplitudes, and the phenomenological model used in fitting the data is constrained to satisfy elastic unitarity. If unitarity is not required, then the fitted partial width is a factor of 0.83 lower than the quoted value. The Q/sup 2/ dependence of the cross section is found to be consistent with predictions of the Generalized Vector Dominance Model. Kaon pairs and proton pairs are identified by time-of-flight measurements. Kaon pairs are measured in the mass range from 1.3 to 2.0 GeV, where production of the f' (1520) resonance is observed. The ratio of the f and f' two-photon partial widths is found to be consistent with SU(3) quark model predictions with a mixing angle of 28 +- 4 degrees. Twenty-three proton pairs are observed.

  3. Population and poverty in dependent states: Latin America considered.

    Science.gov (United States)

    Shrestha, N R; Patterson, J G

    1990-08-01

    "Malthusians maintain that rapid population growth aggravates poverty, while Marxists contend that social formations determine its nature and extent. Each perspective is incomplete, however, since it ignores the insights of the other. Latin American states, characterized by dependent capitalism formations and dominated by ruling elites, are generally incapable of solving the problems of population and poverty. Since population growth under dependent capitalism weakens labor's bargaining position against capital, reduced population growth is emphasized as a labor empowerment strategy the poor can implement on their own to improve their socioeconomic conditions." PMID:12283794

  4. Role of projectile charge state in convoy electron emission by fast protons colliding with LiF(0 0 1)

    Science.gov (United States)

    Aldazabal, I.; Gravielle, M. S.; Miraglia, J. E.; Arnau, A.; Ponce, V. H.

    2005-05-01

    Target ionization and projectile ionization differential cross sections are used to calculate the electron emission spectra by fast proton impact on ionic crystal surfaces under grazing incidence conditions. Both bare protons and neutral hydrogen species are considered. We use a planar potential approach to determine the projectile trajectory that later on allows us to calculate the charge state fractions. We show that, although the fraction of protons is significantly higher, the contribution from neutral hydrogen ionization has to be considered. The energy and angular dependence of the spectra is analyzed.

  5. Nuclear-mass dependence of azimuthal beam-helicity and beam-charge asymmetries in deeply virtual Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Lab. of Physics; Akopov, N. [Yerevan Physics Institute (Armenia); Akopov, Z. [DESY, Hamburg (DE)] (and others)

    2009-11-15

    The nuclear-mass dependence of azimuthal cross section asymmetries with respect to charge and longitudinal polarization of the lepton beam is studied for hard exclusive electroproduction of real photons. The observed beam-charge and beam-helicity asymmetries are attributed to the interference between the Bethe-Heitler and deeply virtual Compton scattering processes. For various nuclei, the asymmetries are extracted for both coherent and incoherent-enriched regions, which involve different (combinations of) generalized parton distributions. For both regions, the asymmetries are compared to those for a free proton, and no nuclear-mass dependence is found. (orig.)

  6. Quantum features of a charged particle in ionized plasma controlled by a time-dependent magnetic field

    Directory of Open Access Journals (Sweden)

    Jeong Ryeol eChoi

    2014-08-01

    Full Text Available Quantum characteristics of a charged particle traveling under the influence of an external time-dependent magnetic field in ionized plasma are investigated using the invariant operator method. The Hamiltonian that gives the radial part of the classical equation of motion for the charged particle is dependent on time. The corresponding invariant operator that satisfies Liouville-von Neumann equation is constructed using fundamental relations. The exact radial wave functions are derived by taking advantage of the eigenstates of the invariant operator. Quantum properties of the system is studied using these wave functions. Especially, the time behavior of the radial component of the quantized energy is addressed in detail.

  7. Charge transport of graphene ferromagnetic-insulator-superconductor junction with pairing state of broken time reversal symmetry

    Directory of Open Access Journals (Sweden)

    Yaser Hajati

    2015-04-01

    Full Text Available We investigate the charge transport through a graphene-based ferromagnetic-insulator-superconductor junction with a broken time reversal symmetry (BTRS of dx2−y2 + is and dx2−y2 + idxy superconductor using the extended Blonder-Tinkham-Klapwijk formalism. Our analysis have shown several charateristics in this junction, providing a useful probe to understand the role of the order parameter symmetry in the superconductivity. We find that the presence of the BTRS (X state in the superconductor region has a strong effect on the tunneling conductance curves which leads to a decrease in the height of the zero-bias conductance peak (ZBCP. In particular, we show that the magnitude of the superconducting proximity effect depends to a great extent on X and by increasing X, the zero-bias charge conductance oscillations with respect to the rotation angle β are suppressed. In addition, we find that at the maximum rotation angle β = π/4, introducing BTRS in the FIS junction causes oscillatory behavior of the zero-bias charge conductance with the barrier strength (χG by a period of π and by approaching the X to 1, the amplitude of charge conductance oscillations increases. This behavior is drastically different from none BTRS similar graphene junctions. At last, we suggest an experimental setup for verifying our predicted effects.

  8. X-Ray Spectroscopy: An Experimental Technique to Measure Charge State Distribution Right at the Ion-Solid Interaction

    CERN Document Server

    Sharma, Prashant

    2015-01-01

    Charge state distributions of $^{56}$Fe and $^{58}$Ni projectile ions passing through thin carbon foils have been studied in the energy range of 1.44 - 2.69 MeV/u using a novel method from the x-ray spectroscopy technique. Interestingly the charge state distribution in the bulk show Lorentzian behavior instead of usual Gaussian distribution. Further, different parameters of charge state distribution like mean charge state, distribution width and asymmetric parameter are determined and compared with the empirical calculations and ETACHA predictions. It is found that the x-ray measurement technique is appropriate to determine the mean charge state right at the interaction zone or in the bulk. Interestingly, empirical formalism predicts much lower projectile mean charge states compare to x-ray measurements which clearly indicate multi-electron capture from the target surface. The ETACHA predictions and experimental results are found to be comparable for energies $\\geq$ 2 MeV/u.

  9. Stress state and strain rate dependence of the human placenta.

    Science.gov (United States)

    Weed, Benjamin C; Borazjani, Ali; Patnaik, Sourav S; Prabhu, R; Horstemeyer, M F; Ryan, Peter L; Franz, Thomas; Williams, Lakiesha N; Liao, Jun

    2012-10-01

    Maternal trauma (MT) in automotive collisions is a source of injury, morbidity, and mortality for both mothers and fetuses. The primary associated pathology is placental abruption in which the placenta detaches from the uterus leading to hemorrhaging and termination of pregnancy. In this study, we focused on the differences in placental tissue response to different stress states (tension, compression, and shear) and different strain rates. Human placentas were obtained (n = 11) for mechanical testing and microstructure analysis. Specimens (n = 4+) were tested in compression, tension, and shear, each at three strain rates (nine testing protocols). Microstructure analysis included scanning electron microscopy, histology, and interrupted mechanical tests to observe tissue response to various loading states. Our data showed the greatest stiffness in tension, followed by compression, and then by shear. The study concludes that mechanical behavior of human placenta tissue (i) has a strong stress state dependence and (ii) behaves in a rate dependent manner in all three stress states, which had previously only been shown in tension. Interrupted mechanical tests revealed differences in the morphological microstructure evolution that was driven by the kinematic constraints from the different loading states. Furthermore, these structure-property data can be used to develop high fidelity constitutive models for MT simulations. PMID:22581478

  10. Donor-acceptor substituted phenylethynyltriphenylenes – excited state intramolecular charge transfer, solvatochromic absorption and fluorescence emission

    Directory of Open Access Journals (Sweden)

    Ritesh Nandy

    2010-10-01

    Full Text Available Several 2-(phenylethynyltriphenylene derivatives bearing electron donor and acceptor substituents on the phenyl rings have been synthesized. The absorption and fluorescence emission properties of these molecules have been studied in solvents of different polarity. For a given derivative, solvent polarity had minimal effect on the absorption maxima. However, for a given solvent the absorption maxima red shifted with increasing conjugation of the substituent. The fluorescence emission of these derivatives was very sensitive to solvent polarity. In the presence of strongly electron withdrawing (–CN and strongly electron donating (–NMe2 substituents large Stokes shifts (up to 130 nm, 7828 cm−1 were observed in DMSO. In the presence of carbonyl substituents (–COMe and –COPh, the largest Stokes shift (140 nm, 8163 cm−1 was observed in ethanol. Linear correlation was observed for the Stokes shifts in a Lippert–Mataga plot. Linear correlation of Stokes shift was also observed with ET(30 scale for protic and aprotic solvents but with different slopes. These results indicate that the fluorescence emission arises from excited state intramolecular charge transfer in these molecules where the triphenylene chromophore acts either as a donor or as an acceptor depending upon the nature of the substituent on the phenyl ring. HOMO–LUMO energy gaps have been estimated from the electrochemical and spectral data for these derivatives. The HOMO and LUMO surfaces were obtained from DFT calculations.

  11. Forcing-dependent stability of steady turbulent states

    CERN Document Server

    Saint-Michel, Brice; Ravelet, Florent; Daviaud, François

    2013-01-01

    We study the influuence of the forcing on the steady turbulent states of a von K\\'arm\\'an swirling flow, at constant impeller speed, or at constant torque. We find that the different forcing conditions change the nature of the stability of the steady states and reveal dynamical regimes that bear similarities with low-dimensional systems. We suggest that this forcing dependence may be an out- of-equilibrium analogue of the ensemble inequivalence, valid for long-range interacting statistical systems, and that it may be applicable to other turbulent systems.

  12. True Versus Spurious State Dependence in Firm Performance

    DEFF Research Database (Denmark)

    Kaiser, Ulrich; Kongsted, Hans Christian

    This paper analyzes the persistence of firms' exporting behavior in a panel of German manufacturing firms using dynamic binary choice models. We distinguish between true and spurious state dependence in exports and apply fixed effects methods that allow us to verify the robustness of our results to...... determinants. Our results, which are consistent with the findings of previous studies on firms in developing countries and in the United States, show the presence of important sunk costs in export market entry and a depreciation of knowledge and experience in export markets...

  13. True versus spurious state dependence in firm performance

    DEFF Research Database (Denmark)

    Kaiser, Ulrich; Kongsted, Hans Christian

    2008-01-01

    This paper analyzes the persistence of firms' exporting behavior in a panel of German manufacturing firms using dynamic binary choice models. We distinguish between true and spurious state dependence in exports and apply fixed effects methods that allow us to verify the robustness of our results to...... determinants. Our results, which are consistent with the findings of previous studies on firms in developing countries and in the United States, show the presence of important sunk costs in export market entry and a depreciation of knowledge and experience in export markets....

  14. Charge, quantum state, and energy distributions of impurities released in plasma-wall interaction processes

    International Nuclear Information System (INIS)

    Conventional wisdom has it that total sputtering yields correlate with high Z-impurity levels found in fusion plasmas. The charge, quantum states and energy distributions of sputtered atoms have been virtually ignored in these considerations. Impurity transport from the wall or limiter to the plasma is, however, strongly influenced by these factors which may play a crucial role in determining impurity levels in the deeper plasma regions. Preliminary calculations have shown that positively charged impurities would most likely be redeposited on their surfaces of origin. The conditions leading to charged or excited state atoms emission and the energy distributions of such species are reviewed. Techniques for measuring these quantities are discussed and the need for a wider data base in this field is pointed out

  15. Performance on the low charge state laser ion source in BNL

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, M.; Alessi, J.; Beebe, E.; Costanzo, M.; DeSanto, L.; Jamilkowski, J.; Kanesue, T.; Lambiase, R.; Lehn, D.; Liaw, C. J.; McCafferty, D.; Morris, J.; Olsen, R.; Pikin, A.; Raparia, D.; Steszyn, A.; Ikeda, S.

    2015-09-07

    On March 2014, a Laser Ion Source (LIS) was commissioned which delivers high-brightness, low-charge-state heavy ions for the hadron accelerator complex in Brookhaven National Laboratory (BNL). Since then, the LIS has provided many heavy ion species successfully. The low-charge-state (mostly singly charged) beams are injected to the Electron Beam Ion Source (EBIS), where ions are then highly ionized to fit to the following accelerator’s Q/M acceptance, like Au32+. Recently we upgraded the LIS to be able to provide two different beams into EBIS on a pulse-to-pulse basis. Now the LIS is simultaneously providing beams for both the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory (NSRL).

  16. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    CERN Document Server

    Theophilou, Iris; Thanos, S

    2014-01-01

    Photoinduced charge transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for accurate and computationally inexpensive treatment of charge transfer excitations is a topic that attracts nowadays a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations (M. Tassi, I. Theophilou and S. Thanos, Int. J. Quantum Chem., {113}, 690 (2013), M. Tassi, I. Theophilou and S. Thanos, J. Chem. Phys. {138}, 124107 (2013)) to allow for the description of intermolecular charge transfer excitations. For the description of an excitation where an electron is transferred from a donor system to an acceptor one, it is necessary to keep the excited state orthogonal to the ground sate in order to avoid variational collapse. These conditions are achieved by decomposing the subspace spanned by the Hartree-Fock (HF) ground state orbitals to four subspaces: The subspace spanned ...

  17. The H${}^-$ type isoelectron system: second critical charge, second bound state of H${}^-$ and analytic continuation

    CERN Document Server

    Turbiner, A V; Pilon, H Olivares

    2015-01-01

    The second critical charge in the 3-body quantum Coulomb system $(Z, e, e)$ predicted by F Stillinger has been calculated to be equal to $Z_{B}^{\\infty}\\ =\\ 0.904854$ and $Z_{B}^{m_p}\\ =\\ 0.905138$ for infinite and finite (proton) mass $m_p$ of charge $Z$, respectively. In both cases, the ground state energy has a square-root branch point with exponent 3/2 at $Z=Z_B$ in the complex $Z$-plane. Based on analytic continuation, the second, spin-singlet bound state of negative hydrogen ion H${}^-$ is predicted to be at -0.515541 a.u. (-0.515311 a.u. for the proton mass $m_p$). The first critical charge for which the ionization energy vanishes is found for a finite proton mass in the Lagrange mesh method, $Z^{m_p}_{c}\\ =\\ 0.911\\, 069\\, 724\\, 655$.

  18. Dependence of internal conversion coefficient on atom state

    International Nuclear Information System (INIS)

    Calculations of the internal conversion coefficient (ICC) for the (Fe) atom d-shell containing 6 electrons at a maximum occupation number of 10 are presented. In the relativistic approach use is made of the multiconfiguration approximation, which makes it possible to take account of the intermediate coupling in nonfilled shells. The energy matrix has been calculated in the determinantal basis of these configurations and then diagonalized. Radial single-electron wave functions have been calculated by the relativistic method of the Hartry-Fock-Dirac self consistent field. Occupational numbers of Fe d-subshells for the 5D basic multiplet states are given. Atom electrical and magnetic ICC are analyzed. Electrical ICC are practically the same for all the levels. The electrical ICC calculated for one electron does not depend on the spin orientation. Magnetic ICC show considerable dependence of the atom state. Within the multiplet limits the ICC change smoothly, decreasing for higher levels

  19. Theoretical versus operational state-dependent error growth

    Science.gov (United States)

    Khade, V.; Hansen, J.

    2003-04-01

    The state dependence of singular values is well known, and shows that global measures of uncertainty growth like Lyapunov exponents are irrelevant when it comes to forecasts over time scales of interest. But the studies to date do not tell the whole story. It is found that the singular vector error growth in the perfect model scenario, with perfect initial conditions and isotropic uncertainty is markedly different from that for imperfect initial conditions & operationally obtainable uncertainty (for example when data is assimilated). When the model error is included the picture changes yet again. The state dependent error growth in a range of scenarios using a toy model has been compared and contrasted, giving a picture of the large range of issues impacting the predictability problem.

  20. Preliminary measurement of time-dependent Bd0-Bd0 mixing using topology and charge selected semi-leptonic B decays

    International Nuclear Information System (INIS)

    The time dependence of Bd0-Bd0 mixing has been measured using a sample of 150,000 hadronic Z0 decays collected by the SLD experiment at the SLC between 1993 and 1995. The analysis identifies the semileptonic decays of B mesons with high (p, pt) leptons and reconstructs the B meson decay length and charge by vertexing the lepton with a partially reconstructed D meson. Vertex charge is used to enrich the selection of neutral over charged B mesons. This method results in a sample of 581 neutral decays with high charge purity. The B candidate is tagged at production with a combined tag that exploits the large polarized b forward-backward asymmetry in conjunction with the opposite hemisphere b jet charge. The final state is tagged by the sign of the high (p, pt) lepton. From their preliminary analysis the authors find a mass difference between the two Bd0 mass eigenstates of, Δmd = 0.452 ± 0.074(stat) ± 0.049(syst) ps-1

  1. Isotopic dependence of isomeric states in heavy nuclei

    International Nuclear Information System (INIS)

    High-spin K-isomer states, which are usually assumed as two quasiparticle high-spin configurations states, were observed in heavy nuclei 250,256Fm, 252,254No, 266Hs and 270,271Ds. In order to calculate the energies of 2qp isomer states in even-even nuclei, the two-center shell model is used for finding the single-particle levels at the ground state of nucleus. The shape parameterization used in this model effectively includes many even multipolarities. The dependence of the parameters of Is and I2 terms on A and N - Z were modified for the correct description of the ground state spins of odd actinides. The microscopical corrections and quadrupole parameters of deformation calculated with the two-center shell model are close to those obtained with the microscopic-macroscopic approaches of P. Moller et al. and A.Sobiczewski et al. The calculated values of Qa are in reasonable agreement with measured values. The calculated two-quasiparticle energies are in good agreement with the available experimental data. In the even isotope chains of Fm and No the calculated E2qp for high spin K-isomer states are minimal for 250Fm and 252No. In 242,244Fm the K-isomer states with K ≥ 6 are above 1.38 MeV that is larger than the energies of the K-isomer states in 252,254No. In order to observe these states in the neutron-deficient Fm isotopes, one should produce these isotopes with the cross sections similar to those for the nuclei 252,254No. Calculating the potential energy surface near the ground state, one can not exclude the existence of shallow potential minima which can be related to the shape isomers. The possibility of existence of these minima is discussed within the microscopic-macroscopic model. We found the indications for the low-lying shape isomers in 264,266Sg and 268,270Hs The alpha-decay between the isomer states and between the ground states can have similar properties that shields the observation of isomeric states. The population of the isomer states in the

  2. State-dependent utility maximization in L\\'evy markets

    OpenAIRE

    Figueroa-Lopez, Jose E.; Jin Ma

    2009-01-01

    We revisit Merton's portfolio optimization problem under boun-ded state-dependent utility functions, in a market driven by a L\\'evy process $Z$ extending results by Karatzas et. al. (1991) and Kunita (2003). The problem is solved using a dual variational problem as it is customarily done for non-Markovian models. One of the main features here is that the domain of the dual problem enjoys an explicit "parametrization", built on a multiplicative optional decomposition for nonnegative supermarti...

  3. Quadrature-dependent Bogoliubov transformations and multiphoton squeezed states

    OpenAIRE

    De Siena, Silvio; Di Lisi, Antonio; Illuminati, Fabrizio

    2001-01-01

    We introduce a linear, canonical transformation of the fundamental single--mode field operators $a$ and $a^{\\dagger}$ that generalizes the linear Bogoliubov transformation familiar in the construction of the harmonic oscillator squeezed states. This generalization is obtained by adding to the linear transformation a nonlinear function of any of the fundamental quadrature operators $X_{1}$ and $X_{2}$, making the original Bogoliubov transformation quadrature--dependent. Remarkably, the conditi...

  4. Charge dependence of neoclassical and turbulent transport of light impurities on MAST

    Science.gov (United States)

    Henderson, S. S.; Garzotti, L.; Casson, F. J.; Dickinson, D.; O'Mullane, M.; Patel, A.; Roach, C. M.; Summers, H. P.; Tanabe, H.; Valovič, M.; the MAST Team

    2015-09-01

    Carbon and nitrogen impurity transport coefficients are determined from gas puff experiments carried out during repeat L-mode discharges on the Mega-Amp Spherical Tokamak (MAST) and compared against a previous analysis of helium impurity transport on MAST. The impurity density profiles are measured on the low-field side of the plasma, therefore this paper focuses on light impurities where the impact of poloidal asymmetries on impurity transport is predicted to be negligible. A weak screening of carbon and nitrogen is found in the plasma core, whereas the helium density profile is peaked over the entire plasma radius. Both carbon and nitrogen experience a diffusivity of the order of 10 m2s-1 and a strong inward convective velocity of ˜40 m s-1 near the plasma edge, and a region of outward convective velocity at mid-radius. The measured impurity transport coefficients are consistent with neoclassical Banana-Plateau predictions within ρ ≤slant 0.4 . Quasi-linear gyrokinetic predictions of the carbon and helium particle flux at two flux surfaces, ρ =0.6 and ρ =0.7 , suggest that trapped electron modes are responsible for the anomalous impurity transport observed in the outer regions of the plasma. The model, combining neoclassical transport with quasi-linear turbulence, is shown to provide reasonable estimates of the impurity transport coefficients and the impurity charge dependence.

  5. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: DEPENDENCE OF THE SURFACE POTENTIAL ON THE GRAIN SIZE

    International Nuclear Information System (INIS)

    The secondary electron emission is believed to play an important role for the dust charging at and close to the lunar surface. However, our knowledge of emission properties of the dust results from model calculations and rather rare laboratory investigations. The present paper reports laboratory measurements of the surface potential on Lunar Highlands Type regolith simulants with sizes between 0.3 and 3 μm in an electron beam with energy below 700 eV. This investigation is focused on a low-energy part, i.e., ≤100 eV. We found that the equilibrium surface potential of this simulant does not depend on the grain size in our ranges of grain dimensions and the beam energies, however, it is a function of the primary electron beam energy. The measurements are confirmed by the results of the simulation model of the secondary emission from the spherical samples. Finally, we compare our results with those obtained in laboratory experiments as well as those inferred from in situ observations.

  6. Temperature dependent relaxation of separated charge carriers at CdSe-QD / ITO interfaces

    International Nuclear Information System (INIS)

    One and 5 monolayers of CdSe quantum dots with fixed diameter were deposited on ITO substrates by dip coating and investigated by transient surface photovoltage (SPV) at temperatures up to 250 C. The SPV transients were excited with laser pulses (duration time 5 ns) and measured in vacuum at times up to 0.2 s. SPV transients arose within the laser pulse and could be well fitted with one (one monolayer of CdSe-QDs) or two (5 monolayers of CdSe-QDs) stretched exponentials. The parameters of the stretched exponentials changed depending on defect generation during heating as well as on thermal activation processes during heating and cooling. During cooling, the mean relaxation times of both processes were thermally activated with an activation energy of 0.9 eV. Defect generation strongly affected charge separation and relaxation within the first monolayer at the CdSe-QD/ITO interface and between the first monolayer of CdSe-QDs and following CdSe-QD layers.

  7. Calculation of nucleon-deuteron breakup processes with realistic, charge-dependent potential

    International Nuclear Information System (INIS)

    Neutron-deuteron breakup cross sections obtained within the framework of AGS theory are presented. As input the separable W-matrix representation of the two-body T matrix for the original Paris potential and for a charge dependent modification is used. A criterion to choose an optimal representation based on the Schmidt norm of the kernel of the AGS equations is presented. The results are compared with data from kinematically complete experiments at 10.3 MeV and 13.0 MeV. The neutron-neutron (nn) scattering length is extracted from the cross section of a nn-FSI configuration. It is shown that a reliable analysis of a given experimental situation requires the inclusion of about 400 neighbouring configurations in order to simulate finite energy and angle resolutions. In view of the huge demand on computational resources the simplifying yet very accurate W-matrix method is seen to be an algorithm particularly well suited for such realistic analyses. (orig.)

  8. Electro-osmosis in kaolinite with pH-dependent surface charge modelling by homogenization.

    Science.gov (United States)

    Lima, Sidarta A; Murad, Marcio A; Moyne, Christian; Stemmelen, Didier

    2010-03-01

    A new three-scale model to describe the coupling between pH-dependent flows and transient ion transport, including adsorption phenomena in kaolinite clays, is proposed. The kaolinite is characterized by three separate nano/micro and macroscopic length scales. The pore (micro)-scale is characterized by micro-pores saturated by an aqueous solution containing four monovalent ions and charged solid particles surrounded by thin electrical double layers. The movement of the ions is governed by the Nernst-Planck equations, and the influence of the double layers upon the flow is dictated by the Helmholtz-Smoluchowski slip boundary condition on the tangential velocity. In addition, an adsorption interface condition for the Na+ transport is postulated to capture its retention in the electrical double layer. The two-scale nano/micro model including salt adsorption and slip boundary condition is homogenized to the Darcy scale and leads to the derivation of macroscopic governing equations. One of the notable features of the three-scale model is there construction of the constitutive law of effective partition coefficient that governs the sodium adsorption in the double layer. To illustrate the feasibility of the three-scale model in simulating soil decontamination by electrokinetics, the macroscopic model is discretized by the finite volume method and the desalination of a kaolinite sample by electrokinetics is simulated. PMID:20209253

  9. Estimation of State of Charge of Lead Acid Battery using Radial Basis Function

    OpenAIRE

    Sauradip, M; Sinha, SK; K Muthukumar

    2001-01-01

    A Radial Basis Function based learning system method has been proposed for estimation of State of Charge (SOC) of Lead Acid Battery. Coulomb metric method is used for SOC estimation with correction factor computed by Radial Basis Function Method. Radial basis function based technique is used for learning battery performance variation with time and other parameters. Experimental results are included.

  10. Production of high charge state ions with the Advanced Electron Cyclotron Resonance Ion Source at LBNL

    International Nuclear Information System (INIS)

    Production of high charge state ions with the Advanced Electron Cyclotron Resonance ion source (AECR) at Lawrence Berkeley National Laboratory (LBNL) has been significantly improved by application of various new techniques. Heating the plasma simultaneously with microwaves of two frequencies (10 and 14 GHz) has increased the production of very high charge state heavy ions. The two-frequency technique provides extra electron cyclotron resonance heating zone as compared to the single-frequency heating and improves the heating of the plasma electrons. Aluminum oxide on the plasma chamber surface improves the production of cold electrons at the chamber surfaces and increases the performance of the AECR. Fully stripped argon ions, ≥5 enA, were produced and directly identified by the source charge state analyzing system. High charge state ion beams of bismuth and uranium, such as 209Bi51+ and 238U53+, were produced by the source and accelerated by the 88-in. cyclotron to energies above 6 MeV/nucleon for the first time. copyright 1996 American Institute of Physics

  11. Ion temperature effects on ion charge-state distributions of an electron cyclotron resonant ion source

    International Nuclear Information System (INIS)

    A method is described for determining ion cyclotron resonance (ICR) heating effects on multiply charged-ion energy distributions using a Monte Carlo fit to experimental time-of-flight spectrometer data. The method is general but is used here specifically to separate the effects of plasma ambipolar potential spread and ion temperature in an electron cyclotron resonance (ECR) heated magnetic mirror ion source (MIMI) [Phys. Fluids 28, 3116 (1985)]. A steady-state equilibrium model is also developed that models the relevant atomic processes occurring in MIMI plasmas. This model and the Monte Carlo analysis are used to relate the effect of midplane ICR heating on end loss ion charge state distributions to its effect on the confined ion distributions. The model allows for collisional, moderately collisional, and collisionless confinement, specific to each charge state in the distribution. Both experiment and modeling show that increased ion temperature causes a shift to lower-Z ion populations in both the confined and end loss charge-state distributions

  12. Solvent-induced reversible solid-state colour change of an intramolecular charge-transfer complex.

    Science.gov (United States)

    Li, Ping; Maier, Josef M; Hwang, Jungwun; Smith, Mark D; Krause, Jeanette A; Mullis, Brian T; Strickland, Sharon M S; Shimizu, Ken D

    2015-10-11

    A dynamic intramolecular charge-transfer (CT) complex was designed that displayed reversible colour changes in the solid-state when treated with different organic solvents. The origins of the dichromatism were shown to be due to solvent-inclusion, which induced changes in the relative orientations of the donor pyrene and acceptor naphthalenediimide units. PMID:26299357

  13. Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads

    KAUST Repository

    Whited, Matthew T.

    2012-01-01

    We report the synthesis and characterization of symmetric BODIPY dyads where the chromophores are attached at the meso position, using either a phenylene bridge or direct linkage. Both molecules undergo symmetry-breaking intramolecular charge transfer in the excited state, and the directly linked dyad serves as a visible-light-absorbing analogue of 9,9′-bianthryl.

  14. Charge-dependent directed flow in Cu+Au collisions at $\\sqrt{s_{_{NN}}}$ = 200 GeV

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Anderson, D M; Aoyama, R; Aparin, A; Arkhipkin, D; Aschenauer, E C; Ashraf, M U; Attri, A; Averichev, G S; Bai, X; Bairathi, V; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandenburg, J D; Brandin, A V; Bunzarov, I; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Campbell, J M; Cebra, D; Chakaberia, I; Chaloupka, P; Chang, Z; Chatterjee, A; Chattopadhyay, S; Chen, X; Chen, J H; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Esumi, S; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A I; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, G W; Horvat, S; Huang, B; Huang, X; Huang, H Z; Huang, T; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jentsch, A; Jia, J; Jiang, K; Jowzaee, S; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikoła, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kumar, L; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, Y; Li, C; Li, W; Li, X; Li, X; Lin, T; Lisa, M A; Liu, Y; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Luo, S; Ma, G L; Ma, R; Ma, Y G; Ma, L; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Matis, H S; McDonald, D; McKinzie, S; Meehan, K; Mei, J C; Miller, Z W; Minaev, N G; Mioduszewski, S; Mishra, D; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Niida, T; Nogach, L V; Nonaka, T; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V A; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Pile, P; Pluta, J; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Przybycien, M; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Ray, R L; Reed, R; Rehbein, M J; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Roth, J D; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, A; Sharma, M K; Sharma, B; Shen, W Q; Shi, S S; Shi, Z; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Singha, S; Skoby, M J; Smirnov, D; Smirnov, N; Solyst, W; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sugiura, T; Sumbera, M; Summa, B; Sun, Z; Sun, Y; Sun, X M; Surrow, B; Svirida, D N; Tang, A H; Tang, Z; Tarnowsky, T; Tawfik, A; Thäder, J; Thomas, J H; Timmins, A R; Tlusty, D; Todoroki, T; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Vokal, S; Voloshin, S A; Vossen, A; Wang, G; Wang, F; Wang, J S; Wang, Y; Wang, H; Wang, Y; Webb, J C; Webb, G; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xiao, Z G; Xie, W; Xie, G; Xin, K; Xu, Q H; Xu, Y F; Xu, H; Xu, Z; Xu, N; Xu, J; Yang, C; Yang, Y; Yang, S; Yang, Y; Yang, Q; Yang, Y; Ye, Z; Ye, Z; Yi, L; Yip, K; Yoo, I -K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, J; Zhang, X P; Zhang, S; Zhang, Y; Zhang, J B; Zhang, Z; Zhang, S; Zhang, J; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2016-01-01

    We present the first measurement of charge-dependent directed flow in Cu+Au collisions at $\\sqrt{s_{_{NN}}}$ = 200 GeV. The results are presented as a function of the particle transverse momentum and pseudorapidity for different centralities. A finite difference between the directed flow of positive and negative charged particles is observed that qualitatively agrees with the expectations from the effects of the initial strong electric field between two colliding ions with different nuclear charges. The measured difference in directed flow is much smaller than that obtained from the parton-hadron-string-dynamics (PHSD) model, which suggests that most of the electric charges, i.e. quarks and antiquarks, have not yet been created during the lifetime of the strong electric field, which is of the order of, or less than, 1fm/$c$.

  15. Investigation of the W and Q2 dependence of charged pion distributions in μp scattering

    International Nuclear Information System (INIS)

    The W and Q2 dependence of the fragmentation functions and of the average multiplicity of charged pions is investigated, using data from the NA9 experiment at the CERN SPS on muon-proton scattering at 280 GeV. A significant increase of pion production with increasing W is observed at fixed Q2, leading to a rise of the average charged pion multiplicity, linear in ln W2, and of the pion fragmentation function in the central region, i.e. at small vertical strokeXsub(F)vertical stroke. This increase can be understood from the kinematic widening of the cms rapidity range proportional to ln W2 and the observed W independent height of the rapidity distribution. At fixed W, a rise of the average charged pion multiplicity with Q2 is observed. This rise appears to be weaker than that observed for all charged hadrons implying a stronger rise with Q2 for kaons and protons. (orig.)

  16. DEPTH-CHARGE static and time-dependent perturbation/sensitivity system for nuclear reactor core analysis. Revision I

    International Nuclear Information System (INIS)

    This report provides the background theory, user input, and sample problems required for the efficient application of the DEPTH-CHARGE system - a code black for both static and time-dependent perturbation theory and data sensitivity analyses. The DEPTH-CHARGE system is of modular construction and has been implemented within the VENTURE-BURNER computational system at Oak Ridge National Laboratory. The DEPTH module (coupled with VENTURE) solves for the three adjoint functions of Depletion Perturbation Theory and calculates the desired time-dependent derivatives of the response with respect to the nuclide concentrations and nuclear data utilized in the reference model. The CHARGE code is a collection of utility routines for general data manipulation and input preparation and considerably extends the usefulness of the system through the automatic generation of adjoint sources, estimated perturbed responses, and relative data sensitivity coefficients. Combined, the DEPTH-CHARGE system provides, for the first time, a complete generalized first-order perturbation/sensitivity theory capability for both static and time-dependent analyses of realistic multidimensional reactor models. This current documentation incorporates minor revisions to the original DEPTH-CHARGE documentation (ORNL/CSD-78) to reflect some new capabilities within the individual codes

  17. State-Dependent Inhibition of Sodium Channels by Local Anesthetics: A 40-Year Evolution.

    Science.gov (United States)

    Wang, G-K; Strichartz, G R

    2012-04-01

    Knowledge about the mechanism of impulse blockade by local anesthetics has evolved over the past four decades, from the realization that Na(+) channels were inhibited to affect the impulse blockade to an identification of the amino acid residues within the Na(+) channel that bind the local anesthetic molecule. Within this period appreciation has grown of the state-dependent nature of channel inhibition, with rapid binding and unbinding at relatively high affinity to the open state, and weaker binding to the closed resting state. Slow binding of high affinity for the inactivated state accounts for the salutary therapeutic as well as the toxic actions of diverse class I anti-arrhythmic agents, but may have little importance for impulse blockade, which requires concentrations high enough to block the resting state. At the molecular level, residues on the S6 transmembrane segments in three of the homologous domains of the channel appear to contribute to the binding of local anesthetics, with some contribution also from parts of the selectivity filter. Binding to the inactivated state, and perhaps the open state, involves some residues that are not identical to those that bind these drugs in the resting state, suggesting spatial flexibility in the "binding site". Questions remaining include the mechanism that links local anesthetic binding with the inhibition of gating charge movements, and the molecular nature of the theoretical "hydrophobic pathway" that may be critical for determining the recovery rates from blockade of closed channels, and thus account for both therapeutic and cardiotoxic actions. PMID:23710324

  18. The excited spin-triplet state of a charged exciton in quantum dots

    Science.gov (United States)

    Molas, M. R.; Nicolet, A. A. L.; Piętka, B.; Babiński, A.; Potemski, M.

    2016-09-01

    We report on spectroscopic studies of resonances related to ladder of states of a charged exciton in single GaAlAs/AlAs quantum dot structures. Polarization-resolved photoluminescence, photoluminescence excitation and photon-correlation measurements were performed at low (T  =  4.2 K) temperature also in magnetic field applied in Faraday configuration. The investigated resonances are assigned to three different configurations of a positively charged exciton. Together with a singlet ground state and a conventional triplet state (involving an electron from the ground state electronic s-shell), an excited triplet state, which involved an electron from the excited electronic p-shell was identified in single dots. The appearance of an emission line related to the latter complex is due to a partially suppressed electron relaxation in the investigated dots. An analysis of this emission line allows us to scrupulously determine properties of the excited triplet state and compare them with those of the conventional triplet state. Both triplets exhibit similar patterns of anisotropic fine structure and Zeeman splitting, however their amplitudes significantly differ for those two states. Presented results emphasize the role of the symmetry of the electronic state on the properties of the triplet states of two holes  +  electron excitonic complex.

  19. The excited spin-triplet state of a charged exciton in quantum dots.

    Science.gov (United States)

    Molas, M R; Nicolet, A A L; Piętka, B; Babiński, A; Potemski, M

    2016-09-14

    We report on spectroscopic studies of resonances related to ladder of states of a charged exciton in single GaAlAs/AlAs quantum dot structures. Polarization-resolved photoluminescence, photoluminescence excitation and photon-correlation measurements were performed at low (T  =  4.2 K) temperature also in magnetic field applied in Faraday configuration. The investigated resonances are assigned to three different configurations of a positively charged exciton. Together with a singlet ground state and a conventional triplet state (involving an electron from the ground state electronic s-shell), an excited triplet state, which involved an electron from the excited electronic p-shell was identified in single dots. The appearance of an emission line related to the latter complex is due to a partially suppressed electron relaxation in the investigated dots. An analysis of this emission line allows us to scrupulously determine properties of the excited triplet state and compare them with those of the conventional triplet state. Both triplets exhibit similar patterns of anisotropic fine structure and Zeeman splitting, however their amplitudes significantly differ for those two states. Presented results emphasize the role of the symmetry of the electronic state on the properties of the triplet states of two holes  +  electron excitonic complex. PMID:27391126

  20. Complexity and state-transitions in social dependence networks

    Directory of Open Access Journals (Sweden)

    Giuliano Pistolesi

    2001-01-01

    Full Text Available Computation of complexity in Social Dependence Networks is an interesting research domain to understand evolution processes and group exchange dynamics in natural and artificial intelligent Multi-Agent Systems. We perform an agent-based simulation by NET-PLEX (Conte and Pistolesi, 2000, a new software system able both to build interdependence networks tipically emerging in Multi-Agent System scenarios and to investigate complexity phenomena, i.e., unstability and state-transitions like Hopf bifurcation (Nowak and Lewenstein, 1994, and to describe social self organization phenomena emerging in these artificial social systems by means of complexity measures similar to those introduced by Hubermann and Hogg (1986. By performing analysis of complexity in these kind of artificial societies we observed interesting phenomena in emerging organizations that suggest state-transitions induced by critical configurations of parameters describing the social system similar to those observed in many studies on state-transitions in bifurcation chaos (Schuster, 1988; Ruelle, 1989.

  1. Quadrature-dependent Bogoliubov transformations and multiphoton squeezed states

    CERN Document Server

    De Siena, S; Illuminati, F; Siena, Silvio De; Lisi, Antonio Di; Illuminati, Fabrizio

    2001-01-01

    We introduce a linear, canonical transformation of the fundamental single--mode field operators $a$ and $a^{\\dagger}$ that generalizes the linear Bogoliubov transformation familiar in the construction of the harmonic oscillator squeezed states. This generalization is obtained by adding to the linear transformation a nonlinear function of any of the fundamental quadrature operators $X_{1}$ and $X_{2}$, making the original Bogoliubov transformation quadrature--dependent. Remarkably, the conditions of canonicity do not impose any constraint on the form of the nonlinear function, and lead to a set of nontrivial algebraic relations between the $c$--number coefficients of the transformation. We examine in detail the structure and the properties of the new quantum states defined as eigenvectors of the transformed annihilation operator $b$. These eigenvectors define a class of multiphoton squeezed states. The structure of the uncertainty products and of the quasiprobability distributions in phase space shows that bes...

  2. Treating tobacco dependence: state of the science and new directions.

    Science.gov (United States)

    Lerman, Caryn; Patterson, Freda; Berrettini, Wade

    2005-01-10

    Despite almost two decades of intensive tobacco control efforts, nearly one quarter of Americans continue to smoke. The two United States Food and Drug Administration-approved medications used to treat tobacco dependence, bupropion and nicotine replacement therapy, are effective for only a fraction of smokers. Investigations of medications approved for affective disorders and other forms of substance abuse, such as fluoxetine and naltrexone, have yielded mixed results as tobacco dependence treatments. A particular challenge in tobacco dependence treatment is the development of effective approaches for smokers with unique needs, such as cancer patients and pregnant women. Despite new developments in these areas, significant gaps in knowledge and practice remain. Basic research in the neurobiologic and genetic basis of nicotine dependence offers promise for the development of novel and more effective treatment approaches. For example, emerging research in pharmacogenetics explores how genetic variation in drug-metabolizing enzymes and drug targets modifies response to pharmacotherapy. These discoveries could someday help practitioners to individualize the type, dosage, and duration of tobacco dependence treatment based on genotype, and maximize the efficacy. PMID:15637394

  3. Production of high charge state ions with the Advanced Electron Cyclotron Resonance ion source at LBNL

    International Nuclear Information System (INIS)

    Production of high charge state ions with the Advanced Electron Cyclotron Resonance ion source (AECR) at Lawrence Berkeley National Laboratory (LBNL) has been significantly improved by application of various new techniques. Heating the plasma simultaneously with microwaves of two frequencies (10 and 14 GHz) has increased the production of very high charge state heavy ions. The two-frequency technique provides extra electron cyclotron resonance heating zone as compared to the single-frequency heating and improves the heating of the plasma electrons. Aluminum oxide on the plasma chamber surface improves the production of cold electrons at the chamber surfaces and increases the performance of the AECR. Fully stripped argon ions, > 5 enA, were produced and directly identified by the source charge state analyzing system. High charge state ion beams of bismuth and uranium, such as 209Bi51+ and 238U53+, were produced by the source and accelerated by the 88-Inch Cyclotron to energies above 6 MeV/nucleon for the first time. To further increase the production of high charge state ions to support the nuclear science research programs at the 88-Inch Cyclotron, an upgrade is taking place to increase the AECR magnetic field strengths and mirror ratios to improve the plasma confinement. Conceptual design is underway for a 3rd Generation ECR that uses superconducting magnets to reach higher magnetic field strengths and higher mirror ratios, high secondary emission chamber walls to increase the yield of cold electrons at the chamber surfaces and microwaves of multiple frequencies to improve plasma heating

  4. Back Electron Transfer Suppresses the Periodic Length Dependence of DNA-mediated Charge Transport Across Adenine Tracts

    OpenAIRE

    Genereux, Joseph C.; Augustyn, Katherine E.; Davis, Molly L.; Shao, Fangwei; Barton, Jacqueline K.

    2008-01-01

    DNA-mediated charge transport (CT) is exquisitely sensitive to the integrity of the bridging π-stack and is characterized by a shallow distance dependence. These properties are obscured by poor coupling between the donor/acceptor pair and the DNA bridge, or by convolution with other processes. Previously, we found a surprising periodic length dependence for the rate of DNA-mediated CT across adenine tracts monitored by 2-aminopurine fluorescence. Here we report a similar periodicity by monito...

  5. Temperature dependence of the rate coefficient for charge exchange of metastable O/+//2D/ with N2. [in atmosphere

    Science.gov (United States)

    Torr, M. R.; Torr, D. G.

    1980-01-01

    Using a data base of aeronomical parameters measured on board the Atmosphere Explorer-C satellite, temperature dependence of the reaction rate coefficient is deduced for the charge exchange of O(+)(2D) with N2. The results indicate the Explorer values determined over the temperature range from 700 to 1900 K are not in conflict with laboratory measurements made at higher temperatures.

  6. Comparison of various models to describe the charge-pH dependence of poly(acrylic acid)

    NARCIS (Netherlands)

    Lützenkirchen, J.; Male, van J.; Leermakers, F.A.M.; Sjöberg, S.

    2011-01-01

    The charge of poly(acrylic acid) (PAA) in dilute aqueous solutions depends on pH and ionic strength. We report new experimental data and test various models to describe the deprotonation of PAA in three different NaCl concentrations. A simple surface complexation approach is found to be very success

  7. Impact of electron delocalization on the nature of the charge-transfer states in model pentacene/C60 Interfaces: A density functional theory study

    KAUST Repository

    Yang, Bing

    2014-12-04

    Electronic delocalization effects have been proposed to play a key role in photocurrent generation in organic photovoltaic devices. Here, we study the role of charge delocalization on the nature of the charge-transfer (CT) states in the case of model complexes consisting of several pentacene molecules and one fullerene (C60) molecule, which are representative of donor/acceptor heterojunctions. The energies of the CT states are examined by means of time-dependent density functional theory (TD-DFT) using the long-range-corrected functional, ωB97X, with an optimized range-separation parameter, ω. We provide a general description of how the nature of the CT states is impacted by molecular packing (i.e., interfacial donor/acceptor orientations), system size, and intermolecular interactions, features of importance in the understanding of the charge-separation mechanism.

  8. Dependence of the TMCI threshold on the space charge tune shift

    CERN Document Server

    Balbekov, V

    2016-01-01

    Transverse mode coupling instability of a bunch with space charge is considered in frameworks of the boxcar model. Presented results demonstrate a monotonous growth of the TMCI threshold at increasing space charge tune shift, and do not support the supposition that the monotony can be violated at a higher SC.

  9. An experimental investigation of charge-dependent deviations from the Bethe stopping power formula

    DEFF Research Database (Denmark)

    Andersen, H.H.; Simonsen, H.; Sørensen, H.

    1969-01-01

    The stopping powers of aluminiun and tantalum for 5–13.5 MeV protons and deuterons and 8–20 MeV 3He and 4He have been measured. At identical velocities, the ratio between the stopping powers for the double-charged and the single-charged ions is systematically higher than the factor four predicted...

  10. Beam-Energy and System-Size Dependence of Dynamical Net Charge Fluctuations

    CERN Document Server

    Abelev, B I; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Beavis, D R; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Braidot, E; Brandin, A V; Bültmann, S; Burton, T P; Bystersky, M; Cai, X Z; Caines, H; Sánchez, M Calderón de la Barca; Callner, J; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, S U; Clarke, R F; Codrington, M J M; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; Dedovich, T G; DePhillips, M; Derevshchikov, A A; de Souza, R Derradi; Didenko, L; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunlop, J C; Mazumdar, M R Dutta; Edwards, W R; Efimov, L G; Elhalhuli, E; Elnimr, M; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Yu; Gagliardi, C A; Gaillard, L; Gangadharan, D R; Ganti, M S; García-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Sen-Gupta, A; Gupta, N; Guryn, W; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Heppelmann, S; Hippolyte, B; Hirsch, A; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, H Z; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jin, F; Jones, P G; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kopytine, M; Kotchenda, L; Kouchpil, V; Kravtsov, P; Kravtsov, V I; Krüger, K; Kuhn, C; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; LaPointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Le Vine, M J; Li, C; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, Y G; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Matis, H S; Matulenko, Yu A; McShane, T S; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mischke, A; Mitchell, J; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, C; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, Grazyna Janina; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Pal, S K; Panebratsev, Yu A; Pawlak, T; Peitzmann, T; Perevozchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Porile, N; Poskanzer, A M; Potukuchi, B V K S; Prindle, D; Pruneau, C; Pruthi, N K; Putschke, J; Qattan, I A; Raniwala, R; Raniwala, S; Ray, R L; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Rykov, V; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Shi, X-H; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Snellings, R; Sørensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Symons, T J M; de Toledo, A Szanto; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Tram, V N; Trattner, A L; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; Van der Kolk, N; Van Leeuwen, M; Molen, A M Vander; Varma, R; Vasconcelos, G M S; Vasilevski, I M; Vasilev, A N; Videbaek, F; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, Q; Wang, X; Wang, X L; Wang, Y; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, J; Wu, Y; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yepes, P; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, H; Zhang, S; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zuo, J X

    2008-01-01

    We present measurements of net charge fluctuations in $Au + Au$ collisions at $\\sqrt{s_{NN}} = $ 19.6, 62.4, 130, and 200 GeV, $Cu + Cu$ collisions at $\\sqrt{s_{NN}} = $ 62.4, 200 GeV, and $p + p$ collisions at $\\sqrt{s} = $ 200 GeV using the dynamical net charge fluctuations measure $\

  11. Daylight-driven photocatalytic degradation of ionic dyes with negatively surface-charged In2S3 nanoflowers: dye charge-dependent roles of reactive species

    International Nuclear Information System (INIS)

    Even though dye degradation is a successful application of semiconductor photocatalysis, the roles of reactive species in dye degradation have not received adequate attention. In this study, we systematically investigated the degradation of two cationic dyes (rhodamine B and methylene blue) and two anionic dyes (methyl orange and orange G) over negatively surface-charged In2S3 nanoflowers synthesized at 80 °C under indoor daylight lamp irradiation. It is notable to find In2S3 nanoflowers were more stable in anionic dyes degradation compared to that in cationic dyes removal. The active species trapping experiments indicated photogenerated electrons were mainly responsible for cationic dyes degradation, but holes were more important in anionic dyes degradation. A surface-charge-dependent role of reactive species in ionic dye degradation was proposed for revealing such interesting phenomenon. This study would provide a new insight for preparing highly efficient daylight-driven photocatalyst for ionic dyes degradation

  12. The United States facing their petroleum dependence; Les Etats-Unis face a leur dependance petroliere

    Energy Technology Data Exchange (ETDEWEB)

    Noel, P. [Institut francais des Relations Internationals, 75 - Paris (France); Universite Pierre Mendes-France-IEPE-CNRS, 38 - Grenoble (France)

    2002-06-01

    In the framework of ''the energy crisis of 2000-2001'', the Cheney report and the petroleum dependence, this study presents a critical examination of the United States petroleum situation, its perception in the american political milieu and the public policies implementing during the last ten years. The first section is devoted to the petroleum supply. In the second section, the american petroleum policy and the energy safety are studied. (A.L.B.)

  13. Charge states of high Z atoms in a strong laser field

    International Nuclear Information System (INIS)

    We present a numerical solution of the Thomas-Fermi atom in the presence of a static electric field as a model of the adiabatic response of a heavy atom in the presence of a strong laser field. In this semiclassical approach, we calculate the resulting charge state of the atom and its induced dipole moment after the field is turned on. Due to the scaling properties of the Thomas-Fermi approach, the resulting total atomic charge and dipole moment can be expressed as a universal function of the field. We compare our results with recent ionization experiments performed on noble gases using laser fields. 7 refs., 5 figs

  14. XPS studies of MgB2 superconductor for charge state of Mg

    International Nuclear Information System (INIS)

    X-ray photoelectron spectroscopic (XPS) studies have been carried out on polycrystalline MgB2 pellets. Characteristic Mg-2p and B-Is spectra have been analysed for extracting binding energies. There are evidences of MgB2 and formation of traces of metallic Mg, MgO and B2O3. Binding energy of Mg in MgB2 reveals its charge state to be less than 2(+) indicative of partial and not full charge transfer from Mg to B. (author)

  15. Modeling of direct beam extraction for a high-charge-state fusion driver

    Science.gov (United States)

    Anderson, O. A.; Grant Logan, B.

    A newly proposed type of multicharged ion source offers the possibility of an economically advantageous high-charge-state fusion driver. Multiphoton absorption in an intense uniform laser focus can give multiple charge states of high purity, simplifying or eliminating the need for charge-state separation downstream. Very large currents (hundreds of amperes) can be extracted from this type of source. Several arrangements are possible. For example, the laser plasma could be tailored for storage in a magnetic bucket, with beam extracted from the bucket. A different approach, described in this report, is direct beam extraction from the expanding laser plasma. We discuss extraction and focusing for the particular case of a 4.1 MV beam of Xe 16+ ions. The maximum duration of the beam pulse is limited by the total charge in the plasma, while the practical pulse length is determined by the range of plasma radii over which good beam optics can be achieved. The extraction electrode contains a solenoid for beam focusing. Our design studies were carried out first with an envelope code and then with a self-consistent particle code. Results from our initial model showed that hundreds of amperes could be extracted, but that most of this current missed the solenoid entrance or was intercepted by the wall and that only a few amperes were able to pass through. We conclude with an improved design which increases the surviving beam to more than 70 A.

  16. Equation of state for the detonation products of hexanitrostilbene at various charge densities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. L.; Walton, J. R.; Kramer, P. E.

    1976-05-01

    An extensive description of the detonation behavior for the unique and useful high explosive hexanitrostilbene (HNS) is presented. To accomplish this the necessary experimental results measured by detonation of the pure material at charge densities of 1.00, 1.20, 1.40, 1.60, and 1.65 (g/cm/sup 3/ = Mg/m/sup 3/) were compiled and evaluated. Estimates of the equation of state of the detonation products were made for each charge density. To confirm these estimates two-dimensional hydrodynamic (HEMP code) calculations to simulate the cylinder test experiments for two charge densities of 1.2 and 1.6 Mg/m/sup 3/ were carried out. Detailed comparisons of the calculational and experimental results were made for these two tests. Interpolation and extrapolation of the equation of state parameters provided final estimates for the other charge densities. The results are summarized in five sets of Chapman-Jouguet parameters and JWL equation of state coefficients.

  17. Doping dependence of the charge-density-wave order in HgBa2CuO4+δ

    Science.gov (United States)

    Yu, Biqiong

    Following the original discovery of short-range charge-density-wave (CDW) order in the orthorhombic double-layer cuprate YBa2Cu3O6+δ (YBCO) below optimal doping, resonant X-ray scattering measurements have revealed that the simple tetragonal single-layer compound HgBa2CuO4+δ (Hg1201; Tc = 71 K) exhibits short-range CDW order as well. Here we report on the doping dependence of the CDW order in Hg1201 and contrast our results with the extensive data available for YBCO. Work done in collaboration with: W. Tabis, G. Yu, M.J. Veit, N. BarisŬić, M.K. Chan, C.J. Dorow, X. Zhao, M. Greven (University of Minnesota); M. Bluschke, E. Weschke (BESSY, Berlin); T. Kolodziej, I. Bialo, A. Kozlowski (AGH, Krakow); M. Hepting, H. Gretarsson, M. Le Tacon, M. Minola, B. Keimer (MPI, Stuttgart); Ronny Sutarto (CLS, Saskatoon); Y. Li (PKU, Beijing); L. Braicovich, G. Dellea, G. Ghiringhelli (CNR-SPIN, Milano); A. Kreyssig, M. Ramazanoglu, A.I. Goldman (Iowa State University and Ames Lab); T. Schmitt (PSI, Switzerland). We acknowledge the support from US Department of Energy, Office of Basic Energy Sciences.

  18. Atomic Charges and the Electrostatic Potential Are Ill-Defined in Degenerate Ground States.

    Science.gov (United States)

    Bultinck, Patrick; Cardenas, Carlos; Fuentealba, Patricio; Johnson, Paul A; Ayers, Paul W

    2013-11-12

    A system in a spatially degenerate ground state responds in a qualitatively different way to positive and negative point charges. This means that the molecular electrostatic potential is ill-defined for degenerate ground states due to the ill-defined nature of the electron density. It also means that it is impossible, in practice, to define fixed atomic charges for molecular mechanics simulations of molecules with (quasi-)degenerate ground states. Atomic-polarizability-based models and electronegativity-equalization-type models for molecular polarization also fail to capture this effect. We demonstrate the ambiguity in the electrostatic potential using several molecules of different degree of degeneracy, quasi-degeneracy, and symmetry. PMID:26583396

  19. Charge state distribution of light ions at glancing collision with solid surface

    International Nuclear Information System (INIS)

    Many experimental results have suggested that the charge state distribution of ions have penetrated through solid is different from that inside the solid. It is important to clarify the physical process taking place at solid surface in order to know the states of ions inside the solid from those observed outside the solid. In the present paper, we report our measurement of charge state distributions of He+ and H2+ ions having been scattered in small angles (less than 40) at surfaces of Au, Ag and C. One of the advantages of the use of the glancing collision of ions at solid surface for the study of ion-surface interaction is that the dwell time of ion near solid surface can be made more than 100 times longer than that in normal transmission experiments. The longer dwell times may alter any contribution of solid surface to electron capture and loss of ions

  20. Corrole-fullerene dyads: formation of long-lived charge-separated states in nonpolar solvents.

    Science.gov (United States)

    D'Souza, Francis; Chitta, Raghu; Ohkubo, Kei; Tasior, Mariusz; Subbaiyan, Navaneetha K; Zandler, Melvin E; Rogacki, Maciek K; Gryko, Daniel T; Fukuzumi, Shunichi

    2008-10-29

    The first example of covalently linked free-base corrole-fullerene dyads is reported. In the newly synthesized dyads, the free-energy calculations performed by employing the redox and singlet excited-state energy in both polar and nonpolar solvents suggested the possibility of electron transfer from the excited singlet state of corrole to the fullerene entity. Accordingly, steady-state and time-resolved emission studies revealed efficient fluorescence quenching of the corrole entity in the dyads. Further studies involving femtosecond laser flash photolysis and nanosecond transient absorption studies confirmed electron transfer to be the quenching mechanism, in which the electron-transfer product, the fullerene anion radical, was able to be spectrally characterized. The rate of charge separation, kCS, was found to be on the order of 10(10)-10(11) s(-1), suggesting an efficient photoinduced electron-transfer process. Interestingly, the rate of charge recombination, kCR, was slower by 5 orders of magnitude in nonpolar solvents, cyclohexane and toluene, resulting in a radical ion-pair lasting for several microseconds. Careful analysis of the kinetic and thermodynamic data using the Marcus approach revealed that this novel feature is due to appropriately positioning the energy level of the charge-separated state below the triplet states of either of the donor and acceptor entities in both polar and nonpolar solvents, a feature that was not evident in donor-acceptor dyads constructed using symmetric tetrapyrroles as electron donors. PMID:18837500

  1. Orbital dependent ultrafast charge transfer dynamics of ferrocenyl-functionalized SAMs on gold studied by core-hole clock spectroscopy

    International Nuclear Information System (INIS)

    Understanding the charge transport properties in general of different molecular components in a self-assembled monolayer (SAM) is of importance for the rational design of SAM molecular structures for molecular electronics. In this study, we study an important aspect of the charge transport properties, i.e. the charge transfer (CT) dynamics between the active molecular component (in this case, the ferrocenyl moieties of a ferrocenyl-n-alkanethiol SAM) and the electrode using synchrotron-based core-hole clock (CHC) spectroscopy. The characteristic CT times are found to depend strongly on the character of the ferrocenyl-derived molecular orbitals (MOs) which mediate the CT process. Furthermore, by systemically shifting the position of the ferrocenyl moiety in the SAM, it is found that the CT characteristics of the ferrocenyl MOs display distinct dependence on its distance to the electrode. These results demonstrate experimentally that the efficiency and rate of charge transport through the molecular backbone can be modulated by resonant injection of charge carriers into specific MOs. (paper)

  2. Charge density waves and local states in quasi-one-dimensional mixed valence inorganic complexes

    International Nuclear Information System (INIS)

    The ground state structures and local states associated with chemical defects in quasi-one-dimensional halogen (X) bridged transition metal (M) mixed valence solids of MX and MMX type have been studied. An adiabatic Hartree-Fock theoretical framework is presented and representative members are classified. The MX materials provide a class whose strong electron-phonon coupling usually favors a charge-density-wave (CDW) ground state. However, the coupling strength can be chemically tuned (e.g., by extension to MMX systems) or altered by pressure, driving the ground state structures towards, e.g., a bond-order-wave (BOW) phase. Electron-phonon driven self-trapped states are expected in both the CDW or BOW regimes. Resonance Raman spectra of the MMX solid K4(Pt2(P2O5H2)4Cl)·H2O show, in addition to the homogeneous ground state modes, sharp new features with excitation profiles shifted to the red of the intervalence-charge-transfer (IVCT) band. We attribute these new bands to a local polaron state formed by oxidation of the Pt2 Cl chain by a chemical defect. The observed spectral characteristics of this local state are in good agreement with theoretical predictions. (author). 28 refs, 4 figs, 1 tab

  3. Quantifying cognitive state from EEG using dependence measures.

    Science.gov (United States)

    Fadlallah, Bilal; Seth, Sohan; Keil, Andreas; Príncipe, José

    2012-10-01

    The exquisite human ability to perceive facial features has been explained by the activity of neurons particularly responsive to faces, found in the fusiform gyrus and the anterior part of the superior temporal sulcus. This study hypothesizes and demonstrates that it is possible to automatically discriminate face processing from processing of a simple control stimulus based on processed EEGs in an online fashion with high temporal resolution using measures of statistical dependence applied on steady-state visual evoked potentials. Correlation, mutual information, and a novel measure of association, referred to as generalized measure of association (GMA), were applied on filtered current source density data. Dependences between channel locations were assessed for two separate conditions elicited by distinct pictures (a face and a Gabor grating) flickering at a rate of 17.5 Hz. Filter settings were chosen to minimize the distortion produced by bandpassing parameters on dependence estimation. Statistical analysis was performed for automated stimulus classification using the Kolmogorov-Smirnov test. Results show active regions in the occipito-parietal part of the brain for both conditions with a greater dependence between occipital and inferotemporal sites for the face stimulus. GMA achieved a higher performance in discriminating the two conditions. Because no additional face-like stimuli were examined, this study established a basic difference between one particular face and one nonface stimulus. Future work may use additional stimuli and experimental manipulations to determine the specificity of the current connectivity results. PMID:22851234

  4. Charge carrier concentration dependence of encounter-limited bimolecular recombination in phase-separated organic semiconductor blends

    Science.gov (United States)

    Heiber, Michael C.; Nguyen, Thuc-Quyen; Deibel, Carsten

    2016-05-01

    Understanding how the complex intermolecular configurations and nanostructure present in organic semiconductor donor-acceptor blends impacts charge carrier motion, interactions, and recombination behavior is a critical fundamental issue with a particularly major impact on organic photovoltaic applications. In this study, kinetic Monte Carlo (KMC) simulations are used to numerically quantify the complex bimolecular charge carrier recombination behavior in idealized phase-separated blends. Recent KMC simulations have identified how the encounter-limited bimolecular recombination rate in these blends deviates from the often used Langevin model and have been used to construct the new power mean mobility model. Here, we make a challenging but crucial expansion to this work by determining the charge carrier concentration dependence of the encounter-limited bimolecular recombination coefficient. In doing so, we find that an accurate treatment of the long-range electrostatic interactions between charge carriers is critical, and we further argue that many previous KMC simulation studies have used a Coulomb cutoff radius that is too small, which causes a significant overestimation of the recombination rate. To shed more light on this issue, we determine the minimum cutoff radius required to reach an accuracy of less than ±10 % as a function of the domain size and the charge carrier concentration and then use this knowledge to accurately quantify the charge carrier concentration dependence of the recombination rate. Using these rigorous methods, we finally show that the parameters of the power mean mobility model are determined by a newly identified dimensionless ratio of the domain size to the average charge carrier separation distance.

  5. Determination of charge state characteristics of selected scattered ions using a multiple thin film detector arrangement

    International Nuclear Information System (INIS)

    A nuclear charged particle detector has been designed which consists of a stack of three Thin Film Detectors (TFD), measuring the specific luminescence of the transiting ion, and a terminal surface barrier detector measuring the residual energy. To test the response of this detector, an experiment was performed in which several isotopes of germanium and selenium were scattered off a gold target and collimated through the detector assembly. The energies of the scattered ions ranged from 0.65 MeV/amu to 2 MeV/amu, bracketing the peak of the stopping power curve of the ions. An improved nuclear charge resolution is seen when using the multiple TFD arrangement. The analysis of the data also shows new information on the characteristics of the charge states of the ions scattered in small impact parameter collisions with the gold target nuclei

  6. Charge states distribution of 3350 keV He ions channeled in silicon

    CERN Document Server

    Bentini, G G; Bianconi, M; Lotti, R; Lulli, G

    2002-01-01

    When an ion beam is aligned along a major crystalline axis the dominant interaction is with valence electrons. In this condition the charge exchange processes mostly concern the interaction between the incident ion and a quasi-free electron gas and a strong reduction of the charge-changing probabilities is expected. In this work, 3350 keV He sup + and He sup 2 sup + ions were aligned at small tilt angles about the axis of a 4650 A silicon crystalline membrane. The charge state distribution (CSD) of the transmitted ions was detected by an electro-magnetic analyzer having a very small acceptance angle. In these conditions the equilibration of the CSD was not yet reached and this allowed, making use of simple approximations, for the measurement of the valence electron loss cross-section.

  7. Excited state and charge-carrier dynamics in perovskite solar cell materials

    Science.gov (United States)

    Ponseca, Carlito S., Jr.; Tian, Yuxi; Sundström, Villy; Scheblykin, Ivan G.

    2016-02-01

    Organo-metal halide perovskites (OMHPs) have attracted enormous interest in recent years as materials for application in optoelectronics and solar energy conversion. These hybrid semiconductors seem to have the potential to challenge traditional silicon technology. In this review we will give an account of the recent development in the understanding of the fundamental light-induced processes in OMHPs from charge-photo generation, migration of charge carries through the materials and finally their recombination. Our and other literature reports on time-resolved conductivity, transient absorption and photoluminescence properties are used to paint a picture of how we currently see the fundamental excited state and charge-carrier dynamics. We will also show that there is still no fully coherent picture of the processes in OMHPs and we will indicate the problems to be solved by future research.

  8. The evolution of ion charge states in cathodic vacuum arc plasmas: a review

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2011-12-18

    Cathodic vacuum arc plasmas are known to contain multiply charged ions. 20 years after “Pressure Ionization: its role in metal vapour vacuum arc plasmas and ion sources” appeared in vol. 1 of Plasma Sources Science and Technology, it is a great opportunity to re-visit the issue of pressure ionization, a non-ideal plasma effect, and put it in perspective to the many other factors that influence observable charge state distributions, such as the role of the cathode material, the path in the density-temperature phase diagram, the “noise” in vacuum arc plasma as described by a fractal model approach, the effects of external magnetic fields and charge exchange collisions with neutrals. A much more complex image of the vacuum arc plasma emerges putting decades of experimentation and modeling in perspective.

  9. Charged particle assisted nuclear reactions in solid state environment: renaissance of low energy nuclear physics

    CERN Document Server

    Kálmán, Péter

    2015-01-01

    The features of electron assisted neutron exchange processes in crystalline solids are survayed. It is stated that, contrary to expectations, the cross section of these processes may reach an observable magnitude even in the very low energy case because of the extremely huge increment caused by the Coulomb factor of the electron assisted processes and by the effect of the crystal-lattice. The features of electron assisted heavy charged particle exchange processes, electron assisted nuclear capure processes and heavy charged particle assisted nuclear processes are also overviewed. Experimental observations, which may be related to our theoretical findings, are dealt with. The anomalous screening phenomenon is related to electron assisted neutron and proton exchange processes in crystalline solids. A possible explanation of observations by Fleischmann and Pons is presented. The possibility of the phenomenon of nuclear transmutation is qualitatively explained with the aid of usual and charged particle assisted r...

  10. Charge Carrier Generation Followed by Triplet State Formation, Annihilation, and Carrier Recreation in PBDTTT-C:PC 60 BM Photovoltaic Blends

    KAUST Repository

    Gehrig, Dominik W.

    2015-05-22

    Triplet state formation after photoexcitation of low-bandgap polymer:fullerene blends has recently been demonstrated, however, the precise mechanism and its impact on solar cell performance is still under debate. Here, we study exciton dissociation, charge carrier generation and triplet state formation in low-bandgap polymer PBDTTT-C:PC60BM bulk heterojunction photovoltaic blends by a combination of fs-µs broadband Vis-NIR transient absorption (TA) pump-probe spectroscopy and multivariate curve resolution (MCR) data analysis. We found sub-ps exciton dissociation and charge generation followed by sub-ns triplet state creation. The carrier dynamics and triplet state dynamics exhibited a very pronounced intensity dependence indicating non-geminate recombination of free carriers is the origin of triplet formation in these blends. Triplets were found to be the dominant state present on the nanosecond timescale. Surprisingly, the carrier population increased again on the ns-µs timescale. We attribute this to triplet-triplet annihilation and the formation of higher energy excited states that subsequently underwent charge transfer. This unique dip and recovery of the charge population is a clear indication that triplets are formed by non-geminate recombination, as such a kinetic is incompatible with a monomolecular triplet state formation process.

  11. Number sense and state-dependent valuation in cuttlefish.

    Science.gov (United States)

    Yang, Tsang-I; Chiao, Chuan-Chin

    2016-08-31

    Identifying the amount of prey available is an important part of an animal's foraging behaviour. The risk-sensitive foraging theory predicts that an organism's foraging decisions with regard to food rewards depending upon its satiation level. However, the precise interaction between optimal risk-tolerance and satiation level remains unclear. In this study, we examined, firstly, whether cuttlefish, with one of the most highly evolved nervous system among the invertebrates, have number sense, and secondly, whether their valuation of food reward is satiation state dependent. When food such as live shrimps is present, without training, cuttlefish turn toward the prey and initiate seizure behaviour. Using this visual attack behaviour as a measure, cuttlefish showed a preference for a larger quantity when faced with two-alternative forced choice tasks (1 versus 2, 2 versus 3, 3 versus 4 and 4 versus 5). However, cuttlefish preferred the small quantity when the choice was between one live and two dead shrimps. More importantly, when the choice was between one large live shrimp and two small live shrimps (a prey size and quantity trade-off), the cuttlefish chose the large single shrimp when they felt hunger, but chose the two smaller prey when they were satiated. These results demonstrate that cuttlefish are capable of number discrimination and that their choice of prey number depends on the quality of the prey and on their appetite state. The findings also suggest that cuttlefish integrate both internal and external information when making a foraging decision and that the cost of obtaining food is inversely correlated with their satiation level, a phenomenon similar to the observation that metabolic state alters economic decision making under risk among humans. PMID:27559063

  12. State dependency of inhibitory control performance: an electrical neuroimaging study.

    Science.gov (United States)

    De Pretto, Michael; Sallard, Etienne; Spierer, Lucas

    2016-07-01

    Behavioral and brain responses to stimuli not only depend on their physical features but also on the individuals' neurocognitive states before stimuli onsets. While the influence of pre-stimulus fluctuations in brain activity on low-level perceptive processes is well established, the state dependency of high-order executive processes remains unclear. Using a classical inhibitory control Go/NoGo task, we examined whether and how fluctuations in the brain activity during the period preceding the stimuli triggering inhibition influenced inhibitory control performance. Seventeen participants completed the Go/NoGo task while 64-channel electroencephalogram was recorded. We compared the event-related potentials preceding the onset of the NoGo stimuli associated with inhibition failures false alarms (FA) vs. successful inhibition correct rejections (CR) with data-driven statistical analyses of global measures of the topography and strength of the scalp electric field. Distributed electrical source estimations were used to localize the origin of the event-related potentials modulations. We observed differences in the global field power of the event-related potentials (FA > CR) without concomitant topographic modulations over the 40 ms period immediately preceding NoGo stimuli. This result indicates that the same brain networks were engaged in the two conditions, but more strongly before FA than CR. Source estimations revealed that this effect followed from a higher activity before FA than CR within bilateral inferior frontal gyri and the right inferior parietal lobule. These findings suggest that uncontrolled quantitative variations in pre-stimulus activity within attentional and control brain networks influence inhibition performance. The present data thereby demonstrate the state dependency of cognitive processes of up to high-order executive levels. PMID:27116703

  13. Nonlinear Dependence of Global Warming Prediction on Ocean State

    Science.gov (United States)

    Liang, M.; Lin, L.; Tung, K. K.; Yung, Y. L.; Sun, S.

    2010-12-01

    Global temperature has increased by 0.8 C since the pre-industrial era, and is likely to increase further if greenhouse gas emission continues unchecked. Various mitigation efforts are being negotiated among nations to keep the increase under 2 C, beyond which the outcome is believed to be catastrophic. Such policy efforts are currently based on predictions by the state-of-the-art coupled atmosphere ocean models (AOGCM). Caution is advised for their use for the purpose of short-term (less than a century) climate prediction as the predicted warming and spatial patterns vary depending on the initial state of the ocean, even in an ensemble mean. The range of uncertainty in such predictions by Intergovernmental Panel on Climate Change (IPCC) models may be underreported when models were run with their oceans at various stages of adjustment with their atmospheres. By comparing a very long run (> 1000 years) of the coupled Goddard Institute for Space Studies (GISS) model with what was reported to IPCC Fourth Assessment Report (AR4), we show that the fully adjusted model transient climate sensitivity should be 30% higher for the same model, and the 2 C warming should occur sooner than previously predicted. Using model archives we further argue that this may be a common problem for the IPCC AR4 models, since few, if any, of the models has a fully adjusted ocean. For all models, multi-decadal climate predictions to 2050 are highly dependent on the initial ocean state (and so are unreliable). Such dependence cannot be removed simply by subtracting the climate drift from control runs.

  14. High charge state carbon and oxygen ions in Earth's equatorial quasi-trapping region

    Science.gov (United States)

    Christon, S. P.; Hamilton, D. C.; Gloeckler, G.; Eastmann, T. E.

    1994-01-01

    Observations of energetic (1.5 - 300 keV/e) medium-to-high charge state (+3 less than or equal to Q less than or equal to +7) solar wind origin C and O ions made in the quasi-trapping region (QTR) of Earth's magnetosphere are compared to ion trajectories calculated in model equatorial magnetospheric magnetic and electric fields. These comparisons indicate that solar wind ions entering the QTR on the nightside as an energetic component of the plasma sheet exit the region on the dayside, experiencing little or no charge exchange on the way. Measurements made by the CHarge Energy Mass (CHEM) ion spectrometer on board the Active Magnetospheric Particle Tracer Explorer/Charge Composition Explorer (AMPTE/CCE) spacecraft at 7 less than L less than 9 from September 1984 to January 1989 are the source of the new results contained herein: quantitative long-term determination of number densities, average energies, energy spectra, local time distributions, and their variation with geomagnetic disturbance level as indexed by Kp. Solar wind primaries (ions with charge states unchanged) and their secondaries (ions with generally lower charge states produced from primaries in the magnetosphere via charge exchange)are observed throughout the QTR and have distinctly different local time variations that persist over the entire 4-year analysis interval. During Kp larger than or equal to 3 deg intervals, primary ion (e.g., O(+6)) densities exhibit a pronounced predawn maximum with average energy minimum and a broad near-local-noon density minimum with average energy maximum. Secondary ion (e.g., O(+5)) densities do not have an identifiable predawn peak, rather they have a broad dayside maximum peaked in local morning and a nightside minimum. During Kp less than or equal to 2(-) intervals, primary ion density peaks are less intense, broader in local time extent, and centered near midnight, while secondary ion density local time variations diminish. The long-time-interval baseline helps

  15. Conformal anisotropic relativistic charged fluid spheres with a linear equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Esculpi, M. [Universidad Central de Venezuela, Departamento de Fisica Aplicada, Facultad de Ingenieria, Caracas (Venezuela); Aloma, E. [Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela)

    2010-06-15

    We obtain two new families of compact solutions for a spherically symmetric distribution of matter consisting of an electrically charged anisotropic fluid sphere joined to the Reissner-Nordstrom static solution through a zero pressure surface. The static inner region also admits a one parameter group of conformal motions. First, to study the effect of the anisotropy in the sense of the pressures of the charged fluid, besides assuming a linear equation of state to hold for the fluid, we consider the tangential pressure p {sub perpendicular} {sub to} to be proportional to the radial pressure p{sub r}, the proportionality factor C measuring the grade of anisotropy. We analyze the resulting charge distribution and the features of the obtained family of solutions. These families of solutions reproduce for the value C=1, the conformal isotropic solution for quark stars, previously obtained by Mak and Harko. The second family of solutions is obtained assuming the electrical charge inside the sphere to be a known function of the radial coordinate. The allowed values of the parameters pertained to these solutions are constrained by the physical conditions imposed. We study the effect of anisotropy in the allowed compactness ratios and in the values of the charge. The Glazer's pulsation equation for isotropic charged spheres is extended to the case of anisotropic and charged fluid spheres in order to study the behavior of the solutions under linear adiabatic radial oscillations. These solutions could model some stage of the evolution of strange quark matter fluid stars. (orig.)

  16. Magnetization States of All-Oxide Spin Valves Controlled by Charge-orbital Ordering of Coupled Ferromagnets

    OpenAIRE

    SHVETS, IGOR

    2013-01-01

    PUBLISHED Charge-orbital ordering is commonly present in complex transition metal oxides and offers interesting opportunities for novel electronic devices. In this work, we demonstrate for the first time that the magnetization states of the spin valve can be directly manipulated by charge-orbital ordering. We investigate the interlayer exchange coupling (IEC) between two epitaxial magnetite layers separated by a nonmagnetic epitaxial MgO dielectric. We find that the state of the charge-orb...

  17. The problem of dependency: immigration, gender, and the welfare state.

    Science.gov (United States)

    Eggebø, Helga

    2010-01-01

    This article discusses the regulation of marriage migration to Norway through an analysis of the subsistence requirement rule which entails that a person who wants to bring a spouse to Norway must achieve a certain level of income. Policy-makers present two main arguments for this regulation. First, the subsistence requirement is a means to prevent forced marriage. Second, its aim is to prevent family immigrants from becoming a burden on welfare budgets. The major concern of both these arguments is that of dependency, either on the family or on the welfare state. The article investigates the representations of the “problems” underpinning this specific policy proposal and argues that the rule in question, and immigration policy more generally, needs to be analyzed with reference to the broader concerns and aims of welfare state policy and gender equality policy. PMID:20821899

  18. The quantum state-dependent gauge fields of Jacobi

    CERN Document Server

    Leifer, Peter

    2016-01-01

    It is commonly understood that the Yang-Mills non-Abelian gauge fields is the natural generalization of the well known Abelian gauge group symmetry $U(1)$ in the electrodynamics. Taking into account that the problems of the localization and divergences in QFT are not solved in the framework of the Standard Model (SM), I proposed a different approach to the quantum theory of the single self-interacting electron. In connection with this theory, I would like attract the attention to the state-dependent gauge transformations $U(1) \\times U(N-1)$ associated with the Jacobi vector fields of the geodesic variations in the complex projective Hilbert space $CP(N-1)$ of the unlocated quantum states (UQS's).

  19. Energy dependence of mass, charge, isotopic, and energy distributions in neutron-induced fission of 235U and 239Pu

    Science.gov (United States)

    Pasca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kim, Y.

    2016-05-01

    The mass, charge, isotopic, and kinetic-energy distributions of fission fragments are studied within an improved scission-point statistical model in the reactions 235U+n and 239Pu+n at different energies of the incident neutron. The charge and mass distributions of the electromagnetic- and neutron-induced fission of 214,218Ra, 230,232,238U are also shown. The available experimental data are well reproduced and the energy-dependencies of the observable characteristics of fission are predicted for future experiments.

  20. The $s$-channel Charged Higgs in the Fully Hadronic Final State at LHC

    CERN Document Server

    Ahmed, Ijaz

    2016-01-01

    With the current measurements performed by CMS and ATLAS experiments, the light charged Higgs scenario ($m_{H^{\\pm}}$ $<$ 160 GeV), is excluded for most of the parameter space in the context of MSSM. However, there is still possibility to look for heavy charged Higgs boson particularly in the $s$-channel single top production process where the charged Higgs may appear as a heavy resonance state and decay to $t\\bar{b}$. The production process under consideration in this paper is $pp \\ra H^{\\pm} \\ra t\\bar{b}~+~h.c.$, where the top quark decays to $W^{+}b$ and $W^{+}$ boson subsequently decays to two light jets. It is shown that despite the presence of large QCD and electroweak background events, the charged Higgs signal can be extracted and observed at a large area of MSSM parameter space ($m_{H^{\\pm}}$,tan$\\beta$) at LHC. The observability of charged Higgs is potentially demonstrated with 5$\\sigma$ contours and $95\\%$ confidence level exclusion curves at different integrated LHC luminosities assuming a nomi...

  1. The s-channel charged Higgs in the fully hadronic final state at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Ijaz [University of Malaya, National Center for Particle Physics, Kuala Lumpur (Malaysia); COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Hashemi, Majid [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Tajuddin, Wan Ahmad [University of Malaya, National Center for Particle Physics, Kuala Lumpur (Malaysia)

    2016-04-15

    With the current measurements performed by CMS and ATLAS experiments, the light charged Higgs scenario (m{sub H}{sup {sub ±}} < 160 GeV), is excluded for most of the parameter space in the context of MSSM. However, there is still possibility to look for heavy charged Higgs boson particularly in the s-channel single top production process where the charged Higgs may appear as a heavy resonance state and decay to t anti b. The production process under consideration in this paper is pp → H{sup ±} → t anti b + h.c., where the top quark decays to W{sup +}b and W{sup +} boson subsequently decays to two light jets. It is shown that despite the presence of large QCD and electroweak background events, the charged Higgs signal can be extracted and observed at a large area of MSSM parameter space (m{sub H}{sup {sub ±}}, tanβ) at LHC. The observability of charged Higgs is potentially demonstrated with 5σ contours and 95% confidence level exclusion curves at different integrated LHC luminosities assuming a nominal center of mass energy of √(s) = 14 TeV. (orig.)

  2. Battery State-of-Charge and Parameter Estimation Algorithm Based on Kalman Filter

    OpenAIRE

    Dragicevic, Tomislav; Sucic, Stjepan; Guerrero, Josep M.

    2013-01-01

    Electrochemical battery is the most widely used energy storage technology, finding its application in various devices ranging from low power consumer electronics to utility back-up power. All types of batteries show highly non-linearbehaviour in terms of dependence of internal parameters on operating conditions, momentary replenishment and a number of past charge/discharge cycles. A good indicator for the quality of overall customer service in any battery based application is the availability...

  3. Effects of non-Maxwellian electron distributions on charge-state populations in laser-produced plasmas

    International Nuclear Information System (INIS)

    The effects of a non-Maxwellian electron distribution on the charge-state populations in a plasma with the distribution characterized by the function f(v)=Fm exp[-(v/vm)m] with 2≤m≤5 are investigated. In the underdense region of a laser produced plasma, the parameter m would depend on the electron temperature, electron density, and the average ionization state of the plasma in addition to the optical laser intensity and wavelength. The ion populations are obtained by solving the rate equations in which the coefficients are evaluated by integrating the cross sections over the non-Maxwellian electron distributions. The scaling of m with column density and optical laser intensity in laser exploding foils is obtained. The effects of a non-Maxwellian electron distribution on the charge-state populations in both selenium and molybdenum foils, similar to those used to model recent x-ray laser experiments, are calculated. The effects on the dominant populations are found to be small, less than a dozen of percents

  4. Calculation of ion charge-state distribution in ECR ion sources

    International Nuclear Information System (INIS)

    Starting with the pioneering efforts of Y. Yongen (Louvain-la-Neuve, Belgium) a code has been developed to calculate the equilibrium ion charge-state distribution for electron-cyclotron resonance source (ECR) ion sources. Production of ions is caused by the impact ionization of the charge gas from ECR-heated electrons of a few keV. Loss of an ion of a given charge state is from charge exchange and radiative recombination. Ultimately, the ion flows out of the minimum-B containment region. The ion confinement times are calculated using an ion-trap-potential model which is based upon modeling calculations done at Lawrence Livermore National Laboratory (LLNL) for the Tandem Mirror Machine. Using this model requires the self-consistent determination of the trap potential and thermal electron density in the plasma. Code inputs are gas natural density, hot-electron temperature and density, ion temperature, cold-electron temperature, mirror ratio, physical dimensions, and atomic-physics data. Other than that there are no adjustable parameters. Results of comparison of calculations with the limited available data are reasonable

  5. The study towards high intensity high charge state laser ion sources

    Science.gov (United States)

    Zhao, H. Y.; Jin, Q. Y.; Sha, S.; Zhang, J. J.; Li, Z. M.; Liu, W.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W.

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  6. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible. PMID:24593615

  7. Communication: Exciton analysis in time-dependent density functional theory: How functionals shape excited-state characters

    Science.gov (United States)

    Mewes, Stefanie A.; Plasser, Felix; Dreuw, Andreas

    2015-11-01

    Excited-state descriptors based on the one-particle transition density matrix referring to the exciton picture have been implemented for time-dependent density functional theory. State characters such as local, extended ππ∗, Rydberg, or charge transfer can be intuitively classified by simple comparison of these descriptors. Strong effects of the choice of the exchange-correlation kernel on the physical nature of excited states can be found and decomposed in detail leading to a new perspective on functional performance and the design of new functionals.

  8. Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Leyva, A Davila; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; de Souza, R Derradi; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Don, D M M D Madagodagettige; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen,, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-01-01

    Local parity-odd domains are theorized to form inside a Quark-Gluon-Plasma (QGP) which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect (CME). The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this paper, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy, and tends to vanish by 7.7 GeV. The implications of these results for the CME will be discussed.

  9. High charge-state ion beam production from a laser ion source

    International Nuclear Information System (INIS)

    The high current, high charge-state ion beam which can be extracted from a laser produced plasma is well suited, after initial acceleration, for injection into synchrotrons. At CERN, the production of a heavy ion beam using such a source is studied. A 60 mA pulse of a mixture of high charge state tantalum or lead ions of 5 μs duration has been extracted at 59 kV. The resulting beam emittance and energy spread were measured. A Low Energy Beam Transport system (LEBT) consisting of two pulsed solenoids is used to match the beam to a four-rod Radio Frequency Quadrupole (RFQ). Preliminary results are given for the acceleration of the beam by an RFQ, designed for the acceleration of 10 mA of Ta16+ to an energy of 100 keV/u. (author)

  10. Contribution of material’s surface layer on charge state distribution in laser ablation plasma

    International Nuclear Information System (INIS)

    To generate laser ablation plasma, a pulse laser is focused onto a solid target making a crater on the surface. However, not all the evaporated material is efficiently converted to hot plasma. Some portion of the evaporated material could be turned to low temperature plasma or just vapor. To investigate the mechanism, we prepared an aluminum target coated by thin carbon layers. Then, we measured the ablation plasma properties with different carbon thicknesses on the aluminum plate. The results showed that C6+ ions were generated only from the surface layer. The deep layers (over 250 nm from the surface) did not provide high charge state ions. On the other hand, low charge state ions were mainly produced by the deeper layers of the target. Atoms deeper than 1000 nm did not contribute to the ablation plasma formation

  11. Studies of high charge-state ions in the constance B quadrupole mirror

    International Nuclear Information System (INIS)

    Experiments have been initiated into the confinement and extraction physics of high charge-state ions in an ECRH mirror plasma. ECRH mirrors are well suited for producing high Z ions because the hot electron temperature (>100 keV) is sufficient to fully strip heavy ions. The charge state distribution (CSD) of the ion endloss and the ion endloss temperatures have been measured using a time-of-flight analyzer. The CSD of the confined ions has been measured using a VUV spectrometer. Applying ICRH to the plasma was found to lower the Z/sub eff/ of the confined ions while raising the Z/sub eff/ of the extracted ions. The experimental results are compared to theoretical models which include Pastukhov, flow, and spatial-diffusion confinement times. 12 refs., 16 figs

  12. Laser Plasmas : Multiple charge states of titanium ions in laser produced plasma

    Indian Academy of Sciences (India)

    M Shukla; S Bandhyopadhyay; V N Rai; A V Kilpio; H C Pant

    2000-11-01

    An intense laser radiation (1012 to 1014 W/cm-2) focused on the solid target creates a hot (≥ 1 keV) and dense plasma having high ionization state. The multiple charged ions with high current densities produced during laser matter interaction have potential application in accelerators as an ion source. This paper presents generation and detection of highly stripped titanium ions (Ti) in laser produced plasma. An Nd:glass laser (KAMETRON) delivering 50 J energy ( = 0.53 m) in 2.5 ns was focused onto a titanium target to produce plasma. This plasma was allowed to drift across a space of ∼ 3 m through a diagnostic hole in the focusing mirror before ions are finally detected with the help of electrostatic ion analyzer. Maximum current density was detected for the charge states of +16 and +17 of Ti ions for laser intensity of ∼ 1014 W/cm-2.

  13. Contribution of material’s surface layer on charge state distribution in laser ablation plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kumaki, Masafumi, E-mail: rogus@asagi.waseda.jp [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Steski, Dannie; Kanesue, Takeshi [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Ikeda, Shunsuke [Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa 226-8503 (Japan); Okamura, Masahiro [Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Washio, Masakazu [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan)

    2016-02-15

    To generate laser ablation plasma, a pulse laser is focused onto a solid target making a crater on the surface. However, not all the evaporated material is efficiently converted to hot plasma. Some portion of the evaporated material could be turned to low temperature plasma or just vapor. To investigate the mechanism, we prepared an aluminum target coated by thin carbon layers. Then, we measured the ablation plasma properties with different carbon thicknesses on the aluminum plate. The results showed that C{sup 6+} ions were generated only from the surface layer. The deep layers (over 250 nm from the surface) did not provide high charge state ions. On the other hand, low charge state ions were mainly produced by the deeper layers of the target. Atoms deeper than 1000 nm did not contribute to the ablation plasma formation.

  14. Virtual charge state separator as an advanced tool coupling measurements and simulations

    Science.gov (United States)

    Yaramyshev, S.; Vormann, H.; Adonin, A.; Barth, W.; Dahl, L.; Gerhard, P.; Groening, L.; Hollinger, R.; Maier, M.; Mickat, S.; Orzhekhovskaya, A.

    2015-05-01

    A new low energy beam transport for a multicharge uranium beam will be built at the GSI High Current Injector (HSI). All uranium charge states coming from the new ion source will be injected into GSI heavy ion high current HSI Radio Frequency Quadrupole (RFQ), but only the design ions U4 + will be accelerated to the final RFQ energy. A detailed knowledge about injected beam current and emittance for pure design U4 + ions is necessary for a proper beam line design commissioning and operation, while measurements are possible only for a full beam including all charge states. Detailed measurements of the beam current and emittance are performed behind the first quadrupole triplet of the beam line. A dedicated algorithm, based on a combination of measurements and the results of advanced beam dynamics simulations, provides for an extraction of beam current and emittance values for only the U4 + component of the beam. The proposed methods and obtained results are presented.

  15. Particle Acceleration through Multiple Conversions from Charged into Neutral State and Back

    CERN Document Server

    Derishev, E V; Kocharovsky, V V; Kocharovsky, Vl.V.

    2003-01-01

    We propose a new way of quick and very efficient acceleration of protons and/or electrons in relativistic bulk flows. The new mechanism takes advantage of conversion of particles from the charged state (protons or electrons/positrons) into neutral state (neutrons or photons) and back. In most cases, the conversion is photon-induced and requires presence of intense radiation fields, but the converter acceleration mechanism may also operate via inelastic nucleon-nucleon collisions. Like in the traditional model -- ``stochastic'' (or diffusive) acceleration, -- the acceleration cycle in our scenario consists of escape of particles from the relativistic flow followed by their return back after deflection from the ambient magnetic field. The difference is that the charge-changing reactions, which occur during the cycle, allow accelerated particles to increase their energies in each cycle by a factor roughly equal to the bulk Lorentz factor squared. The emerging spectra of accelerated particles can be very hard and...

  16. The state of itinerant charge carriers and thermoelectric effects in correlated oxide metals

    International Nuclear Information System (INIS)

    We analyzed the physics of transport processes and, in particular, the thermoelectric power in the mercurocuprates and other cuprates to get a better insight into the state of the carriers in these compounds. The actual problems related to the complicated mechanisms of carriers scattering above Tc are discussed. The experimental studies of thermoelectric power showed that the state of carriers in cuprates can be influenced by many complicated scattering processes, however the underlying mechanism for the linear decreasing of the TEP with increasing the temperature for most hole-doped HTSC cuprates is still not yet known. The actual problems related to the complicated mechanisms of carriers scattering above Tc are discussed for a few models of charge transport. A comparison between the analytical and experimental results is also made. It is concluded that the crucial factor for the understanding of the transport properties of correlated oxide metals is the nature of itinerant charge carriers, i.e. renormalized quasiparticles. (author)

  17. Carotenoid charge transfer states and their role in energy transfer processes in LH1-RC complexes from aerobic anoxygenic phototrophs.

    Science.gov (United States)

    Šlouf, Václav; Fuciman, Marcel; Dulebo, Alexander; Kaftan, David; Koblížek, Michal; Frank, Harry A; Polívka, Tomáš

    2013-09-26

    Light-harvesting complexes ensure necessary flow of excitation energy into photosynthetic reaction centers. In the present work, transient absorption measurements were performed on LH1-RC complexes isolated from two aerobic anoxygenic phototrophs (AAPs), Roseobacter sp. COL2P containing the carotenoid spheroidenone, and Erythrobacter sp. NAP1 which contains the carotenoids zeaxanthin and bacteriorubixanthinal. We show that the spectroscopic data from the LH1-RC complex of Roseobacter sp. COL2P are very similar to those previously reported for Rhodobacter sphaeroides, including the transient absorption spectrum originating from the intramolecular charge-transfer (ICT) state of spheroidenone. Although the ICT state is also populated in LH1-RC complexes of Erythrobacter sp. NAP1, its appearance is probably related to the polarity of the bacteriorubixanthinal environment rather than to the specific configuration of the carotenoid, which we hypothesize is responsible for populating the ICT state of spheroidenone in LH1-RC of Roseobacter sp. COL2P. The population of the ICT state enables efficient S1/ICT-to-bacteriochlorophyll (BChl) energy transfer which would otherwise be largely inhibited for spheroidenone and bacteriorubixanthinal due to their low energy S1 states. In addition, the triplet states of these carotenoids appear well-tuned for efficient quenching of singlet oxygen or BChl-a triplets, which is of vital importance for oxygen-dependent organisms such as AAPs. PMID:23130956

  18. Extended Kalman Filter with a Fuzzy Method for Accurate Battery Pack State of Charge Estimation

    OpenAIRE

    Saeed Sepasi; Leon R. Roose; Marc M. Matsuura

    2015-01-01

    As the world moves toward greenhouse gas reduction, there is increasingly active work around Li-ion chemistry-based batteries as an energy source for electric vehicles (EVs), hybrid electric vehicles (HEVs) and smart grids. In these applications, the battery management system (BMS) requires an accurate online estimation of the state of charge (SOC) in a battery pack. This estimation is difficult, especially after substantial battery aging. In order to address this problem, this paper utilizes...

  19. Prediction Model of Battery State of Charge and Control Parameter Optimization for Electric Vehicle

    OpenAIRE

    Bambang Wahono; Kristian Ismail; Harutoshi Ogai

    2015-01-01

    This paper presents the construction of a battery state of charge (SOC) prediction model and the optimization method of the said model to appropriately control the number of parameters in compliance with the SOC as the battery output objectives. Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences has tested its electric vehicle research prototype on the road, monitoring its voltage, current, temperature, time, vehicle velocity, motor speed, and SOC during t...

  20. State of Charge Estimation Based on Microscopic Driving Parameters for Electric Vehicle's Battery

    OpenAIRE

    Enjian Yao; Meiying Wang; Yuanyuan Song; Yang Yang

    2013-01-01

    Recently, battery-powered electric vehicle (EV) has received wide attention due to less pollution during use, low noise, and high energy efficiency and is highly expected to improve urban air quality and then mitigate energy and environmental pressure. However, the widespread use of EV is still hindered by limited battery capacity and relatively short cruising range. This paper aims to propose a state of charge (SOC) estimation method for EV’s battery necessary for route planning and dynamic ...

  1. Charge State of the Globular Histone Core Controls Stability of the Nucleosome

    OpenAIRE

    Fenley, Andrew T.; Adams, David A.; Onufriev, Alexey V.

    2010-01-01

    Presented here is a quantitative model of the wrapping and unwrapping of the DNA around the histone core of the nucleosome that suggests a mechanism by which this transition can be controlled: alteration of the charge state of the globular histone core. The mechanism is relevant to several classes of posttranslational modifications such as histone acetylation and phosphorylation; several specific scenarios consistent with recent in vivo experiments are considered. The model integrates a descr...

  2. Charge State of the Globular Histone Core Controls Stability of the Nucleosome

    OpenAIRE

    Fenley, Andrew T.; Adams, D. A.; Onufriev, Alexey V.

    2010-01-01

    Presented here is a quantitative model of the wrapping and unwrapping of the DNA around the histone core of the nucleosome that suggests a mechanism by which this transition can be controlled: alteration of the charge state of the globular histone core. The mechanism is relevant to several classes of posttranslational modifications such as histone acetylation and phosphorylation; several specific scenarios consistent with recent in vivo experiments are considered. The model integrates a descr...

  3. Charge state and energy loss of relativistic heavy ions in matter

    International Nuclear Information System (INIS)

    Relativistic heavy-ion collisions of few-electron projectiles ranging from argon up to uranium have been investigated in solid and gaseous media. Electron-loss and electron-capture cross sections, charge-state distributions, as well as energy loss and energy deposition have been measured and are compared with theoretical predictions. Especially fully-ionized heavy projectiles represent a unique possibility to test atomic-collision theories. (orig.)

  4. Design and Test of a Solid State Charged Particle Detector for Cubesat

    OpenAIRE

    Dowler, Michael; Aguero, Victor; Sears, Stephen; Twiggs, Robert; Albers, Jim; Lee, Kathy; Maahs, Gordon

    2002-01-01

    A solid state boron- ion implanted silicon Charged Particle Detector (CPD) was designed, built, and tested as one of the payloads for a Stanford University/Lockheed Martin Cubesat (10cm cube, 1 Kg) project intended for a low earth orbit. Design drivers to be discussed will include cost, size, mass and schedule. Two detectors were utilized with shielding to allow for two separate energy ranges to be detected. Stanford Research Institute facilities were used for testing. Design considerations w...

  5. Self/Anti-Self Charge Conjugate States for $j=1/2$ and $j=1$

    CERN Document Server

    Dvoeglazov, V V

    1997-01-01

    We briefly review recent achievements in the theory of neutral particles (the Majorana-McLennan-Case-Ahluwalia construct for self/anti-self charge conjugate states for j=1/2 and j=1 cases). Among new results we present a theoretical construct in which a fermion and an antifermion have the same intrinsic parity; discuss phase transformations and find relations between the Majorana-like field operator $\

  6. High-impact-velocity forward charge transfer from high-Rydberg states as a classical process

    International Nuclear Information System (INIS)

    It was long ago suggested by Thomas that the charge-transfer cross section in the neighborhood of forward scattering was dominated by a double-scattering process. Thomas's analysis, which was almost completely classical, might well suggest that, in a proper quantum-mechanical study, the second Born contribution would dominate over the first, and this was ultimately found to be the case. Unfortunately, the problem which Thomas considered was charge transfer to any bound state of an incident proton from a hydrogen atom in its ground state, a problem which cannot truly be studied classically. Thomas found that the cross section behaved as r/sup -7/2/, where r is the initial electron--target-proton separation, and simply replaced r/sup -7/2/ by a0/sup -7/2/, where a0 is the Bohr radius. The result he obtained is identical in form to that obtained in the second Born approximation, but the coefficient is smaller by about a factor of ten. The more consistent procedure of replacing r/sup -7/2/ by its expectation value gives infinity for the 1s ground state, (or indeed for any state with orbital angular momentum quantum number l = 0). We show that for capture from a high-Rydberg state, that is, a state with principal quantum number n >> 1, the classical picture is not only meaningful for l not = 0, but, for l sufficiently large, becomes exact

  7. Influence of incident charge state of fast ion (Pb{sup n+} at 4.6 MeV/u) on the secondary emission from mica surface; Influence de la charge incidente d`ion rapide (Pb{sup n+} A 4.6 MeV/u) sur l`emission secondaire sur une surface de mica

    Energy Technology Data Exchange (ETDEWEB)

    Brunelle, A.; Della-Negra, S.; Depauw, J.; Jacquet, D. [Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France); Rozet, J.P.; Vernhet, D. [GPS-PIIM, Paris-6 Univ., 75 - Paris (France); Bouffard, S.; Cassimi, A.; Gervais, B.; Grandin, J.P.; Leroy, C.; Rothard, H.; Buve, M. [CIRIL, Caen Univ., 14 - Caen (France)

    1999-11-01

    The damage induced by heavy ion in the mica has been studied. The first quantitative results allowed by atomic force microscopy realized at CIRIL on mica samples irradiated by fast heavy ions have shown clearly a dependence on the incident charge state. The evolution of track diameters with ion charge states presents a step-like behaviour with 2 plateaus on both sides of the equilibrium charge states. The secondary ion emission studied in the same experimental conditions shows that the ions emitted from the mica are not sensitive to the same phenomena like those involved in the damage creation. The secondary ion yields do not follow the same charge state dependence. (authors) 5 refs., 2 figs.

  8. Ion charge state distributions of vacuum arc plasmas: The origin of species

    International Nuclear Information System (INIS)

    Vacuum arc plasmas are produced at micrometer-size, nonstationary cathode spots. Ion charge state distributions (CSD close-quote s) are experimentally known for 50 elements, but the theoretical understanding is unsatisfactory. In this paper, CSD close-quote s of vacuum arc plasmas are calculated under the assumption that the spot plasma experiences an instantaneous transition from equilibrium to nonequilibrium while expanding. Observable charge state distributions are the result of a freezing process at this transition. open-quotes Frozenclose quotes CSD close-quote s have been calculated using Saha equations in the Debye-Hueckel approximation of the nonideal plasma for all metals of the Periodic Table and for boron, carbon, silicon, and germanium. The results are presented in a open-quotes periodic table of CSD.close quotes The table contains also the mean ion charge state, the neutral vapor fraction, and the effective plasma temperature and density at the freezing point for each element. The validity of the concepts of open-quotes instantaneous freezingclose quotes and open-quotes effective temperature and densityclose quotes is discussed for low and high currents and for the presence of a magnetic field. Temperature fluctuations have been identified to cause broadening of CSD close-quote s. copyright 1997 The American Physical Society

  9. Isotopic dependence of the nuclear charge radii and binding energies in the relativistic Hartree-Fock formalism

    Energy Technology Data Exchange (ETDEWEB)

    Niembro, R., E-mail: niembror@unican.es; Marcos, S.; Lopez-Quelle, M. [Universidad de Cantabria (Spain); Savushkin, L. N. [St. Petersburg University for Telecommunications (Russian Federation)

    2012-03-15

    Relativistic nonlinear models based on the Hartree and Hartree-Fock approximations, including the {sigma}, {omega}, {pi}, and {rho} mesons, are worked out to explore the behavior of the nuclear charge radii and the binding energies of several isotopic chains. We find a correlation between the magnitude of the anomalous kink effect (KE) in the Pb isotopic family and the compressibility modulus (K) of nuclear matter. The KE appears to be sensitive, in particular, to the mechanisms which control the K value. The influence of the symmetry energy on the Ca isotopic chain is also studied. The behavior of the charge radii of single-particle states for some special cases and its repercussion on the nuclear charge radius is analyzed. The effect of pairing correlations on the models improves considerably the quality of the results in both binding energy and KE.

  10. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    International Nuclear Information System (INIS)

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements

  11. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Koichi, E-mail: tanak@mmc.co.jp [Central Research Institute, Mitsubishi Materials Corporation, 1002-14 Mukohyama, Naka-shi, Ibaraki 311-0102 (Japan); Anders, André [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 53, Berkeley, California 94720 (United States)

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  12. Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Bairathi,; Banerjee, A; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandin, A V; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Campbell, J M; Cebra, D; Cervantes, M C; Chakaberia, I; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Hamad, A; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, X; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kollegger, T; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, W; Li, Z M; Li, X; Li, Y; Li, C; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, Y G; Ma, R; Ma, G L; Ma, L; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; Meehan, K; Minaev, N G; Mioduszewski, S; Mishra, D; Mohanty, B; Mondal, M M; Morozov, D; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Peterson, A; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, M K; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Skoby, M J; Smirnov, N; Smirnov, D; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, N; Szelezniak, M A; Tang, Z; Tang, A H; Tarnowsky, T; Tawfik, A N; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Trzeciak, B A; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wang, G; Wang, H; Wang, J S; Wang, Y; Wang, F; Webb, G; Webb, J C; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z G; Xie, W; Xin, K; Xu, Q H; Xu, N; Xu, H; Xu, Z; Xu, Y F; Yang, Q; Yang, Y; Yang, C; Yang, S; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I -K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J; Zhang, X P; Zhang, Z; Zhang, Y; Zhang, S; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2015-01-01

    We present measurements of $\\pi^-$ and $\\pi^+$ elliptic flow, $v_2$, at midrapidity in Au+Au collisions at $\\sqrt{s_{_{\\rm NN}}} =$ 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry, $A_{ch}$, based on data from the STAR experiment at RHIC. We find that $\\pi^-$ ($\\pi^+$) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at $\\sqrt{s_{_{\\rm NN}}} = \\text{27 GeV}$ and higher. At $\\sqrt{s_{_{\\rm NN}}} = \\text{200 GeV}$, the slope of the difference of $v_2$ between $\\pi^-$ and $\\pi^+$ as a function of $A_{ch}$ exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.

  13. Inelastic Scattering of CO with He: Polarization Dependent Differential State-to-State Cross Sections.

    Science.gov (United States)

    Song, Lei; Groenenboom, Gerrit C; van der Avoird, Ad; Bishwakarma, Chandan Kumar; Sarma, Gautam; Parker, David H; Suits, Arthur G

    2015-12-17

    A joint theoretical and experimental study of state-to-state rotationally inelastic polarization dependent differential cross sections (PDDCSs) for CO (v = 0, j = 0, 1, 2) molecules colliding with helium is reported for collision energies of 513 and 840 cm(-1). In a crossed molecular beam experiment, velocity map imaging (VMI) with state-selective detection by (2 + 1) and (1 + 1') resonance enhanced multiphoton ionization (REMPI) is used to probe rotational excitation of CO due to scattering. By taking account of the known fractions of the j = 0, 1, and 2 states of CO in the rotationally cold molecular beam (Trot ≈ 3 K), close-coupling theory based on high-quality ab initio potential energy surfaces for the CO-He interaction is used to simulate the differential cross sections for the mixed initial states. With polarization-sensitive 1 + 1' REMPI detection and a direct analysis procedure described by Suits et al. ( J. Phys, Chem. A 2015 , 119 , 5925 ), alignment moments are extracted from the images and the latter are compared with images simulated by theory using the calculated DCS and alignment moments. In general, good agreement of theory with the experimental results is found, indicating the reliability of the experiment in reproducing state-to-state differential and polarization-dependent differential cross sections. PMID:26473516

  14. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Tassle, Aaron Justin

    2006-09-01

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  15. Temperature dependence of the resonance peaks in the elastic scattering of fast negative charged particles in monocrystals

    International Nuclear Information System (INIS)

    Temperature dependence of angular distributions of fast negatively charged particles scattered in the monocrystal is considered. The consideration is carried out in the first order of the perturbation theory. An expression for the total cross section of the scattering with account of discreteness and thermal oscillations is obtained. It is shown that small-angle coherent processes described by the averaged potential in reality can realized in the case extremely high temperatures

  16. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion

    Science.gov (United States)

    Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning

    2016-08-01

    Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility.

  17. Charge transport model in solid-state avalanche amorphous selenium and defect suppression design

    Science.gov (United States)

    Scheuermann, James R.; Miranda, Yesenia; Liu, Hongyu; Zhao, Wei

    2016-01-01

    Avalanche amorphous selenium (a-Se) in a layer of High Gain Avalanche Rushing Photoconductor (HARP) is being investigated for its use in large area medical imagers. Avalanche multiplication of photogenerated charge requires electric fields greater than 70 V μm-1. For a-Se to withstand this high electric field, blocking layers are used to prevent the injection of charge carriers from the electrodes. Blocking layers must have a high injection barrier and deep trapping states to reduce the electric field at the interface. In the presence of a defect in the blocking layer, a distributed resistive layer (DRL) must be included into the structure to build up space charge and reduce the electric field in a-Se and the defect. A numerical charge transport model has been developed to optimize the properties of blocking layers used in various HARP structures. The model shows the incorporation of a DRL functionality into the p-layer can reduce dark current at a point defect by two orders of magnitude by reducing the field in a-Se to the avalanche threshold. Hole mobility in a DRL of ˜10-8 cm2 V-1 s-1 at 100 V μm-1 as demonstrated by the model can be achieved experimentally by varying the hole mobility of p-type organic or inorganic semiconductors through doping, e.g., using Poly(9-vinylcarbozole) doped with 1%-3% (by weight) of poly(3-hexylthiopene).

  18. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    Energy Technology Data Exchange (ETDEWEB)

    Theophilou, Iris, E-mail: i.theophilou@fz-juelich.de [Peter Grunberg Institut (PGI) Forschungszentrum Jülich, D-52425 Jülich (Germany); Tassi, M.; Thanos, S. [Institute for Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, ‘Demokritos’ National Center for Scientific Research, 15310 Athens (Greece)

    2014-04-28

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations.

  19. Calculation of Ion Charge State Distributions After Inner-Shell Ionization in Xe Atom

    International Nuclear Information System (INIS)

    The vacancy cascades following initial inner-shell vacancies in single and multi-ionized atoms often lead to highly charged residual ions. The inner-shell vacancy produced by ionization processes may decay by either a radiative or non-radiative transition. In addition to the vacancy filling processes, there is an electron shake off process due to the change of core potential of the atom. In the calculation of vacancy cascades, the radiative (x-ray) and non-radiative (Auger and Coster-Kronig) branching ratios give valuable information on the de-excitation dynamics of an atom with inner-shell vacancy. The production of multi-charged ions yield by the Auger cascades following inner shell ionization of an atom has been studied both experimentally and theoretically. Multi-charged Xe ions following de-excitation of K-, L1-, L2,3-, M1-, M2,3- and M4,5 subshell vacancies are calculated using Monte-Carlo algorithm to simulate the vacancy cascade development. Fluorescence yield (radiative) and Auger, Coster- Kronig yield (non- radiative) are evaluated. The decay of K hole state through radiative transitions is found to be more probable than non-radiative transitions in the first step of de-excitation. On the other hand, the decay of L, M vacancies through non-radiative transitions are more probable. The K shell ionization in Xe atom mainly yields Xe7+, Xe8+, Xe9+ and Xe10+ ions, and the charged X8+ ions are the highest. The main product from the L1- shell ionization is found to be Xe8+, Xe9+ ions, while the charged Xe8+ ions predominate at L2,3 hole states. The charged Xe6+, Xe7+ and Xe8+ ions mainly yield from 3s1/2 and 3p1/2,3/2 ionization, while Xe in 3d3/2,5/2 hole states mainly turns into Xe4+ and Xe5+ ions. The present results are found to agree well with the experimental data.

  20. Calculation of Ion Charge State Distributions After Inner-Shell Ionization in Xe Atom

    International Nuclear Information System (INIS)

    The vacancy cascades following initial inner-shell vacancies in single and multi-ionized atoms often lead to highly charged residual ions. The inner-shell vacancy produced by ionization processes may decay by either a radiative or non-radiative transition. In addition to the vacancy filling processes, there is an electron shake off process due to the change of core potential of the atom. In the calculation of vacancy cascades, the radiative (x-ray) and non-radiative (Auger and Coster-Kronig) branching ratios give valuable information on the de-excitation dynamics of an atom with inner-shell vacancy. The production of multi-charged ions yield by the Auger cascades following inner shell ionization of an atom has been studied both experimentally and theoretically. Multi-charged Xe ions following de-excitation of K, L1, L2,3, M1, M2,3 and M4,5 subshell vacancies are calculated using Monte-Carlo algorithm to simulate the vacancy cascade development. Fluorescence yield (radiative) and Auger, Coster- Kronig yield (non- radiative) are evaluated. The decay of K hole state through radiative transitions is found to be more probable than non-radiative transitions in the first step of de-excitation. On the other hand, the decay of L, M vacancies through non-radiative transitions are more probable. The K shell ionization in Xe atom mainly yields Xe7+, Xe8+, Xe9+ and Xe10+ ions, and the charged X8+ ions are the highest. The main product from the L1 shell ionization is found to be Xe8+, Xe9+ ions, while the charged Xe8+ ions predominate at L2,3 hole states. The charged Xe6+, Xe7+ and Xe8+ ions mainly yield from 3s1/2 and 3p1/2,3/2 ionization, while Xe in 3d3/2,5/2 hole states mainly turns into Xe4+ and Xe5+ ions. The present results are found to agree well with the experimental data. (author)

  1. Thickness-dependent charge transport in few-layer MoS2 field-effect transistors

    Science.gov (United States)

    Lin, Ming-Wei; Kravchenko, Ivan I.; Fowlkes, Jason; Li, Xufan; Puretzky, Alexander A.; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai

    2016-04-01

    Molybdenum disulfide (MoS2) is currently under intensive study because of its exceptional optical and electrical properties in few-layer form. However, how charge transport mechanisms vary with the number of layers in MoS2 flakes remains unclear. Here, exfoliated flakes of MoS2 with various thicknesses were successfully fabricated into field-effect transistors (FETs) to measure the thickness and temperature dependences of electrical mobility. For these MoS2 FETs, measurements at both 295 K and 77 K revealed the maximum mobility for layer thicknesses between 5 layers (˜3.6 nm) and 10 layers (˜7 nm), with ˜70 cm2 V-1 s-1 measured for 5 layer devices at 295 K. Temperature-dependent mobility measurements revealed that the mobility rises with increasing temperature to a maximum. This maximum occurs at increasing temperature with increasing layer thickness, possibly due to strong Coulomb scattering from charge impurities or weakened electron-phonon interactions for thicker devices. Temperature-dependent conductivity measurements for different gate voltages revealed a metal-to-insulator transition for devices thinner than 10 layers, which may enable new memory and switching applications. This study advances the understanding of fundamental charge transport mechanisms in few-layer MoS2, and indicates the promise of few-layer transition metal dichalcogenides as candidates for potential optoelectronic applications.

  2. Tracking excited-state charge and spin dynamics in iron coordination complexes

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Alonso-Mori, Roberto; Bergmann, Uwe;

    2014-01-01

    states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics(5) and the flux limitations of ultrafast X-ray sources(6,7). Such a situation exists for archetypal poly-pyridyl iron complexes, such as [Fe(2......Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons(1-4). But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited......,2'-bipyridine)(3)](2+), where the excited-state charge and spin dynamics involved in the transition from a low-to a high-spin state (spin crossover) have long been a source of interest and controversy(6-15). Here we demonstrate that femtosecond resolution X-ray fluorescence spectroscopy, with its sensitivity to...

  3. Charging/Discharging Nanomorphology Asymmetry and Rate-Dependent Capacity Degradation in Li-Oxygen Battery.

    Science.gov (United States)

    Kushima, Akihiro; Koido, Tetsuya; Fujiwara, Yoshiya; Kuriyama, Nariaki; Kusumi, Nobuhiro; Li, Ju

    2015-12-01

    Liquid-cell in situ transmission electron microscopy (TEM) observations of the charge/discharge reactions of nonaqueous Li-oxygen battery cathode were performed with ∼5 nm spatial resolution. The discharging reaction occurred at the interface between the electrolyte and the reaction product, whereas in charging, the reactant was decomposed at the contact with the gold current collector, indicating that the lithium ion diffusivity/electronic conductivity is the limiting factor in discharging/charging, respectively, which is a root cause for the asymmetry in discharging/charging overpotential. Detachments of lithium oxide particles from the current collector into the liquid electrolyte are frequently seen when the cell was discharged at high overpotentials, with loss of active materials into liquid electrolyte ("flotsam") under minute liquid flow agitation, as the lithium peroxide dendritic trees are shown to be fragile mechanically and electrically. Our result implies that enhancing the binding force between the reaction products and the current collector to maintain robust electronic conduction is a key for improving the battery performance. This work demonstrated for the first time the in situ TEM observation of a three-phase-reaction involving gold electrode, lithium oxides, DMSO electrolyte and lithium salt, and O2 gas. The technique described in this work is not limited to Li-oxygen battery but also can be potentially used in other applications involving gas/liquid/solid electrochemical reactions. PMID:26535921

  4. A time-dependent picture of the charge transfer process in the S3+ +H collision

    International Nuclear Information System (INIS)

    In this work we observe for the first time the evolution of the electronic charge density in a collisional system. The model used is system S3+ + H over the range of relative ion kinetic energies from [1-10] eV. To this aim, ab initio potential energy surfaces and non-adiabatic couplings together with wavepacket propagations have been used.

  5. Anion-Dependent Aggregate Formation and Charge Behavior of Colloidal Fullerenes (n-C60)

    Science.gov (United States)

    The fate and transport of colloidal fullerenes (n-C60) in the environment is likely to be guided by electrokinetic and aggregation behavior. In natural water bodies inorganic ions exert significant effects in determining the size and charge of n-C60 nanoparticles. Although the ef...

  6. Effect of isospin-dependent cross-section on fragment production in the collision of charge asymmetric nuclei

    Indian Academy of Sciences (India)

    Anupriya Jain; Suneel Kumar

    2012-05-01

    To understand the role of isospin effects on fragmentation due to the collisions of charge asymmetric nuclei, we have performed a complete systematical study using isospin-dependent quantum molecular dynamics model. Here simulations have been carried out for ${}^{124}X_n + {}^{124}X_n$ ,where varies from 47 to 59 and for 40Y$_m$ + 40Y$_m$ , where varies from 14 to 23. Our study shows that isospin-dependent cross-section shows its influence on fragmentation in the collision of neutron-rich nuclei.

  7. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles

    International Nuclear Information System (INIS)

    An accurate battery State of Charge estimation is of great significance for battery electric vehicles and hybrid electric vehicles. This paper presents an adaptive unscented Kalman filtering method to estimate State of Charge of a lithium-ion battery for battery electric vehicles. The adaptive adjustment of the noise covariances in the State of Charge estimation process is implemented by an idea of covariance matching in the unscented Kalman filter context. Experimental results indicate that the adaptive unscented Kalman filter-based algorithm has a good performance in estimating the battery State of Charge. A comparison with the adaptive extended Kalman filter, extended Kalman filter, and unscented Kalman filter-based algorithms shows that the proposed State of Charge estimation method has a better accuracy. -- Highlights: → Adaptive unscented Kalman filtering is proposed to estimate State of Charge of a lithium-ion battery for electric vehicles. → The proposed method has a good performance in estimating the battery State of Charge. → A comparison with three other Kalman filtering algorithms shows that the proposed method has a better accuracy.

  8. Effect of surface charge state on the surface stress of a microcantilever.

    Science.gov (United States)

    Zhang, Neng-Hui; Wu, Jun-Zheng; Meng, Wei-Lie; Tan, Zou-Qing

    2016-04-01

    The surface charge state at a liquid-solid interface is important to the variations in the physical/chemical properties of adsorbate film such as surface stress and the ensuing tip deflection of the microcantilever. The well-known Stoney's equation, derived more than 100 years ago, conceals the film electrical properties with the replacement of substrate deformation induced by adsorptions of particles. This implicit expression provides a shortcut to circumvent the difficulty in identifying some film properties, however, it limits the capacity to ascertain the relation between surface stress variation and the surface charge state. In this paper, we present an analytical expression to quantify the cantilever deflection/surface stress and the film potential difference by combining the piezoelectric theory and Poisson-Boltzmann equation for electrolyte solution. This updated version indicates that the two linear correlations between surface stress and surface charge density or the bias voltage are not contradictory, but two aspects of one thing under different conditions. Based on Parsegian's mesoscopic interaction potential, a multiscale prediction for the piezoelectric coefficient of double-stranded DNA (dsDNA) film is done, and the results show that the distinctive size effect with variations in salt concentration and nucleotide number provides us with an opportunity to obtain a more sensitive potential-actuated microcantilever sensor by careful control of packing conditions. PMID:26916422

  9. Design of a CW high charge state heavy ion RFQ for SSC-LINAC

    International Nuclear Information System (INIS)

    The new linac injector SSC-LINAC has been proposed to replace the existing Separator Sector Cyclotron (SSC). This effort is to improve the beam efficiency of the Heavy Ion Research Facility of Lanzhou (HIRFL). As a key component of the linac, a continuous-wave (CW) mode high charge state heavy ion radio-frequency quadrupole (RFQ) accelerator has been designed. It accelerates ions with the ratio of mass to charge up to 7 from 3.728 keV/u to 143 keV/u. The requirements of CW mode operation and the transportation of intense beam have been considered as the greatest challenges. The design is based on 238U34+ beams, whose current is 0.5 pmA (0.5 particle mili-ampere, which is the measured 17 emA electric current divided by charge state of heavy ions). It achieves the transmission efficiency of 94% with 2508.46 mm long vanes in simulation. To improve the transmission efficiency and quality of the beams, the phase advance has been taken into account to analyze the reasons of beam loss and emittance growth. Parametric resonance and beam mismatch have been carefully avoided by adjusting the structure parameters. The parameter-sensitivity of the design is checked by transportation simulations of various input beams. To verify the applicability of machining, the effects of different vane manufacturing methods on beam dynamics are presented in this paper.

  10. Electro-osmosis in kaolinite with pH-dependent surface charge modelling by homogenization

    Directory of Open Access Journals (Sweden)

    Sidarta A. Lima

    2010-03-01

    Full Text Available A new three-scale model to describe the coupling between pH-dependent flows and transient ion transport, including adsorption phenomena in kaolinite clays, is proposed. The kaolinite is characterized by three separate nano/micro and macroscopic length scales. The pore (micro-scale is characterized by micro-pores saturated by an aqueous solution containing four monovalent ions and charged solid particles surrounded by thin electrical double layers. The movement of the ions is governed by the Nernst-Planck equations, and the influence of the double layers upon the flow is dictated by the Helmholtz-Smoluchowski slip boundary condition on the tangential velocity. In addition, an adsorption interface condition for the Na+ transportis postulated to capture its retention in the electrical double layer. Thetwo-scalenano/micro model including salt adsorption and slip boundary condition is homogenized to the Darcy scale and leads to the derivation of macroscopic governing equations. One of the notable features of the three-scale model is there construction of the constitutive law of effective partition coefficient that governs the sodium adsorption in the double layer. To illustrate the feasibility of the three-scale model in simulating soil decontamination by electrokinetics, the macroscopic model is discretized by the finite volume method and the desalination of a kaolinite sample by electrokinetics is simulated.Neste artigo propomos um modelo em três escalas para descrever o acoplamento entre o fluxo eletroosmótico e o transporte de íons incluindo fenômenos de adsorção em uma caulinita. A argila é caracterizada por três escalas nano/micro e macroscópica. A escala microscópica é constituída por micro-poros saturados por uma solução aquosa contendo quatro íons monovalentes e partículas sólidas carregadas eletricamente circundadas por uma dupla camada elétrica fina. O movimento dos íons é governado pelas equações de Nernst-Planck e a

  11. The partial state-of-charge cycle performance of lead-acid batteries

    Science.gov (United States)

    Takeuchi, Taisuke; Sawai, Ken; Tsuboi, Yuichi; Shiota, Masashi; Ishimoto, Shinji; Hirai, Nobumitsu; Osumi, Shigeharu

    Negative plate lugs of flooded lead-acid battery were corroded during partial state-of-charge (PSoC) pattern cycle life tests simulated from stop and go vehicle driving. Potential step was applied to Pb-Ca-Sn alloy electrode at various potential and time regimes, and the electrode surface was observed by in situ electrochemical atomic force microscope (EC-AFM) to investigate the corrosion mechanisms during the potential step cycles. It was found out that the severe corrosion occurs when the oxidation of Pb to PbSO 4 and partial reduction of passive layer of PbSO 4 take turns many times. It was also found out that the periodic full charge, the optimization of the alloy composition, addition of the material that may make the reaction mechanism change to electrolyte were effective to suppress the corrosion rate.

  12. The partial state-of-charge cycle performance of lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Taisuke; Tsuboi, Yuichi; Shiota, Masashi; Ishimoto, Shinji; Osumi, Shigeharu [GS Yuasa Power Supply Ltd., Kyoto (Japan); Sawai, Ken [GS Yuasa Corporation Ltd., Kyoto (Japan); Hirai, Nobumitsu [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka (Japan)

    2009-04-15

    Negative plate lugs of flooded lead-acid battery were corroded during partial state-of-charge (PSoC) pattern cycle life tests simulated from stop and go vehicle driving. Potential step was applied to Pb-Ca-Sn alloy electrode at various potential and time regimes, and the electrode surface was observed by in situ electrochemical atomic force microscope (EC-AFM) to investigate the corrosion mechanisms during the potential step cycles. It was found out that the severe corrosion occurs when the oxidation of Pb to PbSO{sub 4} and partial reduction of passive layer of PbSO{sub 4} take turns many times. It was also found out that the periodic full charge, the optimization of the alloy composition, addition of the material that may make the reaction mechanism change to electrolyte were effective to suppress the corrosion rate. (author)

  13. Electronic States and Spatial Charge Distribution of Single Mn Impurity in Diluted Magnetic Semiconductors

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-Hua; ZOU Liang-Jian

    2006-01-01

    The electronic and magnetic properties as well as the spatial charge distribution of single Mn impurity in Ⅲ-V diluted magnetic semiconductors are obtained when the degeneracy of the p orbits contributed from the four nearest-neighbouring As(N) atoms is taken into account. We show that in the ground state, the Mn spin is strongly antiferromagnetically coupled to the surrounding As(N) atoms when the p - d hybridization Vpd is large and both the hole level Ev and the impurity level Ed are close to the Fermi energy. The spatial charge distribution of the Mn acceptor in the (110) plane is non-spherically symmetric, in good agreement with the recent STM images.

  14. Influence of argon and oxygen on charge-state-resolved ion energy distributions of filtered aluminum arcs

    OpenAIRE

    Rosen, Johanna; Anders, Andre; Mraz, Stanislav; Atiser, Adil; Schneider, Jochen M.

    2006-01-01

    The charge-state-resolved ion energy distributions (IEDs) in filtered aluminum vacuum arc plasmas were measured and analyzed at different oxygen and argon pressures in the range 0.5 8.0 mTorr. A significant reduction of the ion energy was detected as the pressure was increased, most pronounced in an argon environment and for the higher charge states. The corresponding average charge state decreased from 1.87 to 1.0 with increasing pressure. The IEDs of all metal ions in oxygen were fitte...

  15. High magnetic field magnetoresistance anomalies in the charge density wave state of the quasi-two dimensional bronze KMo6O{17}

    Science.gov (United States)

    Guyot, H.; Dumas, J.; Marcus, J.; Schlenker, C.; Vignolles, D.

    2005-12-01

    We report high magnetic field magnetoresistance measurements performed in pulsed fields up to 55 T on the quasi-two dimensional charge density wave conductor KMo{6}O{17}. Magnetoresistance curves show several anomalies below 28 T. First order transitions to smaller gap states take place at low temperature above 30 T. A phase diagram T(B) has been obtained. The angular dependence of the anomalies is reported.

  16. Search for light charged Higgs bosons in hadronic τ final states with the ATLAS detector

    International Nuclear Information System (INIS)

    Charged Higgs bosons are predicted in theories with a non-minimal Higgs sector like the Minimal Supersymmetric Extension of the Standard Model (MSSM). At the LHC, light charged Higgs Bosons might be produced in on-shell top quark decays t→ H+b, if mH±t-mb. In most of the MSSM parameter space, the decay H+ → τν is the dominant decay channel and suggests the possibility of using the unique signature of hadronic τ final states to suppress the backgrounds. The subject of this study is the estimation of the sensitivity of the ATLAS detector for charged Higgs boson searches in t anti t events. Leptons from the decay chain of the second top quark allow for efficient triggering. A search strategy is developed and estimates of signal significances and exclusion limits in the MSSM mh-max scenario are presented based on Monte Carlo simulations. For an integrated luminosity of 10 fb-1, the discovery of charged Higgs bosons is possible for tanβ>32. Exclusion limits are given for values of tanβ>17, significantly improving the current best limits from the Tevatron. The most important systematic uncertainties were found to be the errors on the jet energy scale and the missing transverse energy, resulting in a total systematic uncertainty of 40% on the signal. To reduce the systematic uncertainty for the most important Standard Model background, t anti t production, emphasis is put on estimating this background using data instead of Monte Carlo simulations. The t anti t background consists of two contributions, one with a correctly identified τ-jet in the final state, which is irreducible, and one where the hadronic τ decay is faked by a light parton jet. For each background a method has been developed to estimate its contribution with minimal use of Monte Carlo simulations. In this way, the systematic uncertainty on the background can be significantly reduced. (orig.)

  17. Pressure dependence of space charge deposition in piezoelectric polymer foams: simulations and experimental verification

    Science.gov (United States)

    Harris, Scott; Mellinger, Axel

    2012-06-01

    The piezoelectric activity of PQ-50 cellular polypropylene (PP) foam (an example of a so-called ferroelectret) is measured after repeated charging in a nitrogen atmosphere at a range of pressures between 61 and 381 kPa. The results are compared against simulations using a multilayer electromechanical model based on Townsend's model of Paschen breakdown and a realistic distribution of void heights determined from scanning electron micrographs. The modeled piezoelectric coefficients versus pressure are in good agreement with experimental data when adjusted Paschen coefficients are used, indicating that the Paschen curve for electric breakdown in gases needs to be modified for dielectric barrier discharges in microcavities. The highest d 33 coefficients were achieved for pressures above 251 kPa. For previously uncharged PP foam, the model predicts an optimal charging pressure of 186 kPa.

  18. Charge-dependent azimuthal correlation measurements in Pb-Pb collisions with ALICE

    International Nuclear Information System (INIS)

    Parity violation in strong interactions is predicted to be observable in relativistic heavy-ion collisions. The occurrence of parity-odd domains may result in charge separation along a strong magnetic field created by moving ions - a phenomenon dubbed the chiral magnetic effect (CME). Sensitive experimental observables include two particle azimuthal correlations and correlation of particle pairs relative to the reaction plane. A challenge is to separate contributions to these correlations from background sources, which include local charge conservation and initial density fluctuations. Correlations for lead-lead collisions at sNN=√(2.76) TeV measured with the ALICE detector are presented as a function of centrality, average and relative transverse momentum, and separation in pseudorapidity, providing additional constraints for models.

  19. Length-dependent charge generation from vertical arrays of high-aspect-ratio ZnO nanowires.

    Science.gov (United States)

    Rivera, Vivian Farías; Auras, Florian; Motto, Paolo; Stassi, Stefano; Canavese, Giancarlo; Celasco, Edvige; Bein, Thomas; Onida, Barbara; Cauda, Valentina

    2013-10-18

    Aqueous chemical growth of zinc oxide nanowires is a flexible and effective approach to obtain dense arrays of vertically oriented nanostructures with high aspect ratio. Herein we present a systematic study of the different synthesis parameters that influence the ZnO seed layer and thus the resulting morphological features of the free-standing vertically oriented ZnO nanowires. We obtained a homogeneous coverage of transparent conductive substrates with high-aspect-ratio nanowire arrays (length/diameter ratio of up to 52). Such nanostructured vertical arrays were examined to assess their electric and piezoelectric properties, and showed an electric charge generation upon mechanical compressive stress. The principle of energy harvesting with these nanostructured ZnO arrays was demonstrated by connecting them to an electronic charge amplifier and storing the generated charge in a series of capacitors. We found that the generated charge and the electrical behavior of the ZnO nanowires are strictly dependent on the nanowire length. We have shown the importance of controlling the morphological properties of such ZnO nanostructures for optimizing a nanogenerator device. PMID:24027171

  20. Electron configuration and charge state of electrically active Cu, Ag and Au ions in ZnSe

    International Nuclear Information System (INIS)

    The Hall effect, electrical conductivity and electron mobility are investigated at temperatures between 55 and 500 K in n-ZnSe crystals doped with Cu, Ag or Au. The presence of a small amount of Cu atoms leads to an inversion of the sign of the Hall coefficient at temperatures above 300 K. Anomalous temperature dependence of the electron mobility is observed in the samples with low Cu concentration (Zn+ (d10) and CuZn2+ (d9), and two acceptor levels near the valence band. Silver and gold exist in single-charged states AgZn+ and AuZn+ with d10 electron configuration forming single energy levels near the valence band. Au atoms form mainly interstitial Aui donors at low doping concentrations and substitutional AuZn and AuZn-based acceptors at high doping concentrations. Time stimulation of the amphoteric properties of Ag is discussed