WorldWideScience

Sample records for charge plug-in hybrid

  1. Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs

    International Nuclear Information System (INIS)

    Lunz, Benedikt; Yan, Zexiong; Gerschler, Jochen Bernhard; Sauer, Dirk Uwe

    2012-01-01

    The profitability of plug-in hybrid electric vehicles (PHEVs) is significantly influenced by battery aging and electricity costs. Therefore a simulation model for PHEVs in the distribution grid is presented which allows to compare the influence of different charging strategies on these costs. The simulation is based on real-world driving behavior and European Energy Exchange (EEX) intraday prices for obtaining representative results. The analysis of comprehensive lithium-ion battery aging tests performed within this study shows that especially high battery states of charge (SOCs) decrease battery lifetime, whereas the cycling of batteries at medium SOCs only has a minor contribution to aging. Charging strategies that take into account the previously mentioned effects are introduced, and the SOC distributions and cycle loads of the vehicle battery are investigated. It can be shown that appropriate charging strategies significantly increase battery lifetime and reduce charging costs at the same time. Possible savings due to lifetime extension of the vehicle battery are approximately two times higher than revenues due to energy trading. The findings of this work indicate that car manufacturers and energy/mobility providers have to make efforts for developing intelligent charging strategies to reduce mobility costs and thus foster the introduction of electric mobility. - Highlights: ► Modeling of PHEVs based on real-world driving behavior and electricity prices. ► Consideration of battery degradation for the calculation of mobility costs. ► Smart charging decreases battery degradation and electricity costs simultaneously. ► Reduction of battery degradation costs is around two times higher than reduction of electricity costs.

  2. On the performance of accelerated particle swarm optimization for charging plug-in hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Imran Rahman

    2016-03-01

    Full Text Available Transportation electrification has undergone major changes since the last decade. Success of smart grid with renewable energy integration solely depends upon the large-scale penetration of plug-in hybrid electric vehicles (PHEVs for a sustainable and carbon-free transportation sector. One of the key performance indicators in hybrid electric vehicle is the State-of-Charge (SoC which needs to be optimized for the betterment of charging infrastructure using stochastic computational methods. In this paper, a newly emerged Accelerated particle swarm optimization (APSO technique was applied and compared with standard particle swarm optimization (PSO considering charging time and battery capacity. Simulation results obtained for maximizing the highly nonlinear objective function indicate that APSO achieves some improvements in terms of best fitness and computation time.

  3. Hybrid optimal online-overnight charging coordination of plug-in electric vehicles in smart grid

    Science.gov (United States)

    Masoum, Mohammad A. S.; Nabavi, Seyed M. H.

    2016-10-01

    Optimal coordinated charging of plugged-in electric vehicles (PEVs) in smart grid (SG) can be beneficial for both consumers and utilities. This paper proposes a hybrid optimal online followed by overnight charging coordination of high and low priority PEVs using discrete particle swarm optimization (DPSO) that considers the benefits of both consumers and electric utilities. Objective functions are online minimization of total cost (associated with grid losses and energy generation) and overnight valley filling through minimization of the total load levels. The constraints include substation transformer loading, node voltage regulations and the requested final battery state of charge levels (SOCreq). The main challenge is optimal selection of the overnight starting time (toptimal-overnight,start) to guarantee charging of all vehicle batteries to the SOCreq levels before the requested plug-out times (treq) which is done by simultaneously solving the online and overnight objective functions. The online-overnight PEV coordination approach is implemented on a 449-node SG; results are compared for uncoordinated and coordinated battery charging as well as a modified strategy using cost minimizations for both online and overnight coordination. The impact of toptimal-overnight,start on performance of the proposed PEV coordination is investigated.

  4. Ford C-Max plug-in hybrid; Ford C-Max mit Plug-in-Hybridtechnik

    Energy Technology Data Exchange (ETDEWEB)

    Schamel, Andreas; D' Annunzio, Julie; Iorio, Rob [Ford Motor Company, Dearborn, MI (United States); Schmitz, Peter [Ford-Forschungszentrum Aachen GmbH, Aachen (Germany)

    2013-03-01

    Ford provides consumers a broad choice of electrified vehicles globally, including full hybrids, plug-in hybrids and all-electric vehicles. The all-new 2013 model year C-Max Energi Plug-in Hybrid utilises the third generation of Ford hybrid technology. This article discusses the hybrid powersplit architecture and components, as well as the charging capability and human-machine interfaces, used in the C-Max Energi Plug-In Hybrid. (orig.)

  5. Air quality impacts of plug-in hybrid electric vehicles in Texas: evaluating three battery charging scenarios

    International Nuclear Information System (INIS)

    Thompson, Tammy M; King, Carey W; Webber, Michael E; Allen, David T

    2011-01-01

    The air quality impacts of replacing approximately 20% of the gasoline-powered light duty vehicle miles traveled (VMT) with electric VMT by the year 2018 were examined for four major cities in Texas: Dallas/Ft Worth, Houston, Austin, and San Antonio. Plug-in hybrid electric vehicle (PHEV) charging was assumed to occur on the electric grid controlled by the Electricity Reliability Council of Texas (ERCOT), and three charging scenarios were examined: nighttime charging, charging to maximize battery life, and charging to maximize driver convenience. A subset of electricity generating units (EGUs) in Texas that were found to contribute the majority of the electricity generation needed to charge PHEVs at the times of day associated with each scenario was modeled using a regional photochemical model (CAMx). The net impacts of the PHEVs on the emissions of precursors to the formation of ozone included an increase in NO x emissions from EGUs during times of day when the vehicle is charging, and a decrease in NO x from mobile emissions. The changes in maximum daily 8 h ozone concentrations and average exposure potential at twelve air quality monitors in Texas were predicted on the basis of these changes in NO x emissions. For all scenarios, at all monitors, the impact of changes in vehicular emissions, rather than EGU emissions, dominated the ozone impact. In general, PHEVs lead to an increase in ozone during nighttime hours (due to decreased scavenging from both vehicles and EGU stacks) and a decrease in ozone during daytime hours. A few monitors showed a larger increase in ozone for the convenience charging scenario versus the other two scenarios. Additionally, cumulative ozone exposure results indicate that nighttime charging is most likely to reduce a measure of ozone exposure potential versus the other two scenarios.

  6. Swarm Intelligence-Based Smart Energy Allocation Strategy for Charging Stations of Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Imran Rahman

    2015-01-01

    Full Text Available Recent researches towards the use of green technologies to reduce pollution and higher penetration of renewable energy sources in the transportation sector have been gaining popularity. In this wake, extensive participation of plug-in hybrid electric vehicles (PHEVs requires adequate charging allocation strategy using a combination of smart grid systems and smart charging infrastructures. Daytime charging stations will be needed for daily usage of PHEVs due to the limited all-electric range. Intelligent energy management is an important issue which has already drawn much attention of researchers. Most of these works require formulation of mathematical models with extensive use of computational intelligence-based optimization techniques to solve many technical problems. In this paper, gravitational search algorithm (GSA has been applied and compared with another member of swarm family, particle swarm optimization (PSO, considering constraints such as energy price, remaining battery capacity, and remaining charging time. Simulation results obtained for maximizing the highly nonlinear objective function evaluate the performance of both techniques in terms of best fitness.

  7. Power system operation risk analysis considering charging load self-management of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Liu, Zhe; Wang, Dan; Jia, Hongjie; Djilali, Ned

    2014-01-01

    Highlights: • The interactive mechanism between system and PHEVs is presented. • The charging load self-management without sacrificing user requirements is proposed. • The charging load self-management is coupled to system operation risk analysis. • The charging load self-management can reduce the extra risk brought by PHEVs. • The charging load self-management can shift charging power to the time with low risk. - Abstract: Many jurisdictions around the world are supporting the adoption of electric vehicles through incentives and the deployment of a charging infrastructure to reduce greenhouse gas emissions. Plug-in hybrid electric vehicles (PHEVs), with offer mature technology and stable performance, are expected to gain an increasingly larger share of the consumer market. The aggregated effect on power grid due to large-scale penetration of PHEVs needs to be analyzed. Nighttime-charging which typically characterizes PHEVs is helpful in filling the nocturnal load valley, but random charging of large PHEV fleets at night may result in new load peaks and valleys. Active response strategy is a potentially effective solution to mitigate the additional risks brought by the integration of PHEVs. This paper proposes a power system operation risk analysis framework in which charging load self-management is used to control system operation risk. We describe an interactive mechanism between the system and PHEVs in conjunction with a smart charging model is to simulate the time series power consumption of PHEVs. The charging load is managed with adjusting the state transition boundaries and without violating the users’ desired charging constraints. The load curtailment caused by voltage or power flow violation after outages is determined by controlling charging power. At the same time, the system risk is maintained under an acceptable level through charging load self-management. The proposed method is implemented using the Roy Billinton Test System (RBTS) and

  8. Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles

    International Nuclear Information System (INIS)

    Shiau, Ching-Shin Norman; Samaras, Constantine; Hauffe, Richard; Michalek, Jeremy J.

    2009-01-01

    Plug-in hybrid electric vehicle (PHEV) technology is receiving attention as an approach to reducing US dependency on foreign oil and greenhouse gas (GHG) emissions from the transportation sector. PHEVs require large batteries for energy storage, which affect vehicle cost, weight, and performance. We construct PHEV simulation models to account for the effects of additional batteries on fuel consumption, cost, and GHG emissions over a range of charging frequencies (distance traveled between charges). We find that when charged frequently, every 20 miles or less, using average US electricity, small-capacity PHEVs are less expensive and release fewer GHGs than hybrid electric vehicles (HEVs) or conventional vehicles. For moderate charging intervals of 20-100 miles, PHEVs release fewer GHGs, but HEVs have lower lifetime costs. High fuel prices, low-cost batteries, or high carbon taxes combined with low-carbon electricity generation would make small-capacity PHEVs cost competitive for a wide range of drivers. In contrast, increased battery specific energy or carbon taxes without decarbonization of the electricity grid would have limited impact. Large-capacity PHEVs sized for 40 or more miles of electric-only travel do not offer the lowest lifetime cost in any scenario, although they could minimize GHG emissions for some drivers and provide potential to shift air pollutant emissions away from population centers. The tradeoffs identified in this analysis can provide a space for vehicle manufacturers, policymakers, and the public to identify optimal decisions for PHEV design, policy and use. Given the alignment of economic, environmental, and national security objectives, policies aimed at putting PHEVs on the road will likely be most effective if they focus on adoption of small-capacity PHEVs by urban drivers who can charge frequently.

  9. A Personalized Rolling Optimal Charging Schedule for Plug-In Hybrid Electric Vehicle Based on Statistical Energy Demand Analysis and Heuristic Algorithm

    DEFF Research Database (Denmark)

    Kong, Fanrong; Jiang, Jianhui; Ding, Zhigang

    2017-01-01

    To alleviate the emission of greenhouse gas and the dependence on fossil fuel, Plug-in Hybrid Electrical Vehicles (PHEVs) have gained an increasing popularity in current decades. Due to the fluctuating electricity prices in the power market, a charging schedule is very influential to driving cost...

  10. Impact of plug-in hybrid electric vehicles charging demand on the optimal energy management of renewable micro-grids

    International Nuclear Information System (INIS)

    Kavousi-Fard, Abdollah; Abunasri, Alireza; Zare, Alireza; Hoseinzadeh, Rasool

    2014-01-01

    This paper suggests a new stochastic expert framework to investigate the charging effect of plug-in hybrid electric vehicles (PHEVs) on the optimal operation and management of micro-grids (MGs). In this way, a useful method based on smart charging approach is proposed to consider the charging demand of PHEVs in both residential location and public charging stations. The analysis is simulated for 24 h considering the uncertainties associated with the forecast error in the charging demand of PHEVs, hourly load consumption, hourly energy price and Renewable Energy Sources (RESs) output power. In order to see the effect of storage devices on the operation of the MG, NiMH-Battery is also incorporated in the MG. According to the high complexity of the problem, a new optimization method called θ-krill herd (θ-KH) algorithm is proposed which uses the phase angle vectors to update the velocity/position of krill animals with faster and more stable convergence. In addition, a new modification method is proposed to improve the search ability of the algorithm, effectively. The suggested problem is examined on an MG including different RESs such as photovoltaic (PV), fuel cells (FCs), wind turbine (WT), micro turbine (MT) and battery as the storage device. - Highlights: • Introducing an expert stochastic framework for optimal operation and management of MGs including PHEVs. • Introducing a new artificial optimization algorithm based on KH evolutionary technique. • Introducing a new version of KH algorithm called θ-KH for the optimization applications. • Modeling the uncertainty of forecast error in Wind turbine, Photovoltaics, market price, load data, PHEVs electric charging demand in an intelligent framework

  11. Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics

    International Nuclear Information System (INIS)

    Kelly, Jarod C.; MacDonald, Jason S.; Keoleian, Gregory A.

    2012-01-01

    Highlights: ► Analyzed National Household Travel Survey to simulate driving and charging patterns. ► Average compact PHEVs used 49 kW h of electricity and 6.8 L of gasoline per week. ► Percent of electrically driven miles increased from 64.3 in 2001 to 66.7 in 2009. ► Investigated demographic effects of sex, age, income, and household location. ► Analysis shows higher utility factors for females versus males and high age variation. -- Abstract: Plug-in hybrid electric vehicles (PHEVs) are one promising technology for addressing concerns around petroleum consumption, energy security and greenhouse gas emissions. However, there is much uncertainty in the impact that PHEVs can have on energy consumption and related emissions, as they are dependent on vehicle technology, driving patterns, and charging behavior. A methodology is used to simulate PHEV charging and gasoline consumption based on driving pattern data in USDOT’s National Household Travel Survey. The method uses information from each trip taken by approximately 170,000 vehicles to track their battery state of charge throughout the day, and to determine the timing and quantity of electricity and gasoline consumption for a fleet of PHEVs. Scenarios were developed to examine the effects of charging location, charging rate, time of charging and battery size. Additionally, demographic information was examined to see how driver and household characteristics influence consumption patterns. Results showed that a compact vehicle with a 10.4 kW h useable battery (approximately a 42 mile [68 km] all electric range) travels between 62.5% and 75.7% on battery electricity, depending on charging scenario. The percent of travel driven electrically (Utility Factor, UF) in a baseline charging scenario increased from 64.3% using 2001 NHTS data to 66.7% using 2009 data. The average UF was 63.5% for males and 72.9% for females and in both cases they are highly sensitive to age. Vehicle charging load profiles across

  12. Concept of intellectual charging system for electrical and plug-in hybrid vehicles in Russian Federation

    Science.gov (United States)

    Kolbasov, A.; Karpukhin, K.; Terenchenko, A.; Kavalchuk, I.

    2018-02-01

    Electric vehicles have become the most common solution to improve sustainability of the transportation systems all around the world. Despite all benefits, wide adaptation of electric vehicles requires major changes in the infrastructure, including grid adaptation to the rapidly increased power demand and development of the Connected Car concept. This paper discusses the approaches to improve usability of electric vehicles, by creating suitable web-services, with possible connections vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-grid. Developed concept combines information about electrical loads on the grid in specific direction, navigation information from the on-board system, existing and empty charging slots and power availability. In addition, this paper presents the universal concept of the photovoltaic integrated charging stations, which are connected to the developed information systems. It helps to achieve rapid adaptation of the overall infrastructure to the needs of the electric vehicles users with minor changes in the existing grid and loads.

  13. Energy Management and Control of Plug-In Hybrid Electric Vehicle Charging Stations in a Grid-Connected Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Sidra Mumtaz

    2017-11-01

    Full Text Available The charging infrastructure plays a key role in the healthy and rapid development of the electric vehicle industry. This paper presents an energy management and control system of an electric vehicle charging station. The charging station (CS is integrated to a grid-connected hybrid power system having a wind turbine maximum power point tracking (MPPT controlled subsystem, photovoltaic (PV MPPT controlled subsystem and a controlled solid oxide fuel cell with electrolyzer subsystem which are characterized as renewable energy sources. In this article, an energy management system is designed for charging and discharging of five different plug-in hybrid electric vehicles (PHEVs simultaneously to fulfil the grid-to-vehicle (G2V, vehicle-to-grid (V2G, grid-to-battery storage system (G2BSS, battery storage system-to-grid (BSS2G, battery storage system-to-vehicle (BSS2V, vehicle-to-battery storage system (V2BSS and vehicle-to-vehicle (V2V charging and discharging requirements of the charging station. A simulation test-bed in Matlab/Simulink is developed to evaluate and control adaptively the AC-DC-AC converter of non-renewable energy source, DC-DC converters of the storage system, DC-AC grid side inverter and the converters of the CS using adaptive proportional-integral-derivate (AdapPID control paradigm. The effectiveness of the AdapPID control strategy is validated through simulation results by comparing with conventional PID control scheme.

  14. Plug-in Hybrid Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Angie; Moore, Ray; Rowden, Tim

    2013-09-27

    Our main project objective was to implement Plug-in Electric Vehicles (PEV) and charging infrastructure into our electric distribution service territory and help reduce barriers in the process. Our research demonstrated the desire for some to be early adopters of electric vehicles and the effects lack of education plays on others. The response of early adopters was tremendous: with the initial launch of our program we had nearly 60 residential customers interested in taking part in our program. However, our program only allowed for 15 residential participants. Our program provided assistance towards purchasing a PEV and installation of Electric Vehicle Supply Equipment (EVSE). The residential participants have all come to love their PEVs and are more than enthusiastic about promoting the many benefits of driving electric.

  15. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Science.gov (United States)

    . Fueling and Driving Options Plug-in hybrid electric vehicle batteries can be charged by an outside sized hybrid electric vehicle. If the vehicle is driven a shorter distance than its all-electric range drives the wheels almost all of the time, but the vehicle can switch to work like a parallel hybrid at

  16. Plug-In Hybrid Electric Vehicle Basics | NREL

    Science.gov (United States)

    Plug-In Hybrid Electric Vehicle Basics Plug-In Hybrid Electric Vehicle Basics Imagine being able to one that's in a standard hybrid electric vehicle. The larger battery pack allows plug-in hybrids to between fill-ups) that's very similar to the range of a conventional vehicle. A plug-in hybrid vehicle's

  17. Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption

    International Nuclear Information System (INIS)

    Peterson, Scott B.; Michalek, Jeremy J.

    2013-01-01

    Federal electric vehicle (EV) policies in the United States currently include vehicle purchase subsidies linked to EV battery capacity and subsidies for installing charging stations. We assess the cost-effectiveness of increased battery capacity vs. nondomestic charging infrastructure installation for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks, and SUVs in the US. We find across a wide range of scenarios that the least-cost solution is for more drivers to switch to low-capacity plug-in hybrid electric vehicles (short electric range with gasoline backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are needed per vehicle, nondomestic charging infrastructure installation is substantially more expensive than increased battery capacity per gallon saved, and both approaches have higher costs than US oil premium estimates. Cost effectiveness of all subsidies are lower under a binding fuel economy standard. Comparison of results to the structure of current federal subsidies shows that policy is not aligned with fuel savings potential, and we discuss issues and alternatives. - Highlights: ► We compare cost of PHEV batteries vs. charging infrastructure per gallon of gasoline saved. ► The lowest cost solution is to switch more drivers to low-capacity PHEVs and HEVs. ► If more gasoline savings is needed, batteries offer a better value than chargers. ► Extra batteries and chargers are both more costly per gal than oil premium estimates. ► Current subsidies are misaligned with fuel savings. We discuss alternatives.

  18. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  19. Plug-in hybrid electric vehicle R&D plan

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  20. A Personalized Rolling Optimal Charging Schedule for Plug-In Hybrid Electric Vehicle Based on Statistical Energy Demand Analysis and Heuristic Algorithm

    Directory of Open Access Journals (Sweden)

    Fanrong Kong

    2017-09-01

    Full Text Available To alleviate the emission of greenhouse gas and the dependence on fossil fuel, Plug-in Hybrid Electrical Vehicles (PHEVs have gained an increasing popularity in current decades. Due to the fluctuating electricity prices in the power market, a charging schedule is very influential to driving cost. Although the next-day electricity prices can be obtained in a day-ahead power market, a driving plan is not easily made in advance. Although PHEV owners can input a next-day plan into a charging system, e.g., aggregators, day-ahead, it is a very trivial task to do everyday. Moreover, the driving plan may not be very accurate. To address this problem, in this paper, we analyze energy demands according to a PHEV owner’s historical driving records and build a personalized statistic driving model. Based on the model and the electricity spot prices, a rolling optimization strategy is proposed to help make a charging decision in the current time slot. On one hand, by employing a heuristic algorithm, the schedule is made according to the situations in the following time slots. On the other hand, however, after the current time slot, the schedule will be remade according to the next tens of time slots. Hence, the schedule is made by a dynamic rolling optimization, but it only decides the charging decision in the current time slot. In this way, the fluctuation of electricity prices and driving routine are both involved in the scheduling. Moreover, it is not necessary for PHEV owners to input a day-ahead driving plan. By the optimization simulation, the results demonstrate that the proposed method is feasible to help owners save charging costs and also meet requirements for driving.

  1. Report on electric cars and plug-in hybrid cars; Redegoerelse - elbiler og plug-in hybridbiler

    Energy Technology Data Exchange (ETDEWEB)

    Elkjaer Toennesen, A.; Winther, K.; Noerregaard, K. (Teknologisk Institut, Taastrup (Denmark)); Larsen, Esben; Christensen, Linda; Kveiborg, O. (Danmarks Teknologiske Univ., Kgs. Lyngby (DTU) (Denmark))

    2010-04-15

    The Center for Green Transport at the Danish Transport Authority has prepared this statement in order to uncover driving technical aspects, user expectations and needs, and the environmental consequences of using electric and plug-in hybrid cars. An electric car is defined as a car driven by an electric motor that has a battery that can be charged with power from the grid. A plug-in hybrid car is defined as a car that combines gasoline or diesel engine with an electric motor with a battery which can be recharged with power from the grid. From an overall consideration related to the transport sector electric cars and plug-in hybrid cars have the major advantage that negative impacts on environment and climate from traffic can be reduced while the high mobility is maintained. Through an increased use of electric cars and plug-in hybrid cars, the many advantages attached to the car as an individual transportation form is maintained, while CO{sub 2} emissions etc. are reduced. Electric cars and plug-in hybrid cars is one of the technologies that are considered to have particularly great prospects in the medium term when it comes to promoting new technologies in transport. Another advantage of using electric vehicles is the power supply factor. An increased use of electricity in transport will reduce the need for and dependence on fossil fuels in the sector. Both electric cars and plug-in hybrid cars are expected to be used for storage of wind power, a possibility which is hardly available today. The plug-in hybrid car could meet some of the challenges facing the pure electric car, because it also can use conventional fuel. The report presents analyses based on three focus areas: a) Users' needs, expectations and economics in relation to vehicles; b) The technology - and hence the manufacturers' opportunities and challenges; c) Connection to the power grid. (ln)

  2. Charging up for the future of plug-in hybrids and range extenders. An exploration of options for increased battery utilisation; Opladen voor de toekomst van plug-in hybrides en range extenders. Een verkenning naar mogelijkheden voor vergroten van het elektrische gebruik

    Energy Technology Data Exchange (ETDEWEB)

    Van Essen, H.; Schroten, A.; Aarnink, S.

    2013-05-15

    If the full potential of plug-in hybrids and electric cars with a range extender is to be usefully exploited, it is important that these vehicles be used in battery mode as much as possible. This means that users' charging and driving behaviour needs to be positively influenced. This can be achieved through suitably designed financial incentives on the part of employers and government, further expansion of battery-charging infrastructure, and transferring knowledge on driving style. Improved driving and charging behaviour will lead to lower effective fuel consumption, reduced CO2 emissions and improved air quality. These are some of the results of this study in which it is examined how the performance of plug-in hybrids and cars with a range extender can be improved. It is the first study to look into the factors governing practical usage of such vehicles and the options available to the various parties to improve that usage. To this end a literature study was carried out and interviews were held with employers, leasing companies, trade associations, government agencies and other parties [Dutch] Om het potentieel van plug-in hybrides en elektrische auto's met een range extender te benutten is het van belang dat deze auto's zoveel mogelijk elektrisch worden gereden. Hiervoor is het nodig om het oplaad- en rijgedrag van de gebruikers positief te beïnvloeden. Dit kan door het geven van slimme financiële prikkels door werkgevers en overheid, het verder uitbreiden van de laadinfrastructuur en kennisoverdracht over rijgedrag. Een verbeterd rij- en laadgedrag zorgt voor een lager brandstofpraktijkverbruik, minder CO2-uitstoot en een betere luchtkwaliteit. Dit staat onder meer in de studie 'Opladen voor de toekomst van plug-in hybrides en range extenders' van CE Delft, waarin op verzoek van de Nederlandse importeurs van Toyota en Opel is onderzocht hoe het elektrisch gebruik kan worden verbeterd. Hierin is voor het eerst gekeken naar de factoren

  3. The Novel Application of Optimization and Charge Blended Energy Management Control for Component Downsizing within a Plug-in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Ravi Shankar

    2012-11-01

    Full Text Available  The adoption of Plug-in Hybrid Electric Vehicles (PHEVs is widely seen as an interim solution for the decarbonization of the transport sector. Within a PHEV, determining the required energy storage capacity of the battery remains one of the primary concerns for vehicle manufacturers and system integrators. This fact is particularly pertinent since the battery constitutes the largest contributor to vehicle mass. Furthermore, the financial cost associated with the procurement, design and integration of battery systems is often cited as one of the main barriers to vehicle commercialization. The ability to integrate the optimization of the energy management control system with the sizing of key PHEV powertrain components presents a significant area of research. Contained within this paper is an optimization study in which a charge blended strategy is used to facilitate the downsizing of the electrical machine, the internal combustion engine and the high voltage battery. An improved Equivalent Consumption Method has been used to manage the optimal power split within the powertrain as the PHEV traverses a range of different drivecycles. For a target CO2 value and drivecycle, results show that this approach can yield significant downsizing opportunities, with cost reductions on the order of 2%–9% being realizable.

  4. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-12-31

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  5. Plug-in hybrid electric vehicles in smart grid

    Science.gov (United States)

    Yao, Yin

    In this thesis, in order to investigate the impact of charging load from plug-in hybrid electric vehicles (PHEVs), a stochastic model is developed in Matlab. In this model, two main types of PHEVs are defined: public transportation vehicles and private vehicles. Different charging time schedule, charging speed and battery capacity are considered for each type of vehicles. The simulation results reveal that there will be two load peaks (at noon and in evening) when the penetration level of PHEVs increases continuously to 30% in 2030. Therefore, optimization tool is utilized to shift load peaks. This optimization process is based on real time pricing and wind power output data. With the help of smart grid, power allocated to each vehicle could be controlled. As a result, this optimization could fulfill the goal of shifting load peaks to valley areas where real time price is low or wind output is high.

  6. Plug-in hybrid electric vehicles in dynamical energy markets

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, P.P.J. van den

    2008-01-01

    The plug-in hybrid electric vehicle allows vehicle propulsion from multiple internal power sources. Electric energy from the grid can be utilized by means of the plug-in connection. An on-line energy management (EM) strategy is proposed to minimize the costs for taking energy from each power source.

  7. 'Plug-in hybrids and smart grids'

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R.

    2008-07-01

    This presentation made at the Swiss 2008 research conference on traffic by Robert Horbaty from the ENCO Energy Consulting AG takes a look at how the amount of renewable energy in the electricity mains and the efficiency of mobility can be increased and pollution reduced at the same time. The integration of energy supply and electrically-powered mobility to help reduce the effects of intermittent power production from renewable sources of energy is discussed. The 'smart' technologies needed for integration and management are looked at. Examples of pilot projects are quoted and the effects of the liberalisation of the electricity markets are discussed. The advantages offered by plug-in hybrid vehicles are noted and load-shifting possibilities are discussed. Trends towards mains regulation using bi-directional charging facilities are noted.

  8. Manitoba plug-in hybrid electric vehicle (PHEV) demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Hoemsen, R. [Red River College, Winnipeg, MB (Canada); Parsons, R. [Government of Manitoba, Winnipeg, MB (Canada). Centre for Emerging Renewable Energy

    2010-07-01

    Manitoba has low electricity rates, the highest proportion of renewables, and a legislated commitment to reduce greenhouse gases. However, the province still relies heavily on oil as everyone else. The mix of energy opportunities in Manitoba were highlighted in this presentation, with particular reference to the commercialization of electric vehicles. Several photographs were presented of the Toyota plug-in hybrid vehicle and a plug-in hybrid electric demonstration vehicle. A demonstration project overview was offered that used technology from A123 Systems Inc. The conversion module and vehicle users were profiled. Topics that were presented related to the demonstration project included monitoring; gasoline fuel economy results; fuel economy variability; cold weather operation; cold weather issues; battery upgrade solutions; and highly qualified personnel. It was concluded that in terms of follow-up, there is a need to combine findings of current plug-in hybrid electric vehicle demonstration with those for the new Toyota production plug-in hybrid vehicles. Key next steps for the demonstration are to address cabin heating requirements; better characterizing winter performance; and implementation of IPLC units on all plug-in hybrid electric vehicles for electricity consumption. figs.

  9. Plug-In Electric Vehicle Handbook for Workplace Charging Hosts

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-01

    Plug-in electric vehicles (PEVs) have immense potential for increasing the country's energy, economic, and environmental security, and they will play a key role in the future of U.S. transportation. By providing PEV charging at the workplace, employers are perfectly positioned to contribute to and benefit from the electrification of transportation. This handbook answers basic questions about PEVs and charging equipment, helps employers assess whether to offer workplace charging for employees, and outlines important steps for implementation.

  10. Plug-in electric vehicle (PEV) smart charging module

    Science.gov (United States)

    Harper, Jason; Dobrzynski, Daniel S.

    2017-09-12

    A smart charging system for charging a plug-in electric vehicle (PEV) includes an electric vehicle supply equipment (EVSE) configured to supply electrical power to the PEV through a smart charging module coupled to the EVSE. The smart charging module comprises an electronic circuitry which includes a processor. The electronic circuitry includes electronic components structured to receive electrical power from the EVSE, and supply the electrical power to the PEV. The electronic circuitry is configured to measure a charging parameter of the PEV. The electronic circuitry is further structured to emulate a pulse width modulated signal generated by the EVSE. The smart charging module can also include a first coupler structured to be removably couple to the EVSE and a second coupler structured to be removably coupled to the PEV.

  11. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle

    Science.gov (United States)

    Conversions Hybrid and Plug-In Electric Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Twitter Bookmark Alternative

  12. Electric and Plug-In Hybrid Electric Fleet Vehicle Testing | Transportation

    Science.gov (United States)

    Research | NREL Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations How Electric and Plug-In Hybrid Electric Vehicles plugging the vehicle into an electric power source. PHEVs are powered by an internal combustion engine that

  13. Dueco Plug-In Hybrid Engines

    Energy Technology Data Exchange (ETDEWEB)

    Phillip Eidler

    2011-09-30

    Dueco, a final stage manufacture of utility trucks, was awarded a congressionally directed cost shared contract to develop, test, validate, and deploy several PHEV utility trucks. Odyne will be the primary subcontractor responsible for all aspects of the hybrid system including its design and installation on a truck chassis. Key objectives in this program include developing a better understanding of the storage device and system capability; improve aspects of the existing design, optimization of system and power train components, and prototype evaluation. This two year project will culminate in the delivery of at least five vehicles for field evaluation.

  14. Cost Effectiveness Analysis of Quasi-Static Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Gonder, Jeff; Burton, Evan; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud

    2015-11-11

    This study evaluates the costs and benefits associated with the use of a plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep analysis was performed over a number of a different battery sizes, charging powers, and charging stations. The net present value was calculated for each vehicle design and provided the basis for the design evaluation. In all cases, given present day economic assumptions, the conventional bus achieved the lowest net present value while the optimal plug-in hybrid electric bus scenario reached lower lifetime costs than the hybrid electric bus. The study also performed parameter sensitivity analysis under low market potential assumptions and high market potential assumptions. The net present value of plug-in hybrid electric bus is close to that of conventional bus.

  15. Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses

    International Nuclear Information System (INIS)

    Li, Liang; You, Sixiong; Yang, Chao; Yan, Bingjie; Song, Jian; Chen, Zheng

    2016-01-01

    Highlights: • The novel approximated global optimal energy management strategy has been proposed for hybrid powertrains. • Eight typical driving behaviors have been classified with K-means to deal with the multiplicative traffic conditions. • The stochastic driver models of different driving behaviors were established based on the Markov chains. • ECMS was used to modify the SMPC-based energy management strategy to improve its fuel economy. • The approximated global optimal energy management strategy for plug-in hybrid electric buses has been verified and analyzed. - Abstract: Driving cycles of a city bus is statistically characterized by some repetitive features, which makes the predictive energy management strategy very desirable to obtain approximate optimal fuel economy of a plug-in hybrid electric bus. But dealing with the complicated traffic conditions and finding an approximated global optimal strategy which is applicable to the plug-in hybrid electric bus still remains a challenging technique. To solve this problem, a novel driving-behavior-aware modified stochastic model predictive control method is proposed for the plug-in hybrid electric bus. Firstly, the K-means is employed to classify driving behaviors, and the driver models based on Markov chains is obtained under different kinds of driving behaviors. While the obtained driver behaviors are regarded as stochastic disturbance inputs, the local minimum fuel consumption might be obtained with a traditional stochastic model predictive control at each step, taking tracking the reference battery state of charge trajectory into consideration in the finite predictive horizons. However, this technique is still accompanied by some working points with reduced/worsened fuel economy. Thus, the stochastic model predictive control is modified with the equivalent consumption minimization strategy to eliminate these undesirable working points. The results in real-world city bus routines show that the

  16. The newly developed Toyota plug-in hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Takaoka, Toshifumi; Ichinose, Hiroki [Toyota Motor Corporation (Japan)

    2010-07-01

    Toyota has been introducing several hybrid vehicles (HV) as a countermeasure to the automobile's concerns, like CO2 reduction, energy security, and emission reduction in urban areas. A next step towards an even more effective solution for these concerns is a plug-in hybrid vehicle (PHV). This vehicle combines the advantages of electric vehicles (EV), which use clean electric energy, and HV, with it's high environmental potential and user- friendliness comparable to conventional vehicles, such as a long cruising range. This paper describes a newly developed plug-in hybrid system and its vehicle performance. This system uses a Li-ion battery with high energy density and has an affordable EV range without sacrificing cabin space. The vehicle achieves a CO2 emission of 59g/km and meets the most stringent emission regulations in the world. The new PHV is a forerunner of the large-scale mass production PHV two years later. PHVs have the potential to become popular as a realistic solution towards sustainable mobility by renewable electricity usage in the future. (orig.)

  17. Component sizing optimization of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Wu, Xiaolan; Cao, Binggang; Li, Xueyan; Xu, Jun; Ren, Xiaolong

    2011-01-01

    Plug-in hybrid electric vehicles (PHEVs) are considered as one of the most promising means to improve the near-term sustainability of the transportation and stationary energy sectors. This paper describes a methodology for the optimization of PHEVs component sizing using parallel chaos optimization algorithm (PCOA). In this approach, the objective function is defined so as to minimize the drivetrain cost. In addition, the driving performance requirements are considered as constraints. Finally, the optimization process is performed over three different all electric range (AER) and two types of batteries. The results from computer simulation show the effectiveness of the approach and the reduction in drivetrian cost while ensuring the vehicle performance.

  18. Plug-In Hybrid Vehicle Analysis (Milestone Report)

    Energy Technology Data Exchange (ETDEWEB)

    Markel, T.; Brooker, A.; Gonder, J.; O' Keefe, M.; Simpson, A.; Thornton, M.

    2006-11-01

    NREL's plug-in hybrid electric vehicle (PHEV) analysis activities made great strides in FY06 to objectively assess PHEV technology, support the larger U.S. Department of Energy PHEV assessment effort, and share technical knowledge with the vehicle research community and vehicle manufacturers. This report provides research papers and presentations developed in FY06 to support these efforts. The report focuses on the areas of fuel economy reporting methods, cost and consumption benefit analysis, real-world performance expectations, and energy management strategies.

  19. Comparison performance of split plug-in hybrid electric vehicle and hybrid electric vehicle using ADVISOR

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Electric vehicle suffers from relatively short range and long charging times and consequently has not become an acceptable solution to the automotive consumer. The addition of an internal combustion engine to extend the range of the electric vehicle is one method of exploiting the high efficiency and lack of emissions of the electric vehicle while retaining the range and convenient refuelling times of a conventional gasoline powered vehicle. The term that describes this type of vehicle is a hybrid electric vehicle. Many configurations of hybrid electric vehicles have been designed and implemented, namely the series, parallel and power-split configurations. This paper discusses the comparison between Split Plug-in Hybrid Electric Vehicle(SPHEV and Hybrid Electric Vehicle(HEV. Modelling methods such as physics-based Resistive Companion Form technique and Bond Graph method are presented with powertrain component and system modelling examples. The modelling and simulation capability of existing tools such as ADvanced VehIcle SimulatOR (ADVISOR is demonstrated through application examples. Since power electronics is indispensable in hybrid vehicles, the issue of numerical oscillations in dynamic simulations involving power electronics is briefly addressed.

  20. Important Factors for Early Market Microgrids: Demand Response and Plug-in Electric Vehicle Charging

    Science.gov (United States)

    White, David Masaki

    Microgrids are evolving concepts that are growing in interest due to their potential reliability, economic and environmental benefits. As with any new concept, there are many unresolved issues with regards to planning and operation. In particular, demand response (DR) and plug-in electric vehicle (PEV) charging are viewed as two key components of the future grid and both will likely be active technologies in the microgrid market. However, a better understanding of the economics associated with DR, the impact DR can have on the sizing of distributed energy resource (DER) systems and how to accommodate and price PEV charging is necessary to advance microgrid technologies. This work characterizes building based DR for a model microgrid, calculates the DER systems for a model microgrid under DR through a minimization of total cost, and determines pricing methods for a PEV charging station integrated with an individual building on the model microgrid. It is shown that DR systems which consist only of HVAC fan reductions provide potential economic benefits to the microgrid through participation in utility DR programs. Additionally, peak shaving DR reduces the size of power generators, however increasing DR capacity does not necessarily lead to further reductions in size. As it currently stands for a microgrid that is an early adopter of PEV charging, current installation costs of PEV charging equipment lead to a system that is not competitive with established commercial charging networks or to gasoline prices for plug-in hybrid electric vehicles (PHEV).

  1. Optimal control of a repowered vehicle: Plug-in fuel cell against plug-in hybrid electric powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Tribioli, L., E-mail: laura.tribioli@unicusano.it; Cozzolino, R. [Dept. of Industrial Engineering, University of Rome Niccolo’ Cusano (Italy); Barbieri, M. [Engineering Dept., University of Naples Parthenope, Centro Direzionale-Isola C4, 80143 Naples (Italy)

    2015-03-10

    This paper describes two different powertrain configurations for the repowering of a conventional vehicle, equipped with an internal combustion engine (ICE). A model of a mid-sized ICE-vehicle is realized and then modified to model both a parallel plug-in hybrid electric powertrain and a proton electrolyte membrane (PEM) fuel cell (FC) hybrid powertrain. The vehicle behavior under the application of an optimal control algorithm for the energy management is analyzed for the different scenarios and results are compared.

  2. Optimal control of a repowered vehicle: Plug-in fuel cell against plug-in hybrid electric powertrain

    International Nuclear Information System (INIS)

    Tribioli, L.; Cozzolino, R.; Barbieri, M.

    2015-01-01

    This paper describes two different powertrain configurations for the repowering of a conventional vehicle, equipped with an internal combustion engine (ICE). A model of a mid-sized ICE-vehicle is realized and then modified to model both a parallel plug-in hybrid electric powertrain and a proton electrolyte membrane (PEM) fuel cell (FC) hybrid powertrain. The vehicle behavior under the application of an optimal control algorithm for the energy management is analyzed for the different scenarios and results are compared

  3. Real-time immune-inspired optimum state-of-charge trajectory estimation using upcoming route information preview and neural networks for plug-in hybrid electric vehicles fuel economy

    Science.gov (United States)

    Mozaffari, Ahmad; Vajedi, Mahyar; Azad, Nasser L.

    2015-06-01

    The main proposition of the current investigation is to develop a computational intelligence-based framework which can be used for the real-time estimation of optimum battery state-of-charge (SOC) trajectory in plug-in hybrid electric vehicles (PHEVs). The estimated SOC trajectory can be then employed for an intelligent power management to significantly improve the fuel economy of the vehicle. The devised intelligent SOC trajectory builder takes advantage of the upcoming route information preview to achieve the lowest possible total cost of electricity and fossil fuel. To reduce the complexity of real-time optimization, the authors propose an immune system-based clustering approach which allows categorizing the route information into a predefined number of segments. The intelligent real-time optimizer is also inspired on the basis of interactions in biological immune systems, and is called artificial immune algorithm (AIA). The objective function of the optimizer is derived from a computationally efficient artificial neural network (ANN) which is trained by a database obtained from a high-fidelity model of the vehicle built in the Autonomie software. The simulation results demonstrate that the integration of immune inspired clustering tool, AIA and ANN, will result in a powerful framework which can generate a near global optimum SOC trajectory for the baseline vehicle, that is, the Toyota Prius PHEV. The outcomes of the current investigation prove that by taking advantage of intelligent approaches, it is possible to design a computationally efficient and powerful SOC trajectory builder for the intelligent power management of PHEVs.

  4. System and method for charging a plug-in electric vehicle

    Science.gov (United States)

    Bassham, Marjorie A.; Spigno, Jr., Ciro A.; Muller, Brett T.; Newhouse, Vernon L.

    2017-05-02

    A charging system and method that may be used to automatically apply customized charging settings to a plug-in electric vehicle, where application of the settings is based on the vehicle's location. According to an exemplary embodiment, a user may establish and save a separate charging profile with certain customized charging settings for each geographic location where they plan to charge their plug-in electric vehicle. Whenever the plug-in electric vehicle enters a new geographic area, the charging method may automatically apply the charging profile that corresponds to that area. Thus, the user does not have to manually change or manipulate the charging settings every time they charge the plug-in electric vehicle in a new location.

  5. Distributed energy resources management using plug-in hybrid electric vehicles as a fuel-shifting demand response resource

    DEFF Research Database (Denmark)

    Morais, Hugo; Sousa, Tiago; Soares, J.

    2015-01-01

    In the smart grids context, distributed energy resources management plays an important role in the power systems' operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important...... to develop adequate methodologies to schedule the electric vehicles' charge and discharge processes, avoiding network congestions and providing ancillary services.This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed......, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting...

  6. Component sizing optimization of plug-in hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaolan; Cao, Binggang; Li, Xueyan; Xu, Jun; Ren, Xiaolong [School of Mechanical Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China)

    2011-03-15

    Plug-in hybrid electric vehicles (PHEVs) are considered as one of the most promising means to improve the near-term sustainability of the transportation and stationary energy sectors. This paper describes a methodology for the optimization of PHEVs component sizing using parallel chaos optimization algorithm (PCOA). In this approach, the objective function is defined so as to minimize the drivetrain cost. In addition, the driving performance requirements are considered as constraints. Finally, the optimization process is performed over three different all electric range (AER) and two types of batteries. The results from computer simulation show the effectiveness of the approach and the reduction in drivetrian cost while ensuring the vehicle performance. (author)

  7. Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    John G. Smart; Sera White; Michael Duoba

    2009-05-01

    Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energy’s (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

  8. Lessons Learned about Plug-in Electric Vehicle Charging Infrastructure from The EV Project and ChargePoint America

    Energy Technology Data Exchange (ETDEWEB)

    Smart, John Galloway [Idaho National Lab. (INL), Idaho Falls, ID (United States); Salisbury, Shawn Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-07-01

    This report summarizes key findings in two national plug-in electric vehicle charging infrastructure demonstrations: The EV Project and ChargePoint America. It will be published to the INL/AVTA website for the general public.

  9. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  10. Computational analysis on plug-in hybrid electric motorcycle chassis

    Science.gov (United States)

    Teoh, S. J.; Bakar, R. A.; Gan, L. M.

    2013-12-01

    Plug-in hybrid electric motorcycle (PHEM) is an alternative to promote sustainability lower emissions. However, the PHEM overall system packaging is constrained by limited space in a motorcycle chassis. In this paper, a chassis applying the concept of a Chopper is analysed to apply in PHEM. The chassis 3dimensional (3D) modelling is built with CAD software. The PHEM power-train components and drive-train mechanisms are intergraded into the 3D modelling to ensure the chassis provides sufficient space. Besides that, a human dummy model is built into the 3D modelling to ensure the rider?s ergonomics and comfort. The chassis 3D model then undergoes stress-strain simulation. The simulation predicts the stress distribution, displacement and factor of safety (FOS). The data are used to identify the critical point, thus suggesting the chassis design is applicable or need to redesign/ modify to meet the require strength. Critical points mean highest stress which might cause the chassis to fail. This point occurs at the joints at triple tree and bracket rear absorber for a motorcycle chassis. As a conclusion, computational analysis predicts the stress distribution and guideline to develop a safe prototype chassis.

  11. Plug-in-Hybrid Vehicle Use, Energy Consumption, and Greenhouse Emissions: An Analysis of Household Vehicle Placements in Northern California

    Directory of Open Access Journals (Sweden)

    Daniel Kammen

    2011-03-01

    Full Text Available We report on the real-world use over the course of one year of a nickel-metal-hydride plug-in hybrid—the Toyota Plug-In HV—by a set of 12 northern California households able to charge at home and work. From vehicle use data, energy and greenhouse-emissions implications are also explored. A total of 1557 trips—most using under 0.5 gallons of gasoline—ranged up to 2.4 hours and 133 miles and averaged 14 minutes and 7 miles. 399 charging events averaged 2.6 hours. The maximum lasted 4.6 hours. Most recharges added less than 1.4 kWh, with a mean charge of 0.92 kWh. The average power drawn was under one-half kilowatt. The greenhouse gas emissions from driving and charging were estimated to be 2.6 metric tons, about half of the emissions expected from a 22.4-mpg vehicle (the MY2009 fleet-wide real-world average. The findings contribute to better understanding of how plug-in hybrids might be used, their potential impact, and how potential benefits and requirements vary for different plug-in-vehicle designs. For example, based on daily driving distances, 20 miles of charge-depleting range would have been fully utilized on 81% of days driven, whereas 40 miles would not have been fully utilized on over half of travel days.

  12. Plug-In Hybrid Urban Delivery Truck Technology Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Miyasato, Matt [South Coast Air Quality Management District Building Corporation, Diamond Bar, CA (United States); Impllitti, Joseph [South Coast Air Quality Management District Building Corporation, Diamond Bar, CA (United States); Pascal, Amar [South Coast Air Quality Management District Building Corporation, Diamond Bar, CA (United States)

    2015-07-31

    The I-710 and CA-60 highways are key transportation corridors in the Southern California region that are heavily used on a daily basis by heavy duty drayage trucks that transport the cargo from the ports to the inland transportation terminals. These terminals, which include store/warehouses, inland-railways, are anywhere from 5 to 50 miles in distance from the ports. The concentrated operation of these drayage vehicles in these corridors has had and will continue to have a significant impact on the air quality in this region whereby significantly impacting the quality of life in the communities surrounding these corridors. To reduce these negative impacts it is critical that zero and near-zero emission technologies be developed and deployed in the region. A potential local market size of up to 46,000 trucks exists in the South Coast Air Basin, based on near- dock drayage trucks and trucks operating on the I-710 freeway. The South Coast Air Quality Management District (SCAQMD), California Air Resources Board (CARB) and Southern California Association of Governments (SCAG) — the agencies responsible for preparing the State Implementation Plan required under the federal Clean Air Act — have stated that to attain federal air quality standards the region will need to transition to broad use of zero and near zero emission energy sources in cars, trucks and other equipment (Southern California Association of Governments et al, 2011). SCAQMD partnered with Volvo Trucks to develop, build and demonstrate a prototype Class 8 heavy-duty plug-in hybrid drayage truck with significantly reduced emissions and fuel use. Volvo’s approach leveraged the group’s global knowledge and experience in designing and deploying electromobility products. The proprietary hybrid driveline selected for this proof of concept was integrated with multiple enhancements to the complete vehicle in order to maximize the emission and energy impact of electrification. A detailed review of all

  13. Self-learning control system for plug-in hybrid vehicles

    Science.gov (United States)

    DeVault, Robert C [Knoxville, TN

    2010-12-14

    A system is provided to instruct a plug-in hybrid electric vehicle how optimally to use electric propulsion from a rechargeable energy storage device to reach an electric recharging station, while maintaining as high a state of charge (SOC) as desired along the route prior to arriving at the recharging station at a minimum SOC. The system can include the step of calculating a straight-line distance and/or actual distance between an orientation point and the determined instant present location to determine when to initiate optimally a charge depleting phase. The system can limit extended driving on a deeply discharged rechargeable energy storage device and reduce the number of deep discharge cycles for the rechargeable energy storage device, thereby improving the effective lifetime of the rechargeable energy storage device. This "Just-in-Time strategy can be initiated automatically without operator input to accommodate the unsophisticated operator and without needing a navigation system/GPS input.

  14. Kansas Consortium Plug-in Hybrid Medium Duty

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-03-31

    On September 30, 2008, the US Department of Energy (DoE), issued a cooperative agreement award, DE-FC26-08NT01914, to the Metropolitan Energy Center (MEC), for a project known as “Kansas Consortium Plug-in Hybrid Medium Duty Certification” project. The cooperative agreement was awarded pursuant to H15915 in reference to H. R. 2764 Congressionally Directed Projects. The original agreement provided funding for The Consortium to implement the established project objectives as follows: (1) to understand the current state of the development of a test protocol for PHEV configurations; (2) to work with industry stakeholders to recommend a medium duty vehicle test protocol; (3) to utilize the Phase 1 Eaton PHEV F550 Chassis or other appropriate PHEV configurations to conduct emissions testing; (4) and to make an industry PHEV certification test protocol recommendation for medium duty trucks. Subsequent amendments to the initial agreement were made, the most significant being a revised Scope of Project Objectives (SOPO) that did not address actual field data since it was not available as originally expected. This project was mated by DOE with a parallel project award given to the South Coast Air Quality Management District (SCAQMD) in California. The SCAQMD project involved designing, building and testing of five medium duty plug-in hybrid electric trucks. SCAQMD had contracted with the Electric Power Research Institute (EPRI) to manage the project. EPRI provided the required match to the federal grant funds to both the SCAQMD project and the Kansas Consortium project. The rational for linking the two projects was that the data derived from the SCAQMD project could be used to validate the protocols developed by the Kansas Consortium team. At the same time, the consortium team would be a useful resource to SCAQMD in designating their test procedures for emissions and operating parameters and determining vehicle mileage. The years between award of the cooperative

  15. Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Miyasato, Matt [Electric Power Research Institute (EPRI), Palo Alto, CA (United States); Kosowski, Mark [Electric Power Research Institute (EPRI), Palo Alto, CA (United States)

    2015-10-01

    The Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program was sponsored by the United States Department of Energy (DOE) using American Recovery and Reinvestment Act of 2009 (ARRA) funding. The purpose of the program is to develop a path to migrate plug-in hybrid electric vehicle (PHEV) technology to medium-duty vehicles by demonstrating and evaluating vehicles in diverse applications. The program also provided three production-ready PHEV systems—Odyne Systems, Inc. (Odyne) Class 6 to 8 trucks, VIA Motors, Inc. (VIA) half-ton pickup trucks, and VIA three-quarter-ton vans. The vehicles were designed, developed, validated, produced, and deployed. Data were gathered and tests were run to understand the performance improvements, allow cost reductions, and provide future design changes. A smart charging system was developed and produced during the program. The partnerships for funding included the DOE; the California Energy Commission (CEC); the South Coast Air Quality Management District (SCAQMD); the Electric Power Research Institute (EPRI); Odyne; VIA; Southern California Edison; and utility and municipal industry participants. The reference project numbers are DOE FOA-28 award number EE0002549 and SCAQMD contract number 10659.

  16. An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Lemoine, D M; Kammen, D M; Farrell, A E

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) can use both grid-supplied electricity and liquid fuels. We show that under recent conditions, millions of PHEVs could have charged economically in California during both peak and off-peak hours even with modest gasoline prices and real-time electricity pricing. Special electricity rate tariffs already in place for electric vehicles could successfully render on-peak charging uneconomical and off-peak charging very attractive. However, unless battery prices fall by at least a factor of two, or gasoline prices double, the present value of fuel savings is smaller than the marginal vehicle costs, likely slowing PHEV market penetration in California. We also find that assumptions about how PHEVs are charged strongly influence the number of PHEVs that can be charged before the electric power system must be expanded. If most PHEVs are charged after the workday, and thus after the time of peak electricity demand, our forecasts suggest that several million PHEVs could be deployed in California without requiring new generation capacity, and we also find that the state's PHEV fleet is unlikely to reach into the millions within the current electricity sector planning cycle. To ensure desirable outcomes, appropriate technologies and incentives for PHEV charging will be needed if PHEV adoption becomes mainstream

  17. An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles

    Science.gov (United States)

    Lemoine, D. M.; Kammen, D. M.; Farrell, A. E.

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) can use both grid-supplied electricity and liquid fuels. We show that under recent conditions, millions of PHEVs could have charged economically in California during both peak and off-peak hours even with modest gasoline prices and real-time electricity pricing. Special electricity rate tariffs already in place for electric vehicles could successfully render on-peak charging uneconomical and off-peak charging very attractive. However, unless battery prices fall by at least a factor of two, or gasoline prices double, the present value of fuel savings is smaller than the marginal vehicle costs, likely slowing PHEV market penetration in California. We also find that assumptions about how PHEVs are charged strongly influence the number of PHEVs that can be charged before the electric power system must be expanded. If most PHEVs are charged after the workday, and thus after the time of peak electricity demand, our forecasts suggest that several million PHEVs could be deployed in California without requiring new generation capacity, and we also find that the state's PHEV fleet is unlikely to reach into the millions within the current electricity sector planning cycle. To ensure desirable outcomes, appropriate technologies and incentives for PHEV charging will be needed if PHEV adoption becomes mainstream.

  18. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles

    Science.gov (United States)

    primary fuel or to improve the efficiency of conventional vehicle designs. Hybrid Electric Vehicles Icon cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Propane (LPG) Next Vehicle Cost

  19. Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power

    International Nuclear Information System (INIS)

    Wang Jianhui; Liu Cong; Ton, Dan; Zhou Yan; Kim, Jinho; Vyas, Anantray

    2011-01-01

    This paper uses a new unit commitment model which can simulate the interactions among plug-in hybrid electric vehicles (PHEVs), wind power, and demand response (DR). Four PHEV charging scenarios are simulated for the Illinois power system: (1) unconstrained charging, (2) 3-hour delayed constrained charging, (3) smart charging, and (4) smart charging with DR. The PHEV charging is assumed to be optimally controlled by the system operator in the latter two scenarios, along with load shifting and shaving enabled by DR programs. The simulation results show that optimally dispatching the PHEV charging load can significantly reduce the total operating cost of the system. With DR programs in place, the operating cost can be further reduced. - Research highlights: → A unit commitment model is used to simulate the interactions among plug-in hybrid electric vehicles (PHEVs), wind power, and demand response (DR). → Different PHEV charging scenarios are simulated on the Illinois power system → Load shifting and shaving enabled by DR programs are also modeled. → The simulation results show that the operating cost can be reduced with DR and optimal PHEV charging.

  20. Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan

    Energy Technology Data Exchange (ETDEWEB)

    Bazzi, Abdullah [Chrysler Group LLC, Auburn Hills, MI (United States); Barnhart, Steven [Chrysler Group LLC, Auburn Hills, MI (United States)

    2014-12-31

    FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development of a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.

  1. Workplace Charging Challenge Mid-Program Review: Employees Plug In

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-12-31

    The EV Everywhere Workplace Charging Challenge aims to have 500 U.S. employers offering workplace charging by 2018. These reports describe the progress made in the Challenge. In 2015, the Workplace Charging Challenge celebrated a major milestone – it reached the halfway point to its goal of 500 Challenge partners committed to installing workplace charging by 2018. More than 250 employers have joined as Challenge partners and the installation of workplace charging as a sustainable business practice is growing across the country. Their efforts have resulted in more than 600 workplaces with over 5,500 charging stations accessible to nearly one million employees. In 2015, more than 9,000 PEV-driving employees charged at these worksites on a regular basis. Our Workplace Charging Challenge Mid-Program Review reports this progress and other statistics related to workplace charging, including employee satisfaction and charger usage.

  2. Implementation and evaluation of change-over speed in plug-in hybrid electric two wheeler

    International Nuclear Information System (INIS)

    Amjad, Shaik; Rudramoorthy, R.; Sadagopan, P.; Neelakrishnan, S.

    2016-01-01

    In Asia, two wheelers are popular mode of transportation to a large group of people because of their relative affordability and ability to maneuver in heavy city traffic. However, the rate of fuel consumption and emission contribution by them, especially in urban areas need more attention to improve sustainability of energy and air quality. Recently, plug-in hybrid technology has been emerged as one of the most promising alternatives in reducing petroleum consumption and emission. This paper presents the implementation of plug-in hybrid technology on a two wheeler by formulation of novel control strategy suitable for Indian city driving needs. Experimental investigations on hub motor and IC (internal combustion) engine has been carried out to fix the change-over speed in hybrid mode, followed by road test on prototype vehicle. The performance of prototype vehicle on IDC (Indian driving cycle) simulated road pattern and actual road driving, confirmed the change-over speed of vehicle in hybrid mode. The converted plug-in hybrid electric two wheeler also demonstrated the drive strategy adopted for higher energy efficiency up to 2.5 times. So, plug-in hybrid electric two wheelers show significant improvements in fuel economy by replacing petroleum fuel with electricity for portions of trip to achieve nations' energy security. - Highlights: • Implementation of plug-in hybrid concept for two wheelers suitable for city driving. • Investigation on hub motor, engine and prototype vehicle to fix change-over speed. • Plug-in hybrid electric two wheeler demonstrates 2.48 times higher fuel efficiency. • Significant improvements in fuel economy help to achieve nations' energy security.

  3. Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids

    International Nuclear Information System (INIS)

    Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.

    2008-01-01

    Using the 'total energy cycle' methodology, we compare U.S. near term (to ∼2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO x ), fine particulate (PM2.5) and sulfur oxides (SO x ) values are presented. We also isolate the PHEV emissions contribution from varying k

  4. Cost and emissions impacts of plug-in hybrid vehicles on the Ohio power system

    International Nuclear Information System (INIS)

    Sioshansi, Ramteen; Fagiani, Riccardo; Marano, Vincenzo

    2010-01-01

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology that can reduce vehicles' fuel consumption, decreasing transportation-related emissions and dependence on imported oil. The net emission and cost impacts of PHEV use are intimately connected with the electricity generator mix used for PHEV charging, which will in turn depend on when during the day PHEVs are recharged. This paper analyzes the effects of a PHEV fleet in the state of Ohio. The analysis considers two different charging scenarios-a controlled and an uncontrolled scenario-which offer the grid operator different levels of control over the timing of PHEV charging. The analysis shows that PHEV use could result in major reductions in gasoline consumption of close to 70% per vehicle compared to a conventional vehicle (CV) under both charging scenarios. Moreover, despite the high penetrations of coal in the Ohio power system, net CO 2 emissions from a PHEV could be up to 24% lower than that of a CV in the uncontrolled case, however, CO 2 and NO x emissions would increase in both scenarios.

  5. Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs

    Science.gov (United States)

    Peterson, Scott B.

    Plug-in hybrid electric vehicles (PHEVs) may become a substantial part of the transportation fleet in a decade or two. This dissertation investigates battery degradation, and how introducing PHEVs may influence the electricity grid, emissions, and petroleum use in the US. It examines the effects of combined driving and vehicle-to-grid (V2G) usage on lifetime performance of commercial Li-ion cells. The testing shows promising capacity fade performance: more than 95% of the original cell capacity remains after thousands of driving days. Statistical analyses indicate that rapid vehicle motive cycling degraded the cells more than slower, V2G galvanostatic cycling. These data are used to examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. The maximum annual profit with perfect market information and no battery degradation cost ranged from ˜US140 to 250 in the three cities. If measured battery degradation is applied the maximum annual profit decreases to ˜10-120. The dissertation predicts the increase in electricity load and emissions due to vehicle battery charging in PJM and NYISO with the current generators, with a 50/tonne CO2 price, and with existing coal generators retrofitted with 80% CO2 capture. It also models emissions using natural gas or wind+gas. We examined PHEV fleet percentages between 0.4 and 50%. Compared to 2020 CAFE standards, net CO2 emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows smaller benefits unless coal units are fitted with CCS or replaced with lower CO2 generation. NOX is reduced in both RTOs, but there is upward pressure on SO2 emissions or allowance prices under a cap. Finally the dissertation compares increasing the all-electric range (AER) of PHEVs to installing charging infrastructure. Fuel use was modeled with National Household Travel Survey and Greenhouse Gasses, Regulated

  6. Hybrid, plug-in hybrid, or electric—What do car buyers want?

    International Nuclear Information System (INIS)

    Axsen, Jonn; Kurani, Kenneth S.

    2013-01-01

    We use a survey to compare consumers’ stated interest in conventional gasoline (CV), hybrid (HEV), plug-in hybrid (PHEV) and pure electric vehicles (EV) of varying designs and prices. Data are from 508 households representing new vehicle buyers in San Diego County, California in 2011. The mixed-mode survey collected information about access to residential recharge infrastructure, three days of driving patterns, and desired vehicle designs and motivations via design games. Across the higher and lower price scenarios, a majority of consumers designed and selected some form of PHEV for their next new vehicle, smaller numbers designed an HEV or a conventional vehicle, and only a few percent designed an EV. Of those who did not design an EV, the most frequent concerns with EVs were limited range, charger availability, and higher vehicle purchase prices. Positive interest in HEVs, PHEVs and EVs was associated with vehicle images of intelligence, responsibility, and support of the environment and nation (United States). The distribution of vehicle designs suggests that cheaper, smaller battery PHEVs may achieve more short-term market success than larger battery PHEVs or EV. New car buyers’ present interests align with less expensive first steps in a transition to electric-drive vehicles. - Highlights: • We assess consumer interest in various electric-drive vehicle designs. • Web-based design games completed by 508 households from San Diego, California. • Plug-in hybrids are most popular, followed by hybrids and conventional vehicles. • Only a few percent opted for a pure electric vehicle. • Electric-drive associated with intelligence, responsibility, and environment

  7. Distributed energy resources management using plug-in hybrid electric vehicles as a fuel-shifting demand response resource

    International Nuclear Information System (INIS)

    Morais, H.; Sousa, T.; Soares, J.; Faria, P.; Vale, Z.

    2015-01-01

    Highlights: • Definition fuel shifting demand response programs applied to the electric vehicles. • Integration of the proposed fuel shifting in energy resource management algorithm. • Analysis of fuel shifting contribution to support the consumption increasing. • Analysis of fuel shifting contribution to support the electric vehicles growing. • Sensitivity analysis considering different electric vehicles penetration levels. - Abstract: In the smart grids context, distributed energy resources management plays an important role in the power systems’ operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important to develop adequate methodologies to schedule the electric vehicles’ charge and discharge processes, avoiding network congestions and providing ancillary services. This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting into the network. These programs are included in an energy resources management algorithm which integrates the management of other resources. The paper presents a case study considering a 37-bus distribution network with 25 distributed generators, 1908 consumers, and 2430 plug-in vehicles. Two scenarios are tested, namely a scenario with high photovoltaic generation, and a scenario without photovoltaic generation. A sensitivity analyses is performed in order to evaluate when each energy resource is required

  8. Effects of plug-in hybrid electric vehicles on ozone concentrations in Colorado.

    Science.gov (United States)

    Brinkman, Gregory L; Denholm, Paul; Hannigan, Michael P; Milford, Jana B

    2010-08-15

    This study explores how ozone concentrations in the Denver, CO area might have been different if plug-in hybrid electric vehicles (PHEVs) had replaced light duty gasoline vehicles in summer 2006. A unit commitment and dispatch model was used to estimate the charging patterns of PHEVs and dispatch power plants to meet electricity demand. Emission changes were estimated based on gasoline displacement and the emission characteristics of the power plants providing additional electricity. The Comprehensive Air Quality Model with extensions (CAMx) was used to simulate the effects of these emissions changes on ozone concentrations. Natural gas units provided most of the electricity used for charging PHEVs in the scenarios considered. With 100% PHEV penetration, nitrogen oxide (NO(x)) emissions were reduced by 27 tons per day (tpd) from a fleet of 1.7 million vehicles and were increased by 3 tpd from power plants; VOC emissions were reduced by 57 tpd. These emission changes reduced modeled peak 8-h average ozone concentrations by approximately 2-3 ppb on most days. Ozone concentration increases were modeled for small areas near central Denver. Future research is needed to forecast when significant PHEV penetration may occur and to anticipate characteristics of the corresponding power plant and vehicle fleets.

  9. The impact of plug-in hybrid electric vehicles on distribution networks: A review and outlook

    International Nuclear Information System (INIS)

    Green, Robert C. II.; Wang, Lingfeng; Alam, Mansoor

    2011-01-01

    Plug-in hybrid electric vehicles (PHEVs) are the next big thing in the electric transportation market. While much work has been done to detail what economic costs and benefits PHEVs will have on consumers and producers alike, it seems that it is also important to understand what impact PHEVs will have on distribution networks nationwide. This paper finds that the impact of PHEVs on the distribution network can be determined using the following aspects of PHEVs: driving patterns, charging characteristics, charge timing, and vehicle penetration. The impacts that these aspects of PHEVs will have on distribution networks have been measured and calculated by multiple authors in different locations using many different tools that range from analytical techniques to simulations and beyond. While much work has already been completed in this area, there is still much to do. Areas left for improvement and future work will include adding more stochasticity into models as well as computing and analyzing reliability indices with respect to distribution networks. (author)

  10. Implementation of Single Phase Soft Switched PFC Converter for Plug-in-Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Aiswariya Sekar

    2015-11-01

    Full Text Available This paper presents a new soft switching boost converter with a passive snubber cell without additional active switches for battery charging systems. The proposed snubber finds its application in the front-end ac-dc converter of Plug-in Hybrid Electric Vehicle (PHEV battery chargers. The proposed auxiliary snubber circuit consists of an inductor, two capacitors and two diodes. The new converter has the advantages of continuous input current, low switching stresses, high voltage gain without extreme duty cycle, minimized charger size and charging time and fewer amounts of cost and electricity drawn from the utility at higher switching frequencies. The switch is made to turn ON by Zero Current Switching (ZCS and turn OFF by Zero Voltage Switching (ZVS. The detailed steady state analysis of the novel ac-dc Zero Current- Zero Voltage Switching (ZC-ZVS boost Power Factor Correction (PFC converter is presented with its operating principle. The experimental prototype of 20 kHz, 100 W converter verifies the theoretical analysis. The power factor of the prototype circuit reaches near unity with an efficiency of 97%, at nominal output power for a ±10% variation in the input voltage and ±20% variation in the snubber component values.

  11. Consumer adoption and grid impact models for plug-in hybrid electric vehicles in Wisconsin.

    Science.gov (United States)

    2010-05-01

    This proposed study focuses on assessing the demand for plug-in hybrid electric vehicles (PHEV) in Wisconsin and its economic : impacts on the States energy market and the electric grid. PHEVs are expected to provide a range of about 40 miles per ...

  12. Households' Stories of Their Encounters with a Plug-In Hybrid Electric Vehicle

    Science.gov (United States)

    Caperello, Nicolette D.; Kurani, Kenneth S.

    2012-01-01

    One way to progress toward greenhouse gas reductions is for people to drive plug-in hybrid electric vehicles (PHEVs). Households in this study participated in a 4- to 6-week PHEV driving trial. A narrative of each household's encounter with the PHEV was constructed by the researchers from multiple in-home interviews, questionnaires completed by…

  13. New Integrated Multilevel Converter for Switched Reluctance Motor Drives in Plug-in Hybrid Electric Vehicles with Flexible Energy Conversion

    DEFF Research Database (Denmark)

    Gan, Chun; Wu, Jianhua; Hu, Yihua

    2017-01-01

    This paper presents an integrated multilevel converter of switched reluctance motors (SRMs) fed by a modular front-end circuit for plug-in hybrid electric vehicle (PHEV) applications. Several operating modes can be achieved by changing the on-off states of the switches in the front-end circuit......, the battery can be charged by the external AC source or generator when the vehicle is in standstill condition. The SRM-based PHEV can operate at different speeds by coordinating power flow from the generator and battery. Simulation in MATLAB/Simulink and experiments on a three-phase 12/8 SRM confirm...

  14. The load shift potential of plug-in electric vehicles with different amounts of charging infrastructure

    Science.gov (United States)

    Gnann, Till; Klingler, Anna-Lena; Kühnbach, Matthias

    2018-06-01

    Plug-in electric vehicles are the currently favoured option to decarbonize the passenger car sector. However, a decarbonisation is only possible with electricity from renewable energies and plug-in electric vehicles might cause peak loads if they started to charge at the same time. Both these issues could be solved with coordinated load shifting (demand response). Previous studies analyzed this research question by focusing on private vehicles with domestic and work charging infrastructure. This study additionally includes the important early adopter group of commercial fleet vehicles and reflects the impact of domestic, commercial, work and public charging. For this purpose, two models are combined. In a comparison of three scenarios, we find that charging of commercial vehicles does not inflict evening load peaks in the same magnitude as purely domestic charging of private cars does. Also for private cars, charging at work occurs during the day and may reduce the necessity of load shifting while public charging plays a less important role in total charging demand as well as load shifting potential. Nonetheless, demand response reduces the system load by about 2.2 GW or 2.8% when domestic and work charging are considered compared to a scenario with only domestic charging.

  15. Cost Effectiveness Analysis of Quasi-In-Motion Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses from Fleet Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Gonder, Jeff; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud; Markel, Tony

    2016-05-16

    This study evaluated the costs and benefits associated with the use of stationary-wireless-power-transfer-enabled plug-in hybrid electric buses and determined the cost effectiveness relative to conventional buses and hybrid electric buses. A factorial design was performed over a number of different battery sizes, charging power levels, and f bus stop charging stations. The net present costs were calculated for each vehicle design and provided the basis for design evaluation. In all cases, given the assumed economic conditions, the conventional bus achieved the lowest net present cost while the optimal plug-in hybrid electric bus scenario beat out the hybrid electric comparison scenario. The parameter sensitivity was also investigated under favorable and unfavorable market penetration assumptions.

  16. Torque Coordination Control during Braking Mode Switch for a Plug-in Hybrid Electric Vehicle

    OpenAIRE

    Yang Yang; Chao Wang; Quanrang Zhang; Xiaolong He

    2017-01-01

    Hybrid vehicles usually have several braking systems, and braking mode switches are significant events during braking. It is difficult to coordinate torque fluctuations caused by mode switches because the dynamic characteristics of braking systems are different. In this study, a new type of plug-in hybrid vehicle is taken as the research object, and braking mode switches are divided into two types. The control strategy of type one is achieved by controlling the change rates of clutch hold-dow...

  17. Managing operations of plug-in hybrid electric vehicle (PHEV) exchange stations for use with a smart grid

    International Nuclear Information System (INIS)

    Nurre, Sarah G.; Bent, Russell; Pan, Feng; Sharkey, Thomas C.

    2014-01-01

    We consider a deterministic integer programming model for determining the optimal operations of multiple plug-in hybrid electric vehicle (PHEV) battery exchange stations over time. The operations include the number of batteries to charge, discharge, and exchange at each point in time over a set time horizon. We allow discharging of batteries back to the power grid, through vehicle-to-grid technology. We incorporate the exchange station's dependence on the power network, transportation network, and other exchange stations. The charging and discharging at these exchange stations lead to a greater amount of variability which creates a less predictable and flat power generation curve. We introduce and test three policies to smooth the power generation curve by balancing its load. Further, tests are conducted evaluating these policies while factoring wind energy into the power generation curve. These computational tests use realistic data and analysis of the results suggest general operating procedures for exchange stations and evaluate the effectiveness of these power flattening policies. - Highlights: • Model the operations of plug-in hybrid electric vehicle battery exchange stations. • Determine the optimal and general charging, discharging, and exchange operations. • Conclude that forced customer service levels are unnecessary with proper pricing. • Examine policies to reduce variability in power generation from PHEVs and wind. • Observe that strict constraints on exchange stations best reduce variability

  18. Integration of plug-in hybrid electric vehicles in a regional wind-thermal power system

    International Nuclear Information System (INIS)

    Goeransson, Lisa; Karlsson, Sten; Johnsson, Filip

    2010-01-01

    This study investigates consequences of integrating plug-in hybrid electric vehicles (PHEVs) in a wind-thermal power system supplied by one quarter of wind power and three quarters of thermal generation. Four different PHEV integration strategies, with different impacts on the total electric load profile, have been investigated. The study shows that PHEVs can reduce the CO 2 -emissions from the power system if actively integrated, whereas a passive approach to PHEV integration (i.e. letting people charge the car at will) is likely to result in an increase in emissions compared to a power system without PHEV load. The reduction in emissions under active PHEV integration strategies is due to a reduction in emissions related to thermal plant start-ups and part load operation. Emissions of the power sector are reduced with up to 4.7% compared to a system without PHEVs, according to the simulations. Allocating this emission reduction to the PHEV electricity consumption only, and assuming that the vehicles in electric mode is about 3 times as energy efficient as standard gasoline operation, total emissions from PHEVs would be less than half the emissions of a standard car, when running in electric mode.

  19. Toyota Prius Hybrid Plug-in Conversation and Battery Monitoring system

    Science.gov (United States)

    Unnikannan, Krishnanunni; McIntyre, Michael; Harper, Doug; Kessinger, Robert; Young, Megan; Lantham, Joseph

    2012-03-01

    The objective of the project was to analyze the performance of a Toyota Hybrid. We started off with a stock Toyota Prius and taking data by driving it in city and on the highway in a mixed pre-determined route. The batteries can be charged using standard 120V AC outlets. First phase of the project was to increase the performance of the car by installing 20 Lead (Pb) batteries in a plug-in kit. To improve the performance of the kit, a centralized battery monitoring system was installed. The battery monitoring system has two components, a custom data modules and a National Instruments CompactRIO. Each Pb battery has its own data module and all the data module are connected to the CompactRIO. The CompactRIO records differential voltage, current and temperature from all the 20 batteries. The LabVIEW software is dynamic and can be reconfigured to any number of batteries and real time data from the batteries can be monitored on a LabVIEW enabled machine.

  20. Shifting primary energy source and NOx emission location with plug-in hybrid vehicles

    Science.gov (United States)

    Karman, Deniz

    2011-06-01

    Plug-in hybrid vehicles (PHEVs) present an interesting technological opportunity for using non-fossil primary energy in light duty passenger vehicles, with the associated potential for reducing air pollutant and greenhouse gas emissions, to the extent that the electric power grid is fed by non-fossil sources. This perspective, accompanying the article by Thompson et al (2011) in this issue, will touch on two other studies that are directly related: the Argonne study (Elgowainy et al 2010) and a PhD thesis from Utrecht (van Vliet 2010). Thompson et al (2011) have examined air quality effects in a case where the grid is predominantly fossil fed. They estimate a reduction of 7.42 tons/day of NOx from motor vehicles as a result of substituting electric VMTs for 20% of the light duty gasoline vehicle miles traveled. To estimate the impact of this reduction on air quality they also consider the increases in NOx emissions due to the increased load on electricity generating units. The NOx emission increases are estimated as 4.0, 5.5 and 6.3 tons for the Convenience, Battery and Night charging scenarios respectively. The net reductions are thus in the 1.1-3.4 tons/day range. The air quality modelling results presented show that the air quality impact from a ground-level ozone perspective is favorable overall, and while the effect is stronger in some localities, the difference between the three scenarios is small. This is quite significant and suggests that localization of the NOx emissions to point sources has a more pronounced effect than the absolute reductions achieved. Furthermore it demonstrates that localization of NOx emissions to electricity generating units by using PHEVs in vehicle traffic has beneficial effects for air quality not only by minimizing direct human exposure to motor vehicle emissions, but also due to reduced exposure to secondary pollutants (i.e. ozone). In an electric power grid with a smaller share of fossil fired generating units, the beneficial

  1. Cloud computing-based energy optimization control framework for plug-in hybrid electric bus

    International Nuclear Information System (INIS)

    Yang, Chao; Li, Liang; You, Sixiong; Yan, Bingjie; Du, Xian

    2017-01-01

    Considering the complicated characteristics of traffic flow in city bus route and the nonlinear vehicle dynamics, optimal energy management integrated with clustering and recognition of driving conditions in plug-in hybrid electric bus is still a challenging problem. Motivated by this issue, this paper presents an innovative energy optimization control framework based on the cloud computing for plug-in hybrid electric bus. This framework, which includes offline part and online part, can realize the driving conditions clustering in offline part, and the energy management in online part. In offline part, utilizing the operating data transferred from a bus to the remote monitoring center, K-means algorithm is adopted to cluster the driving conditions, and then Markov probability transfer matrixes are generated to predict the possible operating demand of the bus driver. Next in online part, the current driving condition is real-time identified by a well-trained support vector machine, and Markov chains-based driving behaviors are accordingly selected. With the stochastic inputs, stochastic receding horizon control method is adopted to obtain the optimized energy management of hybrid powertrain. Simulations and hardware-in-loop test are carried out with the real-world city bus route, and the results show that the presented strategy could greatly improve the vehicle fuel economy, and as the traffic flow data feedback increases, the fuel consumption of every plug-in hybrid electric bus running in a specific bus route tends to be a stable minimum. - Highlights: • Cloud computing-based energy optimization control framework is proposed. • Driving cycles are clustered into 6 types by K-means algorithm. • Support vector machine is employed to realize the online recognition of driving condition. • Stochastic receding horizon control-based energy management strategy is designed for plug-in hybrid electric bus. • The proposed framework is verified by simulation and hard

  2. Improving the Performance Attributes of Plug-in Hybrid Electric Vehicles in Hot Climates through Key-Off Battery Cooling

    Directory of Open Access Journals (Sweden)

    Sina Shojaei

    2017-12-01

    Full Text Available Ambient conditions can have a significant impact on the average and maximum temperature of the battery of electric and plug-in hybrid electric vehicles. Given the sensitivity of the ageing mechanisms of typical battery cells to temperature, a significant variability in battery lifetime has been reported with geographical location. In addition, high battery temperature and the associated cooling requirements can cause poor passenger thermal comfort, while extreme battery temperatures can negatively impact the power output of the battery, limiting the available electric traction torque. Avoiding such issues requires enabling battery cooling even when the vehicle is parked and not plugged in (key-off, but the associated extra energy requirements make applying key-off cooling a non-trivial decision. In this paper, a representative plug-in parallel hybrid electric vehicle model is used to simulate a typical 24-h duty cycle to quantify the impact of hot ambient conditions on three performance attributes of the vehicle: the battery lifetime, passenger thermal comfort and fuel economy. Key-off cooling is defined as an optimal control problem in view of the duty cycle of the vehicle. The problem is then solved using the dynamic programming method. Controlling key-off cooling through this method leads to significant improvements in the battery lifetime, while benefiting the fuel economy and thermal comfort attributes. To further improve the battery lifetime, partial charging of the battery is considered. An algorithm is developed that determines the optimum combination of key-off cooling and the level of battery charge. Simulation results confirm the benefits of the proposed method.

  3. Integration of plug-in hybrid cars for the encouragement of intelligent power distribution structures; Integration von Plug-in-Hybrid Cars zur Foerderung intelligenter Verteilnetzstrukturen. Vorstudie

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R.; Rigassi, R.

    2007-11-15

    This preliminary study for the Swiss Federal Office of Energy (SFOE) takes a look at how plug-in hybrid cars could be used to support the electricity supply in Switzerland. This study explains to what extent hybrid cars would be in a position to provide the services needed to regulate the Swiss electricity mains. Core elements of the concept known as 'Vehicle to Grid' (V2G) are presented. The requirements placed on the cars' equipment, including reversible battery chargers and communication equipment, are reviewed. Mains regulation systems are discussed, as are battery storage and the potential advantages offered by such a system. Challenges and hindrances to implementation are examined and initial feasibility studies are analysed. Questions still to be addressed are noted. A comprehensive appendix rounds off the report.

  4. Optimization of batteries for plug-in hybrid electric vehicles

    Science.gov (United States)

    English, Jeffrey Robb

    This thesis presents a method to quickly determine the optimal battery for an electric vehicle given a set of vehicle characteristics and desired performance metrics. The model is based on four independent design variables: cell count, cell capacity, state-of-charge window, and battery chemistry. Performance is measured in seven categories: cost, all-electric range, maximum speed, acceleration, battery lifetime, lifetime greenhouse gas emissions, and charging time. The performance of each battery is weighted according to a user-defined objective function to determine its overall fitness. The model is informed by a series of battery tests performed on scaled-down battery samples. Seven battery chemistries were tested for capacity at different discharge rates, maximum output power at different charge levels, and performance in a real-world automotive duty cycle. The results of these tests enable a prediction of the performance of the battery in an automobile. Testing was performed at both room temperature and low temperature to investigate the effects of battery temperature on operation. The testing highlighted differences in behavior between lithium, nickel, and lead based batteries. Battery performance decreased with temperature across all samples with the largest effect on nickel-based chemistries. Output power also decreased with lead acid batteries being the least affected by temperature. Lithium-ion batteries were found to be highly efficient (>95%) under a vehicular duty cycle; nickel and lead batteries have greater losses. Low temperatures hindered battery performance and resulted in accelerated failure in several samples. Lead acid, lead tin, and lithium nickel alloy batteries were unable to complete the low temperature testing regime without losing significant capacity and power capability. This is a concern for their applicability in electric vehicles intended for cold climates which have to maintain battery temperature during long periods of inactivity

  5. Energy conversion phenomena in plug-in hybrid-electric vehicles

    International Nuclear Information System (INIS)

    Katrasnik, Tomaz

    2011-01-01

    Research highlights: → Energy conversion phenomena of PHEVs for different drive cycles and depletion rates of energy sources. → Detailed physically based framework for analyzing energy conversion phenomena in PHEVs. → Interaction of energy flows and energy losses with energy consumption of the PHEV. → Identification and explanation of mechanisms leading to optimal tank-to-wheel efficiency. → Analysis of well-to-wheel efficiencies for different realistic well-to-tank scenarios. -- Abstract: Energy flows and energy conversion efficiencies of commercial plug-in hybrid-electric vehicles (PHEV) are analyzed for parallel and series PHEV topologies. The analysis is performed by a combined analytical and simulation approach. Combined approach enables evaluation of energy losses on different energy paths and provides their impact on the energy consumption of the PHEV. Thereby the paper reveals energy conversion phenomena of different PHEV topologies operating according to charge depleting and charge sustaining modes as well as according to different test cycles. It is shown in the paper that amount of the energy depleted from both on-board energy sources is significantly influenced by the efficiencies of energy conversion chains from on-board energy sources to the wheels. It is also shown that energy used to power the PHEV according to particular test cycles varies based on its operating mode, which influences energy flows on different energy paths within the PHEVs and consequently overall energy consumed by the PHEV. The paper additionally discusses well-to-wheel efficiencies considering different realistic well-to-tank scenarios. It is shown that well-to-tank efficiency of electric energy generation significantly influences optimal operating mode of the PHEV if consumption of primary energy sources is considered.

  6. Environmental Benefits of Using Wind Generation to Power Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Mahdi Hajian

    2011-08-01

    Full Text Available As alternatives to conventional vehicles, Plug-in Hybrid Electric Vehicles (PHEVs running off electricity stored in batteries could decrease oil consumption and reduce carbon emissions. By using electricity derived from clean energy sources, even greater environmental benefits are obtainable. This study examines the potential benefits arising from the widespread adoption of PHEVs in light of Alberta’s growing interest in wind power. It also investigates PHEVs’ capacity to mitigate natural fluctuations in wind power generation.

  7. Journey predictive energy management strategy for a plug-in hybrid electric vehicle

    OpenAIRE

    Dharmaraj Ram Manohar, Ravi Shankar

    2013-01-01

    The adoption of Plug-in Hybrid Electric Vehicles (PHEVs) is widely seen as an interim solution for the decarbonisation of the transport sector. Within a PHEV, determining the required energy storage capacity of the battery remains one of the primary concerns for vehicle manufacturers and system integrators. This fact is particularly pertinent since the battery constitutes the largest contributor to vehicle mass. Furthermore, the financial cost associated with the procurement, d...

  8. Secure Plug-in Electric Vehicle PEV Charging in a Smart Grid Network

    Directory of Open Access Journals (Sweden)

    Khaled Shuaib

    2017-07-01

    Full Text Available Charging of plug-in electric vehicles (PEVs exposes smart grid systems and their users to different kinds of security and privacy attacks. Hence, a secure charging protocol is required for PEV charging. Existing PEV charging protocols are usually based on insufficiently represented and simplified charging models that do not consider the user’s charging modes (charging at a private location, charging as a guest user, roaming within one’s own supplier network or roaming within other suppliers’ networks. However, the requirement for charging protocols depends greatly on the user’s charging mode. Consequently, available solutions do not provide complete protocol specifications. Moreover, existing protocols do not support anonymous user authentication and payment simultaneously. In this paper, we propose a comprehensive end-to-end charging protocol that addresses the security and privacy issues in PEV charging. The proposed protocol uses nested signatures to protect users’ privacy from external suppliers, their own suppliers and third parties. Our approach supports anonymous user authentication, anonymous payment, as well as anonymous message exchange between suppliers within a hierarchical smart grid architecture. We have verified our protocol using the AVISPA software verification tool and the results showed that our protocol is secure and works as desired.

  9. Effects of the introduction of electric vehicles and plug-in hybrids on sources of energy and the electricity grid; Auswirkungen der Markteinfuehrung von Elektrofahrzeugen und Plug-In-Hybrids auf die Energietraeger und das Elektrizitaetsnetz. Bericht

    Energy Technology Data Exchange (ETDEWEB)

    Rigassi, R.; Huber, S. [Enco AG, Liestal (Switzerland); Strub, P. [Pierre Strub - nachhaltig wirkt, Basel (Switzerland)

    2010-12-15

    This comprehensive final report for the Swiss federal Office of Energy (SFOE) discusses the effects of the introduction of electric vehicles and plug-in hybrids on sources of energy and the electricity grid. According to the authors, the introduction of electric drives in the automobile sector will cause no important additional consumption of electricity by 2035 for an expected percentage of around 25% of all vehicles being wholly or partly electrically powered; fossil fuel consumption can, however, be reduced by almost a quarter. The energy storage function of the batteries in electric vehicles can additionally be used to help integrate the high proportion of stochastically generated wind and solar power in the power grid. Energy and CO{sub 2} balances for electric vehicles and plug-in hybrids are discussed, as is the use of vehicle batteries as part of a 'vehicle-to-grid' system that can help regulate the electricity mains. The potential for using vehicles for the supply of regulating energy is looked at. Charge optimisation and mains feed-in are discussed. The ecological effects of this regulating function are examined in the European context. Relationships to other energy scenarios are presented and discussed. Finally, conclusions are drawn and recommendations are made. Questions still to be examined are listed.

  10. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.

    Science.gov (United States)

    Sioshansi, Ramteen; Denholm, Paul

    2009-02-15

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and byimproving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEVfleet of up to 15% of light-duty vehicles can actually decrease net generator NOx emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO2, SO2, and NOx emissions can be reduced even further.

  11. Impact of Uncoordinated Plug-in Electric Vehicle Charging on Residential Power Demand

    Energy Technology Data Exchange (ETDEWEB)

    Muratori, Matteo [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-22

    Electrification of transport offers opportunities to increase energy security, reduce carbon emissions, and improve local air quality. Plug-in electric vehicles (PEVs) are creating new connections between the transportation and electric sectors, and PEV charging will create opportunities and challenges in a system of growing complexity. Here, I use highly resolved models of residential power demand and PEV use to assess the impact of uncoordinated in-home PEV charging on residential power demand. While the increase in aggregate demand might be minimal even for high levels of PEV adoption, uncoordinated PEV charging could significantly change the shape of the aggregate residential demand, with impacts for electricity infrastructure, even at low adoption levels. Clustering effects in vehicle adoption at the local level might lead to high PEV concentrations even if overall adoption remains low, significantly increasing peak demand and requiring upgrades to the electricity distribution infrastructure. This effect is exacerbated when adopting higher in-home power charging.

  12. Impact of uncoordinated plug-in electric vehicle charging on residential power demand

    Science.gov (United States)

    Muratori, Matteo

    2018-03-01

    Electrification of transport offers opportunities to increase energy security, reduce carbon emissions, and improve local air quality. Plug-in electric vehicles (PEVs) are creating new connections between the transportation and electric sectors, and PEV charging will create opportunities and challenges in a system of growing complexity. Here, I use highly resolved models of residential power demand and PEV use to assess the impact of uncoordinated in-home PEV charging on residential power demand. While the increase in aggregate demand might be minimal even for high levels of PEV adoption, uncoordinated PEV charging could significantly change the shape of the aggregate residential demand, with impacts for electricity infrastructure, even at low adoption levels. Clustering effects in vehicle adoption at the local level might lead to high PEV concentrations even if overall adoption remains low, significantly increasing peak demand and requiring upgrades to the electricity distribution infrastructure. This effect is exacerbated when adopting higher in-home power charging.

  13. Coordinating plug-in electric vehicle charging with electric grid: Valley filling and target load following

    Science.gov (United States)

    Zhang, Li; Jabbari, Faryar; Brown, Tim; Samuelsen, Scott

    2014-12-01

    Plug-in electric vehicles (PEVs) shift energy consumption from petroleum to electricity for the personal transportation sector. This work proposes a decentralized charging protocol for PEVs with grid operators updating the cost signal. Each PEV calculates its own optimal charging profile only once based on the cost signal, after it is plugged in, and sends the result back to the grid operators. Grid operators only need to aggregate charging profiles and update the load and cost. The existing PEV characteristics, national household travel survey (NHTS), California Independent System Operator (CAISO) demand, and estimates for future renewable generation in California are used to simulate PEV operation, PEV charging profiles, grid demand, and grid net load (demand minus renewable). Results show the proposed protocol has good performance for overnight net load valley filling if the costs to be minimized are proportional to the net load. Annual results are shown in terms of overnight load variation and comparisons are made with grid level valley filling results. Further, a target load can be approached in the same manner by using the gap between current load and the target load as the cost. The communication effort involved is quite modest.

  14. Study concerning today's and tomorrow's power metering and balance settlements structure for Plug-in Hybrid Electric Vehicle/Electric Vehicle charging; Studie avseende dagens och morgondagens elmaetnings- och avraekningsinfrastruktur foer PHEV/EV-laddning

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, Mika (Vattenfall Services Nordic AB (Sweden)); Spante, Lennart (Vattenfall Research and Development AB (Sweden))

    2009-07-01

    This study is a part of the ELFORSK programme: 'Plug-In Hybrids and Electric Vehicles', sub programme 'P6 - Future systems for payment, communication and charging of Plug-In Hybrids (PHEV) and electrical vehicles (EV)'. As a first task within this sub programme, a study concerning today's and tomorrow's infrastructure for electrical metering and clearing for PHEV/EV-charging was made during autumn 2008. This report shows the results and conclusions from the initial work concerning this market related issue. During an introductory market phase, it is assumed that public charging mainly will be made by connecting an onboard charger in the vehicle to a single-phase 230 V outlet with 10 (or 16 A) fuse. For charging power of 2.3 - 3.7 kW, the cost for electricity (including grid fee) will be 3 - 5 SEK/charging hour. Costs for charging post investment, and maintenance etc must also be added. The future total 'customer cost' for access to charging posts in this power range is estimated to be less than 10 SEK/charging hour including electricity. In larger cities the 'hour cost' for parking is, in many cases, considerably higher than this. Today, there are no official regulations for charging and associated payment of PHEV/EV. In the report a number of infrastructure solutions with different levels of ambitions for utilising existing systems, e g allowing electricity supplier selection, are presented. The examples describe possible flows of payment between different potential actors within the PHEV/EV market. In the first market phase the number of charging posts and consequently number of chargings will be limited. If current market regulations would be followed the administrative costs for billing each charge would exceed other costs associated with the charge, which is not realistic. A suitable solution is to manage PHEV/EV charging and payment outside the comprehensive regulations of the electricity market, by letting

  15. Effect of plug-in hybrid electric vehicle adoption on gas tax revenue, local pollution, and greenhouse gas emissions.

    Science.gov (United States)

    2015-12-01

    Plug-in hybrid electric vehicles (PHEV) are likely to increase in popularity in the near future. However, the : environmental benefits of PHEVs involve tradeoffs between the benefits of reduced tailpipe emissions : against the drawbacks of increased ...

  16. Optimizing plug-in electric vehicle charging in interaction with a small office building

    Energy Technology Data Exchange (ETDEWEB)

    Momber, Ilan; Gomez, Tomas [Instituto de Investigacion Tecnologica (IIT), Madrid (Spain); Dallinger, David; Beer, Sebastian; Wietschel, Martin [Fraunhofer Institute for Systems and Innovation Research, Karlsruhe (Germany). Competence Center Energy Policy and Energy Systems; Marnay, Chris; Stadler, Michael [Lawrence Berkeley Lab., CA (United States)

    2011-07-01

    This paper considers the integration of plug-in electric vehicles (PEVs) in micro-grids. Extending a theoretical framework for mobile storage connection, the economic analysis here turns to the interactions of commuters and their driving behavior with office buildings. An illustrative example for a real office building is reported. The chosen system includes solar thermal, photovoltaic, combined heat and power generation as well as an array of plug-in electric vehicles with a combined aggregated capacity of 864 kWh. With the benefit-sharing mechanism proposed here and idealized circumstances, estimated cost savings of 5% are possible. Different pricing schemes were applied which include flat rates, demand charges, as well as hourly variable final customer tariffs and their effects on the operation of intermittent storage were revealed and examined in detail. Because the plug-in electric vehicle connection coincides with peak heat and electricity loads as well as solar radiation, it is possible to shift energy demand as desired in order to realize cost savings. (orig.)

  17. Configuration Analysis of Plug-in Hybrid Systems using Global Optimization

    OpenAIRE

    Kim, Insup; Kim, Hyunsup

    2013-01-01

    The purpose of the study is to analyze the configurations of Plug-in Hybrid Electric Vehicles (PHEV) with respect to fuel economy. Existing studies mostly focus on hybrid systems or few PHEV systems by only considering power split ratio and component efficiency. This paper adds original contribution to these literatures. First of all, this study compares and analyzes “series + α” PHEV – Input split, Series-output split and Series-parallel, which is consisted of a single Planetary gear or spur...

  18. Influence of plug-in hybrid electric vehicles on smart grids; Management der Trendwatching Group. Einfluss von Plug-In Hybrid Vehicles auf intelligente Verteilnetze (Smart Grids) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R. [ENCO Energie Consulting AG, Bubendorf (Switzerland); Strub, P. [Pierre Strub, Basel (Switzerland)

    2008-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the influence of plug-in hybrid vehicles on intelligent electricity distribution grids. The work of a trend-watching group which examined the regulatory services at the interface between such 'smart' grids and electrically powered vehicles is reported on. The trend-watching group includes research institutes, energy suppliers, NGOs, the automobile industry and technology companies. Vehicle-to-grid concepts and innovative developments in the Swiss market are commented on and the group's own activities (research, business models, technological development and politics) are discussed. The group will accompany relevant research programs and the implementation of measures as well as accompanying feasibility evaluations concerning current market developments. The Swiss federal strategy is to be discussed and international co-operation (with the IEA) is to be further strengthened.

  19. Regional Charging Infrastructure for Plug-In Electric Vehicles: A Case Study of Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Raghavan, Sesha [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rames, Clement [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eichman, Joshua [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melaina, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    Given the complex issues associated with plug-in electric vehicle (PEV) charging and options in deploying charging infrastructure, there is interest in exploring scenarios of future charging infrastructure deployment to provide insight and guidance to national and regional stakeholders. The complexity and cost of PEV charging infrastructure pose challenges to decision makers, including individuals, communities, and companies considering infrastructure installations. The value of PEVs to consumers and fleet operators can be increased with well-planned and cost-effective deployment of charging infrastructure. This will increase the number of miles driven electrically and accelerate PEV market penetration, increasing the shared value of charging networks to an expanding consumer base. Given these complexities and challenges, the objective of the present study is to provide additional insight into the role of charging infrastructure in accelerating PEV market growth. To that end, existing studies on PEV infrastructure are summarized in a literature review. Next, an analysis of current markets is conducted with a focus on correlations between PEV adoption and public charging availability. A forward-looking case study is then conducted focused on supporting 300,000 PEVs by 2025 in Massachusetts. The report concludes with a discussion of potential methodology for estimating economic impacts of PEV infrastructure growth.

  20. Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system

    International Nuclear Information System (INIS)

    Bi, Zicheng; Song, Lingjun; De Kleine, Robert; Mi, Chunting Chris; Keoleian, Gregory A.

    2015-01-01

    Graphical abstract: In this study, plug-in and wireless charging for an all-electric bus system are compared from the life cycle energy and greenhouse gas (GHG) emissions perspectives. The comparison of life cycle GHG emissions is shown in the graph below. The major differences between the two systems, including the charger, battery and use-phase electricity consumption, are modeled separately and compared aggregately. In the base case, the wireless charging system consumes 0.3% less energy and emits 0.5% less greenhouse gases than plug-in charging system in the total life cycle. To further improve the energy and environmental performance of the wireless charging system, key parameters including grid carbon intensity and wireless charging efficiency are analyzed and discussed in this paper. - Highlights: • Compared life cycle energy and GHG emissions of wireless to plug-in charging. • Modeled a transit bus system to compare both charging methods as a case study. • Contrasted tradeoffs of infrastructure burdens with lightweighting benefits. • The wireless battery can be downsized to 27–44% of a plug-in charged battery. • Explored sensitivity of wireless charging efficiency & grid carbon intensity. - Abstract: Wireless charging, as opposed to plug-in charging, is an alternative charging method for electric vehicles (EVs) with rechargeable batteries and can be applicable to EVs with fixed routes, such as transit buses. This study adds to the current research of EV wireless charging by utilizing the Life Cycle Assessment (LCA) to provide a comprehensive framework for comparing the life cycle energy demand and greenhouse gas emissions associated with a stationary wireless charging all-electric bus system to a plug-in charging all-electric bus system. Life cycle inventory analysis of both plug-in and wireless charging hardware was conducted, and battery downsizing, vehicle lightweighting and use-phase energy consumption were modeled. A bus system in Ann Arbor

  1. Energy management of a power-split plug-in hybrid electric vehicle based on genetic algorithm and quadratic programming

    Science.gov (United States)

    Chen, Zheng; Mi, Chris Chunting; Xiong, Rui; Xu, Jun; You, Chenwen

    2014-02-01

    This paper introduces an online and intelligent energy management controller to improve the fuel economy of a power-split plug-in hybrid electric vehicle (PHEV). Based on analytic analysis between fuel-rate and battery current at different driveline power and vehicle speed, quadratic equations are applied to simulate the relationship between battery current and vehicle fuel-rate. The power threshold at which engine is turned on is optimized by genetic algorithm (GA) based on vehicle fuel-rate, battery state of charge (SOC) and driveline power demand. The optimal battery current when the engine is on is calculated using quadratic programming (QP) method. The proposed algorithm can control the battery current effectively, which makes the engine work more efficiently and thus reduce the fuel-consumption. Moreover, the controller is still applicable when the battery is unhealthy. Numerical simulations validated the feasibility of the proposed controller.

  2. Magnitude and Variability of Controllable Charge Capacity Provided by Grid Connected Plug-in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Scoffield, Don R [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smart, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Salisbury, Shawn [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    As market penetration of plug-in electric vehicles (PEV) increases over time, the number of PEVs charging on the electric grid will also increase. As the number of PEVs increases, their ability to collectively impact the grid increases. The idea of a large body of PEVs connected to the grid presents an intriguing possibility. If utilities can control PEV charging, it is possible that PEVs could act as a distributed resource to provide grid services. The technology required to control charging is available for modern PEVs. However, a system for wide-spread implementation of controllable charging, including robust communication between vehicles and utilities, is not currently present. Therefore, the value of controllable charging must be assessed and weighed against the cost of building and operating such as system. In order to grasp the value of PEV charge control to the utility, the following must be understood: 1. The amount of controllable energy and power capacity available to the utility 2. The variability of the controllable capacity from day to day and as the number of PEVs in the market increases.

  3. Knowledge basis concerning the market for electric vehicles and plug-in hybrids (KAMEL); Kunskapsunderlag angaaende marknaden foer elfordon och laddhybrider (KAMEL)

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    The Swedish Energy Agency is proposing a four-year demonstration and development program to support the market introduction of electric vehicles and plug-in hybrids (electric vehicle applications). This in light of the uncertainties in the market introduction of vehicles, cost of key components such as batteries, the possibility of industrial development in Sweden and the uncertainty of how to complement to existing charging infrastructure in an socioeconomic way. In addition to this, the more general aid to electric cars and plug-in hybrids is to be reviewed. Today, electric vehicles, hybrids, ethanol vehicles, bio-gas vehicles and fuel-efficient vehicles, are supported by the green car definition and the environmental classification system. Furthermore, ethanol vehicles and biogas vehicles have support through tax reduction for biofuels. Overall, community support for electric vehicles and plug-in hybrids is lower than for the introduction of ethanol vehicles and biogas vehicles which do not reflect the environmental benefits they have. The review of the general subsidies for electric vehicles and the support through a demonstration program represent a concerted strategy to overcome the initially very high additional cost of these vehicles

  4. Resource Efficiency Assessment—Comparing a Plug-In Hybrid with a Conventional Combustion Engine

    Directory of Open Access Journals (Sweden)

    Martin Henßler

    2016-01-01

    Full Text Available The strong economic growth in recent years has led to an intensive use of natural resources, which causes environmental stress as well as restrictions on the availability of resources. Therefore, a more efficient use of resources is necessary as an important contribution to sustainable development. The ESSENZ method presented in this article comprehensively assesses a product’s resource efficiency by going beyond existing approaches and considering the pollution of the environment as well as the physical and socio-economic availability of resources. This paper contains a short description of the ESSENZ methodology as well as a case study of the Mercedes-Benz C-Class (W 205—comparing the conventional C 250 (petrol engine with the C 350 e Plug-In Hybrid (electric motor and petrol engine. By applying the ESSENZ method it can be shown that the use of more and different materials for the Plug-In-Hybrid influences the dimensions physical and socio-economic availability significantly. However, for environmental impacts, especially climate change and summer smog, clear advantages of the C 350 e occur due to lower demand of fossil energy carriers. As shown within the case study, the when applying the ESSENZ method a comprehensive evaluation of the used materials and fossil energy carriers can be achieved.

  5. Electricity-price arbitrage with plug-in hybrid electric vehicle: Gain or loss?

    International Nuclear Information System (INIS)

    Shang, Duo; Sun, Guodong

    2016-01-01

    Customers, utilities, and society can gain many benefits from distributed energy resources (DERs), including plug-in hybrid electric vehicles (PHEVs). Using battery on PHEV to arbitrage electricity price is one of the potential benefits to PHEV owners. There is, however, disagreement on the magnitude of such profit. This study uses a stochastic optimization model to estimate the potential profit from electricity price arbitrage of two types of PHEVs (PHEV-10, and PHEV-40) under three scenarios with variant electricity tariff and PHEV owners over a five-year period. The simulation results indicate that under current market structure, even with significant improvement in battery technologies (e.g., higher efficiency, lower cost), the PHEV owners can't achieve a positive arbitrage profit. This finding implies that expected arbitrage profit solely is not a viable option to engage PHEVs larger adoption. Subsidy and combining PHEV arbitraging with alternative PHEV services are required. - Highlights: •A stochastic optimization model is proposed to assess the arbitrage value of plug-in hybrid electric vehicle (PHEV). •Under current market condition, PHEV owners lose money from conducting PHEV arbitrage if counting battery degradation cost. •PHEV owner loses more money at real time pricing (RTP) than at time of use (TOU) scheme. •Battery improvement will reduce but can't even the arbitrage loss. •Expected arbitrage profit is not a viable option to engage PHEVs in dispatching and in providing ancillary services.

  6. Plug-in hybrid electric vehicles: Economic efficiency and market chances of different business models; Plug-in Hybridfahrzeuge: Wirtschaftlichkeit und Marktchancen verschiedener Geschaeftsmodelle

    Energy Technology Data Exchange (ETDEWEB)

    Hackbarth, Andre; Schuermann, Gregor [RWTH Aachen (Germany). Lehrstuhl fuer Wirtschaftswissenschaften insb. Energieoekonomik,; RWTH Aachen (DE). E.ON Energy Research Center, Institut fuer Future Energy Consumer Needs and Behavior (FCN); Madlener, Reinhard [Technische Hochschule Aachen (DE). Lehrstuhl fuer Verbrennungskraftmaschinen (VKA)

    2009-07-15

    The German traffic sector is strongly dependent on fossil fuels. Electric vehicles could reduce this dependence and also help to keep CO2 emissions low. Plug-in hybrid electric vehicles (PHEV) are a technology option that may facilitate the transition to electromobility. The authors investigate the economic efficiencies and amortisation periods of PHEV on the basis of two different business models, i.e. passenger cars (compact and medium-sized) and light vans. It is shown that under the assumed boundary conditions PHEV are not economically efficient at present. The influence of various parameters on economic efficiency and amortisation period is investigated by means of a sensitivity analysis. (orig.)

  7. Torque Coordination Control during Braking Mode Switch for a Plug-in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-10-01

    Full Text Available Hybrid vehicles usually have several braking systems, and braking mode switches are significant events during braking. It is difficult to coordinate torque fluctuations caused by mode switches because the dynamic characteristics of braking systems are different. In this study, a new type of plug-in hybrid vehicle is taken as the research object, and braking mode switches are divided into two types. The control strategy of type one is achieved by controlling the change rates of clutch hold-down and motor braking forces. The control strategy of type two is achieved by simultaneously changing the target braking torque during different mode switch stages and controlling the motor to participate in active coordination control. Finally, the torque coordination control strategy is modeled in MATLAB/Simulink, and the results show that the proposed control strategy has a good effect in reducing the braking torque fluctuation and vehicle shocks during braking mode switches.

  8. Protecting Public Health: Plug-In Electric Vehicle Charging and the Healthcare Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ryder, Carrie; Lommele, Stephen

    2016-10-01

    In 2014, the U.S. transportation sector consumed more than 13 million barrels of petroleum a day, approximately 70% of all domestic petroleum consumption. Internal combustion engine vehicles are major sources of greenhouse gases (GHGs), smog-forming compounds, particulate matter, and other air pollutants. Widespread use of alternative fuels and advanced vehicles, including plug-in electric vehicles (PEVs), can reduce our national dependence on petroleum and decrease the emissions that impact our air quality and public health. Healthcare organizations are major employers and community leaders that are committed to public well-being and are often early adopters of employer best practices. A growing number of hospitals are offering PEV charging stations for employees to help promote driving electric vehicles, reduce their carbon footprint, and improve local air quality.

  9. Rechargeable Energy Storage Systems for Plug-in Hybrid Electric Vehicles—Assessment of Electrical Characteristics

    Directory of Open Access Journals (Sweden)

    Noshin Omar

    2012-08-01

    Full Text Available In this paper, the performances of various lithium-ion chemistries for use in plug-in hybrid electric vehicles have been investigated and compared to several other rechargeable energy storage systems technologies such as lead-acid, nickel-metal hydride and electrical-double layer capacitors. The analysis has shown the beneficial properties of lithium-ion in the terms of energy density, power density and rate capabilities. Particularly, the nickel manganese cobalt oxide cathode stands out with the high energy density up to 160 Wh/kg, compared to 70–110, 90 and 71 Wh/kg for lithium iron phosphate cathode, lithium nickel cobalt aluminum cathode and, lithium titanate oxide anode battery cells, respectively. These values are considerably higher than the lead-acid (23–28 Wh/kg and nickel-metal hydride (44–53 Wh/kg battery technologies. The dynamic discharge performance test shows that the energy efficiency of the lithium-ion batteries is significantly higher than the lead-acid and nickel-metal hydride technologies. The efficiency varies between 86% and 98%, with the best values obtained by pouch battery cells, ahead of cylindrical and prismatic battery design concepts. Also the power capacity of lithium-ion technology is superior compared to other technologies. The power density is in the range of 300–2400 W/kg against 200–400 and 90–120 W/kg for lead-acid and nickel-metal hydride, respectively. However, considering the influence of energy efficiency, the power density is in the range of 100–1150 W/kg. Lithium-ion batteries optimized for high energy are at the lower end of this range and are challenged to meet the United States Advanced Battery Consortium, SuperLIB and Massachusetts Institute of Technology goals. Their association with electric-double layer capacitors, which have low energy density (4–6 Wh/kg but outstanding power capabilities, could be very interesting. The study of the rate capability of the lithium-ion batteries has

  10. Review on Automotive Power Generation System on Plug-in Hybrid Electric Vehicles & Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Leong Yap Wee

    2016-01-01

    Full Text Available Regenerative braking is a function to recharge power bank on the Plug-in electric vehicles (PHEV and electric vehicles (EV. The weakness of this system is, it can only perform its function when the vehicle is slowing down or by stepping the brake foot pedal. In other words, the electricity recharging system is inconsistent, non-continuous and geography dependent. To overcome the weakness of the regenerative braking system, it is suggested that to apply another generator which is going to be parallel with the regenerative braking system so that continuous charging can be achieved. Since the ironless electricity generator has a less counter electromotive force (CEMF comparing to an ironcored electricity generator and no cogging torque. Applying the ironless electricity generator parallel to the regenerative braking system is seen one of the options which creates sustainable charging system compared to cored electricity generator.

  11. Energy efficiency for the multiport power converters architectures of series and parallel hybrid power source type used in plug-in/V2G fuel cell vehicles

    International Nuclear Information System (INIS)

    Bizon, Nicu

    2013-01-01

    Highlights: ► It is analyzed the series and parallel Hybrid Power Source (HPS) topology for plug-in Fuel Cell Vehicle (PFCV). ► An energy efficiency analysis of the Multiport Power Converter (MPC) of both HPSs is performed. ► The MPC energy efficiency features were shown by analytical computing in all PFCV regimes. -- Abstract: In this paper it is presented a mathematical analysis of the energy efficiency for the Multiport Power Converter (MPC) used in series and parallel Hybrid Power Source (HPS) architectures type on the plug-in Fuel Cell Vehicles (PFCVs). The aim of the analysis is to provide general conclusions for a wide range of PFCV operating regimes that are chosen for efficient use of the MPC architecture on each particular drive cycle. In relation with FC system of PFCV, the Energy Storage System (ESS) can operate in following regimes: (1) Charge-Sustaining (CS), (2) Charge-Depleting (CD), and (3) Charge-Increasing (CI). Considering the imposed window for the ESS State-Of-Charge (SOC), the MPC can be connected to renewable plug-in Charging Stations (PCSs) to exchange power with Electric Power (EP) system, when it is necessary for both. The Energy Management Unit (EMU) that communicates with the EP system will establish the moments to match the PFCV power demand with supply availability of the EP grid, stabilizing it. The MPC energy efficiency of the PFCVs is studied when the ESS is charged (discharged) from (to) the home/PCS/EP system. The comparative results were shown for both PFCV architectures through the analytical calculation performed and the appropriate Matlab/Simulink® simulations presented.

  12. On the business value of ICT-controlled plug-in electric vehicle charging in California

    International Nuclear Information System (INIS)

    Goebel, Christoph

    2013-01-01

    The increasing penetration of variable renewable energy, such as wind and solar, requires the deployment of large scale energy storage or dynamic demand side management. Leveraging the intrinsic energy storage potential of certain electric loads could be the key for an efficient transition to green power generation. Plug-in electric vehicles (PEVs) are about to be introduced on a large scale. In this paper, we investigate the savings potential of electricity retailers resulting from the ability to control the charging behavior of a fleet of PEVs using Information and Communication Technology (ICT). This savings potential is important as it could jumpstart the development of advanced control infrastructures for dynamic demand side management. The paper makes three major contributions: first, it applies a novel car usage model based on data from the National Household Travel Survey (NHTS). Second, it develops and evaluates several charging scheduling algorithms with low computational requirements. Third, it identifies several key parameters influencing the relative and absolute savings potential of ICT-controlled PEV charging. We obtain a relative savings potential of up to 45%. The absolute yearly savings per PEV, however, are rather small, which could limit the economic incentives of electricity retailers to deploy the required infrastructure. - Highlights: ► The paper presents a novel model for car usage based on NHTS. ► Several charging scheduling algorithms with low computational requirements are developed and evaluated. ► Several key parameters influencing the relative and absolute savings potential of ICT-controlled PEV charging are identified. ► PEVs can be used to reduce electricity sourcing cost by up to 45%. ► The absolute yearly savings per controlled PEV are rather small and could limit the economic incentives of electricity retailers to deploy the required infrastructure.

  13. Incentive-based coordinated charging control of plug-in electric vehicles at the distribution-transformer level

    NARCIS (Netherlands)

    Hermans, R.M.; Almassalkhi, M.R.; Hiskens, I.A.

    2012-01-01

    Distribution utilities are becoming increasingly aware that their networks may struggle to accommodate large numbers of plug-in electric vehicles (PEVs). In particular, uncoordinated overnight charging is expected to be problematic, as the corresponding aggregated power demand exceeds the capacity

  14. Model-based design approaches for plug-in hybrid vehicle design

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, C.J. [CrossChasm Technologies, Cambridge, ON (Canada); Stevens, M.B.; Fowler, M.W. [Waterloo Univ., ON (Canada). Dept. of Chemical Engineering; Fraser, R.A. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering; Wilhelm, E.J. [Paul Scherrer Inst., Villigen (Switzerland). Energy Systems Analysis

    2007-07-01

    A model-based design process for plug-in hybrid vehicles (PHEVs) was presented. The paper discussed steps between the initial design concept and a working vehicle prototype, and focused on an investigation of the software-in-the-loop (SIL), hardware-in-the-loop (HIL), and component-in-the-loop (CIL) design phases. The role and benefits of using simulation were also reviewed. A method for mapping and identifying components was provided along with a hybrid control strategy and component-level control optimization process. The role of simulation in component evaluation, architecture design, and de-bugging procedures was discussed, as well as the role simulation networks can play in speeding deployment times. The simulations focused on work performed on a 2005 Chevrolet Equinox converted to a fuel cell hybrid electric vehicle (FCHEV). Components were aggregated to create a complete virtual vehicle. A simplified vehicle model was implemented onto the on-board vehicle control hardware. Optimization metrics were estimated at 10 alpha values during each control loop iteration. The simulation was then used to tune the control system under a variety of drive cycles and conditions. A CIL technique was used to place a physical hybrid electric vehicle (HEV) component under the control of a real time HEV/PHEV simulation. It was concluded that controllers should have a standardized component description that supports integration into advanced testing procedures. 4 refs., 9 figs.

  15. Integration of plug-in hybrid electric vehicles (PHEV) with grid connected residential photovoltaic energy systems

    Science.gov (United States)

    Nagarajan, Adarsh; Shireen, Wajiha

    2013-06-01

    This paper proposes an approach for integrating Plug-In Hybrid Electric Vehicles (PHEV) to an existing residential photovoltaic system, to control and optimize the power consumption of residential load. Control involves determining the source from which residential load will be catered, where as optimization of power flow reduces the stress on the grid. The system built to achieve the goal is a combination of the existing residential photovoltaic system, PHEV, Power Conditioning Unit (PCU), and a controller. The PCU involves two DC-DC Boost Converters and an inverter. This paper emphasizes on developing the controller logic and its implementation in order to accommodate the flexibility and benefits of the proposed integrated system. The proposed controller logic has been simulated using MATLAB SIMULINK and further implemented using Digital Signal Processor (DSP) microcontroller, TMS320F28035, from Texas Instruments

  16. On integration of plug-in hybrid electric vehicles into existing power system structures

    International Nuclear Information System (INIS)

    Galus, Matthias D.; Zima, Marek; Andersson, Goeran

    2010-01-01

    Plug-in hybrid electric vehicles (PHEVs) represent one option for the electrification of private mobility. In order to efficiently integrate PHEVs into power systems, existing organizational structures need to be considered. Based on procedures of power systems planning and operation, actors are identified whose operational activities will be affected by PHEV integration. Potential changes and challenges in the actors' long- and short term planning activities are discussed. Further, a PHEV operation state description is developed which defines vehicle operation states from the power system point of view integrating uncontrolled, controlled recharging and vehicle to grid (V2G) utilization in one single framework. Future PHEV managing entities, such as aggregators, can use this framework for planning and operation activities including load management and V2G. This operational state description could provide a solution for future short term planning challenges of PHEVs and an aegis for various routes of current research, which to date have been weakly linked to each other.

  17. Targeting plug-in hybrid electric vehicle policies to increase social benefits

    International Nuclear Information System (INIS)

    Skerlos, Steven J.; Winebrake, James J.

    2010-01-01

    In 2009 the U.S. federal government enacted tax credits aimed at encouraging consumers to purchase plug-in hybrid electric vehicles (PHEVs). These tax credits are available to all consumers equally and therefore do not account for the variability in social benefits associated with PHEV operation in different parts of the country. The tax credits also do not consider variability in consumer income. This paper discusses why the PHEV subsidy policy would have higher social benefits at equal or less cost if the tax credits were offered at different levels depending on consumer income and the location of purchase. Quantification of these higher social benefits and related policy proposals are left for future work.

  18. Guide to Federal Funding, Financing, and Technical Assistance for Plug-in Electric Vehicles and Charging Stations

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-07-29

    The U.S. Department of Energy and the U.S. Department of Transportation have published a guide to highlight examples of federal support and technical assistance for plug-in electric vehicles (PEVs) and charging stations. The guide provides a description of each opportunity and a point of contact to assist those interested in advancing PEV technology. The Department of Energy’s Alternative Fuels Data Center provides a comprehensive database of federal and state programs that support plug-in electric vehicles and infrastructure.

  19. Technology Roadmaps - Electric and plug-in hybrid electric vehicles (EV/PHEV)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-15

    The mass deployment of electric and plug-in hybrid electric vehicles (EVs and PHEVs) that rely on low greenhouse gas (GHG) emission electricity generation has great potential to significantly reduce the consumption of petroleum and other high CO2-emitting transportation fuels. The vision of the Electric and Plug-in Hybrid (EV/PHEV) Vehicles Roadmap is to achieve by 2050 the widespread adoption and use of EVs and PHEVs, which together represent more than 50% of annual LDV (light duty vehicle) sales worldwide. In addition to establishing a vision, this roadmap sets strategic goals to achieve it, and identifies the steps that need to be taken to accomplish these goals. This roadmap also outlines the roles and collaboration opportunities for different stakeholders and shows how government policy can support the overall achievement of the vision. The strategic goals for attaining the widespread adoption and use of EVs and PHEVs worldwide by 2050 cover the development of the EV/PHEV market worldwide through 2030 and involve targets that align with global targets to stabilise GHG concentrations. These technology-specific goals include the following: Set targets for electric-drive vehicle sales; Develop coordinated strategies to support the market introduction of electric-drive vehicles; Improve industry understanding of consumer needs and behaviours; Develop performance metrics for characterising vehicles; Foster energy storage RD and D initiatives to reduce costs and address resource-related issues; and, Develop and implement recharging infrastructure. The roadmap outlines additional recommendations that must be considered in order to successfully meet the technology milestones and strategic goals. These recommendations include the following: Use a comprehensive mix of policies that provide a clear framework and balance stakeholder interests; Engage in international collaboration efforts; and, Address policy and industry needs at a national level. The IEA will work in an

  20. Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.

    Science.gov (United States)

    Raykin, Leon; MacLean, Heather L; Roorda, Matthew J

    2012-06-05

    This study examines how driving patterns (distance and conditions) and the electricity generation supply interact to impact well-to-wheel (WTW) energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW performance of a PHEV is compared with that of a similar (nonplug-in) gasoline hybrid electric vehicle and internal combustion engine vehicle (ICEV). Driving PHEVs for short distances between recharging generally results in lower WTW total and fossil energy use and GHG emissions per kilometer compared to driving long distances, but the extent of the reductions depends on the electricity supply. For example, the shortest driving pattern in this study with hydroelectricity uses 81% less fossil energy than the longest driving pattern. However, the shortest driving pattern with coal-based electricity uses only 28% less fossil energy. Similar trends are observed in reductions relative to the nonplug-in vehicles. Irrespective of the electricity supply, PHEVs result in greater reductions in WTW energy use and GHG emissions relative to ICEVs for city than highway driving conditions. PHEVs charging from coal facilities only reduce WTW energy use and GHG emissions relative to ICEVs for certain favorable driving conditions. The study results have implications for environmentally beneficial PHEV adoption and usage patterns.

  1. Moving from assumption to observation: Implications for energy and emissions impacts of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Davies, Jamie; Kurani, Kenneth S.

    2013-01-01

    Plug-in hybrid electric vehicles (PHEVs) are currently for sale in most parts of the United States, Canada, Europe and Japan. These vehicles are promoted as providing distinct consumer and public benefits at the expense of grid electricity. However, the specific benefits or impacts of PHEVs ultimately relies on consumers purchase and vehicle use patterns. While considerable effort has been dedicated to understanding PHEV impacts on a per mile basis few studies have assessed the impacts of PHEV given actual consumer use patterns or operating conditions. Instead, simplifying assumptions have been made about the types of cars individual consumers will choose to purchase and how they will drive and charge them. Here, we highlight some of these consumer purchase and use assumptions, studies which have employed these assumptions and compare these assumptions to actual consumer data recorded in a PHEV demonstration project. Using simulation and hypothetical scenarios we discuss the implication for PHEV impact analyses and policy if assumptions about key PHEV consumer use variables such as vehicle choice, home charging frequency, distribution of driving distances, and access to workplace charging were to change. -- Highlights: •The specific benefits or impacts of PHEVs ultimately relies on consumers purchase and vehicle use patterns. •Simplifying, untested, assumptions have been made by prior studies about PHEV consumer driving, charging and vehicle purchase behaviors. •Some simplifying assumptions do not match observed data from a PHEV demonstration project. •Changing the assumptions about PHEV consumer driving, charging, and vehicle purchase behaviors affects estimates of PHEV impacts. •Premature simplification may have lasting consequences for standard setting and performance based incentive programs which rely on these estimates

  2. Tradeoffs between battery energy capacity and stochastic optimal power management in plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Moura, Scott J.; Fathy, Hosam K.; Stein, Jeffrey L.; Callaway, Duncan S.

    2010-01-01

    Recent results in plug-in hybrid electric vehicle (PHEV) power management research suggest that battery energy capacity requirements may be reduced through proper power management algorithm design. Specifically, algorithms which blend fuel and electricity during the charge depletion phase using smaller batteries may perform equally to algorithms that apply electric-only operation during charge depletion using larger batteries. The implication of this result is that ''blended'' power management algorithms may reduce battery energy capacity requirements, thereby lowering the acquisition costs of PHEVs. This article seeks to quantify the tradeoffs between power management algorithm design and battery energy capacity, in a systematic and rigorous manner. Namely, we (1) construct dynamic PHEV models with scalable battery energy capacities, (2) optimize power management using stochastic control theory, and (3) develop simulation methods to statistically quantify the performance tradeoffs. The degree to which blending enables smaller battery energy capacities is evaluated as a function of both daily driving distance and energy (fuel and electricity) pricing. (author)

  3. In-use measurement of activity, energy use, and emissions of a plug-in hybrid electric vehicle.

    Science.gov (United States)

    Graver, Brandon M; Frey, H Christopher; Choi, Hyung-Wook

    2011-10-15

    Plug-in hybrid electric vehicles (PHEVs) could reduce transportation air emissions and energy use. However, a method is needed for estimating on-road emissions of PHEVs. To develop a framework for quantifying microscale energy use and emissions (EU&E), measurements were conducted on a Toyota Prius retrofitted with a plug-in battery system on eight routes. Measurements were made using the following: (1) a data logger for the hybrid control system; (2) a portable emissions measurement system; and (3) a global positioning system with barometric altimeter. Trends in EU&E are estimated based on vehicle specific power. Energy economy is quantified based on gasoline consumed by the engine and grid energy consumed by the plug-in battery. Emissions from electricity consumption are estimated based on the power generation mix. Fuel use is approximately 30% lower during plug-in battery use. Grid emissions were higher for CO₂, NO(x), SO₂, and PM compared to tailpipe emissions but lower for CO and hydrocarbons. EU&E depends on engine and plug-in battery operation. The use of two energy sources must be addressed in characterizing fuel economy; overall energy economy is 11% lower if including grid energy use than accounting only for fuel consumption.

  4. Evaluation of energy requirements for all-electric range of plug-in hybrid electric two-wheeler

    International Nuclear Information System (INIS)

    Amjad, Shaik; Rudramoorthy, R.; Neelakrishnan, S.; Sri Raja Varman, K.; Arjunan, T.V.

    2011-01-01

    Recently plug-in hybrid electric vehicles (PHEVs) are emerging as one of the promising alternative to improve the sustainability of transportation energy and air quality especially in urban areas. The all-electric range in PHEV design plays a significant role in sizing of battery pack and cost. This paper presents the evaluation of battery energy and power requirements for a plug-in hybrid electric two-wheeler for different all-electric ranges. An analytical vehicle model and MATLAB simulation analysis has been discussed. The MATLAB simulation results estimate the impact of driving cycle and all-electric range on energy capacity, additional mass and initial cost of lead-acid, nickel-metal hydride and lithium-ion batteries. This paper also focuses on influence of cycle life on annual cost of battery pack and recommended suitable battery pack for implementing in plug-in hybrid electric two-wheelers. -- Research highlights: → Evaluates the battery energy and power requirements for a plug-in hybrid electric two-wheeler. → Simulation results reveal that the IDC demand more energy and cost of battery compared to ECE R40. → If cycle life is considered, the annual cost of Ni-MH battery pack is lower than lead-acid and Li-ion.

  5. National Plug-In Electric Vehicle Infrastructure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rames, Clement [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muratori, Matteo [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-09-15

    This report addresses the fundamental question of how much plug-in electric vehicle (PEV) charging infrastructure—also known as electric vehicle supply equipment (EVSE)—is needed in the United States to support both plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs).

  6. Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective

    Energy Technology Data Exchange (ETDEWEB)

    Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

    2013-04-01

    The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

  7. Hybrid and plug-in hybrid electric vehicle performance testing by the US Department of Energy Advanced Vehicle Testing Activity

    Science.gov (United States)

    Karner, Donald; Francfort, James

    The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and vehicle development programs. The AVTA has tested full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting baseline performance, battery benchmark and fleet tests of hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Testing has included all HEVs produced by major automotive manufacturers and spans over 2.5 million test miles. Testing is currently incorporating PHEVs from four different vehicle converters. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory.

  8. Comparisons of Energy Management Methods for a Parallel Plug-In Hybrid Electric Vehicle between the Convex Optimization and Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Renxin Xiao

    2018-01-01

    Full Text Available This paper proposes a comparison study of energy management methods for a parallel plug-in hybrid electric vehicle (PHEV. Based on detailed analysis of the vehicle driveline, quadratic convex functions are presented to describe the nonlinear relationship between engine fuel-rate and battery charging power at different vehicle speed and driveline power demand. The engine-on power threshold is estimated by the simulated annealing (SA algorithm, and the battery power command is achieved by convex optimization with target of improving fuel economy, compared with the dynamic programming (DP based method and the charging depleting–charging sustaining (CD/CS method. In addition, the proposed control methods are discussed at different initial battery state of charge (SOC values to extend the application. Simulation results validate that the proposed strategy based on convex optimization can save the fuel consumption and reduce the computation burden obviously.

  9. Techno-economic comparison of series hybrid, plug-in hybrid, fuel cell and regular cars

    NARCIS (Netherlands)

    van Vliet, O.P.R.|info:eu-repo/dai/nl/288519361; Kruithof, T.; Turkenburg, W.C.|info:eu-repo/dai/nl/073416355; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2010-01-01

    We examine the competitiveness of series hybrid compared to fuel cell, parallel hybrid, and regular cars. We use public domain data to determine efficiency, fuel consumption, total costs of ownership and greenhouse gas emissions resulting from drivetrain choices. The series hybrid drivetrain can be

  10. Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains

    International Nuclear Information System (INIS)

    Karabasoglu, Orkun; Michalek, Jeremy

    2013-01-01

    We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas emissions under various scenarios and simulated driving conditions. We find that driving conditions affect economic and environmental benefits of electrified vehicles substantially: Under the urban NYC driving cycle, hybrid and plug-in vehicles can cut life cycle emissions by 60% and reduce costs up to 20% relative to conventional vehicles (CVs). In contrast, under highway test conditions (HWFET) electrified vehicles offer marginal emissions reductions at higher costs. NYC conditions with frequent stops triple life cycle emissions and increase costs of conventional vehicles by 30%, while aggressive driving (US06) reduces the all-electric range of plug-in vehicles by up to 45% compared to milder test cycles (like HWFET). Vehicle window stickers, fuel economy standards, and life cycle studies using average lab-test vehicle efficiency estimates are therefore incomplete: (1) driver heterogeneity matters, and efforts to encourage adoption of hybrid and plug-in vehicles will have greater impact if targeted to urban drivers vs. highway drivers; and (2) electrified vehicles perform better on some drive cycles than others, so non-representative tests can bias consumer perception and regulation of alternative technologies. We discuss policy implications. - Highlights: • Electrified vehicle life cycle emissions and cost depend on driving conditions. • GHGs can triple in NYC conditions vs. highway (HWFET), cost +30%. • Under NYC conditions hybrid and plug-in vehicles cut GHGs up to 60%, cost 20%. • Under HWFET conditions they offer few GHG reductions at higher costs. • Federal tests for window labels and CAFE standards favor some technologies over others

  11. Consistent electrification of the powertrain in Mercedes-Benz cars. From micro hybrid to plug-in; Konsequente Elektrifizierung des Antriebsstrangs bei Mercedes-Benz Cars. Vom Micro-Hybrid bis zum Plug-In

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, M.; Henning, G.; Lamm, A.; Bitsche, O.; Antony, P.; Nietfeld, F. [Daimler AG (Germany)

    2010-07-01

    Electrifying vehicle drives is a major part of Daimler's strategy to realize sustained mobility. Electrification encompasses a wide range of concepts and system designs - from the micro hybrid to the plug-in. Economically priced micro hybrids were initially available in the smart fortwo as well as A-Class and B-Class model series and will be successively offered for other model series. Mild and full hybrids, which feature additional functionality, have already been successfully launched or will be available in the near future. The effort to continually advance innovative drive technology culminates in the SClass Plug-In. The lithium-ion battery plays a key role with its high energy density and efficiency. These vehicles and the drive technology they incorporate make it possible to meet the most stringent emissions standards as well as achieve very low fuel economy and CO{sub 2} emissions. (orig.)

  12. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy.

    Science.gov (United States)

    Samaras, Constantine; Meisterling, Kyle

    2008-05-01

    Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a role in reducing greenhouse gas (GHG) emissions from the transport sector. However, meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. We assess life cycle GHG emissions from PHEVs and find that they reduce GHG emissions by 32% compared to conventional vehicles, but have small reductions compared to traditional hybrids. Batteries are an important component of PHEVs, and GHGs associated with lithium-ion battery materials and production account for 2-5% of life cycle emissions from PHEVs. We consider cellulosic ethanol use and various carbon intensities of electricity. The reduced liquid fuel requirements of PHEVs could leverage limited cellulosic ethanol resources. Electricity generation infrastructure is long-lived, and technology decisions within the next decade about electricity supplies in the power sector will affectthe potential for large GHG emissions reductions with PHEVs for several decades.

  13. Modeling plug-in electric vehicle charging demand with BEAM: the framework for behavior energy autonomy mobility

    Energy Technology Data Exchange (ETDEWEB)

    Sheppard, Colin; Waraich, Rashid; Campbell, Andrew; Pozdnukov, Alexei; Gopal, Anand R.

    2017-05-01

    This report summarizes the BEAM modeling framework (Behavior, Energy, Mobility, and Autonomy) and its application to simulating plug-in electric vehicle (PEV) mobility, energy consumption, and spatiotemporal charging demand. BEAM is an agent-based model of PEV mobility and charging behavior designed as an extension to MATSim (the Multi-Agent Transportation Simulation model). We apply BEAM to the San Francisco Bay Area and conduct a preliminary calibration and validation of its prediction of charging load based on observed charging infrastructure utilization for the region in 2016. We then explore the impact of a variety of common modeling assumptions in the literature regarding charging infrastructure availability and driver behavior. We find that accurately reproducing observed charging patterns requires an explicit representation of spatially disaggregated charging infrastructure as well as a more nuanced model of the decision to charge that balances tradeoffs people make with regards to time, cost, convenience, and range anxiety.

  14. High-Fidelity Battery Model for Model Predictive Control Implemented into a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nicolas Sockeel

    2017-04-01

    Full Text Available Power management strategies have impacts on fuel economy, greenhouse gasses (GHG emission, as well as effects on the durability of power-train components. This is why different off-line and real-time optimal control approaches are being developed. However, real-time control seems to be more attractive than off-line control because it can be directly implemented for managing power and energy flows inside an actual vehicle. One interesting illustration of these power management strategies is the model predictive control (MPC based algorithm. Inside a MPC, a cost function is optimized while system constraints are validated in real time. The MPC algorithm relies on dynamic models of the vehicle and the battery. The complexity and accuracy of the battery model are usually neglected to benefit the development of new cost functions or better MPC algorithms. The contribution of this manuscript consists of developing and evaluating a high-fidelity battery model of a plug-in hybrid electric vehicle (PHEV that has been used for MPC. Via empirical work and simulation, the impact of a high-fidelity battery model has been evaluated and compared to a simpler model in the context of MPC. It is proven that the new battery model reduces the absolute voltage, state of charge (SoC, and battery power loss error by a factor of 3.2, 1.9 and 2.1 on average respectively, compared to the simpler battery model.

  15. Multi-Period Optimization Model for Electricity Generation Planning Considering Plug-in Hybrid Electric Vehicle Penetration

    Directory of Open Access Journals (Sweden)

    Lena Ahmadi

    2015-05-01

    Full Text Available One of the main challenges for widespread penetration of plug-in hybrid electric vehicles (PHEVs is their impact on the electricity grid. The energy sector must anticipate and prepare for this extra demand and implement long-term planning for electricity production. In this paper, the additional electricity demand on the Ontario electricity grid from charging PHEVs is incorporated into an electricity production planning model. A case study pertaining to Ontario energy planning is considered to optimize the value of the cost of the electricity over sixteen years (2014–2030. The objective function consists of the fuel costs, fixed and variable operating and maintenance costs, capital costs for new power plants, and the retrofit costs of existing power plants. Five different case studies are performed with different PHEVs penetration rates, types of new power plants, and CO2 emission constraints. Among all the cases studied, the one requiring the most new capacity, (~8748 MW, is assuming the base case with 6% reduction in CO2 in year 2018 and high PHEV penetration. The next highest one is the base case, plus considering doubled NG prices, PHEV medium penetration rate and no CO2 emissions reduction target with an increase of 34.78% in the total installed capacity in 2030. Furthermore, optimization results indicate that by not utilizing coal power stations the CO2 emissions are the lowest: ~500 tonnes compared to ~900 tonnes when coal is permitted.

  16. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : final report.

    Science.gov (United States)

    2012-02-01

    The University of Toledo University Transportation Center (UT-UTC) has identified : hybrid vehicles as one of the three areas of the research. The activities in this research : are directed towards the noise, vibration, and harshness (NVH) solutions ...

  17. Plug-in hybrid electric vehicles-A low-carbon solution for Ireland?

    International Nuclear Information System (INIS)

    Smith, William J.

    2010-01-01

    Between 1990 and 2006, the primary energy requirement of the Irish transport sector increased by 166%. Associated greenhouse gas (GHG) emissions have followed a corresponding trajectory, and are responsible-at least in part-for Ireland's probable failure to meet its Kyoto targets. As in most countries, Ireland's transport sector is almost totally reliant on oil-a commodity for which Ireland is totally dependent on imports-and therefore vulnerable to supply and price shocks. Conversely, the efficiency and carbon intensity of the Irish electricity supply system have both improved dramatically over the same period, with significant further improvements projected over the coming decade. This paper analyses the prospects for leveraging these changes by increasing the electrification of the Irish transport sector. Specifically, the potential benefits of plug-in hybrid-electric vehicles (PHEV) are assessed, in terms of reducing primary energy requirement (PER) and CO 2 emissions. It is shown that, on a per-km basis, PHEV offer the potential for reductions of 50% or more in passenger car PER and CO 2 intensity. However, the time required to turn over the existing fleet means that a decade or more will be required to significantly impact PER and emissions of the PC fleet.

  18. Evaluation of energy consumption, emissions and cost of plug-in hybrid vehicles

    International Nuclear Information System (INIS)

    Silva, Carla; Ross, Marc; Farias, Tiago

    2009-01-01

    Plug-in hybrid vehicles (PHEVs) are gaining attention over the world due to their ability to reduce gasoline/diesel consumption by using electricity from the grid. Despite the efforts of Society of Automotive Engineers Recommended Practice SAE J1711, it has not yet been established a worldwide methodology for calculation of fuel consumption and emission factors when regarding emission standards, with distinct driving cycles. This paper intends to contribute to the creation of this broader methodology, based on SAE J1711, aiming a fair comparison among vehicle technologies, and giving insight on electric grid impact and on CO 2 life-cycle emissions. The methodology was applied to two simulated PHEVs exploring two different powertrain configurations: series and parallel; different driving cycles: CAFE, FTP75, NEDC and JC08; different driving distances (specially analyzing the average commuting daily distance of 20 km) and different user behaviours regarding battery recharging. CO 2 emissions were calculated for fuel consumption, electricity generation and cradle-to-grave. Electric grid power demand was estimated. Maintenance, manufacturer and use costs were discussed.

  19. CO2 Mitigation Potential of Plug-in Hybrid Electric Vehicles larger than expected.

    Science.gov (United States)

    Plötz, P; Funke, S A; Jochem, P; Wietschel, M

    2017-11-28

    The actual contribution of plug-in hybrid and battery electric vehicles (PHEV and BEV) to greenhouse gas mitigation depends on their real-world usage. Often BEV are seen as superior as they drive only electrically and do not have any direct emissions during driving. However, empirical evidence on which vehicle electrifies more mileage with a given battery capacity is lacking. Here, we present the first systematic overview of empirical findings on actual PHEV and BEV usage for the US and Germany. Contrary to common belief, PHEV with about 60 km of real-world range currently electrify as many annual vehicles kilometres as BEV with a much smaller battery. Accordingly, PHEV recharged from renewable electricity can highly contribute to green house gas mitigation in car transport. Including the higher CO 2eq emissions during the production phase of BEV compared to PHEV, PHEV show today higher CO 2eq savings then BEVs compared to conventional vehicles. However, for significant CO 2eq improvements of PHEV and particularly of BEVs the decarbonisation of the electricity system should go on.

  20. Proceedings of the PHEV09 conference : plug-in hybrid and electric vehicles

    International Nuclear Information System (INIS)

    2009-01-01

    The commercialization of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) will require careful consideration of the electric grid's generation and distribution capacities as well as new developments in electric drives and other PHEV and EV technologies. A greater understanding of the policy initiatives needed to develop and promote the use of PHEVs and EVs is also needed in Canada. With 344 delegates, this conference provided a forum for the discussion of issues related to the current PHEV and EV market in Canada. The first day of the conference focused on emerging battery technologies, while the second and third days discussed PHEV and EV technologies, markets, policies and regulations. Presentations at the conference were divided into 18 sessions: (1) performance of batteries in extreme conditions; (2) grid integration; (3) customer perspectives; (4) public and private support programs for the Canadian EV industry; (5) grid-vehicle interface; (6) standards, regulations and safety issues now and in the foreseeable future; (7) an overview of key initiatives in Canada; (8) applications in defence and space; (9) international perspectives on market issues and supportive policies; (10) power management; (11) applications in northern and remote communities; (12) emerging business models to accelerate electric drive; (13) power management; (14) renewable and zero GHG energy opportunities; (15) human resources implications; (16) OEM perspectives; (17) OEM perspectives part 2; and (18) a closing plenary session. The conference featured 64 presentations, of which 11 have been catalogued separately for inclusion in this database. tabs., figs.

  1. Calibration methodology for energy management system of a plug-in hybrid electric vehicle

    International Nuclear Information System (INIS)

    Duan, Benming; Wang, Qingnian; Zeng, Xiaohua; Gong, Yinsheng; Song, Dafeng; Wang, Junnian

    2017-01-01

    Highlights: • Calibration theory of EMS is proposed. • A comprehensive evaluating indicator is constructed by radar chart method. • Optimal Latin hypercube design algorithm is introduced to obtain training data. • An approximation model is established by using a RBF neural network. • Offline calibration methodology improves the actual calibration efficiency. - Abstract: This paper presents a new analytical calibration method for energy management strategy designed for a plug-in hybrid electric vehicle. This method improves the actual calibration efficiency to reach a compromise among the conflicting calibration requirements (e.g. emissions and economy). A comprehensive evaluating indicator covering emissions and economic performance is constructed by using a radar chart method. A radial basis functions (RBFs) neural network model is proposed to establish a precise model among control parameters and the comprehensive evaluation indicator. The optimal Latin hypercube design is introduced to obtain the experimental data to train the RBFs neural network model. And multi-island genetic algorithm is used to solve the optimization model. Finally, an offline calibration example is conducted. Results validate the effectiveness of the proposed calibration approach in improving vehicle performance and calibration efficiency.

  2. Plug-in hybrid electric vehicles as regulating power providers. Case studies of Sweden and Germany

    International Nuclear Information System (INIS)

    Andersson, S.-L.; Goeransson, L.; Karlsson, S.; Johnsson, F.; Elofsson, A.K.; Galus, M.D.; Andersson, G.

    2010-01-01

    This study investigates plug-in hybrid electric vehicles (PHEVs) as providers of regulating power in the form of primary, secondary and tertiary frequency control. Previous studies have shown that PHEVs could generate substantial profits while providing ancillary services. This study investigates under what conditions PHEVs can generate revenues using actual market data, i.e. prices and activations of regulating power, from Sweden and Germany from four months in 2008. PHEV market participation is modelled for individual vehicles in a fleet subject to a simulated movement pattern. Costs for infrastructure and vehicle-to-grid equipment are not included in the analysis. The simulation results indicate that maximum average profits generated on the German markets are in the range 30-80 EUR per vehicle and month whereas the Swedish regulating power markets give no profit. In addition, an analysis is performed to identify strengths, weaknesses, opportunities, and threats (SWOT) of PHEVs as regulating power providers. Based on the simulation results and the SWOT analysis, characteristics for an ideal regulating power market for PHEVs are presented. (author)

  3. Particle swarm optimization of driving torque demand decision based on fuel economy for plug-in hybrid electric vehicle

    International Nuclear Information System (INIS)

    Shen, Peihong; Zhao, Zhiguo; Zhan, Xiaowen; Li, Jingwei

    2017-01-01

    In this paper, an energy management strategy based on logic threshold is proposed for a plug-in hybrid electric vehicle. The plug-in hybrid electric vehicle powertrain model is established using MATLAB/Simulink based on experimental tests of the power components, which is validated by the comparison with the verified simulation model which is built in the AVL Cruise. The influence of the driving torque demand decision on the fuel economy of plug-in hybrid electric vehicle is studied using a simulation. The optimization method for the driving torque demand decision, which refers to the relationship between the accelerator pedal opening and driving torque demand, from the perspective of fuel economy is formulated. The dynamically changing inertia weight particle swarm optimization is used to optimize the decision parameters. The simulation results show that the optimized driving torque demand decision can improve the PHEV fuel economy by 15.8% and 14.5% in the fuel economy test driving cycle of new European driving cycle and worldwide harmonized light vehicles test respectively, using the same rule-based energy management strategy. The proposed optimization method provides a theoretical guide for calibrating the parameters of driving torque demand decision to improve the fuel economy of the real plug-in hybrid electric vehicle. - Highlights: • The influence of the driving torque demand decision on the fuel economy is studied. • The optimization method for the driving torque demand decision is formulated. • An improved particle swarm optimization is utilized to optimize the parameters. • Fuel economy is improved by using the optimized driving torque demand decision.

  4. Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle

    OpenAIRE

    Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui

    2017-01-01

    Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem i...

  5. A decentralized charging control strategy for plug-in electric vehicles to mitigate wind farm intermittency and enhance frequency regulation

    Science.gov (United States)

    Luo, Xiao; Xia, Shiwei; Chan, Ka Wing

    2014-02-01

    This paper proposes a decentralized charging control strategy for a large population of plug-in electric vehicles (PEVs) to neutralize wind power fluctuations so as to improve the regulation of system frequency. Without relying on a central control entity, each PEV autonomously adjusts its charging or discharging power in response to a communal virtual price signal and based on its own urgency level of charging. Simulation results show that under the proposed charging control, the aggregate PEV power can effectively neutralize wind power fluctuations in real-time while differential allocation of neutralization duties among the PEVs can be realized to meet the PEV users' charging requirements. Also, harmful wind-induced cyclic operations in thermal units can be mitigated. As shown in economic analysis, the proposed strategy can create cost saving opportunities for both PEV users and utility.

  6. Plug-in hybrid electric vehicle impact study for the Progress Energy Carolinas Territory : condensed grid impact report for PHEV 2007 conference

    International Nuclear Information System (INIS)

    Waters, M.; Outlaw, T.; Boone, K.

    2007-01-01

    This presentation described a program designed to investigate the market viability of plug-in hybrid electric vehicles (PHEVs) and examine the impact of PHEVs on electricity generation systems. Three potential charging scenarios were examined: (1) uncontrolled; (2) delayed after 22:00, and (3) optimized off-peak. The study demonstrated that PHEVs have the capacity to provide greater value to users than conventional or standard hybrid vehicles, even when their higher initial cost is considered. Fuel savings were estimated at $600 more than savings estimated for standard hybrid vehicles. Developed market models were used to demonstrate that PHEVs will probably achieve sales market shares of 26 per cent by the year 2030. An estimated 670 GWh of electricity will be needed to charge the expected fleet. Results for the uncontrolled scenario showed additional peak demands. Delayed and off-peak scenarios were capable of massive penetrations of PHEVs without increases in transmission and distribution. Incremental emission rates for sulfur dioxide (SO 2 ) and nitrogen oxide (NO x ) decreased in off-peak scenarios. The study showed that all PHEV charging scenarios increased SO 2 emissions when compared to standard hybrids. NO x emissions were equal or slightly higher. It was concluded that PHEVs can also serve as a key component to alternative fuel strategies and provide significant reductions in oil imports. 30 refs., 2 tabs., 21 figs

  7. Integration of plug-in hybrid cars in the promotion of intelligent distribution networks; Integration von Plug-in-Hybrid Cars zur Foerderung intelligenter Verteilnetzstrukturen (Vorstudie) - Schlussbericht / 2 2008

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R.; Rigassi, R.

    2008-08-15

    This final report for the Swiss Federal Office of Energy (SFOE) reviews work done as part of a preliminary study concerning the use of plug-in hybrid cars as part of a system for the regulation of energy in electricity supply grids. The 'Vehicle to Grid' concept is discussed. This involves hybrid vehicles with higher accumulator capacities, reversible charger units as well as appropriate connector technologies and communication systems. This 'smart grid' concept is looked at and the players involved are introduced. The advantages and disadvantages of such a system are discussed.

  8. GHG emissions from sugar cane ethanol, plug-in hybrids, heavy duty gasoline vehicles and hybrids, and materials review

    International Nuclear Information System (INIS)

    2006-01-01

    This report provided updates of new work and new pathways added to the GHGenius model. The model was developed to analyze lifecycle emissions of contaminants associated with the production and use of alternative and traditional fuels, and is continually updated with new information on existing processes and new innovations. The report described the addition of a new table that showed fossil energy consumption per km driven. New information on energy requirements to remove sulphur from gasoline and diesel fuel in Canada were provided. The report also outlined a new pathway for plug-in hybrid battery-powered electric and gasoline vehicles. Vehicle weight was included as part of the user inputs for modelling gasoline powered heavy duty vehicles and gasoline hybrid heavy duty vehicles. Information on the production processes of ethanol from sugar cane were also added to the model. Amounts of energy consumed during the manufacture of materials for vehicles were also incorporated into the model. 34 refs., 39 tabs., 6 figs

  9. Trip-oriented stochastic optimal energy management strategy for plug-in hybrid electric bus

    International Nuclear Information System (INIS)

    Du, Yongchang; Zhao, Yue; Wang, Qinpu; Zhang, Yuanbo; Xia, Huaicheng

    2016-01-01

    A trip-oriented stochastic optimal energy management strategy for plug-in hybrid electric bus is presented in this paper, which includes the offline stochastic dynamic programming part and the online implementation part performed by equivalent consumption minimization strategy. In the offline part, historical driving cycles of the fixed route are divided into segments according to the position of bus stops, and then a segment-based stochastic driving condition model based on Markov chain is built. With the segment-based stochastic model obtained, the control set for real-time implemented equivalent consumption minimization strategy can be achieved by solving the offline stochastic dynamic programming problem. Results of stochastic dynamic programming are converted into a 3-dimensional lookup table of parameters for online implemented equivalent consumption minimization strategy. The proposed strategy is verified by both simulation and hardware-in-loop test of real-world driving cycle on an urban bus route. Simulation results show that the proposed method outperforms both the well-tuned equivalent consumption minimization strategy and the rule-based strategy in terms of fuel economy, and even proved to be close to the optimal result obtained by dynamic programming. Furthermore, the practical application potential of the proposed control method was proved by hardware-in-loop test. - Highlights: • A stochastic problem was formed based on a stochastic segment-based driving condition model. • Offline stochastic dynamic programming was employed to solve the stochastic problem. • The instant power split decision was made by the online equivalent consumption minimization strategy. • Good performance in fuel economy of the proposed method was verified by simulation results. • Practical application potential of the proposed method was verified by the hardware-in-loop test results.

  10. Plug-In Hybrid Electric Vehicle Market Introduction Study: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen [Sentech, Inc.; Gross, Thomas [Sentech, Inc.; Lin, Zhenhong [ORNL; Sullivan, John [University of Michigan Transportation Research Institute; Cleary, Timothy [Sentech, Inc.; Ward, Jake [U.S. Department of Energy

    2010-02-01

    Oak Ridge National Laboratory (ORNL), Sentech, Inc., Pacific Northwest National Laboratory (PNNL)/University of Michigan Transportation Research Institute (UMTRI), and the U.S. Department of Energy (DOE) have conducted a Plug-in Hybrid Electric Vehicle (PHEV) Market Introduction Study to identify and assess the effect of potential policies, regulations, and temporary incentives as key enablers for a successful market debut. The timeframe over which market-stimulating incentives would be implemented - and the timeframe over which they would be phased out - are suggested. Possible sources of revenue to help fund these mechanisms are also presented. In addition, pinch points likely to emerge during market growth are identified and proposed solutions presented. Finally, modeling results from ORNL's Market Acceptance of Advanced Automotive Technologies (MA3T) Model and UMTRI's Virtual AutoMotive MarketPlace (VAMMP) Model were used to quantify the expected effectiveness of the proposed policies and to recommend a consensus strategy aimed at transitioning what begins as a niche industry into a thriving and sustainable market by 2030. The primary objective of the PHEV Market Introduction Study is to identify the most effective means for accelerating the commercialization of PHEVs in order to support national energy and economic goals. Ideally, these mechanisms would maximize PHEV sales while minimizing federal expenditures. To develop a robust market acceleration program, incentives and policies must be examined in light of: (1) clarity and transparency of the market signals they send to the consumer; (2) expenditures and resources needed to support them; (3) expected impacts on the market for PHEVs; (4) incentives that are compatible and/or supportive of each other; (5) complexity of institutional and regulatory coordination needed; and (6) sources of funding.

  11. Real-world fuel economy and CO2 emissions of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Ploetz, Patrick; Funke, Simon Arpad; Jochem, Patrick

    2015-01-01

    Plug-in hybrid electric vehicles (PHEV) combine electric propulsion with an internal combustion engine. Their potential to reduce transport related green-house gas emissions highly depends on their actual usage and electricity provision. Various studies underline their environmental and economic advantages, but are based on standardised driving cycles, simulations or small PHEV fleets. Here, we analyse real-world fuel economy of PHEV and the factors influencing it based on about 2,000 actual PHEV that have been observed over more than a year in the U.S. and Germany. We find that real-world fuel economy of PHEV differ widely among users. The main factors explaining this variation are the annual mileage, the regularity of daily driving, and the likelihood of long-distance trips. Current test cycle fuel economy ratings neglect these factors. Despite the broad range of PHEV fuel economies, the test cycle fuel economy ratings can be close to empiric PHEV fleet averages if the average annual mile-age is about 17,000 km. For the largest group of PHEV in our data, the Chevrolet Volt, we find the average fuel economy to be 1.45 litres/100 km at an average electric driving share of 78%. The resulting real-world tank-to-wheel CO 2 emissions of these PHEV are 42 gCO 2 /km and the annual CO 2 savings in the U.S. amount to about 50 Mt. In conclusion, the variance of empirical PHEV fuel economy is considerably higher than of conventional vehicles. This should be taken into account by future test cycles and high electric driving shares should be incentivised.

  12. An agent-based model to study market penetration of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Eppstein, Margaret J.; Grover, David K.; Marshall, Jeffrey S.; Rizzo, Donna M.

    2011-01-01

    A spatially explicit agent-based vehicle consumer choice model is developed to explore sensitivities and nonlinear interactions between various potential influences on plug-in hybrid vehicle (PHEV) market penetration. The model accounts for spatial and social effects (including threshold effects, homophily, and conformity) and media influences. Preliminary simulations demonstrate how such a model could be used to identify nonlinear interactions among potential leverage points, inform policies affecting PHEV market penetration, and help identify future data collection necessary to more accurately model the system. We examine sensitivity of the model to gasoline prices, to accuracy in estimation of fuel costs, to agent willingness to adopt the PHEV technology, to PHEV purchase price and rebates, to PHEV battery range, and to heuristic values related to gasoline usage. Our simulations indicate that PHEV market penetration could be enhanced significantly by providing consumers with ready estimates of expected lifetime fuel costs associated with different vehicles (e.g., on vehicle stickers), and that increases in gasoline prices could nonlinearly magnify the impact on fleet efficiency. We also infer that a potential synergy from a gasoline tax with proceeds is used to fund research into longer-range lower-cost PHEV batteries. - Highlights: → We model consumer agents to study potential market penetration of PHEVs. → The model accounts for spatial, social, and media effects. → We identify interactions among potential leverage points that could inform policy. → Consumer access to expected lifetime fuel costs may enhance PHEV market penetration. → Increasing PHEV battery range has synergistic effects on fleet efficiency.

  13. Global Optimal Energy Management Strategy Research for a Plug-In Series-Parallel Hybrid Electric Bus by Using Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Hongwen He

    2013-01-01

    Full Text Available Energy management strategy influences the power performance and fuel economy of plug-in hybrid electric vehicles greatly. To explore the fuel-saving potential of a plug-in hybrid electric bus (PHEB, this paper searched the global optimal energy management strategy using dynamic programming (DP algorithm. Firstly, the simplified backward model of the PHEB was built which is necessary for DP algorithm. Then the torque and speed of engine and the torque of motor were selected as the control variables, and the battery state of charge (SOC was selected as the state variables. The DP solution procedure was listed, and the way was presented to find all possible control variables at every state of each stage in detail. Finally, the appropriate SOC increment is determined after quantizing the state variables, and then the optimal control of long driving distance of a specific driving cycle is replaced with the optimal control of one driving cycle, which reduces the computational time significantly and keeps the precision at the same time. The simulation results show that the fuel economy of the PEHB with the optimal energy management strategy is improved by 53.7% compared with that of the conventional bus, which can be a benchmark for the assessment of other control strategies.

  14. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production

  15. Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers

    International Nuclear Information System (INIS)

    Lin, Zhenhong

    2012-01-01

    To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle. Assuming no battery subsidy, the empirical results suggest that: 1) the optimal PHEV electric range approximates two thirds of one s typical daily driving distance in the near term, defined as $450/kWh battery delivered price and $4/gallon gasoline price. 2) PHEVs are not ready to directly compete with HEVs at today s situation, defined by the $600/kWh battery delivered price and the $3-$4/gallon gasoline price, but can do so in the near term. 3) PHEV10s will be favored by the market over longer-range PHEVs in the near term, but longer-range PHEVs can dominate the PHEV market if gasoline prices reach as high as $5-$6 per gallon and/or battery delivered prices reach as low as $150-$300/kWh. 4) PHEVs can become much more attractive against HEVs in the near term if the electric range can be extended by only 10% with multiple charges per day, possible with improved charging infrastructure or adapted charging behavior. 5) the impact of a $100/kWh decrease in battery delivered prices on the competiveness of PHEVs against HEVs can be offset by about $1.25/gallon decrease in gasoline prices, or about 7/kWh increase in electricity prices. This also means that the impact of a $1/gallon decrease in gasoline prices can be offset by about 5/kWh decrease in electricity prices.

  16. Regulatory framework and business models for charging plug-in electric vehicles: Infrastructure, agents, and commercial relationships

    International Nuclear Information System (INIS)

    Gomez San Roman, Tomas; Momber, Ilan; Rivier Abbad, Michel; Sanchez Miralles, Alvaro

    2011-01-01

    Electric vehicles (EVs) present efficiency and environmental advantages over conventional transportation. It is expected that in the next decade this technology will progressively penetrate the market. The integration of plug-in electric vehicles in electric power systems poses new challenges in terms of regulation and business models. This paper proposes a conceptual regulatory framework for charging EVs. Two new electricity market agents, the EV charging manager and the EV aggregator, in charge of developing charging infrastructure and providing charging services are introduced. According to that, several charging modes such as EV home charging, public charging on streets, and dedicated charging stations are formulated. Involved market agents and their commercial relationships are analysed in detail. The paper elaborates the opportunities to formulate more sophisticated business models for vehicle-to-grid applications under which the storage capability of EV batteries is used for providing peak power or frequency regulation to support the power system operation. Finally penetration phase dependent policy and regulatory recommendations are given concerning time-of-use pricing, smart meter deployment, stable and simple regulation for reselling energy on private property, roll-out of public charging infrastructure as well as reviewing of grid codes and operational system procedures for interactions between network operators and vehicle aggregators. - Highlights: → A conceptual regulatory framework for charging EVs is proposed. → 2 new agents, EV charging point manager, EV aggregator and their functions are introduced. → Depending on private or public access of charging points, contractual relations change. → A classification of charging scenarios alludes implications on regulatory topics. → EV penetration phase dependent policy and regulatory recommendations are given.

  17. Regulatory framework and business models for charging plug-in electric vehicles: Infrastructure, agents, and commercial relationships

    Energy Technology Data Exchange (ETDEWEB)

    Gomez San Roman, Tomas [Instituto de Investigacion Tecnologica, Universidad Pontificia Comillas, Madrid (Spain); Momber, Ilan, E-mail: ilan.momber@iit.upcomillas.es [Instituto de Investigacion Tecnologica, Universidad Pontificia Comillas, Madrid (Spain); Rivier Abbad, Michel; Sanchez Miralles, Alvaro [Instituto de Investigacion Tecnologica, Universidad Pontificia Comillas, Madrid (Spain)

    2011-10-15

    Electric vehicles (EVs) present efficiency and environmental advantages over conventional transportation. It is expected that in the next decade this technology will progressively penetrate the market. The integration of plug-in electric vehicles in electric power systems poses new challenges in terms of regulation and business models. This paper proposes a conceptual regulatory framework for charging EVs. Two new electricity market agents, the EV charging manager and the EV aggregator, in charge of developing charging infrastructure and providing charging services are introduced. According to that, several charging modes such as EV home charging, public charging on streets, and dedicated charging stations are formulated. Involved market agents and their commercial relationships are analysed in detail. The paper elaborates the opportunities to formulate more sophisticated business models for vehicle-to-grid applications under which the storage capability of EV batteries is used for providing peak power or frequency regulation to support the power system operation. Finally penetration phase dependent policy and regulatory recommendations are given concerning time-of-use pricing, smart meter deployment, stable and simple regulation for reselling energy on private property, roll-out of public charging infrastructure as well as reviewing of grid codes and operational system procedures for interactions between network operators and vehicle aggregators. - Highlights: > A conceptual regulatory framework for charging EVs is proposed. > 2 new agents, EV charging point manager, EV aggregator and their functions are introduced. > Depending on private or public access of charging points, contractual relations change. > A classification of charging scenarios alludes implications on regulatory topics. > EV penetration phase dependent policy and regulatory recommendations are given.

  18. Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.; DeVault, Robert C [ORNL

    2009-01-01

    Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs

  19. Battery durability and longevity based power management for plug-in hybrid electric vehicle with hybrid energy storage system

    International Nuclear Information System (INIS)

    Zhang, Shuo; Xiong, Rui; Cao, Jiayi

    2016-01-01

    Highlights: • A novel procedure for developing an optimal power management strategy was proposed. • Efficiency and durability were considered to improve the practical performance. • Three control rules were abstracted from the optimization results with DP algorithm. • The proposed control strategy was verified under different SoC and SoH conditions. • The proposed strategy could further improve the energy efficiency obviously. - Abstract: Efficiency and durability are becoming two key issues for the energy storage system in electric vehicles together with their associated power management strategies. In this paper, we present a procedure for the design of a near-optimal power management strategy for the hybrid battery and ultracapacitor energy storage system (HESS) in a plug-in hybrid electric vehicle. The design procedure starts by defining a cost function to minimize the electricity consumption of the HESS and to optimize the operating behavior of the battery. To determine the optimal control actions and power distribution between two power sources, a dynamic programming (DP)-based novel analysis method is proposed, and the optimization framework is presented accordingly. Through analysis of the DP control actions under different battery state-of-health (SoH) conditions, near-optimal rules are extracted. A rule based power management is proposed based on the abstracted rules and simulation results indicate that the new control strategy can improve system efficiency under different SoH and different SoC conditions. Ultimately, the performance of proposed strategy is further verified under different types of driving cycles including the MANHATTAN cycle, 1015 6PRIUS cycle and UDDSHDV cycle.

  20. Plug-in Hybrid Electric Vehicle Value Proposition Study - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen [Sentech, Inc.; Hadley, Stanton W [ORNL; McGill, Ralph N [ORNL; Cleary, Timothy [Sentech, Inc.

    2010-07-01

    PHEVs have been the subject of growing interest in recent years because of their potential for reduced operating costs, oil displacement, national security, and environmental benefits. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The study Objectives are: (1) To identify and evaluate value-added propositions for PHEVs that will help overcome the initial price premium relative to comparable ICEs and HEVs and (2) to assess other non-monetary benefits and barriers associated with an emerging PHEV fleet, including environmental, societal, and grid impacts. Study results indicate that a single PHEV-30 on the road in 2030 will: (1) Consume 65% and 75% less gasoline than a comparable HEV and ICE, respectively; (2) Displace 7.25 and 4.25 barrels of imported oil each year if substituted for equivalent ICEs and HEVs, respectively, assuming 60% of the nation's oil consumed is imported; (3) Reduce net ownership cost over 10 years by 8-10% relative to a comparable ICE and be highly cost competitive with a comparable HEV; (4) Use 18-22% less total W2W energy than a comparable ICE, but 8-13% more than a comparable HEV (assuming a 70/30 split of E10 and E85 use in 2030); and (5) Emit 10% less W2W CO{sub 2} than equivalent ICEs in southern California and emits 13% more W2W CO{sub 2} than equivalent ICEs in the ECAR region. This also assumes a 70/30 split of E10 and E85 use in 2030. PHEVs and other plug-in vehicles on the road in 2030 may offer many valuable benefits to utilities, business owners, individual consumers, and society as a whole by: (1) Promoting national energy security by displacing large volumes of imported oil; (2) Supporting a secure economy through the expansion of domestic vehicle and component manufacturing; (3) Offsetting the vehicle's initial price premium with lifetime operating cost savings (e.g., lower fuel and

  1. Mitigation of the Impact of High Plug-in Electric Vehicle Penetration on Residential Distribution Grid Using Smart Charging Strategies

    Directory of Open Access Journals (Sweden)

    Chong Cao

    2016-12-01

    Full Text Available Vehicle electrification presents a great opportunity to reduce transportation greenhouse gas emissions. The greater use of plug-in electric vehicles (PEVs, however, puts stress on local distribution networks. This paper presents an optimal PEV charging control method integrated with utility demand response (DR signals to mitigate the impact of PEV charging to several aspects of a grid, including load surge, distribution accumulative voltage deviation, and transformer aging. To build a realistic PEV charging load model, the results of National Household Travel Survey (NHTS have been analyzed and a stochastic PEV charging model has been defined based on survey results. The residential distribution grid contains 120 houses and is modeled in GridLAB-D. Co-simulation is performed using Matlab and GridLAB-D to enable the optimal control algorithm in Matlab to control PEV charging loads in the residential grid modeled in GridLAB-D. Simulation results demonstrate the effectiveness of the proposed optimal charging control method in mitigating the negative impacts of PEV charging on the residential grid.

  2. Dynamic Coordinated Shifting Control of Automated Mechanical Transmissions without a Clutch in a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Xinlei Liu

    2012-08-01

    Full Text Available On the basis of the shifting process of automated mechanical transmissions (AMTs for traditional hybrid electric vehicles (HEVs, and by combining the features of electric machines with fast response speed, the dynamic model of the hybrid electric AMT vehicle powertrain is built up, the dynamic characteristics of each phase of shifting process are analyzed, and a control strategy in which torque and speed of the engine and electric machine are coordinatively controlled to achieve AMT shifting control for a plug-in hybrid electric vehicle (PHEV without clutch is proposed. In the shifting process, the engine and electric machine are well controlled, and the shift jerk and power interruption and restoration time are reduced. Simulation and real car test results show that the proposed control strategy can more efficiently improve the shift quality for PHEVs equipped with AMTs.

  3. Impacts of battery characteristics, driver preferences and road network features on travel costs of a plug-in hybrid electric vehicle (PHEV) for long-distance trips

    International Nuclear Information System (INIS)

    Arslan, Okan; Yıldız, Barış; Ekin Karaşan, Oya

    2014-01-01

    In a road network with refueling and fast charging stations, the minimum-cost driving path of a plug-in hybrid electric vehicle (PHEV) depends on factors such as location and availability of refueling/fast charging stations, capacity and cost of PHEV batteries, and driver tolerance towards extra mileage or additional stopping. In this paper, our focus is long-distance trips of PHEVs. We analyze the impacts of battery characteristics, often-overlooked driver preferences and road network features on PHEV travel costs for long-distance trips and compare the results with hybrid electric and conventional vehicles. We investigate the significance of these factors and derive critical managerial insights for shaping the future investment decisions about PHEVs and their infrastructure. In particular, our findings suggest that with a certain level of deployment of fast charging stations, well established cost and emission benefits of PHEVs for the short range trips can be extended to long distance. Drivers' stopping intolerance may hamper these benefits; however, increasing battery capacity may help overcome the adverse effects of this intolerance. - Highlights: • We investigate the travel costs of CVs, HEVs and PHEVs for long-distance trips. • We analyze the impacts of battery, driver and road network characteristics on the costs. • We provide critical managerial insights to shape the investment decisions about PHEVs. • Drivers' stopping intolerance may hamper the cost and emission benefits of PHEVs. • Negative effect of intolerance on cost may be overcome by battery capacity expansion

  4. Optimal Coordinated Management of a Plug-In Electric Vehicle Charging Station under a Flexible Penalty Contract for Voltage Security

    Directory of Open Access Journals (Sweden)

    Jip Kim

    2016-07-01

    Full Text Available The increasing penetration of plug-in electric vehicles (PEVs may cause a low-voltage problem in the distribution network. In particular, the introduction of charging stations where multiple PEVs are simultaneously charged at the same bus can aggravate the low-voltage problem. Unlike a distribution network operator (DNO who has the overall responsibility for stable and reliable network operation, a charging station operator (CSO may schedule PEV charging without consideration for the resulting severe voltage drop. Therefore, there is a need for the DNO to impose a coordination measure to induce the CSO to adjust its charging schedule to help mitigate the voltage problem. Although the current time-of-use (TOU tariff is an indirect coordination measure that can motivate the CSO to shift its charging demand to off-peak time by imposing a high rate at the peak time, it is limited by its rigidity in that the network voltage condition cannot be flexibly reflected in the tariff. Therefore, a flexible penalty contract (FPC for voltage security to be used as a direct coordination measure is proposed. In addition, the optimal coordinated management is formulated. Using the Pacific Gas and Electric Company (PG&E 69-bus test distribution network, the effectiveness of the coordination was verified by comparison with the current TOU tariff.

  5. Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States

    International Nuclear Information System (INIS)

    Onat, Nuri Cihat; Kucukvar, Murat; Tatari, Omer

    2015-01-01

    Highlights: • Driving patterns and electricity generation mix influence vehicle preferences. • EVs are found to be least carbon-intensive vehicle option in 24 states. • HEVs are found to be the most energy-efficient option in 45 states. • EVs across the board are unfavorable in the marginal electricity mix scenario. • Use of renewable energy to power EVs/PHEVs is crucial. - Abstract: Electric vehicles (EVs), plug-in hybrid electric vehicles (PHEVs), and hybrid electric vehicles (HEVs) are often considered as better options in terms of greenhouse gas emissions and energy consumption compared to internal combustion vehicles. However, making any decision among these vehicle options is not a straightforward process due to temporal and spatial variations, such as the sources of the electricity used and regional driving patterns. In this study, we compared these vehicle options across 50 states, taking into account state-specific average and marginal electricity generation mixes, regional driving patterns, and vehicle and battery manufacturing impacts. Furthermore, a policy scenario proposing the widespread use of solar energy to charge EVs and PHEVs is evaluated. Based on the average electricity generation mix scenario, EVs are found to be least carbon-intensive vehicle option in 24 states, while HEVs are found to be the most energy-efficient option in 45 states. In the marginal electricity mix scenario, widespread adoption of EVs is found to be an unwise strategy given the existing and near-future marginal electricity generation mix. On the other hand, EVs can be superior to other alternatives in terms of energy-consumption, if the required energy to generate 1 kW h of electricity is below 1.25 kW h

  6. Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model

    International Nuclear Information System (INIS)

    Axsen, Jonn; Kurani, Kenneth S.; McCarthy, Ryan; Yang, Christopher

    2011-01-01

    This paper explores how Plug-in Hybrid Vehicles (PHEVs) may reduce source-to-wheel Greenhouse Gas (GHG) emissions from passenger vehicles. The two primary advances are the incorporation of (1) explicit measures of consumer interest in and potential use of different types of PHEVs and (2) a model of the California electricity grid capable of differentiating hourly and seasonal GHG emissions by generation source. We construct PHEV emissions scenarios to address inherent relationships between vehicle design, driving and recharging behaviors, seasonal and time-of-day variation in GHG-intensity of electricity, and total GHG emissions. A sample of 877 California new vehicle buyers provide data on driving, time of day recharge access, and PHEV design interests. The elicited data differ substantially from the assumptions used in previous analyses. We construct electricity demand profiles scaled to one million PHEVs and input them into an hourly California electricity supply model to simulate GHG emissions. Compared to conventional vehicles, consumer-designed PHEVs cut marginal (incremental) GHG emissions by more than one-third in current California energy scenarios and by one-quarter in future energy scenarios-reductions similar to those simulated for all-electric PHEV designs. Across the emissions scenarios, long-term GHG reductions depends on reducing the carbon intensity of the grid. - Research highlights: → We estimate California Plug-in Hybrid Vehicle (PHEV) GHGs using consumer data and an electricity supply model. → Consumer-designed (mostly 'blended') PHEVs can reduce GHG emissions compared to conventional vehicles. → These PHEVs can also reduce GHG emissions relative to 'all-electric' PHEV designs. → 'All-electric' designs may further reduce GHG emissions as electricity carbon intensity falls. → Ranking of GHG savings from off-peak versus daytime charging scenarios depends on electricity carbon intensity.

  7. Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil

    International Nuclear Information System (INIS)

    Soares MC Borba, Bruno; Szklo, Alexandre; Schaeffer, Roberto

    2012-01-01

    Several studies have proposed different tools for analyzing the integration of variable renewable energy into power grids. This study applies an optimization tool to model the expansion of the electric power system in northeastern Brazil, enabling the most efficient dispatch of the variable output of the wind farms that will be built in the region over the next 20 years. The expected combined expansion of wind generation with conventional inflexible generation facilities, such as nuclear plants and run-of-the-river hydropower plants, poses risks of future mismatch between supply and demand in northeastern Brazil. Therefore, this article evaluates the possibility of using a fleet of plug-in hybrid electric vehicles (PHEVs) to regularize possible energy imbalances. Findings indicate that a dedicated fleet of 500 thousand PHEVs in 2015, and a further 1.5 million in 2030, could be recharged overnight to take advantage of the surplus power generated by wind farms. To avoid the initial costs of smart grids, this article suggests, as a first step, the use of a governmental PHEV fleet that allows fleet managers to control battery charging times. Finally, the study demonstrates the advantages of optimizing simultaneously the power and transport sectors to test the strategy suggested here. -- Highlights: ► We evaluated the use of plug-in hybrid electric vehicles (PHEV) to regularize possible energy imbalances in northeastern Brazil. ► This imbalance might result from the large-scale wind power penetration along with conventional inflexible power plants in the region. ► We adapted the MESSAGE optimization tool to the base conditions of the Brazilian power system. ► 500 thousand PHEVs in 2015 and 1.5 million in 2030 could be recharged taking advantage of wind energy surplus.

  8. A Rule-Based Energy Management Strategy for a Plug-in Hybrid School Bus Based on a Controller Area Network Bus

    Directory of Open Access Journals (Sweden)

    Jiankun Peng

    2015-06-01

    Full Text Available This paper presents a rule-based energy management strategy for a plug-in hybrid school bus (PHSB. In order to verify the effectiveness and rationality of the proposed energy management strategy, the powertrain and control models were built with MATLAB/Simulink. The PHSB powertrain model includes an engine model, ISG (integrated started and generator model, drive motor model, power battery packs model, driver model, and vehicle longitudinal dynamics model. To evaluate the controller area network (CAN bus performance features such as the bus load, signal hysteresis, and to verify the reliability and real-time performance of the CAN bus multi-node control method, a co-simulation platform was built with CANoe and MATLAB/Simulink. The co-simulation results show that the control strategy can meet the requirements of the PHSB’s dynamic performance. Meanwhile, the charge-depleting mode (CD and charge-sustaining mode (CS can switch between each other and maintain a state-of-charge (SoC of around 30%, indicating that the energy management strategy effectively extends the working period of the CD mode and improves the fuel economy further. The energy consumption per 100 km includes 13.7 L diesel and 10.5 kW·h electricity with an initial SoC of 75%. The CANoe simulation results show that the bus communication performs well without error frames.

  9. Optimal Planning of Charging for Plug-In Electric Vehicles Focusing on Users’ Benefits

    Directory of Open Access Journals (Sweden)

    Su Su

    2017-07-01

    Full Text Available Many electric vehicles’ (EVs charging strategies were proposed to optimize the operations of the power grid, while few focus on users’ benefits from the viewpoint of EV users. However, low participation is always a problem of those strategies since EV users also need a charging strategy to serve their needs and interests. This paper proposes a method focusing on EV users’ benefits that reduce the cost of battery capacity degradation, electricity cost, and waiting time for different situations. A cost model of battery capacity degradation under different state of charge (SOC ranges is developed based on experimental data to estimate the cost of battery degradation. The simulation results show that the appropriate planning of the SOC range reduces 80% of the cost of battery degradation, and the queuing theory also reduces over 60% of the waiting time in the busy situations. Those works can also become a premise of charging management to increase the participation. The proposed strategy focusing on EV users’ benefits would not give negative impacts on the power grid, and the grid load is also optimized by an artificial fish swarm algorithm (AFSA in the solution space of the charging time restricted by EV users’ benefits.

  10. Developing traction control strategy for a plug-in hybrid electric vehicle using innovative optimization based approaches

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, L.; Gu, J.; Dong, Z. [Victoria Univ., BC (Canada). Dept. of Mechanical Engineering

    2010-07-01

    This paper described a traction control system designed for hybrid vehicles with multiple power plants and drive axles. Model-based design tools were used to develop the traction control system and plug-in hybrid vehicle models. Optimization studies were conducted in a finite number of operating states in order to maximize the electrical and mechanical energy conversion efficiency of an extended range electric vehicle. Four global optimization algorithms were then evaluated in relation to their CPU times. The studied algorithms included a genetic algorithm (GA), a particle swarm optimization (PSO) algorithm, a hybrid adaptive metamodel optimization (HAM) and space elimination and unimodal region reduction (SEUMRE) algorithm. A comparative evaluation of the algorithms demonstrated that the PSO algorithm obtained optimal results, while the HAM algorithm used significantly less computational time. Results of the optimization studies were then implemented in a controller model. Results of the study showed that the energy efficiency of the vehicle improved using the developed controller model. 4 refs., 2 tabs., 8 figs.

  11. The effectiveness of plug-in hybrid electric vehicles and renewable power in support of holistic environmental goals: Part 2 - Design and operation implications for load-balancing resources on the electric grid

    Science.gov (United States)

    Tarroja, Brian; Eichman, Joshua D.; Zhang, Li; Brown, Tim M.; Samuelsen, Scott

    2015-03-01

    A study has been performed that analyzes the effectiveness of utilizing plug-in vehicles to meet holistic environmental goals across the combined electricity and transportation sectors. In this study, plug-in hybrid electric vehicle (PHEV) penetration levels are varied from 0 to 60% and base renewable penetration levels are varied from 10 to 63%. The first part focused on the effect of installing plug-in hybrid electric vehicles on the environmental performance of the combined electricity and transportation sectors. The second part addresses impacts on the design and operation of load-balancing resources on the electric grid associated with fleet capacity factor, peaking and load-following generator capacity, efficiency, ramp rates, start-up events and the levelized cost of electricity. PHEVs using smart charging are found to counteract many of the disruptive impacts of intermittent renewable power on balancing generators for a wide range of renewable penetration levels, only becoming limited at high renewable penetration levels due to lack of flexibility and finite load size. This study highlights synergy between sustainability measures in the electric and transportation sectors and the importance of communicative dispatch of these vehicles.

  12. Improving the energy density of hydraulic hybrid vehicles (HHVS) and evaluating plug-in HHVS.

    Science.gov (United States)

    2010-10-01

    This report describes analyses performed by researchers at The University of Toledo (UT) in : collaboration with researchers at the University of Detroit Mercy (UDM) on the project : Improving the Energy Density of Hydraulic Hybrid Vehicles (HHVs)...

  13. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    OpenAIRE

    Recker, W. W.; Kang, J. E.

    2010-01-01

    With the success of Hybrid Electric Vehicles (HEVs) in the automobile market, Plug-In Hybrid Electric Vehicles (PHEVs) are emerging as the next evolution of this attractive alternative. PHEV market penetration is expected to lead to lower gasoline consumption and less emission. The main objective of this research is to assess PHEVs’ energy profile impacts based on simulation of vehicles used in activity and travel patterns drawn from the 2000-2001 California Statewide Household Travel Survey....

  14. Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Marine Corps Base Camp Lejeune. Task 3

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s advanced vehicle testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (Intertek) to conduct several U.S. Department of Defense-based studies to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 consisted of a survey of the non-tactical fleet of vehicles at Marine Corps Base Camp Lejeune to begin the review of vehicle mission assignments and types of vehicles in service. Task 2 selected vehicles for further monitoring and involved identifying daily operational characteristics of these select vehicles. Data logging of vehicle movements was initiated in order to characterize the vehicle’s mission. The Task 3 vehicle utilization report provided results of the data analysis and observations related to the replacement of current vehicles with PEVs. Finally, this report provides an assessment of charging infrastructure required to support the suggested PEV replacements. Intertek acknowledges the support of Idaho National Laboratory, Marine Corps headquarters, and Marine Corps Base Camp Lejeune Fleet management and personnel for participation in this study. Intertek is pleased to provide this report and is encouraged by enthusiasm and support from Marine Corps Base Camp Lejeune personnel.

  15. A Control Strategy for Mode Transition with Gear Shifting in a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Kyuhyun Sim

    2017-07-01

    Full Text Available The mode transition from electric propulsion mode to hybrid propulsion mode is important with regard to the power management strategy of plug-in hybrid electric vehicles (PHEVs. This is because mode transitions can occur frequently depending on the power management strategies and driving cycles, and because inadequate mode transitions worsen the fuel efficiency and drivability. A pre-transmission parallel PHEV uses a clutch between the internal combustion engine (ICE and the electric motor (EM to connect or disconnect the power source of the ICE for a mode transition. The mode transition requires additional energy consumption for clutch speed synchronization, and is accompanied by a drivetrain shock due to clutch engagement. This paper proposes a control strategy for the mode transition with gear-shifting to resolve the problems of energy consumption and drivetrain shock. Through the development of a PHEV performance simulator, we analyze the mode transition characteristics and propose a control strategy considering the vehicle acceleration and gear state. The control strategy reduces the duration required for the mode transition by moving the start time of the mode transition. This helps to improve energy efficiency while maintaining adequate drivability.

  16. A robust H∞ control-based hierarchical mode transition control system for plug-in hybrid electric vehicle

    Science.gov (United States)

    Yang, Chao; Jiao, Xiaohong; Li, Liang; Zhang, Yuanbo; Chen, Zheng

    2018-01-01

    To realize a fast and smooth operating mode transition process from electric driving mode to engine-on driving mode, this paper presents a novel robust hierarchical mode transition control method for a plug-in hybrid electric bus (PHEB) with pre-transmission parallel hybrid powertrain. Firstly, the mode transition process is divided into five stages to clearly describe the powertrain dynamics. Based on the dynamics models of powertrain and clutch actuating mechanism, a hierarchical control structure including two robust H∞ controllers in both upper layer and lower layer is proposed. In upper layer, the demand clutch torque can be calculated by a robust H∞controller considering the clutch engaging time and the vehicle jerk. While in lower layer a robust tracking controller with L2-gain is designed to perform the accurate position tracking control, especially when the parameters uncertainties and external disturbance occur in the clutch actuating mechanism. Simulation and hardware-in-the-loop (HIL) test are carried out in a traditional driving condition of PHEB. Results show that the proposed hierarchical control approach can obtain the good control performance: mode transition time is greatly reduced with the acceptable jerk. Meanwhile, the designed control system shows the obvious robustness with the uncertain parameters and disturbance. Therefore, the proposed approach may offer a theoretical reference for the actual vehicle controller.

  17. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Christophersen, Jon P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  18. Alternative Fuels Data Center: How Do Plug-In Hybrid Electric Cars Work?

    Science.gov (United States)

    supply in order to charge the traction battery pack. DC/DC converter: This device converts higher-voltage DC power from the traction battery pack to the lower-voltage DC power needed to run vehicle generators that perform both the drive and regeneration functions. Electric traction motor: Using power from

  19. Environmental assessment of plug-in hybrid electric vehicles using naturalistic drive cycles and vehicle travel patterns: A Michigan case study

    International Nuclear Information System (INIS)

    Marshall, Brandon M.; Kelly, Jarod C.; Lee, Tae-Kyung; Keoleian, Gregory A.; Filipi, Zoran

    2013-01-01

    Plug-in hybrid electric vehicles (PHEVs) use grid electricity as well as on-board gasoline for motive force. These multiple energy sources make prediction of PHEV energy consumption challenging and also complicate evaluation of their environmental impacts. This paper introduces a novel PHEV energy consumption modeling approach and compares it to a second approach from the literature, each using actual trip patterns from the 2009 National Household Travel Survey (NHTS). The first approach applies distance-dependent fuel efficiency and on-road electricity consumption rates based on naturalistic or real world, driving information to determine gasoline and electricity consumption. The second uses consumption rates derived in accordance with government certification testing. Both approaches are applied in the context of a location-specific case study that focuses on the state of Michigan. The two PHEV models show agreement in electricity demand due to vehicle charging, gasoline consumption, and life cycle environmental impacts for this case study. The naturalistic drive cycle approach is explored as a means of extending location-specific driving data to supplement existing PHEV impact assessments methods. - Highlights: • Travel patterns from survey data are combined with naturalistic drive cycles. • More realistic PHEV energy modeling using these synthesized real-world drive cycles. • Methodology is demonstrated for PHEVs in Michigan but applicable for other regions. • Energy and emissions findings have major implications for PHEV standards and policy

  20. Multiobjective Synergistic Scheduling Optimization Model for Wind Power and Plug-In Hybrid Electric Vehicles under Different Grid-Connected Modes

    Directory of Open Access Journals (Sweden)

    Liwei Ju

    2014-01-01

    Full Text Available In order to promote grid’s wind power absorptive capacity and to overcome the adverse impacts of wind power on the stable operation of power system, this paper establishes benefit contrastive analysis models of wind power and plug-in hybrid electric vehicles (PHEVs under the optimization goal of minimum coal consumption and pollutant emission considering multigrid connected modes. Then, a two-step adaptive solving algorithm is put forward to get the optimal system operation scheme with the highest membership degree based on the improved ε constraints method and fuzzy decision theory. Thirdly, the IEEE36 nodes 10-unit system is used as the simulation system. Finally, the sensitive analysis for PHEV’s grid connected number is made. The result shows the proposed algorithm is feasible and effective to solve the model. PHEV’s grid connection could achieve load shifting effect and promote wind power grid connection. Especially, the optimization goals reach the optimum in fully optimal charging mode. As PHEV’s number increases, both abandoned wind and thermal power generation cost would decrease and the peak and valley difference of load curve would gradually be reduced.

  1. A life-cycle approach to technology, infrastructure, and climate policy decision making: Transitioning to plug-in hybrid electric vehicles and low-carbon electricity

    Science.gov (United States)

    Samaras, Constantine

    In order to mitigate the most severe effects of climate change, large global reductions in the current levels of anthropogenic greenhouse gas (GHG) emissions are required in this century to stabilize atmospheric carbon dioxide (CO2) concentrations at less than double pre-industrial levels. The Intergovernmental Panel on Climate Change (IPCC) fourth assessment report states that GHG emissions should be reduced to 50-80% of 2000 levels by 2050 to increase the likelihood of stabilizing atmospheric CO2 concentrations. In order to achieve the large GHG reductions by 2050 recommended by the IPCC, a fundamental shift and evolution will be required in the energy system. Because the electric power and transportation sectors represent the largest GHG emissions sources in the United States, a unique opportunity for coupling these systems via electrified transportation could achieve synergistic environmental (GHG emissions reductions) and energy security (petroleum displacement) benefits. Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a major role in reducing greenhouse gas emissions from the transport sector. However, this thesis finds that life cycle GHG emissions from PHEVs depend on the electricity source that is used to charge the battery, so meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. Power plants and their associated GHGs are long-lived, and this work argues that decisions made regarding new electricity supplies within the next ten years will affect the potential of PHEVs to play a role in a low-carbon future in the coming decades. This thesis investigates the life cycle engineering, economic, and policy decisions involved in transitioning to PHEVs and low-carbon electricity. The government has a vast array of policy options to promote low-carbon technologies, some of which have proven to be more successful than others. This thesis uses life

  2. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    International Nuclear Information System (INIS)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-01-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  3. Evaluating the Degradation Mechanism and State of Health of LiFePO4 Lithium-Ion Batteries in Real-World Plug-in Hybrid Electric Vehicles Application for Different Ageing Paths

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2017-01-01

    Full Text Available Accurate determination of the performance and precise prediction of the state of health (SOH of lithium-ion batteries are necessary to ensure reliability and efficiency in real-world application. However, most SOH offline studies were based on dynamic stress tests, which only reflect the universal rule of degradation, but are not necessarily applicable for real-world applications. This paper presents an experimental evaluation of two different operations of real-world plug-in hybrid electric vehicles with LiFePO4 batteries as energy-storage systems. First, the LiFePO4 batteries were subjected to a set of comparative experimental tests that consider the effects of charge depleting (CD and charge sustaining (CS operations. Then, different voltage analysis along with the close-to-equilibrium open circle voltage was utilized to evaluate the performance of the batteries in life cycles. Finally, a qualitative relationship between the external factors (the percentage of time of CD/CS operations during the entire driving range and the degradation mechanism was built with the help of the proposed methods. Results indicated that the external factors affect the degree of the batteries degradation, but not up to the point when the capacity fading stage occurs. This relationship contributes to the foundation for plug-in hybrid electric vehicles’ (PHEVs’ energy management strategy or battery management system control strategy.

  4. Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle

    Science.gov (United States)

    Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui

    2017-09-01

    Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem is formulated to rapidly and efficiently optimize both the control decision and parameters of the home battery energy storage system (BESS). Considering different time horizons of optimization, home BESS prices, types and control modes of PEVs, the parameters of home BESS and electric cost are systematically investigated. Based on the developed CP control law in home to vehicle (H2V) mode and vehicle to home (V2H) mode, the home with BESS does not buy electric energy from the grid during the electric price's peak periods.

  5. Optimal control strategy design for extending all-electric driving capability of plug-in hybrid electric vehicles (PHEVs)

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, S.S [Concordia Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering, P.D Ziogas Power Electronics Laboratory

    2007-07-01

    The high voltage energy storage system in plug-in hybrid electric vehicles (PHEVs) is usually a rechargeable type that service a dual purpose, notably to supplement the power delivered by the internal combustion engine, and to provide partial propulsion energy from an off-board source of electricity. The energy storage devices in electric vehicles typically improve vehicle efficiency through engine downsizing and by recapturing braking energy. However, since PHEVs have the ability to recharge their energy storage systems directly from the power grid, the periods of all-electric operation can be extended, thereby reducing the dependence on the internal combustion engine. This is particularly useful in city driving conditions. Developers of PHEV technology are faced with the challenge of choosing the appropriate energy storage battery in order to improve the all-electric drive range. In this study, control strategies were modeled for specific driving load conditions using the Advanced Vehicle Simulator (ADVISOR) software. This paper presented specific control algorithms for PHEV operation for various city driving loads. The optimal design strategy considered the improvement of critical energy storage parameters, overall drive train efficiency, and vehicle performance characteristics. Future trends in the design and development of PHEV drive trains were also presented. 13 figs.

  6. Intelligent optimization to integrate a plug-in hybrid electric vehicle smart parking lot with renewable energy resources and enhance grid characteristics

    International Nuclear Information System (INIS)

    Fazelpour, Farivar; Vafaeipour, Majid; Rahbari, Omid; Rosen, Marc A.

    2014-01-01

    Highlights: • The proposed algorithms handled design steps of an efficient parking lot of PHEVs. • Optimizations are performed with 1 h intervals to find optimum charging rates. • Multi-objective optimization is performed to find the optimum size and site of DG. • Optimal sizing of a PV–wind–diesel HRES is attained. • Charging rates are optimized intelligently during peak and off-peak times. - Abstract: Widespread application of plug-in hybrid electric vehicles (PHEVs) as an important part of smart grids requires drivers and power grid constraints to be satisfied simultaneously. We address these two challenges with the presence of renewable energy and charging rate optimization in the current paper. First optimal sizing and siting for installation of a distributed generation (DG) system is performed through the grid considering power loss minimization and voltage enhancement. Due to its benefits, the obtained optimum site is considered as the optimum location for constructing a movie theater complex equipped with a PHEV parking lot. To satisfy the obtained size of DG, an on-grid hybrid renewable energy system (HRES) is chosen. In the next set of optimizations, optimal sizing of the HRES is performed to minimize the energy cost and to find the best number of decision variables, which are the number of the system’s components. Eventually, considering demand uncertainties due to the unpredictability of the arrival and departure times of the vehicles, time-dependent charging rate optimizations of the PHEVs are performed in 1 h intervals for the 24-h of a day. All optimization problems are performed using genetic algorithms (GAs). The outcome of the proposed optimization sets can be considered as design steps of an efficient grid-friendly parking lot of PHEVs. The results indicate a reduction in real power losses and improvement in the voltage profile through the distribution line. They also show the competence of the utilized energy delivery method in

  7. A States of Matter Search-Based Approach for Solving the Problem of Intelligent Power Allocation in Plug-in Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Arturo Valdivia-Gonzalez

    2017-01-01

    Full Text Available Recently, many researchers have proved that the electrification of the transport sector is a key for reducing both the emissions of green-house pollutants and the dependence on oil for transportation. As a result, Plug-in Hybrid Electric Vehicles (or PHEVs are receiving never before seen increased attention. Consequently, large-scale penetration of PHEVs into the market is expected to take place in the near future, however, an unattended increase in the PHEVs needs may cause several technical problems which could potentially compromise the stability of power systems. As a result of the growing necessity for addressing such issues, topics related to the optimization of PHEVs’ charging infrastructures have captured the attention of many researchers. Related to this, several state-of-the-art swarm optimization methods (such as the well-known Particle Swarm Optimization (PSO or the recently proposed Gravitational Search Algorithm (GSA approach have been successfully applied in the optimization of the average State of Charge (SoC, which represents one of the most important performance indicators in the context of PHEVs’ intelligent power allocation. Many of these swarm optimization methods, however, are known to be subject to several critical flaws, including premature convergence and a lack of balance between the exploration and exploitation of solutions. Such problems are usually related to the evolutionary operators employed by each of the methods on the exploration and exploitation of new solutions. In this paper, the recently proposed States of Matter Search (SMS swarm optimization method is proposed for maximizing the average State of Charge of PHEVs within a charging station. In our experiments, several different scenarios consisting on different numbers of PHEVs were considered. To test the feasibility of the proposed approach, comparative experiments were performed against other popular PHEVs’ State of Charge maximization approaches

  8. Technology Status and Expected Greenhouse Gas Emissions of Battery, Plug-In Hybrid, and Fuel Cell Electric Vehicles

    Science.gov (United States)

    Lipman, Timothy E.

    2011-11-01

    Electric vehicles (EVs) of various types are experiencing a commercial renaissance but of uncertain ultimate success. Many new electric-drive models are being introduced by different automakers with significant technical improvements from earlier models, particularly with regard to further refinement of drivetrain systems and important improvements in battery and fuel cell systems. The various types of hybrid and all-electric vehicles can offer significant greenhouse gas (GHG) reductions when compared to conventional vehicles on a full fuel-cycle basis. In fact, most EVs used under most condition are expected to significantly reduce lifecycle GHG emissions. This paper reviews the current technology status of EVs and compares various estimates of their potential to reduce GHGs on a fuel cycle basis. In general, various studies show that battery powered EVs reduce GHGs by a widely disparate amount depending on the type of powerplant used and the particular region involved, among other factors. Reductions typical of the United States would be on the order of 20-50%, depending on the relative level of coal versus natural gas and renewables in the powerplant feedstock mix. However, much deeper reductions of over 90% are possible for battery EVs running on renewable or nuclear power sources. Plug-in hybrid vehicles running on gasoline can reduce emissions by 20-60%, and fuel cell EV reduce GHGs by 30-50% when running on natural gas-derived hydrogen and up to 95% or more when the hydrogen is made (and potentially compressed) using renewable feedstocks. These are all in comparison to what is usually assumed to be a more advanced gasoline vehicle "baseline" of comparison, with some incremental improvements by 2020 or 2030. Thus, the emissions from all of these EV types are highly variable depending on the details of how the electric fuel or hydrogen is produced.

  9. Impact of electric range and fossil fuel price level on the economics of plug-in hybrid vehicles and greenhouse gas abatement costs

    International Nuclear Information System (INIS)

    Özdemir, Enver Doruk; Hartmann, Niklas

    2012-01-01

    In this paper, the energy consumption shares of plug-in hybrid vehicles (PHEVs) for electricity from the grid and conventional fuel depending on electric driving range are estimated. The resulting mobility costs and greenhouse gas (GHG) abatement costs per vehicle kilometer for the year 2030 are calculated and optimal electric driving range (which indicates the size of the battery) is found for different oil price levels with the help of a MATLAB based model for a typical compact passenger car (e.g. VW Golf). The results show that the optimum electric driving range for minimum mobility costs of a PHEV is between 12 and 32 km. Furthermore, optimum GHG abatement costs are achieved with an electric driving range between 16 and 23 km. These results are considerable lower than most market ready PHEVs (electric driving range of 50 to 100 km), which shows that the automobile industry should concentrate on shorter electric driving range for PHEVs in the near future to offer cost optimum mobility and low GHG abatement costs. However, the oil price level and the consumer driving habits impact heavily on the cost performance as well as the optimum electric driving range of plug-in hybrid vehicles. - Highlights: ► We analyze the energy consumption (and share of grid electricity) of plug-in hybrid vehicles. ► We analyzed the mobility costs and GHG abatement costs depending on electric driving range. ► Mobility costs of plug-in hybrid vehicles can be lower than those of conventional diesel vehicles in 2030. ► The optimum mobility costs are achieved with the electric driving range between 12 and 32 km. ► The optimum GHG abatement costs are achieved with the electric driving range between 16 and 23 km.

  10. Plug-in Hybrid and Battery-Electric Vehicles: State of the research and development and comparative analysis of energy and cost efficiency

    OpenAIRE

    Francoise Nemry; Guillaume Leduc; Almudena Muñoz

    2009-01-01

    This technical note is a first contribution from IPTS to a JRC more integrated assessment of future penetration pathways of new vehicles technologies in the EU27 market and of their impacts on energy security, GHG emissions and on the economy. The present report focuses on battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). It provides a general overview of the current state of the research and development about the concerned technologies and builds some first estim...

  11. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : phase III final report.

    Science.gov (United States)

    2011-08-01

    The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...

  12. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : phase II, final report, March 2010.

    Science.gov (United States)

    2010-03-01

    The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...

  13. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : phase II final report.

    Science.gov (United States)

    2010-03-01

    The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...

  14. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : phase I final report, March 2009.

    Science.gov (United States)

    2009-03-01

    The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...

  15. PLUG-IN HYBRID ELECTRIC VEHICLE AND HYBRID ELECTRIC VEHICLE EMISSIONS UNDER FTP AND US06 CYCLES AT HIGH, AMBIENT, AND LOW TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Seidman, M.R.; Markel, T.

    2008-01-01

    The concept of a Plug-in Hybrid Electric Vehicle (PHEV) is to displace consumption of gasoline by using electricity from the vehicle’s large battery pack to power the vehicle as much as possible with minimal engine operation. This paper assesses the PHEV emissions and operation. Currently, testing of vehicle emissions is done using the federal standard FTP4 cycle on a dynamometer at ambient (75°F) temperatures. Research was also completed using the US06 cycle. Furthermore, research was completed at high (95°F) and low (20°F) temperatures. Initial dynamometer testing was performed on a stock Toyota Prius under the standard FTP4 cycle, and the more demanding US06 cycle. Each cycle was run at 95°F, 75°F, and 20°F. The testing was repeated with the same Prius retrofi tted with an EnergyCS Plug-in Hybrid Electric system. The results of the testing confi rm that the stock Prius meets Super-Ultra Low Emission Vehicle requirements under current testing procedures, while the PHEV Prius under current testing procedures were greater than Super-Ultra Low Emission Vehicle requirements, but still met Ultra Low Emission Vehicle requirements. Research points to the catalyst temperature being a critical factor in meeting emission requirements. Initial engine emissions pass through with minimal conversion until the catalyst is heated to typical operating temperatures of 300–400°C. PHEVs also have trouble maintaining the minimum catalyst temperature throughout the entire test because the engine is turned off when the battery can support the load. It has been observed in both HEVs and PHEVs that the catalyst is intermittently unable to reduce nitrogen oxide emissions, which causes further emission releases. Research needs to be done to combat the initial emission spikes caused by a cold catalyst. Research also needs to be done to improve the reduction of nitrogen oxides by the catalyst system.

  16. Battery sizing for serial plug-in hybrid electric vehicles: A model-based economic analysis for Germany

    International Nuclear Information System (INIS)

    Ernst, Christian-Simon; Hackbarth, Andre; Madlener, Reinhard; Lunz, Benedikt; Uwe Sauer, Dirk; Eckstein, Lutz

    2011-01-01

    The battery size of a Plug-in Hybrid Electric Vehicle (PHEV) is decisive for the electrical range of the vehicle and crucial for the cost-effectiveness of this particular vehicle concept. Based on the energy consumption of a conventional reference car and a PHEV, we introduce a comprehensive total cost of ownership model for the average car user in Germany for both vehicle types. The model takes into account the purchase price, fixed annual costs and variable operating costs. The amortization time of a PHEV also depends on the recharging strategy (once a day, once a night, after each trip), the battery size, and the battery costs. We find that PHEVs with a 4 kWh battery and at current lithium-ion battery prices reach the break-even point after about 6 years (5 years when using the lower night-time electricity tariffs). With higher battery capacities the amortization time becomes significantly longer. Even for the small battery size and assuming the EU-15 electricity mix, a PHEV is found to emit only around 60% of the CO 2 emissions of a comparable conventional car. Thus, with the PHEV concept a cost-effective introduction of electric mobility and reduction of greenhouse gas emissions per vehicle can be reached. - Highlights: → Total cost of ownership of a PHEV and a conventional car are compared for the average German car user.→ PHEVs with a 4 kWh battery reach the break-even after 5-6 years at current Li-Ion battery prices.→ Even with a small battery, PHEVs emit about 40% less CO 2 emissions than the average conventional car.

  17. Real-world fuel economy and CO{sub 2} emissions of plug-in hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ploetz, Patrick; Funke, Simon Arpad; Jochem, Patrick [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany). Competence Center Energiepolitik und Energiesysteme

    2015-07-01

    Plug-in hybrid electric vehicles (PHEV) combine electric propulsion with an internal combustion engine. Their potential to reduce transport related green-house gas emissions highly depends on their actual usage and electricity provision. Various studies underline their environmental and economic advantages, but are based on standardised driving cycles, simulations or small PHEV fleets. Here, we analyse real-world fuel economy of PHEV and the factors influencing it based on about 2,000 actual PHEV that have been observed over more than a year in the U.S. and Germany. We find that real-world fuel economy of PHEV differ widely among users. The main factors explaining this variation are the annual mileage, the regularity of daily driving, and the likelihood of long-distance trips. Current test cycle fuel economy ratings neglect these factors. Despite the broad range of PHEV fuel economies, the test cycle fuel economy ratings can be close to empiric PHEV fleet averages if the average annual mile-age is about 17,000 km. For the largest group of PHEV in our data, the Chevrolet Volt, we find the average fuel economy to be 1.45 litres/100 km at an average electric driving share of 78%. The resulting real-world tank-to-wheel CO{sub 2} emissions of these PHEV are 42 gCO{sub 2}/km and the annual CO{sub 2} savings in the U.S. amount to about 50 Mt. In conclusion, the variance of empirical PHEV fuel economy is considerably higher than of conventional vehicles. This should be taken into account by future test cycles and high electric driving shares should be incentivised.

  18. Plug-in Hybrid Electric Vehicles in the Smart Grid Environment: An Economic Model of Load Management by Demand Response

    Directory of Open Access Journals (Sweden)

    Poudineh R.

    2012-10-01

    Full Text Available Environmental concern regarding the consumption of fossil fuels is among the most serious challenges facing the world. As a result, utilisation of more renewable resources and promotion of a clean transport system such as the use of Plug in Hybrid Electric Vehicles (PHEVs became the forefront of the new energy policies. However, the breakthrough of PHEVs in the automotive fleet increases concerns around the stability of power system and in particular, the power network. This research simulates the aggregate load profile of the UK with presence of PHEVs based upon different price scenarios. The results show that under the fixed rate and time of use programmes in the current grid, the extra load of the electric vehicles intensifies the consumption profile and also creates new critical points. Thus, there should always be excess standby capacity to satisfy peak demand even for a short period of time. On the other hand, when the consumers do not pay the price based on the actual cost of supply, those who consume less in peak hours subsidise the ones who consume more and this cross subsidy raises a regulatory issue. On the contrary, a smart grid can accommodate PHEVs without creating technical and regulatory problems. This positive consequence is the result of demand response to the real time pricing. From a technical point of view, the biggest chunk of PHEVs' load will be shifted to the late evening and the hours of minimum demand. Besides, from a welfare analysis standpoint, real time pricing creates no deadweight losses and corresponding demand response will limit the ability of suppliers to increase the spot market clearing price above its equilibrium level.

  19. Optimizing battery sizes of plug-in hybrid and extended range electric vehicles for different user types

    International Nuclear Information System (INIS)

    Redelbach, Martin; Özdemir, Enver Doruk; Friedrich, Horst E.

    2014-01-01

    There are ambitious greenhouse gas emission (GHG) targets for the manufacturers of light duty vehicles. To reduce the GHG emissions, plug-in hybrid electric vehicle (PHEV) and extended range electric vehicle (EREV) are promising powertrain technologies. However, the battery is still a very critical component due to the high production cost and heavy weight. This paper introduces a holistic approach for the optimization of the battery size of PHEVs and EREVs under German market conditions. The assessment focuses on the heterogeneity across drivers, by analyzing the impact of different driving profiles on the optimal battery setup from total cost of ownership (TCO) perspective. The results show that the battery size has a significant effect on the TCO. For an average German driver (15,000 km/a), battery capacities of 4 kWh (PHEV) and 6 kWh (EREV) would be cost optimal by 2020. However, these values vary strongly with the driving profile of the user. Moreover, the optimal battery size is also affected by external factors, e.g. electricity and fuel prices or battery production cost. Therefore, car manufacturers should develop a modular design for their batteries, which allows adapting the storage capacity to meet the individual customer requirements instead of “one size fits all”. - Highlights: • Optimization of the battery size of PHEVs and EREVs under German market conditions. • Focus on heterogeneity across drivers (e.g. mileage, trip distribution, speed). • Optimal battery size strongly depends on the driving profile and energy prices. • OEMs require a modular design for their batteries to meet individual requirements

  20. Multi-objective component sizing of a power-split plug-in hybrid electric vehicle powertrain using Pareto-based natural optimization machines

    Science.gov (United States)

    Mozaffari, Ahmad; Vajedi, Mahyar; Chehresaz, Maryyeh; Azad, Nasser L.

    2016-03-01

    The urgent need to meet increasingly tight environmental regulations and new fuel economy requirements has motivated system science researchers and automotive engineers to take advantage of emerging computational techniques to further advance hybrid electric vehicle and plug-in hybrid electric vehicle (PHEV) designs. In particular, research has focused on vehicle powertrain system design optimization, to reduce the fuel consumption and total energy cost while improving the vehicle's driving performance. In this work, two different natural optimization machines, namely the synchronous self-learning Pareto strategy and the elitism non-dominated sorting genetic algorithm, are implemented for component sizing of a specific power-split PHEV platform with a Toyota plug-in Prius as the baseline vehicle. To do this, a high-fidelity model of the Toyota plug-in Prius is employed for the numerical experiments using the Autonomie simulation software. Based on the simulation results, it is demonstrated that Pareto-based algorithms can successfully optimize the design parameters of the vehicle powertrain.

  1. Idaho National Laboratory’s Analysis of ARRA-Funded Plug-in Electric Vehicle and Charging Infrastructure Projects: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, Jim [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Bennett, Brion [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Carlson, Richard [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Garretson, Thomas [Electric Applications Incorporated, Phoenix, AZ (United States); Gourley, LauraLee [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Karner, Donal [Electric Applications Incorporated, Phoenix, AZ (United States); McGuire, Patti [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Scoffield, Don [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Kirkpatrick, Mindy [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Shrik, Matthew [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Salisbury, Shawn [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Schey, Stephen [Electric Applications Incorporated, Phoenix, AZ (United States); Smart, John [Idaho National Laboratory (INL), Idaho Falls, ID (United States); White, Sera [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Wishard, Jeffery [Intertek Center for the Evaluation of Clean Energy Technology, Phoenix, AZ (United States)

    2015-09-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s (DOE) Idaho National Laboratory (INL), is the lead laboratory for U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA). INL’s conduct of the AVTA resulted in a significant base of knowledge and experience in the area of testing light-duty vehicles that reduced transportation-related petroleum consumption. Due to this experience, INL was tasked by DOE to develop agreements with companies that were the recipients of The American Recovery and Reinvestment Act of 2009 (ARRA) grants, that would allow INL to collect raw data from light-duty vehicles and charging infrastructure. INL developed non-disclosure agreements (NDAs) with several companies and their partners that resulted in INL being able to receive raw data via server-to-server connections from the partner companies. This raw data allowed INL to independently conduct data quality checks, perform analysis, and report publicly to DOE, partners, and stakeholders, how drivers used both new vehicle technologies and the deployed charging infrastructure. The ultimate goal was not the deployment of vehicles and charging infrastructure, cut rather to create real-world laboratories of vehicles, charging infrastructure and drivers that would aid in the design of future electric drive transportation systems. The five projects that INL collected data from and their partners are: • ChargePoint America - Plug-in Electric Vehicle Charging Infrastructure Demonstration • Chrysler Ram PHEV Pickup - Vehicle Demonstration • General Motors Chevrolet Volt - Vehicle Demonstration • The EV Project - Plug-in Electric Vehicle Charging Infrastructure Demonstration • EPRI / Via Motors PHEVs – Vehicle Demonstration The document serves to benchmark the performance science involved the execution, analysis and reporting for the five above projects that provided lessons learned based on driver’s use of the

  2. Market penetration speed and effects on CO2 reduction of electric vehicles and plug-in hybrid electric vehicles in Japan

    International Nuclear Information System (INIS)

    Yabe, Kuniaki; Shinoda, Yukio; Seki, Tomomichi; Tanaka, Hideo; Akisawa, Atsushi

    2012-01-01

    Abstarct: In order to reduce CO 2 emissions in the passenger vehicle sector, mass introduction of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) is required despite their high battery costs. This paper forecasts the rate at which EV/PHEV will penetrate into the market in the future and the effects of that spread on CO 2 reduction by using a learning curve for lithium-ion batteries, distribution of daily travel distance for each vehicle, and an optimal power generation planning model for charging vehicles. Taking into consideration each driver's economical viewpoint, the speed at which the EV/PHEV share of the new passenger vehicle market grows is fairly slow. The optimum calculation in our base case shows that the share of EV/PHEV is only a quarter even in 2050. However, the initial price and progress rate of batteries have a great effect on this share. Therefore, long-term economic support from the government and significant R and D innovation are required to reduce CO 2 drastically through cutting down battery price. The results also show how much the CO 2 emission intensity of power generation affects the CO 2 reduction rate by introducing EV/PHEV. - Highlights: ► Authors minimized the total cost of vehicle and power supply sectors until 2050. ► Simulation results show the penetration speed of PHEVs/EVs is not so fast. ► To accelerate it and reduce CO 2 , subsidies and innovations are required. ► The introduction of PHEVs/EVs is still reasonable even after the nuclear accident.

  3. Feasibility study on combined use of residential SOFC cogeneration system and plug-in hybrid electric vehicle from energy-saving viewpoint

    International Nuclear Information System (INIS)

    Wakui, Tetsuya; Wada, Naohiro; Yokoyama, Ryohei

    2012-01-01

    Highlights: ► Optimal operational planning for combined use of SOFC-CGS and PHEV is conducted. ► Charging PHEV with SOFC-CGS increases electric capacity factor of SOFC-CGS. ► Energy-saving effect of combined use is higher than that of their separate use. ► Combined use provides energy savings in both residential and transport sectors. - Abstract: The energy-saving effect of a combined use of a residential solid oxide fuel cell cogeneration system (SOFC-CGS) that adopts a continuous operation, and a plug-in hybrid electric vehicle (PHEV) is discussed by optimal operational planning based on mixed-integer linear programming. This combined use aims to increase the electric capacity factor of the SOFC-CGS by charging the PHEV using the SOFC-CGS electric power output late at night, and targets the application in regions where the reverse power flow from residential cogeneration systems to commercial electric power systems is not permitted, like in Japan. The optimal operation patterns of the combined use of 0.7-kWe SOFC-CGS and PHEV for a simulated energy demand with a sampling time of 1 h and various daily running distances of the PHEV show that this combined use increases the electric capacity factor of the SOFC-CGS and saves more energy in comparison with their separate use in which the SOFC-CGS is used but the PHEV is charged only with purchased electric power. Furthermore, it is found that at the PHEV daily running distance of 12 km/d, the reduction rate of the annual primary energy consumption for this combined use increases by up to 3.7 percentage points relative to their separate use. Consequently, this feasibility study reveals that the combined use of the SOFC-CGS and PHEV provides the synergistic effect on energy savings in the residential and transport sectors. For the practical use, simulation scenarios considering the energy demand fluctuations with short periods and real-time pricing of the purchased electric power must be considered as future

  4. Effects of the introduction of electric vehicles and plug-in hybrids on sources of energy and the electricity grid - Additional information; Auswirkungen der Markteinfuehrung von Elektrofahrzeugen und Plug-In-Hybrids auf die Energietraeger und das Elektrizitaetsnetz. Ergaenzende Informationen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Rigassi, R.; Huber, S. [Enco AG, Liestal (Switzerland); Strub, P. [Pierre Strub - nachhaltig wirkt, Basel (Switzerland)

    2010-12-15

    This comprehensive annex to a final report for the Swiss federal Office of Energy (SFOE) discusses the effects of the introduction of electric vehicles and plug-in hybrids on sources of energy and the electricity grid. Energy and CO{sub 2} balances are discussed as is the use of vehicle batteries as part of a 'vehicle-to-grid' system that can help regulate the electricity mains. Charge optimisation and mains fed-in are discussed. The control and cost/remuneration of the power involved are looked at. The modelling involved for calculating the power quantities involved is examined. Data on related vehicle technologies and their usage is presented and discussed. The Swiss power grid, production and the mix of electricity produced are looked at and the needs for regulating energy are discussed. Factors taken into account for the comparison of carbon dioxide emissions are looked at. Further additional information is presented and discussed. Relationships to other energy scenarios are presented and discussed. Finally, conclusions are drawn and recommendations are made. Questions still to be examined are listed.

  5. A Pontryagin Minimum Principle-Based Adaptive Equivalent Consumption Minimum Strategy for a Plug-in Hybrid Electric Bus on a Fixed Route

    Directory of Open Access Journals (Sweden)

    Shaobo Xie

    2017-09-01

    Full Text Available When developing a real-time energy management strategy for a plug-in hybrid electric vehicle, it is still a challenge for the Equivalent Consumption Minimum Strategy to achieve near-optimal energy consumption, because the optimal equivalence factor is not readily available without the trip information. With the help of realistic speeding profiles sampled from a plug-in hybrid electric bus running on a fixed commuting line, this paper proposes a convenient and effective approach of determining the equivalence factor for an adaptive Equivalent Consumption Minimum Strategy. Firstly, with the adaptive law based on the feedback of battery SOC, the equivalence factor is described as a combination of the major component and tuning component. In particular, the major part defined as a constant is applied to the inherent consistency of regular speeding profiles, while the second part including a proportional and integral term can slightly tune the equivalence factor to satisfy the disparity of daily running cycles. Moreover, Pontryagin’s Minimum Principle is employed and solved by using the shooting method to capture the co-state dynamics, in which the Secant method is introduced to adjust the initial co-state value. And then the initial co-state value in last shooting is taken as the optimal stable constant of equivalence factor. Finally, altogether ten successive driving profiles are selected with different initial SOC levels to evaluate the proposed method, and the results demonstrate the excellent fuel economy compared with the dynamic programming and PMP method.

  6. Simulating the potential effects of plug-in hybrid electric vehicles on the energy budget and tax revenues for Onondaga County, New York

    Science.gov (United States)

    Balogh, Stephen B.

    My objectives were to predict the energetic effects of a large increase in plug-in hybrid electric vehicles (PHEV) and their implications on fuel tax collections in Onondaga County. I examined two alternative taxation policies. To do so, I built a model of county energy consumption based on prorated state-level energy consumption data and census data. I used two scenarios to estimate energy consumption trends over the next 30 years and the effects of PHEV on energy use and fuel tax revenues. I found that PHEV can reduce county gasoline consumption, but they would curtail fuel tax revenues and increase residential electricity demand. A one-cent per VMT tax on PHEV users provides insufficient revenue to replace reduced fuel tax collection. A sales tax on electricity consumption generates sufficient replacement revenue at low PHEV market shares. However, at higher shares, the tax on electricity use would exceed the current county tax rate. Keywords: electricity, energy, gasoline, New York State, Onondaga County, plug-in hybrid electric vehicles, transportation model, tax policy

  7. Modeling of plug-in electric vehicle travel patterns and charging load based on trip chain generation

    Science.gov (United States)

    Wang, Dai; Gao, Junyu; Li, Pan; Wang, Bin; Zhang, Cong; Saxena, Samveg

    2017-08-01

    Modeling PEV travel and charging behavior is the key to estimate the charging demand and further explore the potential of providing grid services. This paper presents a stochastic simulation methodology to generate itineraries and charging load profiles for a population of PEVs based on real-world vehicle driving data. In order to describe the sequence of daily travel activities, we use the trip chain model which contains the detailed information of each trip, namely start time, end time, trip distance, start location and end location. A trip chain generation method is developed based on the Naive Bayes model to generate a large number of trips which are temporally and spatially coupled. We apply the proposed methodology to investigate the multi-location charging loads in three different scenarios. Simulation results show that home charging can meet the energy demand of the majority of PEVs in an average condition. In addition, we calculate the lower bound of charging load peak on the premise of lowest charging cost. The results are instructive for the design and construction of charging facilities to avoid excessive infrastructure.

  8. Online Energy Management of Plug-In Hybrid Electric Vehicles for Prolongation of All-Electric Range Based on Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Zeyu Chen

    2015-01-01

    Full Text Available The employed energy management strategy plays an important role in energy saving performance and exhausted emission reduction of plug-in hybrid electric vehicles (HEVs. An application of dynamic programming for optimization of power allocation is implemented in this paper with certain driving cycle and a limited driving range. Considering the DP algorithm can barely be used in real-time control because of its huge computational task and the dependence on a priori driving cycle, several online useful control rules are established based on the offline optimization results of DP. With the above efforts, an online energy management strategy is proposed finally. The presented energy management strategy concerns the prolongation of all-electric driving range as well as the energy saving performance. A simulation study is deployed to evaluate the control performance of the proposed energy management approach. All-electric range of the plug-in HEV can be prolonged by up to 2.86% for a certain driving condition. The energy saving performance is relative to the driving distance. The presented energy management strategy brings a little higher energy cost when driving distance is short, but for a long driving distance, it can reduce the energy consumption by up to 5.77% compared to the traditional CD-CS strategy.

  9. Plug-in hybrid electric vehicle LiFePO4 battery life implications of thermal management, driving conditions, and regional climate

    Science.gov (United States)

    Yuksel, Tugce; Litster, Shawn; Viswanathan, Venkatasubramanian; Michalek, Jeremy J.

    2017-01-01

    Battery degradation strongly depends on temperature, and many plug-in electric vehicle applications employ thermal management strategies to extend battery life. The effectiveness of thermal management depends on the design of the thermal management system as well as the battery chemistry, cell and pack design, vehicle system characteristics, and operating conditions. We model a plug-in hybrid electric vehicle with an air-cooled battery pack composed of cylindrical LiFePO4/graphite cells and simulate the effect of thermal management, driving conditions, regional climate, and vehicle system design on battery life. We estimate that in the absence of thermal management, aggressive driving can cut battery life by two thirds; a blended gas/electric-operation control strategy can quadruple battery life relative to an all-electric control strategy; larger battery packs can extend life by an order of magnitude relative to small packs used for all-electric operation; and batteries last 73-94% longer in mild-weather San Francisco than in hot Phoenix. Air cooling can increase battery life by a factor of 1.5-6, depending on regional climate and driving patterns. End of life criteria has a substantial effect on battery life estimates.

  10. The design and validation of a hybrid digital-signal-processing plug-in for traditional cochlear implant speech processors.

    Science.gov (United States)

    Hajiaghababa, Fatemeh; Marateb, Hamid R; Kermani, Saeed

    2018-06-01

    Cochlear implants (CIs) are electronic devices restoring partial hearing to deaf individuals with profound hearing loss. In this paper, a new plug-in for traditional IIR filter-banks (FBs) is presented for cochlear implants based on wavelet neural networks (WNNs). Having provided such a plug-in for commercially available CIs, it is possible not only to use available hardware in the market but also to optimize their performance compared with the-state-of-the-art. An online database of Dutch diphone perception was used in our study. The weights of the WNNs were tuned using particle swarm optimization (PSO) on a training set (speech-shaped noise (SSN) of 2 dB SNR), while its performance was assessed on a test set in terms of objective and composite measures in the hold-out validation framework. The cost function was defined based on the combination of mean square error (MSE), short‑time objective intelligibility (STOI) criteria on the training set. Variety of performance indices were used including segmental signal- to -noise ratio (SNRseg), MSE, STOI, log-likelihood ratio (LLR), weighted spectral slope (WSS), and composite measures C sig , C bak and C ovl . Meanwhile, the following CI speech processing techniques were used for comparison: traditional FBs, dual resonance nonlinear (DRNL) and simple dual path nonlinear (SPDN) models. The average SNRseg, MSE, and LLR values for the WNN in the entire data set were 2.496 ± 2.794, 0.086 ± 0.025 and 2.323 ± 0.281, respectively. The proposed method significantly improved MSE, SNR, SNRseg, LLR, C sig C bak and C ovl compared with the other three methods (repeated-measures analysis of variance (ANOVA); P < 0.05). The average running time of the proposed algorithm (written in Matlab R2013a) on the training and test sets for each consonant or vowel on an Intel dual-core 2.10 GHz CPU with 2GB of RAM was 9.91 ± 0.87 (s) and 0.19 ± 0.01 (s), respectively. The proposed algorithm is accurate and

  11. Load demand profile for a large charging station of a fleet of all-electric plug-in buses

    Directory of Open Access Journals (Sweden)

    Mario A. Rios

    2014-08-01

    Full Text Available This study proposes a general procedure to compute the load demand profile from a parking lot where a fleet of buses with electric propulsion mechanisms are charged. Such procedure is divided in three different stages, the first one models the daily energy utilisation of the batteries based on Monte Carlo simulations and route characteristics. The second one models the process in the charging station based on discrete event simulation of queues of buses served by a lot of available chargers. The third step computes the final demand profile in the parking lot because of the charging process based on the power consumption of batteries’ chargers and the utilisation of the available charges. The proposed procedure allows the computation of the number of required batteries’ chargers to be installed in a charging station placed at a parking lot in order to satisfy and ensure the operation of the fleet, the computation of the power demand profile and the peak load and the computation of the general characteristics of electrical infrastructure to supply the power to the station.

  12. Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project

    Energy Technology Data Exchange (ETDEWEB)

    D' Annunzio, Julie [Ford Motor Company, Dearborn, MI (United States); Slezak, Lee [U.S. DOE Office of Energy Efficiency & Renewable Energy, Washington, DC (United States); Conley, John Jason [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2014-03-26

    This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology and interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.

  13. Emissions from Plug-in Hybrid Electric Vehicle (PHEV) During Real World Driving Under Various Weather Conditions

    Science.gov (United States)

    2018-02-02

    Exposure to particulate matter (PM) and pollutant gas (NOx) is associated with increased cardiopulmonary morbidity and mortality. Mobile source emissions contribute to PM and NOx emissions significantly in urban areas. Hybrid Electric Vehicles (HEVs)...

  14. A Mixed Logical Dynamical-Model Predictive Control (MLD-MPC Energy Management Control Strategy for Plug-in Hybrid Electric Vehicles (PHEVs

    Directory of Open Access Journals (Sweden)

    Jing Lian

    2017-01-01

    Full Text Available Plug-in hybrid electric vehicles (PHEVs can be considered as a hybrid system (HS which includes the continuous state variable, discrete event, and operation constraint. Thus, a model predictive control (MPC strategy for PHEVs based on the mixed logical dynamical (MLD model and short-term vehicle speed prediction is proposed in this paper. Firstly, the mathematical model of the controlled PHEV is set-up to evaluate the energy consumption using the linearized models of core power components. Then, based on the recognition of driving intention and the past vehicle speed data, a nonlinear auto-regressive (NAR neural network structure is designed to predict the vehicle speed for known driving profiles of city buses and the predicted vehicle speed is used to calculate the total required torque. Next, a MLD model is established with appropriate constraints for six possible driving modes. By solving the objective function with the Mixed Integer Linear Programming (MILP algorithm, the optimal motor torque and the corresponding driving mode sequence within the speed prediction horizon can be obtained. Finally, the proposed energy control strategy shows substantial improvement in fuel economy in the simulation results.

  15. Development of Near Optimal Rule-Based Control for Plug-In Hybrid Electric Vehicles Taking into Account Drivetrain Component Losses

    Directory of Open Access Journals (Sweden)

    Hanho Son

    2016-05-01

    Full Text Available A near-optimal rule-based mode control (RBC strategy was proposed for a target plug-in hybrid electric vehicle (PHEV taking into account the drivetrain losses. Individual loss models were developed for drivetrain components including the gears, planetary gear (PG, bearings, and oil pump, based on experimental data and mathematical governing equations. Also, a loss model for the power electronic system was constructed, including loss from the motor-generator while rotating in the unloaded state. To evaluate the effect of the drivetrain losses on the operating mode control strategy, backward simulations were performed using dynamic programming (DP. DP selects the operating mode, which provides the highest efficiency for given driving conditions. It was found that the operating mode selection changes when drivetrain losses are included, depending on driving conditions. An operating mode schedule was developed with respect to the wheel power and vehicle speed, and based on the operating mode schedule, a RBC was obtained, which can be implemented in an on-line application. To evaluate the performance of the RBC, a forward simulator was constructed for the target PHEV. The simulation results show near-optimal performance of the RBC compared with dynamic-programming-based mode control in terms of the mode operation time and fuel economy. The RBC developed with drivetrain losses taken into account showed a 4%–5% improvement of the fuel economy over a similar RBC, which neglected the drivetrain losses.

  16. Freeway Driving Cycle Construction Based on Real-Time Traffic Information and Global Optimal Energy Management for Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Hongwen He

    2017-11-01

    Full Text Available This paper presents a freeway driving cycle (FDC construction method based on traffic information. A float car collected different type of roads in California and we built a velocity fragment database. We selected a real freeway driving cycle (RFDC and established the corresponding time traffic information tensor model by using the data in California Department of Transportation performance measure system (PeMS. The correlation of road velocity in the time dimension and spatial dimension are analyzed. According to the average velocity of road sections at different times, the kinematic fragments are stochastically selected in the velocity fragment database to construct a real-time FDC of each section. The comparison between construction freeway driving cycle (CFDC and real freeway driving cycle (RFDC show that the CFDC well reflects the RFDC characteristic parameters. Compared to its application in plug-in electric hybrid vehicle (PHEV optimal energy management based on a dynamic programming (DP algorithm, CFDC and RFDC fuel consumption are similar within approximately 5.09% error, and non-rush hour fuel economy is better than rush hour 3.51 (L/100 km at non-rush hour, 4.29 (L/km at rush hour. Moreover, the fuel consumption ratio can be up to 13.17% in the same CFDC at non-rush hour.

  17. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles.

    Science.gov (United States)

    Majeau-Bettez, Guillaume; Hawkins, Troy R; Strømman, Anders Hammer

    2011-05-15

    This study presents the life cycle assessment (LCA) of three batteries for plug-in hybrid and full performance battery electric vehicles. A transparent life cycle inventory (LCI) was compiled in a component-wise manner for nickel metal hydride (NiMH), nickel cobalt manganese lithium-ion (NCM), and iron phosphate lithium-ion (LFP) batteries. The battery systems were investigated with a functional unit based on energy storage, and environmental impacts were analyzed using midpoint indicators. On a per-storage basis, the NiMH technology was found to have the highest environmental impact, followed by NCM and then LFP, for all categories considered except ozone depletion potential. We found higher life cycle global warming emissions than have been previously reported. Detailed contribution and structural path analyses allowed for the identification of the different processes and value-chains most directly responsible for these emissions. This article contributes a public and detailed inventory, which can be easily be adapted to any powertrain, along with readily usable environmental performance assessments.

  18. A new carbon additive compounded Li3V1.97Zn0.05(PO4)3/C cathode for plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Wang, Wenhui; Zhang, Jiaolong; Lin, Yue; Ding, Fei; Chen, Zhenyu; Dai, Changsong

    2015-01-01

    The application of lithium ion batteries in plug-in hybrid electric vehicles (PHEVs) requires safety, high energy density, high power density, excellent cyclability and good low temperature performance. On the basis of thermally stable Li 3 V 2 (PO 4 ) 3 /C and cost-effective performance carbon additives, we designed a Li 3 V 1.97 Zn 0.05 (PO 4 ) 3 /(C+10PB) (PB stands for performance carbon additives PBX101) cathode that meets the above requirements for PHEVs battery. Firstly, its Ragone plot presents an excellent energy density retention at high power rates; secondly, the excellent capacity retention and high Coulombic efficiency of Li 3 V 1.97 Zn 0.05 (PO 4 ) 3 /(C+10PB)-Li half-cell clearly indicates a potential good cyclability of full cells based on Li 3 V 1.97 Zn 0.05 (PO 4 ) 3 /(C+10PB) cathode. Finally, we believe the good low temperature performance of Li 3 V 1.97 Zn 0.05 (PO 4 ) 3 /(C+10PB) (i.e. retains 91.6% and 76.3% of its capacity at ∼25 °C, when cycled at 0 and -15 °C) is also beneficial to its application in PHEVs

  19. Life-cycle assessment of a Solar Assist Plug-in Hybrid electric Tractor (SAPHT) in comparison with a conventional tractor

    International Nuclear Information System (INIS)

    Mousazadeh, Hossein; Keyhani, Alireza; Javadi, Arzhang; Mobli, Hossein; Abrinia, Karen; Sharifi, Ahmad

    2011-01-01

    The most well-known reason of global warming is equivalent carbon dioxide (CO 2equ ) emitted from fossil fuels combustion in on-road and off-road vehicles. An appreciable portion of off-road pollution is allocated to farm implements. All cited studies have shown that renewable based electric vehicles (EVs) decrease petroleum consumption and consequently reduce criteria emissions under nearly all circumstances. Considering this, a Solar Assist Plug-in Hybrid electric Tractor (SAPHT) was designed, constructed and evaluated. This research evaluated the life cycle analysis of SAPHT project and compared the results with that of an internal combustion engine tractor (ICET). The life cycle was analyzed based on economical cost and environmental emissions. The externality of environmental pollutions was calculated to derive the life-cycle costs (LCC). The results showed that substituting each ICET by SAPHT can prevent 14 ton CO 2equ emission to atmosphere annually. Also it prevents a high volume of other emissions such as CO, NO x and PM 10 entering the atmosphere. LCC assessment emphasizes on economical effectiveness of SAPHT rather than ICET at any diesel fuel price, therefore, increasing fuel unit prices leads to more effectiveness. It is concluded that levelized cost of energy (LCE) in Euro /kW h for ICET is almost twice as that of SAPHT. Some of these advantages for SAPHT are offset in part by high purchase costs, heavy and massive batteries and low operating range.

  20. Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore)], E-mail: bsovacool@nus.edu.sg; Hirsh, Richard F. [History and Science and Technology Studies, Virginia Polytechnic Institute and State University, Blacksburg (United States)], E-mail: richard@vt.edu

    2009-03-15

    This paper explores both the promise and the possible pitfalls of the plug-in hybrid electric vehicles (PHEV) and vehicle-to-grid (V2G) concept, focusing first on its definition and then on its technical state-of-the-art. More originally, the paper assesses significant, though often overlooked, social barriers to the wider use of PHEVs (a likely precursor to V2G) and implementation of a V2G transition. The article disputes the idea that the only important barriers facing the greater use of PHEVs and V2G systems are technical. Instead, it provides a broader assessment situating such 'technical' barriers alongside more subtle impediments relating to social and cultural values, business practices, and political interests. The history of other energy transitions, and more specifically the history of renewable energy technologies, implies that these 'socio-technical' obstacles may be just as important to any V2G transition-and perhaps even more difficult to overcome. Analogously, the article illuminates the policy implications of such barriers, emphasizing what policymakers need to achieve a transition to a V2G and PHEV world.

  1. Beyond batteries. An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore); Hirsh, Richard F. [History and Science and Technology Studies, Virginia Polytechnic Institute and State University, Blacksburg (United States)

    2009-03-15

    This paper explores both the promise and the possible pitfalls of the plug-in hybrid electric vehicles (PHEV) and vehicle-to-grid (V2G) concept, focusing first on its definition and then on its technical state-of-the-art. More originally, the paper assesses significant, though often overlooked, social barriers to the wider use of PHEVs (a likely precursor to V2G) and implementation of a V2G transition. The article disputes the idea that the only important barriers facing the greater use of PHEVs and V2G systems are technical. Instead, it provides a broader assessment situating such 'technical' barriers alongside more subtle impediments relating to social and cultural values, business practices, and political interests. The history of other energy transitions, and more specifically the history of renewable energy technologies, implies that these 'socio-technical' obstacles may be just as important to any V2G transition - and perhaps even more difficult to overcome. Analogously, the article illuminates the policy implications of such barriers, emphasizing what policymakers need to achieve a transition to a V2G and PHEV world. (author)

  2. Greenhouse gas implications of using coal for transportation: Life cycle assessment of coal-to-liquids, plug-in hybrids, and hydrogen pathways

    International Nuclear Information System (INIS)

    Jaramillo, Paulina; Samaras, Constantine; Wakeley, Heather; Meisterling, Kyle

    2009-01-01

    Using coal to produce transportation fuels could improve the energy security of the United States by replacing some of the demand for imported petroleum. Because of concerns regarding climate change and the high greenhouse gas (GHG) emissions associated with conventional coal use, policies to encourage pathways that utilize coal for transportation should seek to reduce GHGs compared to petroleum fuels. This paper compares the GHG emissions of coal-to-liquid (CTL) fuels to the emissions of plug-in hybrid electric vehicles (PHEV) powered with coal-based electricity, and to the emissions of a fuel cell vehicle (FCV) that uses coal-based hydrogen. A life cycle approach is used to account for fuel cycle and use-phase emissions, as well as vehicle cycle and battery manufacturing emissions. This analysis allows policymakers to better identify benefits or disadvantages of an energy future that includes coal as a transportation fuel. We find that PHEVs could reduce vehicle life cycle GHG emissions by up to about one-half when coal with carbon capture and sequestration is used to generate the electricity used by the vehicles. On the other hand, CTL fuels and coal-based hydrogen would likely lead to significantly increased emissions compared to PHEVs and conventional vehicles using petroleum-based fuels.

  3. Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.; Hirsh, Richard F.

    2009-01-01

    This paper explores both the promise and the possible pitfalls of the plug-in hybrid electric vehicles (PHEV) and vehicle-to-grid (V2G) concept, focusing first on its definition and then on its technical state-of-the-art. More originally, the paper assesses significant, though often overlooked, social barriers to the wider use of PHEVs (a likely precursor to V2G) and implementation of a V2G transition. The article disputes the idea that the only important barriers facing the greater use of PHEVs and V2G systems are technical. Instead, it provides a broader assessment situating such 'technical' barriers alongside more subtle impediments relating to social and cultural values, business practices, and political interests. The history of other energy transitions, and more specifically the history of renewable energy technologies, implies that these 'socio-technical' obstacles may be just as important to any V2G transition-and perhaps even more difficult to overcome. Analogously, the article illuminates the policy implications of such barriers, emphasizing what policymakers need to achieve a transition to a V2G and PHEV world

  4. Method for in-use measurement and evaluation of the activity, fuel use, electricity use, and emissions of a plug-in hybrid diesel-electric school bus.

    Science.gov (United States)

    Choi, Hyung-Wook; Frey, H Christopher

    2010-05-01

    The purpose of this study is to demonstrate a methodology for characterizing at high resolution the energy use and emissions of a plug-in parallel-hybrid diesel-electric school bus (PHSB) to support assessments of sensitivity to driving cycles and comparisons to a conventional diesel school bus (CDSB). Data were collected using onboard instruments for a first-of-a-kind prototype PHSB and a CDSB of the same chassis and engine, operated on actual school bus routes. The engine load was estimated on the basis of vehicle specific power (VSP) and an empirically derived relationship between VSP and engine manifold absolute pressure (MAP). VSP depends on speed, acceleration, and road grade. For the PHSB, the observed electrical discharge or recharge to the traction motor battery was characterized on the basis of VSP. The energy use and emission rates of the PHSB from tailpipe and electricity use were estimated for five real-world driving cycles and compared to the engine fuel use and emissions of the CDSB. The PHSB had the greatest advantage on arterial routes and less advantage on highway or local routes. The coupled VSP-MAP modeling approach enables assessment of a wide variety of driving conditions and comparisons of vehicles with different propulsion technologies.

  5. National Plug-In Electric Vehicle Infrastructure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Muratori, Matteo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Srinivasa Raghavan, Seshadri [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Melaina, Marc W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-15

    This document describes a study conducted by the National Renewable Energy Laboratory quantifying the charging station infrastructure required to serve the growing U.S. fleet of plug-in electric vehicles (PEVs). PEV sales, which include plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs), have surged recently. Most PEV charging occurs at home, but widespread PEV adoption will require the development of a national network of non-residential charging stations. Installation of these stations strategically would maximize the economic viability of early stations while enabling efficient network growth as the PEV market matures. This document describes what effective co-evolution of the PEV fleet and charging infrastructure might look like under a range of scenarios. To develop the roadmap, NREL analyzed PEV charging requirements along interstate corridors and within urban and rural communities. The results suggest that a few hundred corridor fast-charging stations could enable long-distance BEV travel between U.S. cities. Compared to interstate corridors, urban and rural communities are expected to have significantly larger charging infrastructure requirements. About 8,000 fast-charging stations would be required to provide a minimum level of coverage nationwide. In an expanding PEV market, the total number of non-residential charging outlets or 'plugs' required to meet demand ranges from around 100,000 to more than 1.2 million. Understanding what drives this large range in capacity requirements is critical. For example, whether consumers prefer long-range or short-range PEVs has a larger effect on plug requirements than does the total number of PEVs on the road. The relative success of PHEVs versus BEVs also has a major impact, as does the number of PHEVs that charge away from home. This study shows how important it is to understand consumer preferences and driving behaviors when planning charging networks.

  6. National Plug-In Electric Vehicle Infrastructure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Muratori, Matteo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Srinivasa Raghavan, Sesha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Melaina, Marc W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-07

    This presentation describes a study conducted by the National Renewable Energy Laboratory quantifying the charging station infrastructure required to serve the growing U.S. fleet of plug-in electric vehicles (PEVs). PEV sales, which include plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs), have surged recently. Most PEV charging occurs at home, but widespread PEV adoption will require the development of a national network of non-residential charging stations. Installation of these stations strategically would maximize the economic viability of early stations while enabling efficient network growth as the PEV market matures. This document describes what effective co-evolution of the PEV fleet and charging infrastructure might look like under a range of scenarios. To develop the roadmap, NREL analyzed PEV charging requirements along interstate corridors and within urban and rural communities. The results suggest that a few hundred corridor fast-charging stations could enable long-distance BEV travel between U.S. cities. Compared to interstate corridors, urban and rural communities are expected to have significantly larger charging infrastructure requirements. About 8,000 fast-charging stations would be required to provide a minimum level of coverage nationwide. In an expanding PEV market, the total number of non-residential charging outlets or 'plugs' required to meet demand ranges from around 100,000 to more than 1.2 million. Understanding what drives this large range in capacity requirements is critical. For example, whether consumers prefer long-range or short-range PEVs has a larger effect on plug requirements than does the total number of PEVs on the road. The relative success of PHEVs versus BEVs also has a major impact, as does the number of PHEVs that charge away from home. This study shows how important it is to understand consumer preferences and driving behaviors when planning charging networks.

  7. Optimal Site Selection of Wind-Solar Complementary Power Generation Project for a Large-Scale Plug-In Charging Station

    Directory of Open Access Journals (Sweden)

    Wenjun Chen

    2017-10-01

    Full Text Available The wind-solar hybrid power generation project combined with electric vehicle charging stations can effectively reduce the impact on the power system caused by the random charging of electric cars, contribute to the in-situ wind-solar complementary system and reduce the harm arising from its output volatility. In this paper, the site selection index system of a landscape complementary power generation project is established by using the statistical methods and statistical analysis in the literature. Subsequently, using the Analytic Network Process to calculate the index weight, a cloud model was used in combination with preference ranking organization method for enrichment evaluations to transform and sort uncertain language information. Finally, using the results of the decision-making for the location of the Shanghai wind-solar complementary project and by carrying out contrast analysis and sensitivity analysis, the superiority and stability of the decision model constructed in this study was demonstrated.

  8. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations

    International Nuclear Information System (INIS)

    Dubarry, Matthieu; Truchot, Cyril; Cugnet, Mikael; Liaw, Bor Yann; Gering, Kevin; Sazhin, Sergiy; Jamison, David; Michelbacher, Christopher

    2011-01-01

    Evaluating commercial Li-ion batteries presents some unique benefits. One of them is to use cells made from established fabrication process and form factor, such as those offered by the 18650 cylindrical configuration, to provide a common platform to investigate and understand performance deficiency and aging mechanism of target chemistry. Such an approach shall afford us to derive relevant information without influence from processing or form factor variability that may skew our understanding on cell-level issues. A series of 1.9 Ah 18650 lithium ion cells developed by a commercial source using a composite positive electrode comprising (LiMn1/3Ni1/3Co1/3O2 + LiMn2O4) is being used as a platform for the investigation of certain key issues, particularly path-dependent aging and degradation in future plug-in hybrid electric vehicle (PHEV) applications, under the US Department of Energy's Applied Battery Research (ABR) program. Here we report in Part I the initial characterizations of the cell performance and Part II some aspects of cell degradation in 2C cycle aging. The initial characterizations, including cell-to-cell variability, are essential for life cycle performance characterization in the second part of the report when cell-aging phenomena are discussed. Due to the composite nature of the positive electrode, the features (or signature) derived from the incremental capacity (IC) of the cell appear rather complex. In this work, the method to index the observed IC peaks is discussed. Being able to index the IC signature in details is critical for analyzing and identifying degradation mechanism later in the cycle aging study.

  9. Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 3: Technical Requirements and Procedure for Evaluation of One Scenario

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen R [ORNL; Hinds, Shaun [Sentech, Inc.; Hadley, Stanton W [ORNL; McGill, Ralph N [ORNL; Markel, Lawrence C [ORNL; Ziegler, Richard E [ORNL; Smith, David E [ORNL; Smith, Richard L [ORNL; Greene, David L [ORNL; Brooks, Daniel L [ORNL; Wiegman, Herman [GE Global Research; Miller, Nicholas [GE; Marano, Dr. Vincenzo [Ohio State University

    2008-07-01

    In Task 2, the project team designed the Phase 1 case study to represent the 'baseline' plug-in hybrid electric vehicle (PHEV) fleet of 2030 that investigates the effects of seventeen (17) value propositions (see Table 1 for complete list). By creating a 'baseline' scenario, a consistent set of assumptions and model parameters can be established for use in more elaborate Phase 2 case studies. The project team chose southern California as the Phase 1 case study location because the economic, environmental, social, and regulatory conditions are conducive to the advantages of PHEVs. Assuming steady growth of PHEV sales over the next two decades, PHEVs are postulated to comprise approximately 10% of the area's private vehicles (about 1,000,000 vehicles) in 2030. New PHEV models introduced in 2030 are anticipated to contain lithium-ion batteries and be classified by a blended mileage description (e.g., 100 mpg, 150 mpg) that demonstrates a battery size equivalence of a PHEV-30. Task 3 includes the determination of data, models, and analysis procedures required to evaluate the Phase 1 case study scenario. Some existing models have been adapted to accommodate the analysis of the business model and establish relationships between costs and value to the respective consumers. Other data, such as the anticipated California generation mix and southern California drive cycles, have also been gathered for use as inputs. The collection of models that encompasses the technical, economic, and financial aspects of Phase 1 analysis has been chosen and is described in this deliverable. The role of PHEV owners, utilities (distribution systems, generators, independent system operators (ISO), aggregators, or regional transmission operators (RTO)), facility owners, financing institutions, and other third parties are also defined.

  10. Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle

    Science.gov (United States)

    Send a link to Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle

  11. Implementation of a solar thermal electricity pilot plant (Concentrated Tower) of 1MW and introduction of a bus fleet of plug-in hybrids on the Ilha do Fundao, Rio de Janeiro, Brazil; Implementacao de uma planta piloto de heliotermia (Torre de Concentracao) de 1MW e introducao de uma frota de onibus hibridos plug-in na Ilha do Fundao

    Energy Technology Data Exchange (ETDEWEB)

    Borba, Bruno Soares Moreira Cesar; Malagueta, Diego Cunha [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PPE/COPPE/UFRJ), RJ (Brazil). Programa de Planejamento Energetico

    2010-07-01

    The aim of this paper is to simulate a solar thermal electricity pilot plant at the Campus of the Federal University of Rio de Janeiro (UFRJ), at Fundao Island, which would generate part of the electricity demanded by the Technology Center (CT) of the UFRJ. Based on the electricity demand from UFRJ and the electric prices paid by the institution, this study proposes the construction of a 1MW Concentrated Solar Power (CSP) pilot plant and analyses the economical, energy and environmental viability of implementation of this plant, operating from 2015 to 2045. This CSP plant would cover a field of 0,01km{sup 2} and have a 30% of capacity factor. This study also evaluates the impact caused by the substitution of the current Campus internal bus fleet for plug-in hybrid electric buses. The current service is provided by Normandy, which operates 12 buses plus 1 backup. These new buses would be regularly partially recharged by the energy generated from CSP. All the simulations have been made with the RETScreen software, which simulated the operation of the CSP, the amount of electricity produced, the carbon emissions avoided, the acquisition and implementation of the plug-in hybrid electric bus fleet and the cash flow. Six scenarios generated were, namely A1, B1, C1 (all for lower costs for the CSP plants) and A2, B2, C2 (for higher costs). For a social discount rate around 8% and along 30 years, only the A1, C1 and C2 scenarios showed a non-negative cash flow. Also, the emissions avoided were around 222 tCO{sub 2}/yr (or 6.660 tCO{sub 2} over 30 years) in the A1 and A2 scenarios, and around 550 tCO{sub 2}/yr (or 16.512 tCO{sub 2} over 30 years) in all others scenarios. (author)

  12. U.S. Department of Energy's EV Everywhere Workplace Charging Challenge, Mid-Program Review: Employees Plug In

    Energy Technology Data Exchange (ETDEWEB)

    2015-12-01

    This Program Review takes an unprecedented look at the state of workplace charging in the United States -- a report made possible by U.S. Department of Energy leadership and valuable support from our partners as they share their progress in developing robust workplace charging programs. Through the Workplace Charging Challenge, more than 250 participants are accelerating the development the nation's worksite PEV charging infrastructure and are supporting cleaner, more convenient transportation options within their communities. Challenge partners are currently providing access to PEV charging stations at more than 440 worksites across the country and are influencing countless other organizations to do the same.

  13. Intelligent Energy Management for Plug-in Hybrid Electric Vehicles: The Role of ITS Infrastructure in Vehicle Electrification Gestion énergétique intelligente pour véhicules électriques hybrides rechargeables : rôle de l’infrastructure de systèmes de transport intelligents (STI dans l’électrification des véhicules

    Directory of Open Access Journals (Sweden)

    Marano V.

    2012-08-01

    Full Text Available The desire to reduce carbon emissions due to transportation sources has led over the past decade to the development of new propulsion technologies, focused on vehicle electrification (including hybrid, plug-in hybrid and battery electric vehicles. These propulsion technologies, along with advances in telecommunication and computing power, have the potential of making passenger and commercial vehicles more energy efficient and environment friendly. In particular, energy management algorithms are an integral part of plug-in vehicles and are very important for achieving the performance benefits. The optimal performance of energy management algorithms depends strongly on the ability to forecast energy demand from the vehicle. Information available about environment (temperature, humidity, wind, road grade, etc. and traffic (traffic density, traffic lights, etc., is very important in operating a vehicle at optimal efficiency. This article outlines some current technologies that can help achieving this optimum efficiency goal. In addition to information available from telematic and geographical information systems, knowledge of projected vehicle charging demand on the power grid is necessary to build an intelligent energy management controller for future plug-in hybrid and electric vehicles. The impact of charging millions of vehicles from the power grid could be significant, in the form of increased loading of power plants, transmission and distribution lines, emissions and economics (information are given and discussed for the US case. Therefore, this effect should be considered in an intelligent way by controlling/scheduling the charging through a communication based distributed control. Le désir de réduire les émissions de carbone issues des sources de transport a conduit durant la dernière décennie au développement de nouvelles technologies de propulsion, axées sur l’électrification des véhicules (comprenant les véhicules

  14. ATLAS ABCD Hybrid Fatal Charge Dosage Test

    CERN Document Server

    Kuhl, A; The ATLAS collaboration; Grillo, AA; Martinez-McKinney, F; Nielsen, J; Spencer, E; Wilder, M

    2011-01-01

    The Semi-Conductor Tracker (SCT) in the ATLAS experiment at the Large Hadron Collider (LHC) could be subject to various beam loss scenarios. If a severe beam loss event were to occur, it would be beneficial to know how SCT components would be affected. In the SCT detector modules, a key component is the ABCD application specific integrated circuit (ASIC), the onboard readout electronics of the system. This ASIC has design specifications that it should withstand a 5nC charge injection within 25 ns, which is the period of the LHC bunch crossing. The first test performed is designed to test this limit, reaching a maximum of 10nC deposited in 25 ns. One model for beam loss predicts that a large charge, of the order of 10^6 MIPS, could be incident on the detector. According to detector studies, this causes a local field breakdown between the backplane of the sensor, held at 450V, and the strips. In this case the signal seen on the readout strip has a rise time of about 1μs due to a charge screening effect. A seco...

  15. ATLAS ABCD Hybrid Fatal Charge Dosage Test

    CERN Document Server

    Kuhl, A; Grillo, A A; Martinez-McKinney, F; Nielsen, J; Spencer, E; Wilder, M

    2011-01-01

    The Semi-Conductor Tracker (SCT) in the ATLAS experiment at the Large Hadron Collider (LHC) could be subject to various beam loss scenarios. If a severe beam loss event were to occur, it would be beneficial to know how SCT components would be affected. In the SCT detector modules, a key component is the ABCD application specific integrated circuit (ASIC), the onboard readout electronics of the system. This ASIC has design specifications that it should withstand a 5 nC charge application within 25 ns, which is the period of the LHC bunch crossing. The first test performed is designed to test this limit, reaching a maximum of 10 nC deposited in 25 ns. One model for beam loss predicts that a large charge, of the order of 106 MIPS, could be incident on the detector. According to detector studies, this causes a local field breakdown between the backplane of the sensor, held at 450 V, and the strips. In this case the signal seen on the readout strip has a rise time of about 1 μs due to a charge screening effect. A...

  16. Hybrid supercapacitor-battery materials for fast electrochemical charge storage

    Science.gov (United States)

    Vlad, A.; Singh, N.; Rolland, J.; Melinte, S.; Ajayan, P. M.; Gohy, J.-F.

    2014-01-01

    High energy and high power electrochemical energy storage devices rely on different fundamental working principles - bulk vs. surface ion diffusion and electron conduction. Meeting both characteristics within a single or a pair of materials has been under intense investigations yet, severely hindered by intrinsic materials limitations. Here, we provide a solution to this issue and present an approach to design high energy and high power battery electrodes by hybridizing a nitroxide-polymer redox supercapacitor (PTMA) with a Li-ion battery material (LiFePO4). The PTMA constituent dominates the hybrid battery charge process and postpones the LiFePO4 voltage rise by virtue of its ultra-fast electrochemical response and higher working potential. We detail on a unique sequential charging mechanism in the hybrid electrode: PTMA undergoes oxidation to form high-potential redox species, which subsequently relax and charge the LiFePO4 by an internal charge transfer process. A rate capability equivalent to full battery recharge in less than 5 minutes is demonstrated. As a result of hybrid's components synergy, enhanced power and energy density as well as superior cycling stability are obtained, otherwise difficult to achieve from separate constituents. PMID:24603843

  17. Energy efficiency of multiport power converters used in plug-in/V2G fuel cell vehicles

    International Nuclear Information System (INIS)

    Bizon, Nicu

    2012-01-01

    Highlights: ► It is proposed a new FC hybrid power source topology for plug-in FC vehicle (PFCV). ► An energy efficiency analysis of three architectures for Multiport Power Converter (MPC) of HPS is performed. ► The MPC energy efficiency features were shown by analytical computing in all PFCV regimes. -- Abstract: In this paper is presented an analysis of energy efficiency for the Multiport Power Converters (MPCs) used in Plug-in Fuel Cell Vehicles (PFCVs). A generic MPC architecture for PFCVs is proposed, which is analyzed for different operating modes of MPC in relation with PFCV operating regimes and the plug-in feature. The basic MPC architecture is described in relation with the PFCV operating regimes. Two MPC architectures are derived from the basic MPC architecture: (1) the MPC1 architecture, which is the MPC architecture without reverse power flow during regenerative braking process, and (2) the MPC2 architecture – MPC architecture without charging mode of Energy Storage System (ESS) from the FC system. Taking in account the imposed window for the ESS state-of-charge, the MPC can be connected to Plug-in Charging Stations (PCS) to exchange power with the Electric Power (EP) system, which will include renewable Distributed Generation (DG) systems. The Energy Management Unit (EMU) of MPC can communicate with the EP system to determine the moments that match the energy demand of plug-in vehicle with the supply availability of the EP system, stabilizing the EP system. The MPC features regarding its energy efficiency were shown by analytical computing performed and appropriate simulations presented in relation with the ESS that can be charged (discharged) from (to) the home/DG/EP system.

  18. Hybrid finite element and Brownian dynamics method for charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Gary A., E-mail: ghuber@ucsd.edu; Miao, Yinglong [Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0365 (United States); Zhou, Shenggao [Department of Mathematics and Mathematical Center for Interdiscipline Research, Soochow University, 1 Shizi Street, Suzhou, 215006 Jiangsu (China); Li, Bo [Department of Mathematics and Quantitative Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112 (United States); McCammon, J. Andrew [Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093 (United States); Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0365 (United States); Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636 (United States)

    2016-04-28

    Diffusion is often the rate-determining step in many biological processes. Currently, the two main computational methods for studying diffusion are stochastic methods, such as Brownian dynamics, and continuum methods, such as the finite element method. A previous study introduced a new hybrid diffusion method that couples the strengths of each of these two methods, but was limited by the lack of interactions among the particles; the force on each particle had to be from an external field. This study further develops the method to allow charged particles. The method is derived for a general multidimensional system and is presented using a basic test case for a one-dimensional linear system with one charged species and a radially symmetric system with three charged species.

  19. Potential of plug-in hybrid electric vehicle for reduction of CO2 emission and role of non-fossil power plant

    International Nuclear Information System (INIS)

    Hiwatari, R.; Okano, K.; Yamamoto, H.

    2009-01-01

    A method to analyze the demand of electricity and the reduction of CO 2 emission and oil consumption by PHEV is established. Using the performance of PHEV optimized by EPRI and an estimation on the pattern of driving and charging in Japan, the following results are obtained. The electric demand for PHEV60(which has 60mile EV range) and PHEV20(which has 20mile EV range) is evaluated at 79.3 billion kWh and 41.2 billion kWh, respectively, in case that all vehicles in Japan (80 million cars) would be replaced by PHEV. The load leveling effect on the Japanese grid, which is hypothetically considered as one electric grid system, is evaluated at about 30 million kW, in case that all vehicles in Japan are replaced by PHEV60 and charged in the midnight. However, when the charge of PHEVs starts in the evening, that effect is not obtained. The reduction of CO 2 emission results in 64 million ton by the averaged CO 2 emissions intensity (emissions per unit of user end electricity) in Japan, and 98 million ton by electricity from the non-fossil power plant such as nuclear energy or renewable one. Those values are equivalent to 25% and 38% of CO 2 emission from the transport sector in Japan in 2003. Hence, non-fossil power plant enhances the reduction of CO 2 emission by the PHEV introduction. (author)

  20. A hybrid charged-particle guide for studying (n, charged particle) reactions

    International Nuclear Information System (INIS)

    Haight, R.C.; White, R.M.; Zinkle, S.J.

    1983-01-01

    Charged-particle transport systems consisting of magnetic quadrupole lenses have been employed in recent years in the study of (n, charged particle) reactions. A new transport system was completed at the laboratory that is based both on magnetic lenses as well as electrostatic fields. The magnetic focusing of the charged-particle guide is provided by six magnetic quadrupole lenses arranged in a CDCCDC sequence (in the vertical plane). The electrostatic field is produced by a wire at high voltage which stretches the length of the guide and is physically at the centre of the magnetic axis. The magnetic lenses are used for charged particles above 5 MeV; the electrostatic guide is used for lower energies. This hybrid system possesses the excellent focusing and background rejection properties of other magnetic systems. For low energy charged-particles, the electrostatic transport avoids the narrow band-passes in charged-particle energy which are a problem with purely magnetic transport systems. This system is installed at the LLNL Cyclograaff facility for the study of (n, charged particle) reactions at neutron energies up to 35 MeV. (Auth.)

  1. A control-oriented lithium-ion battery pack model for plug-in hybrid electric vehicle cycle-life studies and system design with consideration of health management

    Science.gov (United States)

    Cordoba-Arenas, Andrea; Onori, Simona; Rizzoni, Giorgio

    2015-04-01

    A crucial step towards the large-scale introduction of plug-in hybrid electric vehicles (PHEVs) in the market is to reduce the cost of its battery systems. Currently, battery cycle- and calendar-life represents one of the greatest uncertainties in the total life-cycle cost of battery systems. The field of battery aging modeling and prognosis has seen progress with respect to model-based and data-driven approaches to describe the aging of battery cells. However, in real world applications cells are interconnected and aging propagates. The propagation of aging from one cell to others exhibits itself in a reduced battery system life. This paper proposes a control-oriented battery pack model that describes the propagation of aging and its effect on the life span of battery systems. The modeling approach is such that it is able to predict pack aging, thermal, and electrical dynamics under actual PHEV operation, and includes consideration of random variability of the cells, electrical topology and thermal management. The modeling approach is based on the interaction between dynamic system models of the electrical and thermal dynamics, and dynamic models of cell aging. The system-level state-of-health (SOH) is assessed based on knowledge of individual cells SOH, pack electrical topology and voltage equalization approach.

  2. Implementing Workplace Charging with Federal Agencies

    Energy Technology Data Exchange (ETDEWEB)

    Margaret Smith

    2017-04-28

    The number of Americans that chose to purchase plug-in electric vehicles (PEVs), which include plug-in hybrid electric vehicles(PHEVs) and all-electric vehicles (EVs), has steadily increased since 2011. Many of these drivers commute to federal worksites in communities across the country. The opportunity to charge a personal vehicle while at work is valuable to PEV drivers. Employees who have access to workplace charging are six times more likely to own a PEV than those who lack such access.

  3. Hybrid integrated circuit for charge-to-time interval conversion

    Energy Technology Data Exchange (ETDEWEB)

    Basiladze, S.G.; Dotsenko, Yu.Yu.; Man' yakov, P.K.; Fedorchenko, S.N. (Joint Inst. for Nuclear Research, Dubna (USSR))

    The hybrid integrated circuit for charge-to time interval conversion with nanosecond input fast response is described. The circuit can be used in energy measuring channels, time-to-digital converters and in the modified variant in amplitude-to-digital converters. The converter described consists of a buffer amplifier, a linear transmission circuit, a direct current source and a unit of time interval separation. The buffer amplifier represents a current follower providing low input and high output resistances by the current feedback. It is concluded that the described converter excelled the QT100B circuit analogous to it in a number of parameters especially, in thermostability.

  4. Modeling, hybridization, and optimal charging of electrical energy storage systems

    Science.gov (United States)

    Parvini, Yasha

    The rising rate of global energy demand alongside the dwindling fossil fuel resources has motivated research for alternative and sustainable solutions. Within this area of research, electrical energy storage systems are pivotal in applications including electrified vehicles, renewable power generation, and electronic devices. The approach of this dissertation is to elucidate the bottlenecks of integrating supercapacitors and batteries in energy systems and propose solutions by the means of modeling, control, and experimental techniques. In the first step, the supercapacitor cell is modeled in order to gain fundamental understanding of its electrical and thermal dynamics. The dependence of electrical parameters on state of charge (SOC), current direction and magnitude (20-200 A), and temperatures ranging from -40°C to 60°C was embedded in this computationally efficient model. The coupled electro-thermal model was parameterized using specifically designed temporal experiments and then validated by the application of real world duty cycles. Driving range is one of the major challenges of electric vehicles compared to combustion vehicles. In order to shed light on the benefits of hybridizing a lead-acid driven electric vehicle via supercapacitors, a model was parameterized for the lead-acid battery and combined with the model already developed for the supercapacitor, to build the hybrid battery-supercapacitor model. A hardware in the loop (HIL) setup consisting of a custom built DC/DC converter, micro-controller (muC) to implement the power management strategy, 12V lead-acid battery, and a 16.2V supercapacitor module was built to perform the validation experiments. Charging electrical energy storage systems in an efficient and quick manner, motivated to solve an optimal control problem with the objective of maximizing the charging efficiency for supercapacitors, lead-acid, and lithium ion batteries. Pontryagins minimum principle was used to solve the problems

  5. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for consumers describes the basics of PEV technology, PEV benefits, how to select the right PEV, charging a PEV, and PEV maintenance.

  6. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  7. Graphene-ferromagnet interfaces: hybridization, magnetization and charge transfer.

    Science.gov (United States)

    Abtew, Tesfaye; Shih, Bi-Ching; Banerjee, Sarbajit; Zhang, Peihong

    2013-03-07

    Electronic and magnetic properties of graphene-ferromagnet interfaces are investigated using first-principles electronic structure methods in which a single layer graphene is adsorbed on Ni(111) and Co(111) surfaces. Due to the symmetry matching and orbital overlap, the hybridization between graphene pπ and Ni (or Co) d(z(2)) states is very strong. This pd hybridization, which is both spin and k dependent, greatly affects the electronic and magnetic properties of the interface, resulting in a significantly reduced (by about 20% for Ni and 10% for Co) local magnetic moment of the top ferromagnetic layer at the interface and an induced spin polarization on the graphene layer. The calculated induced magnetic moment on the graphene layer agrees well with a recent experiment. In addition, a substantial charge transfer across the graphene-ferromagnet interfaces is observed. We also investigate the effects of thickness of the ferromagnet slab on the calculated electronic and magnetic properties of the interface. The strength of the pd hybridization and the thickness-dependent interfacial properties may be exploited to design structures with desirable magnetic and transport properties for spintronic applications.

  8. Method and apparatus for controlling battery charging in a hybrid electric vehicle

    Science.gov (United States)

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2003-06-24

    A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

  9. Cost Analysis of Plug-In Hybred Electric Vehicles Using GPS-Based Longitudinal Travel Data

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xing [Lamar University; Dong, Jing [Iowa State University; Lin, Zhenhong [ORNL

    2014-01-01

    Using spatial, longitudinal travel data of 415 vehicles over 3 18 months in the Seattle metropolitan area, this paper estimates the operating costs of plug-in hybrid electric vehicles (PHEVs) of various electric ranges (10, 20, 30, and 40 miles) for 3, 5, and 10 years of payback period, considering different charging infrastructure deployment levels and gasoline prices. Some key findings were made. (1) PHEVs could help save around 60% or 40% in energy costs, compared with conventional gasoline vehicles (CGVs) or hybrid electric vehicles (HEVs), respectively. However, for motorists whose daily vehicle miles traveled (DVMT) is significant, HEVs may be even a better choice than PHEV40s, particularly in areas that lack a public charging infrastructure. (2) The incremental battery cost of large-battery PHEVs is difficult to justify based on the incremental savings of PHEVs operating costs unless a subsidy is offered for largebattery PHEVs. (3) When the price of gasoline increases from $4/gallon to $5/gallon, the number of drivers who benefit from a larger battery increases significantly. (4) Although quick chargers can reduce charging time, they contribute little to energy cost savings for PHEVs, as opposed to Level-II chargers.

  10. Mastering Eclipse plug-in development

    CERN Document Server

    Blewitt, Alex

    2014-01-01

    If you are a Java developer who is familiar with the Eclipse plug-in environment, this book covers the advanced concepts that you need to know to achieve true expertise. Prior experience in creating Eclipse plug-ins is assumed for this book.

  11. Plug-In Tutor Agents: Still Pluggin'

    Science.gov (United States)

    Ritter, Steven

    2016-01-01

    "An Architecture for Plug-in Tutor Agents" (Ritter and Koedinger 1996) proposed a software architecture designed around the idea that tutors could be built as plug-ins for existing software applications. Looking back on the paper now, we can see that certain assumptions about the future of software architecture did not come to be, making…

  12. Non-isolated integrated motor drive and battery charger based on the split-phase PM motor for plug-in vehicles

    OpenAIRE

    Serrano Guillén, Isabel; Bermejo Fernández, Álvaro

    2013-01-01

    In electric vehicles and plug-in hybrid electric vehicles, the utility grid charges the vehicle battery through a battery charger. Different solutions have been proposed to reduce the size and cost of the charger. One solution to achieve this is to include the devices used in the traction circuit in the charger circuit; this is called an integrated motor drive and battery charger. A split-phase PM motor, a motor with double set of windings, gives the opportunity to implement different wind...

  13. Flywheel-Based Distributed Bus Signalling Strategy for the Public Fast Charging Station

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Sucic, Stepjan; Vasquez, Juan Carlos

    2014-01-01

    Fast charging stations (FCS) are able to recharge plug-in hybrid electric vehicles (pHEVs) in less than half an hour, thus representing an appealing concept to vehicle owners since the off-road time is similar as for refuelling at conventional public gas stations. However, since these FCS plugs...

  14. Demand Profile Study of Battery Electric Vehicle under Different Charging Options

    DEFF Research Database (Denmark)

    Marra, Francesco; Yang, Guang Ya; Træholt, Chresten

    2012-01-01

    An increased research on electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) deals with their flexible use in electric power grids. Several research projects on smart grids and electric mobility are now looking into realistic models representing the behavior of an EV during charging...

  15. Charge-transfer channel in quantum dot-graphene hybrid materials

    Science.gov (United States)

    Cao, Shuo; Wang, Jingang; Ma, Fengcai; Sun, Mengtao

    2018-04-01

    The energy band theory of a classical semiconductor can qualitatively explain the charge-transfer process in low-dimensional hybrid colloidal quantum dot (QD)-graphene (GR) materials; however, the definite charge-transfer channels are not clear. Using density functional theory (DFT) and time-dependent DFT, we simulate the hybrid QD-GR nanostructure, and by constructing its orbital interaction diagram, we show the quantitative coupling characteristics of the molecular orbitals (MOs) of the hybrid structure. The main MOs are derived from the fragment MOs (FOs) of GR, and the Cd13Se13 QD FOs merge with the GR FOs in a certain proportion to afford the hybrid system. Upon photoexcitation, electrons in the GR FOs jump to the QD FOs, leaving holes in the GR FOs, and the definite charge-transfer channels can be found by analyzing the complex MOs coupling. The excited electrons and remaining holes can also be localized in the GR or the QD or transfer between the QD and GR with different absorption energies. The charge-transfer process for the selected excited states of the hybrid QD-GR structure are testified by the charge difference density isosurface. The natural transition orbitals, charge-transfer length analysis and 2D site representation of the transition density matrix also verify the electron-hole delocalization, localization, or coherence chacracteristics of the selected excited states. Therefore, our research enhances understanding of the coupling mechanism of low-dimensional hybrid materials and will aid in the design and manipulation of hybrid photoelectric devices for practical application in many fields.

  16. Workplace Charging. Charging Up University Campuses

    Energy Technology Data Exchange (ETDEWEB)

    Giles, Carrie [ICF International, Fairfax, VA (United States); Ryder, Carrie [ICF International, Fairfax, VA (United States); Lommele, Stephen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-01

    This case study features the experiences of university partners in the U.S. Department of Energy's (DOE) Workplace Charging Challenge with the installation and management of plug-in electric vehicle (PEV) charging stations.

  17. Experimental studies of the air hybrid engine charging operation

    OpenAIRE

    Zhao, H; Ma, T; Lee, CY

    2014-01-01

    Over the last few years, theoretical and modelling studies have been carried out on the feasibility and potential of novel mild air hybrid engine concepts based on production components. These mild air hybrid concepts are able to convert vehicle brake energy into pneumatic energy in the form of compressed air stored in the air tank. The compressed air can then be used to crank-start the engine by either injecting and expanding in the cylinder or driving a production air starter. Thus, the reg...

  18. Integer Charge Transfer and Hybridization at an Organic Semiconductor/Conductive Oxide Interface

    KAUST Repository

    Gruenewald, Marco

    2015-02-11

    We investigate the prototypical hybrid interface formed between PTCDA and conductive n-doped ZnO films by means of complementary optical and electronic spectroscopic techniques. We demonstrate that shallow donors in the vicinity of the ZnO surface cause an integer charge transfer to PTCDA, which is clearly restricted to the first monolayer. By means of DFT calculations, we show that the experimental signatures of the anionic PTCDA species can be understood in terms of strong hybridization with localized states (the shallow donors) in the substrate and charge back-donation, resulting in an effectively integer charge transfer across the interface. Charge transfer is thus not merely a question of locating the Fermi level above the PTCDA electron-transport level but requires rather an atomistic understanding of the interfacial interactions. The study reveals that defect sites and dopants can have a significant influence on the specifics of interfacial coupling and thus on carrier injection or extraction.

  19. Implementation Approach for Plug-in Electric Vehicles at Joint Base Lewis McChord. Task 4

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01

    This study focused on Joint Base Lewis McChord (JBLM), which is located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at JBLM to begin the review of vehicle mission assignments and the types of vehicles in service. In Task 2, daily operational characteristics of select vehicles were identified and vehicle movements were recorded in data loggers in order to characterize the vehicles’ missions. In Task 3, the results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption (i.e., whether a battery electric vehicle or plug-in hybrid electric vehicle [collectively referred to as PEVs] can fulfill the mission requirements0, as well as the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the JBLM fleet.

  20. Predicting the market potential of plug-in electric vehicles using multiday GPS data

    International Nuclear Information System (INIS)

    Khan, Mobashwir; Kockelman, Kara M.

    2012-01-01

    GPS data for a year's worth of travel by 255 Seattle households illuminate how plug-in electric vehicles can match household needs. The results suggest that a battery-electric vehicle (BEV) with 100 mi of range should meet the needs of 50% of one-vehicle households and 80% of multiple-vehicle households, when charging once a day and relying on another vehicle or mode just 4 days a year. Moreover, the average one-vehicle Seattle household uses each vehicle 23 mi per day and should be able to electrify close to 80% of its miles, while meeting all its travel needs, using a plug-in hybrid electric vehicle (PHEV) with 40-mile all-electric range. Households owning two or more vehicles can electrify 50 to 70% of their total household miles using a PHEV40, depending on how they assign the vehicle across drivers each day. Cost comparisons between the average single-vehicle household owning a Chevrolet Cruze versus a Volt PHEV suggest that, when gas prices are $3.50 per gallon and electricity rates are at 11.2 ct/kWh, the Volt will save the household $535 per year in operating costs. Similarly, the Toyota Prius PHEV will provide an annual savings of $538 per year over the Corolla. - Highlights: ► Daily travel distances over a year were obtained for 255 Seattle households. ► 100-mi-range BEVs can meet 99% of daily needs for 50% of one-vehicle households. ► 100-mi-range BEVs can meet 99% of needs for 80% of multi-vehicle households. ► One-vehicle households will electrify close to 80% of their miles using a PHEV40 while meeting all trip-distance needs. ► Two-vehicle households can electrify 50 to 70% of household miles using a PHEV40 while meeting all trip-distance needs.

  1. Potential impacts assessment of plug-in electric vehicles on the Portuguese energy market

    International Nuclear Information System (INIS)

    Camus, C.; Farias, T.; Esteves, J.

    2011-01-01

    Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs), which obtain their fuel from the grid by charging a battery, are set to be introduced into the mass market and expected to contribute to oil consumption reduction. In this research, scenarios for 2020 EVs penetration and charging profiles are studied integrated with different hypotheses for electricity production mix. The impacts in load profiles, spot electricity prices and emissions are obtained for the Portuguese case study. Simulations for year 2020, in a scenario of low hydro production and high prices, resulted in energy costs for EVs recharge of 20 cents/kWh, with 2 million EVs charging mainly at evening peak hours. On the other hand, in an off-peak recharge, a high hydro production and low wholesale prices' scenario, recharge costs could be reduced to 5.6 cents/kWh. In these extreme cases, EV's energy prices were between 0.9 Euro to 3.2 Euro per 100 km. Reductions in primary energy consumption, fossil fuels use and CO 2 emissions of up to 3%, 14% and 10%, respectively, were verified (for a 2 million EVs' penetration and a dry year's off-peak recharge scenario) from the transportation and electricity sectors together when compared with a BAU scenario without EVs. - Highlights: → EVs and PHEVs impacts in energy, power profiles and spot electricity prices. → Reductions in primary energy consumption, fossil fuels use and CO 2 emissions. → Electricity production with more % of fossil fuels technologies and renewable ones. → Comparison between extreme charging profiles, peak and off-peak, in charging cost.

  2. Smart and secure charging of electric vehicles in public parking spaces

    OpenAIRE

    Strobbe, Matthias; Mets, Kevin; Tahon, Mathieu; Tilman, M; Spiessens, F; Gheerardyn, J; De Craemer, K; Vandael, S; Geebelen, K; Lagaisse, B; Claessens, B; Develder, Chris

    2012-01-01

    Governments worldwide are starting to give incentives to promote the use of (hybrid) electrical vehicles to achieve cleaner and more energy-efficient road transport with a low carbon footprint. Through tax/VAT reductions and free additional services — such as free parking, and/or battery charging or lower traffic congestion taxes — private users, public organizations and car fleet operators are stimulated to adopt the plug-in (hybrid) electrical vehicle (PHEV). This upcoming breakthrough of P...

  3. Consequential life cycle air emissions externalities for plug-in electric vehicles in the PJM interconnection

    Science.gov (United States)

    Weis, Allison; Jaramillo, Paulina; Michalek, Jeremy

    2016-02-01

    We perform a consequential life cycle analysis of plug-in electric vehicles (PEVs), hybrid electric vehicles (HEVs), and conventional gasoline vehicles in the PJM interconnection using a detailed, normative optimization model of the PJM electricity grid that captures the change in power plant operations and related emissions due to vehicle charging. We estimate and monetize the resulting human health and environmental damages from life cycle air emissions for each vehicle technology. We model PJM using the most recent data available (2010) as well as projections of the PJM grid in 2018 and a hypothetical scenario with increased wind penetration. We assess a range of sensitivity cases to verify the robustness of our results. We find that PEVs have higher life cycle air emissions damages than gasoline HEVs in the recent grid scenario, which has a high percentage of coal generation on the margin. In particular, battery electric vehicles with large battery capacity can produce two to three times as much air emissions damage as gasoline HEVs, depending on charge timing. In our future 2018 grid scenarios that account for predicted coal plant retirements, PEVs would produce air emissions damages comparable to or slightly lower than HEVs.

  4. Consequential life cycle air emissions externalities for plug-in electric vehicles in the PJM interconnection

    International Nuclear Information System (INIS)

    Weis, Allison; Jaramillo, Paulina; Michalek, Jeremy

    2016-01-01

    We perform a consequential life cycle analysis of plug-in electric vehicles (PEVs), hybrid electric vehicles (HEVs), and conventional gasoline vehicles in the PJM interconnection using a detailed, normative optimization model of the PJM electricity grid that captures the change in power plant operations and related emissions due to vehicle charging. We estimate and monetize the resulting human health and environmental damages from life cycle air emissions for each vehicle technology. We model PJM using the most recent data available (2010) as well as projections of the PJM grid in 2018 and a hypothetical scenario with increased wind penetration. We assess a range of sensitivity cases to verify the robustness of our results. We find that PEVs have higher life cycle air emissions damages than gasoline HEVs in the recent grid scenario, which has a high percentage of coal generation on the margin. In particular, battery electric vehicles with large battery capacity can produce two to three times as much air emissions damage as gasoline HEVs, depending on charge timing. In our future 2018 grid scenarios that account for predicted coal plant retirements, PEVs would produce air emissions damages comparable to or slightly lower than HEVs. (letter)

  5. Utility emissions associated with electric and hybrid vehicle (EHV) charging

    International Nuclear Information System (INIS)

    1993-04-01

    This project is a joint effort between the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI) to conduct a comprehensive, in-depth assessment of the emission impacts of electric and hybrid vehicles (EHVs). The study determines local and regional emission impacts under a variety of scenarios, covering both conservative and optimistic assumptions about vehicle efficiency, power plant efficiency, and other factors. In all scenarios, EHV use significantly reduces urban emissions of CO, VOC, and TSP. Changes in NO x and CO 2 emissions are very sensitive to average or marginal power plant emissions and vehicle efficiency assumptions. NO x and CO 2 emissions changes vary dramatically by region. Certain combinations of EHV and CV scenarios and regions result in significant reductions, while other combinations result in significant increases. Careful use of these results is advised. In all scenarios, SO 2 increases with EHV use although the amount is small-less than 1% of total utility emissions even vath the deployment of 12 million EHVS. But because of emission cap provisions of the Clean Air Act Amendments of 1990, national SO 2 totals will not be allowed to increase. Thus, utilities will have to apply more stringent measures to combat increased SO 2 emissions due to the increased use of electric vehicles

  6. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies.

    Science.gov (United States)

    Johnston, Michael B; Herz, Laura M

    2016-01-19

    Photovoltaic (PV) devices that harvest the energy provided by the sun have great potential as renewable energy sources, yet uptake has been hampered by the increased cost of solar electricity compared with fossil fuels. Hybrid metal halide perovskites have recently emerged as low-cost active materials in PV cells with power conversion efficiencies now exceeding 20%. Rapid progress has been achieved over only a few years through improvements in materials processing and device design. In addition, hybrid perovskites appear to be good light emitters under certain conditions, raising the prospect of applications in low-cost light-emitting diodes and lasers. Further optimization of such hybrid perovskite devices now needs to be supported by a better understanding of how light is converted into electrical currents and vice versa. This Account provides an overview of charge-carrier recombination and mobility mechanisms encountered in such materials. Optical-pump-terahertz-probe (OPTP) photoconductivity spectroscopy is an ideal tool here, because it allows the dynamics of mobile charge carriers inside the perovskite to be monitored following excitation with a short laser pulse whose photon energy falls into the range of the solar spectrum. We first review our insights gained from transient OPTP and photoluminescence spectroscopy on the mechanisms dominating charge-carrier recombination in these materials. We discuss that mono-molecular charge-recombination predominantly originates from trapping of charges, with trap depths being relatively shallow (tens of millielectronvolts) for hybrid lead iodide perovskites. Bimolecular recombination arises from direct band-to-band electron-hole recombination and is found to be in significant violation of the simple Langevin model. Auger recombination exhibits links with electronic band structure, in accordance with its requirement for energy and momentum conservation for all charges involved. We further discuss charge-carrier mobility

  7. Photoconductivity enhancement and charge transport properties in ruthenium-containing block copolymer/carbon nanotube hybrids.

    Science.gov (United States)

    Lo, Kin Cheung; Hau, King In; Chan, Wai Kin

    2018-04-05

    Functional polymer/carbon nanotube (CNT) hybrid materials can serve as a good model for light harvesting systems based on CNTs. This paper presents the synthesis of block copolymer/CNT hybrids and the characterization of their photocurrent responses by both experimental and computational approaches. A series of functional diblock copolymers was synthesized by reversible addition-fragmentation chain transfer polymerizations for the dispersion and functionalization of CNTs. The block copolymers contain photosensitizing ruthenium complexes and modified pyrene-based anchoring units. The photocurrent responses of the polymer/CNT hybrids were measured by photoconductive atomic force microscopy (PCAFM), from which the experimental data were analyzed by vigorous statistical models. The difference in photocurrent response among different hybrids was correlated to the conformations of the hybrids, which were elucidated by molecular dynamics simulations, and the electronic properties of polymers. The photoresponse of the block copolymer/CNT hybrids can be enhanced by introducing an electron-accepting block between the photosensitizing block and the CNT. We have demonstrated that the application of a rigorous statistical methodology can unravel the charge transport properties of these hybrid materials and provide general guidelines for the design of molecular light harvesting systems.

  8. A hybrid, coupled approach for modeling charged fluids from the nano to the mesoscale

    Science.gov (United States)

    Cheung, James; Frischknecht, Amalie L.; Perego, Mauro; Bochev, Pavel

    2017-11-01

    We develop and demonstrate a new, hybrid simulation approach for charged fluids, which combines the accuracy of the nonlocal, classical density functional theory (cDFT) with the efficiency of the Poisson-Nernst-Planck (PNP) equations. The approach is motivated by the fact that the more accurate description of the physics in the cDFT model is required only near the charged surfaces, while away from these regions the PNP equations provide an acceptable representation of the ionic system. We formulate the hybrid approach in two stages. The first stage defines a coupled hybrid model in which the PNP and cDFT equations act independently on two overlapping domains, subject to suitable interface coupling conditions. At the second stage we apply the principles of the alternating Schwarz method to the hybrid model by using the interface conditions to define the appropriate boundary conditions and volume constraints exchanged between the PNP and the cDFT subdomains. Numerical examples with two representative examples of ionic systems demonstrate the numerical properties of the method and its potential to reduce the computational cost of a full cDFT calculation, while retaining the accuracy of the latter near the charged surfaces.

  9. Clean Cities Plug-In Electric Vehicle Handbook for Fleet Managers

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  10. Charge transfer properties and photoelectrocatalytic activity of TiO{sub 2}/MWCNT hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Liaochuan [Nano Science Research Center, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China); Zhang Weide, E-mail: zhangwd@scut.edu.c [Nano Science Research Center, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China)

    2010-12-15

    The vertically aligned multiwalled carbon nanotube (MWCNT) arrays on tantalum foils were successfully coated with TiO{sub 2} nanoparticles by a hydrothermal process. The prepared TiO{sub 2}/MWCNT hybrid was characterized by scanning electron microscopy and transmission electron microscopy. The charge transfer properties and photocatalytic degradation of rhodamine B with and without bias potential under UV irradiation were investigated. The MWCNTs promoted the separation of photoinduced carriers in the TiO{sub 2}, thus enhanced photocatalytic activity. Applying bias potential on the photoanode further enhanced its catalytic activity. The efficient charge transportation and high photoelectrocatalytic activity towards degradation of rhodamine B made this hybrid material promising for photocatalyst and for the development of photoelectrical devices.

  11. Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.

    Science.gov (United States)

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo

    2017-09-22

    Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.

  12. Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid

    Science.gov (United States)

    Yu, Deshui; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2016-01-01

    Hybrids consisting of macroscopic superconducting circuits and microscopic components, such as atoms and spins, have the potential of transmitting an arbitrary state between different quantum species, leading to the prospective of high-speed operation and long-time storage of quantum information. Here we propose a novel hybrid structure, where a neutral-atom qubit directly interfaces with a superconducting charge qubit, to implement the qubit-state transmission. The highly-excited Rydberg atom located inside the gate capacitor strongly affects the behavior of Cooper pairs in the box while the atom in the ground state hardly interferes with the superconducting device. In addition, the DC Stark shift of the atomic states significantly depends on the charge-qubit states. By means of the standard spectroscopic techniques and sweeping the gate voltage bias, we show how to transfer an arbitrary quantum state from the superconducting device to the atom and vice versa. PMID:27922087

  13. Electric and hydrogen consumption analysis in plug-in road vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ribau, Joao P.; Silva, Carla M.; Faria, Tiago L. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Department of Mechanical Engineering, Av. Rovisco Pais, 1 Pav. Mecanica I, 2 andar, 1049-001 Lisboa (Portugal)

    2010-07-01

    The main goal of the present study is to analyze some of the capabilities and behavior of two types of plug-in cars: battery electric and hydrogen fuel cell hybrid electric, facing different driving styles, different road gradients, different occupation rates, different electrical loads, and different battery's initial state of charge. In order to do that, four vehicles with different power/weight (kW/kg) ratio (0.044 to 0.150) were simulated in the software ADVISOR, which gives predictions of energy consumption, and behavior of vehicle's power train components (including energy regeneration) along specified driving cycles. The required energy, electricity and/or hydrogen, to overcome the specified driving schedules, allowed to estimate fuel life cycle's CO2 emissions and primary energy. A vehicle with higher power/weight ratio (kW/kg) demonstrated to be less affected in operation and in variation of the energy consumption, facing the different case studies, however may have higher consumptions in some cases. The autonomy, besides depending on the fuel consumption, is directly associated with the type and capacity (kWh) of the chosen battery, plus the stored hydrogen (if fuel cell vehicles are considered, PHEV-FC). The PHEV-FC showed to have higher autonomy than the battery vehicles, but higher energy consumption which is extremely dependent on the type and ratio of energy used, hydrogen or electricity. An aggressive driving style, higher road gradient and increase of weight, required more energy and power to the vehicle and presented consumption increases near to 77%, 621%, 19% respectively. Higher electrical load and battery's initial state of charge, didn't affect directly vehicle's dynamic. The first one drained energy directly from the battery plus demanded a fraction of its power, with energy consumption maximum increasing near 71%. The second one restricted the autonomy without influence directly the energy consumption per

  14. Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm

    DEFF Research Database (Denmark)

    Awasthi, Abhishek; Venkitusamy, Karthikeyan; Padmanaban, Sanjeevikumar

    2017-01-01

    India's ever increasing population has made it necessary to develop alternative modes of transportation with electric vehicles being the most preferred option. The major obstacle is the deteriorating impact on the utility distribution system brought about by improper setup of these charging...... stations. This paper deals with the optimal planning (siting and sizing) of charging station infrastructure in the city of Allahabad, India. This city is one of the upcoming smart cities, where electric vehicle transportation pilot project is going on under Government of India initiative. In this context......, a hybrid algorithm based on genetic algorithm and improved version of conventional particle swarm optimization is utilized for finding optimal placement of charging station in the Allahabad distribution system. The particle swarm optimization algorithm re-optimizes the received sub-optimal solution (site...

  15. Optically active charge transfer in hybrids of Alq3 nanoparticles and MoS2 monolayer

    Science.gov (United States)

    Ghimire, Ganesh; Dhakal, Krishna P.; Neupane, Guru P.; Jo, Seong Gi; Kim, Hyun; Seo, Changwon; Lee, Young Hee; Joo, Jinsoo; Kim, Jeongyong

    2017-05-01

    Organic/inorganic hybrid structures have been widely studied because of their enhanced physical and chemical properties. Monolayers of transition metal dichalcogenides (1L-TMDs) and organic nanoparticles can provide a hybridization configuration between zero- and two-dimensional systems with the advantages of convenient preparation and strong interface interaction. Here, we present such a hybrid system made by dispersing π-conjugated organic (tris (8-hydroxyquinoline) aluminum(III)) (Alq3) nanoparticles (NPs) on 1L-MoS2. Hybrids of Alq3 NP/1L-MoS2 exhibited a two-fold increase in the photoluminescence of Alq3 NPs on 1L-MoS2 and the n-doping effect of 1L-MoS2, and these spectral and electronic modifications were attributed to the charge transfer between Alq3 NPs and 1L-MoS2. Our results suggested that a hybrid of organic NPs/1L-TMD can offer a convenient platform to study the interface interactions between organic and inorganic nano objects and to engineer optoelectronic devices with enhanced performance.

  16. Charge and energy transfer interplay in hybrid sensitized solar cells mediated by graphene quantum dots

    International Nuclear Information System (INIS)

    Mihalache, Iuliana; Radoi, Antonio; Mihaila, Mihai; Munteanu, Cornel; Marin, Alexandru; Danila, Mihai; Kusko, Mihaela; Kusko, Cristian

    2015-01-01

    Highlights: • We report a one pot synthesis metod of GQD with controlled size and optoelectronic properties. • An improvement of common N3-DSSC characteristics is achieved when GQDs are used as co-sensitiser. • The role of GQD as cosensitisers in hybrid DSSC was investigated and the interplay between charge and energy transfer phenomena mediated by GQDs was demonstrated. • The GQDs presence determines an inhibition of the recombination processes at the TiO 2 /electrolyte interface. - Abstract: We explored the role of graphene quantum dots (GQDs) as co-sensitizers in hybrid dye sensitized solar cell (DSSC) architectures, focusing on various concurring mechanisms, such as: charge transfer, energy transfer and recombination rate, towards light harvesting improvement. GQDs were prepared by the hydrothermal method that allows the tuning of electronic levels and optical properties by employing appropriate precursors and synthesis conditions. The aim was to realize a type II alignment for TiO 2 /GQD/dye hybrid configuration, using standard N3 Ru-dye in order to improve charge transfer. When GQDs were used as co-sensitizers together with N3 Ru-dye, an improvement in power conversion efficiency was achieved, as shown by electrical measurements. The experimental analysis indicates that this improvement arises from the interplay of various mechanisms mediated by GQDs: (i) enhancement of charge separation and collection due to the cascaded alignment of the energy levels; (ii) energy transfer from GQDs to N3 Ru-dye due to the overlap between GQD photoluminescence and N3 Ru-dye absorption spectra; and (iii) reduction of the electron recombination to the redox couple due to the inhibition of the back electron transfer to the electrolyte by the GQDs

  17. Multifunctional hybrid diode: Study of photoresponse, high responsivity, and charge injection mechanisms

    Science.gov (United States)

    Singh, Jitendra; Singh, R. G.; Gautam, Subodh K.; Singh, Fouran

    2018-05-01

    A multifunctional hybrid heterojunction diode is developed on porous silicon and its current density-voltage characteristics reveal a good rectification ratio along with other superior parameters such as ideality factor, barrier height and series resistance. The diode also functions as an efficient photodiode to manifest high photosensitivity with high responsivity under illumination with broadband solar light, UV light, and green light. The diode is also carefully scrutinized for its sensitivity and repeatability over many cycles under UV and green light and is found to have a quick response and extremely fast recovery times. The notable responsivity is attributed to the generation of high density of excitons in the depletion region by the absorption of incident photons and their separation by an internal electric field besides an additional photocurrent due to the charging of polymer chains. The mechanisms of generation, injection and transport of charge carriers are explained by developing a schematic energy band diagram. The transport phenomenon of carriers is further investigated from room temperature down to a very low temperature of 10 K. An Arrhenius plot is made to determine the Richardson constant. Various diode parameters as mentioned above are also determined and the dominance of the transport mechanism of charge carriers in different temperature regimes such as diffusion across the junction and/or quantum tunneling through the barriers are explained. The developed multifunction heterojunction hybrid diodes have implications for highly sensitive photodiodes in the UV and visible range of electromagnetic spectrum that can be very promising for efficient optoelectronic devices.

  18. Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in phosphorene-gold hybrid systems.

    Science.gov (United States)

    Xu, Renjing; Yang, Jiong; Zhu, Yi; Yan, Han; Pei, Jiajie; Myint, Ye Win; Zhang, Shuang; Lu, Yuerui

    2016-01-07

    The surface potential and the efficiency of interfacial charge transfer are extremely important for designing future semiconductor devices based on the emerging two-dimensional (2D) phosphorene. Here, we directly measured the strong layer-dependent surface potential of mono- and few-layered phosphorene on gold, which is consistent with the reported theoretical prediction. At the same time, we used an optical way photoluminescence (PL) spectroscopy to probe charge transfer in the phosphorene-gold hybrid system. We firstly observed highly anisotropic and layer-dependent PL quenching in the phosphorene-gold hybrid system, which is attributed to the highly anisotropic/layer-dependent interfacial charge transfer.

  19. DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer.

    Science.gov (United States)

    Bronder, Thomas S; Poghossian, Arshak; Scheja, Sabrina; Wu, Chunsheng; Keusgen, Michael; Mewes, Dieter; Schöning, Michael J

    2015-09-16

    Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event.

  20. Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites.

    Science.gov (United States)

    Gélvez-Rueda, María C; Hutter, Eline M; Cao, Duyen H; Renaud, Nicolas; Stoumpos, Constantinos C; Hupp, Joseph T; Savenije, Tom J; Kanatzidis, Mercouri G; Grozema, Ferdinand C

    2017-11-30

    The optoelectronic properties of hybrid perovskites can be easily tailored by varying their components. Specifically, mixing the common short organic cation (methylammonium (MA)) with a larger one (e.g., butyl ammonium (BA)) results in 2-dimensional perovskites with varying thicknesses of inorganic layers separated by the large organic cation. In both of these applications, a detailed understanding of the dissociation and recombination of electron-hole pairs is of prime importance. In this work, we give a clear experimental demonstration of the interconversion between bound excitons and free charges as a function of temperature by combining microwave conductivity techniques with photoluminescence measurements. We demonstrate that the exciton binding energy varies strongly (between 80 and 370 meV) with the thickness of the inorganic layers. Additionally, we show that the mobility of charges increases with the layer thickness, in agreement with calculated effective masses from electronic structure calculations.

  1. Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites

    International Nuclear Information System (INIS)

    Gélvez-Rueda, María C.; Hutter, Eline M.; Cao, Duyen H.; Renaud, Nicolas; Stoumpos, Constantinos C.

    2017-01-01

    The optoelectronic properties of hybrid perovskites can be easily tailored by varying their components. Specifically, mixing the common short organic cation (methylammonium (MA)) with a larger one (e.g., butyl ammonium (BA)) results in 2-dimensional perovskites with varying thicknesses of inorganic layers separated by the large organic cation. In both of these applications, a detailed understanding of the dissociation and recombination of electron–hole pairs is of prime importance. Here in this work, we give a clear experimental demonstration of the interconversion between bound excitons and free charges as a function of temperature by combining microwave conductivity techniques with photoluminescence measurements. We demonstrate that the exciton binding energy varies strongly (between 80 and 370 meV) with the thickness of the inorganic layers. Additionally, we show that the mobility of charges increases with the layer thickness, in agreement with calculated effective masses from electronic structure calculations.

  2. Hybrid fuzzy charged system search algorithm based state estimation in distribution networks

    Directory of Open Access Journals (Sweden)

    Sachidananda Prasad

    2017-06-01

    Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.

  3. Assessing the impact of policy interventions on the adoption of plug-in electric vehicles: An agent-based model

    International Nuclear Information System (INIS)

    Silvia, Chris; Krause, Rachel M.

    2016-01-01

    Heightened concern regarding climate change and energy independence has increased interest in plug-in electric vehicles as one means to address these challenges and governments at all levels have considered policy interventions to encourage their adoption. This paper develops an agent-based model that simulates the introduction of four policy scenarios aimed at promoting electric vehicle adoption in an urban community and compares them against a baseline. These scenarios include reducing vehicle purchase price via subsidies, expanding the local public charging network, increasing the number and visibility of fully battery electric vehicles (BEVs) on the roadway through government fleet purchases, and a hybrid mix of these three approaches. The results point to the effectiveness of policy options that increased awareness of BEV technology. Specifically, the hybrid policy alternative was the most successful in encouraging BEV adoption. This policy increases the visibility and familiarity of BEV technology in the community and may help counter the idea that BEVs are not a viable alternative to gasoline-powered vehicles. - Highlights: •Various policy interventions to encourage electric vehicle adoption are examined. •An agent based model is used to simulate individual adoption decisions. •Policies that increase the familiarity of electric vehicles are most effective.

  4. Charge Dynamics and Spin Blockade in a Hybrid Double Quantum Dot in Silicon

    Directory of Open Access Journals (Sweden)

    Matias Urdampilleta

    2015-08-01

    Full Text Available Electron spin qubits in silicon, whether in quantum dots or in donor atoms, have long been considered attractive qubits for the implementation of a quantum computer because of silicon’s “semiconductor vacuum” character and its compatibility with the microelectronics industry. While donor electron spins in silicon provide extremely long coherence times and access to the nuclear spin via the hyperfine interaction, quantum dots have the complementary advantages of fast electrical operations, tunability, and scalability. Here, we present an approach to a novel hybrid double quantum dot by coupling a donor to a lithographically patterned artificial atom. Using gate-based rf reflectometry, we probe the charge stability of this double quantum-dot system and the variation of quantum capacitance at the interdot charge transition. Using microwave spectroscopy, we find a tunnel coupling of 2.7 GHz and characterize the charge dynamics, which reveals a charge T_{2}^{*} of 200 ps and a relaxation time T_{1} of 100 ns. Additionally, we demonstrate a spin blockade at the inderdot transition, opening up the possibility to operate this coupled system as a singlet-triplet qubit or to transfer a coherent spin state between the quantum dot and the donor electron and nucleus.

  5. Three-Phase High-Power and Zero-Current-Switching OBC for Plug-In Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Cheng-Shan Wang

    2015-06-01

    Full Text Available In this paper, an interleaved high-power zero-current-switching (ZCS onboard charger (OBC based on the three-phase single-switch buck rectifier is proposed for application to plug-in electric vehicles (EVs. The multi-resonant structure is used to achieve high efficiency and high power density, which are necessary to reduce the volume and weight of the OBC. This study focuses on the border conditions of ZCS converting with a battery load, which means the variation ranges of the output voltage and current are very large. Furthermore, a novel hybrid control method combining pulse frequency modulation (PFM and pulse width modulation (PWM together is presented to ensure a driving frequency higher than 10 kHz, and this will reduce the unexpected inner resonant power flow and decrease the total harmonic distortion (THD of the input current under a light load at the end of the charging process. Finally, a prototype is established, and experiments are carried out. According to the experimental results, the conversion efficiency is higher than 93.5%, the THD about 4.3% and power factor (PF 0.98 under the maximum power output condition. Besides, a three-stage charging process is also carried out the experimental platform.

  6. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  7. California Plug-In Electric Vehicle Infrastructure Projections: 2017-2025 - Future Infrastructure Needs for Reaching the State's Zero Emission-Vehicle Deployment Goals

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bedir, Abdulkadir [California Energy Commission; Crisostomo, Noel [California Energy Commission; Allen, Jennifer [California Energy Commission

    2018-03-27

    This report analyzes plug-in electric vehicle (PEV) infrastructure needs in California from 2017 to 2025 in a scenario where the State's zero-emission vehicle (ZEV) deployment goals are achieved by household vehicles. The statewide infrastructure needs are evaluated by using the Electric Vehicle Infrastructure Projection tool, which incorporates representative statewide travel data from the 2012 California Household Travel Survey. The infrastructure solution presented in this assessment addresses two primary objectives: (1) enabling travel for battery electric vehicles and (2) maximizing the electric vehicle-miles traveled for plug-in hybrid electric vehicles. The analysis is performed at the county-level for each year between 2017 and 2025 while considering potential technology improvements. The results from this study present an infrastructure solution that can facilitate market growth for PEVs to reach the State's ZEV goals by 2025. The overall results show a need for 99k-130k destination chargers, including workplaces and public locations, and 9k-25k fast chargers. The results also show a need for dedicated or shared residential charging solutions at multi-family dwellings, which are expected to host about 120k PEVs by 2025. An improvement to the scientific literature, this analysis presents the significance of infrastructure reliability and accessibility on the quantification of charger demand.

  8. Online forecasting of electrical load for distributed management of plug-in electric vehicles

    OpenAIRE

    Basu , Kaustav; Ovalle , Andres; Guo , Baoling; Hably , Ahmad; Bacha , Seddik; Hajar , Khaled

    2016-01-01

    International audience; The paper aims at making online forecast of electrical load at the MV-LV transformer level. Optimal management of the Plug-in Electric Vehicles (PEV) charging requires the forecast of the electrical load for future hours. The forecasting module needs to be online (i.e update and make forecast for the future hours, every hour). The inputs to the predictor are historical electrical and weather data. Various data driven machine learning algorithms are compared to derive t...

  9. Episodic air quality impacts of plug-in electric vehicles

    Science.gov (United States)

    Razeghi, Ghazal; Carreras-Sospedra, Marc; Brown, Tim; Brouwer, Jack; Dabdub, Donald; Samuelsen, Scott

    2016-07-01

    In this paper, the Spatially and Temporally Resolved Energy and Environment Tool (STREET) is used in conjunction with University of California Irvine - California Institute of Technology (UCI-CIT) atmospheric chemistry and transport model to assess the impact of deploying plug-in electric vehicles and integrating wind energy into the electricity grid on urban air quality. STREET is used to generate emissions profiles associated with transportation and power generation sectors for different future cases. These profiles are then used as inputs to UCI-CIT to assess the impact of each case on urban air quality. The results show an overall improvement in 8-h averaged ozone and 24-h averaged particulate matter concentrations in the South Coast Air Basin (SoCAB) with localized increases in some cases. The most significant reductions occur northeast of the region where baseline concentrations are highest (up to 6 ppb decrease in 8-h-averaged ozone and 6 μg/m3 decrease in 24-h-averaged PM2.5). The results also indicate that, without integration of wind energy into the electricity grid, the temporal vehicle charging profile has very little to no effect on urban air quality. With the addition of wind energy to the grid mix, improvement in air quality is observed while charging at off-peak hours compared to the business as usual scenario.

  10. Stochastic scheduling of aggregators of plug-in electric vehicles for participation in energy and ancillary service markets

    International Nuclear Information System (INIS)

    Alipour, Manijeh; Mohammadi-Ivatloo, Behnam; Moradi-Dalvand, Mohammad; Zare, Kazem

    2017-01-01

    Plug-in electric vehicles are expected to play a major role in the transportation system as the environmental problems and energy crisis are being more and more urgent recently. Implementing a large number of vehicles with proper control could bring an opportunity of large storage and flexibility for power systems. The plug-in electric vehicle aggregator is responsible for providing power and controlling the charging pattern of the plug-in electric vehicles under its contracted area. This paper deals with the problem of optimal scheduling problem of plug-in electric vehicle aggregators in electricity market considering the uncertainties of market prices, availability of vehicles and status of being called by the ISO in the reserve market. The impact of the market price and reserve market uncertainties on the electric vehicle scheduling problem is characterized through a stochastic programming framework. The objective of the aggregator is to maximize its profit by charging the plug-in electric vehicles on the low price time intervals as well as participating in ancillary service markets. The operational constraints of plug-in electric vehicles and constraints of vehicle to grid are modeled in the proposed framework. An illustrative example is provided to confirm the performance of the proposed model. - Highlights: • Optimal scheduling of vehicle aggregators in electricity market has been addressed. • The operational constraints of plug-in vehicle to grid are considered. • The uncertainties of calling status in reserve market and market prices are modeled. • Vehicles' driving patterns and availability uncertainty are modeled. • The effect of risk measure weight in the vehicle to grid model has been studied.

  11. Sunlight-charged electrochromic battery based on hybrid film of tungsten oxide and polyaniline

    Science.gov (United States)

    Chang, Xueting; Hu, Ruirui; Sun, Shibin; Liu, Jingrong; Lei, Yanhua; Liu, Tao; Dong, Lihua; Yin, Yansheng

    2018-05-01

    Electrochromic (EC) energy storage devices that could realize the multifunctional integration of energy storage and electrochromism have gained much recent attention. Herein, an EC battery based on the hybrid film of W18O49 and polyaniline (PANI) is developed and assembled, which integrates energy storage and EC functions in one device. The W18O49/PANI-EC battery delivers a discharging capacity of 52.96 mA h g-1, which is about two times higher than that of the W18O49-EC battery. Sunlight irradiation could greatly promote the oxidation reactions of both W18O49 and PANI during the charging process of the W18O49/PANI-EC battery, thus effectively accelerating the charging rate. This work provides a green, convenient, environmentally friendly, and cost-free charging strategy for the EC energy systems and could further advance the development of the multifunctional EC devices based on the organic/inorganic composites.

  12. Effect of Cation Rotation on Charge Dynamics in Hybrid Lead Halide Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Gélvez-Rueda, María C.; Cao, Duyen H.; Patwardhan, Sameer; Renaud, Nicolas; Stoumpos, Constantinos C.; Schatz, George C.; Hupp, Joseph T.; Farha, Omar K.; Savenije, Tom J.; Kanatzidis, Mercouri G.; Grozema, Ferdinand C.

    2016-08-04

    Organic-inorganic hybrid halide perovskites are a promising class of materials for photovoltaic application with reported power efficiencies over similar to 22%. However, not much is known about the influence of the organic dipole rotation and phase transitions on charge carrier dynamics. Here, we report substantial changes in mobility and lifetime of charge carriers in CH3NH3PbI3 after the low-temperature tetragonal (beta) to orthorhombic (gamma) phase transition. By using microwave conductivity measurements, we observed that the mobility and lifetime of ionized charge carriers increase as the temperature decreases and a sudden increment is seen after the beta-gamma phase transition. For CH3NH3PbI3, the mobility and the half-lifetime increase by a factor of 36 compared with the values before the beta-gamma phase transition. We attribute the considerable change in the dynamics at low temperature to the decrease of the inherent dynamic disorder of the organic cation (CH3NH3+) inside the perovskite crystal structure.

  13. Carbon nanotube charge collectors for nanoimprinted hybrid perovskite photovoltaics (Conference Presentation)

    Science.gov (United States)

    Zakhidov, Anvar A.; Haroldson, Ross; Saranin, Danila; Martinez, Patricia; Ishteev, Artur

    2017-06-01

    The hybrid (organo-inorganic) lead-halide perovskites revolutionized the field of solar cell research due to the impressive power conversion efficiencies of up to 21% recently reported in perovskite based solar cells. This talk will present first the general concepts of excitonic photovoltaics, as compared to conventional Si-type solar cells, asking a question: is hybrid perovskite PV an excitonic solar cell or not? Do we need excitons dissociation at D-A interfaces or CNT charge collectors? Then I will show our recent experimental results on the fast spectroscopy of excitons, magnetic field effect on generation of correlated (e-h) pairs. Also will discuss our Hall effect results, that allows to evaluate intrinsic charge carrier transport and direct measurements of mobility in these materials performed for the first time in steady-state dc transport regime. From these measurements, we have obtained the electron-hole recombination coefficient, the carrier diffusion length and lifetime. Our main results include the intrinsic Hall carrier mobility reaching up to 60 cm2V-1s-1 in perovskite single crystals, carrier lifetimes of up to 3 ms (surprisingly too long!), and carrier diffusion lengths as long as 650 μm (huge if compared to organic and even best inorganic materials). Our results also demonstrate that photocarrier recombination in these disordered solution-processed perovskites is as weak as in the best (high-purity single crystals) of conventional direct-band inorganic semiconductors. Moreover, as we show in our experiment, carrier trapping in perovskites is also strongly suppressed, which accounts for such long carrier lifetimes and diffusion lengths, significantly longer than similar parameters in the best inorganic semiconductors, such e.g. as GaAs. All these remarkable transport properties of hybrid perovskites need to be understood from fundamental physics point of view. Looks like we need some new concepts to explain the mysterious properties of

  14. A hybrid, broadband, low noise charge preamplifier for simultaneous high resolution energy and time information with large capacitance semiconductor detector

    International Nuclear Information System (INIS)

    Goyot, M.

    1975-05-01

    A broadband and low noise charge preamplifier was developed in hybrid form, for a recoil spectrometer requiring large capacitance semiconductor detectors. This new hybrid and low cost preamplifier permits good timing information without compromising energy resolution. With a 500 pF external input capacity, it provides two simultaneous outputs: (i) the faster, current sensitive, with a rise time of 9 nsec and 2 mV/MeV on 50 ohms load, (ii) the lower, charge sensitive, with an energy resolution of 14 keV (FWHM Si) using a RC-CR ungated filter of 2 μsec and a FET input protection [fr

  15. Capillarity Induced Negative Pressure of Water Plugs in Nanochannels

    NARCIS (Netherlands)

    Tas, Niels Roelof; Mela, P.; Kramer, Tobias; Berenschot, Johan W.; van den Berg, Albert

    2003-01-01

    We have found evidence that water plugs in hydrophilic nanochannels can be at significant negative pressure due to tensile capillary forces. The negative pressure of water plugs in nanochannels induces bending of the thin channel capping layer, which results in a visible curvature of the liquid

  16. California Statewide Plug-In Electric Vehicle Infrastructure Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Helwig, Michael

    2014-05-01

    The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and

  17. A Genre Classification Plug-in for Data Collection

    DEFF Research Database (Denmark)

    Lehn-Schiøler, Tue; Arenas-García, Jerónimo; Petersen, Kaare Brandt

    2006-01-01

    This demonstration illustrates how the methods developed in the MIR community can be used to provide real-time feedback to music users. By creating a genre classifier plug-in for a popular media player we present users with relevant information as they play their songs. The plug-in can furthermor...... be used as a data collection platform. After informed consent from a selected set of users the plug-in will report on music consumption behavior back to a central server.......This demonstration illustrates how the methods developed in the MIR community can be used to provide real-time feedback to music users. By creating a genre classifier plug-in for a popular media player we present users with relevant information as they play their songs. The plug-in can furthermore...

  18. The water intensity of the plugged-in automotive economy.

    Science.gov (United States)

    King, Carey W; Webber, Michael E

    2008-06-15

    Converting light-duty vehicles from full gasoline power to electric power, by using either hybrid electric vehicles or fully electric power vehicles, is likely to increase demand for water resources. In the United States in 2005, drivers of 234 million cars, lighttrucks, and SUVs drove approximately 2.7 trillion miles and consumed over 380 million gallons of gasoline per day. We compare figures from literature and government surveys to calculate the water usage, consumption, and withdrawal, in the United States during petroleum refining and electricity generation. In displacing gasoline miles with electric miles, approximately 2-3 [corrected] times more water is consumed (0.24 [corrected] versus 0.07--0.14 gallons/mile) and over 12 [corrected] times more water is withdrawn (7.8 [corrected] versus 0.6 gallons/mile) primarily due to increased water cooling of thermoelectric power plants to accommodate increased electricity generation. Overall, we conclude that the impact on water resources from a widespread shift to grid-based transportation would be substantial enough to warrant consideration for relevant public policy decision-making. That is not to say that the negative impacts on water resources make such a shift undesirable, but rather this increase in water usage presents a significant potential impact on regional water resources and should be considered when planning for a plugged-in automotive economy.

  19. Hybrid unscented particle filter based state-of-charge determination for lead-acid batteries

    International Nuclear Information System (INIS)

    Shen, Yanqing

    2014-01-01

    Accurate prediction of cell SOC (state of charge) is important for the safety and functional capabilities of the battery energy storage application system. This paper presents a hybrid UPF (unscented particle filter) based SOC determination combined model for batteries. To simulate the entire dynamic electrical characteristics of batteries, a novel combined state space model, which takes current as a control input and let SOC and two constructed parameters as state variables, is advanced to represent cell behavior. Besides that, an improved UPF method is used to evaluate cell SOC. Taking lead-acid batteries for example, we apply the established model for test. Results show that the evolved combined state space cell model simulates battery dynamics robustly with high accuracy and the prediction value based on the improved UPF method converges to the real SOC very quickly within the error of±2%. - Highlights: • This paper introduces a hybrid UPF based SOC determination model for batteries. • The evolved model takes SOC and two constructed parameters as state variables. • The combined state space cell model simulates battery dynamics robustly. • NLMS based method is employed to lessen search space and fasten convergence process. • Novel model converges to the real SOC robustly and quickly with fewer particles

  20. Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films

    KAUST Repository

    Cho, Nam Chul

    2016-11-10

    Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid perovskite film can be fabricated using a thermal-gradient-assisted directional crystallization method that relies on the sharp liquid-to-solid transition of MAPbI3 from ionic liquid solution. We find that the OPC films spontaneously form periodic microarrays that are distinguishable from general polycrystalline perovskite materials in terms of their crystal orientation, film morphology and electronic properties. X-ray diffraction patterns reveal that the film is strongly oriented in the (112) and (200) planes parallel to the substrate. This film is structurally confined by directional crystal growth, inducing intense anisotropy in charge transport. In addition, the low trap-state density (7.9 × 1013 cm−3) leads to strong amplified stimulated emission. This ability to control crystal orientation and morphology could be widely adopted in optoelectronic devices.

  1. Plug-in Electric Vehicle Policy Effectiveness: Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan [Argonne National Lab. (ANL), Argonne, IL (United States); Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Plotkin, Steven E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-05-01

    The U.S. federal government first introduced incentives for plug-in electric vehicles (PEVs) through the American Clean Energy and Security Act of 2009, which provided a tax credit of up to $7,500 for a new PEV purchase. Soon after, in December 2010, two mass-market PEVs were introduced, the plug-in hybrid electric vehicle (PHEV) Chevrolet Volt and the battery electric vehicle (BEV) Nissan LEAF. Since that time, numerous additional types of PEV incentives have been provided by federal and regional (state or city) government agencies and utility companies. These incentives cover vehicle purchases as well as the purchase and installation of electric vehicle supply equipment (EVSE) through purchase rebates, tax credits, or discounted purchase taxes or registration fees. Additional incentives, such as free high-occupancy vehicle (HOV) lane access and parking benefits, may also be offered to PEV owners. Details about these incentives, such as the extent to which each type is offered by region, can be obtained from the U.S. Department of Energy (DOE) Alternative Fuel Data Center (http://www.afdc.energy.gov/). In addition to these incentives, other policies, such as zero-emission vehicle (ZEV) mandates,1 have also been implemented, and community-scale federal incentives, such as the DOE PEV Readiness Grants, have been awarded throughout the country to improve PEV market penetration. This report reviews 18 studies that analyze the impacts of past or current incentives and policies that were designed to support PEV adoption in the U.S. These studies were selected for review after a comprehensive survey of the literature and discussion with a number of experts in the field. The report summarizes the lessons learned and best practices from the experiences of these incentive programs to date, as well as the challenges they face and barriers that inhibit further market adoption of PEVs. Studies that make projections based on future policy scenarios and those that focus solely

  2. Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Shapiro, Evan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-11

    With the aim of reducing greenhouse gas emissions associated with the transportation sector, policy-makers are supporting a multitude of measures to increase electric vehicle adoption. The actual level of emission reduction associated with the electrification of the transport sector is dependent on the contexts that determine when and where drivers charge electric vehicles. This analysis contributes to our understanding of the degree to which a particular electricity grid profile, vehicle type, and charging patterns impact CO2 emissions from light-duty, plug-in electric vehicles. We present an analysis of emissions resulting from both battery electric and plug-in hybrid electric vehicles for four charging scenarios and five electricity grid profiles. A scenario that allows drivers to charge electric vehicles at the workplace yields the lowest level of emissions for the majority of electricity grid profiles. However, vehicle emissions are shown to be highly dependent on the percentage of fossil fuels in the grid mix, with different vehicle types and charging scenarios resulting in fewer emissions when the carbon intensity of the grid is above a defined level. Restricting charging to off-peak hours results in higher total emissions for all vehicle types, as compared to other charging scenarios.

  3. Fuel consumption of business passenger cars and plug-in vehicles; Praktijkverbruik van zakelijke personenauto's en plug-in voertuigen

    Energy Technology Data Exchange (ETDEWEB)

    Ligterink, N.E.; Smokers, R.T.M.

    2013-05-15

    TNO investigates the use and fuel consumption of private cars since 2008. In this report the results for 2012 are presented. In part 1 the most recent results of statistical analyses of fuel card data, which are used by business-type drivers of passenger cars, are presented. The second part contains the results of an analysis of available fuel consumption data of so-called plug-in hybrid electric vehicles and range-extender electric vehicles that have entered the market in 2012 [Dutch] TNO doet al sinds 2008 onderzoek naar het praktijkverbruik van personenauto's. In dit rapport worden de resultaten over 2012 weergegeven. Het eerste deel presenteert de meest recente resultaten van statistische analyses van tankpasdata van door zakelijke rijders gebruikte personenvoertuigen. Het tweede deel bevat de resultaten van een analyse van beschikbare verbruiksgegevens van zogenoemde 'plug-in hybrides' en 'range-extender' elektrische voertuigen die in 2012 op de markt zijn gekomen.

  4. Charge transfer through DNA/DNA duplexes and DNA/RNA hybrids: complex theoretical and experimental studies.

    Science.gov (United States)

    Kratochvílová, Irena; Vala, Martin; Weiter, Martin; Špérová, Miroslava; Schneider, Bohdan; Páv, Ondřej; Šebera, Jakub; Rosenberg, Ivan; Sychrovský, Vladimír

    2013-01-01

    Oligonucleotides conduct electric charge via various mechanisms and their characterization and understanding is a very important and complicated task. In this work, experimental (temperature dependent steady state fluorescence spectroscopy, time-resolved fluorescence spectroscopy) and theoretical (Density Functional Theory) approaches were combined to study charge transfer processes in short DNA/DNA and RNA/DNA duplexes with virtually equivalent sequences. The experimental results were consistent with the theoretical model - the delocalized nature of HOMO orbitals and holes, base stacking, electronic coupling and conformational flexibility formed the conditions for more effective short distance charge transfer processes in RNA/DNA hybrids. RNA/DNA and DNA/DNA charge transfer properties were strongly connected with temperature affected structural changes of molecular systems - charge transfer could be used as a probe of even tiny changes of molecular structures and settings. © 2013. Published by Elsevier B.V. All rights reserved.

  5. Charge transfer processes in hybrid solar cells composed of amorphous silicon and organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Sebastian; Neher, Dieter [Universitaet Potsdam, Inst. Physik u. Astronomie, Karl-Liebknecht-Strasse 24/25, 14467 Potsdam-Golm (Germany); Schulze, Tim; Korte, Lars [Helmholtz Zentrum Berlin, Inst. fuer Silizium Photovoltaik, Kekulestrasse 5, 12489 Berlin (Germany)

    2011-07-01

    The efficiency of hybrid solar cells composed of organic materials and amorphous hydrogenated silicon (a-Si:H) strongly depends upon the efficiency of charge transfer processes at the inorganic-organic interface. We investigated the performance of devices comprising an ITO/a-Si:H(n-type)/a-Si:H(intrinsic)/organic/metal multilayer structure and using two different organic components: zinc phthalocyanine (ZnPc) and poly(3-hexylthiophene) (P3HT). The results show higher power conversion- and quantum efficiencies for the P3HT based cells, compared to ZnPc. This can be explained by larger energy-level offset at the interface between the organic layer and a-Si:H, which facilitates hole transfer from occupied states in the valence band tail to the HOMO of the organic material and additionally promotes exciton splitting. The performance of the a-Si:H/P3HT cells can be further improved by treatment of the amorphous silicon surface with hydrofluoric acid (HF) and p-type doping of P3HT with F4TCNQ. The improved cells reached maximum power conversion efficiencies of 1%.

  6. Sizing community energy storage systems to reduce transformer overloading with emphasis on plug-in electric vehicle loads

    Science.gov (United States)

    Trowler, Derik Wesley

    The research objective of this study was to develop a sizing method for community energy storage systems with emphasis on preventing distribution transformer overloading due to plug-in electric vehicle charging. The method as developed showed the formulation of a diversified load profile based upon residential load data for several customers on the American Electric Power system. Once a load profile was obtained, plug-in electric vehicle charging scenarios which were based upon expected adoption and charging trends were superimposed on the load profile to show situations where transformers (in particular 25 kVA, 50 kVA, and 100 kVA) would be overloaded during peak hours. Once the total load profiles were derived, the energy and power requirements of community energy storage systems were calculated for a number of scenarios with different combinations of numbers of homes and plug-in electric vehicles. The results were recorded and illustrated into charts so that one could determine the minimum size per application. Other topics that were covered in this thesis were the state of the art and future trends in plug-in electric vehicle and battery chemistry adoption and development. The goal of the literature review was to confirm the already suspected notion that Li-ion batteries are best suited and soon to be most cost-effective solution for applications requiring small, efficient, reliable, and light-weight battery systems such as plug-in electric vehicles and community energy storage systems. This thesis also includes a chapter showing system modeling in MATLAB/SimulinkRTM. All in all, this thesis covers a wide variety of considerations involved in the designing and deploying of community energy storage systems intended to mitigate the effects of distribution transformer overloading.

  7. Economic and environmental impacts of a PV powered workplace parking garage charging station

    International Nuclear Information System (INIS)

    Tulpule, Pinak J.; Marano, Vincenzo; Yurkovich, Stephen; Rizzoni, Giorgio

    2013-01-01

    Highlights: • Photovoltaic (PV) based, plug-in electric vehicle (PEV) charging station located in a workplace parking garage. • Emissions from the power grid. • Economic analysis. • Parametric analysis for parking rates, installed capacities to show benefits to vehicle and garage owner. - Abstract: Plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) have high potential for reducing fuel consumption and emissions, and for providing a way to utilize renewable energy sources for the transportation sector. On the other hand, charging millions of PEVs could overload the power grid, increase emissions and significantly alter economic characteristics. A day-time photovoltaic (PV) based, plug-in electric vehicle charging station located in a workplace parking garage is considered in this research. The results show the impact of PV based workplace charging on the economics and emissions from the power grid. An optimal charge scheduling strategy is compared with an uncontrolled charging case to perform the economics and emissions analysis. Two locations (Columbus, OH and Los Angeles, CA) are selected such that the analysis includes different scenarios of yearly variation of solar radiation and finance structure. A high fidelity hourly simulation model for energy economic analysis is developed considering different types of vehicles, statistical data for driving distances, parking time, installation cost, tax rebates and incentives. An incremental parking rate for accessing the charging facility is considered for economic analysis for the garage owner and the vehicle owner. The analysis is extended to consider the impact of carbon tax implementation on the driver economics and shows the feasibility of such PV based charging stations. Parametric analysis for different parking rates and installed capacities show (i) the feasibility of a PV based workplace charging facility, (ii) benefits to the vehicle owner and the garage owner, and (iii) the need for

  8. Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films

    KAUST Repository

    Cho, Nam Chul; Li, Feng; Turedi, Bekir; Sinatra, Lutfan; Sarmah, Smritakshi P.; Parida, Manas R.; Saidaminov, Makhsud I.; Banavoth, Murali; Burlakov, Victor M.; Goriely, Alain; Mohammed, Omar F.; Wu, Tao; Bakr, Osman

    2016-01-01

    Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid

  9. Electric and hybrid vehicles charge efficiency tests of ESB EV-106 lead acid batteries

    Science.gov (United States)

    Rowlette, J. J.

    1981-01-01

    Charge efficiencies were determined by measurements made under widely differing conditions of temperature, charge procedure, and battery age. The measurements were used to optimize charge procedures and to evaluate the concept of a modified, coulometric state of charge indicator. Charge efficiency determinations were made by measuring gassing rates and oxygen fractions. A novel, positive displacement gas flow meter which proved to be both simple and highly accurate is described and illustrated.

  10. The Plug-in Concept: Technology and Aesthetics of Change

    Directory of Open Access Journals (Sweden)

    Peter Šenk

    2013-01-01

    Full Text Available The architecture concept of plug-in is based on the duality of the infrastructure system and units or elements connected to it. In the context of megastructures, the concept was most vividly characterised by works of Archigram and Japanese Metabolists in the 1960s and early 1970s. Blurring the boundary between the building and the city, the plug-in concept outgrew architectural boundaries and was slowly transformed into an urbanistic concept.The paper presents the cultural context relevant to contemporaneity, which influenced specific development of the technology-driven concept of plug-in in the British Archigram Group and Japanese Metabolists. Based on the aesthetics of change and incompleteness, which was characterised by similar architectural manifestations despite entirely different cultural backgrounds, the plug-in concept foreshadowed social transformation based on freedom, individualisation and mobility in an utopian manner and held a promise of urban development with adaptability to unpredictable needs and desires of residents, who would become its co-creators with an active approach.Although the revolutionary sixties are quite some time behind, the plug-in concept in its commodified form has become and remained operational and relevant at least on the metaphorical level; in the contemporary space it is evident primarily in urbanism and not as much in its original architectural form.

  11. Plug-in electric vehicles integrating fluctuating renewable electricity

    Energy Technology Data Exchange (ETDEWEB)

    Dallinger, David

    2013-11-01

    This paper examines a method to model plug-in electric vehicles as part of the power system and presents results for the contribution of plug-in electric vehicles to balance the fluctuating electricity generation of renewable energy sources. The scientific contribution includes: - A novel approach to characterizing fluctuating generation. This allows the detailed comparison of results from energy analysis and is the basis to describe the effect of electricity from renewable energy sources and plug-in electric vehicles on the power system. - The characterization of mobile storage, which includes the description of mobility behavior using probabilities and battery discharging costs. - The introduction of an agent-based simulation approach, coupling energy markets and distributed grids using a price-based mechanism design. - The description of an agent with specific driving behavior, battery discharging costs and optimization algorithm suitable for real plug-in vehicles and simulation models. - A case study for a 2030 scenario describing the contribution of plug-in electric vehicles to balance generation from renewable energy sources in California and Germany.

  12. ?Just-in-Time? Battery Charge Depletion Control for PHEVs and E-REVs for Maximum Battery Life

    Energy Technology Data Exchange (ETDEWEB)

    DeVault, Robert C [ORNL

    2009-01-01

    Conventional methods of vehicle operation for Plug-in Hybrid Vehicles first discharge the battery to a minimum State of Charge (SOC) before switching to charge sustaining operation. This is very demanding on the battery, maximizing the number of trips ending with a depleted battery and maximizing the distance driven on a depleted battery over the vehicle s life. Several methods have been proposed to reduce the number of trips ending with a deeply discharged battery and also eliminate the need for extended driving on a depleted battery. An optimum SOC can be maintained for long battery life before discharging the battery so that the vehicle reaches an electric plug-in destination just as the battery reaches the minimum operating SOC. These Just-in-Time methods provide maximum effective battery life while getting virtually the same electricity from the grid.

  13. Active-charging based powertrain control in series hybrid electric vehicles for efficiency improvement and battery lifetime extension

    Science.gov (United States)

    Zhang, Xi; Mi, Chris Chunting; Yin, Chengliang

    2014-01-01

    This paper presents a powertrain control strategy for a series hybrid electric vehicle (SHEV) based on the integrated design of an active charging scenario and fixed-boundary-layer sliding mode controllers (FBLSMCs). An optimized charging curve for the battery is predetermined rather than subject to engine output and vehicle power demand, which is a total inverse of normal SHEV powertrain control process. This is aimed to remove surge and high-frequency charge current, keep the battery staying in a high state-of-charge (SOC) region and avoid persistently-high charge power, which are positive factors to battery lifetime extension. Then two robust chattering-free FBLSMCs are designed to locate the engine operation in the optimal efficiency area. One is in charge of engine speed control, and the other is for engine/generator torque control. Consequently, not only fuel economy is improved but also battery life expectancy could be extended. Finally, simulation and experimental results confirm the validity and application feasibility of the proposed strategy.

  14. Distributed Coordination Control Based on State-of-Charge for Bidirectional Power Converters in a Hybrid AC/DC Microgrid

    Directory of Open Access Journals (Sweden)

    Zeyan Lv

    2018-04-01

    Full Text Available This paper proposes a distributed coordination control for multiple bidirectional power converters (BPCs in a hybrid AC/DC microgrid with consideration of state-of-charge (SOC of storages. The researched hybrid AC/DC microgrid is composed of both AC and DC subgrids connected by multiple parallel BPCs. In the literature, the storages of a hybrid microgrid are considered to allocate in only the AC subgrid or DC subgrid, which reduces the reliability of the whole system, especially during the islanded mode. Besides, the SOC management has not been considered in BPCs’ operating strategy. This paper considers a hybrid microgrid topology which has energy storages in both AC side and DC side. This ensures the reliability while increasing the complexity of the control strategy at the same time. Further, a distributed coordination control method for multiple BPCs based on SOC was proposed to enhance the reliability of hybrid microgrid. Finally, the performance of the proposed control methods was verified by real-time hardware-in-loop (HIL tests.

  15. Integer Charge Transfer and Hybridization at an Organic Semiconductor/Conductive Oxide Interface

    KAUST Repository

    Gruenewald, Marco; Schirra, Laura K.; Winget, Paul; Kozlik, Michael; Ndione, Paul F.; Sigdel, Ajaya K.; Berry, Joseph J.; Forker, Roman; Bredas, Jean-Luc; Fritz, Torsten; Monti, Oliver L. A.

    2015-01-01

    with localized states (the shallow donors) in the substrate and charge back-donation, resulting in an effectively integer charge transfer across the interface. Charge transfer is thus not merely a question of locating the Fermi level above the PTCDA electron

  16. Using Atmospheric Pressure Tendency to Optimise Battery Charging in Off-Grid Hybrid Wind-Diesel Systems for Telecoms

    Directory of Open Access Journals (Sweden)

    Stephen Daniels

    2013-06-01

    Full Text Available Off grid telecom base stations in developing nations are powered by diesel generators. They are typically oversized and run at a fraction of their rated load for most of their operating lifetime. Running generators at partial load is inefficient and, over time, physically damages the engine. A hybrid configuration uses a battery bank, which powers the telecoms’ load for a portion of the time. The generator only operates when the battery bank needs to be charged. Adding a wind turbine further reduces the generator run hours and saves fuel. The generator is oblivious to the current wind conditions, which leads to simultaneous generator-wind power production. As the batteries become charged by the generator, the wind turbine controller is forced to dump surplus power as heat through a resistive load. This paper details how the relationship between barometric pressure and wind speed can be used to add intelligence to the battery charger. A Simulink model of the system is developed to test the different battery charging configurations. This paper demonstrates that if the battery charger is aware of upcoming wind conditions, it will provide modest fuel savings and reduce generator run hours in small-scale hybrid energy systems.

  17. Excitation of hybridized Dirac plasmon polaritons and transition radiation in multi-layer graphene traversed by a fast charged particle

    Science.gov (United States)

    Akbari, Kamran; Mišković, Zoran L.; Segui, Silvina; Gervasoni, Juana L.; Arista, Néstor R.

    2018-06-01

    We analyze the energy loss channels for a fast charged particle traversing a multi-layer graphene (MLG) structure with N layers under normal incidence. Focusing on a terahertz (THz) range of frequencies, and assuming equally doped graphene layers with a large enough separation d between them to neglect interlayer electron hopping, we use the Drude model for two-dimensional conductivity of each layer to describe hybridization of graphene’s Dirac plasmon polaritons (DPPs). Performing a layer decomposition of ohmic energy losses, which include excitation of hybridized DPPs (HDPPs), we have found for N = 3 that the middle HDPP eigenfrequency is not excited in the middle layer due to symmetry constraint, whereas the excitation of the lowest HDPP eigenfrequency produces a Fano resonance in the graphene layer that is first traversed by the charged particle. While the angular distribution of transition radiation emitted in the far field region also shows asymmetry with respect to the traversal order by the incident charged particle at supra-THz frequencies, the integrated radiative energy loss is surprisingly independent of both d and N for N ≤ 5, which is explained by a dominant role of the outer graphene layers in transition radiation. We have further found that the integrated ohmic energy loss in optically thin MLG scales as ∝1/N at sub-THz frequencies, which is explained by exposing the role of dissipative processes in graphene at low frequencies. Finally, prominent peaks are observed at supra-THz frequencies in the integrated ohmic energy loss for MLG structures that are not optically thin. The magnitude of those peaks is found to scale with N for N ≥ 2, while their shape and position replicate the peak in a double-layer graphene (N = 2), which is explained by arguing that plasmon hybridization in such MLG structures is dominated by electromagnetic interaction between the nearest-neighbor graphene layers.

  18. Impacts of plug-in electric vehicles in a balancing area

    International Nuclear Information System (INIS)

    Razeghi, Ghazal; Samuelsen, Scott

    2016-01-01

    Highlights: • Unit commitment methodology is used to determine BEV impact on electricity market. • Roles of charging profile, dispatch strategy and interconnecting area are assessed. • Results show that impact of BEV on cost of electricity generation is small. • Controlled BEV charging can lower emissions intensity of the grid and MCP. • BEV deployment helps reduce overall criteria pollutant emissions. - Abstract: High contributions of the electricity generation and transportation sectors to criteria pollutant and greenhouse gas emissions have resulted in an increased interest and shift towards low to non-carbon generation options such as renewable wind and solar, and alternative transportation options including plug-in electric vehicles. Since plug-in electric vehicles transfer the tailpipe emissions to the electric grid, it is important to study the interaction between the two sectors. In this paper, a previously developed spatially and temporally resolved unit commitment model is used to determine the dispatch schedule of resources with and without battery electric vehicles for 2050 in a fictitious balancing area located within the South Coast Air Basin of California. Cases studied include various charging profiles, penetration in light-duty fleet, imports mix, and grid dispatch strategies. Results of the analysis include average cost of electricity production, market clearing price, temporal production of individual generators, and emissions from electricity generation and the transportation sectors. The results show that deploying battery electric vehicles (1) has little impact on the average cost of electricity generation-maximum of $2.5 per MW h for the cases studied with 40% penetration in the light-duty fleet, (2) reduces the overall criteria pollutant emissions except for one case, and (3) results in a smoother load profile, reduces the use of peaking units, and reduces the average emission intensity of the grid through controlled off

  19. An insight into the mechanism of charge-transfer of hybrid polymer:ternary/quaternary chalcopyrite colloidal nanocrystals

    Directory of Open Access Journals (Sweden)

    Parul Chawla

    2014-08-01

    Full Text Available In this work, we have demonstrated the structural and optoelectronic properties of the surface of ternary/quaternary (CISe/CIGSe/CZTSe chalcopyrite nanocrystallites passivated by tri-n-octylphosphine-oxide (TOPO and tri-n-octylphosphine (TOP and compared their charge transfer characteristics in the respective polymer: chalcopyrite nanocomposites by dispersing them in poly(3-hexylthiophene polymer. It has been found that CZTSe nanocrystallites due to their high crystallinity and well-ordered 3-dimensional network in its pristine form exhibit a higher steric- and photo-stability, resistance against coagulation and homogeneity compared to the CISe and CIGSe counterparts. Moreover, CZTSe nanocrystallites display efficient photoluminescence quenching as evident from the high value of the Stern–Volmer quenching constant (KSV and eventually higher charge transfer efficiency in their respective polymer P3HT:CZTSe composites. We modelled the dependency of the charge transfer from the donor and the charge separation mechanism across the donor–acceptor interface from the extent of crystallinity of the chalcopyrite semiconductors (CISe/CIGSe/CZTSe. Quaternary CZTSe chalcopyrites with their high crystallinity and controlled morphology in conjunction with regioregular P3HT polymer is an attractive candidate for hybrid solar cells applications.

  20. An insight into the mechanism of charge-transfer of hybrid polymer:ternary/quaternary chalcopyrite colloidal nanocrystals.

    Science.gov (United States)

    Chawla, Parul; Singh, Son; Sharma, Shailesh Narain

    2014-01-01

    In this work, we have demonstrated the structural and optoelectronic properties of the surface of ternary/quaternary (CISe/CIGSe/CZTSe) chalcopyrite nanocrystallites passivated by tri-n-octylphosphine-oxide (TOPO) and tri-n-octylphosphine (TOP) and compared their charge transfer characteristics in the respective polymer: chalcopyrite nanocomposites by dispersing them in poly(3-hexylthiophene) polymer. It has been found that CZTSe nanocrystallites due to their high crystallinity and well-ordered 3-dimensional network in its pristine form exhibit a higher steric- and photo-stability, resistance against coagulation and homogeneity compared to the CISe and CIGSe counterparts. Moreover, CZTSe nanocrystallites display efficient photoluminescence quenching as evident from the high value of the Stern-Volmer quenching constant (K SV) and eventually higher charge transfer efficiency in their respective polymer P3HT:CZTSe composites. We modelled the dependency of the charge transfer from the donor and the charge separation mechanism across the donor-acceptor interface from the extent of crystallinity of the chalcopyrite semiconductors (CISe/CIGSe/CZTSe). Quaternary CZTSe chalcopyrites with their high crystallinity and controlled morphology in conjunction with regioregular P3HT polymer is an attractive candidate for hybrid solar cells applications.

  1. A comprehensive study of economic unit commitment of power systems integrating various renewable generations and plug-in electric vehicles

    International Nuclear Information System (INIS)

    Yang, Zhile; Li, Kang; Niu, Qun; Xue, Yusheng

    2017-01-01

    Highlights: • A new UCsRP problem with flexible integrations is established. • A novel multi-zone sampling method is proposed for scenarios generation. • A meta-heuristic solving tool is introduced for solving the UCsRP problem. • A comprehensive study is conducted considering multiple weathers and seasons. • The economic effects of various scenarios are evaluated and compared. - Abstract: Significant penetration of renewable generations (RGs) and mass roll-out of plug-in electric vehicles (PEVs) will pay a vital role in delivering the low carbon energy future and low emissions of greenhouse gas (GHG) that are responsible for the global climate change. However, it is of considerable difficulties to precisely forecast the undispatchable and intermittent wind and solar power generations. The uncoordinated charging of PEVs imposes further challenges on the unit commitment in modern grid operations. In this paper, all these factors are comprehensively investigated for the first time within a novel hybrid unit commitment framework, namely UCsRP, which considers a wide range of scenarios in renewable generations and demand side management of dispatchable PEVs load. UCsRP is however an extremely challenging optimisation problem not only due to the large scale, mixed integer and nonlinearity, but also due to the double uncertainties relating to the renewable generations and PEV charging and discharging. In this paper, a meta-heuristic solving tool is introduced for solving the UCsRP problem. A key to improve the reliability of the unit commitment is to generate a range of scenarios based on multiple distributions of renewable generations under different prediction errors and extreme predicted value conditions. This is achieved by introducing a novel multi-zone sampling method. A comprehensive study considering four different cases of unit commitment problems with various weather and season scenarios using real power system data are conducted and solved, and smart

  2. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    International Nuclear Information System (INIS)

    Gross, Dieter Konrad Michael

    2013-01-01

    Closely packed nanocrystal systems have been investigated in this thesis with respect to charge separation by charge carrier tunneling. Clustered and layered samples have been analyzed using PL-measurements and SPV-methods. The most important findings are reviewed in the following. A short outlook is also provided for potential further aspects and application of the presented results. The main purpose of this thesis was to find and quantify electronic tunneling transfer in closely packed self-assembled nanocrystal structures presenting quantum mechanical barriers of about 1 nm width. We successfully used hybrid assemblies of CdTe and CdSe nanocrystals where the expected type II alignment between CdTe and CdSe typically leads to a concentration of electrons in CdSe and holes in CdTe nanocrystals. We were able to prove the charge selectivity of the CdTe-CdSe nanocrystal interface which induces charge separation. We mainly investigated the effects related to the electron transfer from CdTe to CdSe nanocrystals. Closely packing was achieved by two independent methods: the disordered colloidal clustering in solution and the layered assembly on dry glass substrates. Both methods lead to an inter-particle distance of about 1 nm of mainly organic material which acts as a tunneling barrier. PL-spectroscopy was applied. The PL-quenching of the CdTe nanocrystals in hybrid assemblies indicates charge separation by electron transfer from CdTe to CdSe nanocrystals. A maximum quenching rate of up to 1/100 ps was measured leading to a significant global PL-quenching of up to about 70 % for the CdTe nanocrystals. It was shown that charge separation dynamics compete with energy transfer dynamics and that charge separation typically dominates. The quantum confinement effect was used to tune the energetic offset between the CdTe and CdSe nanocrystals. We thus observe a correlation of PL-quenching and offset of the energy states for the electron transfer. The investigated PL

  3. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Dieter Konrad Michael

    2013-11-08

    Closely packed nanocrystal systems have been investigated in this thesis with respect to charge separation by charge carrier tunneling. Clustered and layered samples have been analyzed using PL-measurements and SPV-methods. The most important findings are reviewed in the following. A short outlook is also provided for potential further aspects and application of the presented results. The main purpose of this thesis was to find and quantify electronic tunneling transfer in closely packed self-assembled nanocrystal structures presenting quantum mechanical barriers of about 1 nm width. We successfully used hybrid assemblies of CdTe and CdSe nanocrystals where the expected type II alignment between CdTe and CdSe typically leads to a concentration of electrons in CdSe and holes in CdTe nanocrystals. We were able to prove the charge selectivity of the CdTe-CdSe nanocrystal interface which induces charge separation. We mainly investigated the effects related to the electron transfer from CdTe to CdSe nanocrystals. Closely packing was achieved by two independent methods: the disordered colloidal clustering in solution and the layered assembly on dry glass substrates. Both methods lead to an inter-particle distance of about 1 nm of mainly organic material which acts as a tunneling barrier. PL-spectroscopy was applied. The PL-quenching of the CdTe nanocrystals in hybrid assemblies indicates charge separation by electron transfer from CdTe to CdSe nanocrystals. A maximum quenching rate of up to 1/100 ps was measured leading to a significant global PL-quenching of up to about 70 % for the CdTe nanocrystals. It was shown that charge separation dynamics compete with energy transfer dynamics and that charge separation typically dominates. The quantum confinement effect was used to tune the energetic offset between the CdTe and CdSe nanocrystals. We thus observe a correlation of PL-quenching and offset of the energy states for the electron transfer. The investigated PL

  4. Flexible interaction of plug-in electric vehicle parking lots for efficient wind integration

    International Nuclear Information System (INIS)

    Heydarian-Forushani, E.; Golshan, M.E.H.; Shafie-khah, M.

    2016-01-01

    Highlights: • Interactive incorporation of plug-in electric vehicle parking lots is investigated. • Flexible energy and reserve services are provided by electric vehicle parking lots. • Uncertain characterization of electric vehicle owners’ behavior is taken into account. • Coordinated operation of parking lots can facilitate wind power integration. - Abstract: The increasing share of uncertain wind generation has changed traditional operation scheduling of power systems. The challenges of this additional variability raise the need for an operational flexibility in providing both energy and reserve. One key solution is an effective incorporation of plug-in electric vehicles (PEVs) into the power system operation process. To this end, this paper proposes a two-stage stochastic programming market-clearing model considering the network constraints to achieve the optimal scheduling of conventional units as well as PEV parking lots (PLs) in providing both energy and reserve services. Different from existing works, the paper pays more attention to the uncertain characterization of PLs takes into account the arrival/departure time of PEVs to/from the PL, the initial state of charge (SOC) of PEVs, and their battery capacity through a set of scenarios in addition to wind generation scenarios. The results reveal that although the cost saving as a consequence of incorporating PL to the grid is below 1% of total system cost, however, flexible interactions of PL in the energy and reserve markets can promote the integration of wind power more than 13.5%.

  5. IrOx-carbon nanotube hybrids: a nanostructured material for electrodes with increased charge capacity in neural systems.

    Science.gov (United States)

    Carretero, Nina M; Lichtenstein, Mathieu P; Pérez, Estela; Cabana, Laura; Suñol, Cristina; Casañ-Pastor, Nieves

    2014-10-01

    Nanostructured iridium oxide-carbon nanotube hybrids (IrOx-CNT) deposited as thin films by dynamic electrochemical methods are suggested as novel materials for neural electrodes. Single-walled carbon nanotubes (SWCNT) serve as scaffolds for growing the oxide, yielding a tridimensional structure with improved physical, chemical and electrical properties, in addition to high biocompatibility. In biological environments, SWCNT encapsulation by IrOx makes more resistant electrodes and prevents the nanotube release to the media, preventing cellular toxicity. Chemical, electrochemical, structural and surface characterization of the hybrids has been accomplished. The high performance of the material in electrochemical measurements and the significant increase in cathodal charge storage capacity obtained for the hybrid in comparison with bare IrOx represent a significant advance in electric field application in biosystems, while its cyclability is also an order of magnitude greater than pure IrOx. Moreover, experiments using in vitro neuronal cultures suggest high biocompatibility for IrOx-CNT coatings and full functionality of neurons, validating this material for use in neural electrodes. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Demonstration of Improved Charge Transfer in Graphene/Au Nanorods Plasmonic Hybrids Stabilized by Benzyl Thiol Linkers

    Directory of Open Access Journals (Sweden)

    Giuseppe Valerio Bianco

    2016-01-01

    Full Text Available Hybrids based on graphene decorated with plasmonic gold (Au nanostructures are being investigated as possible materials combination to add to graphene functionalities of tunable plasmon resonance and enhanced absorption at selected wavelength in the visible-near-infrared region of the spectrum. Here, we report a solution drop-casting approach for fabricating stable hybrids based on chemical vapor deposition (CVD graphene and Au nanorods, which are able to activate effective charge transfer from graphene. We demonstrate that CVD graphene functionalization by benzyl thiol (BZT provides the linker to strong anchoring, via S-Au bonds, Au nanorods to graphene. Optical measurements by spectroscopic ellipsometry give evidence of the introduction of plasmon resonances at 1.85 and 2.25 eV in the Au nanorods/BZT/graphene hybrids, which enable surface enhanced Raman scattering (SERS detection. Furthermore, an effective electron transfer from graphene to Au nanorods, resulting in an enhancement of p-type doping of graphene with a consequent decrease of its sheet resistance, is probed by Raman spectroscopy and corroborated by electrical measurements.

  7. Charged Triazole Cross-Linkers for Hyaluronan-Based Hybrid Hydrogels

    Directory of Open Access Journals (Sweden)

    Maike Martini

    2016-09-01

    Full Text Available Polyelectrolyte hydrogels play an important role in tissue engineering and can be produced from natural polymers, such as the glycosaminoglycan hyaluronan. In order to control charge density and mechanical properties of hyaluronan-based hydrogels, we developed cross-linkers with a neutral or positively charged triazole core with different lengths of spacer arms and two terminal maleimide groups. These cross-linkers react with thiolated hyaluronan in a fast, stoichiometric thio-Michael addition. Introducing a positive charge on the core of the cross-linker enabled us to compare hydrogels with the same interconnectivity, but a different charge density. Positively charged cross-linkers form stiffer hydrogels relatively independent of the size of the cross-linker, whereas neutral cross-linkers only form stable hydrogels at small spacer lengths. These novel cross-linkers provide a platform to tune the hydrogel network charge and thus the mechanical properties of the network. In addition, they might offer a wide range of applications especially in bioprinting for precise design of hydrogels.

  8. Modeling Framework and Results to Inform Charging Infrastructure Investments

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    The plug-in electric vehicle (PEV) market is experiencing rapid growth with dozens of battery electric (BEV) and plug-in hybrid electric (PHEV) models already available and billions of dollars being invested by automotive manufacturers in the PEV space. Electric range is increasing thanks to larger and more advanced batteries and significant infrastructure investments are being made to enable higher power fast charging. Costs are falling and PEVs are becoming more competitive with conventional vehicles. Moreover, new technologies such as connectivity and automation hold the promise of enhancing the value proposition of PEVs. This presentation outlines a suite of projects funded by the U.S. Department of Energy's Vehicle Technology Office to conduct assessments of the economic value and charging infrastructure requirements of the evolving PEV market. Individual assessments include national evaluations of PEV economic value (assuming 73M PEVs on the road in 2035), national analysis of charging infrastructure requirements (with community and corridor level resolution), and case studies of PEV ownership in Columbus, OH and Massachusetts.

  9. A Rigorous Methodology for Analyzing and Designing Plug-Ins

    DEFF Research Database (Denmark)

    Fasie, Marieta V.; Haxthausen, Anne Elisabeth; Kiniry, Joseph

    2013-01-01

    . This paper addresses these problems by describing a rigorous methodology for analyzing and designing plug-ins. The methodology is grounded in the Extended Business Object Notation (EBON) and covers informal analysis and design of features, GUI, actions, and scenarios, formal architecture design, including...... behavioral semantics, and validation. The methodology is illustrated via a case study whose focus is an Eclipse environment for the RAISE formal method's tool suite....

  10. Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites

    NARCIS (Netherlands)

    Gelvez Rueda, M.C.; Hutter, E.M.; Cao, Duyen H.; Renaud, N.; Stoumpos, Constantinos C.; Hupp, Joseph T.; Savenije, T.J.; Kanatzidis, Mercouri G.; Grozema, F.C.

    2017-01-01

    The optoelectronic properties of hybrid perovskites can be easily tailored by varying their components. Specifically, mixing the common short organic cation (methylammonium (MA)) with a larger one (e.g., butyl ammonium (BA)) results in 2-dimensional perovskites with varying thicknesses of

  11. VALVE TURBO-ALTERNATOR AS ADDITIONAL HYBRID CAR DEVICE FOR THE HIGH-VOLTAGE BATTERY CHARGE

    Directory of Open Access Journals (Sweden)

    S. Kolesnikov

    2009-01-01

    Full Text Available The description of the hybrid car, its drive components and method of the solution of the problem with moving period of the car on electric pulling by means of valve turbo-alternator is given in this article.

  12. A Hydrogen-Evolving Hybrid-Electrolyte Battery with Electrochemical/Photoelectrochemical Charging from Water Oxidation.

    Science.gov (United States)

    Jin, Zhaoyu; Li, Panpan; Xiao, Dan

    2017-02-08

    Decoupled hydrogen and oxygen production were successfully embedded into an aqueous dual-electrolyte (acid-base) battery for simultaneous energy storage and conversion. A three-electrode configuration was adopted, involving an electrocatalytic hydrogen-evolving electrode as cathode, an alkaline battery-type or capacitor-type anode as shuttle, and a charging-assisting electrode for electro-/photoelectrochemically catalyzing water oxidation. The conceptual battery not only synergistically outputs electricity and chemical fuels with tremendous specific energy and power densities, but also supports various approaches to be charged by pure or solar-assisted electricity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites

    OpenAIRE

    Gélvez-Rueda, María C.; Hutter, Eline M.; Cao, Duyen H.; Renaud, Nicolas; Stoumpos, Constantinos C.; Hupp, Joseph T.; Savenije, Tom J.; Kanatzidis, Mercouri G.; Grozema, Ferdinand C.

    2017-01-01

    The optoelectronic properties of hybrid perovskites can be easily tailored by varying their components. Specifically, mixing the common short organic cation (methylammonium (MA)) with a larger one (e.g., butyl ammonium (BA)) results in 2-dimensional perovskites with varying thicknesses of inorganic layers separated by the large organic cation. In both of these applications, a detailed understanding of the dissociation and recombination of electron-hole pairs is of prime importance. In this wo...

  14. Potential For Plug-In Electric Vehicles To Provide Grid Support Services

    Energy Technology Data Exchange (ETDEWEB)

    Dias, F. G.; Luo, Y.; Mohanpurkar, M.; Hovsapian, R.; Scoffield, D.

    2017-04-01

    Since the modern-day introduction of plug-in electric vehicles (PEVs), scientists have proposed leveraging PEV battery packs as distributed energy resources for the electric grid. PEV charging can be controlled not only to provide energy for transportation but also to provide grid services and to facilitate the integration of renewable energy generation. With renewable generation increasing at an unprecedented rate, most of which is non-dispatchable and intermittent, the concept of using PEVs as controllable loads is appealing to electric utilities. This additional functionality could also provide value to PEV owners and drive PEV adoption. It has been widely proposed that PEVs can provide valuable grid services, such as load shifting to provide voltage regulation. The objective this work is to address the degree to which PEVs can provide grid services and mutually benefit the electric utilities, PEV owners, and auto manufacturers.

  15. Charge transport through DNA/DNA duplexes and DNA/RNA hybrids: complex mechanism study

    Czech Academy of Sciences Publication Activity Database

    Kratochvílová, Irena; Vala, M.; Weiter, M.; Špérová, M.; Schneider, Bohdan; Páv, Ondřej; Šebera, Jakub; Rosenberg, Ivan; Sychrovský, Vladimír

    2013-01-01

    Roč. 20, č. 1 (2013), s. 9-9 ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /11./. 14.03.2013-16.03.2013, Nové Hrady] Institutional support: RVO:61388963 ; RVO:68378271 ; RVO:86652036 Keywords : charge transport * fluorescence spectroscopy * DFT Subject RIV: CF - Physical ; Theoretical Chemistry

  16. Modeling and state-of-charge prediction of lithium-ion battery and ultracapacitor hybrids with a co-estimator

    International Nuclear Information System (INIS)

    Wang, Yujie; Liu, Chang; Pan, Rui; Chen, Zonghai

    2017-01-01

    The modeling and state-of-charge estimation of the batteries and ultracapacitors are crucial to the battery/ultracapacitor hybrid energy storage system. In recent years, the model based state estimators are welcomed widely, since they can adjust the gain according to the error between the model predictions and measurements timely. In most of the existing algorithms, the model parameters are either configured by theoretical values or identified off-line without adaption. But in fact, the model parameters always change continuously with loading wave or self-aging, and the lack of adaption will reduce the estimation accuracy significantly. To overcome this drawback, a novel co-estimator is proposed to estimate the model parameters and state-of-charge simultaneously. The extended Kalman filter is employed for parameter updating. To reduce the convergence time, the recursive least square algorithm and the off-line identification method are used to provide initial values with small deviation. The unscented Kalman filter is employed for the state-of-charge estimation. Because the unscented Kalman filter takes not only the measurement uncertainties but also the process uncertainties into account, it is robust to the noise. Experiments are executed to explore the robustness, stability and precision of the proposed method. - Highlights: • A co-estimator is proposed to estimate the model parameters and state-of-charge. • The extended Kalman filter is used for model parameter adaption. • The unscented Kalman filter is designed for state estimation with strong robust. • The dynamic profiles are employed to verify the proposed co-estimator.

  17. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Dieter Konrad Michael

    2013-11-08

    Closely packed nanocrystal systems have been investigated in this thesis with respect to charge separation by charge carrier tunneling. Clustered and layered samples have been analyzed using PL-measurements and SPV-methods. The most important findings are reviewed in the following. A short outlook is also provided for potential further aspects and application of the presented results. The main purpose of this thesis was to find and quantify electronic tunneling transfer in closely packed self-assembled nanocrystal structures presenting quantum mechanical barriers of about 1 nm width. We successfully used hybrid assemblies of CdTe and CdSe nanocrystals where the expected type II alignment between CdTe and CdSe typically leads to a concentration of electrons in CdSe and holes in CdTe nanocrystals. We were able to prove the charge selectivity of the CdTe-CdSe nanocrystal interface which induces charge separation. We mainly investigated the effects related to the electron transfer from CdTe to CdSe nanocrystals. Closely packing was achieved by two independent methods: the disordered colloidal clustering in solution and the layered assembly on dry glass substrates. Both methods lead to an inter-particle distance of about 1 nm of mainly organic material which acts as a tunneling barrier. PL-spectroscopy was applied. The PL-quenching of the CdTe nanocrystals in hybrid assemblies indicates charge separation by electron transfer from CdTe to CdSe nanocrystals. A maximum quenching rate of up to 1/100 ps was measured leading to a significant global PL-quenching of up to about 70 % for the CdTe nanocrystals. It was shown that charge separation dynamics compete with energy transfer dynamics and that charge separation typically dominates. The quantum confinement effect was used to tune the energetic offset between the CdTe and CdSe nanocrystals. We thus observe a correlation of PL-quenching and offset of the energy states for the electron transfer. The investigated PL

  18. Application of double-hybrid density functionals to charge transfer in N-substituted pentacenequinones.

    Science.gov (United States)

    Sancho-García, J C

    2012-05-07

    A set of N-heteroquinones, deriving from oligoacenes, have been recently proposed as n-type organic semiconductors with high electron mobilities in thin-film transistors. Generally speaking, this class of compounds self-assembles in neighboring π-stacks linked by weak hydrogen bonds. We aim at theoretically characterizing here the sequential charge transport (hopping) process expected to take place across these arrays of molecules. To do so, we need to accurately address the preferred packing of these materials simultaneously to single-molecule properties related to charge-transfer events, carefully employing dispersion-corrected density functional theory methods to accurately extract the key molecular parameters governing this phenomenon at the nanoscale. This study confirms the great deal of interest around these compounds, since controlled functionalization of model molecules (i.e., pentacene) allows to efficiently tune the corresponding charge mobilities, and the capacity of modern quantum-chemical methods to predict it after rationalizing the underlying structure-property relationships.

  19. Ionic charging by local imbalance at interfaces in hybrid lead halide perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Almora, Osbel; Guerrero, Antonio; Garcia-Belmonte, Germà, E-mail: garciag@uji.es [Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castelló (Spain)

    2016-01-25

    Identification of specific operating mechanisms becomes particularly challenging when mixed ionic-electronic conductors are used in optoelectronic devices. Ionic effects in perovskite solar cells are believed to distort operation curves and possess serious doubts about their long term stability. Current hysteresis and switchable photovoltaic characteristics have been connected to the kinetics of ion migration. However, the nature of the specific ionic mechanism (or mechanisms) able to explain the operation distortions is still poorly understood. It is observed here that the local rearrangement of ions at the electrode interfaces gives rise to commonly observed capacitive effects. Charging transients in response to step voltage stimuli using thick CH{sub 3}NH{sub 3}PbI{sub 3} samples show two main polarization processes and reveal the structure of the ionic double-layer at the interface with the non-reacting contacts. It is observed that ionic charging, with a typical response time of 10 s, is a local effect confined in the vicinity of the electrode, which entails absence of net mobile ionic concentration (space-charge) in the material bulk.

  20. Bond strength of cementitious borehole plugs in welded tuff

    International Nuclear Information System (INIS)

    Akgun, H.; Daemen, J.J.K.

    1991-02-01

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young's modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs

  1. A hybrid organic-inorganic electrode for enhanced charge injection or collection in organic optoelectronic devices

    International Nuclear Information System (INIS)

    Yilmaz, Omer F; Chaudhary, Sumit; Ozkan, Mihrimah

    2006-01-01

    Here we report a novel hybrid organic-inorganic anode for organic light-emitting diodes (LEDs) and photovoltaic (PV) cells. This hybrid anode structure is realized from a composite of poly(3,4-ethylene dioxythiophene) doped with polystyrenesulfonic acid (PEDOT:PSS) and indium tin oxide (ITO) nanoparticles. Owing to the phase separation, this anodic structure leads to a graded work function from patterned ITO to the photoactive polymer, which in turn reduces the barrier height for holes by ∼70%. The resulting devices based on this design show up to 67% reduction in turn-on voltage (for polymer LEDs) and up to 40% increase in short-circuit current and power conversion efficiency (for PV cells). Current-voltage characteristics, Fowler-Nordheim analysis, SEM imaging and energy band diagram analysis are employed to characterize the improved performance of our devices. The reported approach is expected to be immensely useful for the molecular design of next-generation efficient organic devices

  2. Compact Fluorescent Plug-In Ballast-in-a-Socket

    Energy Technology Data Exchange (ETDEWEB)

    Rebecca Voelker

    2001-12-21

    The primary goal of this program was to develop a ballast system for plug-in CFLs (compact fluorescent lamps) that will directly replace standard metal shell, medium base incandescent lampholders (such as Levition No. 6098) for use with portable lamp fixtures, such as floor, table and desk lamps. A secondary goal was to identify a plug-in CFL that is optimized for use with this ballast. This Plug-in CFL Ballastin-a-Socket system will allow fixture manufacturers to easily manufacture CFL-based high-efficacy portable fixtures that provide residential and commercial consumers with attractive, cost-effective, and energy-efficient fixtures for use wherever portable incandescent fixtures are used today. The advantages of this proposed system over existing CFL solutions are that the fixtures can only be used with high-efficacy CFLs, and they will be more attractive and will have lower life-cycle costs than screw-in or adapter-based CFL retrofit solutions. These features should greatly increase the penetration of CFL's into the North American market. Our work has shown that using integrated circuits it is quite feasible to produce a lamp-fixture ballast of a size comparable to the current Edison-screw 3-way incandescent fixtures. As for price points for BIAS-based fixtures, end-users polled by the Lighting Research Institute at RPI indicated that they would pay as much as an additional $10 for a lamp containing such a ballast. The ballast has been optimized to run with a 26 W amalgam triple biax lamp in the base-down position, yet can accept non-amalgam versions of the lamp. With a few part alterations, the ballast can be produced to support 32 W lamps as well. The ballast uses GE's existing L-Comp[1] power topology in the circuit so that the integrated circuit design would be a design that could possibly be used by other CFL and EFL products with minor modifications. This gives added value by reducing cost and size of not only the BIAS, but also possibly other

  3. Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wenchao; Yao, Yao, E-mail: yaoyao@fudan.edu.cn; Wu, Chang-Qin, E-mail: cqw@fudan.edu.cn [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China)

    2015-04-21

    In the currently popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and high open circuit voltages, but the underlying recombination mechanism remains unclear. In this work, we investigate the bimolecular recombination (BR) and the trap-assisted monomolecular recombination (MR) in meso-structured perovskite solar cells under steady state working condition, and try to reveal their roles on determining the device performance. Some interfacial effects such as the injection barriers at the selective contacts are examined as well. Based on the macroscopic device modeling, the recombination resistance-voltage (R{sub rec}−V) and the current density-voltage (J–V) curves are calculated to characterize the recombination mechanism and describe the device performance, respectively. Through comparison with the impedance spectroscopy extracted R{sub rec} data, it is found that under the typical BR reduction factor and deep trap densities observed in experiments, the MR dominates the charge recombination in the low voltage regime, while the BR dominates in the high voltage regime. The short circuit current and the fill factor could be reduced by the significant MR but the open circuit voltage is generally determined by the BR. The different electron injection barriers at the contact can change the BR rate and induce different patterns for the R{sub rec}–V characteristics. For the perovskites of increased band gaps, the R{sub rec}'s are significantly enhanced, corresponding to the high open circuit voltages. Finally, it is revealed that the reduced effective charge mobility due to the transport in electron and hole transporting material makes the R{sub rec} decrease slowly with the increasing voltage, which leads to increased open circuit voltage.

  4. Single Molecule Spectroelectrochemistry of Interfacial Charge Transfer Dynamics In Hybrid Organic Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Shanlin [Univ. of Alabama, Tuscaloosa, AL (United States)

    2014-11-16

    Our research under support of this DOE grant is focused on applied and fundamental aspects of model organic solar cell systems. Major accomplishments are: 1) we developed a spectroelectorchemistry technique of single molecule single nanoparticle method to study charge transfer between conjugated polymers and semiconductor at the single molecule level. The fluorescence of individual fluorescent polymers at semiconductor surfaces was shown to exhibit blinking behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and semiconductor substrates. The similarities in molecular conformation suggest that the observed differences in blinking activity are due to charge transfer between fluorescent polymer and semiconductor, which provides additional pathways between states of high and low fluorescence quantum efficiency. Similar spectroelectrochemistry work has been done for small organic dyes for understand their charge transfer dynamics on various substrates and electrochemical environments; 2) We developed a method of transferring semiconductor nanoparticles (NPs) and graphene oxide (GO) nanosheets into organic solvent for a potential electron acceptor in bulk heterojunction organic solar cells which employed polymer semiconductor as the electron donor. Electron transfer from the polymer semiconductor to semiconductor and GO in solutions and thin films was established through fluorescence spectroscopy and electroluminescence measurements. Solar cells containing these materials were constructed and evaluated using transient absorption spectroscopy and dynamic fluorescence techniques to understand the charge carrier generation and recombination events; 3) We invented a spectroelectorchemistry technique using light scattering and electroluminescence for rapid size determination and studying electrochemistry of single NPs in an

  5. Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications

    Science.gov (United States)

    Wang, Zhijie; Cao, Dawei; Wen, Liaoyong; Xu, Rui; Obergfell, Manuel; Mi, Yan; Zhan, Zhibing; Nasori, Nasori; Demsar, Jure; Lei, Yong

    2016-01-01

    Utilizing plasmonic nanostructures for efficient and flexible conversion of solar energy into electricity or fuel presents a new paradigm in photovoltaics and photoelectrochemistry research. In a conventional photoelectrochemical cell, consisting of a plasmonic structure in contact with a semiconductor, the type of photoelectrochemical reaction is determined by the band bending at the semiconductor/electrolyte interface. The nature of the reaction is thus hard to tune. Here instead of using a semiconductor, we employed a ferroelectric material, Pb(Zr,Ti)O3 (PZT). By depositing gold nanoparticle arrays and PZT films on ITO substrates, and studying the photocurrent as well as the femtosecond transient absorbance in different configurations, we demonstrate an effective charge transfer between the nanoparticle array and PZT. Most importantly, we show that the photocurrent can be tuned by nearly an order of magnitude when changing the ferroelectric polarization in PZT, demonstrating a versatile and tunable system for energy harvesting. PMID:26753764

  6. Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors.

    Science.gov (United States)

    Nguyen, Tuyen; Boudard, Michel; Carmezim, M João; Montemor, M Fátima

    2017-01-04

    Consecutive layers of Ni(OH) 2 and Co(OH) 2 were electrodeposited on stainless steel current collectors for preparing charge storage electrodes of high specific capacity with potential application in hybrid supercapacitors. Different electrodes were prepared consisting on films of Ni(OH) 2 , Co(OH) 2 , Ni 1/2 Co 1/2 (OH) 2 and layered films of Ni(OH) 2 on Co(OH) 2 and Co(OH) 2 on Ni(OH) 2 to highlight the advantages of the new architecture. The microscopy studies revealed the formation of nanosheets in the Co(OH) 2 films and of particles agglomerates in the Ni(OH) 2 films. Important morphological changes were observed in the double hydroxides films and layered films. Film growth by electrodeposition was governed by instantaneous nucleation mechanism. The new architecture composed of Ni(OH) 2 on Co(OH) 2 displayed a redox response characterized by the presence of two peaks in the cyclic voltammograms, arising from redox reactions of the metallic species present in the layered film. These electrodes revealed a specific capacity of 762 C g -1 at the specific current of 1 A g -1 . The hybrid cell using Ni(OH) 2 on Co(OH) 2 as positive electrode and carbon nanofoam paper as negative electrode display specific energies of 101.3 W h g -1 and 37.8 W h g -1 at specific powers of 0.2 W g -1 and 2.45 W g -1 , respectively.

  7. Micro-hybrid electric vehicle application of valve-regulated lead-acid batteries in absorbent glass mat technology: Testing a partial-state-of-charge operation strategy

    Energy Technology Data Exchange (ETDEWEB)

    Schaeck, S.; Stoermer, A.O.; Hockgeiger, E. [BMW Group, Powertrain Development, Energy Storage, Hufelandstrasse 4, 80788 Muenchen (Germany)

    2009-05-01

    The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 C and at 3 C battery temperature. (author)

  8. Micro-hybrid electric vehicle application of valve-regulated lead-acid batteries in absorbent glass mat technology: Testing a partial-state-of-charge operation strategy

    Science.gov (United States)

    Schaeck, S.; Stoermer, A. O.; Hockgeiger, E.

    The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 °C and at 3 °C battery temperature.

  9. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science

    Energy Technology Data Exchange (ETDEWEB)

    Jungmann-Smith, J. H., E-mail: jsmith@magnet.fsu.edu; Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Greiffenberg, D.; Jaggi, A.; Maliakal, D.; Mayilyan, D.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G. [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Cartier, S. [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Institute for Biomedical Engineering, University and ETHZ, 8092 Zürich (Switzerland); Medjoubi, K. [Synchrotron Soleil, L’Orme des Merisiers, Saint-Aubin–BP 48, 91192 GIF-sur-Yvette Cedex (France)

    2015-12-15

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 10{sup 4} photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm{sup 2} pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm{sup 2}. Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  10. Co-simulation with DIgSILENT PowerFactory and Matlab: Optimal integration of plug-in electric vehicles in distribution networks

    DEFF Research Database (Denmark)

    García-Villalobos, J.; Zamora, I.; Marinelli, Mattia

    2017-01-01

    Smart grid concept is gaining more and more importance in electric power systems. In near term, electric grids will be more intelligent, interconnected and decentralised. Dealing with a significant number of distributed resources in a smart way, frequently requires the use of optimal control tech...... mean square (RMS) simulations on DIgSILENT PowerFactory. As an example, the implementation of a smart charging control for plug-in electric vehicles in electric distribution networks is explained....

  11. Efficient integration of plug-in electric vehicles via reconfigurable microgrids

    International Nuclear Information System (INIS)

    Kavousi-Fard, Abdollah; Khodaei, Amin

    2016-01-01

    This paper investigates the viability of the reconfigurable microgrids (RMGs) in facilitating the integration of plug-in electric vehicles (PEVs). The reconfiguration ability of microgrids, which is enabled by the use of remotely controlled switches (RCSs), will support the high penetration of PEVs and renewable distributed generators (DGs) while reducing the total operation cost and potentially enhance microgrid reliability. The objective of the proposed optimal scheduling problem is to minimize the total cost of power supply by distributed energy resources (DERs) and upstream network energy exchange, battery degradation cost in PEVs, cost of switching during the reconfiguration, and expected customer interruption costs as a reliability index. To address the high level of the uncertainties in the problem, a scenario-based stochastic framework is devised to capture the uncertainties associated with the charging and discharging values of PEVs, number of PEVs in each fleet, time of the daily trips for PEVs, hourly load consumption, hourly output power of renewable DGs, and hourly market price. The satisfying performance and merits of the proposed model are examined on a test microgrid. - Highlights: • Introduction of reconfigurable microgrids for providing flexible structure to manage electric loads. • Assessing the effects of the reconfiguration on the integration of PEVs. • Introduction of a stochastic framework for reducing operation and reliability costs in microgrids. • Introduction of a smart charge/discharge scheme for PEVs based on V2G during the reconfiguration.

  12. Device for sealing a rotating plug in a nuclear reactor

    International Nuclear Information System (INIS)

    Brandstetter, R.

    1975-01-01

    The invention relates to the sealing of a rotating plug in a nuclear reactor. The sealing arrangement comprises a friction track which is formed along the periphery of the top of a ring mounted on a stationary element. An annular base coaxial with the plug is secured in sealing-tight manner to the stationary bearing around the ring and the track by means of a seal which rests on the annular base and also on the friction track of the ring and which comprises at least one friction ring and a clamping spring ring. The seal is clamped against the friction track to retractable clamping means when the plug is stationary, the retractable clamping means being carried by a ring secured to the first-mentioned ring. (U.S.)

  13. Strength and stability of microbial plugs in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, A.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Sharma, M.M.; Georgiou, G. [Univ. of Texas, Austin, TX (United States)

    1995-12-31

    Mobility reduction induced by the growth and metabolism of bacteria in high-permeability layers of heterogeneous reservoirs is an economically attractive technique to improve sweep efficiency. This paper describes an experimental study conducted in sandpacks using an injected bacterium to investigate the strength and stability of microbial plugs in porous media. Successful convective transport of bacteria is important for achieving sufficient initial bacteria distribution. The chemotactic and diffusive fluxes are probably not significant even under static conditions. Mobility reduction depends upon the initial cell concentrations and increase in cell mass. For single or multiple static or dynamic growth techniques, permeability reduction was approximately 70% of the original permeability. The stability of these microbial plugs to increases in pressure gradient and changes in cell physiology in a nutrient-depleted environment needs to be improved.

  14. Stochastic scheduling of local distribution systems considering high penetration of plug-in electric vehicles and renewable energy sources

    International Nuclear Information System (INIS)

    Tabatabaee, Sajad; Mortazavi, Seyed Saeedallah; Niknam, Taher

    2017-01-01

    This paper investigates the optimal scheduling of electric power units in the renewable based local distribution systems considering plug-in electric vehicles (PEVs). The appearance of PEVs in the electric grid can create new challenges for the operation of distributed generations and power units inside the network. In order to deal with this issue, a new stochastic optimization method is devised to let the central controll manage the power units and charging behavior of PEVs. The problem formulation aims to minimize the total cost of the network including the cost of power supply for loads and PEVs as well as the cost of energy not supplied (ENS) as the reliability costs. In order to make PEVs as opportunity for the grid, the vehicle-2-grid (V2G) technology is employed to reduce the operational costs. To model the high uncertain behavior of wind turbine, photovoltaics and the charging and discharging pattern of PEVs, a new stochastic power flow based on unscented transform is proposed. Finally, a new optimization algorithm based on bat algorithm (BA) is proposed to solve the problem optimally. The satisfying performance of the proposed stochastic method is tested on a grid-connected local distribution system. - Highlights: • Introduction of stochastic method to assess Plug-in Electric Vehicles effects on the microgrid. • Assessing the role of V2G technology on battery aging and degradation costs. • Use of BA for solving the proposed problem. • Introduction of a new modification method for the BA.

  15. A 10 MS/s 8-bit charge-redistribution ADC for hybrid pixel applications in 65 m CMOS

    International Nuclear Information System (INIS)

    Kishishita, Tetsuichi; Hemperek, Tomasz; Krüger, Hans; Koch, Manuel; Germic, Leonard; Wermes, Norbert

    2013-01-01

    The design and measurement results of an 8-bit SAR ADC, based on a charge-redistribution DAC, are presented. This ADC is characterized by superior power efficiency and small area, realized by employing a lateral metal–metal capacitor array and a dynamic two-stage comparator. To avoid the need for a high-speed clock and its associated power consumption, an asynchronous logic was implemented in a logic control cell. A test chip has been developed in a 65 nm CMOS technology, including eight ADC channels with different layout flavors of the capacitor array, a transimpedance amplifier as a signal input structure, a serializer, and a custom-made LVDS driver for data transmission. The integral (INL) and differential (DNL) nonlinearities are measured below 0.5 LSB and 0.8 LSB, respectively, for the best channel operating at a sampling frequency of 10 MS/s. The area occupies 40μm×70μm for one ADC channel. The power consumption is estimated as 4μW at 1 MS/s and 38μW at 10 MS/s with a supply rail of 1.2 V. These excellent performance features and the natural radiation hardness of the design, due to the thin gate oxide thickness of transistors, are very interesting for front-end electronics ICs of future hybrid-pixel detector systems

  16. A 10 MS/s 8-bit charge-redistribution ADC for hybrid pixel applications in 65 m CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Kishishita, Tetsuichi, E-mail: kisisita@physik.uni-bonn.de; Hemperek, Tomasz; Krüger, Hans; Koch, Manuel; Germic, Leonard; Wermes, Norbert

    2013-12-21

    The design and measurement results of an 8-bit SAR ADC, based on a charge-redistribution DAC, are presented. This ADC is characterized by superior power efficiency and small area, realized by employing a lateral metal–metal capacitor array and a dynamic two-stage comparator. To avoid the need for a high-speed clock and its associated power consumption, an asynchronous logic was implemented in a logic control cell. A test chip has been developed in a 65 nm CMOS technology, including eight ADC channels with different layout flavors of the capacitor array, a transimpedance amplifier as a signal input structure, a serializer, and a custom-made LVDS driver for data transmission. The integral (INL) and differential (DNL) nonlinearities are measured below 0.5 LSB and 0.8 LSB, respectively, for the best channel operating at a sampling frequency of 10 MS/s. The area occupies 40μm×70μm for one ADC channel. The power consumption is estimated as 4μW at 1 MS/s and 38μW at 10 MS/s with a supply rail of 1.2 V. These excellent performance features and the natural radiation hardness of the design, due to the thin gate oxide thickness of transistors, are very interesting for front-end electronics ICs of future hybrid-pixel detector systems.

  17. Predicting state of charge of lead-acid batteries for hybrid electric vehicles by extended Kalman filter

    International Nuclear Information System (INIS)

    Vasebi, A.; Bathaee, S.M.T.; Partovibakhsh, M.

    2008-01-01

    This paper describes and introduces a new nonlinear predictor and a novel battery model for estimating the state of charge (SoC) of lead-acid batteries for hybrid electric vehicles (HEV). Many problems occur for a traditional SoC indicator, such as offset, drift and long term state divergence, therefore this paper proposes a technique based on the extended Kalman filter (EKF) in order to overcome these problems. The underlying dynamic behavior of each cell is modeled using two capacitors (bulk and surface) and three resistors (terminal, surface and end). The SoC is determined from the voltage present on the bulk capacitor. In this new model, the value of the surface capacitor is constant, whereas the value of the bulk capacitor is not. Although the structure of the model, with two constant capacitors, has been previously reported for lithium-ion cells, this model can also be valid and reliable for lead-acid cells when used in conjunction with an EKF to estimate SoC (with a little variation). Measurements using real-time road data are used to compare the performance of conventional internal resistance (R int ) based methods for estimating SoC with those predicted from the proposed state estimation schemes. The results show that the proposed method is superior to the more traditional techniques, with accuracy in estimating the SoC within 3%

  18. Silicon Nanowire/Polymer Hybrid Solar Cell-Supercapacitor: A Self-Charging Power Unit with a Total Efficiency of 10.5.

    Science.gov (United States)

    Liu, Ruiyuan; Wang, Jie; Sun, Teng; Wang, Mingjun; Wu, Changsheng; Zou, Haiyang; Song, Tao; Zhang, Xiaohong; Lee, Shuit-Tong; Wang, Zhong Lin; Sun, Baoquan

    2017-07-12

    An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.

  19. Enabling fast charging - Introduction and overview

    Science.gov (United States)

    Michelbacher, Christopher; Ahmed, Shabbir; Bloom, Ira; Burnham, Andrew; Carlson, Barney; Dias, Fernando; Dufek, Eric J.; Jansen, Andrew N.; Keyser, Matthew; Markel, Anthony; Meintz, Andrew; Mohanpurkar, Manish; Pesaran, Ahmad; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Tanim, Tanvir; Vijayagopal, Ram; Zhang, Jiucai

    2017-11-01

    The pursuit of U.S. energy security and independence has taken many different forms throughout the many production and consumption sectors. For consumer transportation, a greater reliance on power train electrification has gained traction due to the inherent efficiencies of these platforms, particularly through the use of electric motors and batteries. Vehicle electrification can be generalized into three primary categories-hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs); the latter two, PHEVs and BEVs, are often referred to as plug-in electric vehicles (PEVs).

  20. Test Confessions : A Study of Testing Practices for Plug-in Systems

    NARCIS (Netherlands)

    Greiler, M.; Van Deursen, A.; Storey, M.A.

    2011-01-01

    Testing plug-in-based systems is challenging due to complex interactions among many different plug-ins, and variations in version and configuration. The objective of this paper is to increase our understanding of what testers and developers think and do when it comes to testing plug-inbased systems.

  1. Minimization of Construction Costs for an All Battery-Swapping Electric-Bus Transportation System: Comparison with an All Plug-In System

    Directory of Open Access Journals (Sweden)

    Shyang-Chyuan Fang

    2017-06-01

    Full Text Available The greenhouse gases and air pollution generated by extensive energy use have exacerbated climate change. Electric-bus (e-bus transportation systems help reduce pollution and carbon emissions. This study analyzed the minimization of construction costs for an all battery-swapping public e-bus transportation system. A simulation was conducted according to existing timetables and routes. Daytime charging was incorporated during the hours of operation; the two parameters of the daytime charging scheme were the residual battery capacity and battery-charging energy during various intervals of daytime peak electricity hours. The parameters were optimized using three algorithms: particle swarm optimization (PSO, a genetic algorithm (GA, and a PSO–GA. This study observed the effects of optimization on cost changes (e.g., number of e-buses, on-board battery capacity, number of extra batteries, charging facilities, and energy consumption and compared the plug-in and battery-swapping e-bus systems. The results revealed that daytime charging can reduce the construction costs of both systems. In contrast to the other two algorithms, the PSO–GA yielded the most favorable optimization results for the charging scheme. Finally, according to the cases investigated and the parameters of this study, the construction cost of the plug-in e-bus system was shown to be lower than that of the battery-swapping e-bus system.

  2. Methodology for modelling plug-in electric vehicles in the power system and cost estimates for a system with either smart or dumb electric vehicles

    DEFF Research Database (Denmark)

    Kiviluoma, Juha; Meibom, Peter

    2011-01-01

    The article estimates the costs of plug-in electric vehicles (EVs) in a future power system as well as the benefits from smart charging and discharging EVs (smart EVs). To arrive in a good estimate, a generation planning model was used to create power plant portfolios, which were operated in a more...... detailed unit commitment and dispatch model. In both models the charging and discharging of EVs is optimised together with the rest of the power system. Neither the system cost nor the market price of electricity for EVs turned out to be high (36–263 €/vehicle/year in the analysed scenarios). Most...

  3. Gasoline-powered series hybrid cars cause lower life cycle carbon emissions than battery cars

    Science.gov (United States)

    Meinrenken, Christoph; Lackner, Klaus S.

    2012-02-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available series hybrid technology achieves the well known efficiency gains in electric drivetrains (regenerative breaking, lack of gearbox) even if the electricity is generated onboard, from conventional fuels. Here, we analyze life cycle GHG emissions for commercially available, state-of the-art plug-in battery cars (e.g. Nissan Leaf) and those of commercially available series hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that series hybrid cars driven on (fossil) gasoline cause fewer emissions (126g CO2eq per km) than battery cars driven on current US grid electricity (142g CO2eq per km). We attribute this novel finding to the significant incremental emissions from plug-in battery cars due to losses during grid transmission and battery dis-/charging, and manufacturing larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  4. Improving power grid transient stability by plug-in electric vehicles

    International Nuclear Information System (INIS)

    Gajduk, Andrej; Kocarev, Ljupco; Todorovski, Mirko; Kurths, Juergen

    2014-01-01

    Plug-in electric vehicles (PEVs) can serve in discharge mode as distributed energy and power resources operating as vehicle-to-grid (V2G) devices and in charge mode as loads or grid-to-vehicle devices. It has been documented that PEVs serving as V2G systems can offer possible backup for renewable power sources, can provide reactive power support, active power regulation, load balancing, peak load shaving, can reduce utility operating costs and can generate revenue. Here we show that PEVs can even improve power grid transient stability, that is, stability when the power grid is subjected to large disturbances, including bus faults, generator and branch tripping, and sudden large load changes. A control strategy that regulates the power output of a fleet of PEVs based on the speed of generator turbines is proposed and tested on the New England 10-unit 39-bus power system. By regulating the power output of the PEVs we show that (1) speed and voltage fluctuations resulting from large disturbances can be significantly reduced up to five times, and (2) the critical clearing time can be extended by 20–40%. Overall, the PEVs control strategy makes the power grid more robust. (paper)

  5. Assessing the Potential of Plug-in Electric Vehicles in Active Distribution Networks

    Directory of Open Access Journals (Sweden)

    Reza Ahmadi Kordkheili

    2016-01-01

    Full Text Available A multi-objective optimization algorithm is proposed in this paper to increase the penetration level of renewable energy sources (RESs in distribution networks by intelligent management of plug-in electric vehicle (PEV storage. The proposed algorithm is defined to manage the reverse power flow (PF from the distribution network to the upstream electrical system. Furthermore, a charging algorithm is proposed within the proposed optimization in order to assure PEV owner’s quality of service (QoS. The method uses genetic algorithm (GA to increase photovoltaic (PV penetration without jeopardizing PEV owners’ (QoS and grid operating limits, such as voltage level of the grid buses. The method is applied to a part of the Danish low voltage (LV grid to evaluate its effectiveness and capabilities. Different scenarios have been defined and tested using the proposed method. Simulation results demonstrate the capability of the algorithm in increasing solar power penetration in the grid up to 50%, depending on the PEV penetration level and the freedom of the system operator in managing the available PEV storage.

  6. Plug-in vehicles and the future of road infrastructure funding in the United States

    International Nuclear Information System (INIS)

    Dumortier, Jerome; Kent, Matthew W.; Payton, Seth B.

    2016-01-01

    In the United States, road infrastructure funding is declining due to an increase in fuel efficiency and the non-adjustment of fuel taxes to inflation. Legislation to tax plug-in vehicles has been proposed or implemented in several states. Those propositions are contrary to policies to promote fuel efficient vehicles. This paper assesses (1) the magnitude of the decline in federal fuel tax revenue caused by plug-in vehicles and (2) quantifies the revenue that could be generated from a federal plug-in vehicle registration fee. We find that the contribution of plug-in vehicles to the decline of the federal fuel tax revenue is at most 1.6% and the majority of the shortfall can be attributed to the non-adjustment of the fuel tax rate and the increase in vehicle fuel efficiency by 2040. An additional tax of $50–$200 per plug-in vehicle per year in the reference case would generate $188–$745 million in 2040 which represents an increase of 1.69–6.71% in federal fuel tax revenue compared to no tax. The lesson for policy makers is that plug-in vehicles do not contribute significantly to the funding shortfall in the short- and medium-run and a supplemental tax would generate a small percentage of additional revenue. - Highlights: •Fees on plug-in cars are proposed or implemented to collect foregone fuel taxes. •Plug-in cars are responsible for a very small percentage of declining tax revenue. •An additional tax on plug-in cars does not stop the decline in fuel tax revenue. •Adjusting fuel taxes to inflation is a more effective tool to increase tax revenue.

  7. Optimised performance of a plug-in electric vehicle aggregator in energy and reserve markets

    International Nuclear Information System (INIS)

    Shafie-khah, M.; Moghaddam, M.P.; Sheikh-El-Eslami, M.K.; Catalão, J.P.S.

    2015-01-01

    Highlights: • A new model is developed to optimise the performance of a PEV aggregator in the power market. • PEVs aggregator can combine the PEVs and manage the charge/discharge of their batteries. • A new approach to calculate the satisfaction/motivation of PEV owners is proposed. • Several uncertainties are taken into account using a two-stage stochastic programing approach. • The proposed model is proficient in significantly improving the short- and long-term behaviour. - Abstract: In this paper, a new model is developed to optimise the performance of a plug-in Electric Vehicle (EV) aggregator in electricity markets, considering both short- and long-term horizons. EV aggregator as a new player of the power market can aggregate the EVs and manage the charge/discharge of their batteries. The aggregator maximises the profit and optimises EV owners’ revenue by applying changes in tariffs to compete with other market players for retaining current customers and acquiring new owners. On this basis, a new approach to calculate the satisfaction/motivation of EV owners and their market participation is proposed in this paper. Moreover, the behaviour of owners to select their supplying company is considered. The aggregator optimises the self-scheduling programme and submits the best bidding/offering strategies to the day-ahead and real-time markets. To achieve this purpose, the day-ahead and real-time energy and reserve markets are modelled as oligopoly markets, in contrast with previous works that utilised perfectly competitive ones. Furthermore, several uncertainties and constraints are taken into account using a two-stage stochastic programing approach, which have not been addressed in previous works. The numerical studies show the effectiveness of the proposed model

  8. Experimental and numerical modeling of sulfur plugging in carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, PO Box 17555, Al-Ain (United Arab Emirates)

    2000-05-01

    Sour gas, mainly in the form of hydrogen sulfide, is produced in large amounts from many oil and gas reservoirs in the United Arab Emirates. In addition to creating problems in production lines, the precipitation of elemental sulfur in vicinity of the wellbore is often reported to cause wellbore damage. While there have been several studies performed on the role of solid deposition in gas reservoirs, the role of sulfur deposition in oil reservoirs has not been investigated. This paper presents experimental results along with a comprehensive wellbore model that predicts sulfur precipitation as well as plugging. Two separate sets of experiments, one for a gas phase system and another for a crude oil system, were conducted to investigate the deposition of elemental sulfur in (linear) carbonate cores. The gas flow tests were conducted with elemental sulfur being carried with nitrogen through limestone cores. Changes in gas flow rate were monitored while the injection pressure was held constant. A series of experiments generated valuable data for plugging with elemental sulfur. X-ray diffraction tests provided evidence of sulfur deposition along the cores. The oil flow tests were carried out to observe sulfur precipitation and plugging in a carbonate core. The crude oil was de-asphalted before conducting these tests in order to isolate the effect of asphaltene plugging. Significant plugging was observed and was found to be dependent on flow rate and initial sulfur concentration. This information was used in a phenomenological model that was incorporated in the wellbore numerical model. The data for the numerical model were obtained from both test tube and oil flow experiments. By using a phenomenological model, the wellbore plugging was modeled with an excellent match (with experimental results)

  9. Transient and modulated charge separation at CuInSe{sub 2}/C{sub 60} and CuInSe{sub 2}/ZnPc hybrid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Morzé, Natascha von, E-mail: natascha.von_morze@helmholtz-berlin.de; Dittrich, Thomas, E-mail: dittrich@helmholtz-berlin.de; Calvet, Wolfram, E-mail: wolfram.calvet@helmholtz-berlin.de; Lauermann, Iver, E-mail: iver.lauermann@helmholtz-berlin.de; Rusu, Marin, E-mail: rusu@helmholtz-berlin.de

    2017-02-28

    Highlights: • Surface physical properties of non- and Na-treated CuInSe{sub 2} layers studied. • Evidence of exciton dissociation and charge separation at CuInSe{sub 2}/ZnPc interface. • Strong band bending at the CuInSe{sub 2} surface in contact with C{sub 60} observed. • No evidence for exciton dissociation at the CuInSe{sub 2}/C{sub 60} interface found. • Cu-poor phase at CuInSe{sub 2}/organic interface crucial for charge separation. - Abstract: Spectral dependent charge transfer and exciton dissociation have been investigated at hybrid interfaces between inorganic polycrystalline CuInSe{sub 2} (untreated and Na-conditioned) thin films and organic C{sub 60} as well as zinc phthalocyanine (ZnPc) layers by transient and modulated surface photovoltage measurements. The stoichiometry and electronic properties of the bare CuInSe{sub 2} surface were characterized by photoelectron spectroscopy which revealed a Cu-poor phase with n-type features. After the deposition of the C{sub 60} layer, a strong band bending at the CuInSe{sub 2} surface was observed. Evidence for dissociation of excitons followed by charge separation was found at the CuInSe{sub 2}/ZnPc interface. The Cu-poor layer at the CuInSe{sub 2} surface was found to be crucial for transient and modulated charge separation at CuInSe{sub 2}/organic hybrid interfaces.

  10. Energy Management of Hybrid Electric Vehicles: 15 years of development at the Ohio State University

    Directory of Open Access Journals (Sweden)

    Rizzoni Giorgio

    2015-01-01

    Full Text Available The aim of this paper is to document 15 years of hybrid electric vehicle energy management research at The Ohio State University Center for Automotive Research (OSUCAR. Hybrid Electric Vehicle (HEV technology encompasses many diverse aspects. In this paper we focus exclusively on the evolution of supervisory control strategies for on-board energy management in HEV. We present a series of control algorithms that have been developed in simulation and implemented in prototype vehicles for charge-sustaining HEVs at OSU-CAR. These solutions span from fuzzy-logic control algorithms to more sophisticated model-based optimal control methods. Finally, methods developed for plug-in HEVs energy management are also discussed

  11. Lyapunov Based-Distributed Fuzzy-Sliding Mode Control for Building Integrated-DC Microgrid with Plug-in Electric Vehicle

    DEFF Research Database (Denmark)

    Ghiasi, Mohammad Iman; Aliakbar Golkar, Masoud; Hajizadeh, Amin

    2017-01-01

    This paper presents a distributed control strategy based on Fuzzy-Sliding Mode Control (FSMC) for power control of an infrastructure integrated with a DC-Microgrid, which includes photovoltaic, fuel cell and energy storage systems with Plug-in Electric Vehicles (PEVs). In order to implement...... the proposed control strategy, first a general nonlinear modeling of a DC-Microgrid based on related DC-DC converters to each DC power sources is introduced. Secondly, a power management strategy based on fuzzy control for regulating the power flow between the hybrid DC sources, PEVs is proposed. Third...

  12. Charging and discharging tests for obtaining an accurate dynamic electro-thermal model of high power lithium-ion pack system for hybrid and EV applications

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Camacho, Oscar Mauricio Forero; Nørgård, Per Bromand

    2013-01-01

    This paper presents a battery test platform including two Li-ion battery designed for hybrid and EV applications, and charging/discharging tests under different operating conditions carried out for developing an accurate dynamic electro-thermal model of a high power Li-ion battery pack system....... The aim of the tests has been to study the impact of the battery degradation and to find out the dynamic characteristics of the cells including nonlinear open circuit voltage, series resistance and parallel transient circuit at different charge/discharge currents and cell temperature. An equivalent...... circuit model, based on the runtime battery model and the Thevenin circuit model, with parameters obtained from the tests and depending on SOC, current and temperature has been implemented in MATLAB/Simulink and Power Factory. A good alignment between simulations and measurements has been found....

  13. Connecting plug-in vehicles with green electricity through consumer demand

    Science.gov (United States)

    Axsen, Jonn; Kurani, Kenneth S.

    2013-03-01

    The environmental benefits of plug-in electric vehicles (PEVs) increase if the vehicles are powered by electricity from ‘green’ sources such as solar, wind or small-scale hydroelectricity. Here, we explore the potential to build a market that pairs consumer purchases of PEVs with purchases of green electricity. We implement a web-based survey with three US samples defined by vehicle purchases: conventional new vehicle buyers (n = 1064), hybrid vehicle buyers (n = 364) and PEV buyers (n = 74). Respondents state their interest in a PEV as their next vehicle, in purchasing green electricity in one of three ways, i.e., monthly subscription, two-year lease or solar panel purchase, and in combining the two products. Although we find that a link between PEVs and green electricity is not presently strong in the consciousness of most consumers, the combination is attractive to some consumers when presented. Across all three respondent segments, pairing a PEV with a green electricity program increased interest in PEVs—with a 23% demand increase among buyers of conventional vehicles. Overall, about one-third of respondents presently value the combination of a PEV with green electricity; the proportion is much higher among previous HEV and PEV buyers. Respondents’ reported motives for interest in both products and their combination include financial savings (particularly among conventional buyers), concerns about air pollution and the environment, and interest in new technology (particularly among PEV buyers). The results provide guidance regarding policy and marketing strategies to advance PEVs and green electricity demand.

  14. Connecting plug-in vehicles with green electricity through consumer demand

    International Nuclear Information System (INIS)

    Axsen, Jonn; Kurani, Kenneth S

    2013-01-01

    The environmental benefits of plug-in electric vehicles (PEVs) increase if the vehicles are powered by electricity from ‘green’ sources such as solar, wind or small-scale hydroelectricity. Here, we explore the potential to build a market that pairs consumer purchases of PEVs with purchases of green electricity. We implement a web-based survey with three US samples defined by vehicle purchases: conventional new vehicle buyers (n = 1064), hybrid vehicle buyers (n = 364) and PEV buyers (n = 74). Respondents state their interest in a PEV as their next vehicle, in purchasing green electricity in one of three ways, i.e., monthly subscription, two-year lease or solar panel purchase, and in combining the two products. Although we find that a link between PEVs and green electricity is not presently strong in the consciousness of most consumers, the combination is attractive to some consumers when presented. Across all three respondent segments, pairing a PEV with a green electricity program increased interest in PEVs—with a 23% demand increase among buyers of conventional vehicles. Overall, about one-third of respondents presently value the combination of a PEV with green electricity; the proportion is much higher among previous HEV and PEV buyers. Respondents’ reported motives for interest in both products and their combination include financial savings (particularly among conventional buyers), concerns about air pollution and the environment, and interest in new technology (particularly among PEV buyers). The results provide guidance regarding policy and marketing strategies to advance PEVs and green electricity demand. (letter)

  15. A Novel Supercapacitor/Lithium-Ion Hybrid Energy System with a Fuzzy Logic-Controlled Fast Charging and Intelligent Energy Management System

    Directory of Open Access Journals (Sweden)

    Muhammad Adil Khan

    2018-05-01

    Full Text Available The electric powered wheelchair (EPW is an essential assistive tool for people with serious injuries or disability. This manuscript describes the validation of applied research for reducing the charging time of an electric wheelchair using a hybrid electric system (HES composed of a supercapacitor (SC bank and a lithium-ion battery with a fuzzy logic controller (FLC-based fast charging system for Li-ion batteries and a fuzzy logic-based intelligent energy management system (FLIEMS for controlling the power flow within the HES. The fast charging FLC was designed to drive the voltage difference (Vd among the different cells of a multi-cell battery and the cell voltage (Vc of an individual cell. These parameters (voltage difference and cell voltage were used as input voltages to reduce the charge time and activate a bypass equalization (BPE scheme. BPE was introduced in this paper so that the battery operates within the safe voltage range. For SC/Li-ion HES, the FLIEMS presented in this paper controls the bi-directional power flow to smooth the power extracted from Li-ion batteries. Moreover, a dual active bridge isolated bidirectional DC converter (DAB-IBDC was used for power conversion. The DAB-IBDC presented in this paper has the characteristics of galvanic isolation, and high power conversion efficiency compared to the conventional converter circuits due to the reduced reverse power flow and current stresses.

  16. EV Charging Infrastructure Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Karner, Donald [Electric Transportation Inc., Rogers, AR (United States); Garetson, Thomas [Electric Transportation Inc., Rogers, AR (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    As highlighted in the U.S. Department of Energy’s EV Everywhere Grand Challenge, vehicle technology is advancing toward an objective to “… produce plug-in electric vehicles that are as affordable and convenient for the average American family as today’s gasoline-powered vehicles …” [1] by developing more efficient drivetrains, greater battery energy storage per dollar, and lighter-weight vehicle components and construction. With this technology advancement and improved vehicle performance, the objective for charging infrastructure is to promote vehicle adoption and maximize the number of electric miles driven. The EV Everywhere Charging Infrastructure Roadmap (hereafter referred to as Roadmap) looks forward and assumes that the technical challenges and vehicle performance improvements set forth in the EV Everywhere Grand Challenge will be met. The Roadmap identifies and prioritizes deployment of charging infrastructure in support of this charging infrastructure objective for the EV Everywhere Grand Challenge

  17. EV Charging Infrastructure Roadmap

    International Nuclear Information System (INIS)

    Karner, Donald; Garetson, Thomas; Francfort, Jim

    2016-01-01

    As highlighted in the U.S. Department of Energy's EV Everywhere Grand Challenge, vehicle technology is advancing toward an objective to ''... produce plug-in electric vehicles that are as affordable and convenient for the average American family as today's gasoline-powered vehicles ...'' [1] by developing more efficient drivetrains, greater battery energy storage per dollar, and lighter-weight vehicle components and construction. With this technology advancement and improved vehicle performance, the objective for charging infrastructure is to promote vehicle adoption and maximize the number of electric miles driven. The EV Everywhere Charging Infrastructure Roadmap (hereafter referred to as Roadmap) looks forward and assumes that the technical challenges and vehicle performance improvements set forth in the EV Everywhere Grand Challenge will be met. The Roadmap identifies and prioritizes deployment of charging infrastructure in support of this charging infrastructure objective for the EV Everywhere Grand Challenge

  18. Game-theoretic control of PHEV charging with power flow analysis

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2016-03-01

    Full Text Available Due to an ever-increasing market penetration of plug-in hybrid electric vehicles (PHEVs, the charging demand is expected to become a main determinant of the load in future distribution systems. In this paper, we investigate the problem of controlling in-home charging of PHEVs to accomplish peak load shifting while maximizing the revenue of the distribution service provider (DSP and PHEV owners. A leader-follower game model is proposed to characterize the preference and revenue expectation of PHEV owners and DSP, respectively. The follower (PHEV owner decides when to start charging based on the pricing schedule provided by the leader (DSP. The DSP can incentivize the charging of PHEV owners to avoid system peak load. The costs associated with power distribution, line loss, and voltage regulation are incorporated in the game model via power flow analysis. Based on a linear approximation of the power flow equations, the solution of sub-game perfect Nash equilibrium (SPNE is obtained. A case study is performed based on the IEEE 13-bus test feeder and realistic PHEV charging statistics, and the results demonstrate that our proposed PHEV charging control scheme can significantly improve the power quality in distribution systems by reducing the peak load and voltage fluctuations.

  19. Indirect adaptive soft computing based wavelet-embedded control paradigms for WT/PV/SOFC in a grid/charging station connected hybrid power system.

    Directory of Open Access Journals (Sweden)

    Sidra Mumtaz

    Full Text Available This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG. A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms.

  20. Indirect adaptive soft computing based wavelet-embedded control paradigms for WT/PV/SOFC in a grid/charging station connected hybrid power system.

    Science.gov (United States)

    Mumtaz, Sidra; Khan, Laiq; Ahmed, Saghir; Bader, Rabiah

    2017-01-01

    This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms.

  1. Indirect adaptive soft computing based wavelet-embedded control paradigms for WT/PV/SOFC in a grid/charging station connected hybrid power system

    Science.gov (United States)

    Khan, Laiq; Ahmed, Saghir; Bader, Rabiah

    2017-01-01

    This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms. PMID:28877191

  2. Perception and reality: Public knowledge of plug-in electric vehicles in 21 U.S. cities

    International Nuclear Information System (INIS)

    Krause, Rachel M.; Carley, Sanya R.; Lane, Bradley W.; Graham, John D.

    2013-01-01

    This paper examines the extent of consumer knowledge about plug-in electric vehicles (PEVs) and the current policies in place to encourage their purchase and use. Data are collected via a survey administered to a sample of 2302 adult drivers in 21 of the largest cities in the United States. Almost two-thirds of the respondents provided incorrect answers to basic factual questions about PEVs and, of those, approximately 75% underestimated their private value or advantages. The vast majority (94.5%) of respondents were not aware of the current state and local incentives in place in their locale to encourage PEV purchase and use. Based on a review of consumer theory, multivariate models are developed and used to assess the factors associated with consumer interest in the two major types of PEV technologies, Battery Electric Vehicles (BEV) and Plug-in Hybrid Electric Vehicles (PHEV). Results show demographic and attitudinal characteristics having the largest influence on interest in either type of PEV. Misperceptions about purchase price and expected fuel and maintenance savings are likewise significant, although their impacts differ between BEVs and PHEVs. Better informing consumers about already available public incentives and advantageous aspects of existing PEV technologies offer promising steps toward their mass commercialization. - Highlights: • Survey analysis examines consumer knowledge of PEVs and current public policies. • Majority of respondents have incorrect perceptions about basic PEV characteristics. • Vast majority of respondents are not aware of current state and local PEV policies. • Misperception about fuel and maintenance savings significantly affects PEV interest

  3. Development, modeling and research of the system of automatic control and equalization of the charge state of a battery pack of a hybrid engine of a vehicle

    Science.gov (United States)

    Bakhmutov, S.; Sizov, Y.; Kim, M.

    2018-02-01

    The article is devoted to the topical problem of developing effective means of monitoring and leveling the charge state of batteries in a power unit of hybrid and electric cars. A system for automatic control and equalization of the charge state of a battery pack of a combined power plant, the originality of which is protected by the Russian Federation patent, is developed and described. A distinctive feature of the device is the possibility of using it both in conditions of charging (power consumption) and in operating conditions (energy recovery). The device is characterized by high reliability, simplicity of the circuit-making solution, low self-consumption and low cost. To test the efficiency of the proposed device, its computer simulation and experimental research were carried out. As a result of multi factorial experiment, a regression equation has been obtained which makes it possible to judge the high efficiency of detecting the degree of inhomogeneity of controlled batteries with respect to the parameters of an equivalent replacement circuit: voltage, internal resistance and capacitance in the magnitude of the obtained coefficients of influence of each of these factors, and also take into account the effects of their pair interactions.

  4. Nanoscale charge localization induced by random orientations of organic molecules in hybrid perovskite CH3NH3PbI3

    Science.gov (United States)

    Ma, Jie; Wang, Lin-Wang

    2015-03-01

    Perovskite-based solar cells have achieved high solar-energy conversion efficiencies and attracted wide attentions nowadays. Despite the rapid progress in solar-cell devices, many fundamental issues of the hybrid perovskites have not been fully understood. Experimentally, it is well known that in CH3NH3PbI3, the organic molecules CH3NH3 are randomly orientated at the room temperature, but the impact of the random molecular orientation has not been investigated. Using linear-scaling ab-initiomethods, we have calculated the electronic structures of the tetragonal phase of CH3NH3PbI3 with randomly orientated organic molecules in large supercells up to ~20,000 atoms. Due to the dipole moment of the organic molecule, the random orientation creates a novel system with long-range potential fluctuations unlike alloys or other conventional disordered systems. We find that the charge densities of the conduction-band minimum and the valence-band maximum are localized separately in nanoscales due to the potential fluctuations. The charge localization causes electron-hole separation and reduces carrier recombination rates, which may contribute to the long carrier lifetime observed in experiments. We have also proposed a model to explain the charge localization.

  5. Hybrid stars

    Indian Academy of Sciences (India)

    Hybrid stars. AsHOK GOYAL. Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India. Abstract. Recently there have been important developments in the determination of neutron ... number and the electric charge. ... available to the system to rearrange concentration of charges for a given fraction of.

  6. Plug-in hybrid vehicles and the Vermont grid : a scoping analysis.

    Science.gov (United States)

    2008-02-01

    The concentration of greenhouse gases (GHG) in the earths atmosphere is creating changes in the : worlds climate. Reducing GHG emissions has become a national and international priority. : Combusting carbon in the transportation sector contribu...

  7. The economics of using plug-in hybrid electric vehicle battery packs for grid storage

    International Nuclear Information System (INIS)

    Peterson, Scott B.; Whitacre, J.F.; Apt, Jay

    2010-01-01

    We examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. Ancillary services such as frequency regulation are not considered here because only a small number of vehicles will saturate that market. Hourly electricity prices in three U.S. cities were used to arrive at daily profit values, while the economic losses associated with battery degradation were calculated based on data collected from A123 Systems LiFePO 4 /Graphite cells tested under combined driving and off-vehicle electricity utilization. For a 16 kWh (57.6 MJ) vehicle battery pack, the maximum annual profit with perfect market information and no battery degradation cost ranged from ∝US$140 to $250 in the three cities. If the measured battery degradation is applied, however, the maximum annual profit (if battery pack replacement costs fall to $5000 for a 16 kWh battery) decreases to ∝10-120. It appears unlikely that these profits alone will provide sufficient incentive to the vehicle owner to use the battery pack for electricity storage and later off-vehicle use. We also estimate grid net social welfare benefits from avoiding the construction and use of peaking generators that may accrue to the owner, finding that these are similar in magnitude to the energy arbitrage profit. (author)

  8. Optimal Policies for the Management of a Plug-In Hybrid Electric Vehicle Swap Station

    Science.gov (United States)

    2015-03-26

    occurring for many other vehicle manufacturers. Honda, BMW, Chevrolet, Ford, Nissan, Cadillac, Fiat, Mercedes, Mitsubishi, SMART, Volkswagon, Kia, and Toyota ...rules depend on the current state of the system and not the entire history of states, Markovian decision rules [16] are considered. Furthermore, the

  9. Application of fuel cell and electrolyzer as hydrogen energy storage system in energy management of electricity energy retailer in the presence of the renewable energy sources and plug-in electric vehicles

    International Nuclear Information System (INIS)

    Nojavan, Sayyad; Zare, Kazem; Mohammadi-Ivatloo, Behnam

    2017-01-01

    Highlights: • Electricity retailer determines selling price to consumers in the smart grids. • Real-time pricing is determined in comparison with fixed and time-of-use pricing. • Hydrogen storage systems and plug-in electric vehicles are used for energy sources. • Optimal charging and discharging power of electrolyser and fuel cell is determined. • Optimal charging and discharging power of plug-in electric vehicles is determined. - Abstract: The plug-in electric vehicles and hydrogen storage systems containing electrolyzer, stored hydrogen tanks and fuel cell as energy storage systems can bring various flexibilities to the energy management problem. In this paper, selling price determination and energy management problem of an electricity retailer in the smart grid under uncertainties have been proposed. Multiple energy procurement sources containing pool market, bilateral contracts, distributed generation units, renewable energy sources (photovoltaic system and wind turbine), plug-in electric vehicles and hydrogen storage systems are considered. The scenario-based stochastic method is used for uncertainty modeling of pool market prices, consumer demand, temperature, irradiation and wind speed. In the proposed model, the selling price is determined and compared by the retailer in the smart grid in three cases containing fixed pricing, time-of-use pricing and real-time pricing. It is shown that the selling price determination based on real-time pricing and flexibilities of plug-in electric vehicles and hydrogen storage systems leads to higher expected profit. The proposed model is formulated as mixed-integer linear programming that can be solved under General Algebraic Modeling System. To validate the proposed model, three types of selling price determination under four case studies are utilized and the results are compared.

  10. Tanadgusix Foundation Hydrogen / Plug In Electric Vehicle Project

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Martin [TDX Power Inc., Anchorage, AK (United States)

    2013-09-27

    TDX Foundation undertook this project in an effort to evaluate alternative transportation options and their application in the community of Saint Paul, Alaska an isolated island community in the Bering Sea. Both hydrogen and electric vehicle technology was evaluated for technical and economic feasibility. Hydrogen technology was found to be cost prohibitive. TDX demonstrated the implementation of various types of electric vehicles on St. Paul Island, including side-by-side all terrain vehicles, a Chevrolet Volt (sedan), and a Ford Transit Connect (small van). Results show that electric vehicles are a promising solution for transportation needs on St. Paul Island. Limited battery range and high charging time requirements result in decreased usability, even on a small, isolated island. These limitations were minimized by the installation of enhanced charging stations for the car and van. In collaboration with the University of Alaska Fairbanks (UAF), TDX was able to identify suitable technologies and demonstrate their applicability in the rural Alaskan environment. TDX and UAF partnered to engage and educate the entire community of Saint Paul – fom school children to elders – through presentation of research, findings, demonstrations, first hand operation of alternative fuel vehicles.

  11. Investigation of multi-state charge-storage properties of redox-active organic molecules in silicon-molecular hybrid devices for DRAM and Flash applications

    Science.gov (United States)

    Gowda, Srivardhan Shivappa

    Molecular electronics has recently spawned a considerable amount of interest with several molecules possessing charge-conduction and charge-storage properties proposed for use in electronic devices. Hybrid silicon-molecular technology has the promise of augmenting the current silicon technology and provide for a transitional path to future molecule-only technology. The focus of this dissertation work has been on developing a class of hybrid silicon-molecular electronic devices for DRAM and Flash memory applications utilizing redox-active molecules. This work exploits the ability of molecules to store charges with single-electron precision at room temperature. The hybrid devices are fabricated by forming self-assembled monolayers of redox-active molecules on Si and oxide (SiO2 and HfO2) surfaces via formation of covalent linkages. The molecules possess discrete quantum states from which electrons can tunnel to the Si substrate at discrete applied voltages (oxidation process, cell write), leaving behind a positively charged layer of molecules. The reduction (erase) process, which is the process of electrons tunneling back from Si to the molecules, neutralizes the positively charged molecular monolayer. Hybrid silicon-molecular capacitor test structures were electrically characterized with an electrolyte gate using cyclic voltammetry (CyV) and impedance spectroscopy (CV) techniques. The redox voltages, kinetics (write/erase speeds) and charge-retention characteristics were found to be strongly dependent on the Si doping type and densities, and ambient light. It was also determined that the redox energy states in the molecules communicate with the valence band of the Si substrate. This allows tuning of write and read states by modulating minority carriers in n- and p-Si substrates. Ultra-thin dielectric tunnel barriers (SiO2, HfO2) were placed between the molecules and the Si substrate to augment charge-retention for Flash memory applications. The redox response was

  12. Charge separation dynamics in a narrow band gap polymer-PbS nanocrystal blend for efficient hybrid solar cells

    NARCIS (Netherlands)

    Piliego, Claudia; Manca, Marianna; Kroon, Renee; Yarema, Maksym; Szendrei, Krisztina; Andersson, Mats R.; Heiss, Wolfgang; Loi, Maria A.

    2012-01-01

    We have demonstrated efficient hybrid solar cells based on lead sulfide (PbS) nanocrystals and a narrow band gap polymer, poly[{2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl}-alt-{[2,2'-(1,4-phenylene)bis-thiophene]-5,5'-diyl}], (PDPPTPT). An opportune mixing of

  13. Photogeneration and decay of charge carriers in hybrid bulk heterojunctions of ZnO nanoparticles and conjugated polymers

    NARCIS (Netherlands)

    Quist, P.A.C.; Beek, W.J.E.; Wienk, M.M.; Janssen, R.A.J.; Savenije, T.J.; Siebbeles, L.D.A.

    2006-01-01

    The photogeneration and decay of charge carriers in blend films of ZnO nanoparticles (diam. 5 nm) and poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) or poly(3-hexylthiophene) (P3HT) were studied by means of microwave-photoconductance measurements. Excitation of the

  14. Resonance Raman and excitation energy dependent charge transfer mechanism in halide-substituted hybrid perovskite solar cells.

    Science.gov (United States)

    Park, Byung-wook; Jain, Sagar M; Zhang, Xiaoliang; Hagfeldt, Anders; Boschloo, Gerrit; Edvinsson, Tomas

    2015-02-24

    Organo-metal halide perovskites (OMHPs) are materials with attractive properties for optoelectronics. They made a recent introduction in the photovoltaics world by methylammonium (MA) lead triiodide and show remarkably improved charge separation capabilities when chloride and bromide are added. Here we show how halide substitution in OMHPs with the nominal composition CH3NH3PbI2X, where X is I, Br, or Cl, influences the morphology, charge quantum yield, and local interaction with the organic MA cation. X-ray diffraction and photoluminescence data demonstrate that halide substitution affects the local structure in the OMHPs with separate MAPbI3 and MAPbCl3 phases. Raman spectroscopies as well as theoretical vibration calculations reveal that this at the same time delocalizes the charge to the MA cation, which can liberate the vibrational movement of the MA cation, leading to a more adaptive organic phase. The resonance Raman effect together with quantum chemical calculations is utilized to analyze the change in charge transfer mechanism upon electronic excitation and gives important clues for the mechanism of the much improved photovoltage and photocurrent also seen in the solar cell performance for the materials when chloride compounds are included in the preparation.

  15. Innovations for ISS Plug-In Plan (IPiP) Operations

    Science.gov (United States)

    Moore, Kevin D.

    2013-01-01

    Limited resources and increasing requirements will continue to influence decisions on ISS. The ISS Plug-In Plan (IPiP) supports power and data for utilization, systems, and daily operations through the Electrical Power System (EPS) Secondary Power/Data Subsystem. Given the fluid launch schedule, the focus of the Plug-In Plan has evolved to anticipate future requirements by judicious development and delivery of power supplies, power strips, Alternating Current (AC) power inverters, along with innovative deployment strategies. A partnership of ISS Program Office, Engineering Directorate, Mission Operations, and International Partners poses unique solutions with existing on-board equipment and resources.

  16. Evaluation of 320x240 pixel LEC GaAs Schottky barrier X-ray imaging arrays, hybridized to CMOS readout circuit based on charge integration

    CERN Document Server

    Irsigler, R; Alverbro, J; Borglind, J; Froejdh, C; Helander, P; Manolopoulos, S; O'Shea, V; Smith, K

    1999-01-01

    320x240 pixels GaAs Schottky barrier detector arrays were fabricated, hybridized to silicon readout circuits, and subsequently evaluated. The detector chip was based on semi-insulating LEC GaAs material. The square shaped pixel detector elements were of the Schottky barrier type and had a pitch of 38 mu m. The GaAs wafers were thinned down prior to the fabrication of the ohmic back contact. After dicing, the chips were indium bump, flip-chip bonded to CMOS readout circuits based on charge integration, and finally evaluated. A bias voltage between 50 and 100 V was sufficient to operate the detector. Results on I-V characteristics, noise behaviour and response to X-ray radiation are presented. Images of various objects and slit patterns were acquired by using a standard dental imaging X-ray source. The work done was a part of the XIMAGE project financed by the European Community (Brite-Euram). (author)

  17. The effects of variable dust size and charge on dust acoustic waves propagating in a hybrid Cairns–Tsallis complex plasma

    Science.gov (United States)

    El-Taibany, W. F.; El-Siragy, N. M.; Behery, E. E.; Elbendary, A. A.; Taha, R. M.

    2018-05-01

    The propagation characteristics of dust acoustic waves (DAWs) in a dusty plasma consisting of variable size dust grains, hybrid Cairns-Tsallis-distributed electrons, and nonthermal ions are studied. The charging of the dust grains is described by the orbital-motion-limited theory and the size of the dust grains obeys the power law dust size distribution. To describe the nonlinear propagation of the DAWs, a Zakharov-Kuznetsov equation is derived using a reductive perturbation method. It is found that the nonthermal and nonextensive parameters influence the main properties of DAWs. Moreover, our results reveal that the rarefactive waves can propagate mainly in the proposed plasma model while compressive waves can be detected for a very small range of the distribution parameters of plasma species, and the DAWs are faster and wider for smaller size dust grains. Applications of the present results to dusty plasma observations are briefly discussed.

  18. Design and Application of a Power Unit to Use Plug-In Electric Vehicles as an Uninterruptible Power Supply

    Directory of Open Access Journals (Sweden)

    Gorkem Sen

    2016-03-01

    Full Text Available Grid-enabled vehicles (GEVs such as plug-in electric vehicles present environmental and energy sustainability advantages compared to conventional vehicles. GEV runs solely on power generated by its own battery group, which supplies power to its electric motor. This battery group can be charged from external electric sources. Nowadays, the interaction of GEV with the power grid is unidirectional by the charging process. However, GEV can be operated bi-directionally by modifying its power unit. In such operating conditions, GEV can operate as an uninterruptible power supply (UPS and satisfy a portion or the total energy demand of the consumption center independent from utility grid, which is known as vehicle-to-home (V2H. In this paper, a power unit is developed for GEVs in the laboratory to conduct simulation and experimental studies to test the performance of GEVs as a UPS unit in V2H mode at the time of need. The activation and deactivation of the power unit and islanding protection unit are examined when energy is interrupted.

  19. Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array

    Science.gov (United States)

    Wu, Xiaohua; Hu, Xiaosong; Moura, Scott; Yin, Xiaofeng; Pickert, Volker

    2016-11-01

    Energy management strategies are instrumental in the performance and economy of smart homes integrating renewable energy and energy storage. This article focuses on stochastic energy management of a smart home with PEV (plug-in electric vehicle) energy storage and photovoltaic (PV) array. It is motivated by the challenges associated with sustainable energy supplies and the local energy storage opportunity provided by vehicle electrification. This paper seeks to minimize a consumer's energy charges under a time-of-use tariff, while satisfying home power demand and PEV charging requirements, and accommodating the variability of solar power. First, the random-variable models are developed, including Markov Chain model of PEV mobility, as well as predictive models of home power demand and PV power supply. Second, a stochastic optimal control problem is mathematically formulated for managing the power flow among energy sources in the smart home. Finally, based on time-varying electricity price, we systematically examine the performance of the proposed control strategy. As a result, the electric cost is 493.6% less for a Tesla Model S with optimal stochastic dynamic programming (SDP) control relative to the no optimal control case, and it is by 175.89% for a Nissan Leaf.

  20. Technical and legal considerations and solutions in the area of battery charging for electric vehicles

    Science.gov (United States)

    Juda, Z.

    2016-09-01

    The issue of protecting health of residents of urbanized areas from the effect of excessive particulate matter and toxic components of car exhaust gases imposes the need of introduction of clean electric vehicles to the market. The increasing market availability of electric vehicles, especially in the segment of short-range (neighborhood) vehicles is followed by development of new and advanced infrastructure solutions. This also applies to the increasingly popular hybrid vehicles PHEV (Plug-in Hybrid Electric Vehicles). However, problems with the existing designs are primarily associated with limited driving range on a single battery charge, the density of charging stations in urban and suburban area, energy system efficiency due to increased electricity demand and the unification of solutions for charging stations, on-board chargers and the necessary accessories. Technical solutions are dependent on many factors, including the type and size of battery in the vehicle and access to power grid with increased load capacity. The article discusses the legal and technical actions outlined in the above directions. It shows the available and planned solutions in this area.

  1. How Do The EV Project Participants Feel about Charging Their EV at Home?

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, James E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    Key Observations from the Survey of the EV Project Participants; In June 2013, 72% of EV Project participants were very satisfied with their home charging experience; 21% of participants relied totally on home charging for all of their charging needs; Volt owners relied more on home charging than Leaf owners, who reported more use of away-from-home charging; 74% of participants reported that they plug in their plug-in electric vehicle (PEV) every time they park at home. Others plugged in as they determined necessary to support their driving needs; 40% of participants reported that they would not have or are unsure that in June 2013 whether they would have purchased an alternating current (AC) Level 2 electric vehicle supply equipment (EVSE) for home charging if it had not been provided by The EV Project; and 61% of participants reported that The EV Project incentive was very important or important in their decision to obtain a PEV.

  2. Estimation method of state-of-charge for lithium-ion battery used in hybrid electric vehicles based on variable structure extended kalman filter

    Science.gov (United States)

    Sun, Yong; Ma, Zilin; Tang, Gongyou; Chen, Zheng; Zhang, Nong

    2016-07-01

    Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery, the predicted performance of power battery, especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV. However, the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected. A variable structure extended kalman filter(VSEKF)-based estimation method, which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition, is presented. First, the general lower-order battery equivalent circuit model(GLM), which includes column accumulation model, open circuit voltage model and the SOC output model, is established, and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data. Next, a VSEKF estimation method of SOC, which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method, is executed with different adaptive weighting coefficients, which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes. According to the experimental analysis, the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV. The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method. In Summary, the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system, which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method. The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.

  3. A flexible control strategy of plug-in electric vehicles operating in seven modes for smoothing load power curves in smart grid

    International Nuclear Information System (INIS)

    Khemakhem, Siwar; Rekik, Mouna; Krichen, Lotfi

    2017-01-01

    Plug-in electric vehicles (PEVs) seem to be an interesting new electrical load for improving the reliability of smart grid. The purpose of this work is to investigate a supervision strategy based on regulated charging of PEVs in order to guarantee an optimized power management of the system and consequently a flatter power demand curve. The system mainly includes PEVs powered by a Lithium-ion battery ensuring the charging and discharging operations of these PEVs at home and a daily load power demanded by home appliances. The purpose of the considered strategy is to detect the connection status of each PEV and to establish the priority order between these PEVs with certain flexibility which results in managing the PEVs through seven operating modes. The response of the control algorithm enables to ensure the power flow exchange between the PEVs and the electrical grid, especially at rush hours, and to minimize load power variance aiming to achieve the smoothness for the power demand curve and to reduce the stress of the electrical grid. The simulation results are presented in order to illustrate the efficiency of this power control approach. - Highlights: • A flexible power management algorithm of Plug-in electric vehicle is proposed. • This control can be applied for any home equipped with two PEVs. • The response is to ensure the power flow exchange between PEVs and power grid. • The main contribution is to achieve the smoothness for the daily power demand curve.

  4. Description of the Charge Transfer States at the Pentacene/C60 Interface: Combining Range-Separated Hybrid Functionals with the Polarizable Continuum Model

    KAUST Repository

    Zheng, Zilong

    2016-06-24

    Density functional theory (DFT) approaches based on range-separated hybrid functionals are currently methods of choice for the description of the charge-transfer (CT) states in organic donor/acceptor solar cells. However, these calculations are usually performed on small-size donor/acceptor complexes and as result do not account for electronic polarization effects. Here, using a pentacene/C60 complex as a model system, we discuss the ability of long-range corrected (LCR) hybrid functionals in combination with the polarizable continuum model (PCM) to determine the impact of the solid-state environment on the CT states. The CT energies are found to be insensitive to the interactions with the dielectric medium when a conventional time-dependent DFT/PCM (TDDFT/PCM) approach is used. However, a decrease in the energy of the CT state in the framework of LRC functionals can be obtained by using a smaller range-separated parameter when going from an isolated donor/acceptor complex to the solid-state case.

  5. Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response.

    Science.gov (United States)

    Du, Aijun; Sanvito, Stefano; Li, Zhen; Wang, Dawei; Jiao, Yan; Liao, Ting; Sun, Qiao; Ng, Yun Hau; Zhu, Zhonghua; Amal, Rose; Smith, Sean C

    2012-03-07

    Opening up a band gap and finding a suitable substrate material are two big challenges for building graphene-based nanodevices. Using state-of-the-art hybrid density functional theory incorporating long-range dispersion corrections, we investigate the interface between optically active graphitic carbon nitride (g-C(3)N(4)) and electronically active graphene. We find an inhomogeneous planar substrate (g-C(3)N(4)) promotes electron-rich and hole-rich regions, i.e., forming a well-defined electron-hole puddle, on the supported graphene layer. The composite displays significant charge transfer from graphene to the g-C(3)N(4) substrate, which alters the electronic properties of both components. In particular, the strong electronic coupling at the graphene/g-C(3)N(4) interface opens a 70 meV gap in g-C(3)N(4)-supported graphene, a feature that can potentially allow overcoming the graphene's band gap hurdle in constructing field effect transistors. Additionally, the 2-D planar structure of g-C(3)N(4) is free of dangling bonds, providing an ideal substrate for graphene to sit on. Furthermore, when compared to a pure g-C(3)N(4) monolayer, the hybrid graphene/g-C(3)N(4) complex displays an enhanced optical absorption in the visible region, a promising feature for novel photovoltaic and photocatalytic applications. © 2012 American Chemical Society

  6. Large-Scale Quantum Many-Body Perturbation on Spin and Charge Separation in the Excited States of the Synthesized Donor-Acceptor Hybrid PBI-Macrocycle Complex.

    Science.gov (United States)

    Ziaei, Vafa; Bredow, Thomas

    2017-03-17

    The reliable calculation of the excited states of charge-transfer (CT) compounds poses a major challenge to the ab initio community because the frequently employed method, time-dependent density functional theory (TD-DFT), massively relies on the underlying density functional, resulting in heavily Hartree-Fock (HF) exchange-dependent excited-state energies. By applying the highly sophisticated many-body perturbation approach, we address the encountered unreliabilities and inconsistencies of not optimally tuned (standard) TD-DFT regarding photo-excited CT phenomena, and present results concerning accurate vertical transition energies and the correct energetic ordering of the CT and the first visible singlet state of a recently synthesized thermodynamically stable large hybrid perylene bisimide-macrocycle complex. This is a large-scale application of the quantum many-body perturbation approach to a chemically relevant CT system, demonstrating the system-size independence of the quality of the many-body-based excitation energies. Furthermore, an optimal tuning of the ωB97X hybrid functional can well reproduce the many-body results, making TD-DFT a suitable choice but at the expense of introducing a range-separation parameter, which needs to be optimally tuned. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Charge separation dynamics in a narrow band gap polymer-PbS nanocrystal blend for efficient hybrid solar cells

    OpenAIRE

    Piliego, Claudia; Manca, Marianna; Kroon, Renee; Yarema, Maksym; Szendrei, Krisztina; Andersson, Mats R.; Heiss, Wolfgang; Loi, Maria A.

    2012-01-01

    We have demonstrated efficient hybrid solar cells based on lead sulfide (PbS) nanocrystals and a narrow band gap polymer, poly[{2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl}-alt-{[2,2'-(1,4-phenylene)bis-thiophene]-5,5'-diyl}], (PDPPTPT). An opportune mixing of the two materials led to the formation of an energetically favorable bulk hetero-junction with a broad spectral response. Using a basic device structure, we reached a power conversion efficiency of s...

  8. Molecular structure of the discotic liquid crystalline phase of hexa-peri-hexabenzocoronene/oligothiophene hybrid and their charge transport properties

    International Nuclear Information System (INIS)

    Bag, Saientan; Maingi, Vishal; Maiti, Prabal K.; Yelk, Joe; Glaser, Matthew A.; Clark, Noel A.; Walba, David M.

    2015-01-01

    Using atomistic molecular dynamics simulation, we study the discotic columnar liquid crystalline (LC) phases formed by a new organic compound having hexa-peri-Hexabenzocoronene (HBC) core with six pendant oligothiophene units recently synthesized by Nan Hu et al. [Adv. Mater. 26, 2066 (2014)]. This HBC core based LC phase was shown to have electric field responsive behavior and has important applications in organic electronics. Our simulation results confirm the hexagonal arrangement of columnar LC phase with a lattice spacing consistent with that obtained from small angle X-ray diffraction data. We have also calculated various positional and orientational correlation functions to characterize the ordering of the molecules in the columnar arrangement. The molecules in a column are arranged with an average twist of 25° having an average inter-molecular separation of ∼5 Å. Interestingly, we find an overall tilt angle of 43° between the columnar axis and HBC core. We also simulate the charge transport through this columnar phase and report the numerical value of charge carrier mobility for this liquid crystal phase. The charge carrier mobility is strongly influenced by the twist angle and average spacing of the molecules in the column

  9. A Mobility Performance Assessment on Plug-in EV Battery

    Directory of Open Access Journals (Sweden)

    Jay Lee

    2012-12-01

    Full Text Available This paper deals with mobility prediction of LiFeMnPO_4 batteries for an emission-free Electric Vehicle. The data-driven model has been developed based on empirical data from two different road types –highway and local streets –and two different driving modes – aggressive and moderate. Battery State of Charge (SoC can be predicted on any new roads based on the trained model by selecting the drving mode. In this paper, the performance of Adaptive Recurrent Neural Network (ARNN and regression is evaluated using two benchmark data sets. The ARNN model at first estimates the speed profile of the new road based on slope and then both slope and speed is going to be used as the input to estimate battery current and SoC. Through comparison it is found that if ARNN system is appropriately trained, it performs with better accuracy than Regression in both two road types and driving modes. The results show that prediction SoC model follows the Columb-counting SoC according to the road slope.

  10. Performance of hybrid p-type vertical transistors with poly(N-vinylcarbazole) as emitter and the transfer mechanism of charge carriers through the base

    International Nuclear Information System (INIS)

    Huang, Jinying; Ma, Dongge; Hümmelgen, Ivo A

    2013-01-01

    We report hybrid vertical architecture p-type transistors with poly(N-vinylcarbazole) as the emitter, p-type silicon as the collector and Al:Ca alloy layer as the base. The investigation of the common-base and common-emitter characteristics clearly demonstrates that the devices operate as permeable-base transistors (PBTs). The PBTs show common-base current gain α of 0.98 at −V BC = 1.5 V and common-emitter gain β of over 100. Atomic force microscope images of the base layer show an uneven surface, showing that the annealing does not dissolve the charge trap states but offers ‘pinholes’ for the oxidation in-depth even through the whole base layer. In this case, the charge carriers must tunnel the thin oxidized layer, and then are collected. It is clearly seen that there exists a barrier against holes injection from the base to the collector semiconductor at the interface, and the further oxidation caused by exposing the devices in air changes the operational mode of the resulting devices from the PBT to the metal-base transistor. (paper)

  11. Pressure-induced emission band separation of the hybridized local and charge transfer excited state in a TPE-based crystal.

    Science.gov (United States)

    Liu, Xuedan; Li, Aisen; Xu, Weiqing; Ma, Zhiyong; Jia, Xinru

    2018-05-08

    We herein report a newly synthesized simple molecule, named TPE[double bond, length as m-dash]C4, with twisted D-A structure. TPE[double bond, length as m-dash]C4 showed two intrinsic emission bands ascribed to the locally excited (LE) state and the intramolecular charge transfer (ICT) state, respectively. In the crystal state, the LE emission band is usually observed. However, by applying hydrostatic pressure to the powder sample and the single crystal sample of TPE[double bond, length as m-dash]C4, dual-fluorescence (445 nm and 532 nm) was emerged under high pressure, owing to the pressure-induced emission band separation of the hybridized local and charge transfer excited state (HLCT). It is found that the emission of TPE[double bond, length as m-dash]C4 is generally determined by the ratio of the LE state to the ICT state. The ICT emission band is much more sensitive to the external pressure than the LE emission band. The HLCT state leads to a sample with different responsiveness to grinding and hydrostatic pressure. This study is of significance in the molecular design of such D-A type molecules and in the control of photoluminescence features by molecular structure. Such results are expected to pave a new way to further understand the relationship between the D-A molecular structure and stimuli-responsive properties.

  12. Hybrid lithium-ion capacitor with LiFePO4/AC composite cathode - Long term cycle life study, rate effect and charge sharing analysis

    Science.gov (United States)

    Shellikeri, A.; Yturriaga, S.; Zheng, J. S.; Cao, W.; Hagen, M.; Read, J. A.; Jow, T. R.; Zheng, J. P.

    2018-07-01

    Energy storage devices, which can combine the advantages of lithium-ion battery with that of electric double layer capacitor, are of prime interest. Recently, composite cathodes, which combine a battery material with capacitor material, have shown promise in enhancing life cycle and energy/power performances. Lithium-ion capacitor (LIC), with unique charge storage mechanism of combining a pre-lithiated battery anode with a capacitor cathode, is one such device which has the potential to synergistically incorporate the composite cathode to enhance capacity and cycle life. We report here a hybrid LIC consisting of a lithium iron phosphate (LiFePO4-LFP)/Activated Carbon composite cathode in combination with a hard carbon anode, by integrating the cycle life and capacity enhancing strategies of a dry method of electrode fabrication, anode pre-lithiation and a 3:1 anode to cathode capacity ratio, demonstrating a long cycle life, while elaborating on the charge sharing between the faradaic and non-faradaic mechanism in the battery and capacitor materials, respectively in the composite cathode. An excellent cell capacity retention of 94% (1000 cycles at 1C) and 92% (100,000 cycles at 60C) were demonstrated, while retaining 78% (over 6000 cycles at 2.7C) and 67% (over 70,000 cycles at 43C) of the LFP capacity in the composite cathode.

  13. Favorable effects of lacrimal plugs in patients with an anophthalmic socket

    NARCIS (Netherlands)

    Vardizer, Y.; Lang, Y.; Mourits, M. P.; Briscoe, M. D.

    2007-01-01

    BACKGROUND: The use of punctal plugs in the treatment of dry eyes is well established. Anophthalmic patients have less tears in the anophthalmic socket in comparison to their normal side, due to an absent corneal reflex (Lee & Elsie, 1981a,b). Many of those patients complain of dry eye symptoms,

  14. Aggregation of Plug-in Electric Vehicles in Power Systems for Primary Frequency Control

    NARCIS (Netherlands)

    Izadkhast, S.

    2017-01-01

    The number of plug-in electric vehicles (PEVs) is likely to increase in the near future and these vehicles will probably be connected to the electric grid most of the day time. PEVs are interesting options to provide a wide variety of services such as primary frequency control (PFC), because they

  15. Predicting the market potential of plug-in electric vehicles using multiday GPS data.

    Science.gov (United States)

    2011-12-01

    "Detailed GPS data for a years worth of travel by 255 households from the Seattle area were used to : investigate how plug-in electric vehicle types may affect adoption rates and use levels. The results suggest : that a battery-electric vehicle (B...

  16. Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks

    DEFF Research Database (Denmark)

    García-Villalobos, J.; Zamora, I.; Knezovic, Katarina

    2016-01-01

    The massive introduction of plug-in electric vehicles (PEVs) into low voltage (LV) distribution networks will lead to several problems, such as: increase of energy losses, decrease of distribution transformer lifetime, lines and transformer overload issues, voltage drops and unbalances...

  17. Impact of plug-in electric vehicles on voltage unbalance in ...

    African Journals Online (AJOL)

    Plug-in electric vehicle (PEV) will soon be connected to residential distribution networks. ... generation units which transfer the energy stored in their battery into grid. ... electric vehicles on voltage imbalance in distribution system is presented. ... and other types of distribution generator such as solar photovoltaic and wind ...

  18. Abstraction and Model Checking in the PEPA Plug-in for Eclipse

    DEFF Research Database (Denmark)

    Smith, Michael James Andrew

    2010-01-01

    lead to very large Markov chains. One way of analysing such models is to use abstraction - constructing a smaller model that bounds the properties of the original. We present an extension to the PEPA plug-in for Eclipse that enables abstracting and model checking of PEPA models. This implements two new...

  19. Cooperative effects in the structuring of fluoride water clusters: Ab initio hybrid quantum mechanical/molecular mechanical model incorporating polarizable fluctuating charge solvent

    Science.gov (United States)

    Bryce, Richard A.; Vincent, Mark A.; Malcolm, Nathaniel O. J.; Hillier, Ian H.; Burton, Neil A.

    1998-08-01

    A new hybrid quantum mechanical/molecular mechanical model of solvation is developed and used to describe the structure and dynamics of small fluoride/water clusters, using an ab initio wave function to model the ion and a fluctuating charge potential to model the waters. Appropriate parameters for the water-water and fluoride-water interactions are derived, with the fluoride anion being described by density functional theory and a large Gaussian basis. The role of solvent polarization in determining the structure and energetics of F(H2O)4- clusters is investigated, predicting a slightly greater stability of the interior compared to the surface structure, in agreement with ab initio studies. An extended Lagrangian treatment of the polarizable water, in which the water atomic charges fluctuate dynamically, is used to study the dynamics of F(H2O)4- cluster. A simulation using a fixed solvent charge distribution indicates principally interior, solvated states for the cluster. However, a preponderance of trisolvated configurations is observed using the polarizable model at 300 K, which involves only three direct fluoride-water hydrogen bonds. Ab initio calculations confirm this trisolvated species as a thermally accessible state at room temperature, in addition to the tetrasolvated interior and surface structures. Extension of this polarizable water model to fluoride clusters with five and six waters gave less satisfactory agreement with experimental energies and with ab initio geometries. However, our results do suggest that a quantitative model of solvent polarization is fundamental for an accurate understanding of the properties of anionic water clusters.

  20. Influence of Triply-Charged Ions and Ionization Cross-Sections in a Hybrid-PIC Model of a Hall Thruster Discharge

    Science.gov (United States)

    Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani

    2014-01-01

    The sensitivity of xenon ionization rates to collision cross-sections is studied within the framework of a hybrid-PIC model of a Hall thruster discharge. A revised curve fit based on the Drawin form is proposed and is shown to better reproduce the measured crosssections at high electron energies, with differences in the integrated rate coefficients being on the order of 10% for electron temperatures between 20 eV and 30 eV. The revised fit is implemented into HPHall and the updated model is used to simulate NASA's HiVHAc EDU2 Hall thruster at discharge voltages of 300, 400, and 500 V. For all three operating points, the revised cross-sections result in an increase in the predicted thrust and anode efficiency, reducing the error relative to experimental performance measurements. Electron temperature and ionization reaction rates are shown to follow the trends expected based on the integrated rate coefficients. The effects of triply-charged xenon are also assessed. The predicted thruster performance is found to have little or no dependence on the presence of triply-charged ions. The fraction of ion current carried by triply-charged ions is found to be on the order of 1% and increases slightly with increasing discharge voltage. The reaction rates for the 0?III, I?III, and II?III ionization reactions are found to be of similar order of magnitude and are about one order of magnitude smaller than the rate of 0?II ionization in the discharge channel.

  1. An insight into the mechanism of charge transfer properties of hybrid organic (MEH-PPV): Inorganic (TiO2) nanocomposites

    International Nuclear Information System (INIS)

    Mittal, Tanu; Tiwari, Sangeeta; Mehta, Aarti; Sharma, Shailesh N.

    2016-01-01

    Now a days, inorganic nanoparticles are gaining importance and are potential candidate in different organic electronic device application like (LEDs, PVs) due to their novel properties and confinement in Nano-dimensions. [1, 2] In the present work, we have compared the properties of titanium di oxide (TiO 2 ) nanoparticles (NPs) synthesized by using two different chemical routes aqueous and ethanol respectively. These synthesized TiO 2 nanoparticles have been characterized by X-ray diffraction spectroscopy (XRD) for phase confirmation. It was observed that synthesized nanoparticles are in anatase phase for both preparation routes. Morphological information was collected by scanning electron microscopy (SEM) which confirms that particles are almost spherical in shape and distributed uniformly which is further ensured by transmission electron microscopy (TEM). Dynamic light scattering (DLS) technique was also used for further confirmation of size distribution of as-synthesized nanoparticles. Optical properties were also investigated by photoluminescence and UV-Vis spectroscopy and calculated bandgap was found to be in the range of 3.3-3.5eV for TiO 2 (aq/eth) nanoparticles. The increase in bandgap values with respect to bulk (3.2 eV) confirms that as- synthesized nanoparticles are confined in nanodimensions. As synthesized nanoparticles were interacted with MEHPPV polymer (donor) matrix to make their respective MEHPPV: TiO 2 nanocomposites and to confirm the charge transfer mechanism from polymer to nanoparticles. It can be observed from photoluminescence (PL) quenching experiments that continuous quenching obtained for respective nanocomposites confirms better charge transfer from polymer to inorganic TiO 2 nanoparticles respectively. Because of, better quenching and simultaneously enhanced charge transfer of respective nanocomposites, ensures that these nanocomposites are greatly applicable for photovoltaics (PVs) especially in Hybrid Solar cells (HSCs).

  2. A small animal PET based on GAPDs and charge signal transmission approach for hybrid PET-MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jihoon; Choi, Yong; Hong, Key Jo; Hu, Wei; Jung, Jin Ho; Huh, Yoonsuk [Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul 121-742 (Korea, Republic of); Kim, Byung-Tae, E-mail: ychoi.image@gmail.com [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of)

    2011-08-15

    Positron emission tomography (PET) employing Geiger-mode avalanche photodiodes (GAPDs) and charge signal transmission approach was developed for small animal imaging. Animal PET contained 16 LYSO and GAPD detector modules that were arranged in a 70 mm diameter ring with an axial field of view of 13 mm. The GAPDs charge output signals were transmitted to a preamplifier located remotely using 300 cm flexible flat cables. The position decoder circuits (PDCs) were used to multiplex the PET signals from 256 to 4 channels. The outputs of the PDCs were digitized and further-processed in the data acquisition unit. The cross-compatibilities of the PET detectors and MRI were assessed outside and inside the MRI. Experimental studies of the developed full ring PET were performed to examine the spatial resolution and sensitivity. Phantom and mouse images were acquired to examine the imaging performance. The mean energy and time resolution of the PET detector were 17.6% and 1.5 ns, respectively. No obvious degradation on PET and MRI was observed during simultaneous PET-MRI data acquisition. The measured spatial resolution and sensitivity at the CFOV were 2.8 mm and 0.7%, respectively. In addition, a 3 mm diameter line source was clearly resolved in the hot-sphere phantom images. The reconstructed transaxial PET images of the mouse brain and tumor displaying the glucose metabolism patterns were imaged well. These results demonstrate GAPD and the charge signal transmission approach can allow the development of high performance small animal PET with improved MR compatibility.

  3. Charge transfer through DNA/DNA duplexes and DNA/RNA hybrids: complex theoretical and experimental studies

    Czech Academy of Sciences Publication Activity Database

    Kratochvílová, Irena; Vala, M.; Weiter, M.; Špérová, M.; Schneider, Bohdan; Páv, Ondřej; Šebera, Jakub; Rosenberg, Ivan; Sychrovský, Vladimír

    180-181, Oct-Nov (2013), s. 127-134 ISSN 0301-4622 R&D Projects: GA TA ČR TA01011165; GA ČR(CZ) GAP304/10/1951; GA ČR GA13-27676S; GA ČR GA202/09/0193 Institutional support: RVO:68378271 ; RVO:86652036 ; RVO:61388963 Keywords : charge transfer in oligonucleotides * temperature dependent steady state fluorescence spectroscopy * time-resolved fluorescence spectroscopy Subject RIV: JJ - Other Materials; CC - Organic Chemistry (UOCHB-X) Impact factor: 2.319, year: 2013

  4. Silicon PIN diode hybrid arrays for charged particle detection: Building blocks for vertex detectors at the SSC

    International Nuclear Information System (INIS)

    Kramer, G.; Gaalema, S.; Shapiro, S.L.; Dunwoodie, W.M.; Arens, J.F.; Jernigan, J.G.

    1989-05-01

    Two-dimensional arrays of solid state detectors have long been used in visible and infrared systems. Hybrid arrays with separately optimized detector and readout substrates have been extensively developed for infrared sensors. The characteristics and use of these infrared readout chips with silicon PIN diode arrays produced by MICRON SEMICONDUCTOR for detecting high-energy particles are reported. Some of these arrays have been produced in formats as large as 512 /times/ 512 pixels; others have been radiation hardened to total dose levels beyond 1 Mrad. Data generation rates of 380 megasamples/second have been achieved. Analog and digital signal transmission and processing techniques have also been developed to accept and reduce these high data rates. 9 refs., 15 figs., 2 tabs

  5. Effect of regional grid mix, driving patterns and climate on the comparative carbon footprint of gasoline and plug-in electric vehicles in the United States

    Science.gov (United States)

    Yuksel, Tugce; Tamayao, Mili-Ann M.; Hendrickson, Chris; Azevedo, Inês M. L.; Michalek, Jeremy J.

    2016-04-01

    We compare life cycle greenhouse gas (GHG) emissions from several light-duty passenger gasoline and plug-in electric vehicles (PEVs) across US counties by accounting for regional differences due to marginal grid mix, ambient temperature, patterns of vehicle miles traveled (VMT), and driving conditions (city versus highway). We find that PEVs can have larger or smaller carbon footprints than gasoline vehicles, depending on these regional factors and the specific vehicle models being compared. The Nissan Leaf battery electric vehicle has a smaller carbon footprint than the most efficient gasoline vehicle (the Toyota Prius) in the urban counties of California, Texas and Florida, whereas the Prius has a smaller carbon footprint in the Midwest and the South. The Leaf is lower emitting than the Mazda 3 conventional gasoline vehicle in most urban counties, but the Mazda 3 is lower emitting in rural Midwest counties. The Chevrolet Volt plug-in hybrid electric vehicle has a larger carbon footprint than the Prius throughout the continental US, though the Volt has a smaller carbon footprint than the Mazda 3 in many urban counties. Regional grid mix, temperature, driving conditions, and vehicle model all have substantial implications for identifying which technology has the lowest carbon footprint, whereas regional patterns of VMT have a much smaller effect. Given the variation in relative GHG implications, it is unlikely that blunt policy instruments that favor specific technology categories can ensure emission reductions universally.

  6. Effect of regional grid mix, driving patterns and climate on the comparative carbon footprint of gasoline and plug-in electric vehicles in the United States

    International Nuclear Information System (INIS)

    Yuksel, Tugce; Michalek, Jeremy J; Tamayao, Mili-Ann M; Hendrickson, Chris; Azevedo, Inês M L

    2016-01-01

    We compare life cycle greenhouse gas (GHG) emissions from several light-duty passenger gasoline and plug-in electric vehicles (PEVs) across US counties by accounting for regional differences due to marginal grid mix, ambient temperature, patterns of vehicle miles traveled (VMT), and driving conditions (city versus highway). We find that PEVs can have larger or smaller carbon footprints than gasoline vehicles, depending on these regional factors and the specific vehicle models being compared. The Nissan Leaf battery electric vehicle has a smaller carbon footprint than the most efficient gasoline vehicle (the Toyota Prius) in the urban counties of California, Texas and Florida, whereas the Prius has a smaller carbon footprint in the Midwest and the South. The Leaf is lower emitting than the Mazda 3 conventional gasoline vehicle in most urban counties, but the Mazda 3 is lower emitting in rural Midwest counties. The Chevrolet Volt plug-in hybrid electric vehicle has a larger carbon footprint than the Prius throughout the continental US, though the Volt has a smaller carbon footprint than the Mazda 3 in many urban counties. Regional grid mix, temperature, driving conditions, and vehicle model all have substantial implications for identifying which technology has the lowest carbon footprint, whereas regional patterns of VMT have a much smaller effect. Given the variation in relative GHG implications, it is unlikely that blunt policy instruments that favor specific technology categories can ensure emission reductions universally. (letter)

  7. A hybrid approach for quantizing complicated motion of a charged particle in time-varying magnetic field

    International Nuclear Information System (INIS)

    Menouar, Salah; Choi, Jeong Ryeol

    2015-01-01

    Quantum characteristics of a charged particle subjected to a singular oscillator potential under an external magnetic field is investigated via SU(1,1) Lie algebraic approach together with the invariant operator and the unitary transformation methods. The system we managed is somewhat complicated since we considered not only the time-variation of the effective mass of the system but also the dependence of the external magnetic field on time in an arbitrary fashion. In this case, the system is a kind of time-dependent Hamiltonian systems which require more delicate treatment when we study it. The complete wave functions are obtained without relying on the methods of perturbation and/or approximation, and the global phases of the system are identified. To promote the understanding of our development, we applied it to a particular case, assuming that the effective mass slowly varies with time under a time-dependent magnetic field

  8. Oak Ridge National Laboratory Wireless Charging of Electric Vehicles - CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL; Campbell, Steven L [ORNL; Seiber, Larry Eugene [ORNL; White, Cliff P [ORNL; Chinthavali, Madhu Sudhan [ORNL; Tang, Lixin [ORNL; Chambon, Paul H [ORNL; Ozpineci, Burak [ORNL; Smith, David E [ORNL

    2016-06-20

    , ORNL and Toyota TEMA worked closely on the vehicle integration plans, compatibility, and the interoperability of the wireless charging technology developed by ORNL for the vehicles manufactured by Toyota. These vehicles include a Toyota Prius Plug-in Hybrid electric vehicle, a Scion iQ electric vehicle, and two Toyota RAV4 electric vehicles. The research include not only the hardware integration but also the controls and communication systems development to control and automate the charging process for these vehicles by utilizing a feedback channel from vehicle to the stationary unit for power regulation.

  9. JPL's electric and hybrid vehicles project: Project activities and preliminary test results. [power conditioning and battery charge efficiency

    Science.gov (United States)

    Barber, T. A.

    1980-01-01

    Efforts to achieve a 100 mile urban range, to reduce petroleum usage 40% to 70%, and to commercialize battery technology are discussed with emphasis on an all plastic body, four passenger car that is flywheel assisted and battery powered, and on an all metal body, four passenger car with front wheel drive and front motor. For the near term case, a parallel hybrid in which the electric motor and the internal combustion engine may directly power the drive wheels, is preferred to a series design. A five passenger car in which the electric motor and the gasoline engine both feed into the same transmission is discussed. Upgraded demonstration vehicles were tested using advanced lead acid, nickel zinc, nickel iron, and zinc chloride batteries to determine maximum acceleration, constant speed, and battery behavior. The near term batteries demonstrated significant improvement relative to current lead acid batteries. The increase in range was due to improved energy density, and ampere hour capacity, with relatively 1 small weight and volume differences.

  10. Polyamidoamine-Decorated Nanodiamonds as a Hybrid Gene Delivery Vector and siRNA Structural Characterization at the Charged Interfaces.

    Science.gov (United States)

    Lim, Dae Gon; Rajasekaran, Nirmal; Lee, Dukhee; Kim, Nam Ah; Jung, Hun Soon; Hong, Sungyoul; Shin, Young Kee; Kang, Eunah; Jeong, Seong Hoon

    2017-09-20

    Nanodiamonds have been discovered as a new exogenous material source in biomedical applications. As a new potent form of nanodiamond (ND), polyamidoamine-decorated nanodiamonds (PAMAM-NDs) were prepared for E7 or E6 oncoprotein-suppressing siRNA gene delivery for high risk human papillomavirus-induced cervical cancer, such as types 16 and 18. It is critical to understand the physicochemical properties of siRNA complexes immobilized on cationic solid ND surfaces in the aspect of biomolecular structural and conformational changes, as the new inert carbon material can be extended into the application of a gene delivery vector. A spectral study of siRNA/PAMAM-ND complexes using differential scanning calorimetry and circular dichroism spectroscopy proved that the hydrogen bonding and electrostatic interactions between siRNA and PAMAM-NDs decreased endothermic heat capacity. Moreover, siRNA/PAMAM-ND complexes showed low cell cytotoxicity and significant suppressing effects for forward target E6 and E7 oncogenic genes, proving functional and therapeutic efficacy. The cellular uptake of siRNA/PAMAM-ND complexes at 8 h was visualized by macropinocytes and direct endosomal escape of the siRNA/PAMAM-ND complexes. It is presumed that PAMAM-NDs provided a buffering cushion to adjust the pH and hard mechanical stress to escape endosomes. siRNA/PAMAM-ND complexes provide a potential organic/inorganic hybrid material source for gene delivery carriers.

  11. Reduced graphene oxide wrapped Bi{sub 2}WO{sub 6} hybrid with ultrafast charge separation and improved photoelectrocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huan [School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China (China); Liang, Yinghua, E-mail: liangyh@ncst.edu.cn [School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China (China); College of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, PR China (China); Liu, Li; Hu, Jinshan [College of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, PR China (China); Cui, Wenquan, E-mail: wkcui@163.com [College of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, PR China (China)

    2017-01-15

    Highlights: • The rGO wrapped Bi{sub 2}WO{sub 6} photoelectrode was successfully synthesized. • The Bi{sub 2}WO{sub 6}@rGOhighlyincreasedthechargeseparationefficiency. • The photoelectrode exhibited enhanced photoelectrocatalytic degradation for RhB. - Abstract: A reduced graphene oxide (rGO) wrapped Bi{sub 2}WO{sub 6} (Bi{sub 2}WO{sub 6}@rGO) hybrid as photoelectrode for enhanced photoelectrocatalytic (PEC) degradation of organic pollutants is reported, which exhibited excellent charge separation and photoconversion efficiency. The core@shell structured Bi{sub 2}WO{sub 6}@rGO photoelectrode yielded a pronounced 1.56-fold and 23.8-fold photocurrent density at 1.0 V vs. saturated calomel electrode (SCE), than that of loading structured Bi{sub 2}WO{sub 6}-rGO and pure Bi{sub 2}WO{sub 6}. The Bi{sub 2}WO{sub 6}@rGO hybrid exhibited enhanced photoelectrocatalytic efficiency for degradation of Rhodamine B (RhB), which was 43.0% and 65.6% higher than that of photocatalytic (PC) and electrocatalytic (EC) processes, respectively. The enhancement in PEC degradation of RhB benefited from: (1) a strong interaction and a wide range of conjugation were formed in the core@shell system; (2) a 0.26 V of flat band potential was negatively shifted in case of Bi{sub 2}WO{sub 6}@rGO composite; (3) the photogenerated electrons and holes could be spatially separated by external electric potentials.

  12. Exciton generation/dissociation/charge-transfer enhancement in inorganic/organic hybrid solar cells by robust single nanocrystalline LnPxOy (Ln = Eu, Y) doping.

    Science.gov (United States)

    Jin, Xiao; Sun, Weifu; Chen, Zihan; Wei, Taihuei; Chen, Chuyang; He, Xingdao; Yuan, Yongbiao; Li, Yue; Li, Qinghua

    2014-06-11

    Low-temperature solution-processed photovoltaics suffer from low efficiencies because of poor exciton or electron-hole transfer. Inorganic/organic hybrid solar cell, although still in its infancy, has attracted great interest thus far. One of the promising ways to enhance exciton dissociation or electron-hole transport is the doping of lanthanide phosphate ions. However, the underlying photophysical mechanism remains poorly understood. Herein, by applying femtosecond transient absorption spectroscopy, we successfully distinguished hot electron, less energetic electron, hole transport from electron-hole recombination. Concrete evidence has been provided that lanthanide phosphate doping improves the efficiency of both hot electron and "less energetic" electron transfers from donor to acceptor, but the hole transport almost remains unchanged. In particular, the hot electron transfer lifetime was shortened from 30.2 to 12.7 ps, that is, more than 60% faster than pure TiO2 acceptor. Such improvement was ascribed to the facts that the conduction band (CB) edge energy level of TiO2 has been elevated by 0.2 eV, while the valence band level almost remains unchanged, thus not only narrowing the energy offset between CB levels of TiO2 and P3HT, but also meanwhile enlarging the band gap of TiO2 itself that permits one to inhibit electron-hole recombination within TiO2. Consequently, lanthanide phosphate doped TiO2/P3HT bulk-heterojunction solar cell has been demonstrated to be a promising hybrid solar cell, and a notable power conversion efficiency of 2.91% is therefore attained. This work indicates that lanthanide compound ions can efficiently facilitate exciton generation, dissociation, and charge transport, thus enhancing photovoltaic performance.

  13. Optimal distribution feeder reconfiguration for increasing the penetration of plug-in electric vehicles and minimizing network costs

    International Nuclear Information System (INIS)

    Kavousi-Fard, Abdollah; Abbasi, Alireza; Rostami, Mohammad-Amin; Khosravi, Abbas

    2015-01-01

    Appearance of PEVs (Plug-in Electric Vehicles) in future transportation sector brings forward opportunities and challenges from grid perspective. Increased utilization of PEVs will result in problems such as greater total loss, unbalanced load factor, feeder congestion and voltage drop. PEVs are mobile energy storages dispersed all over the network with benefits to both owners and utilities in case of V2G (Vehicle-to-Grid) possibility. The intelligent bidirectional power flow between grid and large number of vehicles adds complexity to the system and requires operative tools to schedule V2G energy and subdue PEV impacts. In this paper, DFR (Distribution Feeder Reconfiguration) is utilized to optimally coordinate PEV operation in a stochastic framework. Uncertainty in PEVs characteristics can be due to several sources from location and time of grid connection to driving pattern and battery SoC (State-of-Charge). The proposed stochastic problem is solved with a self-adaptive evolutionary swarm algorithm based on SSO (Social Spider Optimization) algorithm. Numerical studies verify the efficacy of the proposed DFR to improve the system performance and optimal dispatch of V2G. - Highlights: • Consideration effect of PEVS on the distribution feeder reconfiguration. • Increasing the penetration of PEVS. • Introducing a new artificial optimization algorithm. • Modeling the uncertainty in network. • Investigating the degradation cost of batteries in V2G technology.

  14. A 10MS/s 8-bit charge-redistribution ADC for hybrid pixel applications in 65m CMOS

    CERN Document Server

    Kishishita, T; Krüger, H; Koch, M; Germic, L; Wermes, N

    2013-01-01

    The design and measurement results of an 8-bit SAR ADC, based on a charge-redistribution DAC, are presented. This ADC is characterized by superior power efficiency and small area, realized by employing a lateral metal–metal capacitor array and a dynamic two-stage comparator. To avoid the need for a highspeed clock and its associated power consumption, an asynchronous logic was implemented in a logic control cell. A test chip has been developed in a 65 nm CMOS technology, including eight ADC channels with different layout flavors of the capacitor array, a transimpedance amplifier as a signal input structure, a serializer, and a custom-made LVDS driver for data transmission. The integral (INL) and differential (DNL) nonlinearities are measured below 0.5 LSB and 0.8 LSB, respectively, for the best channel operating at a sampling frequency of 10 MS/s. The area occupies 40 μm 70 μm for one ADC channel. The power consumption is estimated as 4 μW at 1 MS/s and 38 μW at 10 MS/s with a supply rail of 1.2 V. Th...

  15. Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost

    International Nuclear Information System (INIS)

    Traut, Elizabeth; Hendrickson, Chris; Klampfl, Erica; Liu, Yimin; Michalek, Jeremy J.

    2012-01-01

    Electrified vehicles can reduce greenhouse gas (GHG) emissions by shifting energy demand from gasoline to electricity. GHG reduction potential depends on vehicle design, adoption, driving and charging patterns, charging infrastructure, and electricity generation mix. We construct an optimization model to study these factors by determining optimal design of conventional vehicles, hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs) with optimal allocation of vehicle designs and dedicated workplace charging infrastructure in the fleet for minimum life cycle cost or GHG emissions over a range of scenarios. We focus on vehicles with similar body size and acceleration to a Toyota Prius under government 5-cycle driving conditions. We find that under the current US grid mix, PHEVs offer only small GHG emissions reductions compared to HEVs, and workplace charging is insignificant. With grid decarbonization, PHEVs and BEVs offer substantial GHG emissions reductions, and workplace charging provides additional benefits. HEVs are optimal or near-optimal for minimum cost in most scenarios. High gas prices and low vehicle and battery costs are the major drivers for PHEVs and BEVs to enter and dominate the cost-optimal fleet. Carbon prices have little effect. Cost and range restrictions limit penetration of BEVs. - Highlights: ► We pose an MINLP model to minimize cost and GHG emissions of electrified vehicles. ► We design PHEVs and BEVs and assign vehicles and charging infrastructure in US fleet. ► Under US grid mix, PEVs provide minor GHG reductions and work chargers do little. ► HEVs are robust; PEVs and work charging potential improve with a decarbonized grid. ► We quantify factors needed for PEVs to enter and dominate the optimal fleet.

  16. Analytical Plug-In Method for Kernel Density Estimator Applied to Genetic Neutrality Study

    Science.gov (United States)

    Troudi, Molka; Alimi, Adel M.; Saoudi, Samir

    2008-12-01

    The plug-in method enables optimization of the bandwidth of the kernel density estimator in order to estimate probability density functions (pdfs). Here, a faster procedure than that of the common plug-in method is proposed. The mean integrated square error (MISE) depends directly upon [InlineEquation not available: see fulltext.] which is linked to the second-order derivative of the pdf. As we intend to introduce an analytical approximation of [InlineEquation not available: see fulltext.], the pdf is estimated only once, at the end of iterations. These two kinds of algorithm are tested on different random variables having distributions known for their difficult estimation. Finally, they are applied to genetic data in order to provide a better characterisation in the mean of neutrality of Tunisian Berber populations.

  17. Analytical Plug-In Method for Kernel Density Estimator Applied to Genetic Neutrality Study

    Directory of Open Access Journals (Sweden)

    Samir Saoudi

    2008-07-01

    Full Text Available The plug-in method enables optimization of the bandwidth of the kernel density estimator in order to estimate probability density functions (pdfs. Here, a faster procedure than that of the common plug-in method is proposed. The mean integrated square error (MISE depends directly upon J(f which is linked to the second-order derivative of the pdf. As we intend to introduce an analytical approximation of J(f, the pdf is estimated only once, at the end of iterations. These two kinds of algorithm are tested on different random variables having distributions known for their difficult estimation. Finally, they are applied to genetic data in order to provide a better characterisation in the mean of neutrality of Tunisian Berber populations.

  18. Optimal Operation of Plug-In Electric Vehicles in Power Systems with High Wind Power Penetrations

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2013-01-01

    in the power systems with high wind power penetrations. In this paper, the integration of plug-in electric vehicles in the power systems with high wind power penetrations is proposed and discussed. Optimal operation strategies of PEV in the spot market are proposed in order to decrease the energy cost for PEV......The Danish power system has a large penetration of wind power. The wind fluctuation causes a high variation in the power generation, which must be balanced by other sources. The battery storage based Plug-In Electric Vehicles (PEV) may be a possible solution to balance the wind power variations...... owners. Furthermore, the application of battery storage based aggregated PEV is analyzed as a regulation services provider in the power system with high wind power penetrations. The western Danish power system where the total share of annual wind power production is more than 27% of the electrical energy...

  19. A plug-in to Eclipse for VHDL source codes: functionalities

    Science.gov (United States)

    Niton, B.; Poźniak, K. T.; Romaniuk, R. S.

    The paper presents an original application, written by authors, which supports writing and edition of source codes in VHDL language. It is a step towards fully automatic, augmented code writing for photonic and electronic systems, also systems based on FPGA and/or DSP processors. An implementation is described, based on VEditor. VEditor is a free license program. Thus, the work presented in this paper supplements and extends this free license. The introduction characterizes shortly available tools on the market which serve for aiding the design processes of electronic systems in VHDL. Particular attention was put on plug-ins to the Eclipse environment and Emacs program. There are presented detailed properties of the written plug-in such as: programming extension conception, and the results of the activities of formatter, re-factorizer, code hider, and other new additions to the VEditor program.

  20. Development of Analytical Plug-ins for ENSITE: Version 1.0

    Science.gov (United States)

    2017-11-01

    careful re- search. Although the mathematical basis for calculating slope from elevation data is very well established, context and details for the...Can the code work on multiple computers ? • Does the code work when appended to other existing analyses in the same language/environment? Once the...TERMS Military bases—Location, Data curation, Geospatial data, Computer programs, Plug-ins ( Computer programs), Military planning 16. SECURITY

  1. Making distributed ALICE analysis simple using the GRID plug-in

    International Nuclear Information System (INIS)

    Gheata, A; Gheata, M

    2012-01-01

    We have developed an interface within the ALICE analysis framework that allows transparent usage of the experiment's distributed resources. This analysis plug-in makes it possible to configure back-end specific parameters from a single interface and to run with no change the same custom user analysis in many computing environments, from local workstations to PROOF clusters or GRID resources. The tool is used now extensively in the ALICE collaboration for both end-user analysis and large scale productions.

  2. Market-based Demand Response via Residential Plug-in Electric Vehicles in Smart Grids

    OpenAIRE

    Rassaei, Farshad; Soh, Wee-Seng; Chua, Kee-Chaing

    2015-01-01

    Flexibility in power demand, diverse usage patterns and storage capability of plug-in electric vehicles (PEVs) grow the elasticity of residential electricity demand remarkably. This elasticity can be utilized to form the daily aggregated demand profile and/or alter instantaneous demand of a system wherein a large number of residential PEVs share one electricity retailer or an aggregator. In this paper, we propose a demand response (DR) technique to manage vehicle-to-grid (V2G) enabled PEVs' e...

  3. Assessing the Potential of Plug-in Electric Vehicles in Active Distribution Networks

    DEFF Research Database (Denmark)

    Kordheili, Reza Ahmadi; Pourmousavi, Seyyed Ali; Savaghebi, Mehdi

    2016-01-01

    A multi-objective optimization algorithm is proposed in this paper to increase the penetration level of renewable energy sources (RESs) in distribution networks by intelligent management of plug-in electric vehicle (PEV) storage. The proposed algorithm is defined to manage the reverse power flow ...... demonstrate the capability of the algorithm in increasing solar power penetration in the grid up to 50%, depending on the PEV penetration level and the freedom of the system operator in managing the available PEV storage....

  4. Hydrate plugs in subsea pipelines and non-invasive methodology for localization

    OpenAIRE

    Joachim, Sannes

    2013-01-01

    Master's thesis in Offshore technology With the growth in global energy demand and the lack of new shallow-water and onshore opportunities, there is growing emphasis on oil and gas production in deep-water environments. A particular challenge for flow assurance engineers is to ensure pipelines remain free from restrictions created during operation. Hydrate plugging, in particular is, one of the major flow assurance challenge, and as oil and gas production moves into harsh and challengin...

  5. Efficiency enhancement of hybridized solar cells through co-sensitization and fast charge extraction by up-converted polyethylene glycol modified carbon quantum dots

    Science.gov (United States)

    Zhu, Wanlu; Duan, Jialong; Duan, Yanyan; Zhao, Yuanyuan; Tang, Qunwei

    2017-11-01

    Photovoltaics are promising solutions to energy crisis and environmental pollution problems. The dye-sensitized solar cells with mesoscopic structures have attracted growing interests because of zero emissions, easy fabrication, scalable materials and techniques, etc. However, the state-of-the-art dye-sensitized solar cells have narrow spectral absorption for photoelectric conversion and high electron-hole recombination rate under sunlight illumination. Therefore, it is a persistent object to make wide-spectral absorption and fast charge extraction solar cells for energy harvest in both solar and dark-light conditions. To address this issue, we present here experimental realization of a category of solar cells converting visible and near-infrared light into electricity by co-sensitizing photoanode with N719 dye and polyethylene glycol (PEG) modified carbon quantum dots (PEG-m-CQDs), arising from up-conversion and hole-transporting behaviors of PEG-m-CQDs as well as photofluorescence of green-emitting long persistence phosphors. The optimized solar cell yields maximized photoelectric conversion efficiencies of 9.89% and 25.81% under simulated sunlight (air mass 1.5, 100 mW cm-2) illumination and dark conditions, respectively. This work is far from optimization, but the physical proof-of-concept hybridized solar cell may markedly increase electricity generation time and total power output of photovoltaic platforms.

  6. Electric vehicle charging algorithms for coordination of the grid and distribution transformer levels

    International Nuclear Information System (INIS)

    Ramos Muñoz, Edgar; Razeghi, Ghazal; Zhang, Li; Jabbari, Faryar

    2016-01-01

    The need to reduce greenhouse gas emissions and fossil fuel consumption has increased the popularity of plug-in electric vehicles. However, a large penetration of plug-in electric vehicles can pose challenges at the grid and local distribution levels. Various charging strategies have been proposed to address such challenges, often separately. In this paper, it is shown that, with uncoordinated charging, distribution transformers and the grid can operate under highly undesirable conditions. Next, several strategies that require modest communication efforts are proposed to mitigate the burden created by high concentrations of plug-in electric vehicles, at the grid and local levels. Existing transformer and battery electric vehicle characteristics are used along with the National Household Travel Survey to simulate various charging strategies. It is shown through the analysis of hot spot temperature and equivalent aging factor that the coordinated strategies proposed here reduce the chances of transformer failure with the addition of plug-in electric vehicle loads, even for an under-designed transformer while uncontrolled and uncoordinated plug-in electric vehicle charging results in increased risk of transformer failure. - Highlights: • Charging algorithm for battery electric vehicles, for high penetration levels. • Algorithm reduces transformer overloading, for grid level valley filling. • Computation and communication requirements are minimal. • The distributed algorithm is implemented without large scale iterations. • Hot spot temperature and loss of life for transformers are evaluated.

  7. Integrated motor drive and non-isolated battery charger based on the split-phase PM motors for plug-in vehicles

    Directory of Open Access Journals (Sweden)

    Saeid Haghbin

    2014-06-01

    Full Text Available A novel integrated motor drive and non-isolated battery charger based on a split-phase permanent magnet (PM motor is presented and described for a plug-in vehicle. The motor windings are reconfigured by a relay for the traction and charging operation. In traction mode, the motor is like a normal three-phase motor, whereas in the charging mode, after windings reconnection, the system is a three-phase Boost rectifier. One important challenge to use the motor as three inductors in charger circuit is to have it in standstill during the battery charging. Based on the presented mathematical model of a split-phase PM motor, the zero-torque condition of the motor is explained which led to a proper windings reconnection for the charging. Simulation and experimental results of two separate practical systems are provided to verify the proposed integrated battery charger. Some practical limitations and design recommendations are provided to achieve a more realistic practical system.

  8. An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †

    DEFF Research Database (Denmark)

    You, Shi; Hu, Junjie; Ziras, Charalampos

    2016-01-01

    The design and implementation of management policies for plug-in electric vehicles (PEVs) need to be supported by a holistic understanding of the functional processes, their complex interactions, and their response to various changes. Models developed to represent different functional processes...... and systems are seen as useful tools to support the related studies for different stakeholders in a tangible way. This paper presents an overview of modeling approaches applied to support aggregation-based management and integration of PEVs from the perspective of fleet operators and grid operators......, respectively. We start by explaining a structured modeling approach, i.e., a flexible combination of process models and system models, applied to different management and integration studies. A state-of-the-art overview of modeling approaches applied to represent several key processes, such as charging...

  9. Microgrid and Plug in Electric Vehicle (PEV) with Vehicle to Grid (V2G) Power Services Capability (Briefing Charts)

    Science.gov (United States)

    2015-09-01

    for public release Microgrid and Plug in Electric Vehicle (PEV) with Vehicle to Grid (V2G) Power Services Capability Shukri Kazbour PEV Lead Engineer...collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 01 SEP 2015 2. REPORT TYPE 3. DATES COVERED...00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Microgrid and Plug in Electric Vehicle (PEV) with Vehicle to Grid (V2G) Power Services Capability

  10. Photonics at the frontiers. Generation of few-cycle light pulses via NOPCPA and real-time probing of charge transfer in hybrid photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Daniel

    2011-11-11

    this thesis for the first time succeeded to resolve the photoinduced charge-transfer in the conjugate polymer polythiophene and in hybrid polythiophene/silicon solar cells in real time. Thereby a controverse debate about the nature of the primary photoexcitation in organic semiconductors is resolved: Excitons dissociate with 140 fs time constant to polarons (charge carriers). Deciding parameters (for instance structural order, charge-carrier mobility) for the efficiency of the generation and extraction of free charge carriers can be determined. Further ultrashort-time experiments at novel organic solar cells have here been begun and indicated.

  11. A natural language interface plug-in for cooperative query answering in biological databases.

    Science.gov (United States)

    Jamil, Hasan M

    2012-06-11

    One of the many unique features of biological databases is that the mere existence of a ground data item is not always a precondition for a query response. It may be argued that from a biologist's standpoint, queries are not always best posed using a structured language. By this we mean that approximate and flexible responses to natural language like queries are well suited for this domain. This is partly due to biologists' tendency to seek simpler interfaces and partly due to the fact that questions in biology involve high level concepts that are open to interpretations computed using sophisticated tools. In such highly interpretive environments, rigidly structured databases do not always perform well. In this paper, our goal is to propose a semantic correspondence plug-in to aid natural language query processing over arbitrary biological database schema with an aim to providing cooperative responses to queries tailored to users' interpretations. Natural language interfaces for databases are generally effective when they are tuned to the underlying database schema and its semantics. Therefore, changes in database schema become impossible to support, or a substantial reorganization cost must be absorbed to reflect any change. We leverage developments in natural language parsing, rule languages and ontologies, and data integration technologies to assemble a prototype query processor that is able to transform a natural language query into a semantically equivalent structured query over the database. We allow knowledge rules and their frequent modifications as part of the underlying database schema. The approach we adopt in our plug-in overcomes some of the serious limitations of many contemporary natural language interfaces, including support for schema modifications and independence from underlying database schema. The plug-in introduced in this paper is generic and facilitates connecting user selected natural language interfaces to arbitrary databases using a

  12. The Barriers to Acceptance of Plug-in Electric Vehicles: 2017 Update

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark R. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-09

    Vehicle manufacturers, government agencies, universities, private researchers, and organizations worldwide are pursuing advanced vehicle technologies that aim to reduce the consumption of petroleum in the forms of gasoline and diesel. Plug-in electric vehicles (PEVs) are one such technology. This report, an update to the previous version published in December 2016, details findings from a study in February 2017 of broad American public sentiments toward issues that surround PEVs. This report is supported by the U.S. Department of Energy's Vehicle Technologies Office in alignment with its mission to develop and deploy these technologies to improve energy security, enhance mobility flexibility, reduce transportation costs, and increase environmental sustainability.

  13. Acoustic emission monitoring of leakage through seal-plug in PHWR systems

    Energy Technology Data Exchange (ETDEWEB)

    Jha, S K; Badgujar, B P; Goswami, G L [Bhabha Atomic Research Centre, Bombay (India). Atomic Fuels Div.; Patel, R J; Bhattacharya, S; Agrawal, R G [Bhabha Atomic Research Centre, Mumbai (India). Refuelling Technology Division

    1994-12-31

    Acoustic Emission (AE) technique is being developed as an in-service inspection tool for monitoring the leakage through seal-plugs in Pressurised Heavy Water Reactors (PHWRs). Time as well as frequency domain analysis have been utilised during the experiment carried out at Bhabha Atomic Research Centre (BARC) using test set up simulating the pressure and temperature conditions. The work involved were to determine the temperature profile on end-fitting, effect of pressure and temperature on leakage etc. This paper discusses various relationships like signal-level vs. pressure, frequency spectrum of signal, signal-level vs. leakage based on the above experimental work. (author). 4 refs., 6 figs.

  14. Consumer Views on Plug-in Electric Vehicles -- National Benchmark Report (Second Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    Vehicle manufacturers, government agencies, universities, private researchers, and organizations worldwide are pursuing advanced vehicle technologies that aim to reduce the consumption of petroleum in the forms of gasoline and diesel. Plug-in electric vehicles (PEVs) are one such technology. This report, an update to the version published in January 2016, details findings from a study in February 2015 of broad American public sentiments toward issues that surround PEVs. This report is supported by the U.S. Department of Energy's Vehicle Technologies Office in alignment with its mission to develop and deploy these technologies to improve energy security, enhance mobility flexibility, reduce transportation costs, and increase environmental sustainability.

  15. Apparatus for sealing a rotatable shield plug in a liquid metal nuclear reactor

    International Nuclear Information System (INIS)

    Winkleblack, R.K.

    1980-01-01

    An apparatus for sealing a rotatable shield plug in a nuclear reactor having liquid metal coolant is described. The apparatus includes a dip -ring seal adapted to provide a fluid barrier between the liquid metal and the atmosphere and to permit rotation of the shield plug. The apparatus also includes a static seal for the rotatable shield plug located between the dip-ring seal and the liquid metal. The static seal isolates the dip-ring seal from the liquid metal vapor during operation at power and can be disengaged for rotation of the shield plug

  16. Combustion aided by a glow plug in diesel engines under cold idling conditions

    OpenAIRE

    Li, Qile

    2016-01-01

    Glow plugs are widely used to promote the desired cold start and post-cold start combustion characteristics of light duty diesel engines. The importance of the glow plug becomes more apparent when the compression ratio is low. An experimental investigation of combustion initiation and development aided by the glow plug has been carried out on a single cylinder HPCR DI diesel engine with a low compression ratio of 15.5:1. High speed imaging of combustion initiated by the glow plug in a combust...

  17. A specialized plug-in software module for computer-aided quantitative measurement of medical images.

    Science.gov (United States)

    Wang, Q; Zeng, Y J; Huo, P; Hu, J L; Zhang, J H

    2003-12-01

    This paper presents a specialized system for quantitative measurement of medical images. Using Visual C++, we developed a computer-aided software based on Image-Pro Plus (IPP), a software development platform. When transferred to the hard disk of a computer by an MVPCI-V3A frame grabber, medical images can be automatically processed by our own IPP plug-in for immunohistochemical analysis, cytomorphological measurement and blood vessel segmentation. In 34 clinical studies, the system has shown its high stability, reliability and ease of utility.

  18. Development of a plug in for image j for the quality control of a scanner

    International Nuclear Information System (INIS)

    Otal Palacin, A.; Fuentemilla Urio, N.; Olasolo Alonso, J.; Martin Albina, M. L.; Miquelez Alonso, S.; Lozares Cordero, S.; Pellejero, S.; Maneru Camara, F.; Rubio Arroniz, A.; Soto Prados, P.

    2013-01-01

    The increase in the quality of radiology equipment requirements necessitates that give us tools efficient that they simplify the more possible tasks of analysis of the data obtained in the quality controls. We can choose by solutions based on commercial software or otherwise try to develop our own to measure of our needs. For this reason we have developed a plug-in for the ImageJ program that automates the work of analysis of image quality in the Navarro health service scanners. (Author)

  19. Monte Carlo simulations of the distributions of intra- and extra-vesicular ions and membrane associated charges in hybrid liposomes composed of negatively charged tetraether and zwitterionic diester phospholipids

    Directory of Open Access Journals (Sweden)

    István P. Sugár

    2017-04-01

    Full Text Available Here, we model a negatively charged lipid vesicle, composed of a mixture of bipolar tetraether and diester (or diether phospholipid molecules, by a spherical shell that has zero ion permeability. We take into consideration all the charge-charge interactions between intra-vesicular ions, extra-vesicular ions, and membrane lipid associated charges. Monte Carlo simulations result in homogeneous and double-exponential ion distribution, respectively, in the intra- and extra-vesicular space. The extra-vesicular ion concentration close to the membrane surface is proportional to the total amount of the membrane charges (Nm and is independent of the partitioning of the membrane charges between the outer (Nom and inner membrane (Nim surface. This result shows that one should not disregard the effect of the charges on the inner membrane surface when calculating the ion distributions around a charged vesicle. If the partitioning of the membrane charges is not restricted (i.e., lipid flip-flop is allowed, then at different Nm, the Nom/Nim ratio remains constant and the value of Nom/Nim, as a consequence of the interaction between every charges of the model, is close to, but significantly higher than, the ratio of the outer to the inner surface area of the membrane. These results indicate that the amount and the orientation of the negatively-charged tetraether lipids in the membrane are important determinants of membrane properties in tetraether/zwitterionic diester phospholipid liposomes. Finally we compared the results of our discrete charge model and continuous models based on the solutions of the Poisson-Boltzmann equation and pointed out qualitative similarities and sometimes major quantitative differences between these two types of models.

  20. Real-Time Occupant Based Plug-in Device Control Using ICT in Office Buildings

    Directory of Open Access Journals (Sweden)

    Woo-Bin Bae

    2016-03-01

    Full Text Available The purpose of this study is to reduce the unnecessary plug loads used by computers, monitors, and computer peripheral devices, all of which account for more than 95% of the entire plug loads of an office building. To this end, an occupant-based plug-in device control (OBC-P software was developed. The OBC-P software collects real-time information about the presence or absence of occupants who are connected to the access point through the Wifi and controls the power of monitors or computers, while a standby power off device controls computer peripheral devices. To measure the plug load saving of the occupant-based plug-in device control, an experiment was conducted, targeting 10 occupants of three research labs of the graduate school, for two weeks. The experiment results showed that it could save the plug loads of monitors and computer peripheral devices by 15% in the Awake mode, and by 26% in the Sleep mode.

  1. A Computable Plug-In Estimator of Minimum Volume Sets for Novelty Detection

    KAUST Repository

    Park, Chiwoo

    2010-10-01

    A minimum volume set of a probability density is a region of minimum size among the regions covering a given probability mass of the density. Effective methods for finding the minimum volume sets are very useful for detecting failures or anomalies in commercial and security applications-a problem known as novelty detection. One theoretical approach of estimating the minimum volume set is to use a density level set where a kernel density estimator is plugged into the optimization problem that yields the appropriate level. Such a plug-in estimator is not of practical use because solving the corresponding minimization problem is usually intractable. A modified plug-in estimator was proposed by Hyndman in 1996 to overcome the computation difficulty of the theoretical approach but is not well studied in the literature. In this paper, we provide theoretical support to this estimator by showing its asymptotic consistency. We also show that this estimator is very competitive to other existing novelty detection methods through an extensive empirical study. ©2010 INFORMS.

  2. Game-Theoretic Energy Management for Residential Users with Dischargeable Plug-in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Bingtuan Gao

    2014-11-01

    Full Text Available The plug-in electric vehicle (PEV has attracted more and more attention because of the energy crisis and environmental pollution, which is also the main shiftable load of the residential users’ demand side management (DSM system in the future smart grid (SG. In this paper, we employ game theory to provide an autonomous energy management system among residential users considering selling energy back to the utility company by discharging the PEV’s battery. By assuming all users are equipped with smart meters to execute automatic energy consumption scheduling (ECS and the energy company can adopt adequate pricing tariffs relating to time and level of energy usage, we formulate an energy management game, where the players are the residential users and the strategies are their daily schedules of household appliance use. We will show that the Nash equilibrium of the formulated energy management game can guarantee the global optimization in terms of minimizing the energy costs, where the depreciation cost of PEV’s battery because of discharging and selling energy back is also considered. Simulation results verify that the proposed game-theoretic approach can reduce the total energy cost and individual daily electricity payment. Moreover, since plug-in electric bicycles (PEBs are currently widely used in China, simulation results of residential users owing household appliances and bidirectional energy trading of PEBs are also provided and discussed.

  3. Design, production and initial state of the backfill and plug in deposition tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Lennart; Gunnarsson, David; Johannesson, Lars-Erik; Jonsson, Esther

    2010-12-15

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility. The report provides input on the initial state of the backfill and plug in deposition tunnels for the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the engineered barriers once they have been finally placed in the KBS-3 repository and will not be further handled within the repository facility. In addition, the report provides input to the operational safety report, SR-Operation, on how the backfill and plug shall be handled and installed. The report presents the design premises and reference designs of the backfill and plug in deposition tunnels and verifies their conformity to the design premises. It also describes the production of the backfill from excavation and delivery of backfill material to installation in the deposition tunnel, and gives an outline of the installation of the plug. Finally, the initial states of the backfill and plug and their conformity to the reference designs and design premises are presented

  4. A Computable Plug-In Estimator of Minimum Volume Sets for Novelty Detection

    KAUST Repository

    Park, Chiwoo; Huang, Jianhua Z.; Ding, Yu

    2010-01-01

    A minimum volume set of a probability density is a region of minimum size among the regions covering a given probability mass of the density. Effective methods for finding the minimum volume sets are very useful for detecting failures or anomalies in commercial and security applications-a problem known as novelty detection. One theoretical approach of estimating the minimum volume set is to use a density level set where a kernel density estimator is plugged into the optimization problem that yields the appropriate level. Such a plug-in estimator is not of practical use because solving the corresponding minimization problem is usually intractable. A modified plug-in estimator was proposed by Hyndman in 1996 to overcome the computation difficulty of the theoretical approach but is not well studied in the literature. In this paper, we provide theoretical support to this estimator by showing its asymptotic consistency. We also show that this estimator is very competitive to other existing novelty detection methods through an extensive empirical study. ©2010 INFORMS.

  5. MINERVA: A multi-modality plug-in-based radiation therapy treatment planning system

    International Nuclear Information System (INIS)

    Wemple, C. A.; Wessol, D. E.; Nigg, D. W.; Cogliati, J. J.; Milvich, M.; Fredrickson, C. M.; Perkins, M.; Harkin, G. J.; Hartmann-Siantar, C. L.; Lehmann, J.; Flickinger, T.; Pletcher, D.; Yuan, A.; DeNardo, G. L.

    2005-01-01

    Researchers at the INEEL, MSU, LLNL and UCD have undertaken development of MINERVA, a patient-centric, multi-modal, radiation treatment planning system, which can be used for planning and analysing several radiotherapy modalities, either singly or combined, using common treatment planning tools. It employs an integrated, lightweight plug-in architecture to accommodate multi-modal treatment planning using standard interface components. The design also facilitates the future integration of improved planning technologies. The code is being developed with the Java programming language for inter-operability. The MINERVA design includes the image processing, model definition and data analysis modules with a central module to coordinate communication and data transfer. Dose calculation is performed by source and transport plug-in modules, which communicate either directly through the database or through MINERVA's openly published, extensible markup language (XML)-based application programmer's interface (API). All internal data are managed by a database management system and can be exported to other applications or new installations through the API data formats. A full computation path has been established for molecular-targeted radiotherapy treatment planning, with additional treatment modalities presently under development. (authors)

  6. A Study of China s Explosive Growth in the Plug-in Electric Vehicle Market

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Shawn [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lin, Zhenhong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wu, Zhixin [China Automotive Technology and Research Center, Tianjin China; Zheng, Jihu [China Automotive Technology and Research Center, Tianjin (China); Lyu, Renzhi [China Automotive Technology and Research Center, Tianjin (China); Przesmitzki, Steven V. [Aramco Services Company, Novi, MI (United States); He, Xin [Aramco Services Company, Novi, MI (United States)

    2017-01-01

    The year 2015 marks a turning point in China s plug-in electric vehicle (PEV) or new energy vehicle (NEV) industry, with an explosive growth in both productions and sales, following the gloomy period of 2009-2012. The PEV production in 2015 reached a record level of nearly 380,000 units, a 352 % increase from 2014, making China the largest PEV market in the world. For the potential implications on energy and the environment, it is worth studying the driving forces of China s PEV market and understanding its future trajectory and dynamics. The key findings of this report are listed in the following. Though controversial, the government monetary incentives have played a significant role to impel China to be the largest light PEV (191,100 units) market in the world. Chinese vehicle buyers appear more price sensitive on PEVs. Inexpensive low-cost micro electric vehicles are the most popular vehicle model in China s PEV market (38.9 % of the PEV market in 2015). In contrast, the premium or luxury vehicles are more popular in the gasoline vehicle segment. In fact, China is expected to be the largest premium car market in 2016. The PEV sales growth is primarily possible because of the young domestic private-owned auto manufacturers, which are mostly located in south China. Top-tier conventional vehicle automakers in China appear to be less proactive in the PEV market, based on market shares. This is in clear contrast to the U.S. market, where major automakers are generally the primary players in the PEV market. The PEVs produced by the domestic automakers are concentrated in the low-end market segment, while the high-end vehicle segment is dominated by the foreign brands. At present, the substantial market growth and government subsidies afford the domestic entrants to quickly gain profits in the low-end segment. The PEV consumers in China are very sensitive to the vehicle price, thus prefer the PEVs with cheaper prices after government subsidies, and care less about the

  7. Net air emissions from electric vehicles: the effect of carbon price and charging strategies.

    Science.gov (United States)

    Peterson, Scott B; Whitacre, J F; Apt, Jay

    2011-03-01

    Plug-in hybrid electric vehicles (PHEVs) may become part of the transportation fleet on time scales of a decade or two. We calculate the electric grid load increase and emissions due to vehicle battery charging in PJM and NYISO with the current generation mix, the current mix with a $50/tonne CO(2) price, and this case but with existing coal generators retrofitted with 80% CO(2) capture. We also examine all new generation being natural gas or wind+gas. PHEV fleet percentages between 0.4 and 50% are examined. Vehicles with small (4 kWh) and large (16 kWh) batteries are modeled with driving patterns from the National Household Transportation Survey. Three charging strategies and three scenarios for future electric generation are considered. When compared to 2020 CAFE standards, net CO(2) emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows somewhat smaller benefits unless coal units are fitted with CCS or replaced with lower CO(2) generation. NO(X) is reduced in both RTOs, but there is upward pressure on SO(2) emissions or allowance prices under a cap.

  8. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.

    Science.gov (United States)

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  9. Consumer Behavior and the Plug-In Electric Vehicle Purchase Decision Process: A Research Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Margaret [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impact Dept.; Fujita, K. Sydney [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impact Dept.

    2018-01-31

    This report synthesizes consumer behavior research as it pertains to the plug-in electric vehicle (PEV) purchase decision process. The purpose is to clarify what is known about the vital role consumers play in the U.S. PEV market as it matures to become less policy-reliant and more representative of the U.S., both spatially and demographically. A more representative PEV market will: help OEMs recoup more of their R&D investments in PEVs; help American consumers access the economic and performance benefits of PEVs; and help the U.S. become more energy independent while improving air quality-related public health and reducing greenhouse gas emissions.

  10. Plug-in Based Analysis Framework for LHC Post-Mortem Analysis

    CERN Document Server

    Gorbonosov, R; Zerlauth, M; Baggiolini, V

    2014-01-01

    Plug-in based software architectures [1] are extensible, enforce modularity and allow several teams to work in parallel. But they have certain technical and organizational challenges, which we discuss in this paper. We gained our experience when developing the Post-Mortem Analysis (PMA) system, which is a mission critical system for the Large Hadron Collider (LHC). We used a plugin-based architecture with a general-purpose analysis engine, for which physicists and equipment experts code plugins containing the analysis algorithms. We have over 45 analysis plugins developed by a dozen of domain experts. This paper focuses on the design challenges we faced in order to mitigate the risks of executing third-party code: assurance that even a badly written plugin doesn't perturb the work of the overall application; plugin execution control which allows to detect plugin misbehaviour and react; robust communication mechanism between plugins, diagnostics facilitation in case of plugin failure; testing of the plugins be...

  11. Consumer Views on Plug-in Electric Vehicles -- National Benchmark Report

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-31

    Vehicle manufacturers, U.S. Department of Energy laboratories, universities, private researchers, and organizations from around the globe are pursuing advanced vehicle technologies that aim to reduce the consumption of petroleum in the form of gasoline and diesel. In order to make these technologies most appealing to the marketplace, they must take consumer sentiment into account. This report details study findings of broad American public sentiments toward issues that surround the advanced vehicle technologies of plug-in electric vehicles and is supported by the U.S. Department of Energy's Vehicle Technology Office in alignment with its mission to develop and deploy these technologies to improve energy security, provide mobility flexibility, reduce transportation costs, and increase environmental sustainability.

  12. A new ImageJ plug-in "ActogramJ" for chronobiological analyses.

    Science.gov (United States)

    Schmid, Benjamin; Helfrich-Förster, Charlotte; Yoshii, Taishi

    2011-10-01

    While the rapid development of personal computers and high-throughput recording systems for circadian rhythms allow chronobiologists to produce huge amounts of data, the software to analyze them often lags behind. Here, we announce newly developed chronobiology software that is easy to use, compatible with many different systems, and freely available. Our system can perform the most frequently used analyses: actogram drawing, periodogram analysis, and waveform analysis. The software is distributed as a pure Java plug-in for ImageJ and so works on the 3 main operating systems: Linux, Macintosh, and Windows. We believe that this free software raises the speed of data analyses and makes studying chronobiology accessible to newcomers. © 2011 The Author(s)

  13. National Economic Value Assessment of Plug-in Electric Vehicles: Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bush, Brian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eichman, Joshua [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stright, Dana [National Renewable Energy Lab. (NREL), Golden, CO (United States); Krishnan, Venkat [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    The adoption of plug-in electric vehicles (PEVs) can reduce household fuel expenditures by substituting electricity for gasoline while reducing greenhouse gas emissions and petroleum imports. A scenario approach is employed to provide insights into the long-term economic value of increased PEV market growth across the United States. The analytic methods estimate fundamental costs and benefits associated with an economic allocation of PEVs across households based upon household driving patterns, projected vehicle cost and performance attributes, and simulations of a future electricity grid. To explore the full technological potential of PEVs and resulting demands on the electricity grid, very high PEV market growth projections from previous studies are relied upon to develop multiple future scenarios.

  14. Modeling light-duty plug-in electric vehicles for national energy and transportation planning

    International Nuclear Information System (INIS)

    Wu, Di; Aliprantis, Dionysios C.

    2013-01-01

    This paper sets forth a family of models of light-duty plug-in electric vehicle (PEV) fleets, appropriate for conducting long-term national-level planning studies of the energy and transportation sectors in an integrated manner. Using one of the proposed models, three case studies on the evolution of the U.S. energy and transportation infrastructures are performed, where portfolios of optimum investments over a 40-year horizon are identified, and interdependencies between the two sectors are highlighted. The results indicate that with a gradual but aggressive introduction of PEVs coupled with investments in renewable energy, the total cost from the energy and transportation systems can be reduced by 5%, and that overall emissions from electricity generation and light-duty vehicle (LDV) tailpipes can be reduced by 10% over the 40-year horizon. The annual gasoline consumption from LDVs can be reduced by 66% by the end of the planning horizon, but an additional 800 TWh of annual electricity demand will be introduced. In addition, various scenarios of greenhouse gas (GHG) emissions reductions are investigated. It is found that GHG emissions can be significantly reduced with only a marginal cost increment, by shifting electricity generation from coal to renewable sources. - Highlights: • We model plug-in electric vehicles (PEVs) for long-term national planning studies. • Realistic travel patterns are used to estimate the vehicles' energy consumption. • National energy and transportation system interdependencies are considered. • Case studies illustrate optimum investments in energy and transportation sectors. • PEVs synergistically with renewable energy can aggressively reduce GHG emissions

  15. Enabling fast charging - Vehicle considerations

    Science.gov (United States)

    Meintz, Andrew; Zhang, Jiucai; Vijayagopal, Ram; Kreutzer, Cory; Ahmed, Shabbir; Bloom, Ira; Burnham, Andrew; Carlson, Richard B.; Dias, Fernando; Dufek, Eric J.; Francfort, James; Hardy, Keith; Jansen, Andrew N.; Keyser, Matthew; Markel, Anthony; Michelbacher, Christopher; Mohanpurkar, Manish; Pesaran, Ahmad; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Tanim, Tanvir

    2017-11-01

    To achieve a successful increase in the plug-in battery electric vehicle (BEV) market, it is anticipated that a significant improvement in battery performance is required to increase the range that BEVs can travel and the rate at which they can be recharged. While the range that BEVs can travel on a single recharge is improving, the recharge rate is still much slower than the refueling rate of conventional internal combustion engine vehicles. To achieve comparable recharge times, we explore the vehicle considerations of charge rates of at least 400 kW. Faster recharge is expected to significantly mitigate the perceived deficiencies for long-distance transportation, to provide alternative charging in densely populated areas where overnight charging at home may not be possible, and to reduce range anxiety for travel within a city when unplanned charging may be required. This substantial increase in charging rate is expected to create technical issues in the design of the battery system and the vehicle's electrical architecture that must be resolved. This work focuses on vehicle system design and total recharge time to meet the goals of implementing improved charge rates and the impacts of these expected increases on system voltage and vehicle components.

  16. Threshold-Based Random Charging Scheme for Decentralized PEV Charging Operation in a Smart Grid.

    Science.gov (United States)

    Kwon, Ojin; Kim, Pilkee; Yoon, Yong-Jin

    2016-12-26

    Smart grids have been introduced to replace conventional power distribution systems without real time monitoring for accommodating the future market penetration of plug-in electric vehicles (PEVs). When a large number of PEVs require simultaneous battery charging, charging coordination techniques have become one of the most critical factors to optimize the PEV charging performance and the conventional distribution system. In this case, considerable computational complexity of a central controller and exchange of real time information among PEVs may occur. To alleviate these problems, a novel threshold-based random charging (TBRC) operation for a decentralized charging system is proposed. Using PEV charging thresholds and random access rates, the PEVs themselves can participate in the charging requests. As PEVs with a high battery state do not transmit the charging requests to the central controller, the complexity of the central controller decreases due to the reduction of the charging requests. In addition, both the charging threshold and the random access rate are statistically calculated based on the average of supply power of the PEV charging system that do not require a real time update. By using the proposed TBRC with a tolerable PEV charging degradation, a 51% reduction of the PEV charging requests is achieved.

  17. Consumer Views: Fuel Economy, Plug-in Electric Vehicle Battery Range, and Willingness to Pay for Vehicle Technology

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-11

    This presentation includes data captured by the National Renewable Energy Laboratory (NREL) to support the U.S. Department of Energy's Vehicle Technologies Office (VTO) research efforts. The data capture consumer views on fuel economy, plug-in electric vehicle battery range, and willingness to pay for advanced vehicle technologies.

  18. Hybrid power system intelligent operation and protection involving distributed architectures and pulsed loads

    Science.gov (United States)

    Mohamed, Ahmed

    Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available

  19. Enabling Fast Charging: A Technology Gap Assessment

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-31

    Decreasing energy consumption across the U.S. transportation sector, especially in commercial light-duty vehicles, is essential for the United States to gain energy independence. Recently, powertrain electrification with plug-in electric vehicles (PEVs) have gained traction as an alternative due to their inherent efficiency advantages compared to the traditional internal combustion engine vehicle (ICEV). Even though there are many different classes of PEVs, the intent of this study is to focus on non-hybrid powertrains, or battery electric vehicles (BEVs).

  20. Charging electric cars from solar energy

    OpenAIRE

    Liang, Xusheng; Tanyi, Elvis; Zou, Xin

    2016-01-01

    Before vehicles were heavily relied on coal, fossil fuels and wind for power.  Now, they are rapidly being replaced by electric vehicles and or plug-in hybrid electric cars. But these electric cars are still faced with the problem of energy availability because they rely on energy from biomass, hydro power and wind turbines for power generation. The abundance of solar radiation and its use as solar energy as a power source in driving these rapidly increasing electric cars is not only an impor...

  1. Off-grid photovoltaic vehicle charge using second life lithium batteries: An experimental and numerical investigation

    International Nuclear Information System (INIS)

    Tong, Shi Jie; Same, Adam; Kootstra, Mark A.; Park, Jae Wan

    2013-01-01

    Highlights: ► We have examined the feasibility of a second life battery pack for an off-grid photovoltaic vehicle charging system. ► The second life battery successfully achieved the desired function using simple control methods. ► The system has been modeled using equivalent circuit techniques. ► The model can simulate the system’s performance under different application scenarios. - Abstract: Partially degraded lithium batteries from automotive applications, also known as second life batteries, are becoming more available for secondary applications due to the increasing market share of plug-in hybrid and electric vehicles. This study examines the feasibility of installing a second life battery pack in an off-grid photovoltaic vehicle charging system. The system was constructed using a photovoltaic array to charge a battery pack via a maximum power point tracking controller and later charge a vehicle via an inverter. The battery pack was configured using 135 second life LiFePO 4 based battery cells, selected based on remaining capacity, connected to form a nine parallel by 15 serial battery pack with accessible storage capacity of 13.9 kW h. Experimental results show that the proposed second life battery system successfully achieves the desired function with a simple system structure and control methods. A numerical simulation was performed by constructing an equivalent system model, where the photovoltaic array and battery pack were modeled using equivalent circuit techniques. The model was parameterized and validated via testing of the system. Coupled with weather data, the model can simulate the system’s performance under different application scenarios. The numerical investigation reveals that the proposed system, using second life batteries, can achieve similar performance to systems using new lithium batteries, but at a reduced cost

  2. Shifting Control Algorithm for a Single-Axle Parallel Plug-In Hybrid Electric Bus Equipped with EMT

    Directory of Open Access Journals (Sweden)

    Yunyun Yang

    2014-01-01

    Full Text Available Combining the characteristics of motor with fast response speed, an electric-drive automated mechanical transmission (EMT is proposed as a novel type of transmission in this paper. Replacing the friction synchronization shifting of automated manual transmission (AMT in HEVs, the EMT can achieve active synchronization of speed shifting. The dynamic model of a single-axle parallel PHEV equipped with the EMT is built up, and the dynamic properties of the gearshift process are also described. In addition, the control algorithm is developed to improve the shifting quality of the PHEV equipped with the EMT in all its evaluation indexes. The key techniques of changing the driving force gradient in preshifting and shifting compensation phases as well as of predicting the meshing speed in the gear meshing phase are also proposed. Results of simulation, bench test, and real road test demonstrate that the proposed control algorithm can reduce the gearshift jerk and the power interruption time noticeably.

  3. A wide bandwidth fractional-N synthesizer for LTE with phase noise cancellation using a hybrid-ΔΣ-DAC and charge re-timing

    NARCIS (Netherlands)

    Ye, D.; Lu, Ping; Andreani, Pietro; van der Zee, Ronan A.R.

    2013-01-01

    This paper presents a 1MHz bandwidth, ΔΣ fractional-N PLL as the frequency synthesizer for LTE. A noise cancellation path composed of a novel hybrid ΔΣ DAC with 9 output bits is incorporated into the PLL in order to cancel the out-of-band phase noise caused by the quantization error. Further, a

  4. Description of the Charge Transfer States at the Pentacene/C60 Interface: Combining Range-Separated Hybrid Functionals with the Polarizable Continuum Model

    KAUST Repository

    Zheng, Zilong; Bredas, Jean-Luc; Coropceanu, Veaceslav

    2016-01-01

    are usually performed on small-size donor/acceptor complexes and as result do not account for electronic polarization effects. Here, using a pentacene/C60 complex as a model system, we discuss the ability of long-range corrected (LCR) hybrid functionals

  5. Understanding the Effect of Surface Chemistry on Charge Generation and Transport in Poly (3-hexylthiophene)/CdSe Hybrid Solar Cells

    DEFF Research Database (Denmark)

    Lek, Jun Yan; Xi, Lifei; Kardynal, Beata

    2011-01-01

    For hybrid solar cells, interfacial chemistry is one of the most critical factors for good device performance. We have demonstrated that the size of the surface ligands and the dispersion of nanoparticles in the solvent and in the polymer are important criteria in obtaining optimized device...

  6. Development of a plug-in for Variability Modeling in Software Product Lines

    Directory of Open Access Journals (Sweden)

    María Lucía López-Araujo

    2012-03-01

    Full Text Available Las Líneas de Productos de Software (LPS toman ventaja económica de las similitudes y variación entre un conjunto de sistemas de software dentro de un dominio específico. La Ingeniería de Líneas de Productos de Software por lo tanto, define una serie de procesos para el desarrollo de LPS que consideran las similitudes y variación a lo largo del ciclo devida. El modelado de variabilidad, en consecuencia, es una actividad esencial en un enfoque de Ingeniería de Líneas de Productos de Software. Existen varias técnicas para modelado de variabilidad. Entre ellas resalta COVAMOF que permite modelar los puntos de variación, variantes y dependencias como entidades de primera clase, proporcionando una manera uniforme de representarlos en los diversos niveles de abstracción de una LPS. Para poder aprovechar los beneficios de COVAMOF es necesario contar con una herramienta, de otra manera el modelado y la administración de la variabilidad pueden resultar una labor ardua para el ingeniero de software. Este trabajo presenta el desarrollo de un plug-in de COVAMOF para Eclipse.Software Product Lines (SPL take economic advantage of commonality and variability among a set of software systems that exist within a specific domain. Therefore, Software Product Line Engineering defines a series of processes for the development of a SPL that consider commonality and variability during the software life cycle. Variability modeling is therefore an essential activity in a Software Product Line Engineering approach. There are several techniques for variability modeling nowadays. COVAMOF stands out among them since it allows the modeling of variation points, variants and dependencies as first class elements. COVAMOF, therefore, provides an uniform manner for representing such concepts in different levels of abstraction within a SPL. In order to take advantage of COVAMOF benefits, it is necessary to have a computer aided tool, otherwise variability modeling and

  7. Utilities Power Change: Engaging Commercial Customers in Workplace Charging

    Energy Technology Data Exchange (ETDEWEB)

    Lommele, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dafoe, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-31

    Using electricity to power vehicles can help advance energy security and reduce emissions, and also presents a new market opportunity for utilities looking to diversify and offer an added benefit to commercial customers. By providing plug-in electric vehicle (PEV) charging stations for their employees, commercial customers can help attract and retain a cutting-edge workforce. These employers also signal a commitment to sustainability and demonstrate progressive leadership and a willingness to adopt advanced technology.

  8. From catastrophic acceleration to deceleration of liquid plugs in prewetted capillary tubes

    Science.gov (United States)

    Magniez, Juan; Baudoin, Michael; Zoueshtiagh, Farzam; Lemac/Lics Team

    2016-11-01

    Liquid/gas flows in capillaries are involved in a multitude of systems including flow in porous media, petroleum extraction, imbibition of paper or flows in pulmonary airways in pathological conditions. Liquid plugs, witch compose the biphasic flows, can have a dramatic impact on patients with pulmonary obstructive diseases, since they considerably alter the circulation of air in the airways and thus can lead to severe breathing difficulties. Here, the dynamics of liquid plugs in prewetted capillary tube is investigated experimentally and theoretically, with a particular emphasis on the role of the prewetting films and of the driving condition (constant flow rate, constant pressure). For both driving conditions, the plugs can either experience a continuous increase or decrease of their size. While this phenomenon is regular in the case of imposed flow rate, a constant pressure head can lead to a catastrophic acceleration of the plug and eventually its rupture or a dramatic increase of the plug size. A theoretical model is proposed to explain the transition between theses two regimes. These results give a new insight on the critical pressure required for airways obstruction and reopening. IEMN, International Laboratory LEMAC/LICS, UMR CNRS 8520, University of Lille.

  9. A tm Plug-In for Distributed Text Mining in R

    Directory of Open Access Journals (Sweden)

    Stefan Theussl

    2012-11-01

    Full Text Available R has gained explicit text mining support with the tm package enabling statisticians to answer many interesting research questions via statistical analysis or modeling of (text corpora. However, we typically face two challenges when analyzing large corpora: (1 the amount of data to be processed in a single machine is usually limited by the available main memory (i.e., RAM, and (2 the more data to be analyzed the higher the need for efficient procedures for calculating valuable results. Fortunately, adequate programming models like MapReduce facilitate parallelization of text mining tasks and allow for processing data sets beyond what would fit into memory by using a distributed file system possibly spanning over several machines, e.g., in a cluster of workstations. In this paper we present a plug-in package to tm called tm.plugin.dc implementing a distributed corpus class which can take advantage of the Hadoop MapReduce library for large scale text mining tasks. We show on the basis of an application in culturomics that we can efficiently handle data sets of significant size.

  10. Experimental and numerical modeling of sulfur plugging in a carbonate oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Al-Awadhy, F. [ADMA-OPCO, Abudhabi (United Arab Emirates); Kocabas, I.; Abou-Kassem, J.H. [UAE University, Al Ain (United Arab Emirates); Islam, M.R. [Dalhousie University, Halifax, NS (United States)

    2005-01-15

    Many oil and gas reservoirs in the United Arab Emirates produce large amounts of sour gas, mainly in the form of hydrogen sulfide. In addition to creating problems in the production line, wellbore damage is often reported due to the precipitation of elemental sulfur in the vicinity of the wellbore. While there have been several studies performed on the role of solid deposition in a gas reservoir, the role of sulfur deposition in oil reservoirs has not been investigated. This article presents experimental results along with a comprehensive wellbore model that predicts sulfur precipitation as well as plugging. The experiments were conducted in a core (linear) system. Both analytical and numerical modelings were performed in a linear coordinate system. Data for the numerical model was obtained from both test tube and coreflood experiments. By using a phenomenological model, the wellbore plugging was modeled with an excellent match (with experimental results). The crude oil was de-asphalted prior to conducting the experiment in order to isolate the effect of asphaltene plugging. A series of coreflood tests was carried out to observe sulfur precipitation and plugging in a carbonate rock. Significant plugging was observed and was found to be dependent on flow rate and initial sulfur concentration. This information was used in the phenomenological model and can be incorporated in the wellbore numerical model. (author)

  11. Cytoprophet: a Cytoscape plug-in for protein and domain interaction networks inference.

    Science.gov (United States)

    Morcos, Faruck; Lamanna, Charles; Sikora, Marcin; Izaguirre, Jesús

    2008-10-01

    Cytoprophet is a software tool that allows prediction and visualization of protein and domain interaction networks. It is implemented as a plug-in of Cytoscape, an open source software framework for analysis and visualization of molecular networks. Cytoprophet implements three algorithms that predict new potential physical interactions using the domain composition of proteins and experimental assays. The algorithms for protein and domain interaction inference include maximum likelihood estimation (MLE) using expectation maximization (EM); the set cover approach maximum specificity set cover (MSSC) and the sum-product algorithm (SPA). After accepting an input set of proteins with Uniprot ID/Accession numbers and a selected prediction algorithm, Cytoprophet draws a network of potential interactions with probability scores and GO distances as edge attributes. A network of domain interactions between the domains of the initial protein list can also be generated. Cytoprophet was designed to take advantage of the visual capabilities of Cytoscape and be simple to use. An example of inference in a signaling network of myxobacterium Myxococcus xanthus is presented and available at Cytoprophet's website. http://cytoprophet.cse.nd.edu.

  12. The Development of CPSES Plug-in(CPMP) for APR1400 Computerized Procedure Effective Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Seong, No Kyu; Park, Jin Kyun; Jung, Yeon Sub [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The Computerized Procedure System (CPS) is one of the Man Machine Interface (MMI) resources of the Shin-Kori 3 and 4 nuclear power plants. The CPS is a computerized operator support system that enables operating crew to execute procedures in an accurate and fast manner. The Computerized Procedure (CP) is the XML data file in executable format that can be installed in the Procedure eXecution System (PXS) for execution. The CP contains specific information related to a particular procedure (i.e. LOCA). These computerized procedures such as Alarm Response Procedures (ARP) are separated into individual alarm procedure to maximize function interface between CPS and DCS. E.g. 'Procedure open by alarm list'. The procedure writer's burden to manage many procedures has been increased because of separated procedures. This paper introduces Computerized Procedure System Engineering System (CPSES) plug-in that is computerized procedure management program (CPMP) to reduce procedure writer's burden. This paper introduces the main features of CPMP. CPMP reduces procedure writer's or CPX maintainer's burden. This program is implemented and tested by program design requirement.

  13. An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †

    Directory of Open Access Journals (Sweden)

    Shi You

    2016-11-01

    Full Text Available The design and implementation of management policies for plug-in electric vehicles (PEVs need to be supported by a holistic understanding of the functional processes, their complex interactions, and their response to various changes. Models developed to represent different functional processes and systems are seen as useful tools to support the related studies for different stakeholders in a tangible way. This paper presents an overview of modeling approaches applied to support aggregation-based management and integration of PEVs from the perspective of fleet operators and grid operators, respectively. We start by explaining a structured modeling approach, i.e., a flexible combination of process models and system models, applied to different management and integration studies. A state-of-the-art overview of modeling approaches applied to represent several key processes, such as charging management, and key systems, such as the PEV fleet, is then presented, along with a detailed description of different approaches. Finally, we discuss several considerations that need to be well understood during the modeling process in order to assist modelers and model users in the appropriate decisions of using existing, or developing their own, solutions for further applications.

  14. Location, duration, and power; How Americans' driving habits and charging infrastructure inform vehicle-grid interactions

    Science.gov (United States)

    Pearre, Nathaniel S.

    The substitution of electrical energy for gasoline as a transportation fuel is an initiative both with a long history, and one made both pressing and important in today's policy discussion by renewed interest in plug-in vehicles. The research presented in this dissertation attempts to inform the policy discussion for governments, for electric utilities, for the makers of electric cars, and for the industries developing and planning charging infrastructure. To that end, the impacts of variations to several possible system design parameters, on several metrics of evaluation, are assessed. The analysis is based on a dataset of vehicle trips collected by Georgia Institute of Technology, tracking almost 500 vehicles that commute to, from or within the Atlanta city center, comprising Atlanta `commuter-shed'. By assuming that this dataset of trips defines the desired travel behavior of urban and suburban American populations, the effects of travel electrification in personal vehicles can be assessed. Several significant and novel findings have emerged from this research. These include the conclusion that at-work charging is not necessarily the logical next step beyond home-charging, as it will in general add little to the substitutability of electric vehicles. In contrast, high power en-route charging, combined with modest power home charging is shown to be surprisingly effective, potentially requiring of EV drivers a total time spent at en-route recharging stations similar to that for liquid fueled cars. From the vehicle marketing perspective, a quantification of the hybrid household effect, wherein multi-vehicle households own one EV, showed that about a quarter of all households could adopt a vehicle with 80 miles of range with no changes to travel patterns. Of interest to grid management, this research showed an apparent maximum fleet-wide load from unregulated charging of about 1 kW per vehicle, regardless of EVSE power or EV battery size. This contrasts with a

  15. Interest of the SPECT-CT hybrid imaging in the management of thyroid differentiated carcinomas; Interets de l'imagerie hybride TEMP-TDM dans la prise en charge des carcinomes differencies de la thyroide

    Energy Technology Data Exchange (ETDEWEB)

    Menemani, A.; Mebarki, M.; Slama, A.; Meghelli, S.; Lachachi, B.; Krim, M.; Berber, N. [CHU Tlemcen, Service de medecine nucleaire (Algeria)

    2010-07-01

    Purpose: Images merging, associating SPECT and CT, integers functional and anatomical data. The purpose of our study was to evaluate the SPECT contribution coupled to CT in our daily practice of the management thyroid differentiated carcinomas. Conclusions: SPECT/CT merging got by a hybrid system allows a better anatomical location and improves the diagnostic value of examination in the extension assessment of thyroid differentiated carcinomas. (N.C.)

  16. Intelligent emission-sensitive routing for plugin hybrid electric vehicles.

    Science.gov (United States)

    Sun, Zhonghao; Zhou, Xingshe

    2016-01-01

    The existing transportation sector creates heavily environmental impacts and is a prime cause for the current climate change. The need to reduce emissions from this sector has stimulated efforts to speed up the application of electric vehicles (EVs). A subset of EVs, called plug-in hybrid electric vehicles (PHEVs), backup batteries with combustion engine, which makes PHEVs have a comparable driving range to conventional vehicles. However, this hybridization comes at a cost of higher emissions than all-electric vehicles. This paper studies the routing problem for PHEVs to minimize emissions. The existing shortest-path based algorithms cannot be applied to solving this problem, because of the several new challenges: (1) an optimal route may contain circles caused by detour for recharging; (2) emissions of PHEVs not only depend on the driving distance, but also depend on the terrain and the state of charge (SOC) of batteries; (3) batteries can harvest energy by regenerative braking, which makes some road segments have negative energy consumption. To address these challenges, this paper proposes a green navigation algorithm (GNA) which finds the optimal strategies: where to go and where to recharge. GNA discretizes the SOC, then makes the PHEV routing problem to satisfy the principle of optimality. Finally, GNA adopts dynamic programming to solve the problem. We evaluate GNA using synthetic maps generated by the delaunay triangulation. The results show that GNA can save more than 10 % energy and reduce 10 % emissions when compared to the shortest path algorithm. We also observe that PHEVs with the battery capacity of 10-15 KWh detour most and nearly no detour when larger than 30 KWh. This observation gives some insights when developing PHEVs.

  17. Patterns of surface burrow plugging in a colony of black-tailed prairie dogs occupied by black-footed ferrets

    Science.gov (United States)

    Eads, David E.; Biggins, Dean E.

    2012-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) can surface-plug openings to a burrow occupied by a black-footed ferret (Mustela nigripes). At a coarse scale, surface plugs are more common in colonies of prairie dogs occupied by ferrets than in colonies without ferrets. However, little is known about spatial and temporal patterns of surface plugging in a colony occupied by ferrets. In a 452-ha colony of black-tailed prairie dogs in South Dakota, we sampled burrow openings for surface plugs and related those da