WorldWideScience

Sample records for charge liner materials

  1. Examination of shaped charge liner shock loading

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.J.; Moore, T.W.; Lee, C.G.; Breithaupt, R.; Avara, G.R.

    1996-07-01

    A series of experiments was conducted for the purpose of achieving a more fundamental understanding of the shaped charge liner shock loading environment. The test configuration, representing the middle portion of a shaped charge, consists of a 50 mm deep, 100 mm tall, and 2 mm thick copper plate driven by 50 mm deep, 100 mm tall, tapered thickness wedge of LX-14. An electrically driven 50 mm square flyer is used to surface initiate the base of the LX-14 causing a plane detonation wave to propagate into the explosive wedge along the liner surface. Fabry-Perot laser velocimetry measures the particle velocity time history of the plate. The CTH and DYNA2D hydrocodes are used to simulate the experiments. Calculations of the velocity profiles are compared to the experimental results. The effects of mesh density, copper material failure and strength models, and explosive detonation models are discussed.

  2. Membrane behavior of clay liner materials

    Science.gov (United States)

    Kang, Jong Beom

    Membrane behavior represents the ability of porous media to restrict the migration of solutes, leading to the existence of chemico-osmosis, or the flow of liquid in response to a chemical concentration gradient. Membrane behavior is an important consideration with respect to clay soils with small pores and interactive electric diffuse double layers associated with individual particles, such as bentonite. The results of recent studies indicate the existence of membrane behavior in bentonite-based hydraulic barriers used in waste containment applications. Thus, measurement of the existence and magnitude of membrane behavior in such clay soils is becoming increasingly important. Accordingly, this research focused on evaluating the existence and magnitude of membrane behavior for three clay-based materials that typically are considered for use as liners for waste containment applications, such as landfills. The three clay-based liner materials included a commercially available geosynthetic clay liner (GCL) consisting of sodium bentonite sandwiched between two geotextiles, a compacted natural clay known locally as Nelson Farm Clay, and compacted NFC amended with 5% (dry wt.) of a sodium bentonite. The study also included the development and evaluation of a new flexible-wall cell for clay membrane testing that was used subsequently to measure the membrane behaviors of the three clay liner materials. The consolidation behavior of the GCL under isotropic states of stress also was evaluated as a preliminary step in the determination of the membrane behavior of the GCL under different effective consolidation stresses.

  3. influence of tanks liner material on water quality and growth

    African Journals Online (AJOL)

    DR A O AKINWOLE

    PVC lined tanks had better growth performance when compared to other tanks liner materials. It would be beneficial with respect to fish growth and culture water quality, to use polyvinylchloride materials in lining fish culture ponds and rearing tanks. Keywords : Aquaculture, Liners, Fish Farming, Tank, Clarias gariepinus.

  4. Development of Standardized Material Testing Protocols for Prosthetic Liners.

    Science.gov (United States)

    Cagle, John C; Reinhall, Per G; Hafner, Brian J; Sanders, Joan E

    2017-04-01

    A set of protocols was created to characterize prosthetic liners across six clinically relevant material properties. Properties included compressive elasticity, shear elasticity, tensile elasticity, volumetric elasticity, coefficient of friction (CoF), and thermal conductivity. Eighteen prosthetic liners representing the diverse range of commercial products were evaluated to create test procedures that maximized repeatability, minimized error, and provided clinically meaningful results. Shear and tensile elasticity test designs were augmented with finite element analysis (FEA) to optimize specimen geometries. Results showed that because of the wide range of available liner products, the compressive elasticity and tensile elasticity tests required two test maxima; samples were tested until they met either a strain-based or a stress-based maximum, whichever was reached first. The shear and tensile elasticity tests required that no cyclic conditioning be conducted because of limited endurance of the mounting adhesive with some liner materials. The coefficient of friction test was based on dynamic coefficient of friction, as it proved to be a more reliable measurement than static coefficient of friction. The volumetric elasticity test required that air be released beneath samples in the test chamber before testing. The thermal conductivity test best reflected the clinical environment when thermal grease was omitted and when liner samples were placed under pressure consistent with load bearing conditions. The developed procedures provide a standardized approach for evaluating liner products in the prosthetics industry. Test results can be used to improve clinical selection of liners for individual patients and guide development of new liner products.

  5. Kinetic Spraying Deposition of Reactive-Enhanced Al-Ni Composite for Shaped Charge Liner Applications

    Science.gov (United States)

    Byun, Gyeongjun; Kim, Jaeick; Lee, Changhee; Kim, See Jo; Lee, Seong

    2016-02-01

    Liners used in shaped charges (SC) must possess good penetration ability and explosive power. Producing the reactive layer (i.e., the Al-Ni composite) on a well-penetrating liner (i.e., Cu) via spray coating is a novel method; the exothermic reaction of this reactive layer can be enhanced by controlling the structure of the feedstock material. However, preceding studies have been unable to completely succeed in achieving this goal. There is still an opportunity to improve the performance of reactive layers in SC liner applications. In order to address this problem, a reactive Al-Ni composite powder was produced via arrested reactive milling (ARM) and deposited by a kinetic spray process. Afterward, the deposition state and self-propagating high-temperature synthesis (SHS) reaction behavior of the ARMed Al-Ni deposit were investigated. The deposition state was degraded by the ARM process due to the remaining solid lubricant and the strain-hardening effect, but the practically estimated bond strength was not poor (~40 MPa). No SHS reactions were induced by the ARM and kinetic spray process, which resulted in the quantitative maximization of the exothermic reaction. It is noteworthy that the initiation temperature of the SHS reaction was highly advanced (~300 °C) relative to preceding studies (~500 °C); this change is due to the additional mechanical activation initiated by the kinetic spray deposition.

  6. Analysis of adhesion characteristics of liner dental materials

    Directory of Open Access Journals (Sweden)

    Đorđević Maja

    2013-01-01

    Full Text Available Adhesive characteristics of materials used in dental practice are determined by indirect methods, by measuring mechanical properties of liner materials. In that procedure, the adhesion is defined by using measured mechanical properties of the bond material-test sample, which has several shortages. In the presented research the focus was based on the multi-component, composite, materials, which have, both organic and inorganic components in their structures. The direct measure of material-dentine bond was used in order to quantify the adhesion properties of investigated liner materials. Artificial saliva was the media for inducing the liner-dentine bond destruction. Destruction measurements were made by applying the quantification of visual information methodology. Obtained results were used to calculate the adhesion coefficient of the liner materials. The results were correlated with the mechanical test. There are no references on comparative testing of adhesion mechanical properties of dental material in the literature with presented methodology. The presented methodology proved to be useful for the functional quality ranking of dental materials.

  7. Peculiarity of she shaped-charge liner collapse concerning the unevenness in its cross-section

    Science.gov (United States)

    Karnaukhov, K. A.; Baskakov, V. D.; Korenkov, V. V.; Zarubina, O. V.

    2017-10-01

    For harmonical components of the unevenness, simulating the misalignment of the inner and the outer surfaces of the shaped-charge liner the functional connections to estimate the angular deviation of the shaped-charge jets from symmetry axis were developed. Numerical calculations in CAE system ANSYS AUTODYN for the process of collapse of the ring with the consideration of alteration of its thickness in accordance with harmonical components of the unevenness were ran to estimate the distortion of cross-sectional shape of the shaped-charge liner throughout the process of collapse. Obtained results can be used in quantitative estimations of the influence of the inaccuracies of the shaped-charge liner on geometrical and kinematical characteristics of the shaped-charge jets.

  8. The effect of release liner materials on adhesive contaminants, paper recycling and recycled paper properties

    Science.gov (United States)

    Richard Venditti; Richard Gilbert; Andy Zhang; Said Abubakr

    2000-01-01

    Release liner waste material is found in post-consumer waste streams and is also a significant component of the preconsumer waste stream generated in the manufacturing of adhesive products. To date, very little has been reported pertaining to the behavior of release liner in paper recycling. In this study, the effect of the release liner material on the behavior of...

  9. Composite-Material Tanks with Chemically Resistant Liners

    Science.gov (United States)

    DeLay, Thomas K.

    2004-01-01

    Lightweight composite-material tanks with chemically resistant liners have been developed for storage of chemically reactive and/or unstable fluids . especially hydrogen peroxide. These tanks are similar, in some respects, to the ones described in gLightweight Composite-Material Tanks for Cryogenic Liquids h (MFS-31379), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 58; however, the present tanks are fabricated by a different procedure and they do not incorporate insulation that would be needed to prevent boil-off of cryogenic fluids. The manufacture of a tank of this type begins with the fabrication of a reusable multisegmented aluminum mandrel in the shape and size of the desired interior volume. One or more segments of the mandrel can be aluminum bosses that will be incorporated into the tank as end fittings. The mandrel is coated with a mold-release material. The mandrel is then heated to a temperature of about 400 F (approximately equal to 200 C) and coated with a thermoplastic liner material to the desired thickness [typically approxiamtely equal to 15 mils (approximately equal to 0.38 mm)] by thermal spraying. In the thermal-spraying process, the liner material in powder form is sprayed and heated to the melting temperature by a propane torch and the molten particles land on the mandrel. The sprayed liner and mandrel are allowed to cool, then the outer surface of the liner is chemically and/or mechanically etched to enhance bonding of a composite overwrap. The etched liner is wrapped with multiple layers of an epoxy resin reinforced with graphite fibers; the wrapping can be done either by manual application of epoxy-impregnated graphite cloth or by winding of epoxy-impregnated filaments. The entire assembly is heated in an autoclave to cure the epoxy. After the curing process, the multisegmented mandrel is disassembled and removed from inside, leaving the finished tank. If the tank is to be used for storing hydrogen peroxide, then the liner material

  10. Extended liner performance for hydrodynamics and material properties experiments

    CERN Document Server

    Reinovsky, R E

    2001-01-01

    Summary form only given, as follows. Over the last few years a new application for high performance pulsed power, the production of high energy density environments for the study of material properties under extreme conditions and hydrodynamics in complex geometries has joined the traditional family of radiation source applications. The newly commissioned Atlas pulsed power system at Los Alamos has replaced its predecessor, Pegasus, and joined the Shiva Star system at AFRL, Albuquerque and a variety of flux compression systems, principally at the All Russian Scientific Research Institute of Experimental Physics (VNIIEF) as ultra high current drivers for the high precision, magnetically imploded, near-solid density liner that is used to create the needed environments. Three families of experiments: the production of ultra strong shocks (>10 Mbar), the production of strongly coupled plasmas by liner compression of an initially dense plasma of a few eV temperature, and the compression of a magnetized plasma for ...

  11. Ageing of structural materials in tokamaks: TEXTOR liner study

    Science.gov (United States)

    Weckmann, A.; Petersson, P.; Rubel, M.; Fortuna-Zaleśna, E.; Zielinski, W.; Romelczyk-Baishya, B.; Grigore, E.; Ruset, C.; Kreter, A.

    2017-12-01

    After the final shut-down of the tokamak TEXTOR, all of its machine parts became accessible for comprehensive studies. This unique opportunity enabled the study of the Inconel 625 liner by a wide range of methods. The aim was to evaluate eventual alteration of surface and bulk characteristics from recessed wall elements that may influence the machine performance. The surface was covered with stratified layers consisting mainly of boron, carbon, oxygen, and in some cases also silicon. Wall conditioning and limiter materials hence predominantly define deposition on the liner. Deposited layers on recessed wall elements reach micrometre thickness within decades, peel off and may contribute to the dust inventory in tokamaks. Deuterium content was about 4,7 at% on average most probably due to wall conditioning with deuterated gas, and very low concentration in the Inconel substrate. Inconel 625 retained its mechanical strength despite 26 years of cyclic heating, stresses and particle bombardment.

  12. Influence of electric current intensity on the performance of electroformed copper liner for shaped charge application

    Directory of Open Access Journals (Sweden)

    Tamer Elshenawy

    2017-12-01

    Full Text Available Electrolytic Copper used in the shaped charge liner manufacturing can be produced from acid solution using electro-deposition technique. The intensity of the applied electric current controls the quality of the produced copper grade. The electric current intensity within the electrolytic acidic solution cell with the minimum oxygen and sulfur elements in the produced copper was optimized and found to be 30–40 A/Ft2. The elemental composition of the obtained electrolytic copper was determined using high-end stationary vacuum spectrometer, while the oxygen was determined precisely using ELTRA ONH-2000 apparatus. Besides, SEM was used to investigate the shape of the copper texture inside the deposited layers and to determine the average grain size. New relations have been obtained between the applied current intensity and both the oxygen and sulfur contents and the average grain size of the produced copper. Experimental result showed that when the applied current density increases to a certain limit, the oxygen and sulfur content in the electrolytic copper decreases. Performance of the produced copper liner was investigated by the static firing of a small caliber shaped charge containing an electro-formed copper liners, where the penetration depth of the optimized electrolytic liner was enhanced by 22.7% compared to that of baseline non-optimized liner.

  13. Ranking of Cylinder Liner Materials in Two Stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Pedersen, Michael Torben; Imran, Tajammal; Klit, Peder

    2009-01-01

    before a final selection is made. A new approach to study the cylinder liner and piston rings (primary drive line in the combustion chamber) is used to characterise five different cylinder liner materials. The utilised test apparatus is working after the block-on-ring principle where the cylinder liner......One of the major prerequisites for an improved combination of cylinder liner material and piston ring material is a good description of the materials tribological performance. Piston rings operate in three different lubrication regimes and the materials should be characterised for all of them...... is made into a ring and the piston ring into a block. A short introduction of the test apparatus and its abilities is presented and discussed. Results from comparison and characterisation of five different cylinder liner materials run with a fixed piston ring material are presented. A preliminary ranking...

  14. Development of reactive artificial liner using recycled materials. 1. Mechanical properties and chemical compatibility.

    Science.gov (United States)

    Chin, Johnnie Y; Moon, Kyong-Whan; Park, Jae K; Park, Daniel J

    2013-07-01

    There have been several studies showing that volatile organic compounds (VOCs) can diffuse a geomembrane within days and migrate to groundwater and the surrounding environment. To ease the concern of potential pollution of the surrounding environment, an alternative artificial liner consisting of recycled materials is proposed. This composite liner consisted of recycled crumb rubber, organo-clay, silica fume, and epoxy binder. Dimethyl sulfoxide, an environmentally-friendly solvent recycled from paper pulp, was used as a plasticizer. The objective of this study was to determine the best combination of ingredients used at the initial stage and to develop artificial liners suitable for containing VOCs in leachate by comparing various physical properties. A series of screening tests including bending, tearing and elongating was performed to determine the most suitable mixture ratios. Then, more intensive tests were performed with the specimens that had the best physical properties. The new artificial liner demonstrated satisfactory mechanical properties with the minimum elongation and maximum strength after 40 years. Both artificial liners and high-density polyethylene (HDPE) specimens had ~136 kg cm(-2) after 4 months of thermal stress while the artificial liner had 40% less elongation at break than HDPE. The artificial liner's fully developed strength was about ten times stronger than HDPE. This new type of composite material that can be applied on site may provide a new perspective in liner design and alleviate the issue of potential groundwater pollution caused by landfill leachate and highly mobile VOCs which is a matter of much concern.

  15. Acoustic properties and durability of liner materials at non-standard atmospheric conditions

    Science.gov (United States)

    Ahuja, K. K.; Gaeta, R. J., Jr.; Hsu, J. S.

    1994-11-01

    This report documents the results of an experimental study on how acoustic properties of certain absorbing liner materials are affected by nonstandard atmospheric conditions. This study was motivated by the need to assess risks associated with incorporating acoustic testing capability in wind tunnels with semicryogenic high Reynolds number aerodynamic and/or low pressure capabilities. The study consisted of three phases: 1) measurement of acoustic properties of selected liner materials at subatmospheric pressure conditions, 2) periodic cold soak and high pressure exposure of liner materials for 250 cycles, and 3) determination of the effect of periodic cold soak on the acoustic properties of the liner materials at subatmospheric conditions and the effect on mechanical resiliency. The selected liner materials were Pyrell foam, Fiberglass, and Kevlar. A vacuum facility was used to create the subatmospheric environment in which an impedance tube was placed to measure acoustic properties of the test materials. An automated cryogenic cooling system was used to simulate periodic cold soak and high pressure exposure. It was found that lower ambient pressure reduced the absorption effectiveness of the liner materials to varying degrees. Also no significant change in the acoustic properties occurred after the periodic cold soak. Furthermore, mechanical resiliency tests indicated no noticeable change.

  16. Simulation Study on Jet Formability and Damage Characteristics of a Low-Density Material Liner

    Directory of Open Access Journals (Sweden)

    Liangliang Ding

    2018-01-01

    Full Text Available The shaped charge tandem warhead is an effective weapon against the ERA (explosive reactive armor. Whether the pre-warhead can reliably initiate the ERA directly determines the entire performance of the tandem warhead. The existing shaped charge pre-warhead mostly adopts a metal shaped jet, which effectively initiates the ERA, but interferes the main shaped jet. This article, on the other hand, explores the possibility of producing a pre-warhead using a low-density material as the liner. The nonlinear dynamic analysis software Autodyn-2D is used to simulate and compare three kinds of low-density shaped jets, including floatglass, Lucite, and Plexiglas, to the copper shaped jet in the effectiveness of impacting ERA. Based on the integrative criteria (including u-d initiation criterion, explosive reactive degree, explosive pressure, and particle velocity of the panels, it can be determined whether the low-density shaped jet can reliably initiate the sandwich charge. The results show that the three kinds of low-density shaped jets can not only initiate the reaction armor, but are also superior to the existing copper shaped jet in ductility, jet tip velocity, jet tip diameter, and the mass; namely, it is feasible to use the low-density material shaped jet to destroy the ERA.

  17. Selection of Liner Materials and Design of Hazardous Water Facilities in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Sahel N. Abduljauwad

    2001-12-01

    Full Text Available Rapid development in Saudi Arabia has produced a broad spectrum of wastes.  In the last two decades, several refineries and petrochemical industries have been established. These industries have produced sludges and other toxic wastes which need proper planning for their handling and disposal. This paper covers design and selection of liner materials for two hazardous waste disposal sites. One of them is located in the Eastern Province of Saudi Arabia, while the second one is located in the Western part. The paper will present complete design details of the natural compacted and geosynthetic soil liners and the leachate collection and removal system for primary liners and leak detection/leachate collection and removal system for secondary liners.

  18. Influence of tanks liner material on water quality and growth of ...

    African Journals Online (AJOL)

    Three tank liner materials: polyvinylchloride (PVC), polyethylene and polyester were evaluated in a 93 days experiment for their influence on culture water quality and growth performance of Clarias gariepinus. Fish of average weight of 5.03±0.21g were stocked at 375 per m3 in tanks lined with the aforementioned materials.

  19. Instruction manual: Fly ash stabilised sludge (FSS) as liner material; Vaegledning: Flygaskastabiliserat avloppsslam (FSA) som taetskikt

    Energy Technology Data Exchange (ETDEWEB)

    Carling, Maria; Haakansson, Karsten; Macsik, Josef; Mossakowska, Agnes; Rogbeck, Yvonne

    2007-06-15

    Several old waste sites are on the verge to be closed up during the next ten years. The function of a liner is to limit the amount of water that is infiltrated to the waste. This leads to high demand on a liner's permeability, shear strength and durability. Several pilot studies have been followed up where fly ash stabilised sewage sludge (FSS) was used as liner. The results show that FSS has low hydraulic conductivity (low permeability) and that it meets the demands put on a liner for non-hazardous wastes. Closure with FSS as liner puts special demands on the materials, the mixing action and during installation. The aim of this instruction manual is that it will work as an aid to manufacture and install liner, based on fly ash and sewage sludge, which fulfils functional demands. The manual contains a description of geotechnical and environmental demands to accomplish. This includes the following; manufacturing, storing, installation and follow up/control. This instruction manual is aimed for those who are planning closures of a landfill with FSS and need guidance to plan, carry out and control the liner construction. The manual can also be used by environmental agencies in order to control that the closure is done appropriately. Sewage sludge and fly ash from different producers can have varying properties. The quality of the used materials can change the FSS mixture's material properties and thereby also its permeability and durability. Both raw materials and mixtures should thereby be investigated according to material parameters. The mixtures dry solid content is a critical parameter as both shear strength and handling properties will be effected. In order to acquire sufficient amount of raw material storing is often required. Several aspects must then be counted on, as the properties of the raw materials can be altered. Manufacturing FSS must be done with the same material properties that have been investigated and evaluated in laboratory. Different

  20. Enhanced highly charged ion production using a metal-dielectric liner in the KVI 14 GHz ECR ion source

    NARCIS (Netherlands)

    Schachter, L; Dobrescu, S; Rodrigues, G; Drentje, AG

    Forming on an aluminum surface a dielectric layer of alumina (aluminum oxide) in order to create a metal-dielectric (MD) structure increases the secondary-electron emission properties. The idea of using this material as a MD (Al-Al2O3) cylindrical liner inside an ECR ion source was previously tested

  1. Removal of Cu(II) from leachate using natural zeolite as a landfill liner material

    Energy Technology Data Exchange (ETDEWEB)

    Turan, N. Gamze, E-mail: gturan@omu.edu.tr [Department of Environmental Engineering, Ondokuz Mayis University, 55139, Samsun (Turkey); Ergun, Osman Nuri, E-mail: oergun@omu.edu.tr [Department of Environmental Engineering, Ondokuz Mayis University, 55139, Samsun (Turkey)

    2009-08-15

    All hazardous waste disposal facilities require composite liner systems to act as a barrier against migration of contaminated leachate into the subsurface environment. Removal of copper(II) from leachate was studied using natural zeolite. A serial of laboratory systems on bentonite added natural zeolite was conducted and copper flotation waste was used as hazardous waste. The adsorption capacities and sorption efficiencies were determined. The sorption efficiencies increased with increasing natural zeolite ratio. The pseudo-first-order, the pseudo-second-order, Elovich and the intra-particle diffusion kinetic models were used to describe the kinetic data to estimate the rate constants. The second-order model best described adsorption kinetic data. The results indicated that natural zeolite showed excellent adsorptive characteristics for the removal of copper(II) from leachate and could be used as very good liner materials due to its high uptake capacity and the abundance in availability.

  2. Assessment of structural integrity of Monju steel liner against sodium leakage and combustion. Strain criterion of the liner material

    Energy Technology Data Exchange (ETDEWEB)

    Asayama, T.; Koi, M. [Japan Nuclear Cycle Development Institute, Ibaraki (Japan)

    2001-07-01

    In a postulated condition of sodium leakage and combustion in the secondary heat transfer system of the prototype Japanese fast breeder reactor Monju, thermal stresses raise in steel liners installed to prevent sodium from contacting to concrete. Excessive strain due to the thermal stresses leads to failure of the liner. This paper proposes a strain criterion below that the mechanical integrity of liner is assured. In-plane thermal expansion causes membrane strain and out-of-plane expansion causes bending strain. Therefore, failure modes to be taken into account are tensile fracture and bending fracture. The strain criterion can be determined based on tensile and bending tests. Tensile tests and three-point bending tests were performed at the temperature range from room temperature to 1000 C. Fracture elongation was measured in both tests. Uniform elongation was also measured in tensile tests. Various factors that can affect the above experimental results, multi-axiality, environmental effects, and creep were examined. Based on the above results, the strain criterion was determined. The criterion is 10% for membrane strain and 30% for membrane plus bending strain in the temperature range of 350 C to 1000 C. For the temperatures less than 350 C, the half of those values is used. (author)

  3. Satellite Spacecraft Charging Control Materials.

    Science.gov (United States)

    1980-04-01

    MAAG, private comunication (3) A. PAILLOUS, Mise au point de matdriaux combinant la qualitf de rdflecteurs solaires et une bonne conductibilit...AD-A087 675 OFFICE NATIONAL D’EUDES ET DE RECHERCHES AEROSPATIALE--ETC F/G 22/2 SATELLITE SPACECRAFT CHARGING CONTROL MATERIALS*(U) APR 80 8 BENAISSA...this problem of outgassing (6)* The composite is obtained by lamin- ating at 280 C the quartz fabric with a FEP film and an aluminum (6) A.E. EAGLES et

  4. Feasibility study on the application of coal gangue as landfill liner material.

    Science.gov (United States)

    Wu, Hui; Wen, Qingbo; Hu, Liming; Gong, Meng; Tang, Zili

    2017-05-01

    Coal gangue is one of the largest industrial solid waste all over the world, and many methods have been proposed for the recycling of coal gangue. In the present study, the feasibility of using coal gangue as landfill liner material is studied through a series of laboratory tests in terms of hydraulic conductivity, sorption characteristics and leaching behavior. The results indicated that the hydraulic conductivity of coal gangue could be smaller than the regulatory requirement 1×10-7cm/s with a void ratio less than 0.60. The batch sorption experiments performed on Pb2+ and Zn2+ illustrated that the coal gangue showed remarkable sorption capacity for the two heavy metals, and the sorption capacity for Pb2+ was larger than that for Zn2+. Both the pseudo first-order and pseudo second-order models fitted well with the sorption kinetics data of the Pb2+ and Zn2+ on the coal gangue, and the Langmuir model was found to best-fit the sorption isotherms. The sorption capacity decreased in presence of multiple heavy metals, both for Pb2+ and Zn2+. Concentrations of heavy metals leached from the coal gangue were all below the regulatory limits from China MEP and U.S. EPA. These desirable characteristics indicated that the coal gangue has potential to be used as landfill liner materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Use of the gamma-ray absorption technique as a quality control procedure in the manufacture of powder metal shaped charge liners

    CSIR Research Space (South Africa)

    Lawrie, JJ

    2010-09-01

    Full Text Available -1 J. Appl. Mech. / Volume 77 / Issue 5 / RESEARCH PAPERS / Warhead Mechanics The Use of the Gamma-Ray Absorption Technique as a Quality Control Procedure in the Manufacture of Powder Metal Shaped Charge Liners J. Appl. Mech. -- September 2010...

  6. Laboratory and field testing for utilization of an excavated soil as landfill liner material.

    Science.gov (United States)

    Bozbey, Ilknur; Guler, Erol

    2006-01-01

    This study investigates the feasibility of using a silty soil excavated in highway construction as landfill liner material. The tests were conducted both at laboratory and in situ scales, and the soil was tested in pure and lime treated forms. Different levels of compaction energy were used. For the field study, a test pad was constructed and in situ hydraulic conductivity experiments were conducted by sealed double ring infiltrometers (SDRI). Laboratory testing revealed that while lime treatment improved the shear strength, it resulted in higher hydraulic conductivity values compared to pure soil. It was observed that leachate permeation did not change the hydraulic conductivity of the pure and lime treated samples. Laboratory hydraulic conductivities were on the order of 10(-9) m/s and met the 1.0E-08 m/s criterion in the Turkish regulations, which is one order of magnitude higher than the value allowed in most developed countries. SDRI testing, which lasted for 6 mo, indicated that lime treatment increased the hydraulic conductivity of pure soil significantly in the field scale tests. In situ hydraulic conductivities were on the order of 1E-08 and 1E-07 m/s, and exceeded the allowable value in the Turkish regulations. Undisturbed samples collected from the test pad were not representative of field hydraulic conductivities. Contrary to laboratory findings, higher compaction efforts did not result in lower hydraulic conductivities in field scales. The study verified the importance of in situ hydraulic conductivity testing in compacted liners.

  7. Standard test method for conducting friction tests of piston ring and cylinder liner materials under lubricated conditions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method covers procedures for conducting laboratory bench-scale friction tests of materials, coatings, and surface treatments intended for use in piston rings and cylinder liners in diesel or spark-ignition engines. The goal of this procedure is to provide a means for preliminary, cost-effective screening or evaluation of candidate ring and liner materials. A reciprocating sliding arrangement is used to simulate the contact that occurs between a piston ring and its mating liner near the top-dead-center position in the cylinder where liquid lubrication is least effective, and most wear is known to occur. Special attention is paid to specimen alignment, running-in, and lubricant condition. 1.2 This test method does not purport to simulate all aspects of a fired engine’s operating environment, but is intended to serve as a means for preliminary screening for assessing the frictional characteristics of candidate piston ring and liner material combinations in the presence of fluids that behave as u...

  8. Impact of High Concentration Solutions on Hydraulic Properties of Geosynthetic Clay Liner Materials

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2012-11-01

    Full Text Available This study focuses on the impact of landfill high concentration solutions erosion on geosynthetic clay liner (GCL materials permeability. The permeation tests on the GCL, submerged using different kinds of solutions with different concentrations, were carried out systematically by taking these chemical solutions as permeant liquids. Based on seasonal variations of ion concentrations in Chenjiachong landfill leachate (Wuhan Province, CaCl2, MgCl2, NaCl, and KCl were selected as chemical attack solutions to carry out experimental investigations under three concentrations (50 mM, 100 mM, 200 mM and soak times (5, 10, and 20 days. The variation law of the GCL hydraulic conductivity under different operating conditions was analyzed. The relationship between GCL hydraulic conductivity, chemical solutions categories, concentrations, and soak times were further discussed. The GCL hydraulic conductivity, when soaked and permeated with high concentration chemical solutions, increases several times or exceeds two orders of magnitude, as compared with the permeation test under normal conditions that used water as the permeant liquid. This reveals that GCL is very susceptible to chemical attack. For four chemical solutions, the chemical attack effect on GCL hydraulic conductivity is CaCl2 > MgCl2 > KCl > NaCl. The impact of soak times on GCL hydraulic conductivity is the cooperative contribution of the liner chemical attack reaction and hydration swelling. A longer soak time results in a more advantageous hydration swelling effect. The chemical attack reaction restrains the hydration swelling of the GCL. Moreover, the GCL hydraulic conductivity exponentially decreases with the increased amplitude of thickness.

  9. Flyash and sewage sludge as liner material - Preparations for a pilot test with fly-ash stabilised sewage sludge as landfill liner; Linermaterial med aska och roetslam - Underlag foer genomfoerande av pilotfoersoek med stabiliserat avloppsslam som taetskiktsmaterial

    Energy Technology Data Exchange (ETDEWEB)

    Macsik, J.; Rogbeck, Y.; Svedberg, B.; Uhlander, O. [Scandiaconsult Sverige AB, Stockholm (Sweden); Mossakowska, A. [Stockholm Vatten AB (Sweden)

    2003-11-01

    The aim of this project was to develop a new liner material based on biofuel fly ash and sewage sludge and to plan for a pilot test with this new liner (FSA) on a landfill. The investigation shows that FSA has potential to fulfil technical and economical requirements as well as requirements of durability. This project constitutes part of a larger one, where the overall aim is to collect information/experience of FSA as a liner for presentation in a handbook. During the conducted laboratory work recipes for mixture proportions for application as landfill liner were controlled according to technical and environmental aspects. A recipe for FSA material has been prepared, which has permeability values lower than 10-9 m/s. This low permeability can assure a low percolation of precipitated water through the landfill liner, < 50 litre/m{sup 2}/year. FSA has sufficient un-drained shear strength and has an estimated slow bio-degradation, which can assure a long duration period. Based on results from tests conducted in this and other projects, where FSA materials were tested, necessary quality verifications has been conducted for the ingredients bio-fly-ash and sewage sludge and for the FSA-mixture. The FSA materials potential as liner increases with darker colour (bordering black). FSA-40 is a mixture of 40 % dry solid (DS) fly ash and 60 % DS sewage sludge, and FSA-60 is a mixture containing 60 % DS fly ash and 40 % DS sewage sludge and so on. Some important parameters of the ingredient materials are DS content (or water content) and pH and CaO content of the fly ash. A liner made of FSA should have surrounding layers of high water containing capacity in order to protect the FSA-liner from drying. The drainage and oxidation protection layers have to transport precipitated water as well as contain sufficient pore water in order to be an oxygen barrier above the liner (FSA). In addition, the investigation shows that a paddle blender should be used in order to guarantee a

  10. Spacecraft Charging Sensitivity to Material Properties

    Science.gov (United States)

    Minow, Joseph I.; Edwards, David L.

    2015-01-01

    Evaluating spacecraft charging behavior of a vehicle in the space environment requires knowledge of the material properties relevant to the charging process. Implementing surface and internal charging models requires a user to specify a number of material electrical properties including electrical resistivity parameters (dark and radiation induced), dielectric constant, secondary electron yields, photoemission yields, and breakdown strength in order to correctly evaluate the electric discharge threat posed by the increasing electric fields generated by the accumulating charge density. In addition, bulk material mass density and/or chemical composition must be known in order to analyze radiation shielding properties when evaluating internal charging. We will first describe the physics of spacecraft charging and show how uncertainties in material properties propagate through spacecraft charging algorithms to impact the results obtained from charging models. We then provide examples using spacecraft charging codes to demonstrate their sensitivity to material properties. The goal of this presentation is to emphasize the importance in having good information on relevant material properties in order to best characterize on orbit charging threats.

  11. Striation Formation in Cylindrical Liners Made of Various Materials Driven by a 1 MA Pulsed Power Generator

    Science.gov (United States)

    Atoyan, Levon; Byvank, Tom; Engelbrecht, Joseph; Greenly, John; Pikuz, Sergei; Potter, William; Shelkovenko, Tania; Kusse, Bruce; Hammer, David

    2016-10-01

    Peterson et al. found on the 20 MA Z machine that, without any applied external axial magnetic field, horizontal striations appear in radiographic images of a metal liner [Phys. Plasmas 19, 092701, 2012], a result that has been reproduced on other pulsed power machines since. In this work we present experimental results of horizontal striations on the 1 MA, 100-200 ns COBRA pulsed power generator [T. A. Shelkovenko et al., Rev. Sci. Instrum. 77, 10F521, 2006]. The pattern is observed in our experiments using extreme ultraviolet imaging, laser imaging, and X-ray backlighting. Using this combination of diagnostics, we were able to view simultaneously the pattern near the liner surface as well as in the higher density portion of the liner, displaying features with different wavelengths. Furthermore, materials such as Al, Cu, and Ti will be used for the liner to determine if the striation formation is affected by the nature of the material. This research is supported by the NNSA Stewardship Sciences Academic Programs under Department of Energy Cooperative Agreement DE-NA0001836 and DOE account DE-NA0002952.

  12. A critical analysis of NAO (non asbestos organic) materials of composite used for friction liners of trucks

    OpenAIRE

    P.K.Pandey,; Dr. V.K.Tripathi,; Dr. M.K.Pandey,; Prof.V.K.mandloi

    2011-01-01

    Performance of a brake system in a vehicle is mainly determined by the tribological characteristics of a friction couple, which is composed of frictional material and a gray iron disk (or drum).,The friction liner material, in particular, is considered as an important part for the performance of a vehicle, and is often blamed for various brake-induced problems such as low wear, fade phenomena,low coefficient of friction, . This is true because the modification of brake performance by changing...

  13. Comprehensive review of geosynthetic clay liner and compacted clay liner

    Science.gov (United States)

    Shankar, M. Uma; Muthukumar, M.

    2017-11-01

    Human activity inevitably produces waste materials that must be managed. Some waste can be reused. However many wastes that cannot be used beneficially must be disposed of ensuring environmental safety. One of the common methods of disposal is landfilling. The most common problems of the landfill site are environmental degradation and groundwater contamination caused by leachate produced during the decomposition process of organic material and rainfall. Liner in a landfill is an important component which prevent leachate migration and prevent groundwater contamination. Earthen liners have been widely used to contain waste materials in landfill. Liners and covers for municipal and hazardous waste containment facilities are often constructed with the use of fine–grained, low plasticity soils. Because of low permeability geosynthetic clay liners and compacted clay liners are the main materials used in waste disposal landfills. This paper summaries the important geotechnical characteristics such as hydraulic conductivity, liquid limit and free swell index of geosynthetic clay liner and compacted clay liner based on research findings. This paper also compares geosynthetic clay liner and compacted clay liner based on certain criteria such as thickness, availability of materials, vulnerability to damage etc.

  14. The Adsorption Capacity and Geotechnical Properties of Modified Clay Containing SSA Used as Landfill Liner-Soil Materials

    Directory of Open Access Journals (Sweden)

    Haijun Lu

    2015-01-01

    Full Text Available The potential of clay containing 0~5% sewage sludge ash (SSA is assessed for use as a landfill liner-soil material. Low temperature N2 adsorption, batch adsorption, permeability, and unconfined compressive strength tests are performed to evaluate pore structure, adsorption capacity, hydraulic conductivity, and unconfined compressive strength of the clays. The pore size distribution of the modified clay containing SSA is mainly composed of micropores (<2 nm and mesopores (2~7 nm. With the increasing of SSA from 0% to 5%, the adsorption capacity of Zn(II and Cu(II to the clay increases 37% and 273%, respectively. The hydraulic conductivity of modified clay is from 3.62 × 10−8 to 2.17 × 10−8 cm/s. At SSA = 3%, the unconfined compressive strength of the clay reaches the maximum value of 601.1 kPa. After the clay containing SSA is contaminated by acid and alkali chemical solutions, the amount of mesopores and hydraulic conductivity increase. The adsorption capacity and unconfined compressive strength of contaminated clay decrease about 2∼44% and 25.7∼38.2%, respectively. The modified clay containing SSA can meet the adsorption and geotechnical requirement of landfill liners.

  15. Effect of silica coating and silane surface treatment on the bond strength of soft denture liner to denture base material

    Directory of Open Access Journals (Sweden)

    Saadet Atsu

    2013-07-01

    Full Text Available OBJECTIVE: This study investigated the effects of different surface treatments on the tensile bond strength of an autopolymerizing silicone denture liner to a denture base material after thermocycling. MATERIAL AND METHODS: Fifty rectangular heat-polymerized acrylic resin (QC-20 specimens consisting of a set of 2 acrylic blocks were used in the tensile test. Specimens were divided into 5 test groups (n=10 according to the bonding surface treatment as follows: Group A, adhesive treatment (Ufi Gel P adhesive (control; Group S, sandblasting using 50-µm Al2O3; Group SCSIL, silica coating using 30-µm Al2O3 modified by silica and silanized with silane agent (CoJet System; Group SCA, silica coating and adhesive application; Group SCSILA, silica coating, silane and adhesive treatment. The 2 PMMA blocks were placed into molds and the soft lining materials (Ufi Gel P were packed into the space and polymerized. All specimens were thermocycled (5,000 cycles before the tensile test. Bond strength data were analyzed using 1-way ANOVA and Duncan tests. Fracture surfaces were observed by scanning electron microscopy. X-ray photoelectron spectrometer (XPS and Fourier Transform Infrared spectrometer (FTIR analysis were used for the chemical analysis and a profilometer was used for the roughness of the sample surfaces. RESULTS: The highest bond strength test value was observed for Group A (1.35±0.13; the lowest value was for Group S (0.28±0.07 and Group SCSIL (0.34±0.03. Mixed and cohesive type failures were seen in Group A, SCA and SCSILA. Group S and SCSIL showed the least silicone integrations and the roughest surfaces. CONCLUSION: Sandblasting, silica coating and silane surface treatments of the denture base resin did not increase the bond strength of the silicone based soft liner. However, in this study, the chemical analysis and surface profilometer provided interesting insights about the bonding mechanism between the denture base resin and silicone

  16. Tribological Behaviour under Conformal and Non-Conformal Contact Condition of Piston Ring and Cylinder Liner Material in a Reciprocating Bench Test

    Science.gov (United States)

    Trivedi, H. K.; Bhatt, D. V., Dr

    2017-09-01

    Experiments on cylinder liner and piston ring were carried out on a reciprocating tester to measure the coefficient of friction. The tribological behaviour for conformal and non-conformal contacts was compared. Actual cylinder liner is and piston ring is used for conformal contact, which is cut as per the required dimension. After analyzing the composition of the liner material, a specimen is prepared for non-conformal contact. Tests were conducted for variable load, variable speed and variable temperature with various commercial lubricants to measure the friction coefficient. The result shows that conformal contact shows significant variation in friction coefficient as compared to non-conformal contact for all operating parameters. The geometry of contact, oil quantity, and viscosity of lubricant plays a vital role to characterize the behaviour of friction coefficient and wear.

  17. FGD liner experiments with wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Mitsch, W.J.; Ahn, C.; Wolfe, W.E.

    1999-07-01

    The construction of artificial wetlands for wastewater treatment often requires impermeable liners not only to protect groundwater resources but also to ensure that there is adequate water in the wetland to support appropriate aquatic life, particularly wetland vegetation. Liners or relatively impervious site soils are very important to the success of constructed treatment wetlands in areas where ground water levels are typically close to the ground surface. This study, carried out at the Olentangy River Wetland Research Park, investigated the use of FGD material from sulfur scrubbers as a possible liner material for constructed wetlands. While several studies have investigated the use of FGD material to line ponds, no studies have investigated the use of this material as a liner for constructed wetlands. They used experimental mesocosms to see the effect of FGD liner materials in constructed wetlands on water quality and on wetland plant growth. This paper presents the results of nutrient analyses and physicochemical investigation of leachate and surface outflow water samples collected from the mesocosms. Plant growth and biomass of wetland vegetation are also included in this paper. First two year results are reported by Ahn et al. (1998, 1999). The overall goal of this study is the identification of advantages and disadvantages of using FGD by-product as an artificial liner in constructed wetlands.

  18. Electron Charged Graphite-based Hydrogen Storage Material

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chinbay Q. Fan; D Manager

    2012-03-14

    The electron-charge effects have been demonstrated to enhance hydrogen storage capacity using materials which have inherent hydrogen storage capacities. A charge control agent (CCA) or a charge transfer agent (CTA) was applied to the hydrogen storage material to reduce internal discharge between particles in a Sievert volumetric test device. GTI has tested the device under (1) electrostatic charge mode; (2) ultra-capacitor mode; and (3) metal-hydride mode. GTI has also analyzed the charge distribution on storage materials. The charge control agent and charge transfer agent are needed to prevent internal charge leaks so that the hydrogen atoms can stay on the storage material. GTI has analyzed the hydrogen fueling tank structure, which contains an air or liquid heat exchange framework. The cooling structure is needed for hydrogen fueling/releasing. We found that the cooling structure could be used as electron-charged electrodes, which will exhibit a very uniform charge distribution (because the cooling system needs to remove heat uniformly). Therefore, the electron-charge concept does not have any burden of cost and weight for the hydrogen storage tank system. The energy consumption for the electron-charge enhancement method is quite low or omitted for electrostatic mode and ultra-capacitor mode in comparison of other hydrogen storage methods; however, it could be high for the battery mode.

  19. Charge distribution and stability in electret materials

    DEFF Research Database (Denmark)

    Thyssen, Anders

    -PP and i-PP, is because the charge retention is extremely sensitive to the sample preparation. This was seen in regard to the thermal history of the samples and the influence of micron and nano size particles in the polymer electret. Through adding micron and nano size calcium carbonate and aluminium oxide......The objective of the work presented in this Ph.D. thesis is to give a broader understanding of which key parameters influence the charge stability of polymer electrets, and how the electrical charges are distributed. This has been achieved using polypropylene as an electret polymer model system....... By means of kinetic rate theory the discharge behaviour could be explained for polypropylene when thermally stimulated. This resulted in the determination of several activation energies, which could be used for describing the discharging seen at isothermal conditions. This theory is a powerful tool...

  20. Adherence of Candida albicans to denture base acrylics and silicone-based resilient liner materials with different surface finishes

    NARCIS (Netherlands)

    Nevzatoglu, Erdem U.; Ozcan, Mutlu; Kulak-Ozkan, Yasemin; Kadir, Tanju

    This study evaluated the surface roughness and Candida albicans adherence on denture base acrylic resins and silicone-based resilient liners with different surface finishes. Four commercial denture base acrylic resins ( three heat polymerized and one room temperature polymerized) and five

  1. Liners and bases in general dentistry.

    Science.gov (United States)

    Weiner, R

    2011-06-01

    One of the most controversial areas of restorative dentistry is the subject of liners and bases. Currently, there is no single protocol, with respect to the use of liners and bases, for clinicians to follow. This article is an in-depth literature review that discusses the use of liners and bases and the types of materials that are available to the restorative dentist. The new emerging concept of minimally invasive dentistry will require new restorative techniques. These changes will require the clinician to reevaluate their use of liners and bases. Other clinical considerations and findings from recent research are discussed. © 2011 Australian Dental Association.

  2. Ceramics Technology Project database: September 1991 summary report. [Materials for piston ring-cylinder liner for advanced heat/diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, B.L.P.

    1992-06-01

    The piston ring-cylinder liner area of the internal combustion engine must withstand very-high-temperature gradients, highly-corrosive environments, and constant friction. Improving the efficiency in the engine requires ring and cylinder liner materials that can survive this abusive environment and lubricants that resist decomposition at elevated temperatures. Wear and friction tests have been done on many material combinations in environments similar to actual use to find the right materials for the situation. This report covers tribology information produced from 1986 through July 1991 by Battelle columbus Laboratories, Caterpillar Inc., and Cummins Engine Company, Inc. for the Ceramic Technology Project (CTP). All data in this report were taken from the project's semiannual and bimonthly progress reports and cover base materials, coatings, and lubricants. The data, including test rig descriptions and material characterizations, are stored in the CTP database and are available to all project participants on request. Objective of this report is to make available the test results from these studies, but not to draw conclusions from these data.

  3. Charge density research: from inorganic and molecular materials to proteins

    OpenAIRE

    Lecomte, Claude; Aubert, Emmanuel; Legrand, Vincent; Porcher, Florence; Pillet, Sébastien; Guillot, Benoît; Jelsch, Christian

    2005-01-01

    International audience; This paper intends to present applications of experimental charge density research in physics, chemistry and biology. It describes briefly most methods for modelling the charge density and calculating and analyzing derived properties (electrostatic potential, topological properties). These methods are illustrated through examples ranging from material science and coordination chemistry to biocrystallography, like the estimation of electrostatic energy in a zeolite-like...

  4. Effects of recycled FGD liner material on water quality and macrophytes of constructed wetlands: A mesocosm experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, C.; Mitsch, W.J.; Wolfe, W.E.

    2001-07-01

    This paper investigates the use of flue gas desulfurization (FGD) by-products from power plant wet scrubbers as liners in wetlands constructed to improve water quality. Mesocosm experiments were conducted over two consecutive growing seasons with different phosphorus loadings. Wetland mesocosms using FGD liners retained more total and soluble reactive phosphorus, with lower concentrations in the leachate (first year) and higher concentrations in the surface water (second year). Leachate was higher in conductivity (second year) and pH (both years) in lined mesocosms. Surface outflow did not reveal any significant difference in physicochemical characteristics between lined and unlined mesocosms. There was no significant difference in total biomass production of wetland plants between lined and unlined mesocosms.

  5. Charge carrier dynamics in photovoltaic materials

    NARCIS (Netherlands)

    Jensen, S.A.

    2014-01-01

    We employ the experimental technique THz Time Domain spectroscopy (THz-TDS) to study the optoelectronic properties of potential photovoltaic materials. This all-optical method is useful for probing photoconductivities in a range of materials on ultrafast timescales without the application of

  6. Sanitary landfill liners

    DEFF Research Database (Denmark)

    Christiansen, Ole V.; Stentsøe, Steen; Petersen, Søren

    DS/INF 466 is the revised Danish recommendation for investigations, design and construction of landfill liners.......DS/INF 466 is the revised Danish recommendation for investigations, design and construction of landfill liners....

  7. Acoustic Liner for Turbomachinery Applications

    Science.gov (United States)

    Huff, Dennis L.; Sutliff, Daniel L.; Jones, Michael G.; Hebsur, Mohan G.

    2010-01-01

    The purpose of this innovation is to reduce aircraft noise in the communities surrounding airports by significantly attenuating the noise generated by the turbomachinery, and enhancing safety by providing a containment barrier for a blade failure. Acoustic liners are used in today's turbofan engines to reduce noise. The amount of noise reduction from an acoustic liner is a function of the treatment area, the liner design, and the material properties, and limited by the constraints of the nacelle or casement design. It is desirable to increase the effective area of the acoustic treatment to increase noise suppression. Modern turbofan engines use wide-chord rotor blades, which means there is considerable treatment area available over the rotor tip. Turbofan engines require containment over the rotors for protection from blade failure. Traditional methods use a material wrap such as Kevlar integrated with rub strips and sometimes metal layers (sandwiches). It is possible to substitute the soft rub-strip material with an open-cell metallic foam that provides noise-reduction benefits and a sacrificial material in the first layer of the containment system. An open-cell foam was evaluated that behaves like a bulk acoustic liner, serves as a tip rub strip, and can be integrated with a rotor containment system. Foams can be integrated with the fan-containment system to provide sufficient safety margins and increased noise attenuation. The major innovation is the integration of the foam with the containment.

  8. Distributor means for charging particulate material into receptacles

    Science.gov (United States)

    Greaves, Melvin J.

    1977-06-14

    Disclosed are receptacles, such as shaft furnaces illustrated by a blast furnace and an upright oil shale retort, embodying rotatable charge distributor means for distributing particulate charge material in the furnace, which charge distributor means can provide a high uniformity of distribution of various sizes of particles and also can provide and maintain a stock line of desired contour and heighth in the receptacle. The distributor means includes a hopper having rigidly fixed to it a plurality of downwardly extending chutes with lower discharge portions that discharge in concentric circular zones at the stock line. The distributor means includes a segmented portion at the juncture of the hopper and the chutes that divides the charge material discharged into the hopper in proportion to the area of the circular zone at the stock line that is fed by the chute. The distributor means embodies means for providing mass flow of the particulate charge material through the chutes to the stock line and for avoiding segregation between larger and smaller particles of charge material deposited at the stock line.

  9. Adaptive Liners for Broadband Noise Reduction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will combine the advantages of adaptive materials with the simplistic passive design of state-of-the-art acoustic liners to provide the ability to tune...

  10. Liner environment effects study

    Science.gov (United States)

    Venkataramani, K. S.; Ekstedt, E. E.

    1984-01-01

    The Liner Environment Effects Study Program is aimed at establishing a broad heat transfer data base under controlled experimental conditions by quantifying the effects of the combustion system conditions on the combustor liner thermal loading and on the flame radiation characteristics. Five liner concepts spanning the spectrum of liner design technology from the very simple to the most advanced concepts are investigated. These concepts comprise an uncooled liner, a conventional film cooled liner, an impingement/film cooled liner, a laser drilled liner approaching the concept of a porous wall, and a siliconized silicon carbide ceramic liner. Effect of fuel type is covered by using fuels containing 11.8, 12.8, and 14% hydrogen. Tests at 100, 200, and 300 psia provide a basis for evaluating the effect of pressure on the heat transfer. The effects of the atomization quality and spray characteristics are examined by varying the fuel spray Sauter mean diameter and the spray angle. Additional varied parameters include reference velocity, a wide range of equivalence ratio, cooling flow rate, coolant temperature and the velocity of the coolant stream on the backside of the liner.

  11. Landfill liners from dam reservoir sediments

    Directory of Open Access Journals (Sweden)

    Koś Karolina

    2016-03-01

    Full Text Available Landfill liners from dam reservoir sediments. Every municipal solid waste landfill has to be properly secured to protect the natural environment from possible leachate. Most often an artificial sealing is used, which is based on a soil liner from cohesive soils (clays, silts. Usability evaluation of bottom sediments from Rzeszowski Reservoir for building these liners was presented in the paper. Sediments from dam reservoirs, gathered as a result of the siltation process, can be a valuable material for earthworks purposes. Determination of their possible ways of usage is important, especially before the planned dredging, because thanks to that this material will not be put on a heap. Based on the analysis of the geotechnical parameters of these sediments it was stated that this material can be preliminary allowed for using in liners.

  12. VPS GRCop-84 Liner Development Efforts

    Science.gov (United States)

    Elam, Sandra K.; Holmes, Richard; McKechnie, Tim; Hickman, Robert; Pickens, Tim

    2003-01-01

    For the past several years, NASA's Marshall Space Flight Center (MSFC) has been working with Plasma Processes, Inc. (PPI) to fabricate combustion chamber liners using the Vacuum Plasma Spray (VPS) process. Multiple liners of a variety of shapes and sizes have been created. Each liner has been fabricated with GRCop-84 (a copper alloy with chromium and niobium) and a functional gradient coating (FGC) on the hot wall. While the VPS process offers versatility and a reduced fabrication schedule, the material system created with VPS allows the liners to operate at higher temperatures, with maximum blanch resistance and improved cycle life. A subscal unit (5K lbf thrust class) is being cycle tested in a LOX/Hydrogen thrust chamber assembly at MSFC. To date, over 75 hot-fire tests have been accumulated on this article. Tests include conditions normally detrimental to conventional materials, yet the VPS GRCop-84 liner has yet to show any signs of degradation. A larger chamber (15K lbf thrust class) has also been fabricated and is being prepared for hot-fire testing at MSFC near the end of 2003. Linear liners have been successfully created to further demonstrate the versatility of the process. Finally, scale up issues for the VPS process are being tackled with efforts to fabricate a full size, engine class liner. Specifically, a liner for the SSME's Main Combustion Chamber (MCC) has recently been attempted. The SSME size was chosen for convenience, since its design was readily available and its size was sufficient to tackle specific issues. Efforts to fabricate these large liners have already provided valuable lessons for using this process for engine programs. The material quality for these large units is being evaluated with destructive analysis and these results will be available by the end of 2003.

  13. Multifunctional Metal Matrix Composite Filament Wound Tank Liners Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Metal Matrix Composite (MMC) materials offer tremendous potential for lightweight propellant and pressurant tankage for space applications. Thin MMC liners for COPVs...

  14. Guiding of charged particles through capillaries in insulating materials

    Science.gov (United States)

    Stolterfoht, Nikolaus; Yamazaki, Yasunori

    2016-04-01

    Studies of charged particle guiding through capillaries in insulating materials, performed during the last decade, are reviewed in a comprehensive manner. First, the principles of capillary guiding of slow highly charged ions are introduced describing the self-organized formation of charge patches. Basic quantities are defined, such as the guiding power characterizing a capillary. Challenges of the guiding experiments are pointed out. Then, experiments are described with emphasis on the guiding of highly charged ions in the keV energy range. Samples with an array of nanocapillaries as well as single macrocapillaries are treated. Emission profiles of transmitted ions are analyzed to establish scaling laws for the guiding angle, which quantifies the guiding power. Oscillations of the mean ion emission angle reveal the temporal dynamics of the charge patch formation. Next, experiments with ions of high (MeV) energies are focused on single tapered capillaries allowing for the production of a microbeam for various applications. Experiments concerning electrons are presented showing that apart from being elastically scattered these negative particles may enter into the capillary surface where they suffer energy losses. Finally, theoretical concepts of the capillary guiding are discussed. Simulations based on different charge transport methods clearly support the understanding of the guiding mechanisms. Altogether, capillary guiding involves several novel phenomena for which understanding have progressed far beyond their infancy.

  15. Charge-Transfer Interactions in Organic Functional Materials

    Directory of Open Access Journals (Sweden)

    Bih-Yaw Jin

    2010-08-01

    Full Text Available Our goal in this review is three-fold. First, we provide an overview of a number of quantum-chemical methods that can abstract charge-transfer (CT information on the excited-state species of organic conjugated materials, which can then be exploited for the understanding and design of organic photodiodes and solar cells at the molecular level. We stress that the Composite-Molecule (CM model is useful for evaluating the electronic excited states and excitonic couplings of the organic molecules in the solid state. We start from a simple polyene dimer as an example to illustrate how interchain separation and chain size affect the intercahin interaction and the role of the charge transfer interaction in the excited state of the polyene dimers. With the basic knowledge from analysis of the polyene system, we then study more practical organic materials such as oligophenylenevinylenes (OPVn, oligothiophenes (OTn, and oligophenylenes (OPn. Finally, we apply this method to address the delocalization pathway (through-bond and/or through-space in the lowest excited state for cyclophanes by combining the charge-transfer contributions calculated on the cyclophanes and the corresponding hypothetical molecules with tethers removed. This review represents a step forward in the understanding of the nature of the charge-transfer interactions in the excited state of organic functional materials.

  16. Age Does Not Affect the Material Properties of Expanded Polystyrene Liners in Field-Used Bicycle Helmets.

    Science.gov (United States)

    Kroeker, Shannon G; Bonin, Stephanie J; DeMarco, Alyssa L; Good, Craig A; Siegmund, Gunter P

    2016-04-01

    Bicycle helmet foam liners absorb energy during impacts. Our goal was to determine if the impact attenuation properties of expanded polystyrene (EPS) foam used in bicycle helmets change with age. Foam cores were extracted from 63 used and unused bicycle helmets from ten different models spanning an age range of 2-20 yrs. All cores were impact tested at a bulk strain rate of 195 s(-1). Six dependent variables were determined from the stress-strain curve derived from each impact (yield strain, yield stress, elastic modulus, plateau slope, energy at 65% compression, and stress at 65% compression), and a general linear model was used to assess the effect of age on each dependent variable with density as a covariate. Age did not affect any of the dependent variables; however, greater foam density, which varied from 58 to 100 kg/m(3), generated significant increases in all of the dependent variables except for yield strain. Higher density foam cores also exhibited lower strains at which densification began to occur, tended to stay within the plateau region of the stress-strain curve, and were not compressed as much compared with the lower density cores. Based on these data, the impact attenuation properties of EPS foam in field-used bicycle helmets do not degrade with the age.

  17. Liner Service Network Design

    DEFF Research Database (Denmark)

    Brouer, Berit Dangaard

    This thesis concerns design of liner shipping networks using operations research to optimize liner shipping networks at the strategic, tactical and operational level. Liner shipping networks are often compared to public transit networks as they consist of a set of scheduled sailings connecting....... The research field of liner shipping network design is relatively young and many open research questions exists. Among others, a unified and rich mathematical model formulating the main characteristics of the business domain has not been clearly described and exact methods for such mathematical models...... are still not able to solve significant instances of this complex optimization problem. In this thesis two research directions are explored within the field: The first research direction contributes to basic research on the liner shipping network design problem by describing the domain seen from...

  18. Organic (opto)electronic materials: understanding charge carrier dynamics

    Science.gov (United States)

    Ostroverkhova, Oksana

    2008-05-01

    There is growing interest in using organic (opto)electronic materials for applications in electronics and photonics. In particular, organic semiconductor thin films offer several advantages over traditional silicon technology, including low-cost processing, the potential for large-area flexible devices, high-efficiency light emission, and widely tunable properties through functionalization of the molecules. Over the past decade, remarkable progress in materials design and purification has been made, which led to applications of organic semiconductors in light-emitting diodes, polymer lasers, photovoltaic cells, high-speed photodetectors, organic thin-film transistors, and many others. Most of the applications envisioned for organic semiconductors rely on their conductive or photoconductive properties. However, despite remarkable progress in organic electronics and photonics, the nature of charge carrier photogeneration and transport in organic semiconductors is not completely understood and remains controversial, partly due to difficulties in assessing intrinsic properties that are often masked by impurities, grain boundaries, etc. Measurements of charge carrier dynamics at picosecond time scales after excitation reveal the intrinsic nature of mobile charge carriers before they are trapped at defect sites. In this presentation, I will review the current state of the field and summarize our recent results on photoconductivity of novel high-performance organic semiconductors (such as functionalized pentacene and anthradithiophene thin films) from picoseconds to seconds after photoexcitation. Photoluminescent properties of these novel materials will also be discussed.

  19. Charge transport in metal oxide nanocrystal-based materials

    Science.gov (United States)

    Runnerstrom, Evan Lars

    There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and

  20. Use of fly ash, phosphogypsum and red mud as a liner material for the disposal of hazardous zinc leach residue waste.

    Science.gov (United States)

    Coruh, Semra; Ergun, Osman Nuri

    2010-01-15

    Increasing amounts of residues and waste materials coming from industrial activities in different processes have become an increasingly urgent problem for the future. The release of large quantities of heavy metals into the environment has resulted in a number of environmental problems. The present study investigated the safe disposal of the zinc leach residue waste using industrial residues such as fly ash, phosphogypsum and red mud. In the study, leachability of heavy metals from the zinc leach residue has been evaluated by mine water leaching procedure (MWLP) and toxicity characteristic leaching procedure (TCLP). Zinc removal from leachate was studied using fly ash, phosphogypsum and red mud. The adsorption capacities and adsorption efficiencies were determined. The adsorption rate data was analyzed according to the pseudo-second-order kinetic, Elovich kinetic and intra-particle diffusion kinetic models. The pseudo-second-order kinetic was the best fit kinetic model for the experimental data. The results show that addition of fly ash, phosphogypsum and red mud to the zinc leach residue drastically reduces the heavy metal content in the leachate and could be used as liner materials.

  1. SDU6 Interior Liner Testing & Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-10-14

    Two liner materials (Marseal® M-3500 and REMA Chemoline® 4CN) proposed for use as a liner inside the Saltstone Disposal Unit 6 (SDU6) were subjected to specific ASTM tests (tensile and lap-shear) after immersion in 50% and 100% simulant solutions for 1000 hours at the Savannah River Ecology Laboratory. Both liner materials exhibited good resistance to the simulant chemistry, at least based on the tests performed and the test duration/conditions imposed. In lap-shear tests, both materials failed in the base material rather than peeling apart, confirming good adhesion. The REMA 4CN bromobutyl elastomer showed superior bonding characteristics and absence of warping or delamination at the conditions tested. The Marseal M-3500 material (PVC/EVA blend with polyester reinforcement) exhibited deformation and debonding in some locations. The cause of the deformation and delamination observed in the Marseal M-3500 material is not fully known, but possibly attributed to thermomechanical stress at immersion temperatures, and the thermoplastic nature of the material. The immersion temperature (68 °C) is slightly greater than the maximum use temperature limit quoted for the Marseal M- 3500 liner (65 °C), though the basis for the service limit is unknown. The testing performed was limited in scope and only for these two liner materials. These tests were primarily performed to screen for severe incompatibility or short-term degradation in Saltstone bleedwater simulants at bounding solution temperatures. Additional testing is recommended to assess long-term performance and the overall service life of the liner.

  2. Optimization in liner shipping

    DEFF Research Database (Denmark)

    Brouer, Berit Dangaard; Karsten, Christian Vad; Pisinger, David

    2017-01-01

    Seaborne trade is the lynchpin in almost every international supply chain, and about 90% of non-bulk cargo worldwide is transported by container. In this survey we give an overview of data-driven optimization problems in liner shipping. Research in liner shipping is motivated by a need for handling...... shipping network design, we consider the problem of container routing and speed optimization. Next, we consider empty container repositioning and stowage planning as well as disruption management. In addition, the problem of bunker purchasing is considered in depth. In each section we give a clear problem...... still more complex decision problems, based on big data sets and going across several organizational entities. Moreover, liner shipping optimization problems are pushing the limits of optimization methods, creating a new breeding ground for advanced modelling and solution methods. Starting from liner...

  3. Resilient Liners: A Review

    OpenAIRE

    Rodrigues, Shobha; Shenoy, Vidya; Shetty, Thilak

    2012-01-01

    Resilient liners when used intelligently are an excellent adjunct in removable prosthodontics. However, currently they have to be best considered as temporary expedients because none of the advocated permanent liners have life expectancy comparable to resin denture base. This article reviews the literature regarding their composition, functions, gelation characteristics, bond strength and influence on denture bases. It also presents their drawbacks and attempts made to extend their longevity....

  4. Shaping the Microstructure of Cast Iron Automobile Cylinder Liners Aimed at Providing High Service Properties

    Directory of Open Access Journals (Sweden)

    Orłowicz A.W.

    2015-06-01

    Full Text Available The paper presents an analysis of factors affecting the wear of cylinder liners. The effect of the graphite precipitation morphology on the cylinder liner wear mechanism is presented. Materials used to cast cylinder liners mounted in a number of engines have been examined for their conformity with requirements set out in applicable Polish industrial standard. A casting for a prototype cylinder liner has been made with a microstructure guaranteeing good service properties of the part.

  5. Assessment of structural integrity of Monju steel liner against sodium leakage and combustion. Overview

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, E.; Kobayashi, T.; Ito, K. [Japan Nuclear Cycle Development Institute, Monju Construction Office, Fukui (Japan); Morishita, M.; Ichimiya, M.; Tsukimori, K.; Asayama, T.; Ueno, F. [Japan Nuclear Cycle Development Institute, Oarai Engineering Center, Ibaraki (Japan); Akatsu, M. [Kawasaki Heavy Industries, LTD, Tokyo (Japan)

    2001-07-01

    This report overviews the structural analyses and model tests to estimate the structural integrity of the lining structure of Monju under a postulated condition of sodium leakage and combustion. In these evaluations, both thinning of the liner due to molten salt type corrosion and thermal loading on the liner are conservatively assumed. Strain limits are determined and used to judge the structural integrity of the liner on basis of tensile and bending tests of the liner material. (author)

  6. Perl one-liners

    CERN Document Server

    Krumins, Peteris

    2013-01-01

    130 Time-Saving, Problem-Solving Perl Scripts That Get Things DonePart of the fun of programming in Perl lies in tackling tedious tasks with short, efficient, and reusable code. Often, the perfect tool is the one-liner, a small but powerful program that fits in one line of code and does one thing really well.In Perl One-Liners, author and impatient hacker Peteris Krumins takes you through more than 100 compelling one-liners that do all sorts of handy things, such as manipulate line spacing, tally column values in a table, and get a list of users on a system. This cookbook of useful, customizab

  7. Acoustic Liners for Turbine Engines

    Science.gov (United States)

    Jones, Michael G (Inventor); Grady, Joseph E (Inventor); Kiser, James D. (Inventor); Miller, Christopher (Inventor); Heidmann, James D. (Inventor)

    2016-01-01

    An improved acoustic liner for turbine engines is disclosed. The acoustic liner may include a straight cell section including a plurality of cells with straight chambers. The acoustic liner may also include a bent cell section including one or more cells that are bent to extend chamber length without increasing the overall height of the acoustic liner by the entire chamber length. In some cases, holes are placed between cell chambers in addition to bending the cells, or instead of bending the cells.

  8. Resilient liners: a review.

    Science.gov (United States)

    Rodrigues, Shobha; Shenoy, Vidya; Shetty, Thilak

    2013-09-01

    Resilient liners when used intelligently are an excellent adjunct in removable prosthodontics. However, currently they have to be best considered as temporary expedients because none of the advocated permanent liners have life expectancy comparable to resin denture base. This article reviews the literature regarding their composition, functions, gelation characteristics, bond strength and influence on denture bases. It also presents their drawbacks and attempts made to extend their longevity. A Medline search was completed for the period from 1986 to 2007, along with a manual search, to identify pertinent English peer-reviewed articles and textbooks.

  9. Charge Recombination Suppressed by Destructive Quantum Interference in Heterojunction Materials

    NARCIS (Netherlands)

    Tempelaar, Roel; Koster, L. Jan Anton; Havenith, Remco W. A.; Knoester, Jasper; Jansen, Thomas L. C.

    2016-01-01

    We show that charge recombination in ordered heterojunctions depends sensitively on the degree of coherent delocalization of charges at the donor acceptor interface. Depending on the relative sign of the electron and hole transfer integrals, such delocalization can dramatically suppress

  10. Lifecycle Verification of Tank Liner Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Anovitz, Lawrence {Larry} M [ORNL; Smith, Barton [ORNL

    2014-03-01

    This report describes a method that was developed for the purpose of assessing the durability of thermoplastic liners used in a Type IV hydrogen storage tank during the tank s expected service life. In the method, a thermoplastic liner specimen is cycled between the maximum and minimum expected working temperatures while it is differentially pressurized with high-pressure hydrogen gas. The number of thermal cycling intervals corresponds to those expected within the tank s design lifetime. At prescribed intervals, hydrogen permeation measurements are done in situ to assess the ability of the liner specimen to maintain its hydrogen barrier properties and to model its permeability over the tank lifetime. Finally, the model is used to assess whether the steady-state leakage rate in the tank could potentially exceed the leakage specification for hydrogen fuel cell passenger vehicles. A durability assessment was performed on a specimen of high-density polyethylene (HDPE) that is in current use as a tank liner. Hydrogen permeation measurements were performed on several additional tank liner polymers as well as novel polymers proposed for use as storage tank liners and hydrogen barrier materials. The following technical barriers from the Fuel Cell Technologies Program MYRDD were addressed by the project: D. Durability of on-board storage systems lifetime of at least 1500 cycles G. Materials of construction vessel containment that is resistant to hydrogen permeation M. Lack of Tank Performance Data and Understanding of Failure Mechanisms And the following technical targets1 for on-board hydrogen storage systems R&D were likewise addressed: Operational cycle life (1/4 tank to full) FY 2017: 1500 cycles; Ultimate: 1500 cycles Environmental health & safety Permeation and leakage: Meets or exceeds applicable standards Loss of useable H2: FY 2017: 0.05 g/h/kg H2; Ultimate: 0.05 g/h/kg H2

  11. Liquid butane filled load for a liner driven Pegasus experiment

    CERN Document Server

    Salazar, M A; Atchison, W; Armijo, E; Bartos, Yu; García, F; Randolph, B; Sheppard, M G

    2001-01-01

    Summary form only given, as follows. A hydrogen rich, low density liquid, contained within the internal volume of a cylindrical liner, was requested of the Polymers and Coatings Group (MST-7) of the Los Alamos Materials Science Division for one of the last liner driven experiments conducted on the Los Alamos Pegasus facility. The experiment required massive tungsten glide planes for inertial confinement of the liner fill media during implosion. Shallow sinusoidal perturbations were machined on the inside surface of the liner to seed instabilities, also true of the previous experiments. Butane was selected for a relatively low equilibrium vapor pressure, a practical attribute for use in the Pegasus vacuum power flow channel. Butane safety topics at Pegasus will be addressed. Glide planes were sealed to the liner by use of butane compatible o-rings. A sintered form of tungsten was used for the glide planes to facilitate machining the relatively complex shapes that were required. Porosity of the tungsten was sea...

  12. Designing liner shipping networks

    NARCIS (Netherlands)

    J. Mulder (Judith); R. Dekker (Rommert)

    2012-01-01

    textabstractIn this paper the combined fleet-design, ship-scheduling and cargo-routing problem with limited availability of ships in liner shipping is considered. A genetic algorithm based solution method is proposed in which the ports are first aggregated into port cluster to reduce the problem

  13. A comparative evaluation of effect on water sorption and solubility of a temporary soft denture liner material when stored either in distilled water, 5.25% sodium hypochlorite or artificial saliva: An in vitro study

    Directory of Open Access Journals (Sweden)

    Aditi Garg

    2016-01-01

    Full Text Available Introduction: Soft denture liners have a key role in modern removable prosthodontics since they restore health to inflamed and abused mucosa by redistribution of forces transmitted to the edentulous ridges. The most common problems encountered using soft denture liners are water sorption and solubility when in contact with saliva or storage media. These problems are associated with swelling, distortion, support of Candida albicans growth, and stresses at the liner/denture base interface that reduces the bond strength. Objective: To evaluate the water sorption and solubility of commercially available acrylic based self cure soft denture lining material (GC RELINE™ Tissue Conditioner after immersion in three different storage media (distilled water, Shellis artificial saliva, 5.25% sodium hypochlorite disinfectant solution at time interval of 4, 7, 11, and 15 days. Material and Methods: The study involved preparation of artificial saliva using Shellis formula. A total 45 standardized samples of the material (GC RELINE™ were prepared in disk form (15 mm in diameter and 2 mm in thickness. The study was divided into three groups with storage in Control (distilled water, Shellis artificial saliva, and 5.25% sodium hypochlorite. Samples were dried in a desiccator and weighed in the analytical balance to measure the initial weight (mg/cm2 of the disks (W1. The first groups (15 samples were placed in 30 ml distilled water (Group A at 37΀C, second group 30 ml of artificial saliva (Group B and third group in 5.25% sodium hypochlorite (Group C. Disks were removed from disinfectant after 5 min and placed in 30 ml distilled water. On days 4, 7, 11, and 15, all samples were removed from their containers and reweighed to measure the weight (mg/cm2 of the disks after sorption (W2. The solubility was measured by placing the disks back in the desiccator after each sorption cycle and drying them to constant weight in the desiccator. These values were weight

  14. BASIC experiment on the sodium leak combustion. Examination of sodium combustion and liner material damage by sodium continuously dropped into the high-temperature NaOH molten pool

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiichi; Furukawa, Tomohiro; Aoto, Kazumi [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-10-01

    The purpose of this basic experiments to clarify the cause of damage of the liner material, which recognized by the Sodium Leak and Combustion Test II. In this experiment, the liquid sodium continuously dropped into the high-temperature NaOH molten pool, to investigate sodium combustion phenomenon in the NaOH pool and damage of the liner material (carbon steel, JIS, G3106, SM400B). The drop temperature of sodium is 496degC, and the amount of dropped sodium is about 1200g. The temperature of NaOH molten pool is 660-690degC in the initial stage, and the amount of NaOH is about 2500g. The average drop (leak) rate is 1.8g/sec, and the height of above the NaOH molten pool is about 700 mm. The following results were obtained. The fallen sodium continued to burn during floating on the NaOH molten pool. In this case, the NaOH molten pool was not totally covered with the combustion products, and the molten pool always had the atmosphere interface. The combustion products were mixed and melted in the NaOH molten pool. The maximum reduction of thickness was occurred in the level vicinity of NaOH molten pool. Plate test specimens of 3 mm thickness were separated in the level vicinity during periods of combustion. And, in the NaOH container, the metal loss of largest about 2.5 mm was recognized at the level vicinity. It is considered that the remarkable metal loss in the level vicinity indicates the involvement of molten salt-type corrosion mechanism with the atmosphere interface. The above mentioned results were obtained from the basic experiment. These results gave the important information to evaluate the damage mechanism of the floor liner material. (author)

  15. A comparative evaluation of effect on water sorption and solubility of a temporary soft denture liner material when stored either in distilled water, 5.25% sodium hypochlorite or artificial saliva: An in vitro study.

    Science.gov (United States)

    Garg, Aditi; Shenoy, K Kamalakanth

    2016-01-01

    Soft denture liners have a key role in modern removable prosthodontics since they restore health to inflamed and abused mucosa by redistribution of forces transmitted to the edentulous ridges. The most common problems encountered using soft denture liners are water sorption and solubility when in contact with saliva or storage media. These problems are associated with swelling, distortion, support of Candida albicans growth, and stresses at the liner/denture base interface that reduces the bond strength. To evaluate the water sorption and solubility of commercially available acrylic based self cure soft denture lining material (GC RELINE™ Tissue Conditioner) after immersion in three different storage media (distilled water, Shellis artificial saliva, 5.25% sodium hypochlorite disinfectant solution) at time interval of 4, 7, 11, and 15 days. The study involved preparation of artificial saliva using Shellis formula. A total 45 standardized samples of the material (GC RELINE™) were prepared in disk form (15 mm in diameter and 2 mm in thickness). The study was divided into three groups with storage in Control (distilled water), Shellis artificial saliva, and 5.25% sodium hypochlorite. Samples were dried in a desiccator and weighed in the analytical balance to measure the initial weight (mg/cm2) of the disks (W1). The first groups (15 samples) were placed in 30 ml distilled water (Group A) at 37ºC, second group 30 ml of artificial saliva (Group B) and third group in 5.25% sodium hypochlorite (Group C). Disks were removed from disinfectant after 5 min and placed in 30 ml distilled water. On days 4, 7, 11, and 15, all samples were removed from their containers and reweighed to measure the weight (mg/cm2) of the disks after sorption (W2). The solubility was measured by placing the disks back in the desiccator after each sorption cycle and drying them to constant weight in the desiccator. These values were weight after desiccation (W3). Water sorption and solubility

  16. Prediction of Cone Crusher Performance Considering Liner Wear

    Directory of Open Access Journals (Sweden)

    Yanjun Ma

    2016-12-01

    Full Text Available Cone crushers are used in the aggregates and mining industries to crush rock material. The pressure on cone crusher liners is the key factor that influences the hydraulic pressure, power draw and liner wear. In order to dynamically analyze and calculate cone crusher performance along with liner wear, a series of experiments are performed to obtain the crushed rock material samples from a crushing plant at different time intervals. In this study, piston die tests are carried out and a model relating compression coefficient, compression ratio and particle size distribution to a corresponding pressure is presented. On this basis, a new wear prediction model is proposed combining the empirical model for predicting liner wear with time parameter. A simple and practical model, based on the wear model and interparticle breakage, is presented for calculating compression ratio of each crushing zone along with liner wear. Furthermore, the size distribution of the product is calculated based on existing size reduction process model. A method of analysis of product size distribution and shape in the crushing process considering liner wear is proposed. Finally, the validity of the wear model is verified via testing. The result shows that there is a significant improvement of the prediction of cone crusher performance considering liner wear as compared to the previous model.

  17. The influence of liners on the pulp inflammation

    Directory of Open Access Journals (Sweden)

    Davidović Lado

    2015-01-01

    Full Text Available Introduction. The study included application of liners and dental composites in to cavities of six experimental animals - rabbits (Oryctolagus cuniculus. Objective. The aim of the study was to investigate rabbit dental pulp response to different liners. Methods. Cavity preparation for class V were made on the maxillary central incisors and one lower incisor, while the second lower incisor served as a control tooth. These teeth were restored with the use of one of the following liners - Calcimol LC, ANA Liner and Fuji II LC Improved, and Ceram-X mono dental composite. After an observation period of five days animals were sacrificed and prepared for histological analysis. The existence and degree of the pulp inflammation was determined by using a light microscope. Results. Results showed that the used liners do not cause distortion of the structure and continuity of the odontoblastic layer. Inflammation was not registered in the control group, while in each group of tested materials one tooth with mild signs of hyperemia was registered. Results showed that all three tested liners demonstrated favorable effects on the pulp of the tooth and did not lead to inflammatory reactions. Conclusion. Histological analysis of the dental pulp of experimental animals suggests that the liners used in this study do not compromise the integrity of the odontoblastic layer, if it is applied over a thin layer of dentin. In each group of tested materials one tooth with mild signs of hyperemia and vasodilation was registered.

  18. Charge Recombination Suppressed by Destructive Quantum Interference in Heterojunction Materials.

    Science.gov (United States)

    Tempelaar, Roel; Koster, L Jan Anton; Havenith, Remco W A; Knoester, Jasper; Jansen, Thomas L C

    2016-01-07

    We show that charge recombination in ordered heterojunctions depends sensitively on the degree of coherent delocalization of charges at the donor-acceptor interface. Depending on the relative sign of the electron and hole transfer integrals, such delocalization can dramatically suppress recombination through destructive quantum interference. This could explain why measured recombination rates are significantly lower than predictions based on Langevin theory for a variety of organic bulk heterojunctions. Moreover, it opens up a design strategy for photovoltaic devices with enhanced efficiencies through coherently suppressed charge recombination.

  19. Influence Analysis of Shell Material and Charge on Shrapnel Lethal Power

    Directory of Open Access Journals (Sweden)

    Wang Lin

    2015-01-01

    Full Text Available To compare the shrapnel lethal power with different shell material and charge, LS-DYNA was used to numerically simulate four kinds of shrapnel lethal power. The shell material was 58SiMn, 50SiMnVB or 40Cr, whereas the charge was RL-F. And the shell material was 58SiMn, whereas the charge was TNT. The shell rupture process and lethal power test were analyzed. The results show that, the lethal power of RL-F charge increase by 25%, 45%, 14% compared with the TNT charge, whereas the shell material was 58SiMn, 50SiMnVB, 40Cr. And then the guarantee range and lethal power can be improved by using the high explosive and changing shell material, whereas the projectile shape coefficient is invariable.

  20. NTERACTION BETWEEN SURFACE CHARGE PHENOMENA AND MULTI-SPECIES DIFFUSION IN CEMENT BASED MATERIALS

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2008-01-01

    Measurements strongly indicate that the ‘inner’ surface of the microscopic structure of cement based materials has a fixed negative charge. This charge contributes to the formation of so-called electrical double layers. In the case of cement based materials the ionic species located in such layers...... are typically potassium -, sodium - and calcium ions. Due to the high specific surface area of hydrated cement, a large amount of ions can be located in theses double layers even if the surface charge is relatively low. The attraction force, caused by the fixed surface charge on ions located close to surfaces...... and also including a negatively charged ‘ion’ with an extremely low diffusion constant so as to represent a fixed negative surface charge. The theoretical results from such simulations, using a tailor made finite element technique, indicates a strong influence of surface charges on global diffusion...

  1. Liner Shipping Fleet Repositioning

    DEFF Research Database (Denmark)

    Tierney, Kevin; Jensen, Rune Møller

    2011-01-01

    to complex handling and timing restrictions. The objective of the problem is cost minimization, which translates nearly directly into the minimization of CO2 emissions and pollution. Additionally, it is important that all cost elements, including the ones that are only loosely coupled with activity choices......, can be accurately modeled. Numerous liner shipping fleet repositioning problems are solved each year by the world’s shipping firms without the assistance of any decision support, even though humans can require between two to three days to find a reasonable solution. Finding optimal repositionings...

  2. Growth and instability of charged dislocation loops under irradiation in ceramic materials

    CERN Document Server

    Ryazanov, A I; Kinoshita, C; Klaptsov, A V

    2002-01-01

    We have investigated the physical mechanisms of the growth and stability of charged dislocation loops in ceramic materials with very strong different mass of atoms (stabilized cubic zirconia) under different energies and types of irradiation conditions: 100-1000 keV electrons, 100 keV He sup + and 300 keV O sup + ions. The anomalous formation of extended defect clusters (charged dislocation loops) has been observed by TEM under electron irradiation subsequent to ion irradiation. It is demonstrated that very strong strain field (contrast) near charged dislocation loops is formed. The dislocation loops grow up to a critical size and after then become unstable. The instability of the charged dislocation loop leads to the multiplication of dislocation loops and the formation of dislocation network near the charged dislocation loops. A theoretical model is suggested for the explanation of the growth and stability of the charged dislocation loop, taking the charge state of point defects. The calculated distribution...

  3. Optimisation of metal charge material for electric arc furnace

    Directory of Open Access Journals (Sweden)

    T. Lis

    2011-10-01

    Full Text Available The analysis of the changes in the crude steel production volumes implies gradual increase of production since the mid 20th century. This tendency has been slightly hampered by the economic depression. At the same time, the market requirements enforce improvement of the quality of the products manufactured on simultaneous minimisation of the production costs. One of the tools applied to solve these problems is mathematical optimisation. The author of this paper has presented an example of application of the multi-criteria optimisation method to improvement of efficiency of steel smelting in an electric arc furnace (EAF through appropriate choice of the charge scrap. A measurable effect of applying such a methodology of choosing the metal charge is the ability to reduce the unit cost of steel smelting.

  4. Space charge distribution measurement methods and particle loaded insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Hole, S [Laboratoire des Instruments et Systemes d' Ile de France, Universite Pierre et Marie Curie-Paris6, 10 rue Vauquelin, 75005 Paris (France); Sylvestre, A [Laboratoire d' Electrostatique et des Materiaux Dielectriques, CNRS UMR5517, 25 avenue des Martyrs, BP 166, 38042 Grenoble cedex 9 (France); Lavallee, O Gallot [Laboratoire d' Etude Aerodynamiques, CNRS UMR6609, boulevard Marie et Pierre Curie, Teleport 2, BP 30179, 86962 Futuroscope, Chasseneuil (France); Guillermin, C [Schneider Electric Industries SAS, 22 rue Henry Tarze, 38000 Grenoble (France); Rain, P [Laboratoire d' Electrostatique et des Materiaux Dielectriques, CNRS UMR5517, 25 avenue des Martyrs, BP 166, 38042 Grenoble cedex 9 (France); Rowe, S [Schneider Electric Industries SAS, 22 rue Henry Tarze, 38000 Grenoble (France)

    2006-03-07

    In this paper the authors discuss the effects of particles (fillers) mixed in a composite polymer on the space charge measurement techniques. The origin of particle-induced spurious signals is determined and silica filled epoxy resin is analysed using the laser-induced-pressure-pulse (LIPP) method, the pulsed-electro-acoustic (PEA) method and the laser-induced-thermal-pulse (LITP) method. A spurious signal identified as the consequence of a piezoelectric effect of some silica particles is visible for all the method. Moreover, space charges are clearly detected at the epoxy/silica interface after a 10 kV mm{sup -1} poling at room temperature for 2 h.

  5. Liners of thermoplastic composites in oil field tubulars

    Energy Technology Data Exchange (ETDEWEB)

    Melve, B. [Statoil Research Centre, Trondheim (Norway); Grini, K. [Univ. of Trondheim, Trondheim (Norway)

    1997-12-31

    The buckling resistance of thermoplastic composite liners in steel production tubing has been studied by theoretical models, numeric models and practical collapse tests. The materials studied were hoop wound glass fibre/polypropylene with and without a pure polypropylene inner layer. The numerical results show that a large increase in buckling resistance is achieved when the liner is partially supported by the steel tube in comparison with a free liner. The test results for the unsupported liner were in agreement with standard theories. The combined laminate did not perform as well as predicted because the polypropylene layer delaminated and buckled away from the composite layer. Thermoforming of the ends to suit the threaded end connectors was also shown to be possible. (au)

  6. Aerogel Use as a Skin Protective Liner In Space Suits and Prosthetic Limbs Project

    Science.gov (United States)

    Roberson, Luke Bennett

    2014-01-01

    Existing materials for prosthetic liners tend to be thick and airtight, causing perspiration to accumulate inside the liner and potentially causing infection and injury. The purpose of this project was to examine the suitability of aerogel for prosthetic liner applications for use in space suits and orthopedics. Three tests were performed on several types of aerogel to assess the properties of each material, and our initial findings demonstrated that these materrials would be excellent candidates for liner applications for prosthetics and space suits. The project is currently on hold until additional funding is obtained for application testing at the VH Hospitals in Tampa

  7. Evaluation of corrosion attack of chimney liners

    Directory of Open Access Journals (Sweden)

    Blahetová M.

    2016-06-01

    Full Text Available The case study of chimney liner corrosion addresses three specific cases of damage of chimney systems from of stainless steels. These systems were used for flue of gas arising from the combustion of brown coal in small automatic boilers, which are used for heating. Detailed analyzes implied that the cause of devastating corrosion of the steel AISI 316 and 304 steel (CSN 17349, 17241 was particularly high content of halides (chlorides and fluorides, which caused a severe pitting corrosion, which led up to the perforation of the liner material. Simultaneous reduction of the thickness of the used sheets was due to by the general corrosion, which was caused by the sulfur in the solid fuel. The condensation then led to acid environment and therefore the corrosion below the dew point of the sulfuric acid has occurred. All is documented by metallographic analysis and microanalysis of the corrosion products.

  8. Triboelectrical charge generated by frictional sliding contact between polymeric materials

    Science.gov (United States)

    Zeghloul, T.; Neagoe, M. B.; Prawatya, Y. E.; Dascalescu, L.

    2017-02-01

    The polymers used regularly in mechanical assemblies are brought up in relative sliding. The electrostatic charges generated in these functional conditions are merely known. Many factors are involved in the triboelectric charging process: normal load, the sliding velocity. The aim of this paper is to analyse the influence of these factors in the repartition and evolution of the electric potential at the surface in contact. The tribocharging experiments are carried out with samples cut from three polymers: sample A (5 mm x 15 mm x100 mm) from Acrylonitrile Butadiene Styrene (ABS) or Polypropylene (PP), and sample B (5 mm x 50 mm x 180 mm) from Polyvinyl Chloride (PVC). The normal load is set to four values in the range 2 to 14 N, and the sliding velocity is varied between 70 and 122 mm/s. The results point out that the variation of relative velocity between samples is not changing the average potential for the sample B. The surface potential has a linear increase with the normal load.

  9. Quantifying impacts of consumption based charge for carbon intensive materials on products

    OpenAIRE

    Pauliuk, Stefan; Neuhoff, Karsten; Owen, Anne; Wood, Richard

    2016-01-01

    After the Paris Climate Agreement, it is anticipated that carbon prices will differ across regions for some time. If countries use free allowance allocation as carbon leakage protection, only a fraction of carbon prices are passed through to consumers particularly by carbon intensive materials producers. Adding a consumption charge based on benchmarks applied to the material content can reinstate the carbon price signal. The paper investigates the implications of such a consumption charge for...

  10. Evaluation of Novel Liner Concepts for Fan and Airframe Noise Reduction

    Science.gov (United States)

    Jones, M. G.; Howerton, B. M.

    2016-01-01

    This paper presents a review of four novel liner concepts: soft vanes, over-the-rotor liners, external liners, and flap side-edge liners. A number of similarities in the design and evaluation of these concepts emerged during these investigations. Since these were the first attempts to study these particular liner concepts, there was limited information to guide the design process. In all cases, the target frequencies (or frequency range) were known, but the optimum acoustic impedance and optimum liner placement were typically not known. For these cases, the maximum available surface was used and a c-impedance was targeted based on the assumption the sound field impinges on the surface at normal incidence. This choice proved fruitful for every application. An impedance prediction model was used to design variable-depth liner configurations, and a graphical design code (ILIAD) was developed to aid in this process. The ability to build increasingly complex liner configurations via additive manufacturing was key, such that multiple designs could quickly be tested in a normal incidence impedance tube. The Two-Thickness Method was used to evaluate available bulk materials, such that bulk liners could also be considered for each application. These novel liner concepts provide sufficient noise reduction to warrant further investigations.

  11. LITERATURE REVIEW ON THE SORPTION OF PLUTONIUM, URANIUM, NEPTUNIUM, AMERICIUM AND TECHNETIUM TO CORROSION PRODUCTS ON WASTE TANK LINERS

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Kaplan, D.

    2012-02-29

    The Savannah River Site (SRS) has conducted performance assessment (PA) calculations to determine the risk associated with closing liquid waste tanks. The PA estimates the risk associated with a number of scenarios, making various assumptions. Throughout all of these scenarios, it is assumed that the carbon-steel tank liners holding the liquid waste do not sorb the radionuclides. Tank liners have been shown to form corrosion products, such as Fe-oxyhydroxides (Wiersma and Subramanian 2002). Many corrosion products, including Fe-oxyhydroxides, at the high pH values of tank effluent, take on a very strong negative charge. Given that many radionuclides may have net positive charges, either as free ions or complexed species, it is expected that many radionuclides will sorb to corrosion products associated with tank liners. The objective of this report was to conduct a literature review to investigate whether Pu, U, Np, Am and Tc would sorb to corrosion products on tank liners after they were filled with reducing grout (cementitious material containing slag to promote reducing conditions). The approach was to evaluate radionuclides sorption literature with iron oxyhydroxide phases, such as hematite ({alpha}-Fe{sub 2}O{sub 3}), magnetite (Fe{sub 3}O{sub 4}), goethite ({alpha}-FeOOH) and ferrihydrite (Fe{sub 2}O{sub 3} {center_dot} 0.5H{sub 2}O). The primary interest was the sorption behavior under tank closure conditions where the tanks will be filled with reducing cementitious materials. Because there were no laboratory studies conducted using site specific experimental conditions, (e.g., high pH and HLW tank aqueous and solid phase chemical conditions), it was necessary to extend the literature review to lower pH studies and noncementitious conditions. Consequently, this report relied on existing lower pH trends, existing geochemical modeling, and experimental spectroscopic evidence conducted at lower pH levels. The scope did not include evaluating the appropriateness

  12. Borophene as a Promising Material for Charge-Modulated Switchable CO2Capture.

    Science.gov (United States)

    Tan, Xin; Tahini, Hassan A; Smith, Sean C

    2017-06-14

    Ideal carbon dioxide (CO 2 ) capture materials for practical applications should bind CO 2 molecules neither too weakly to limit good loading kinetics nor too strongly to limit facile release. Although charge-modulated switchable CO 2 capture has been proposed to be a controllable, highly selective, and reversible CO 2 capture strategy, the development of a practical gas-adsorbent material remains a great challenge. In this study, by means of density functional theory (DFT) calculations, we have examined the possibility of conductive borophene nanosheets as promising sorbent materials for charge-modulated switchable CO 2 capture. Our results reveal that the binding strength of CO 2 molecules on negatively charged borophene can be significantly enhanced by injecting extra electrons into the adsorbent. At saturation CO 2 capture coverage, the negatively charged borophene achieves CO 2 capture capacities up to 6.73 × 10 14 cm -2 . In contrast to the other CO 2 capture methods, the CO 2 capture/release processes on negatively charged borophene are reversible with fast kinetics and can be easily controlled via switching on/off the charges carried by borophene nanosheets. Moreover, these negatively charged borophene nanosheets are highly selective for separating CO 2 from mixtures with CH 4 , H 2 , and/or N 2 . This theoretical exploration will provide helpful guidance for identifying experimentally feasible, controllable, highly selective, and high-capacity CO 2 capture materials with ideal thermodynamics and reversibility.

  13. Migration behavior of landfill leachate contaminants through alternative composite liners

    Energy Technology Data Exchange (ETDEWEB)

    Varank, Gamze, E-mail: gvarank@yildiz.edu.tr; Demir, Ahmet, E-mail: ahmetd@yildiz.edu.tr; Top, Selin, E-mail: stop@yildiz.edu.tr; Sekman, Elif, E-mail: esekman@yildiz.edu.tr; Akkaya, Ebru, E-mail: ekoca@yildiz.edu.tr; Yetilmezsoy, Kaan, E-mail: yetilmez@yildiz.edu.tr; Bilgili, M. Sinan, E-mail: mbilgili@yildiz.edu.tr

    2011-08-01

    Four identical pilot-scale landfill reactors with different alternative composite liners were simultaneously operated for a period of about 540 days to investigate and to simulate the migration behaviors of phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and heavy metals (Pb, Cu, Zn, Cr, Cd, Ni) from landfill leachate to the groundwater. Alternative landfill liners of four reactors consist of R1: Compacted clay liner (10 cm + 10 cm, k = 10{sup -8} m/sn), R2: Geomembrane (2 mm HDPE) + compacted clay liner (10 cm + 10 cm, k = 10{sup -8} m/sn), R3: Geomembrane (2 mm HDPE) + compacted clay liner (10 cm, k = 10{sup -8} m/sn) + bentonite liner (2 cm) + compacted clay liner (10 cm, k = 10{sup -8} m/sn), and R4: Geomembrane (2 mm HDPE) + compacted clay liner (10 cm, k = 10{sup -8} m/sn) + zeolite liner (2 cm) + compacted clay liner (10 cm, k = 10{sup -8} m/sn). Wastes representing Istanbul municipal solid wastes were disposed in the reactors. To represent bioreactor landfills, reactors were operated by leachate recirculation. To monitor and control anaerobic degradation in the reactors, variations of conventional parameters (pH, alkalinity, chloride, conductivity, COD, TOC, TKN, ammonia and alcaly metals) were also investigated in landfill leachate samples. The results of this study showed that about 35-50% of migration of organic contaminants (phenolic compounds) and 55-100% of migration of inorganic contaminants (heavy metals) to the model groundwater could be effectively reduced with the use of bentonite and zeolite materials in landfill liner systems. Although leachate contaminants can reach to the groundwater in trace concentrations, findings of this study concluded that the release of these compounds from landfill leachate to the groundwater may potentially be of an important environmental concern based on the experimental findings. - Research highlights: {yields} Migration of

  14. Investigation of HE driven cylindrical liner

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Tai-Ho

    1995-03-01

    We developed a technique that can compress most materials to densities much higher than their original values and shock them hard enough to undergo phase changes to various partially ionized states. The process involves using high explosives to drive a thin cylindrical liner so that it will progressively implode and converge along the axis at very high velocity. The device is simple yet versatile. Its configuration is ideally suited as a compact laboratory for the investigation of the behavior of dense media under extreme conditions. Code simulations show that liners made from most metals can be successfully imploded to converge on axis, producing over 10 MB pressure. For example, a 2D hydrocode calculation predicts that in a simple configuration where a hollow core PBX-9501 explosive cylinder is corner initiated to drive a thin seamless 304 SS tubing, the final convergence velocity can exceed 1 cm/[Ls to produce a 15 MB pressure at impact as the density increases to 19.5 g/cc. The temperature from shock heating rises rapidly above 8 eV, and the result is a combination of radiation and plasma emissions. We have carried out several experiments with a wide array of diagnostics to investigate the implosion dynamics and final state interaction phenomena, and the results are compared with the code predictions. Radiographs of the liner implosion strongly indicate that the hydrodynamic processes are well behaved and calculable. Temperature measurement from the optical radiation is generally consistent with the code prediction. The velocity of the plasma front is measured by using optical pins and fast framing photography, and is found to lie between 11--17 cm/{mu}s. Fast framing photographs were taken with the aid of self luminous light to observe the evacuated chamber inside the imploding liner. The experimental results and their comparison with the calculation are discussed.

  15. Evaluation of a Variable-Impedance Ceramic Matrix Composite Acoustic Liner

    Science.gov (United States)

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Howerton, B. M.

    2014-01-01

    As a result of significant progress in the reduction of fan and jet noise, there is growing concern regarding core noise. One method for achieving core noise reduction is via the use of acoustic liners. However, these liners must be constructed with materials suitable for high temperature environments and should be designed for optimum absorption of the broadband core noise spectrum. This paper presents results of tests conducted in the NASA Langley Liner Technology Facility to evaluate a variable-impedance ceramic matrix composite acoustic liner that offers the potential to achieve each of these goals. One concern is the porosity of the ceramic matrix composite material, and whether this might affect the predictability of liners constructed with this material. Comparisons between two variable-depth liners, one constructed with ceramic matrix composite material and the other constructed via stereolithography, are used to demonstrate this material porosity is not a concern. Also, some interesting observations are noted regarding the orientation of variable-depth liners. Finally, two propagation codes are validated via comparisons of predicted and measured acoustic pressure profiles for a variable-depth liner.

  16. Spatial frequency mixing by nonlinear charge transport in photorefractive materials

    DEFF Research Database (Denmark)

    Limeres, J.; Carrascosa, M.; Arizmendi, L.

    2002-01-01

    We present a theoretical investigation of the nonlinear phenomenon of spatial frequency mixing in photorefractive materials. In particular, we study the kinetics of the second harmonics and the sum and difference (combinational) gratings when two photorefractive gratings are recorded in the mater......-order gratings is analyzed. We found remarkable differences in the kinetics of these gratings depending on the multiplexing procedure. Our theoretical predictions are in good agreement with a number of previously reported experimental results....

  17. Choosing the optimal Pareto composition of the charge material for the manufacture of composite blanks

    Science.gov (United States)

    Zalazinsky, A. G.; Kryuchkov, D. I.; Nesterenko, A. V.; Titov, V. G.

    2017-12-01

    The results of an experimental study of the mechanical properties of pressed and sintered briquettes consisting of powders obtained from a high-strength VT-22 titanium alloy by plasma spraying with additives of PTM-1 titanium powder obtained by the hydride-calcium method and powder of PV-N70Yu30 nickel-aluminum alloy are presented. The task is set for the choice of an optimal charge material composition of a composite material providing the required mechanical characteristics and cost of semi-finished products and items. Pareto optimal values for the composition of the composite material charge have been obtained.

  18. Cathode material comparison of thermal runaway behavior of Li-ion cells at different state of charges including over charge

    Science.gov (United States)

    Mendoza-Hernandez, Omar Samuel; Ishikawa, Hiroaki; Nishikawa, Yuuki; Maruyama, Yuki; Umeda, Minoru

    2015-04-01

    The analysis of Li-ion secondary cells under outstanding conditions, as overcharge and high temperatures, is important to determine thermal abuse characteristics of electroactive materials and precise risk assessments on Li-ion cells. In this work, the thermal runaway behavior of LiCoO2 and LiMn2O4 cathode materials were compared at different state of charges (SOCs), including overcharge, by carrying out accelerating rate calorimetry (ARC) measurements using 18650 Li-ion cells. Onset temperatures of self-heating reactions and thermal runaway behavior were identified, and by using these onset points thermal mapping plots were made. We were able to identify non-self-heating, self-heating and thermal runaway regions as a function of state of charge and temperature. The cell using LiMn2O4 cathode material was found to be more thermally stable than the cell using LiCoO2. In parallel with the ARC measurements, the electrochemical behavior of the cells was monitored by measuring the OCV and internal resistance of the cells. The electrochemical behavior of the cells showed a slightly dependency on SOC.

  19. Flow Duct Data for Validation of Acoustic Liner Codes for Impedance Eduction

    Science.gov (United States)

    Ahuja, K. K.; Munro, Scott; Gaeta, R. J., Jr.

    2000-01-01

    The objective of the study reported here was to acquire acoustic and flow data with hard and lined duct wall duct sections for validation of a liner prediction code being developed at NASA LaRC. Both the mean flowfield and acoustic flowfields were determined in a cross-plane of the rectangular duct. A flow duct facility with acoustic drivers connected to a rectangular (4.7 x 2.0 inch) source section and a linear acoustic liner mounted downstream of the source section was used in this study. The liner section was designed to allow liner materials to be placed on all 4 walls of the duct. The test liner was of the locally-reacting type and was made from a ceramic material. The material, consisting of a tubular structure, was provided by NASA LaRC. The liner was approximately 8.89 cm (3.5 inches) thick. For the current study, only the two "short" sides of the duct were lined with liner material. The other two sides were hard walls. Two especially built instrumentation sections were attached on either sides of the liner section to allow acoustic and flow measurements to be made upstream and downstream of the liner. The two instrumentation duct sections were built to allow measurement of acoustic and flow properties at planes perpendicular to flow upstream and downstream of the liner section. The instrumentation section was also designed to provide a streamwise gradient in acoustic (complex) pressure from which the acoustic particle velocity, needed for the model validation, can be computed. Flow measurements included pressure, temperature, and velocity profiles upstream of the liner section. The in-flow sound pressure levels and phases were obtained with a microphone probe equipped with a nose cone in two cross planes upstream of the liner and two cross plane downstream of the liner. In addition to the acoustic measurements at the cross planes. axial centerline acoustic data was acquired using an axially traversing microphone probe which was traversed from a location

  20. Charged particle and laser irradiation of selected materials

    Energy Technology Data Exchange (ETDEWEB)

    Svendsen, W.E.

    1996-11-01

    The main topics of the present thesis are the processes governing electronic sputtering of insulators and laser ablation of metals and insulators. The sputtering yield for electron bombardment of solid deuterium was investigated using quartz crystal microbalances as the measuring technique. The sputtering yield was measured with varying electron energy and deuterium film thickness. Laser ablation measurements of silver and nickel were carried out using a Nd:YAG laser. The effect of various experimental parameters such as background gas pressure (Ar, N{sub 2}), position of quartz crystals with respect to target position and the optimal number of laser shots for carrying out the experiments were investigated. The deposition rate was measured with varying laser wavelength and laser fluence. The angular distribution of the ablated material was measured for silver as well. A theoretical model based on the thermal properties of laser interaction with metals was applied in the initial phase of ablation. For the non-thermal processes governing laser interaction with the ablated plasma plume, a model developed by Phipps and Dreyfus was used to interpret the results. Laser ablation measurements of water-ice were carried using a Nitrogen laser. Attempts were made to measure the deposition rate for various the laser wavelengths and energies. (au) 8 tabs., 49 ills., 77 refs.

  1. Selective observation of charge storing ions in supercapacitor electrode materials.

    Science.gov (United States)

    Forse, Alexander C; Griffin, John M; Grey, Clare P

    2017-11-04

    Nuclear magnetic resonance (NMR) spectroscopy has emerged as a useful technique for probing the structure and dynamics of the electrode-electrolyte interface in supercapacitors, as ions inside the pores of the carbon electrodes can be studied separately from bulk electrolyte. However, in some cases spectral resolution can limit the information that can be obtained. In this study we address this issue by showing how cross polarisation (CP) NMR experiments can be used to selectively observe the in-pore ions in supercapacitor electrode materials. We do this by transferring magnetisation from 13C nuclei in porous carbons to nearby nuclei in the cations (1H) or anions (19F) of an ionic liquid. Two-dimensional NMR experiments and CP kinetics measurements confirm that in-pore ions are located within Ångströms of sp2-hybridised carbon surfaces. Multinuclear NMR experiments hold promise for future NMR studies of supercapacitor systems where spectral resolution is limited. Copyright © 2017 University of Cambridge. Published by Elsevier Inc. All rights reserved.

  2. Application of charge-dissipation material in MEBES phase-shift mask fabrication

    Science.gov (United States)

    Tan, Zoilo C. H.; Sauer, Charles A.

    1994-12-01

    Several charge dissipation materials were evaluated for their ability to improve the overlay accuracy during phase shift mask (PSM) registered writing on a MEBES system. These included an organic conductive polymer and a number of thin inorganic films, which were applied above or below the resist on a coated mask. When used with the resists, all conductive materials evaluated were capable of providing adequate charge dissipation during registered writing. Overlay accuracy of mean + 3 sigma

  3. Modeling Electrostatic Fields Generated by Internal Charging of Materials in Space Radiation Environments

    Science.gov (United States)

    Minow, Joseph I.

    2011-01-01

    Internal charging is a risk to spacecraft in energetic electron environments. DICTAT, NU MIT computational codes are the most widely used engineering tools for evaluating internal charging of insulator materials exposed to these environments. Engineering tools are designed for rapid evaluation of ESD threats, but there is a need for more physics based models for investigating the science of materials interactions with energetic electron environments. Current tools are limited by the physics included in the models and ease of user implementation .... additional development work is needed to improve models.

  4. Charge carrier mobility in organic molecular materials probed by electromagnetic waves.

    Science.gov (United States)

    Seki, Shu; Saeki, Akinori; Sakurai, Tsuneaki; Sakamaki, Daisuke

    2014-06-21

    Charge carrier mobility is an essential parameter providing control over the performance of semiconductor devices fabricated using a variety of organic molecular materials. Recent design strategies toward molecular materials have been directed at the substitution of amorphous silicon-based semiconductors; accordingly, numerous measurement techniques have been designed and developed to probe the electronic conducting nature of organic materials bearing extremely wide structural variations in comparison with inorganic and/or metal-oxide semiconductor materials. The present perspective highlights the evaluation methodologies of charge carrier mobility in organic materials, as well as the merits and demerits of techniques examining the feasibility of organic molecules, crystals, and supramolecular assemblies in semiconductor applications. Beyond the simple substitution of amorphous silicon, we have attempted to address in this perspective the systematic use of measurement techniques for future development of organic molecular semiconductors.

  5. Carbon materials for enhancing charge transport in the advancements of perovskite solar cells

    Science.gov (United States)

    Hu, Ruiyuan; Chu, Liang; Zhang, Jian; Li, Xing'ao; Huang, Wei

    2017-09-01

    Organic-inorganic halide perovskite solar cells (PSCs) have become a new favorite in the photovoltaic field, due to the boosted efficiency up to 22.1%. Despite a flow of achievements, there are certain challenges to simultaneously meet high efficiency, large scale, low cost and high stability. Due to the low cost, extensive sources, high electrical conductivity and chemical stability, carbon materials have made undeniable contributions to play positive roles in developing PSCs. Carbon materials not only have the favorable conductivity but also bipolar advantage, which can transfer both electrons and holes. In this review, we will discuss how the carbon materials transfer charge or accelerate charge transport by incorporation in PSCs. Carbon materials can replace transparent conductive oxide layers, and enhance electron transport in electron transport layers. Moreover, carbon materials with continuous structure, especially carbon nanotubes and graphene, can provide direct charge transport channel that make them suitable additives or even substitutes in hole transport layers. Especially, the successful application of carbon materials as counter electrodes makes the devices full-printable, low temperature and high stability. Finally, a brief outlook is provided on the future development of carbon materials for PSCs, which are expected to devote more contributions in the future photovoltaic market.

  6. Design rules for charge-transport efficient host materials for phosphorescent organic light-emitting diodes.

    Science.gov (United States)

    May, Falk; Al-Helwi, Mustapha; Baumeier, Björn; Kowalsky, Wolfgang; Fuchs, Evelyn; Lennartz, Christian; Andrienko, Denis

    2012-08-22

    The use of blue phosphorescent emitters in organic light-emitting diodes (OLEDs) imposes demanding requirements on a host material. Among these are large triplet energies, the alignment of levels with respect to the emitter, the ability to form and sustain amorphous order, material processability, and an adequate charge carrier mobility. A possible design strategy is to choose a π-conjugated core with a high triplet level and to fulfill the other requirements by using suitable substituents. Bulky substituents, however, induce large spatial separations between conjugated cores, can substantially reduce intermolecular electronic couplings, and decrease the charge mobility of the host. In this work we analyze charge transport in amorphous 2,8-bis(triphenylsilyl)dibenzofuran, an electron-transporting material synthesized to serve as a host in deep-blue OLEDs. We show that mesomeric effects delocalize the frontier orbitals over the substituents recovering strong electronic couplings and lowering reorganization energies, especially for electrons, while keeping energetic disorder small. Admittance spectroscopy measurements reveal that the material has indeed a high electron mobility and a small Poole-Frenkel slope, supporting our conclusions. By linking electronic structure, molecular packing, and mobility, we provide a pathway to the rational design of hosts with high charge mobilities.

  7. Charge Transport and Electrical Properties of Spin Crossover Materials: Towards Nanoelectronic and Spintronic Devices

    OpenAIRE

    Lefter, Constantin; Davesne, Vincent; Salmon, Lionel; Molnar, Gabor; Demont, Philippe; Rotaru, Aurelian; Bousseksou, Azzedine

    2016-01-01

    International audience; In this paper, we present a comprehensive review of research on electrical and charge transport properties of spin crossover complexes. This includes both the effect of spin-state switching on the dielectric permittivity and electrical conductivity of the material and vice versa the influence of an applied electrical field (or current) on the spin-state of the system. The survey covers different size scales from bulk materials and thin films to nanoparticles and single...

  8. Optimized conical shaped charge design using the SCAP (Shaped Charge Analysis Program) code

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, M.G.

    1988-09-01

    The Shaped Charge Analysis Program (SCAP) is used to analytically model and optimize the design of Conical Shaped Charges (CSC). A variety of existing CSCs are initially modeled with the SCAP code and the predicted jet tip velocities, jet penetrations, and optimum standoffs are compared to previously published experimental results. The CSCs vary in size from 0.69 inch (1.75 cm) to 9.125 inch (23.18 cm) conical liner inside diameter. Two liner materials (copper and steel) and several explosives (Octol, Comp B, PBX-9501) are included in the CSCs modeled. The target material was mild steel. A parametric study was conducted using the SCAP code to obtain the optimum design for a 3.86 inch (9.8 cm) CSC. The variables optimized in this study included the CSC apex angle, conical liner thickness, explosive height, optimum standoff, tamper/confinement thickness, and explosive width. The non-dimensionalized jet penetration to diameter ratio versus the above parameters are graphically presented. 12 refs., 10 figs., 7 tabs.

  9. Relationship between viscoelastic properties of soft denture liners and clinical efficacy

    Directory of Open Access Journals (Sweden)

    Hiroshi Murata

    2008-10-01

    Full Text Available Soft denture liners are applied for denture wearers who cannot tolerate a hard-based denture due to a thin and non-resilient oral mucosa and/or severe alveolar resorption. This material distributes and absorbs masticatory forces by means of the cushioning effect. Clinical success of the materials depends both on their viscoelastic properties and on durability. Acrylic resins and silicones are mainly available for permanent soft liners. The acrylic permanent soft liners demonstrate viscoelastic behavior while silicone permanent soft liners demonstrate elastic behavior. The improvement in masticatory function is greater in dentures lined with the acrylic materials than in those lined with silicone products. However, the acrylic materials exhibit a more marked change in viscoelastic properties and loss of cushioning effect over time than silicones. From the standpoint of durability, the silicones are preferred. It is important to understand viscoelastic properties and durability of each soft denture liner and to select the material according to the clinical situations and purposes. The ideal permanent soft liners have a relatively high value of loss tangent and storage modulus, and high durability. Further research is necessary to develop the ideal soft denture liner.

  10. Conjugated block copolymers as model materials to examine charge transfer in donor-acceptor systems

    Science.gov (United States)

    Gomez, Enrique; Aplan, Melissa; Lee, Youngmin

    Weak intermolecular interactions and disorder at junctions of different organic materials limit the performance and stability of organic interfaces and hence the applicability of organic semiconductors to electronic devices. The lack of control of interfacial structure has also prevented studies of how driving forces promote charge photogeneration, leading to conflicting hypotheses in the organic photovoltaic literature. Our approach has focused on utilizing block copolymer architectures -where critical interfaces are controlled and stabilized by covalent bonds- to provide the hierarchical structure needed for high-performance organic electronics from self-assembled soft materials. For example, we have demonstrated control of donor-acceptor heterojunctions through microphase-separated conjugated block copolymers to achieve 3% power conversion efficiencies in non-fullerene photovoltaics. Furthermore, incorporating the donor-acceptor interface within the molecular structure facilitates studies of charge transfer processes. Conjugated block copolymers enable studies of the driving force needed for exciton dissociation to charge transfer states, which must be large to maximize charge photogeneration but must be minimized to prevent losses in photovoltage in solar cell devices. Our work has systematically varied the chemical structure, energetics, and dielectric constant to perturb charge transfer. As a consequence, we predict a minimum dielectric constant needed to minimize the driving force and therefore simultaneously maximize photocurrent and photovoltage in organic photovoltaic devices.

  11. First-Principle Framework for Total Charging Energies in Electrocatalytic Materials and Charge-Responsive Molecular Binding at Gas-Surface Interfaces.

    Science.gov (United States)

    Tan, Xin; Tahini, Hassan A; Seal, Prasenjit; Smith, Sean C

    2016-05-04

    Heterogeneous charge-responsive molecular binding to electrocatalytic materials has been predicted in several recent works. This phenomenon offers the possibility of using voltage to manipulate the strength of the binding interaction with the target gas molecule and thereby circumvent thermochemistry constraints, which inhibit achieving both efficient binding and facile release of important targets such as CO2 and H2. Stability analysis of such charge-induced molecular adsorption has been beyond the reach of existing first-principle approaches. Here, we draw on concepts from semiconductor physics and density functional theory to develop a first principle theoretical approach that allows calculation of the change in total energy of the supercell due to charging. Coupled with the calculated adsorption energy of gas molecules at any given charge, this allows a complete description of the energetics of the charge-induced molecular adsorption process. Using CO2 molecular adsorption onto negatively charged h-BN (wide-gap semiconductor) and g-C4N3 (half metal) as example cases, our analysis reveals that - while adsorption is exothermic after charge is introduced - the overall adsorption processes are not intrinsically spontaneous due to the energetic cost of charging the materials. The energies needed to overcome the barriers of these processes are 2.10 and 0.43 eV for h-BN and g-C4N3, respectively. This first principle approach opens up new pathways for a more complete description of charge-induced and electrocatalytic processes.

  12. Accommodation of liquid metal by cavity liners

    Energy Technology Data Exchange (ETDEWEB)

    Jeppson, D.W.

    1989-03-01

    Present liquid metal breeder reactor cell liner designs appear adequate to contain postulated leakages of lithium-lead alloy in an air or steam atmosphere and to contain lithium when inert atmospheres are present. If an air or steam atmosphere may be present in a cavity where lithium amy accumulate under postulated accident conditions, then consideration of stainless steel liners and further testing is recommended. Lithium testing of faulted liners should also be considered. SOFIRE II and WATRe computer codes may be useful in establishing liner design requirements and in determining water release from concrete behind the liners (potential hydrogen production) for postulated leakages to steel-lined concrete cavities.

  13. Characterization of EPICOR II Prefilter Liner 16

    Energy Technology Data Exchange (ETDEWEB)

    Yesso, J D; Pasupathi, V; Lowry, L

    1982-08-01

    As part of the overall TMI-2 Information and Examination Program, EPICOR II Prefilter Liner 16 was examined to provide information to aid in the development of technology for safely processing highly loaded ion-exchange media. The characterization program included sampling and analyses of the liner contents, including ion-exchange media, liquids and gases, as well as examinations of the liner interior and exterior. This report details the handling of the liner, sampling and analysis of the contents, and the examinations of the liner.

  14. Superconductivity, spin and charge order, and quantum criticality in correlated electron materials

    Directory of Open Access Journals (Sweden)

    Chu J.-H.

    2012-03-01

    Full Text Available We describe recent experiments performed in our laboratory that address spin or charge ordered phases in novel rare earth and actinide based materials and phenomena that emerge when these ordered phases are suppressed toward 0 K by varying an external control parameter such as chemical composition, pressure, or magnetic field. Specific examples discussed include magnetic order, heavy fermion behavior, and unconventional quantum criticality in noncentrosymmetric M2T12P7 compounds (M = rare earth, actinide; T = Co, Fe and the interplay of superconductivity and charge density waves in rare earth tritelluride compounds RTe3 (R = Gd, Tb, Dy.

  15. Influence of filler charge on gloss of composite materials before and after in vitro toothbrushing.

    Science.gov (United States)

    Jassé, Fernanda Ferreira; de Campos, Edson Alves; Lefever, Dorien; Di Bella, Enrico; Salomon, Jean Pierre; Krejci, Ivo; Ardu, Stefano

    2013-11-01

    This study evaluated the gloss behaviour of experimental resin composites loaded with different filler percentages, immediately after polishing and after toothbrushing simulation. Sixteen disc-shaped specimens were fabricated for each different-charged composite (40%, 50%, 60%, 70% and 75%) and polished with SiC abrasive papers. Gloss measurements were made prior to simulated toothbrushing. The specimens were subjected to the simulation for 5, 15, 30 and 60 min using an electrical toothbrush with a standardized pressure while being immersed in a toothpaste/artificial saliva slurry. Baseline composite gloss values ranged from 69.7 (40%) to 81.3 (75%) GU (gloss units) and from 18.1 (40%) to 32.3 (75%) GU after 1h of brushing. Highest gloss values were obtained by 75%-charged resin, while the lowest values were obtained by the 40%-charged one. All tested materials showed a gloss decrease. However, the higher filler load a composite resin has, the higher gloss it can achieve. Gloss of resin composite materials is an important factor in determining aesthetic success of anterior restorations, and this property may vary according to the filler charge of the restorative material. Higher filler load of a composite resin results in higher gloss values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Beryllium liner implosion experiments on the Z accelerator in preparation for Magnetized Liner Inertial Fusion (MagLIF)*

    Science.gov (United States)

    McBride, Ryan D.

    2012-10-01

    Magnetized Liner Inertial Fusion (MagLIF) [1] is a concept that involves using a pulsed electrical current to implode an initially-solid, cylindrical metal tube (liner) filled with preheated and magnetized fusion fuel. One- and two-dimensional simulations predict that if sufficient liner integrity can be maintained throughout the implosion, then significant fusion yield (>100 kJ) is possible on the 25-MA, 100-ns Z accelerator. The greatest threat to the liner integrity is the Magneto-Rayleigh-Taylor (MRT) instability, which first develops on the outer liner surface, and then works its way inward toward the inner surface throughout the implosion. Two-dimensional simulations predict that a thick liner, with Router/δR=6, should be robust enough to keep the MRT instability from overly disrupting the fusion burn at stagnation. This talk will present the first experiments designed to study a thick, MagLIF-relevant liner implosion through to stagnation on Z [2]. The use of beryllium for the liner material enabled us to obtain penetrating monochromatic (6151±0.5 eV) radiographs that reveal information about the entire volume of the imploding liner. This talk will also discuss experiments that investigated Z's pulse-shaping capabilities to either shock- or shocklessly-compress the imploding liners [3], as well as our most recent experiments that used 2-micron-thick aluminum sleeves to provide high-contrast tracers for the positions and states of the inner surfaces of the imploding beryllium liners. The radiography data to be presented provide stringent constraints on the simulation tools used by the broader high energy density physics and inertial confinement fusion communities, where quantitative areal density measurements, particularly of convergent fusion targets, are relatively scarce. We will also present power-flow tests of the MagLIF load hardware as well as new micro-B-dot measurements of the azimuthal drive magnetic field that penetrates the initially vacuum

  17. ETV Program Report: Coatings for Wastewater Collection Systems - Protective Liner Systems, Inc., Epoxy Mastic, PLS-614

    Science.gov (United States)

    The Protective Liner Systems International, Inc. Epoxy Mastic PLS-614 coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Material and T...

  18. Utilization of natural zeolite and perlite as landfill liners for in situ leachate treatment in landfills

    National Research Council Canada - National Science Library

    Ozel, Ummukulsum; Akdemir, Andaç; Ergun, Osman Nuri

    2012-01-01

    ... of natural liner materials such as natural zeolite, perlite and bentonite minerals. Before leachate treatment, reduction of these constituents is important not only to leachate percolation, but also treatment cost and efficiency...

  19. Charge generation in organic solar cell materials studied by terahertz spectroscopy

    KAUST Repository

    Scarongella, M.

    2015-09-09

    We have investigated the photophysics in neat films of conjugated polymer PBDTTPD and its blend with PCBM using terahertz time-domain spectroscopy. This material has very high efficiency when used in organic solar cells. We were able to identify a THz signature for bound excitons in neat PBDTTPD films, pointing to important delocalization in those excitons. Then, we investigated the nature and local mobility (orders of magnitude higher than bulk mobility) of charges in the PBDTTPPD:PCBM blend as a function of excitation wavelength, fluence and pump-probe time delay. At low pump fluence (no bimolecular recombination phenomena), we were able to observe prompt and delayed charge generation components, the latter originating from excitons created in neat polymer domains which, thanks to delocalization, could reach the PCBM interface and dissociate to charges on a time scale of 1 ps. The nature of the photogenerated charges did not change between 0.5 ps and 800 ps after photo-excitation, which indicated that the excitons split directly into relatively free charges on an ultrafast time scale. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  20. Characteristics of Sulfuric Acid Condensation on Cylinder Liners of Large Two-Stroke Marine Engines

    DEFF Research Database (Denmark)

    Cordtz, Rasmus Lage; Mayer, Stefan; Schramm, Jesper

    The present work seeks to clarify the characteristics of sulfuric acid condensation on the cylinder liner of a large two–stroke marine engine. The liner is directly exposed to the cylin-der gas (i.e. no protective lube oil film) and is represented by a constant temperature over the full stroke....... Formation of corrosive sulfuric acid in the cylinder gas is modeled with a cali-brated engine model that incorporates a detailed sulfur reaction mechanism. Condensation of sulfuric acid follows the analogy between heat and mass transfer. Average bulk gas acid dew points are calculated by applying two...... and charge air humidity acts to increase the surface area that is exposed to condensation. Depending on the actual liner temperature the deposition of sulfuric acid can be very sensi-tive to the operating strategy. A higher liner temperature theoretically provides the means to hamper sulfuric acid...

  1. Fracture Mechanics Analysis of LH2 Feed Line Flow Liners

    Science.gov (United States)

    James, Mark A.; Dawicke, David S.; Brzowski, Matthew B.; Raju, Ivatury S.; Elliott, Kenny B.; Harris, Charles E.

    2006-01-01

    Inspections of the Space Shuttle Main Engine revealed fatigue cracks growing from slots in the flow liner of the liquid hydrogen (LH2) feed lines. During flight, the flow liners experience complex loading induced by flow of LH2 and the resonance characteristics of the structure. The flow liners are made of Inconel 718 and had previously not been considered a fracture critical component. However, fatigue failure of a flow liner could have catastrophic effect on the Shuttle engines. A fracture mechanics study was performed to determine if a damage tolerance approach to life management was possible and to determine the sensitivity to the load spectra, material properties, and crack size. The load spectra were derived separately from ground tests and material properties were obtained from coupon tests. The stress-intensity factors for the fatigue cracks were determined from a shell-dynamics approach that simulated the dominant resonant frequencies. Life predictions were obtained using the NASGRO life prediction code. The results indicated that adequate life could not be demonstrated for initial crack lengths of the size that could be detected by traditional NDE techniques.

  2. Fast liner proposal. [Magnetic implosions of cylindrical liners

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, A.R.; Freeman, B.L.; Gerwin, R.A.; Jarboe, T.R.; Krakowski, R.A.; Malone, R.C.; Marshall, J.; Miller, R.L.; Suydam, B.

    1977-08-01

    This is a proposal to study, both theoretically and experimentally, the possibility of making a fusion reactor by magnetically imploding a cylindrical metallic shell on a prepared plasma. The approach is characterized by the following features: (1) the nonrotating liner would be driven by an axial current, (2) the plasma would also carry an axial current that provides an azimuthal magnetic field for thermal insulation in both the radial and longitudinal directions, (3) solid end plugs would be utilized to prevent axial loss of particles, and (4) liner speeds would be in the 10/sup 6/ cm/s range. The preliminary calculations indicate (1) that the energetics are favorable (energy inputs of about 10 MJ might produce a machine in the break-even regime), (2) that radiation and heat losses could be made tolerable, (3) that alpha-particle heating could be made very effective, and (4) that Taylor instabilities in a fast liner might be harmless because of the large viscosities at high pressures. A preliminary conceptual design of the sort of fusion reactor that might result from such an approach is discussed, as are some of the relevant reactor scaling arguments.

  3. Supramolecular self-assembling in mesostructured materials through charge tuning in the inorganic phase

    OpenAIRE

    Roca, Manuel; El Haskouri, Jamal; Cabrera Medina, Saúl; Beltrán Porter, Aurelio; Álamo Serrano, Jaime; Beltrán Porter, Daniel; Marcos, María Dolores; Amorós del Toro, Pedro José

    1998-01-01

    Supramolecular self-assembling of organic CTA+ micelles and inorganic [VO(H2O)PO4]n^q-2 2D-anions for the isolation of hexagonal mesostructured materials can be reached by charge tuning in the inorganic phase through the adjustment of the vanadium mean oxidation state. El Haskouri, Jamal, ; Cabrera Medina, Saul, ; Beltran Porter, Aurelio, ; Alamo Serrano, Jaime, ; Beltran Porter, Daniel, ; ...

  4. Segmented Liner to Control Mode Scattering

    Science.gov (United States)

    Gerhold, Carl H.; Jones, Michael G.; Brown, Martha C.

    2013-01-01

    The acoustic performance of duct liners can be improved by segmenting the treatment. In a segmented liner treatment, one stage of liner reduces the target sound and scatters energy into other acoustic modes, which are attenuated by a subsequent stage. The Curved Duct Test Rig is an experimental facility in which sound incident on the liner can be generated in a specific mode and the scatter of energy into other modes can be quantified. A series of experiments is performed in which the baseline configuration is asymmetric, that is, a liner is on one side wall of the test duct and the wall opposite is acoustically hard. Segmented liner treatment is achieved by progressively replacing sections of the hard wall opposite with liner in the axial direction, from 25% of the wall surface to 100%. It is found that the energy scatter from the (0,0) to the (0,1) mode reduces as the percentage of opposite wall treatment increases, and the frequency of peak attenuation shifts toward higher frequency. Similar results are found when the incident mode is of order (0,1) and scatter is into the (0,0) mode. The propagation code CDUCT-LaRC is used to predict the effect of liner segmenting on liner performance. The computational results show energy scatter and the effect of liner segmentation that agrees with the experimental results. The experiments and computations both show that segmenting the liner treatment is effective to control the scatter of incident mode energy into other modes. CDUCT-LaRC is shown to be a valuable tool to predict trends of liner performance with liner configuration.

  5. Charged Point Defects in the Flatland: Accurate Formation Energy Calculations in Two-Dimensional Materials

    Science.gov (United States)

    Komsa, Hannu-Pekka; Berseneva, Natalia; Krasheninnikov, Arkady V.; Nieminen, Risto M.

    2014-07-01

    Impurities and defects frequently govern materials properties, with the most prominent example being the doping of bulk semiconductors where a minute amount of foreign atoms can be responsible for the operation of the electronic devices. Several computational schemes based on a supercell approach have been developed to get insights into types and equilibrium concentrations of point defects, which successfully work in bulk materials. Here, we show that many of these schemes cannot directly be applied to two-dimensional (2D) systems, as formation energies of charged point defects are dominated by large spurious electrostatic interactions between defects in inhomogeneous environments. We suggest two approaches that solve this problem and give accurate formation energies of charged defects in 2D systems in the dilute limit. Our methods, which are applicable to all kinds of charged defects in any 2D system, are benchmarked for impurities in technologically important h-BN and MoS2 2D materials, and they are found to perform equally well for substitutional and adatom impurities.

  6. Charged Point Defects in the Flatland: Accurate Formation Energy Calculations in Two-Dimensional Materials

    Directory of Open Access Journals (Sweden)

    Hannu-Pekka Komsa

    2014-09-01

    Full Text Available Impurities and defects frequently govern materials properties, with the most prominent example being the doping of bulk semiconductors where a minute amount of foreign atoms can be responsible for the operation of the electronic devices. Several computational schemes based on a supercell approach have been developed to get insights into types and equilibrium concentrations of point defects, which successfully work in bulk materials. Here, we show that many of these schemes cannot directly be applied to two-dimensional (2D systems, as formation energies of charged point defects are dominated by large spurious electrostatic interactions between defects in inhomogeneous environments. We suggest two approaches that solve this problem and give accurate formation energies of charged defects in 2D systems in the dilute limit. Our methods, which are applicable to all kinds of charged defects in any 2D system, are benchmarked for impurities in technologically important h-BN and MoS_{2} 2D materials, and they are found to perform equally well for substitutional and adatom impurities.

  7. Competitive Liner Shipping Network Design

    DEFF Research Database (Denmark)

    Karsten, Christian Vad; Brouer, Berit Dangaard; Pisinger, David

    We present a solution method for the liner shipping network design problem which is a core strategic planning problem faced by container carriers. We propose the first practical algorithm which explicitly handles transshipment time limits for all demands. Individual sailing speeds at each service...... leg are used to balance sailings speed against operational costs, hence ensuring that the found network is competitive on both transit time and cost. We present a matheuristic for the problem where a MIP is used to select which ports should be inserted or removed on a route. Computational results...... are presented showing very promising results for realistic global liner shipping networks. Due to a number of algorithmic enhancements, the obtained solutions can be found within the same time frame as used by previous algorithms not handling time constraints. Furthermore we present a sensitivity analysis...

  8. Competitive Liner Shipping Network Design

    DEFF Research Database (Denmark)

    Karsten, Christian Vad

    The goal of this thesis is to develop decision support tools, which can be used to optimize container shipping networks while supporting competitive transportation services. The competitiveness of container liner shipping is to a high degree determined by transportation times and number of transs......The goal of this thesis is to develop decision support tools, which can be used to optimize container shipping networks while supporting competitive transportation services. The competitiveness of container liner shipping is to a high degree determined by transportation times and number...... of transshipments on the most important sailing routes. The proposed methods in this thesis, aimed at liner shipping network design, integrate competitiveness such that the fuel consumption per transported container is reduced without increasing the transit times.A well-designed route net is decisive for container...... shipping company earnings.The operation of the route net constitute the majority of the total costs, so it is essential to achieve a good capacity utilization in a route plan with travel times that satisfy customer requirements. Most academic articles dealing with the design of container networks neither...

  9. A Disk EMG System for Driving Impacting Liners to 20 km/s

    Science.gov (United States)

    2011-06-01

    current; 8. PU’s cylindrical Al liner of outer radius Rl, effective height Hl (for implosion) and "current” height Hpu > Hl (between Al liner contacts...0.15-0.12 90 Uol, kV L0l, nH Hpu (Z)cm Ml, g ~ 50 8 15(Al) 45 ~100 10 2(Cu) 1 30 4 6(Cu) 75 8 6 6.6(Cu) 75 v imp, km/s 12 ~50 23...inductance L0l ; Hpu (Z) is the PU height (return conductor material), Ml and v imp are liner mass and maximum velocity; Ufm and Ilm are peak FOS

  10. Color Stability of Silicone or Acrylic Denture Liners: An in Vitro Investigation

    OpenAIRE

    Ergun, Gulfem; Nagas, Isil Cekic

    2007-01-01

    Objectives The aim of this study was to compare the color stability of three acrylic based hard liners (Ufi gel hard, Dura-Liner II, Tokuso Rebase) and two silicone based soft liners (Ufi gel permanent, Molloplast B) by using the colorimeter. Methods Sixty disc-shaped samples, with uniform size of 10 mm diameter and 2 mm in thickness were fabricated for each material. Thirty samples were made as control group in distilled water and the remaining thirty samples were weathered in accelerated ag...

  11. Automated Planning for Liner Shipping Fleet Repositioning

    DEFF Research Database (Denmark)

    Tierney, Kevin; Jensen, Rune Møller; Kroer, Christian

    2012-01-01

    The Liner Shipping Fleet Repositioning Problem (LSFRP) poses a large financial burden on liner shipping firms. During repositioning, vessels are moved between services in a liner shipping network. The LSFRP is characterized by chains of interacting activities, many of which have costs that are a ......The Liner Shipping Fleet Repositioning Problem (LSFRP) poses a large financial burden on liner shipping firms. During repositioning, vessels are moved between services in a liner shipping network. The LSFRP is characterized by chains of interacting activities, many of which have costs......-integer program (MIP) and a novel method called Temporal Optimization Planning (TOP). We evaluate the performance of each of these techniques on a dataset of real-world instances from our industrial collaborator, and show that automated planning scales to the size of problems faced by industry....

  12. Color stability of silicone or acrylic denture liners: an in vitro investigation.

    Science.gov (United States)

    Ergun, Gulfem; Nagas, Isil Cekic

    2007-07-01

    The aim of this study was to compare the color stability of three acrylic based hard liners (Ufi gel hard, Dura-Liner II, Tokuso Rebase) and two silicone based soft liners (Ufi gel permanent, Molloplast B) by using the colorimeter. Sixty disc-shaped samples, with uniform size of 10 mm diameter and 2 mm in thickness were fabricated for each material. Thirty samples were made as control group in distilled water and the remaining thirty samples were weathered in accelerated aging chamber. Color measurements were made before and after distilled water and aging. Data were statistically analyzed using nonparametric Kruskal-Wallis and Mann-Whitney U tests. Data showed that there are significant differences among materials in both after distilled water and aging treatments (PDura Liner II after aging (DeltaE*=16.30) and the least discolored material was Ufi gel permanent after distilled water (DeltaE*=0.41). Based on the results of this study, silicone based liner materials are considered to be more color stable than acrylic based liner materials.

  13. Graphical Acoustic Liner Design and Analysis Tool

    Science.gov (United States)

    Howerton, Brian M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    An interactive liner design and impedance modeling tool comprises software utilized to design acoustic liners for use in constrained spaces, both regularly and irregularly shaped. A graphical user interface allows the acoustic channel geometry to be drawn in a liner volume while the surface impedance calculations are updated and displayed in real-time. A one-dimensional transmission line model may be used as the basis for the impedance calculations.

  14. Recent Advances in Two-Dimensional Materials with Charge Density Waves: Synthesis, Characterization and Applications

    Directory of Open Access Journals (Sweden)

    Mongur Hossain

    2017-10-01

    Full Text Available Recently, two-dimensional (2D charge density wave (CDW materials have attracted extensive interest due to potential applications as high performance functional nanomaterials. As other 2D materials, 2D CDW materials are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into layers of single unit cell thickness. Although bulk CDW materials have been studied for decades, recent developments in nanoscale characterization and device fabrication have opened up new opportunities allowing applications such as oscillators, electrodes in supercapacitors, energy storage and conversion, sensors and spinelectronic devices. In this review, we first outline the synthesis techniques of 2D CDW materials including mechanical exfoliation, liquid exfoliation, chemical vapor transport (CVT, chemical vapor deposition (CVD, molecular beam epitaxy (MBE and electrochemical exfoliation. Then, the characterization procedure of the 2D CDW materials such as temperature-dependent Raman spectroscopy, temperature-dependent resistivity, magnetic susceptibility and scanning tunneling microscopy (STM are reviewed. Finally, applications of 2D CDW materials are reviewed.

  15. Liners for ion transport membrane systems

    Science.gov (United States)

    Carolan, Michael Francis; Miller, Christopher Francis

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  16. Cavity Adaptation of Water-Based Restoratives Placed as Liners under a Resin Composite

    Directory of Open Access Journals (Sweden)

    Sheela B. Abraham

    2017-01-01

    Full Text Available Purpose. To investigate the cavity adaptation of mineral trioxide (ProRoot MTA/MT, tricalcium silicate (Biodentine/BD, and glass ionomer (Equia Fil/EF cements used as liners and the interfacial integrity between those liners and a composite resin placed as the main restorative material. Materials and Methods. Standardized class I cavities (n: 8 per group were prepared in upper premolars. Cavities were lined with a 1 mm thick layer of each of the tested materials and restored with Optibond FL adhesive and Herculite Precis composite resin. Cavity adaptation of the restorations was investigated by computerized X-ray microtomography. The regions of interest (ROI were set at the cavity-liner (CL interface and the liner-resin (LR interface. The percentage void volume fraction (%VVF in the ROI was calculated. The specimens were then sectioned and the interfaces were evaluated by reflection optical microscopy, to measure the % length (%LD of the interfacial gaps. Selected samples were further evaluated by scanning electron microscopy. Statistical analysis was performed by two-way ANOVA and Student-Newman-Keuls multiple comparison test (a=0.05. Results. MT showed significantly higher %VVF and %LD values in CL interfaces than BD and EF (p<0.05. No significant differences were found among the materials for the same values at the LR interfaces. Conclusions. When used as a composite liner, ProRoot MTA showed inferior cavity adaptation at dentin/liner interface when compared to Biodentine and Equia Fil.

  17. Failure of cement-in-shell acetabular liner exchange.

    Science.gov (United States)

    Blakey, Caroline M; Biant, Leela C; Kavanagh, Thomas G; Field, Richard E

    2010-01-01

    Cement-in-shell acetabular liner exchange is a revision surgery option for cases of total hip arthroplasty (THA) with polyethylene wear where direct liner exchange is not possible. A replacement liner is cemented into a well fixed uncemented acetabular shell, avoiding the morbidity associated with acetabular shell component revision. We present a case of dissociation of an acetabular liner at the cement-liner interface, three years following liner exchange without radiographic evidence to indicate the diagnosis.

  18. Embedding effects on charge-transport parameters in molecular organic materials.

    Science.gov (United States)

    Lipparini, Filippo; Mennucci, Benedetta

    2007-10-14

    We present a generalized version of the tight-binding approach to determine the electronic coupling parameter in charge (hole) transport phenomena in organic materials. The main novelty of this approach is that the "embedding effects" of the environment (either a solvent or a crystal packing) can be explicitly included in the calculation by considering an embedded dimer. One of the main features shown by the application of the method to both model systems and oligoacene crystals is that the routinely used "energy splitting in a dimer" approximation gives reasonable results even if the transfer units are not equivalent by symmetry but the embedding effects are properly taken into account.

  19. Embedding effects on charge-transport parameters in molecular organic materials

    Science.gov (United States)

    Lipparini, Filippo; Mennucci, Benedetta

    2007-10-01

    We present a generalized version of the tight-binding approach to determine the electronic coupling parameter in charge (hole) transport phenomena in organic materials. The main novelty of this approach is that the "embedding effects" of the environment (either a solvent or a crystal packing) can be explicitly included in the calculation by considering an embedded dimer. One of the main features shown by the application of the method to both model systems and oligoacene crystals is that the routinely used "energy splitting in a dimer" approximation gives reasonable results even if the transfer units are not equivalent by symmetry but the embedding effects are properly taken into account.

  20. Double differential light charged particle emission cross sections for some structural fusion materials

    Science.gov (United States)

    Sarpün, Ismail Hakki; n, Abdullah Aydı; Tel, Eyyup

    2017-09-01

    In fusion reactors, neutron induced radioactivity strongly depends on the irradiated material. So, a proper selection of structural materials will have been limited the radioactive inventory in a fusion reactor. First-wall and blanket components have high radioactivity concentration due to being the most flux-exposed structures. The main objective of fusion structural material research is the development and selection of materials for reactor components with good thermo-mechanical and physical properties, coupled with low-activation characteristics. Double differential light charged particle emission cross section, which is a fundamental data to determine nuclear heating and material damages in structural fusion material research, for some elements target nuclei have been calculated by the TALYS 1.8 nuclear reaction code at 14-15 MeV neutron incident energy and compared with available experimental data in EXFOR library. Direct, compound and pre-equilibrium reaction contribution have been theoretically calculated and dominant contribution have been determined for each emission of proton, deuteron and alpha particle.

  1. Repairing liner of the reactor; Reparacion del liner del reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-07-15

    Due to the corrosion problems of the aluminum coating of the reactor pool, a periodic inspections program by ultrasound to evaluate the advance grade and the corrosion speed was settled down. This inspections have shown the necessity to repair some areas, in those that the slimming is significant, of not making it can arrive to the water escape of the reactor pool. The objective of the repair is to place patches of plates of 1/4 inch aluminum thickness in the areas of the reactor 'liner', in those that it has been detected by ultrasound a smaller thickness or similar to 3 mm. To carry out this the fuels are move (of the core and those that are decaying) to a temporary storage, the structure of the core is confined in a tank that this placed inside the pool of the reactor, a shield is placed in the thermal column and it is completely extracted the water for to leave uncover the 'liner' of the reactor. (Author)

  2. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  3. Single liner shipping service design

    DEFF Research Database (Denmark)

    Plum, Christian Edinger Munk; Pisinger, David; Salazar-González, Juan-José

    2014-01-01

    demand under commercially driven constraints. This paper introduces the Single Liner Shipping Service Design Problem. Arc-flow and path-flow models are presented using state-of-the-art elements from the wide literature on pickup and delivery problems. A Branch-and-Cut-and-Price algorithm is proposed......The design of container shipping networks is an important logistics problem, involving assets and operational costs measured in billions of dollars. To guide the optimal deployment of the ships, a single vessel round trip is considered by minimizing operational costs and flowing the best paying...

  4. Tuning charge balance in PHOLEDs with ambipolar host materials to achieve high efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Padmaperuma, Asanga B.; Koech, Phillip K.; Cosimbescu, Lelia; Polikarpov, Evgueni; Swensen, James S.; Chopra, Neetu; So, Franky; Sapochak, Linda S.; Gaspar, Daniel J.

    2009-08-27

    The efficiency and stability of blue organic light emitting devices (OLEDs) continue to be a primary roadblock to developing organic solid state white lighting. For OLEDs to meet the high power conversion efficiency goal, they will require both close to 100% internal quantum efficiency and low operating voltage in a white light emitting device.1 It is generally accepted that such high quantum efficiency, can only be achieved with the use of organometallic phosphor doped OLEDs. Blue OLEDs are particularly important for solid state lighting. The simplest (and therefore likely the lowest cost) method of generating white light is to down convert part of the emission from a blue light source with a system of external phosphors.2 A second method of generating white light requires the superposition of the light from red, green and blue OLEDs in the correct ratio. Either of these two methods (and indeed any method of generating white light with a high color rendering index) critically depends on a high efficiency blue light component.3 A simple OLED generally consists of a hole-injecting anode, a preferentially hole transporting organic layer (HTL), an emissive layer that contains the recombination zone and ideally transports both holes and electrons, a preferentially electron-transporting layer (ETL) and an electron-injecting cathode. Color in state-of-the-art OLEDs is generated by an organometallic phosphor incorporated by co-sublimation into the emissive layer (EML).4 New materials functioning as hosts, emitters, charge transporting, and charge blocking layers have been developed along with device architectures leading to electrophosphorescent based OLEDs with high quantum efficiencies near the theoretical limit. However, the layers added to the device architecture to enable high quantum efficiencies lead to higher operating voltages and correspondingly lower power efficiencies. Achievement of target luminance power efficiencies will require new strategies for lowering

  5. Cementing liners through deep high pressure ones

    Energy Technology Data Exchange (ETDEWEB)

    Mahony, B.J.; Barrios, J.R.

    1974-03-01

    Entry of gas into the liner-hole annulus during and after cementing liners though deep high pressure zones, generally results in a gas cut cement column from depth of gas entry to top of liner. Prior to undertaking design of liner cementation, it is necessary to know fracture pressure limits of the formations. It is also necessary to know the formation pore pressure or the pressure required to hold gas in the formation and precisely the depth of formation from which gas emerges. This knowledge may be gained from a study of formation pressure gradients of nearby wells or from sonic log analysis of the interval being readied for cementation. Both single-stage and 2-stage techniques are used to solve liner cementing problems in these high pressure zones. An example sets out conditions which are more or less typical and demonstrates how the problem may be considered and solved.

  6. Accommodation of liquid metal by cavity liners

    Energy Technology Data Exchange (ETDEWEB)

    Jeppson, D.W.

    1988-10-01

    Present liquid metal breeder reactor cell liner designs appear adequate to contain postulated leakages of lithium-lead alloy in an air or steam atmosphere and to contain lithium when inert atmospheres are present. If an air or steam atmosphere may be present in a cavity where lithium may accumulate under postulated accident conditions, then consideration of stainless steel liners and further testing is recommended. Lithium testing of faulted liners should also be considered. SOFIRE II and WATRE computer codes may be useful in establishing liner design requirements and in determining water release from concrete behind the liners (potential hydrogen production) for postulated leakages to steel-lined concrete cavities. 1 ref., 10 figs.

  7. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongxin [ORNL; Bhat, Vinay V [ORNL; Gallego, Nidia C [ORNL; Contescu, Cristian I [ORNL

    2012-01-01

    Graphene materials were synthesized by reduction of exfoliated graphene oxide sheets by hydrazine hydrate and then thermally treated in nitrogen to improve the surface area and their electrochemical performance as electrical double-layer capacitor electrodes. The structural and surface properties of the prepared reduced graphite oxide (RGO) were investigated using atomic force microscopy, scanning electron microscopy, Raman spectra, X-ray diffraction, and nitrogen adsorption / desorption. RGO forms a continuous network of crumpled sheets, which consist of numerous few-layer and single-layer graphenes. Electrochemical studies were conducted by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge measurements. The modified RGO materials showed enhanced electrochemical performance, with maximum specific capacitance of 96 F/g, energy density of 12.8 Wh/kg, and power density of 160 kW/kg. The results demonstrate that thermal treatment of RGO at selected conditions is a convenient and efficient method for improving specific capacitance, energy, and power density.

  8. Dimensional Crossover in a Charge Density Wave Material Probed by Angle-Resolved Photoemission Spectroscopy.

    Science.gov (United States)

    Nicholson, C W; Berthod, C; Puppin, M; Berger, H; Wolf, M; Hoesch, M; Monney, C

    2017-05-19

    High-resolution angle-resolved photoemission spectroscopy data reveal evidence of a crossover from one-dimensional (1D) to three-dimensional (3D) behavior in the prototypical charge density wave (CDW) material NbSe_{3}. In the low-temperature 3D regime, gaps in the electronic structure are observed due to two incommensurate CDWs, in agreement with x-ray diffraction and electronic-structure calculations. At higher temperatures we observe a spectral weight depletion that approaches the power-law behavior expected in one dimension. From the warping of the quasi-1D Fermi surface at low temperatures, we extract the energy scale of the dimensional crossover. This is corroborated by a detailed analysis of the density of states, which reveals a change in dimensional behavior dependent on binding energy. Our results offer an important insight into the dimensionality of excitations in quasi-1D materials.

  9. Acoustic Liners Utilizing A Cementitious Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I STTR project for NASA, Concrete Solutions Inc (CSI), together with the University of Texas at Austin (UTA), will develop a detailed research plan...

  10. Accelerating Thick Aluminum Liners Using Pulsed Power

    Energy Technology Data Exchange (ETDEWEB)

    Kyrala, G.A.; Hammerburg, J.E.; Bowers, D.; Stokes, J.; Morgan, D.V.; Anderson, W.E.; Cochrane, J.C.

    1999-06-28

    The authors have investigated the acceleration of very thick cylindrical aluminum liners using the Pegasus II capacitory bank. These accelerated solid liners will be used to impact other objects at velocities below 1.5 km/sec, allowing one to generate and sustain shocks of a few 100 kilobar for a few microseconds. A cylindrical shell of 1100 series aluminum with an initial inner radius of 23.61 mm, an initial thickness of 3.0 mm, and a height of 20 mm, was accelerated using a current pulse of 7.15 MA peak current and a 7.4 microsecond quarter cycle time. The aluminum shell was imploded within confining copper glide planes with decreasing separation with an inward slope of 8 degrees. At impact with a cylindrical target of diameter 3-cm, the liner was moving at 1.4 km/sec and its thickness increased to 4.5 mm. Radial X-ray radiograms of the liner showed both the liner and the glide plane interface. The curvature of the inner surface of the liner was measured before impact with the 15-mm radius target. The radiograms also showed that the copper glide planes distorted as the liner radius decreased and that some axial stress is induced in the liner. The axial stresses did not affect the inner curvature significantly. Post-shot calculations of the liner behavior indicated that the thickness of the glide plane played a significant role in the distortion of the interface between the liner and the glide plane.

  11. The development of a combustion chamber liner utilizing a long-fiber reinforced composite material made using the poly-silazane impregnation method and the chemical vapor deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K.; Fujioka, N.; Hayakawa, T. [Mitsui Eng. and Shipbuilding Co., Ltd., Tamahara, Tamano (Japan); Kawamura, N.; Sato, K. [TONEN Corp., Saitama (Japan)

    1999-03-01

    A combustion liner made of a fiber-reinforced ceramic matrix composite (CMC) having oxidation-resistance and the required drawing dimensions, has been developed by using both methods of poly-silazane impregnation and SiC coating, which is expected to be effective in the improvement of oxidation resistance, through chemical vapor deposition (CVD). A basic manufacturing technology has been established to make static components with complex shapes using non-woven fabrics made of short cut continuous fiber. The prototype extension liner has proven to be available in practical combustion environment atmosphere in engines through satisfactory inspection results conducted after the engine combustion environment test for a cumulative test duration of 31 hours. (orig.) 3 refs.

  12. Novel Tribotester for Cylinder Liner/Piston Ring Contacts of Two Stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Pedersen, Michael Torben; Imran, Tajammal; Klit, Peder

    2009-01-01

    A good tribological description for the cylinder liner and piston ring materials is always desired in order to achieve an improved combination of the materials. The piston ring package in a two-stroke-diesel engine operates in three lubrication regimes and the materials must be characterized...... in relation to this before a final selection is made. A tribo-test-apparatus is developed to study the tribological performance and to rank the different combinations of cylinder liner and piston ring materials of two stroke marine diesel engines. The test apparatus is based on the block-on-ring principle...

  13. Novel Tribotester for Cylinder Liner/Piston Ring Contacts of Two Stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Pedersen, Michael Torben; Imran, Tajammal; Klit, Peder

    2009-01-01

    in relation to this before a final selection is made. A tribo-test-apparatus is developed to study the tribological performance and to rank the different combinations of cylinder liner and piston ring materials of two stroke marine diesel engines. The test apparatus is based on the block-on-ring principle......A good tribological description for the cylinder liner and piston ring materials is always desired in order to achieve an improved combination of the materials. The piston ring package in a two-stroke-diesel engine operates in three lubrication regimes and the materials must be characterized...

  14. Investigation of a Bio-Inspired Liner Concept

    Science.gov (United States)

    Koch, L. Danielle

    2017-01-01

    Four samples of natural reeds, Phragmites australis, were tested in the NASA Langley and Glenn Normal Incidence Impedance Tubes in order to experimentally determine the acoustic absorption coefficients as a function of frequency from 400 to 3000 Hz. Six samples that mimicked the geometry of the assemblies of natural reeds were also designed and additively manufactured from ASA thermoplastic and tested. Results indicate that structures can be manufactured of synthetic materials that mimic the geometry and the low frequency acoustic absorption of natural reeds. This accomplishment demonstrates that a new class of structures can now be considered for a wide range of industrial products that need thin, lightweight, broadband acoustic absorption effective at frequencies below 1000 Hz. Aircraft engine acoustic liners and aircraft cabin acoustic liners, in particular, are two aviation applications that might benefit from further development of this concept.

  15. The effect of accelerated ageing on colour stability of visible light-cured (VLC) chairside denture liners.

    Science.gov (United States)

    Kostoulas, Ioannis; Polyzois, Gregory; Mitsoudis, Anastasios; Kavoura, Victoria; Frangou, Maria

    2012-06-01

    The purpose of this study was to assess the colour stability of seven visible light-cured (VLC) hard and soft denture liners by an in vitro accelerated ageing test and compare them with two autopolymerised hard and soft liners. Ten specimens of each material were fabricated. The initial colour was measured with a tri-stimulus colorimeter. One set of five specimens was placed in distilled water at 37°C in the dark for 15 days, while the remaining were subjected to UV/visible light-accelerated ageing initially for 24 h and then for 144 h. Colour change (ΔΕ) was calculated. Data were statistically analysed by anova, Tukey and t-tests at α = 0.05. All the liners showed clinically acceptable colour change (ΔΕ ≤ 6.8) in distilled water. The colour changes after ageing for Triad DuaLine, Lightdon U, Ufi Gel H and Light Liner Hard were clinically unacceptable (ΔΕ ≥ 6.8), whereas LightLiner Soft, Astron LC Soft, Triad Resiline and Flexacryl Soft presented slighter and clinically acceptable colour change (ΔΕ ≤ 6.8). Accelerated ageing affected significantly the colour stability of all denture liners tested except Astron LC Soft. Soft VLC denture liners were more colour-stable than hard VLC liners. © 2011 The Gerodontology Society and John Wiley & Sons A/S.

  16. Variable volume combustor with a conical liner support

    Science.gov (United States)

    Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Keener, Chrisophter Paul; Ostebee, Heath Michael

    2017-06-27

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a conical liner support supporting the liner.

  17. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  18. Nuclear containment steel liner corrosion workshop : final summary and recommendation report.

    Energy Technology Data Exchange (ETDEWEB)

    Erler, Bryan A. (Erler Engineering Ltd., Chicago, IL); Weyers, Richard E. (Virginia Tech University, Blacksburg, VA); Sagues, Alberto (University of South Florida, Tampa, FL); Petti, Jason P.; Berke, Neal Steven (Tourney Consulting Group, LLC, Kalamazoo, MI); Naus, Dan J. (Oak Ridge National Laboratory, Oak Ridge, TN)

    2011-07-01

    This report documents the proceedings of an expert panel workshop conducted to evaluate the mechanisms of corrosion for the steel liner in nuclear containment buildings. The U.S. Nuclear Regulatory Commission (NRC) sponsored this work which was conducted by Sandia National Laboratories. A workshop was conducted at the NRC Headquarters in Rockville, Maryland on September 2 and 3, 2010. Due to the safety function performed by the liner, the expert panel was assembled in order to address the full range of issues that may contribute to liner corrosion. This report is focused on corrosion that initiates from the outer surface of the liner, the surface that is in contact with the concrete containment building wall. Liner corrosion initiating on the outer diameter (OD) surface has been identified at several nuclear power plants, always associated with foreign material left embedded in the concrete. The potential contributing factors to liner corrosion were broken into five areas for discussion during the workshop. Those include nuclear power plant design and operation, corrosion of steel in contact with concrete, concrete aging and degradation, concrete/steel non-destructive examination (NDE), and concrete repair and corrosion mitigation. This report also includes the expert panel member's recommendations for future research.

  19. Systematic Studies of the Metallo-Organic Charge - Complex Switching and Memory Storage Materials

    Science.gov (United States)

    Duan, Hailing

    Systematic studies on the chemical and physical aspects of the metallo-organic charge-transfer complex switching materials were carried out in this dissertation research. We aimed to understand the mechanism of the switching film formation, to carry out chemical modifications on these materials, and to understand the physical process of the field-induced switching and memory phenomena. SEM studies on a spherical single crystal Cu and electrochemical studies on a disc Cu electrode confirmed that the mechanism of the Cu^+TCNQ ^- film formation in a TCNQ/acetonitrile solution involves diffusion-controlled localized corrosion and crystallization processes. The reactivities of 33 metals with TCNQ, 4 organo -acceptors with Cu in acetonitrile solutions, and the effect of 3 different solvents on the Cu^+TCNQ ^- film formation were studied qualitatively. Uniform film formation were obtained on TCNQ complexes of (in the order of reactivities) Tl, Ca, Mg, Cu, Ag, Mn and Cd, as well as on Cu complexes of TCNQ(OET)_2, BTCNQ and TCNQ(i-Pr)_2. The above list could be expanded and the film morphology and quality could still be optimized by matching the relative reactivity of donor vs. acceptor and by choosing appropriate solvent. The donor reactivity is determined by its surface stability and the solubility of the charge-transfer products in the chosen solvent. The acceptor reactivity is affected by a steric effect and, weakly, by an inductive effect of the substituents. The solubility of the charge-transfer complexes is a key factor for successful film growth. If the complex is insoluble, the film formation process can not proceed; if it is too soluble, the film can not effectively form on the substrate surface. Studies on the relationship between the electrode areas of CuTCNQ switching devices and their threshold currents showed that a conducting channel is established across the two electrodes upon switching. A possible mechanism of switching and memory was proposed. It

  20. Thermo-mechanical performance of a novel composite liner used in cured-in-place pipe renovation process

    OpenAIRE

    Saidpour, Hossein; Razmara, Mohammad

    2009-01-01

    This paper aims to describe the latest developments in the cured-in-place lining process and present the results of an investigation into the thermomechanical properties of a novel composite material used in the process of cured-in-place pipe renovation. The results include the effect of catalyst content on the dynamic mechanical and thermal properties of the felt liner polyester composites. In this study a novel type of pipe liner was prepared using a special feltpolyester material. It has b...

  1. Effect of the electrode material on the breakdown voltage and space charge distribution of propylene carbonate under impulse voltage

    OpenAIRE

    Qing Yang; Yang Jin; Wenxia Sima; Mengna Liu

    2016-01-01

    This paper reports three types of electrode materials (copper, aluminum, and stainless steel) that are used to measure the impulse breakdown voltage of propylene carbonate. The breakdown voltage of propylene carbonate with these electrode materials is different and is in decreasing order of stainless steel, copper, and aluminum. To explore how the electrode material affects the insulating properties of the liquid dielectric, the electric field distribution and space charge distribution of pro...

  2. Corrosion of Metal Modular Cup Liners.

    Science.gov (United States)

    Hothi, Harry S; Ilo, Kevin; Whittaker, Robert K; Eskelinen, Antti; Skinner, John A; Hart, Alister J

    2015-09-01

    Numerous studies have reported on corrosion at the modular head taper, however less is known about the interface between the metal shell and liner of modular cups. This study examined the backside of a series of metal modular cup liners of two designs (DePuy Pinnacle and Smith & Nephew R3), retrieved from 67 patients. Visual inspection found evidence of corrosion in virtually all liners, with the engaging rim surface significantly more corroded than the polar regions (Pcorrosion debris, while SEM analysis revealed considerable pitting in the vicinity of the black debris. The R3 liners were significantly more corroded that the Pinnacles (P<0.001); this may help to explain the higher revision rates of this design. Copyright © 2015. Published by Elsevier Inc.

  3. Elastic Plastic Fracture Analysis of an Aluminum COPV Liner

    Science.gov (United States)

    Forth, Scott; Gregg, Bradley; Bailey, Nathaniel

    2012-01-01

    Onboard any space-launch vehicle, composite over-wrapped pressure vessels (COPVs) may be utilized by propulsion or environmental control systems. The failure of a COPV has the potential to be catastrophic, resulting in the loss of vehicle, crew or mission. The latest COPV designs have reduced the wall-thickness of the metallic liner to the point where the material strains plastically during operation. At this time, the only method to determine the damage tolerance lifetime (safe-life) of a plastically responding metallic liner is through full-scale COPV testing. Conducting tests costs substantially more and can be far more time consuming than performing an analysis. As a result of this cost, there is a need to establish a qualifying process through the use of a crack growth analysis tool. This paper will discuss fracture analyses of plastically responding metallic liners in COPVs. Uni-axial strain tests have been completed on laboratory specimens to collect elastic-plastic crack growth data. This data has been modeled with the crack growth analysis tool, NASGRO 6.20 to predict the response of laboratory specimens and subsequently the complexity of a COPV.

  4. Explosively Bonded Gun Tube Liner Development

    Science.gov (United States)

    2015-04-01

    some concern was the occasional appearance of iron-Ta intermetallics near the liner-steel interface. This is a brittle phase and subject to...Montgomery JS, de Rosset WS. Examination of intermetallic phases and residual stresses resulting from explosive bonding of refractory metal gun tube...caliber smoothbore gun tube. The metallic bond produced by explosive bonding is extremely strong and presumably would keep the liner in place. In Phase

  5. Transparent and Electrically Conductive Carbon Nanotube-Polymer Nanocomposite Materials for Electrostatic Charge Dissipation

    Science.gov (United States)

    Dervishi, E.; Biris, A. S.; Biris, A. R.; Lupu, D.; Trigwell, S.; Miller, D. W.; Schmitt, T.; Buzatu, D. A.; Wilkes, J. G.

    2006-01-01

    In recent years, nanocomposite materials have been extensively studied because of their superior electrical, magnetic, and optical properties and large number of possible applications that range from nano-electronics, specialty coatings, electromagnetic shielding, and drug delivery. The aim of the present work is to study the electrical and optical properties of carbon nanotube(CNT)-polymer nanocomposite materials for electrostatic charge dissipation. Single and multi-wall carbon nanotubes were grown by catalytic chemical vapor deposition (CCVD) on metal/metal oxide catalytic systems using acetylene or other hydrocarbon feedstocks. After the purification process, in which amorphous carbon and non-carbon impurities were removed, the nanotubes were functionalized with carboxylic acid groups in order to achieve a good dispersion in water and various other solvents. The carbon nanostructures were analyzed, both before and after functionalization by several analytical techniques, including microscopy, Raman spectroscopy, and X-Ray photoelectron spectroscopy. Solvent dispersed nanotubes were mixed (1 to 7 wt %) into acrylic polymers by sonication and allowed to dry into 25 micron thick films. The electrical and optical properties of the films were analyzed as a function of the nanotubes' concentration. A reduction in electrical resistivity, up to six orders of magnitude, was measured as the nanotubes' concentration in the polymeric films increased, while optical transparency remained 85 % or higher relative to acrylic films without nanotubes.

  6. Correlation between charge transfer and exchange coupling in carbon-based magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Anh Tuan, E-mail: tuanna@hus.edu.vn [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Science and Technology Department, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Japan Advanced Institute of Science and Technology, 1-1, Asahidai, Nomi, Ishikawa, 923-1292 Japan (Japan); Nguyen, Van Thanh; Nguyen, Huy Sinh [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Pham, Thi Tuan Anh [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Faculty of Science, College of Hai Duong, Nguyen Thi Due, Hai Duong (Viet Nam); Do, Viet Thang [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Faculty of Science, Haiphong University, 171 Phan Dang Luu, Kien An, Hai Phong (Viet Nam); Dam, Hieu Chi [Japan Advanced Institute of Science and Technology, 1-1, Asahidai, Nomi, Ishikawa, 923-1292 Japan (Japan)

    2015-10-15

    Several forms of carbon-based magnetic materials, i.e. single radicals, radical dimers, and alternating stacks of radicals and diamagnetic molecules, have been investigated using density-functional theory with dispersion correction and full geometry optimization. Our calculated results demonstrate that the C{sub 31}H{sub 15} (R{sub 4}) radical has a spin of ½. However, in its [R{sub 4}]{sub 2} dimer structure, the net spin becomes zero due to antiferromagnetic spin-exchange between radicals. To avoid antiferromagnetic spin-exchange of identical face-to-face radicals, eight alternating stacks, R{sub 4}/D{sub 2m}/R{sub 4} (with m = 3-10), were designed. Our calculated results show that charge transfer (Δn) between R{sub 4} radicals and the diamagnetic molecule D{sub 2m} occurs with a mechanism of spin exchange (J) in stacks. The more electrons that transfer from R{sub 4} to D{sub 2m}, the stronger the ferromagnetic spin-exchange in stacks. In addition, our calculated results show that Δn can be tailored by adjusting the electron affinity (E{sub a}) of D{sub 2m}. The correlation between Δn, E{sub a}, m, and J is discussed. These results give some hints for the design of new ferromagnetic carbon-based materials.

  7. Correlation between charge transfer and exchange coupling in carbon-based magnetic materials

    Directory of Open Access Journals (Sweden)

    Anh Tuan Nguyen

    2015-10-01

    Full Text Available Several forms of carbon-based magnetic materials, i.e. single radicals, radical dimers, and alternating stacks of radicals and diamagnetic molecules, have been investigated using density-functional theory with dispersion correction and full geometry optimization. Our calculated results demonstrate that the C31H15 (R4 radical has a spin of ½. However, in its [R4]2 dimer structure, the net spin becomes zero due to antiferromagnetic spin-exchange between radicals. To avoid antiferromagnetic spin-exchange of identical face-to-face radicals, eight alternating stacks, R4/D2m/R4 (with m = 3-10, were designed. Our calculated results show that charge transfer (Δn between R4 radicals and the diamagnetic molecule D2m occurs with a mechanism of spin exchange (J in stacks. The more electrons that transfer from R4 to D2m, the stronger the ferromagnetic spin-exchange in stacks. In addition, our calculated results show that Δn can be tailored by adjusting the electron affinity (Ea of D2m. The correlation between Δn, Ea, m, and J is discussed. These results give some hints for the design of new ferromagnetic carbon-based materials.

  8. Soft denture liners' effect on the masticatory function in patients wearing complete dentures: A systematic review.

    Science.gov (United States)

    Palla, Eleni Sotiria; Karaoglani, Eleni; Naka, Olga; Anastassiadou, Vassiliki

    2015-12-01

    To explore the effect of soft denture liners on the masticatory performance and muscle activity of edentulous patients wearing complete dentures, as determined by using objective measurement methods. Randomized controlled clinical trials and Cross-over studies that evaluated the masticatory capacity and muscle activity in denture wearers with and without soft denture liners were included in this systematic review. A comprehensive literature search was performed via electronic databases using the appropriate key words. The last search took place in September 2014. The potentially appropriate articles were identified and evaluated for eligibility through a predefined review process conducted by two examiners. Six out of the 176 identified records were included for quality and systematic assessment. The observed clinical and methodological diversity determined the narrative approach for the pooling of the findings. According to the studies brought together for the current systematic review, soft denture liners provided denture wearers with increased masticatory function compared to conventional denture base materials. Specifically, the use of long-term silicone liners significantly improved the mastication parameters. The observed intervention effects suggest further studies of higher quality to allow reliable conclusions to be drawn and to strengthen the clinical significance of these materials to patient's functionality. Soft denture lining materials have been suggested to address functional problems arising during complete denture function. This study was designed to systematically review the impact of soft liners' use on the masticatory efficiency in denture wearers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Effect of the electrode material on the breakdown voltage and space charge distribution of propylene carbonate under impulse voltage

    Directory of Open Access Journals (Sweden)

    Qing Yang

    2016-04-01

    Full Text Available This paper reports three types of electrode materials (copper, aluminum, and stainless steel that are used to measure the impulse breakdown voltage of propylene carbonate. The breakdown voltage of propylene carbonate with these electrode materials is different and is in decreasing order of stainless steel, copper, and aluminum. To explore how the electrode material affects the insulating properties of the liquid dielectric, the electric field distribution and space charge distribution of propylene carbonate under impulse voltage with the three electrode materials are measured on the basis of a Kerr electro-optic test. The space charge injection ability is highest for aluminum, followed by copper, and then the stainless steel electrodes. Furthermore, the electric field distortion rate decreased in the order of the aluminum, copper, and then the stainless steel electrode. This paper explains that the difference in the electric field distortion rate between the three electrode materials led to the difference in the impulse breakdown voltage of propylene carbonate.

  10. Geosynthetic clay liners - slope stability field study

    Energy Technology Data Exchange (ETDEWEB)

    Carson, D.A. [Environmental Protection Agency, Cincinnati, OH (United States); Daniel, D.E. [Univ. of Illinois, Urbana, IL (United States); Koerner, R.M. [Geosynthetic Research Institute, Philadelphia, PA (United States); Bonaparte, R. [GeoSyntec Consultants, Atlanta, GA (United States)

    1997-12-31

    A field research project was developed to examine the internal shear performance of geosynthetic clay liners (GCLs). Several combinations of cross sections were assembled using GCL materials that were available at the time of project initiation. The cross sections utilized were intended to simulate landfill cover applications. Thirteen (13) resulting test plots were constructed on two different slope angles, and each plot is instrumented for physical displacement and soil moisture characteristics. Test plots were constructed in a manner that dictated the shear plane in the clay portion of the GCL product. The project purpose is to assess field performance and to verify design parameters associated with the application of GCLs in waste containment applications. Interim research data shows that test slopes on 2H:1V show global deformation, but little internal shear evidence, and the 3H:1V slopes show little deformation at approximately 650 days. The research is ongoing, and this paper presents the most recent information available from the project.

  11. Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    Science.gov (United States)

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung-Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao-Qing

    2014-11-01

    For LiMO2 (M=Co, Ni, Mn) cathode materials, lattice parameters, a(b), contract during charge. Here we report such changes in opposite directions for lithium molybdenum trioxide (Li2MoO3). A ‘unit cell breathing’ mechanism is proposed based on crystal and electronic structural changes of transition metal oxides during charge-discharge. Metal-metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of the metal-metal bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking metal-oxygen bond as controlling factor in ‘normal’ materials. The cation mixing caused by migration of molybdenum ions at higher oxidation state provides the benefits of reducing the c expansion range in the early stage of charging and suppressing the structure collapse at high voltage charge. These results may open a new strategy for designing layered cathode materials for high energy density lithium-ion batteries.

  12. Engineering and Development Support of General Decon Technology for the DARCOM Installation Restoration Program. Task 1. Lagoon/Landfill Liner Compatibility Testing with Explosives.

    Science.gov (United States)

    1983-06-01

    CPE and Neopene liner samples and resulted in weight increases of between 15 and ovsr 200 percent for the other candidate liner samples. Subsequent to...radio frequency waves. o Extrusion Weld - a heat weld where molten membrane material is injected into the seam. Extrusion welds are used with HDPE

  13. Designing Indonesian Liner Shipping Network

    Directory of Open Access Journals (Sweden)

    Armand Omar Moeis

    2017-06-01

    Full Text Available As the largest archipelago nation in the world, Indonesia’s logistics system has not shown excellence according to the parameters of logistics performance index and based on logistics costs percentages from overall GDP. This is due to the imbalances of trading on the western and eastern regions in Indonesia, which impacts the transportation systems costs to and from the eastern regions. Therefore, it is imperative to improve the competitiveness of Indonesian maritime logistics through maritime logistics network design. This research will focus on three levels of decision making in logistics network design, which include type of ships in the strategic level, shipping routes in the tactical level, and container allocation in the operational level with implementing butterfly routes in Indonesia’s logistics networking problems. Furthermore, this research will analyze the impact of Pendulum Nusantara and Sea Toll routes against the company profits and percentages of containers shipped. This research will also foresee how demand uncertainties and multi-period planning should affect decision making in designing the Indonesian Liner Shipping Network.

  14. Note on liners for containment of Leachate in sanitary landfills to enhance sustainable environment

    Directory of Open Access Journals (Sweden)

    IGE, O.O

    2013-03-01

    Full Text Available Leachate from waste degradation creep to neighboring natural soil and water bodies in undersigned landfills and impairs the quality of environment expose to man. This paper deals with the selection of materials for sealing layers in sanitary landfills. This layer is the most critical component of landfills top and bottom covers. Commonly used liners in sanitary landfills are compacted natural low permeability clayey soils, geosynthetic materials or combination of the two. Geotechnical conditions for natural soils to be useful as liners are also presented.

  15. Wheel liner design for improved sound and structural performances

    Science.gov (United States)

    Oltean, Alexandru; Diaconescu, Claudiu; Tabacu, Ştefan

    2017-10-01

    Vehicle noise is composed mainly of wheel-road noise and noise from the power unit. At low speeds power unit noise dominates while at high speeds wheel-road noise dominates as wheel-road noise level increases approximately logarithmically with speed. The wheel liner is designed as a component of the vehicle that has a multiple role. It has to prevent the dirt or water from the road surface that are engaged by the wheel to access the engine/front bay. Same time it has the important role to reduce perceived noised in the passenger’s compartment that comes from the wheel-road interaction. Progress in plastic injection moulding technology allowed for new structures to be developed – nonwoven materials in combination with a PP based carrier structure which benefits from a cell structure caused by MuCell injection moulding. The results are light parts with increased sound absorption performances. An adapted combination of materials and production processes can provide the solution for stiff yet soundproofing structures valued for modern vehicles. Sound absorption characteristics of materials used for wheel liners applications were reported in this study. Different polypropylene and polyester fibre-based thermally bonded nonwovens varying in weight and thickness were investigated. Having as a background the performances of the nonwoven material the microcellular structure was part of the analysis. Acoustical absorptive behaviour was explained by analysing the results obtained using the impedance tube and correlating with the knowledge of materials structure.

  16. Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials.

    Science.gov (United States)

    Boerigter, Calvin; Aslam, Umar; Linic, Suljo

    2016-06-28

    Plasmonic metal nanoparticles can efficiently convert the energy of visible photons into the energy of hot charge carriers within the nanoparticles. These energetic charge carriers can transfer to molecules or semiconductors, chemically attached to the nanoparticles, where they can induce photochemical transformations. Classical models of photoinduced charge excitation and transfer in metals suggest that the majority of the energetic charge carriers rapidly decay within the metal nanostructure before they are transferred into the neighboring molecule or semiconductor, and therefore, the efficiency of charge transfer is low. Herein, we present experimental evidence that calls into question this conventional picture. We demonstrate a system where the presence of a molecule, adsorbed on the surface of a plasmonic nanoparticle, significantly changes the flow of charge within the excited plasmonic system. The nanoparticle-adsorbate system experiences high rates of direct, resonant flow of charge from the nanoparticle to the molecule, bypassing the conventional charge excitation and thermalization process taking place in the nanoparticle. This picture of charge transfer suggests that the yield of extracted hot electrons (or holes) from plasmonic nanoparticles can be significantly higher than the yields expected based on conventional models. We discuss a conceptual physical framework that allows us to explain our experimental observations. This analysis points us in a direction toward molecular control of the charge transfer process using interface and local field engineering strategies.

  17. Peel bond strength of two silicone soft liners to a heat-cured denture base resin.

    Science.gov (United States)

    Demir, Hakan; Dogan, Arife; Dogan, Orhan Murat; Keskin, Selda; Bolayir, Giray; Soygun, Koray

    2011-12-01

    This study investigated the peel strength of two different soft liners to a polymethylmethacrylate (PMMA) denture base resin before and after thermocycling. The silicone-based soft liner materials tested were Molloplast B and Permaflex; the denture base material was a heat-cured acrylic resin, Meliodent. A total of 40 specimens was prepared using rectangular molds with dimensions of 100 x 10 x 2 mm for PMMA and 150 x 10 x 2 mm for soft liners, as described in ASTM-D903-93. For each of the liner materials, 10 specimens were packed against a cured PMMA denture base surface as recommended by the manufacturers. The other 10 specimens were packed against PMMA denture base dough and processed together. In each group, 5 of the specimens were tested directly, while the other 5 were thermocycled in a water bath (5°C to 55°C; 3000 cycles) before testing. Peel testing was performed using an Instron testing machine. The results revealed that peel strength values of the Permaflex specimens prepared according to the manufacturer's recommendations were significantly higher than those of Molloplast B (p < 0.05). However, when packing was done against uncured PMMA dough, the difference between the specimens of two liners was not significant. Thermocycling led to significant decreases in the peel strength of both Permaflex liner specimens packed against cured/uncured PMMA resin surfaces (p < 0.05), whereas this process did not affect the strength of Molloplast B specimens. Results indicated that the material Molloplast B was superior to the material Permaflex in terms of peel strength when the specimens were simultaneously polymerized with PMMA and thermocycled.

  18. A PDDL Domain for the Liner Shipping Fleet Repositioning Problem

    DEFF Research Database (Denmark)

    Tierney, Kevin; Coles, Amanda; Coles, Andrew

    The Liner Shipping Fleet Repositioning Problem (LSFRP) poses a large financial burden on liner shipping firms. During repositioning, vessels are moved between services in a liner shipping network. The LSFRP is characterized by chains of interacting activities, many of which have costs that are a ......The Liner Shipping Fleet Repositioning Problem (LSFRP) poses a large financial burden on liner shipping firms. During repositioning, vessels are moved between services in a liner shipping network. The LSFRP is characterized by chains of interacting activities, many of which have costs...

  19. Test Method Designed to Evaluate Cylinder Liner-Piston Ring Coatings for Advanced Heat Engines

    Science.gov (United States)

    Radil, Kevin C.

    1997-01-01

    Research on advanced heat engine concepts, such as the low-heat-rejection engine, have shown the potential for increased thermal efficiency, reduced emissions, lighter weight, simpler design, and longer life in comparison to current diesel engine designs. A major obstacle in the development of a functional advanced heat engine is overcoming the problems caused by the high combustion temperatures at the piston ring/cylinder liner interface, specifically at top ring reversal (TRR). Therefore, advanced cylinder liner and piston ring materials are needed that can survive under these extreme conditions. To address this need, researchers at the NASA Lewis Research Center have designed a tribological test method to help evaluate candidate piston ring and cylinder liner materials for advanced diesel engines.

  20. Ultrafast high harmonics for probing the fastest spin and charge dynamics in magnetic materials

    Science.gov (United States)

    Grychtol, Patrick

    2015-03-01

    Ultrafast light based on the high-harmonic up-conversion of femtosecond laser pulses have been successfully employed to access resonantly enhanced magnetic contrast at the Mabsorption edges of the 3d ferromagnets Fe, Co and Ni in a table-top setup. Thus, it has been possible to study element-specific dynamics in magnetic materials at femtosecond time scales in a laboratory environment, providing a wealth of opportunities for a greater fundamental understanding of correlated phenomena in solid-state matter. However, these investigations have so far been limited to linear polarized harmonics, since most techniques by which circular soft x-rays can be generated are highly inefficient reducing the photon flux to a level unfit for scientific applications. Besides presenting key findings of our ultrafast studies on charge and spin dynamics, we introduce a simple setup which allows for the efficient generation of circular harmonics bright enough for XMCD experiments. Our work thus represents a critical advance that enables element-specific imaging and spectroscopy of multiple elements simultaneously in magnetic and other chiral media with very high spatial and temporal resolution on the tabletop. In collboration with Ronny Knut, Emrah Turgut, Dmitriy Zusin, Christian Gentry, Henry Kapteyn, Margaret Murnane, JILA, University of Colorado, Boulder; Justin Shaw, Hans Nembach, Tom Silva, Electromagnetics Division, NIST, Boulder, CO; and Ofer Kfir, Avner Fleischer, Oren Cohen, Extreme Nonlinear Optics Group, Solid State Institute, Technion, Israel.

  1. Light-induced space-charge fields for the structuration of dielectric materials; Lichtinduzierte Raumladungsfelder zur Strukturierung dielektrischer Materialien

    Energy Technology Data Exchange (ETDEWEB)

    Eggert, H.A.

    2006-11-15

    Light-induced space-charge fields in lithium-niobate crystals are used for patterning of dielectric materials. This includes tailored ferroelectric domains in the bulk of the crystal, different sorts of micro and nanoparticles on a crystal surface, as well as poling of electrooptic chromophores. A stochastical model is introduced, which can describe the spatial inhomogeneous domain inversion. (orig.)

  2. Modeling the condensation of sulfuric acid and water on the cylinder liner of a large two-stroke marine diesel engine

    DEFF Research Database (Denmark)

    Cordtz, Rasmus Faurskov; Mayer, Stefan; Eskildsen, Svend S.

    2017-01-01

    Corrosive wear of cylinder liners in large two-stroke marine diesel engines that burn heavy fuel oil containing sulfur is coupled to the formation of gaseous sulfur trioxide (SO3) and subsequent combined condensation of sulfuric acid (H2SO4) and water (H2O) vapor. The present work seeks to address...... how fuel sulfur content, charge air humidity and liner temperature variations affects the deposition of water and sulfuric acid at low load operation. A phenomenological engine model is applied to simulate the formation of cylinder/bulk gas combustion products and dew points comply with H2O–H2SO4...... vapor liquid equilibrium. By assuming homogenous cylinder gas mixtures condensation is modeled using a convective heat and mass transfer analogy combined with realistic liner temperature profiles. Condensation of water is significantly altered by the liner temperature and charge air humidity while...

  3. Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Samulyak, Roman V. [State Univ. of New York (SUNY), Stony Brook, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Parks, Paul [General Atomics, San Diego, CA (United States)

    2013-08-31

    The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy. High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.

  4. High Thermal Conductivity NARloy-Z-Diamond Composite Liner for Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar; Greene, Sandra

    2015-01-01

    NARloy-Z (Cu-3Ag-0.5Zr) alloy is state-of-the-art combustion chamber liner material used in liquid propulsion engines such as the RS-68 and RS-25. The performance of future liquid propulsion systems can be improved significantly by increasing the heat transfer through the combustion chamber liner. Prior work1 done at NASA Marshall Space Flight Center (MSFC) has shown that the thermal conductivity of NARloy-Z alloy can be improved significantly by embedding high thermal conductivity diamond particles in the alloy matrix to form NARloy-Z-diamond composite (fig. 1). NARloy-Z-diamond composite containing 40vol% diamond showed 69% higher thermal conductivity than NARloy-Z. It is 24% lighter than NARloy-Z and hence the density normalized thermal conductivity is 120% better. These attributes will improve the performance and life of the advanced rocket engines significantly. The research work consists of (a) developing design properties (thermal and mechanical) of NARloy-Z-D composite, (b) fabrication of net shape subscale combustion chamber liner, and (c) hot-fire testing of the liner to test performance. Initially, NARloy-Z-D composite slabs were made using the Field Assisted Sintering Technology (FAST) for the purpose of determining design properties. In the next step, a cylindrical shape was fabricated to demonstrate feasibility (fig. 3). The liner consists of six cylinders which are sintered separately and then stacked and diffusion bonded to make the liner (fig. 4). The liner will be heat treated, finish-machined, and assembled into a combustion chamber and hot-fire tested in the MSFC test facility (TF 115) to determine perform.

  5. Synthesis and energy band characterization of hybrid molecular materials based on organic–polyoxometalate charge-transfer salts

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Chunxia [Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou City, Gansu Province (China); Traditional Chinese Medicine College of Gansu, Gansu (China); Bu, Weifeng, E-mail: buwf@lzu.edu.cn [Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou City, Gansu Province (China)

    2014-11-15

    A cationic amphiphilic molecule was synthesized and employed to encapsulate Lindqvist ([M{sub 6}O{sub 19}]{sup 2−}) and Keggin polyoxometalates ([SiM{sub 12}O{sub 40}]{sup 4−}, M=Mo, W) to form hybrid molecules through electrostatic interaction. The X-ray diffraction results illustrate that the former hybrids possess lamellar nanostructures in their solid states, while the latter hybrids show a cubic Im3m packing model with low intensities and poor long-range order. These hybrids have clear charge-transfer characters as shown in their deeper colors and UV–vis diffuse reflectance spectra. According to the reported reduction potentials of the POM acceptors and the band gaps deduced from their diffuse reflectance spectra, we have calculated the theoretical values of the lowest unoccupied molecular orbital (LUMO) position similar to the electron affinity (E{sub A}) of solid materials. Such energy level parameters are comparable to those of electroluminescence and electron-transport materials commonly used in organic electroluminescence devices. These organic–polyoxometalate charge-transfer salts have more advantages, such as higher decomposition temperatures, easier film fabrication and better electron affinities, which presumably would be used for electron-transport materials in the area of the electroluminescence. - Graphical abstract: Hybrid molecular materials with charge-transfer characters formed by a positively charged donor L and acceptors of the Lindqvist-type and Keggin-type POMs have lamellar and cubic structures in their solid state. - Highlights: • Charge-transfer salts are obtained by self-assembling POMs with an anthracene cation. • Their energy parameters are comparable to those of optoelectronic materials in OLEDs. • These POM-based hybrids could be applied in the area of optoelectronic devices.

  6. Magnetism tuned by the charge states of defects in bulk C-doped SnO2 materials.

    Science.gov (United States)

    Lu, Ying-Bo; Ling, Z C; Cong, Wei-Yan; Zhang, Peng

    2015-10-21

    To analyze the controversial conclusions on the magnetism of C-doped SnO2 (SnO2:C) bulk materials between theoretical calculations and experimental observations, we propose the critical role of the charge states of defects in the geometric structures and magnetism, and carry out a series of first principle calculations. By changing the charge states, we can influence Bader charge distributions and atomic orbital occupancies in bulk SnO2:C systems, which consequently conduct magnetism. In all charged SnO2:C supercells, C-2px/py/pz electron occupancies are significantly changed by the charge self-regulation, and thus they make the C-2p orbitals spin polarized, which contribute to the dominant magnetic moment of the system. When the concentration of C dopant in the SnO2 supercell increases, the charge redistribution assigns extra electrons averagely to each dopant, and thus effectively modulates the magnetism. These findings provide an experimentally viable way for controlling the magnetism in these systems.

  7. Evaluate the Effect of Commercially Available Denture Cleansers on Surface Hardness and Roughness of Denture Liners at Various Time Intervals

    Science.gov (United States)

    Mohammed, Hilal S.; Singh, Sumeet; Hari, Prasad A.; Amarnath, G. S.; Kundapur, Vinaya; Pasha, Naveed; Anand, M.

    2016-01-01

    Background and objective: Chemical cleansing by denture cleansers is first choice for denture plaque control. The most common problems while using denture cleansers are hardening, porosity, odor sorption, water sorption, solubility, and colour change, bacterial and fungal growth. Chemical cleansing procedures have been found to have an effect on the physical and mechanical properties of denture liners. Thus, this study was conducted to evaluate the effect of commercially available denture cleansers on surface hardness and roughness of acrylic and silicon based denture liners at various time interval. Method: Two autopolymerising denture liners Kooliner (acrylic) and GC reline soft (silicon) were tested with two commercially available denture cleansers, polident and efferdent plus. Total of 120 specimens were prepared and all the specimens were divided into six groups based on the relining materials and denture cleansers used. Surface hardness and surface roughness was tested using Shore A durometer and profilometer respectively at the end of day 1, day 7, day 30 and day 90. All the specimens were stored in artificial saliva throughout the study. Cleanser solution was prepared daily by adding Polident and Efferdent plus denture cleanser tablet into 250ml of enough very warm (not hot) water. Acrylic and silicon liner groups were cleansed in a solution of denture cleanser and water for 15 minutes daily, rinsed with water and stored in artificial saliva at room temperature. The data was analyzed with one way ANOVA and independent t-test. Result: The acrylic soft lining showed gradual hardening and increase in surface roughness after immersion in denture cleanser and also with time. Acrylic liner material showed maximum hardness and roughness with Polident followed by Efferdent plus and water (control group). Silicone lining material showed a slight difference in hardness and roughness between the test group and control group. There was a slight increase in hardness in

  8. On the origin of differential phase contrast at a locally charged and globally charge-compensated domain boundary in a polar-ordered material

    Energy Technology Data Exchange (ETDEWEB)

    MacLaren, Ian; Wang, LiQiu; McGrouther, Damien; Craven, Alan J.; McVitie, Stephen [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Schierholz, Roland [Institute of Energy and Climate Research: Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, 52425 Jülich (Germany); Kovács, András [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Barthel, Juri [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Central Facility for Electron Microscopy, RWTH Aachen University, 52074 Aachen (Germany); Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany)

    2015-07-15

    Differential phase contrast (DPC) imaging in the scanning transmission electron microscope is applied to the study of a charged antiphase domain boundary in doped bismuth ferrite. A clear differential signal is seen, which matches the expected direction of the electric field at the boundary. However, further study by scanned diffraction reveals that there is no measurable deflection of the primary diffraction disc and hence no significant free E-field in the material. Instead, the DPC signal arises from a modulation of the intensity profile within the primary diffraction disc in the vicinity of the boundary. Simulations are used to show that this modulation arises purely from the local change in crystallographic structure at the boundary and not from an electric field. This study highlights the care that is required when interpreting signals recorded from ferroelectric materials using both DPC imaging and other phase contrast techniques. - Highlights: • We show clear differential phase contrast (DPC) at a charged boundary. • Scanning diffraction shows that the discs do not move. • Disc deflection by electric fields is not the source of the DPC signal. • Diffraction contrast within the disc is the source of the DPC signal. • DPC and holography of E fields is difficult due to diffraction contrast.

  9. Colour change of soft denture liners after storage in coffee and coke.

    Science.gov (United States)

    Goiato, Marcelo Coelho; Zuccolotti, Bruna Carolina Rossatti; Moreno, Amália; dos Santos, Daniela Micheline; Pesqueira, Aldiéris Alves; Dekon, Stefan Fiuza de Carvalho

    2011-06-01

    This study was to evaluate the colour change of soft denture liners after thermocycling and storage in coffee and coke. Four liners, two silicone-based (Sofreliner S and Reline GS) and two acrylic resin-based (Soft Confort and Dentuflex), were evaluated in this study. Ten samples were obtained for each group. After 2000 cycles of thermocycling with baths of 5°C and 55°C, five samples were stored in coffee and the remaining samples in coke. The colour alteration was evaluated in a reflection spectrophotometer before and after thermocycling, and after 1, 3, 24, 48 and 96h of storage in coffee and coke. Data were submitted to anova and Tukey's HSD test (α=0.05). Thermocycling and storage period represented a higher statistically significant influence for the resin liners than for the silicone materials. Coke did not influence the colour stability of the materials during storage. However, the coffee solution generated statistically significant colour alteration in the material Soft Confort. In the comparison between the coffee and coke solutions, there was no statistically significant difference for colour alteration only for the material Dentuflex. The silicone liners presented better colour stability following thermocycling and storage independent of the solution. The coffee solution was a statistically significant factor for colour alteration of the material Soft Confort. © 2010 The Gerodontology Society and John Wiley & Sons A/S.

  10. Experimental Study of Magnetic Field Production and Dielectric Breakdown of Auto-Magnetizing Liners

    Science.gov (United States)

    Shipley, Gabriel; Awe, Thomas; Hutchinson, Trevor; Hutsel, Brian; Slutz, Stephen; Lamppa, Derek

    2017-10-01

    AutoMag liners premagnetize the fuel in MagLIF targets and provide enhanced x-ray diagnostic access and increased current delivery without requiring external field coils. AutoMag liners are composite liners made with discrete metallic helical conduction paths separated by insulating material. First, a low dI/dt ``foot'' current pulse (1 MA in 100 ns) premagnetizes the fuel. Next, a higher dI/dt pulse with larger induced electric field initiates breakdown on the composite liner's; surface, switching the current from helical to axial to implode the liner. Experiments on MYKONOS have tested the premagnetization and breakdown phases of AutoMag and demonstrate axial magnetic fields above 90 Tesla for a 550 kA peak current pulse. Electric fields of 17 MV/m have been generated before breakdown. AutoMag may enhance MagLIF performance by increasing the premagnetization strength significantly above 30 T, thus reducing thermal-conduction losses and mitigating anomalous diffusion of magnetic field out of hotter fuel regions, by, for example, the Nernst thermoelectric effect. This project was funded in part by Sandia's Laboratory Directed Research and Development Program (Projects No. 200169 and 195306).

  11. Self-cleaning liner for halogenated hydrocarbon control in landfill leachate.

    Science.gov (United States)

    He, Shichong; Zhu, Lizhong

    2017-10-26

    Sorptive landfill liners can prevent the migration of the leachate pollutants. However, their sorption ability will decrease over time. A method should be developed to maintain the sorption ability of landfill liners. In this study, we combined cetyltrimethylammonium bromide-bentonite (CTMAB-bentonite) and zero-valent iron (ZVI) to develop a self-cleaning liner that can retain its sorption ability for a long period. Batch experiments and calculation simulations were employed to analyse the sorption ability of this liner material and the ecological risk of halogenated hydrocarbons. The results showed that CTMAB-bentonite could sorb halogenated hydrocarbons well, with saturated sorption capacities (Q m) of 10.2, 14.5, 6.69, 18.5, 29.4, and 49.7 mg·g(-1) for dichloroethane (DCA), trichloroethane (TCA), dichloroethene (DCE), trichloroethylene (TCE), tetrachloroethylene (PCE), and 1,3- dichloropropene (1,3-DCP), respectively. Using the mixture of 0.5 g iron and 0.5 g CTMAB-bentonite could dramatically increase the removal efficiency of DCE, TCE, and PCE. The reaction with ZVI did not change the structure of CTMAB-bentonite and its sorption ability remained consistent. Calculation results suggested that the self-cleaning landfill liner would dramatically decrease the hazard index (HI) of the eluate. However, the humic acid and salt in leachate would cause a reduction in the removal of halogenated hydrocarbons.

  12. Large Engine Technology Program. Task 21: Rich Burn Liner for Near Term Experimental Evaluations

    Science.gov (United States)

    Hautman, D. J.; Padget, F. C.; Kwoka, D.; Siskind, K. S.; Lohmann, R. P.

    2005-01-01

    The objective of the task reported herein, which was conducted as part of the NASA sponsored Large Engine Technology program, was to define and evaluate a near-term rich-zone liner construction based on currently available materials and fabrication processes for a Rich-Quench-Lean combustor. This liner must be capable of operation at the temperatures and pressures of simulated HSCT flight conditions but only needs sufficient durability for limited duration testing in combustor rigs and demonstrator engines in the near future. This must be achieved at realistic cooling airflow rates since the approach must not compromise the emissions, performance, and operability of the test combustors, relative to the product engine goals. The effort was initiated with an analytical screening of three different liner construction concepts. These included a full cylinder metallic liner and one with multiple segments of monolithic ceramic, both of which incorporated convective cooling on the external surface using combustor airflow that bypassed the rich zone. The third approach was a metallic platelet construction with internal convective cooling. These three metal liner/jacket combinations were tested in a modified version of an existing Rich-Quench-Lean combustor rig to obtain data for heat transfer model refinement and durability verification.

  13. Three Dimensional Magneto-Hydrodynamics Simulations of Auto-Magnetizing Imploding Liners for ICF

    Science.gov (United States)

    Woolstrum, Jeff; Jennings, Chris; Shipley, Gabriel; Awe, Thomas; Slutz, Stephen; Jordan, Nicholas; Lau, Yy; Peterson, Kyle; McBride, Ryan

    2017-10-01

    AutoMag is a potential next step in the magnetized liner inertial fusion (MagLIF) program. In standard MagLIF, external coils are used to magnetize deuterium gas inside a metal cylindrical liner, which is imploded by the Z-machine at Sandia National Laboratories. In AutoMag, helical slots are cut into the liner and filled with dielectric insulator to form a solenoid, producing an axial magnetic field from the drive current and removing the need for external field coils. Alternatively with external field coils, AutoMag could produce a field-reversed configuration inside the liner. Recent work at Sandia has found that the breakdown of the dielectric material corresponds to the geometry of the liner/dielectric. We explore this finding in 3D resistive-MHD simulations, modeling geometries relevant to both the 20-MA Z facility, and to the 1-MA MAIZE facility at the University of Michigan. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. DoE's NNSA under contract DE-NA0003525.

  14. A new method for obtaining geometric parameters of a liner

    Science.gov (United States)

    2016-03-30

    of noise abatement methodology is the use of passive acoustic liners integrated in the engine nacelle inlets and aft-fan ducts. The ability to...parameters of a liner S Qiu 1 1 AVIC Commercial Aircraft Engine CO.LTD, 3998 South Lian Hua Road, Shanghai, China Abstract A...accurate determinations of acoustic liner geometric parameters. In this study, the geometry design of a perforated plate liner is discussed. The

  15. Internal Charging

    Science.gov (United States)

    Minow, Joseph I.

    2014-01-01

    (1) High energy (>100keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors; (2) Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate; (3) Accumulating charge density generates electric fields in excess of material breakdown strenght resulting in electrostatic discharge; and (4) System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise.

  16. Development of a Tunable Electromechanical Acoustic Liner for Engine Nacelles

    Science.gov (United States)

    Liu, Fei; Sheplak, Mark; Cattafesta, Louis N., III

    2007-01-01

    This report describes the development of a tunable electromechanical Helmholtz resonator (EMHR) for engine nacelles using smart materials technology. This effort addresses both near-term and long-term goals for tunable electromechanical acoustic liner technology for the Quiet Aircraft Technology (QAT) Program. Analytical models, i.e. lumped element model (LEM) and transfer matrix (TM) representation of the EMHR, have been developed to predict the acoustic behavior of the EMHR. The models have been implemented in a MATLAB program and used to compare with measurement results. Moreover, the prediction performance of models is further improved with the aid of parameter extraction of the piezoelectric backplate. The EMHR has been experimentally investigated using standard two-microphone method (TMM). The measurement results validated both the LEM and TM models of the EMHR. Good agreement between predicted and measured impedance is obtained. Short- and open circuit loads define the limits of the tuning range using resistive and capacitive loads. There is approximately a 9% tuning limit under these conditions for the non-optimized resonator configuration studied. Inductive shunt loads result in a 3 degree-of-freedom DOF) system and an enhanced tuning range of over 20% that is not restricted by the short- and open-circuit limits. Damping coefficient ' measurements for piezoelectric backplates in a vacuum chamber are also performed and indicate that the damping is dominated by the structural damping losses, such as compliant boundaries, and other intrinsic loss mechanisms. Based on models of the EMHR, a Pareto optimization design of the EMHR has been performed for the EMHR with non-inductive loads. The EMHR with non-inductive loads is a 2DOF system with two resonant fiequencies. The tuning ranges of the two resonant frequencies of the EMHR with non-inductive loads cannot be optimized simultaneously; a trade-off (i.e., a Pareto solution) must be reached. The Pareto solution

  17. Acoustic Panel Liner for an Engine Nacelle

    Science.gov (United States)

    Jones, Michael G. (Inventor); Nark, Douglas M. (Inventor); Ayle, Earl (Inventor); Ichihashi, Fumitaka (Inventor)

    2016-01-01

    An acoustic panel liner includes a face sheet, back plate, and liner core positioned there-between, which may be used in an engine nacelle. Elongated chambers contain variable amounts of septa at a calibrated depth or depths. The septa may have varying DC flow resistance. The chambers may have a hexagonal or other polygonal cross sections. The septa, such as mesh caps, may be bonded to an inner wall of a corresponding chamber. The insertion depths may be the same or different. If different, the pattern of distribution of the depths may be randomized.

  18. Time constrained liner shipping network design

    DEFF Research Database (Denmark)

    Karsten, Christian Vad; Brouer, Berit Dangaard; Desaulniers, Guy

    2017-01-01

    We present a mathematical model and a solution method for the liner shipping network design problem. The model takes into account coordination between vessels and transit time restrictions on the cargo flow. The solution method is an improvement heuristic, where an integer program is solved...... iteratively to perform moves in a large neighborhood search. Our improvement heuristic is applicable as a real-time decision support tool for a liner shipping company. It can be used to find improvements to the network when evaluating changes in operating conditions or testing different scenarios...

  19. Burner liner thermal/structural load modelling

    Science.gov (United States)

    Maffeo, R. J.

    1984-01-01

    A serious problem exists interfacing the output temperatures and temperature gradients from either the heat transfer codes or engine tests with the input to stress analysis codes. A thermal load transfer code was developed and was used in conjunction with a three-dimensional model of a combustor liner for verification. The 3D heat transfer and stress analysis models of combustor liners and turbine blades were used to validate the mapped temperature produced by the transfer module. Verification cases were made for both finite element and finite difference heat transfer codes. A user manual for the code was written and is available.

  20. 49 CFR 193.2187 - Nonmetallic membrane liner.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Nonmetallic membrane liner. 193.2187 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Lng Storage Tanks § 193.2187 Nonmetallic membrane liner. A flammable nonmetallic membrane liner may not be used as an inner container in a storage tank...

  1. Electric fields, weighting fields, signals and charge diffusion in detectors including resistive materials

    CERN Document Server

    Riegler, Werner

    2016-11-07

    In this report we discuss static and time dependent electric fields in detector geometries with an arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green's functions i.e. the field of a point charge, as well as the weighting fields for readout pads and readout strips in these geometries. The effect of 'bulk' resistivity on electric fields and signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the effect to be described by the diffusion equation is discussed. We apply the results to derive fields and induced signals in Resistive Plate Chambers, Micromega detectors including resistive layers for charge spreading and discharge protection as well as detectors using resistive charge division readout like the MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase crosstalk between readout electrodes.

  2. Quantum-trajectory analysis for charge transfer in solid materials induced by strong laser fields

    Science.gov (United States)

    Jiang, Shicheng; Yu, Chao; Yuan, Guanglu; Wu, Tong; Wang, Ziwen; Lu, Ruifeng

    2017-07-01

    We investigate the dependence of charge transfer on the intensity of driving laser field when SiO2 crystal is irradiated by an 800 nm laser. It is surprising that the direction of charge transfer undergoes a sudden reversal when the driving laser intensity exceeds critical values with different carrier-envelope phases. By applying quantum-trajectory analysis, we find that the Bloch oscillation plays an important role in charge transfer in solids. Also, we study the interaction of a strong laser with gallium nitride (GaN), which is widely used in optoelectronics. A pump-probe scheme is applied to control the quantum trajectories of the electrons in the conduction band. The signal of charge transfer is controlled successfully by means of a theoretically proposed approach.

  3. Nanoscale measurement of Nernst effect in two-dimensional charge density wave material 1T-TaS2

    Science.gov (United States)

    Wu, Stephen M.; Luican-Mayer, Adina; Bhattacharya, Anand

    2017-11-01

    Advances in nanoscale material characterization on two-dimensional van der Waals layered materials primarily involve their optical and electronic properties. The thermal properties of these materials are harder to access due to the difficulty of thermal measurements at the nanoscale. In this work, we create a nanoscale magnetothermal device platform to access the basic out-of-plane magnetothermal transport properties of ultrathin van der Waals materials. Specifically, the Nernst effect in the charge density wave transition metal dichalcogenide 1T-TaS2 is examined on nano-thin flakes in a patterned device structure. It is revealed that near the commensurate charge density wave (CCDW) to nearly commensurate charge density wave (NCCDW) phase transition, the polarity of the Nernst effect changes. Since the Nernst effect is especially sensitive to changes in the Fermi surface, this suggests that large changes are occurring in the out-of-plane electronic structure of 1T-TaS2, which are otherwise unresolved in just in-plane electronic transport measurements. This may signal a coherent evolution of out-of-plane stacking in the CCDW → NCCDW transition.

  4. Sorption behavior of charged and neutral polar organic compounds on solid phase extraction materials: which functional group governs sorption?

    Science.gov (United States)

    Bäuerlein, Patrick S; Mansell, Jodie E; Ter Laak, Thomas L; de Voogt, Pim

    2012-01-17

    Numerous polar anthropogenic organic chemicals have been found in the aqueous environment. Solid phase extraction (SPE) has been applied for the isolation of these from aqueous matrices, employing various materials. Nevertheless, little is known about the influence of functional groups on the sorption of the solutes onto these materials. Therefore, the sorption interactions of (charged) polar organic solutes to neutral (HLB), cation-exchanging (MCX, WCX), and anion-exchanging (MAX, WAX) OASIS polymers have been studied. For neutral solutes HLB has the highest capacity and affinity. Van der Waals interaction, rather than hydrogen bonding, appears to be the predominant factor determining sorption. For charged molecules, MCX and MAX show by far the highest affinity and capacity. Adsorption is already efficient at low concentrations and the maximum sorption capacity equals the amount of charged functional groups on the material. The results from this study allow semiquantitative predictions if a solute will adsorb on one of the OASIS materials and which functional groups govern adsorption.

  5. Nanoscale Measurement of Nernst Effect in Two-dimensional Charge Density Wave Material 1T-TaS2

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M.; Luican-Mayer, Adina; Bhattacharya, Anand

    2017-11-27

    Advances in nanoscale material characterization on two-dimensional van der Waals layered materials primarily involve their optical and electronic properties. The thermal properties of these materials are harder to access due to the difficulty of thermal measurements at the nanoscale. In this work, we create a nanoscale magnetothermal device platform to access the basic out-of-plane magnetothermal transport properties of ultrathin van der Waals materials. Specifically, the Nernst effect in the charge density wave transition metal dichalcogenide 1T-TaS2 is examined on nano-thin flakes in a patterned device structure. It is revealed that near the commensurate charge density wave (CCDW) to nearly commensurate charge density wave (NCCDW) phase transition, the polarity of the Nernst effect changes. Since the Nernst effect is especially sensitive to changes in the Fermi surface, this suggests that large changes are occurring in the out-of-plane electronic structure of 1T-TaS2, which are otherwise unresolved in just in-plane electronic transport measurements. This may signal a coherent evolution of out-of-plane stacking in the CCDW! NCCDW transition.

  6. Charge injection driven switching between ferromagnetism and antiferromagnetism in transitional metal-doped MoS2 materials

    Science.gov (United States)

    Song, Changsheng; Pan, Jiaqi; Wu, Xiaoping; Cui, Can; Li, Chaorong; Wang, Jiqing

    2017-11-01

    Using first-principles calculations, we report on charge injection induced switching between ferromagnetic (FM) and antiferromagnetic (AFM) in a 2H-MoS2 monolayer. MoS2 monolayers doped with different transition metals (TM)—Fe and Mn—initially demonstrate FM and AFM magnetic ground state, respectively. Once the injected charge approaches 1.0 e/unit, the systems respectively tend to AFM and FM states, due to the modulation effect of the exchange splitting of spins via injected charge. The interesting switch between FM and AFM can be explained by the competition between FM double-exchange and AFM super-exchange interaction. In contrast, the MoS2 /WS2 heterojunction, because of the direct bonding between dopant TM atoms, remains in the AFM state even under charge injection. These findings point toward the possible development of spintronic switch devices using charge injection in TM doped MoS2 materials, which could be pivotal to information storage and spintronic applications.

  7. Damage evolution by using the near-tip fields of a crack in gas turbine liners

    NARCIS (Netherlands)

    Altunlu, A.C.; van der Hoogt, Peter; de Boer, Andries

    2010-01-01

    A residual lifetime prediction study has been performed on a combustion liner metallic material exposed to elevated temperatures by simulating the evolution of plastic work fields at a crack tip under monotonically loading. The strain and stress distribution has been computed by finite element

  8. Results From a Parametric Acoustic Liner Experiment Using P and W GEN1 HSR Mixer/Ejector Model

    Science.gov (United States)

    Boyd, Kathleen C.; Wolter, John D.

    2004-01-01

    This report documents the results of an acoustic liner test performed using a Gen 1 HSR mixer/ejector model installed on the Jet Exit Rig in the Nozzle Acoustic Test Rig in the Aeroacoustic Propulsion Laboratory or NASA Glenn Research Center. Acoustic liner effectiveness and single-component thrust performance results are discussed. Results from 26 different types of single-degree-of-freedom and bulk material liners are compared with each other and against a hardwall baseline. Design parameters involving all aspects of the facesheet, the backing cavity, and the type of bulk material were varied in order to study the effects of these design features on the acoustic impedance, acoustic effectiveness and on nozzle thrust performance. Overall, the bulk absorber liners are more effective at reducing the jet noise than the single-degree-of-freedom liners. Many of the design parameters had little effect on acoustic effectiveness, such as facesheeet hole diameter and honeycomb cell size. A relatively large variation in the impedance of the bulk absorber in a bulk liner is required to have a significant impact on the noise reduction. The thrust results exhibit a number of consistent trends, supporting the validity of this new addition to the facility. In general, the thrust results indicate that thrust performance benefits from increased facesheet thickness and decreased facesheet porosity.

  9. FIREBALL: Fusion Ignition Rocket Engine with Ballistic Ablative Lithium Liner

    Science.gov (United States)

    Martin, Adam K.; Eskridge, Richard H.; Fimognari, Peter J.; Lee, Michael H.

    2006-01-01

    Thermo-nuclear fusion may be the key to a high Isp, high specific power propulsion system. In a fusion system energy is liberated within, and imparted directly to, the propellant. In principle, this can overcome the performance limitations inherent in systems that require thermal power transfer across a material boundary, and/or multiple power conversion stages (NTR, NEP). A thermo-nuclear propulsion system, which attempts to overcome some of the problems inherent in the Orion concept, is described. A dense FRC plasmoid is accelerated to high velocity (in excess of 500 km/s) and is compressed into a detached liner (pulse unit). The kinetic energy of the FRC is converted into thermal and magnetic-field energy, igniting a fusion burn in the magnetically confined plasma. The fusion reaction serves as an ignition source for the liner, which is made out of detonable materials. The energy liberated in this process is converted to thrust by a pusher-plate, as in the classic Orion concept. However with this concept, the vehicle does not carry a magazine of autonomous pulse-units. By accelerating a second, heavier FRC, which acts as a piston, right behind the first one, the velocity required to initiate the fusion burn is greatly reduced.

  10. Efficacy of a Phosphate-Charged Soil Material in Supplying Phosphate for Plant Growth in Soilless Root Media

    Directory of Open Access Journals (Sweden)

    Young-Mi Oh

    2016-01-01

    Full Text Available A soil material high in crystalline Fe hydrous oxides and noncrystalline Al hydrous oxides collected from the Bw horizon of a Hemcross soil containing allophane from the state of Oregon was charged with phosphate-P at rates of 0, 2.2, and 6.5 mg·g−1, added to a soilless root medium at 5% and 10% by volume, and evaluated for its potential to supply phosphate at a low, stable concentration during 14 weeks of tomato (Solanum esculentum L. seedling growth. Incorporation of the soil material improved pH stability, whether it was charged with phosphate or not. Bulk solution phosphate-P concentrations in the range of 0.13 to 0.34 mg·dm−3 were associated with P deficiency. The only treatment that sustained an adequate bulk solution concentration of phosphate-P above 0.34 mg·dm−3 for the 14 weeks of testing contained 10% soil material charged with 6.5 mg·g−1 P, but initial dissolved P concentrations were too high (>5 mg·g−1 phosphate-P from the standpoint of phosphate leaching. The treatment amended with 10% soil material charged with 2.2 mg·g−1 P maintained phosphate-P within an acceptable range of 0.4 to 2.3 mg·dm−3 for 48 d in a medium receiving no postplant phosphate fertilization.

  11. Methods for strategic liner shipping network design

    NARCIS (Netherlands)

    J. Mulder (Judith); R. Dekker (Rommert)

    2014-01-01

    textabstractIn this paper the combined fleet-design, ship-scheduling and cargo-routing problem with limited availability of ships in liner shipping is considered. A composite solution approach is proposed in which the ports are first aggregated into port clusters to reduce the problem size. When the

  12. GRCop-84 Development for Combustion Chamber Liners

    Science.gov (United States)

    Ellis, David; Nathal, Michael; Yun, Hee Man; Lerch, Bradley; Greenbauer-Seng, Leslie; Thomas-Ogbuji, Linus; Holmes, Richard

    2000-01-01

    The development, test, and thermophysical & mechanical properties of a GRCop-84 alloy for combustion chamber liners is discussed. Topics discussed include: History of GRCop-84 development, GRCop-84 thermal expansion, thermal conductivity of GRCop-84, yield strength of GRCop-84, GRCop-84 creep lives, GrCop-84 low cycle fatigue (LCF) lives, and hot fire testing of GRCop-84 spool pieces.

  13. GMS measurement of B1 liner deformation

    Energy Technology Data Exchange (ETDEWEB)

    Vonka, V.

    1992-11-01

    The GMS system is successfully used to measure gaps between the liner tube and the disc in the B1 hole. GMS was designed for evaluation of minimum tube diameter. In this report measured results are used to evaluate the tube deformation as a function of salt pressure acting on the liner tube from outside. The salt pressure corresponding to the minimum ovality is compared with the pressure derived from the tube compression in the report ECN-I--92-044. A good agreement is found between both results. A significant increase of the minimum ovality in time is observed. This fact suggests that a subtle deformation of the B1 liner tube has built up in the course of time. The validity of this statement is not influenced by the uncertainty in the salt pressure, only by the measurement accuracy. A significant minimum ovality simply means that there is no circular liner tube solution for the measured gap dimensions. (author). 2 refs., 50 figs., 37 tabs.

  14. Charge Transfer and Triplet States in High Efficiency OPV Materials and Devices

    Science.gov (United States)

    Dyakonov, Vladimir

    2013-03-01

    The advantage of using polymers and molecules in electronic devices, such as light-emitting diodes (LED), field-effect transistors (FET) and, more recently, solar cells (SC) is justified by the unique combination of high device performance and processing of the semiconductors used. Power conversion efficiency of nanostructured polymer SC is in the range of 10% on lab scale, making them ready for up-scaling. Efficient charge carrier generation and recombination in SC are strongly related to dissociation of the primary singlet excitons. The dissociation (or charge transfer) process should be very efficient in photovoltaics. The mechanisms governing charge carrier generation, recombination and transport in SC based on the so-called bulk-heterojunctions, i.e. blends of two or more semiconductors with different electron affinities, appear to be very complex, as they imply the presence of the intermediate excited states, neutral and charged ones. Charge transfer states, or polaron pairs, are the intermediate states between free electrons/holes and strongly bound excitons. Interestingly, the mostly efficient OLEDs to date are based on the so-called triplet emitters, which utilize the triplet-triplet annihilation process. In SC, recent investigations indicated that on illumination of the device active layer, not only mobile charges but also triplet states were formed. With respect to triplets, it is unclear how these excited states are generated, via inter-system crossing or via back transfer of the electron from acceptor to donor. Triplet formation may be considered as charge carrier loss channel; however, the fusion of two triplets may lead to a formation of singlet excitons instead. In such case, a generation of charges by utilizing of the so far unused photons will be possible. The fundamental understanding of the processes involving the charge transfer and triplet states and their relation to nanoscale morphology and/or energetics of blends is essential for the

  15. Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations.

    Science.gov (United States)

    Bai, Song; Jiang, Jun; Zhang, Qun; Xiong, Yujie

    2015-05-21

    Charge kinetics is highly critical in determining the quantum efficiency of solar-to-chemical conversion in photocatalysis, and this includes, but is not limited to, the separation of photoexcited electron-hole pairs, utilization of plasmonic hot carriers and delivery of photo-induced charges to reaction sites, as well as activation of reactants by energized charges. In this review, we highlight the recent progress on probing and steering charge kinetics toward designing highly efficient photocatalysts and elucidate the fundamentals behind the combinative use of controlled synthesis, characterization techniques (with a focus on spectroscopic characterizations) and theoretical simulations in photocatalysis studies. We first introduce the principles of various processes associated with charge kinetics that account for or may affect photocatalysis, from which a set of parameters that are critical to photocatalyst design can be summarized. We then outline the design rules for photocatalyst structures and their corresponding synthetic approaches. The implementation of characterization techniques and theoretical simulations in different steps of photocatalysis, together with the associated fundamentals and working mechanisms, are also presented. Finally, we discuss the challenges and opportunities for photocatalysis research at this unique intersection as well as the potential impact on other research fields.

  16. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    Science.gov (United States)

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. © The Author(s) 2014.

  17. Inductively Driven, 3D Liner Compression of a Magnetized Plasma to Megabar Energy Densities

    Energy Technology Data Exchange (ETDEWEB)

    Slough, John [MSNW LLC, Redmond, WA (United States)

    2015-02-01

    modules. The additional energy and switching capability proposed will thus provide for optimal utilization of the liner energy. The following tasks were outlined for the three year effort: (1) Design and assemble the foil liner compression test structure and chamber including the compression bank and test foils [Year 1]. (2) Perform foil liner compression experiments and obtain performance data over a range on liner dimensions and bank parameters [Year 2]. (3) Carry out compression experiments of the FRC plasma to Megagauss fields and measure key fusion parameters [Year 3]. (4) Develop numerical codes and analyze experimental results, and determine the physics and scaling for future work [Year 1-3]. The principle task of the project was to design and assemble the foil liner FRC formation chamber, the full compression test structure and chamber including the compression bank. This task was completed successfully. The second task was to test foils in the test facility constructed in year one and characterize the performance obtained from liner compression. These experimental measurements were then compared with analytical predictions, and numerical code results. The liner testing was completed and compared with both the analytical results as well as the code work performed with the 3D structural dynamics package of ANSYS Metaphysics®. This code is capable of modeling the dynamic behavior of materials well into the non-linear regime (e.g. a bullet hit plate glass). The liner dynamic behavior was found to be remarkably close to that predicted by the 3D structural dynamics results. Incorporating a code that can also include the magnetics and plasma physics has also made significant progress at the UW. The remaining test bed construction and assembly task is was completed, and the FRC formation and merging experiments were carried out as planned. The liner compression of the FRC to Megagauss fields was not performed due to not obtaining a sufficiently long lived FRC during the

  18. On the relation between local and charge-transfer exciton bindingenergies in organic photovoltaic materials

    NARCIS (Netherlands)

    de Gier, Hilde Dorothea; Braam, Henderika; Havenith, Remco

    2015-01-01

    In organic photovoltaic devices two types of excitons can be generated for which different binding energies can be defined: the binding energy of the local exciton generated immediately after light absorption on the polymer and the binding energy of the charge-transfer exciton generated through the

  19. Interaction of low-energy highly charged ions with matter; Wechselwirkung niederenergetischer hochgeladener Ionen mit Materie

    Energy Technology Data Exchange (ETDEWEB)

    Ginzel, Rainer

    2010-06-09

    The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)

  20. Grafting of poly(2-methacryloyloxyethyl phosphorylcholine) on polyethylene liner in artificial hip joints reduces production of wear particles.

    Science.gov (United States)

    Moro, Toru; Kyomoto, Masayuki; Ishihara, Kazuhiko; Saiga, Kenichi; Hashimoto, Masami; Tanaka, Sakae; Ito, Hideya; Tanaka, Takeyuki; Oshima, Hirofumi; Kawaguchi, Hiroshi; Takatori, Yoshio

    2014-03-01

    Despite improvements in the techniques, materials, and fixation of total hip arthroplasty, periprosthetic osteolysis, a complication that arises from this clinical procedure and causes aseptic loosening, is considered to be a major clinical problem associated with total hip arthroplasty. With the objective of reducing the production of wear particles and eliminating periprosthetic osteolysis, we prepared a novel hip polyethylene (PE) liner whose surface graft was made of a biocompatible phospholipid polymer-poly(2-methacryloyloxyethyl phosphorylcholine (MPC)). This study investigated the wear resistance of the poly(MPC)-grafted cross-linked PE (CLPE; MPC-CLPE) liner during 15×10(6) cycles of loading in a hip joint simulator. The gravimetric analysis showed that the wear of the acetabular liner was dramatically suppressed in the MPC-CLPE liner, as compared to that in the non-treated CLPE liner. Analyses of the MPC-CLPE liner surface revealed that it suffered from no or very little wear even after the simulator test, whereas the CLPE liners suffered from substantial wears. The scanning electron microscope (SEM) analysis of the wear particles isolated from the lubricants showed that poly(MPC) grafting dramatically decreased the total number, area, and volume of the wear particles. However, there was no significant difference in the particle size distributions, and, in particular, from the SEM image, it was observed that particles with diameters less than 0.50μm were present in the range of the highest frequency. In addition, there were no significant differences in the particle size descriptors and particle shape descriptors. The results obtained in this study show that poly(MPC) grafting markedly reduces the production of wear particles from CLPE liners, without affecting the size of the particles. These results suggest that poly(MPC) grafting is a promising technique for increasing the longevity of artificial hip joints. Copyright © 2013 Elsevier Ltd. All rights

  1. The impact of different types of textile liners used in protective footwear on the subjective sensations of firefighters.

    Science.gov (United States)

    Irzmańska, Emilia

    2015-03-01

    The paper presents ergonomic evaluation of footwear used with three types of textile liners differing in terms of design and material composition. Two novel textile composite liners with enhanced hygienic properties were compared with a standard liner used in firefighter boots. The study involved 45 healthy firefighters from fire and rescue units who wore protective footwear with one of the three types of liners. The study was conducted in a laboratory under a normal atmosphere. The ergonomic properties of the protective footwear and liners were evaluated according to the standard EN ISO 20344:2012 as well as using an additional questionnaire concerning the thermal and moisture sensations experienced while wearing the footwear. The study was conducted on a much larger group of subjects (45) than that required by the ISO standard (3) to increase the reliability of subjective evaluations. Some statistically significant differences were found between the different types of textile liners used in firefighter boots. It was confirmed that the ergonomic properties of protective footwear worn in the workplace may be improved by the use of appropriate textile components. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  2. Compacted sand-bentonite mixtures for hydraulic containment liners

    Directory of Open Access Journals (Sweden)

    Tanit Chalermyanont

    2005-03-01

    Full Text Available Sand is a pervious material in nature. Mixing sand with appropriate bentonite contents yields sandbentonite mixtures having low hydraulic conductivity that can be used as hydraulic containment liners. In this study, compaction tests were conducted to determine the optimum water content and maximum dry unit weight of compacted sand-bentonite mixtures. Direct shear and hydraulic conductivity tests were conducted to assess the shear strength parameters and hydraulic conductivity of compacted sand-bentonite mixtures. Test results indicate that hydraulic conductivity of mixtures decreases about four orders of magnitude when mixed with 5% bentonite or more. Mixing sand with bentonite, however, results in a decreased shear strength of the mixtures due to the swell of bentonite when soaked with water. For the mixtures with bentonite content varying from 0 to 9%, the hydraulic conductivity of the mixtures decreases from 3.60×10-5 to 4.13×10-9 cm/s; while the corresponding friction angle and swell ranges from 49 to 22 degrees and 0.85 to 10.32%, respectively. In addition, the compacted sand-bentonite mixture with 3% bentonite content could achieve low hydraulic conductivity of 1×10-7 cm/s which is a regular requirement for hydraulic containment liners, while still having relatively high shear strength.

  3. X-Ray variability in LINERs

    Science.gov (United States)

    Hernández-García, L.; González-Martín, O.; Masegosa, J.; Márquez, I.

    2013-05-01

    Active galactic nuclei (AGN) are powered by energetic phenomena which cannot be attributed to stars. Among AGN, several objects can be described by the unified model (Antonucci 1993; Urry & Padovani 1995). However, several subclasses of objects that cannot be accommodated into this scheme, as is the case of LINERs (low ionisation narrow emission line regions). Variability across the whole electromagnetic spectrum is one of the properties that characterized AGNs. Therefore, searching for variability in LINERs could unequivocally demonstrate the presence of a non-thermal source. Also, X-rays is one of the best ways to search for AGN signature. In this work (which is part of a larger study) we add more evidence about the X-ray variability in LINERs and investigate its origin. We study two LINER nuclei; NGC 1052 (type 2) and NGC 4278 (type 1). The data consist on different observations in different epochs (timescale of years), taken from XMM-Newton and Chandra archives, respectively. To search for variability we try to fit all the spectra with the same model using XSPEC; if we can fit all the spectra with the same parameters, it is supposed that the object is non-variable, whereas if we cannot fit them properly, it will be variable. In the last case we need to let one or more parameters to vary in the model, so it may provide clues to understand the nature of this variability. For NGC 1052 we fit a model containing a thermal component plus two power laws. This results in a variability due to changes in the column density and the slope of the power law, both at hard energies. This scenario is consistent with the variability understood as variations in the clouds intersecting the line of sight of the observer (see Rissalitti et al. (2007, 2010)), and is also compatible with the framework of the clumpy torus model (Elitzur 2006). For NGC 4278 the model contains a thermal component plus a single power law. The spectral fitting results in variations of the slope and

  4. Durability, Performance, and Emission of Diesel Engines Using Carbon Fiber Piston and Liner

    Science.gov (United States)

    Afify, E. M.; Roberts, W. L.

    1999-01-01

    This report summarizes the research conducted by NC State University in investigating the durability, performance and emission of a carbon fiber piston and liner in our single cylinder research Diesel engine. Both the piston and liner were supplied to NC State University by NASA LaRC and manufactured by C-CAT under a separate contract to NASA LaRC. The carbon-carbon material used to manufacture the piston and liner has significantly lower thermal conductivity, coefficient of thermal expansion, and superior strength characteristics at elevated temperatures when compared to conventional piston materials such as aluminum. The results of the carbon-carbon fiber piston testing were compared to a baseline configuration, which used a conventional aluminum piston in a steel liner. The parameters measured were the brake specific fuel consumption, ignition delay, frictional horsepower, volumetric efficiency, and durability characteristics of the two pistons. Testing was performed using a naturally aspirated Labeco Direct Injection single cylinder diesel engine. Two test cases were performed over a range of loads and speeds. The fixed test condition between the aluminum and carbon-carbon piston configurations was the brake mean effective pressure. The measured data was the fuel consumption rate, volumetric efficiency, load, speed, cylinder pressure, needle lift, and exhaust gas temperature. The cylinder pressure, and fuel consumption, exhaust gas temperature, and needle lift were recorded using a National Instruments DAQ board and a PC. All test cases used Diesel no. 2 for fuel.

  5. Classification of octet AB-type binary compounds using dynamical charges: A materials informatics perspective.

    Science.gov (United States)

    Pilania, G; Gubernatis, J E; Lookman, T

    2015-12-03

    The role of dynamical (or Born effective) charges in classification of octet AB-type binary compounds between four-fold (zincblende/wurtzite crystal structures) and six-fold (rocksalt crystal structure) coordinated systems is discussed. We show that the difference in the dynamical charges of the fourfold and sixfold coordinated structures, in combination with Harrison's polarity, serves as an excellent feature to classify the coordination of 82 sp-bonded binary octet compounds. We use a support vector machine classifier to estimate the average classification accuracy and the associated variance in our model where a decision boundary is learned in a supervised manner. Finally, we compare the out-of-sample classification accuracy achieved by our feature pair with those reported previously.

  6. Classification of octet AB-type binary compounds using dynamical charges: A materials informatics perspective

    Science.gov (United States)

    Pilania, G.; Gubernatis, J. E.; Lookman, T.

    2015-12-01

    The role of dynamical (or Born effective) charges in classification of octet AB-type binary compounds between four-fold (zincblende/wurtzite crystal structures) and six-fold (rocksalt crystal structure) coordinated systems is discussed. We show that the difference in the dynamical charges of the fourfold and sixfold coordinated structures, in combination with Harrison’s polarity, serves as an excellent feature to classify the coordination of 82 sp-bonded binary octet compounds. We use a support vector machine classifier to estimate the average classification accuracy and the associated variance in our model where a decision boundary is learned in a supervised manner. Finally, we compare the out-of-sample classification accuracy achieved by our feature pair with those reported previously.

  7. Time-domain pumping a quantum-critical charge density wave ordered material

    Science.gov (United States)

    Matveev, O. P.; Shvaika, A. M.; Devereaux, T. P.; Freericks, J. K.

    2016-09-01

    We determine the exact time-resolved photoemission spectroscopy for a nesting driven charge density wave (described by the spinless Falicov-Kimball model within dynamical mean-field theory). The pump-probe experiment involves two light pulses: the first is an ultrashort intense pump pulse that excites the system into nonequilibrium, and the second is a lower amplitude, higher frequency probe pulse that photoexcites electrons. We examine three different cases: the strongly correlated metal, the quantum-critical charge density wave, and the critical Mott insulator. Our results show that the quantum critical charge density wave has an ultraefficient relaxation channel that allows electrons to be de-excited during the pump pulse, resulting in little net excitation. In contrast, the metal and the Mott insulator show excitations that are closer to what one expects from these systems. In addition, the pump field produces spectral band narrowing, peak sharpening, and a spectral gap reduction, all of which rapidly return to their field free values after the pump is over.

  8. Development of 1D Liner Compression Code for IDL

    Science.gov (United States)

    Shimazu, Akihisa; Slough, John; Pancotti, Anthony

    2015-11-01

    A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.

  9. Optimization of cylinder liner plasma spraying mode

    Science.gov (United States)

    Timokhova, O. M.; Burmistrova, O. N.; Sirina, E. A.

    2017-10-01

    At present one of the most promising methods to remanufacture worn-out machine parts is plasma spraying. The paper describes the selection of the optimum plasma spraying technique to coat the worn-out wall surface of the diesel engine cylinder liners. All the data have been MathCad processed and the regression models equivalent to the algoristic-type model of plasma spraying have been developed. The experiments have resulted in achieving the optimization parameters, the mean value of which is presented in the paper. The given plasma spraying mode allows one not only to remanufacture the worn-out wall surface of the diesel engine cylinder liners but also to obtain the best coating properties.

  10. Writing and Music: Album Liner Notes

    Directory of Open Access Journals (Sweden)

    Dean Leonard Biron

    2011-01-01

    Full Text Available A deceptive aspect of the ‘writing about music is like dancing about architecture’ cliché is the function of the preposition ‘about’. Literature and music, dance and architecture, painting and film – all are discrete aesthetic forms that nonetheless simultaneously feed off and provide nourishment for each other as part of art’s perpetual drive toward diversity and innovation. Nowhere is the aptness of the association between writing and music more obvious than in the phenomenon of album liner notes. Rather than merely an attempt at describing or translating musical experience, liner notes contribute to the dialogue between composer and listener and are a significant part of the culture of contemporary music.

  11. Charge-plasma based dual-material and gate-stacked architecture of junctionless transistor for enhanced analog performance

    Science.gov (United States)

    Amin, S. Intekhab; Sarin, R. K.

    2015-12-01

    Charge plasma based doping-less dual material double gate (DL-DMDG) junctionless transistor (JLT) is proposed. This paper also demonstrate the potential impact of gate stacking (GS) (high-k + Sio2) on DL-DMDG (DL-GSDMDG) JLT device. The efficient charge plasma is created in an intrinsic silicon film to form n + source/drain (S/D) by selecting proper work function of S/D electrode which helps to minimize threshold voltage fluctuation that occurs in a heavily doped JLT device. The analog performance parameters are analyzed for both the device structures. Results are also compared with conventional dual material double gate (DMDG) and gate stacked dual material double gate (GSDMDG) JLT devices. A DL-DMDG JLT device shows improved early voltage (VEA), intrinsic gain (AV = gm/gDS) and reduced output conductance (gDS) as compared to conventional DMDG and GSDMDG JLT devices. These values are further improved for DL-GSDMDG JLT. The effect of control gate length (L1) for a fixed gate length (L = L1+L2) are also analyzed.

  12. Modeling of the charge-state separation at ITEP experimental facility for material science based on a Bernas ion source.

    Science.gov (United States)

    Barminova, H Y; Saratovskyh, M S

    2016-02-01

    The experiment automation system is supposed to be developed for experimental facility for material science at ITEP, based on a Bernas ion source. The program CAMFT is assumed to be involved into the program of the experiment automation. CAMFT is developed to simulate the intense charged particle bunch motion in the external magnetic fields with arbitrary geometry by means of the accurate solution of the particle motion equation. Program allows the consideration of the bunch intensity up to 10(10) ppb. Preliminary calculations are performed at ITEP supercomputer. The results of the simulation of the beam pre-acceleration and following turn in magnetic field are presented for different initial conditions.

  13. Evaluation of the differential capacitance for ferroelectric materials using either charge-based or energy-based expressions

    Directory of Open Access Journals (Sweden)

    C. M. Krowne

    2014-07-01

    Full Text Available Differential capacitance is derived based upon energy, charge or current considerations, and determined when it may go negative or positive. These alternative views of differential capacitances are analyzed, and the relationships between them are shown. Because of recent interest in obtaining negative capacitance for reducing the subthreshold voltage swing in field effect type of devices, using ferroelectric materials characterized by permittivity, these concepts are now of paramount interest to the research community. For completeness, differential capacitance is related to the static capacitance, and conditions when the differential capacitance may go negative in relation to the static capacitance are shown.

  14. Laboratory tests of bentonite stabilization of bottom sediments from a dam reservoir in relation to their usage in municipal solid waste landfill liners

    Directory of Open Access Journals (Sweden)

    Karolina Koś

    2016-09-01

    Full Text Available Geotechnical parameters of bottom sediments from a dam reservoir (Rzeszowski Reservoir, Poland with bentonite addition are presented in the paper. Tests were carried out in the aspect of the possible usage of sediments as a material for soil liners in Municipal Solid Waste Landfill. Mentioned sediments did not fulfilled the permeability and plasticity criteria defined for soils that can be used in liners. The bentonite addition caused, among other things, a decrease in permeability coefficient and increase in plasticity index. Based on the carried out tests it was stated that sediments with 6% addition of bentonite fulfil all requirements and can be used for liners in MSWL.

  15. Analysis of Computational Models of Shaped Charges for Jet Formation and Penetration

    Science.gov (United States)

    Haefner, Jonah; Ferguson, Jim

    2016-11-01

    Shaped charges came into use during the Second World War demonstrating the immense penetration power of explosively formed projectiles and since has become a tool used by nearly every nation in the world. Penetration is critically dependent on how the metal liner is collapsed into a jet. The theory of jet formation has been studied in depth since the late 1940s, based on simple models that neglect the strength and compressibility of the metal liner. Although attempts have been made to improve these models, simplifying assumptions limit the understanding of how the material properties affect the jet formation. With a wide range of material and strength models available for simulation, a validation study was necessary to guide code users in choosing models for shaped charge simulations. Using PAGOSA, a finite-volume Eulerian hydrocode designed to model hypervelocity materials and strong shock waves developed by Los Alamos National Laboratory, and experimental data, we investigated the effects of various equations of state and material strength models on jet formation and penetration of a steel target. Comparing PAGOSA simulations against modern experimental data, we analyzed the strengths and weaknesses of available computational models. LA-UR-16-25639 Los Alamos National Laboratory.

  16. Investigation of piston ring – cylinder liner dry wear using a block-on-ring test rig

    DEFF Research Database (Denmark)

    Bihlet, Uffe; Klit, Peder; Felter, Christian L.

    Characterization of the wear of piston rings and cylinder liner is an important aspect of large two stroke diesel engine design. Two major wear mechanisms exist; corrosive wear and mechanical wear. This paper deals with the most aggressive form of the latter, which is known as scuffing. Different...... material combinations for piston rings and cylinder liners are examined using a block-on-ring test rig. An accelerated wear test run without lubricant is used. Results show that the morphology of cast iron is an important parameter affecting the wear resistance of the material. It is also demonstrated...

  17. Optimization of sand control liner designs for Leismer SAGD demonstration horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J. [C-FER Technologies, Edmonton, AB (Canada); Solvoll, T.A. [StatoilHydro Canada Ltd., Calgary, AB (Canada)

    2009-07-01

    The Leismer demonstration project has been planned as part of the larger Kai Kos Dehseh oilsands project owned by StatoilHydro. The project will consist initially of 23 horizontal well pairs distributed over 4 wellpads. Slotted liner and screen designs for the Leismer steam assisted gravity drainage (SAGD) wells were presented in this study. Finite element analyses were conducted to study the impact of the liner's weight and open flow area (OFA) on system performance. The model considered elastic-plastic material responses and deformations that might occur during SAGD applications. The criteria investigated in this study included collapse capacity; installation load limits; thermal strain loading; and slot or wire-spacing opening and closings. The analysis showed that liner weight and slot density have a significant impact on slotted liner performance. It was concluded that the designs provide optimized open flow areas (OFA), acceptable sand screen functionality, and enhanced structural capacities to sustain installation and operational loads over the lifetime of both producer and injector wells. 4 refs., 15 figs.

  18. Characterization of the Migration of Hop Volatiles into Different Crown Cork Liner Polymers and Can Coatings.

    Science.gov (United States)

    Wietstock, Philip C; Glattfelder, Richard; Garbe, Leif-Alexander; Methner, Frank-Jürgen

    2016-04-06

    Absorption of hop volatiles by crown cork liner polymers and can coatings was investigated in beer during storage. All hop volatiles measured were prone to migrate into the closures, and the absorption kinetics was demonstrated to fit Fick's second law of diffusion well for a plane sheet. The extent and rate of diffusion were significantly dissimilar and were greatly dependent upon the nature of the volatile. Diffusion coefficients ranged from 1.32 × 10(-5) cm(2)/day (limonene) to 0.26 × 10(-5) cm(2)/day (α-humulene). The maximum amounts absorbed into the material at equilibrium were in the following order: limonene > α-humulene > trans-caryophyllene > myrcene ≫ linalool > α-terpineol > geraniol. With the application of low-density polyethylene (LDPE) liners with oxygen-scavenging functionality, oxygen-barrier liners made up from high-density polyethylene (HDPE) or liner polymers from a different manufacturer had no significant effect on the composition of hop volatiles in beers after prolonged storage of 55 days; however, significantly higher amounts of myrcene and limonene were found in the oxygen-barrier-type crown cork, while all other closures behaved similarly. Can coatings were demonstrated to absorb hop volatiles in a similar pattern as crown corks but to a lesser extent. Consequently, significantly higher percentages of myrcene were found in the beers.

  19. Occurrence of LINER galaxies within the galaxy group environment

    Science.gov (United States)

    Coldwell, Georgina V.; Pereyra, Luis; Alonso, Sol; Donoso, Emilio; Duplancic, Fernanda

    2017-05-01

    We study the properties of a sample of 3967 low-ionization nuclear emission-line region (LINER) galaxies selected from SDSS-DR7, with respect to their proximity to galaxy groups. The host galaxies of LINERs have been analysed and compared with a well-defined control sample of 3841 non-LINER galaxies matched in redshift, luminosity, colour, morphology, age and stellar mass content. We find no difference between LINER and control galaxies in terms of the colour and age of stellar population as a function of the virial mass and distance to the geometric centre of the group. However, we find that LINERs are more likely to populate low-density environments in spite of their morphology, which is typical of high-density regions such as rich galaxy clusters. For rich (poor) galaxy groups, the occurrence of LINERs is approximately two times lower (higher) than the occurrence of matched, non-LINER galaxies. Moreover, LINER hosts do not seem to follow the expected morphology-density relation in groups of high virial mass. The high frequency of LINERs in low-density regions could be due to the combination of a sufficient gas reservoir to power the low-ionization emission and/or enhanced galaxy interaction rates benefiting the gas flow towards their central regions.

  20. Variable-Depth Liner Evaluation Using Two NASA Flow Ducts

    Science.gov (United States)

    Jones, M. G.; Nark, D. M.; Watson, W. R.; Howerton, B. M.

    2017-01-01

    Four liners are investigated experimentally via tests in the NASA Langley Grazing Flow Impedance Tube. These include an axially-segmented liner and three liners that use reordering of the chambers. Chamber reordering is shown to have a strong effect on the axial sound pressure level profiles, but a limited effect on the overall attenuation. It is also shown that bent chambers can be used to reduce the liner depth with minimal effects on the attenuation. A numerical study is also conducted to explore the effects of a planar and three higher-order mode sources based on the NASA Langley Curved Duct Test Rig geometry. A four-segment liner is designed using the NASA Langley CDL code with a Python-based optimizer. Five additional liner designs, four with rearrangements of the first liner segments and one with a redistribution of the individual chambers, are evaluated for each of the four sources. The liner configuration affects the sound pressure level profile much more than the attenuation spectra for the planar and first two higher-order mode sources, but has a much larger effect on the SPL profiles and attenuation spectra for the last higher-order mode source. Overall, axially variable-depth liners offer the potential to provide improved fan noise reduction, regardless of whether the axially variable depths are achieved via a distributed array of chambers (depths vary from chamber to chamber) or a group of zones (groups of chambers for which the depth is constant).

  1. Impulse space charge and dielectric characteristics of an Al2O3 nanoparticle suspension in propylene carbonate using various electrode materials

    Directory of Open Access Journals (Sweden)

    Qing Yang

    2016-09-01

    Full Text Available We tested the impulse breakdown voltage of Al2O3 “nano-modified” propylene carbonate between different electrode materials. At any given concentration, the breakdown voltage was highest with stainless steel electrodes, followed by copper, and then aluminum. The space charge and electric field distributions were measured too. Results show that less space charge was injected by the electrodes, and the electric field was less distorted, than in pure propylene carbonate. However, the hoped-for reduction of the influence of the electrodes did not take place. Substantial differences in the space charge density and electric field distortion remained between the different electrode materials.

  2. Comparative Study of Charge Trapping Type SOI-FinFET Flash Memories with Different Blocking Layer Materials

    Directory of Open Access Journals (Sweden)

    Yongxun Liu

    2014-06-01

    Full Text Available The scaled charge trapping (CT type silicon on insulator (SOI FinFET flash memories with different blocking layer materials of Al2O3 and SiO2 have successfully been fabricated, and their electrical characteristics including short-channel effect (SCE immunity, threshold voltage (Vt variability, and the memory characteristics have been comparatively investigated. It was experimentally found that the better SCE immunity and a larger memory window are obtained by introducing a high-k Al2O3 blocking layer instead of a SiO2 blocking layer. It was also confirmed that the variability of Vt before and after one program/erase (P/E cycle is almost independent of the blocking layer materials.

  3. SEM Evaluation of Internal Adaptation of Bases and Liners under Composite Restorations

    Directory of Open Access Journals (Sweden)

    Dimitrios Dionysopoulos

    2014-04-01

    Full Text Available The aim of this study was to evaluate the interfacial microgaps generating between different materials and between materials and dentin after polymerization of the composite restorations, using SEM. Methods: The materials investigated were a composite, an adhesive, a RMGI, and a calcium hydroxide. Thirty third molars were selected and two circular class V cavities (5 mm × 3 mm for each tooth were made. The teeth were randomly assigned into six groups and restored with a combination of the materials. The specimens were subjected to thermocycling and each tooth was sectioned mesiodistally in two halves. Each half was sectioned along the longitudinal axis through the center of the restorations to obtain a slice of 2 mm. The specimens were examined under SEM. The interfaces between the liners, the liners and dentin, and between the liners and the composite were examined for microgaps. Results: The results showed that there was not any significant difference in the mean width of microgaps in the interfaces between Dycal-dentin and Vitrebond-dentin (p>0.05. However, the width of microgaps in the interfaces between dentin-Clearfil Tri-S Bond was significantly smaller (p<0.05. The use of Clearfil Tri-S Bond reduced the possibility of microgap formation between the bonded interface and the materials tested.

  4. Quantification of ultraviolet photon emission from interaction of charged particles in materials of interest in radiation biology research

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Syed Bilal, E-mail: ahmadsb@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); McNeill, Fiona E., E-mail: fmcneill@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Prestwich, William V., E-mail: prestwic@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Byun, Soo Hyun, E-mail: soohyun@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Seymour, Colin, E-mail: seymouc@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Mothersill, Carmel E., E-mail: mothers@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada)

    2014-01-15

    In radiation biology experiments often cells are irradiated using charged particles with the intention that only a specified number of cells are hit by the primary ion track. However, in doing so several other materials such as the cell container and the growth media etc. are also irradiated, and UV radiation emitted from these materials can potentially interact with the cells. We have hypothesized that some “bystander effects” that are thought to be chemically mediated, may be, in fact, a physical effect, where UV is interacting with non-targeted cells. Based upon our hypothesis we quantified the emission of UV from Polypropylene, Mylar, Teflon, and Cellophane which are all commonly used materials in radiation biology experiments. Additionally we measured the NIST standard materials of Oyster tissue and Citrus leaves as these powdered materials are derived from living cells. Protons accelerated up to an energy of 2.2 MeV, in a 3 MV Van de Graff accelerator, were used for irradiation. Beam current was kept to 10 nA, which corresponds to a proton fluence rate of 2.7 × 10{sup 10} protons mm{sup −2} s{sup −1}. All the materials were found to emit light at UV frequencies and intensities that were significant enough to conduct a further investigation for their biological consequences. Mylar and polypropylene are commonly used in radiation induced bystander effect studies and are considered to be non-fluorescent. However our study showed that this is not the case. Significant luminescence observed from the irradiated NIST standard reference materials for Oyster tissue and Citrus leaves verified that the luminescence emission is not restricted only to the polymeric materials that are used to contain cells. It can also occur from ion interactions within the cells as well.

  5. Quantification of ultraviolet photon emission from interaction of charged particles in materials of interest in radiation biology research

    Science.gov (United States)

    Ahmad, Syed Bilal; McNeill, Fiona E.; Prestwich, William V.; Byun, Soo Hyun; Seymour, Colin; Mothersill, Carmel E.

    2014-01-01

    In radiation biology experiments often cells are irradiated using charged particles with the intention that only a specified number of cells are hit by the primary ion track. However, in doing so several other materials such as the cell container and the growth media etc. are also irradiated, and UV radiation emitted from these materials can potentially interact with the cells. We have hypothesized that some "bystander effects" that are thought to be chemically mediated, may be, in fact, a physical effect, where UV is interacting with non-targeted cells. Based upon our hypothesis we quantified the emission of UV from Polypropylene, Mylar, Teflon, and Cellophane which are all commonly used materials in radiation biology experiments. Additionally we measured the NIST standard materials of Oyster tissue and Citrus leaves as these powdered materials are derived from living cells. Protons accelerated up to an energy of 2.2 MeV, in a 3 MV Van de Graff accelerator, were used for irradiation. Beam current was kept to 10 nA, which corresponds to a proton fluence rate of 2.7 × 1010 protons mm-2 s-1. All the materials were found to emit light at UV frequencies and intensities that were significant enough to conduct a further investigation for their biological consequences. Mylar and polypropylene are commonly used in radiation induced bystander effect studies and are considered to be non-fluorescent. However our study showed that this is not the case. Significant luminescence observed from the irradiated NIST standard reference materials for Oyster tissue and Citrus leaves verified that the luminescence emission is not restricted only to the polymeric materials that are used to contain cells. It can also occur from ion interactions within the cells as well.

  6. Charge transfer from and to manganese phthalocyanine: bulk materials and interfaces

    Directory of Open Access Journals (Sweden)

    Florian Rückerl

    2017-08-01

    Full Text Available Manganese phthalocyanine (MnPc is a member of the family of transition-metal phthalocyanines, which combines interesting electronic behavior in the fields of organic and molecular electronics with local magnetic moments. MnPc is characterized by hybrid states between the Mn 3d orbitals and the π orbitals of the ligand very close to the Fermi level. This causes particular physical properties, different from those of the other phthalocyanines, such as a rather small ionization potential, a small band gap and a large electron affinity. These can be exploited to prepare particular compounds and interfaces with appropriate partners, which are characterized by a charge transfer from or to MnPc. We summarize recent spectroscopic and theoretical results that have been achieved in this regard.

  7. Effect of denture cleansers on surface hardness of resilient denture liners at various time intervals- an in vitro study.

    Science.gov (United States)

    Pahuja, Rasleen Kaur; Garg, Sandeep; Bansal, Sanjay; Dang, Rajat Harvinder

    2013-08-01

    This study was aimed to determine the effect of two chemically distinct denture cleansers and water on the surface hardness of acrylic and silicone based soft denture liners at various time intervals. Two commonly used commercial resilient liner material were selected based on their chemical composition (silicone- and acrylic-based soft liners) for this investigation. 120 cylindrical specimens were made of 15 mm × 10 mm dimensions (according to ASTM: D-2240-64T) in a custom made metal mold. All specimens were stored in artificial saliva throughout the study. Forty specimens were cleansed daily in 0.5% sodium hypochlorite solution; forty were cleansed in sodium perborate and remaining forty specimens were daily rinsed in water. Testing was done at 1 week, 1 month, 3 months and 6 months for surface hardness using a Shore A Durometer. A mean of 3 reading for each sample was subjected to one-way ANOVA, Post Hoc test and pair-t test for statistical analysis. P values of less than 0.05 were taken as statistically significant. Surface hardness of all the samples was significantly higher after a period of 6 months irrespective of the cleansing treatment. Minor changes were observed between control, sodium hypochlorite and sodium perborate groups with time. Greater change was observed in surface hardness of acrylic-based soft denture liners as compared to silicone-based soft liners for all groups, as time progressed. Silicone-based soft denture liners performed significantly better in all cleansing treatments than acrylic-based soft denture liners.

  8. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  9. Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials

    Science.gov (United States)

    Pham, Chuyen V.; Repp, Sergej; Thomann, Ralf; Krueger, Michael; Weber, Stefan; Erdem, Emre

    2016-05-01

    To harness the unique properties of graphene and ZnO nanoparticles (NPs) for novel applications, the development of graphene-ZnO nanoparticle hybrid materials has attracted great attention and is the subject of ongoing research. For this contribution, graphene-oxide-ZnO (GO-ZnO) and thiol-functionalized reduced graphene oxide-ZnO (TrGO-ZnO) nanohybrid materials were prepared by novel self-assembly processes. Based on electron paramagnetic resonance (EPR) and photoluminescence (PL) investigations on bare ZnO NPs, GO-ZnO and TrGO-ZnO hybrid materials, we found that several physical phenomena were occurring when ZnO NPs were hybridized with GO and TrGO. The electrons trapped in Zn vacancy defects (VZn-) within the core of ZnO NPs vanished by transfer to GO and TrGO in the hybrid materials, thus leading to the disappearance of the core signals in the EPR spectra of ZnO NPs. The thiol groups of TrGO and sulfur can effectively ``heal'' the oxygen vacancy (VO+) related surface defects of ZnO NPs while oxygen-containing functionalities have low healing ability at a synthesis temperature of 100 °C. Photoexcited electron transfer from the conduction band of ZnO NPs to graphene leads to photoluminescence (PL) quenching of near band gap emission (NBE) of both GO-ZnO and TrGO-ZnO. Simultaneously, electron transfer from graphene to defect states of ZnO NPs is the origin of enhanced green defect emission from GO-ZnO. This observation is consistent with the energy level diagram model of hybrid materials.To harness the unique properties of graphene and ZnO nanoparticles (NPs) for novel applications, the development of graphene-ZnO nanoparticle hybrid materials has attracted great attention and is the subject of ongoing research. For this contribution, graphene-oxide-ZnO (GO-ZnO) and thiol-functionalized reduced graphene oxide-ZnO (TrGO-ZnO) nanohybrid materials were prepared by novel self-assembly processes. Based on electron paramagnetic resonance (EPR) and photoluminescence (PL

  10. Carrier mobility in mesoscale heterogeneous organic materials: Effects of crystallinity and anisotropy on efficient charge transport

    Science.gov (United States)

    Kobayashi, Hajime; Shirasawa, Raku; Nakamoto, Mitsunori; Hattori, Shinnosuke; Tomiya, Shigetaka

    2017-07-01

    Charge transport in the mesoscale bulk heterojunctions (BHJs) of organic photovoltaic devices (OPVs) is studied using multiscale simulations in combination with molecular dynamics, the density functional theory, the molecular-level kinetic Monte Carlo (kMC) method, and the coarse-grained kMC method, which was developed to estimate mesoscale carrier mobility. The effects of the degree of crystallinity and the anisotropy of the conductivity of donors on hole mobility are studied for BHJ structures that consist of crystalline and amorphous pentacene grains that act as donors and amorphous C60 grains that act as acceptors. We find that the hole mobility varies dramatically with the degree of crystallinity of pentacene because it is largely restricted by a low-mobility amorphous region that occurs in the hole transport network. It was also found that the percolation threshold of crystalline pentacene is relatively high at approximately 0.6. This high percolation threshold is attributed to the 2D-like conductivity of crystalline pentacene, and the threshold is greatly improved to a value of approximately 0.3 using 3D-like conductive donors. We propose essential guidelines to show that it is critical to increase the degree of crystallinity and develop 3D conductive donors for efficient hole transport through percolative networks in the BHJs of OPVs.

  11. Tuning Charge Balance in Solution-Processable Bipolar Triphenylamine-diazafluorene Host Materials for Phosphorescent Devices.

    Science.gov (United States)

    Fan, Zhaokang; Zhao, Huiru; Li, Nengquan; Quan, Yiwu; Chen, Qingmin; Ye, Shanghui; Li, Shuhua; Wang, Ying; Fan, Quli; Huang, Wei

    2015-05-13

    Three bipolar hosts, namely TPA-DAF, TPA-DAF2, and TPA-DAF3, comprising an electron-donating triphenylamine (TPA) group and electron-accepting 4,5-diazafluorene (DAF) units are investigated for phosphorescent organic light-emitting diodes (PhOLEDs). Given the nonplanar structure of the sp(3)-hybridized C9 atom in DAF unit, these molecules have a highly nonplanar configuration, good film-forming property, and high triplet energy (ET) of 2.88-2.89 eV. Among them, TPA-DAF shows more balanced carrier injecting/transporting ability, suitable highest occupied molecular orbital (MO) energy level and higher current density, and therefore TPA-DAF-based devices exhibit the best performances, having an extremely slight efficiency roll-off with current efficiency of 20.0 cd/A at 973 cd/m(2), 19.5 cd/A at 5586 cd/m(2), and 17.6 cd/A at 9310 cd/m(2) for blue PhOLEDs; 23.5 cd/A at 1059 cd/m(2) and 15.3 cd/A at 8850 cd/m(2) for green PhOLEDs; and 12.2 cd/A at 1526 cd/m(2), 10.5 cd/A at 5995 cd/m(2), and 9.2 cd/A at 8882 cd/m(2) for red PhOLEDs, respectively. The results also provide a direct proof for the influence of charge balance on the device performance.

  12. Polyvinylidene fluoride/nickel composite materials for charge storing, electromagnetic interference absorption, and shielding applications

    Science.gov (United States)

    Gargama, H.; Thakur, A. K.; Chaturvedi, S. K.

    2015-06-01

    In this paper, the composites of polyvinylidene fluoride (PVDF)/nickel (Ni) prepared through simple blending and hot-molding process have been investigated for dielectric, electromagnetic shielding, and radar absorbing properties. In order to study complex permittivity of the composites in 40 Hz-20 MHz frequency range, impedance spectroscopy (IS) technique is used. Besides, the complex permittivity and permeability in addition to shielding effectiveness (SE), reflection coefficient (backed by air), and loss factor are calculated using scattering parameters measured in X-band (8.2-12.4 GHz) by waveguide method. Further, in X-band, a theoretical analysis of single layer absorbing structure backed by perfect electrical conductor is then performed. A flanged coaxial holder has also been designed, fabricated, calibrated, and tested for electromagnetic interference SE measurement in the broad frequency range (50 MHz-18 GHz). The IS results indicate large enhancement in dielectric constant as a function of Ni loading in the polymer-metal composite (PMC) phase. This result has been explained using interfacial polarization and percolation theory. The frequency dependent response of ac conductivity has been analyzed by fitting the experimental data to the "Johnscher's universal dielectric response law" model. The results obtained for SE (in X-band over broad frequency range) and reflection coefficient indicate that PVDF/Ni composites give better electromagnetic interference shielding and radar absorption properties at filler concentration (fcon) ≥ fc in the PMC, whereas at fc < fcon, the charge storage mechanism dominates in the insulator regime of the composite phase. Therefore, the range of PMC compositions below and above percolation threshold has been observed to have different variety of applications.

  13. Incidence of tooth sensitivity after resin composite class III restoration with flowable composite as liner

    OpenAIRE

    Andini Dimyati; Endang Sukartini; Dudi Aripin

    2007-01-01

    Resin composites is one of the currently most frequently used aesthetic restoration material. A drawback of resin composites is contraction of polimerization which may result in the coming about of dental sensitivity due to microleakage. Flowable composite has high flow capacity and better adaptation capability making the thinnest application on cavity surfaces. An advantage of flowable composite is the possibility of using it as liner in composite resin restoration, which is expected to mini...

  14. Development of a Multifidelity Approach to Acoustic Liner Impedance Eduction

    Science.gov (United States)

    Nark, Douglas M.; Jones, Michael G.

    2017-01-01

    The use of acoustic liners has proven to be extremely effective in reducing aircraft engine fan noise transmission/radiation. However, the introduction of advanced fan designs and shorter engine nacelles has highlighted a need for novel acoustic liner designs that provide increased fan noise reduction over a broader frequency range. To achieve aggressive noise reduction goals, advanced broadband liner designs, such as zone liners and variable impedance liners, will likely depart from conventional uniform impedance configurations. Therefore, educing the impedance of these axial- and/or spanwise-variable impedance liners will require models that account for three-dimensional effects, thereby increasing computational expense. Thus, it would seem advantageous to investigate the use of multifidelity modeling approaches to impedance eduction for these advanced designs. This paper describes an extension of the use of the CDUCT-LaRC code to acoustic liner impedance eduction. The proposed approach is applied to a hardwall insert and conventional liner using simulated data. Educed values compare well with those educed using two extensively tested and validated approaches. The results are very promising and provide justification to further pursue the complementary use of CDUCT-LaRC with the currently used finite element codes to increase the efficiency of the eduction process for configurations involving three-dimensional effects.

  15. ONERA-NASA Cooperative Effort on Liner Impedance Eduction

    Science.gov (United States)

    Primus, Julien; Piot, Estelle; Simon, Frank; Jones, Michael G.; Watson, Willie R

    2013-01-01

    As part of a cooperation between ONERA and NASA, the liner impedance eduction methods developed by the two research centers are compared. The NASA technique relies on an objective function built on acoustic pressure measurements located on the wall opposite the test liner, and the propagation code solves the convected Helmholtz equation in uniform ow using a finite element method that implements a continuous Galerkin discretization. The ONERA method uses an objective function based either on wall acoustic pressure or on acoustic velocity acquired above the liner by Laser Doppler Anemometry, and the propagation code solves the linearized Euler equations by a discontinuous Galerkin discretization. Two acoustic liners are tested in both ONERA and NASA ow ducts and the measured data are treated with the corresponding impedance eduction method. The first liner is a wire mesh facesheet mounted onto a honeycomb core, designed to be linear with respect to incident sound pressure level and to grazing ow velocity. The second one is a conventional, nonlinear, perforate-over-honeycomb single layer liner. Configurations without and with ow are considered. For the nonlinear liner, the comparison of liner impedance educed by NASA and ONERA shows a sensitivity to the experimental conditions, namely to the nature of the source and to the sample width.

  16. Routing and scheduling and fleet management for liner shipping

    DEFF Research Database (Denmark)

    Kjeldsen, Karina Hjortshøj

    2009-01-01

    The problem of routing, scheduling and fleet management in global liner shipping is presented. The developed model incorporates the ships' speed as a decision variable. Furthermore, the model must be able to handle problems of the size and complexity experienced by the global liner shipping...

  17. Classification of Ship Routing and Scheduling Problems in Liner Shipping

    DEFF Research Database (Denmark)

    Kjeldsen, Karina Hjortshøj

    2011-01-01

    This article provides a classification scheme for ship routing and scheduling problems in liner shipping in line with the current and future operational conditions of the liner shipping industry. Based on the classification, the literature is divided into groups whose main characteristics are des...

  18. Pining for home: Studying crew homesickness aboard a cruise liner ...

    African Journals Online (AJOL)

    Crew homesickness should be seen as important by both shipboard and liner company management because it can ultimately impact on customer service experiences, and can be ameliorated by sensitive management policies and practices. Keywords: homesickness, cruise-liner, crewmembers, shipboard hotel services ...

  19. Analytical model of threshold voltage degradation due to localized charges in gate material engineered Schottky barrier cylindrical GAA MOSFETs

    Science.gov (United States)

    Kumar, Manoj; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2016-10-01

    The threshold voltage degradation due to the hot carrier induced localized charges (LC) is a major reliability concern for nanoscale Schottky barrier (SB) cylindrical gate all around (GAA) metal-oxide-semiconductor field-effect transistors (MOSFETs). The degradation physics of gate material engineered (GME)-SB-GAA MOSFETs due to LC is still unexplored. An explicit threshold voltage degradation model for GME-SB-GAA-MOSFETs with the incorporation of localized charges (N it) is developed. To accurately model the threshold voltage the minimum channel carrier density has been taken into account. The model renders how +/- LC affects the device subthreshold performance. One-dimensional (1D) Poisson’s and 2D Laplace equations have been solved for two different regions (fresh and damaged) with two different gate metal work-functions. LCs are considered at the drain side with low gate metal work-function as N it is more vulnerable towards the drain. For the reduction of carrier mobility degradation, a lightly doped channel has been considered. The proposed model also includes the effect of barrier height lowering at the metal-semiconductor interface. The developed model results have been verified using numerical simulation data obtained by the ATLAS-3D device simulator and excellent agreement is observed between analytical and simulation results.

  20. Developing Efficient Charge-Selective Interfacial Materials for Polymer and Perovskite Solar Cells

    Science.gov (United States)

    2016-01-25

    Materials for Polymer and Pervskite Solar Cells 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4066 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Alex K...fabrication of multi-junction organic and perovskite solar cells to reach high efficiency, low-cost, and good stability. To gain insights in these...enable the fabrication of highly efficient single- and multi-junction organic/hybrid solar cells . 15.  SUBJECT TERMS nanoscience, AOARD 16

  1. Spin and Charge Transport in 2D Materials and Magnetic Insulator/Metal Heterostructures

    Science.gov (United States)

    Amamou, Walid

    Spintronic devices are very promising for future information storage, logic operations and computation and have the potential to replace current CMOS technology approaching the scaling limit. In particular, the generation and manipulation of spin current enables the integration of storage and logic within the same circuit for more powerful computing architectures. In this thesis, we examine the manipulation of spins in 2D materials such as graphene and metal/magnetic insulator heterostructures. In particular, we investigate the feasibility for achieving magnetization switching of a nanomagnet using graphene as a nonmagnetic channel material for All Spin Logic Device applications. Using in-situ MBE deposition of nanomagnet on graphene spin valve, we demonstrate the presence of an interfacial spin dephasing at the interface between the graphene and the nanomagnet. By introducing a Cu spacer between the nanomagnet and graphene, we demonstrate that this interfacial effect is related to an exchange interaction between the spin current and the disordered magnetic moment of the nanomagnet in the first monolayer. In addition to the newly discovered interfacial spin relaxation effect, the extracted contact resistance area product of the nanomagnet/graphene interface is relatively high on the order of 1Omicrom2. In practice, reducing the contact resistance will be as important as eliminating the interfacial relaxation in order to achieve magnetization switching. Furthermore, we examine spin manipulation in a nonmagnetic Pt using an internal magnetic exchange field produced by the adjacent magnetic insulator CoFe2O4 grown by MBE. Here, we report the observation of a strong magnetic proximity effect of Pt deposited on top of a perpendicular magnetic anisotropy (PMA) inverse spinel material Cobalt Ferrite (CFO, CoFe 2O4). The CFO was grown by MBE and its magnetization was characterized by Vibrating Sample Magnetometry (VSM) demonstrating the strong out of plane magnetic

  2. Evaluating the accuracy of wear formulae for acetabular cup liners.

    Science.gov (United States)

    Wu, James Shih-Shyn; Hsu, Shu-Ling; Chen, Jian-Horng

    2010-02-01

    This study proposes two methods for exploring the wear volume of a worn liner. The first method is a numerical method, in which SolidWorks software is used to create models of the worn out regions of liners at various wear directions and depths. The second method is an experimental one, in which a machining center is used to mill polyoxymethylene to manufacture worn and unworn liner models, then the volumes of the models are measured. The results show that the SolidWorks software is a good tool for presenting the wear pattern and volume of a worn liner. The formula provided by Ilchmann is the most suitable for computing liner volume loss, but is not accurate enough. This study suggests that a more accurate wear formula is required. This is crucial for accurate evaluation of the performance of hip components implanted in patients, as well as for designing new hip components.

  3. Modelling of internal stresses in grinding charges

    OpenAIRE

    Jonsén, Pär; Pålsson, Bertil; Häggblad, Hans-Åke

    2011-01-01

    Physically realistic methods are a necessity to close the gap between reality and numerical result in modelling of tumbling mills. A problem is that tumbling mills often operate in a metastable state because of the difficulty to balance the rate of replenishment of large ore particles from the feed with the consumption in the charge. Understanding of the charge motion within the mill is of significance in mill optimisation. Both the breakage of ore particles and the wear of liners/ball media ...

  4. Utilization of Natural Zeolite and Perlite as Landfill Liners for in Situ Leachate Treatment in Landfills

    Science.gov (United States)

    Ozel, Ummukulsum; Akdemir, Andaç; Ergun, Osman Nuri

    2012-01-01

    The potential long term environmental impacts of a landfill on groundwater quality depend on its liner material properties. In case synthetic liner materials are damaged during the construction or operation, many of the original chemical and biological constituents are removed by filtration and the adsorptive action of natural liner materials such as natural zeolite, perlite and bentonite minerals. Before leachate treatment, reduction of these constituents is important not only to leachate percolation, but also treatment cost and efficiency. In this study, the pollutant removal efficiency from the leachate was investigated for natural natural zeolite, expanded perlite and bentonite. Experimental studies was performed in boxes made of glass and with 1:10 sloping. Leachate quantity was determined and pH, electrical conductivity (EC), nitrate (NO3-N), ammonium-nitrogen (NH4-N), phosphate (PO4), chemical oxygen demand (COD) and organic matter in leachate samples were measured and the measurement was compared with control process (System 4). The results showed that natural zeolite was effective in removing NO3, NH4, PO4, COD and organic matter with removal efficiencies of 91.20, 95.6, 95.5, 83.4 and 87.8%, respectively. Expanded perlite has high efficiency removing of NO3, PO4 and COD 83.2, 91.0 and 62.5%, respectively, but it was unsuccessful in reducing NH4 (1.5%). PMID:22754458

  5. Utilization of natural zeolite and perlite as landfill liners for in situ leachate treatment in landfills.

    Science.gov (United States)

    Ozel, Ummukulsum; Akdemir, Andaç; Ergun, Osman Nuri

    2012-05-01

    The potential long term environmental impacts of a landfill on groundwater quality depend on its liner material properties. In case synthetic liner materials are damaged during the construction or operation, many of the original chemical and biological constituents are removed by filtration and the adsorptive action of natural liner materials such as natural zeolite, perlite and bentonite minerals. Before leachate treatment, reduction of these constituents is important not only to leachate percolation, but also treatment cost and efficiency. In this study, the pollutant removal efficiency from the leachate was investigated for natural natural zeolite, expanded perlite and bentonite. Experimental studies was performed in boxes made of glass and with 1:10 sloping. Leachate quantity was determined and pH, electrical conductivity (EC), nitrate (NO(3)-N), ammonium-nitrogen (NH(4)-N), phosphate (PO(4)), chemical oxygen demand (COD) and organic matter in leachate samples were measured and the measurement was compared with control process (System 4). The results showed that natural zeolite was effective in removing NO(3), NH(4), PO(4), COD and organic matter with removal efficiencies of 91.20, 95.6, 95.5, 83.4 and 87.8%, respectively. Expanded perlite has high efficiency removing of NO(3), PO(4) and COD 83.2, 91.0 and 62.5%, respectively, but it was unsuccessful in reducing NH(4) (1.5%).

  6. Construction of the Plasma Liner Experiment (PLX)

    Science.gov (United States)

    Adams, C. S.; Awe, T. J.; Dunn, J. P.; Hsu, S. C.; Davis, J. S.; Hanna, D. S.; Schwartz, J. A.; Brockington, S.; van Doren, D.; Witherspoon, F. D.; Merritt, E. C.; Lynn, A. G.; Gilmore, M. A.

    2011-10-01

    The Plasma Liner Experiment (PLX) will investigate the behavior and interaction of spherically convergent plasma jets in forming imploding spherical plasma liners for HED and MIF-relevant studies. Numerous hardware systems have been assembled for the new PLX facility at Los Alamos National Laboratory to prepare for first plasma. A three meter diameter spherical vacuum tank is coupled to an oil-free vacuum pump system reaching sub-10-6 torr pressures on the first pump-down. A modular, distributed, and portable 60 kV pulsed-power system has been constructed for initial experiments on single jet propagation and two jet merging, with each plasma gun source having 70 kJ of stored energy. In addition, a capacitor test stand has been constructed in order to test each of the 180 required capacitors to the expected operational voltage. Finally, the experiment will be controlled via FPGA/LabView to interact with numerous custom-built pieces of electronics for interlock, control, triggering, and data acquisition. Supported by DOE Fusion Energy Sciences.

  7. User experience of transtibial prosthetic liners: A systematic review.

    Science.gov (United States)

    Richardson, Amy; Dillon, Michael P

    2017-02-01

    The liner is an integral part of a transtibial prosthesis designed to protect the residual limb, enhance comfort and provide suspension. Literature is difficult to interpret and use given the variety of interventions, outcome measures and method designs. Critical appraisal and synthesis of the evidence is needed to help inform decisions about liner prescription based on the user experience. To critically appraise and synthesise research describing the user experience of transtibial prosthetic liners. Systematic review. A comprehensive suite of databases were searched using terms related to amputation level, liner type and user experience. Included studies were in English and measured the first-person experience of using a transtibial liner. Studies were appraised using the McMaster University Critical Review Forms. A total of 18 articles met the inclusion criteria. While the quality of the evidence has improved over time, a number of common issues (e.g. sampling bias, validity of outcome measures, incorrect inferential analysis) reduce our ability to differentiate between the user experience of different transtibial liners. There is insufficient research to differentiate between the user experience of different transtibial liners. High-quality research is needed to inform decisions about liner prescription based on the user experience. Clinical relevance The available evidence suggests that the user experience of commonly reported problems (e.g. sweating) may be very similar between different liners. Aspects of the user experience that differ most between liners (e.g. unwanted noises, rotation within the socket) can help focus attention on what matters most when discussing prescription.

  8. The effectiveness of denture cleansers on soft denture liners colored by food colorant solutions.

    Science.gov (United States)

    Saraç, Duygu; Saraç, Y Sinasi; Kurt, Murat; Yüzbaşioğlu, Emir

    2007-01-01

    The aim of this study was to investigate the color stability of soft denture liners and the effectiveness of denture cleansers on soft denture liners colored by food colorants in different time periods. A plasticized acrylic resin soft liner (Viscogel) and a silicone-based soft liner (Mollosil) were used in this study. From each material 30 specimens (a total of 60 specimens) were prepared in a Teflon mold 15 mm in diameter and 3 mm thick. The prepared specimens were stored in distilled water for 24 hours at 37 degrees C. Initial color measurements of the specimens were made using a small-area colorimeter. The specimens of the two soft liners were divided into three groups each containing 10 specimens. The specimens of the first, second, and third group were immersed for 14 hours (2 hours x 7 days) in 3% erythrosine, tartrazine, and sunset yellow food colorant solutions, respectively. Then the second color measurements were made. After the second measurements, the specimens of each group were divided into two subgroups (n = 5) and were immersed in denture cleansers (Fittydent and Curadent Weekly) for 8 hours, and the third measurements were made. At the end of these procedures, the weekly simulation period was completed. The fourth, fifth, and sixth color measurements were made at the end of the simulation periods for 1, 2, and 3 months, respectively. Color difference (DeltaE) values were calculated, and the derived data were analyzed using repeated measures analysis of variance for three-way classification and Bonferroni multiple comparison tests (alpha= 0.05). There were significant differences between soft liners and cleansers in terms of color change. Mollosil demonstrated mean discoloration values (DeltaE) between 0.81 and 2.66, Viscogel showed DeltaE between 1.26 and 12.83. Viscogel exhibited slightly greater color changes than Mollosil and the results showed significant differences ( p colorants ( p > 0.05). Denture cleansers showed significant differences

  9. The Compressibility and Swell of Mixtures for Sand-Clay Liners

    Directory of Open Access Journals (Sweden)

    Muawia A. Dafalla

    2017-01-01

    Full Text Available Sand-clay liners utilize expansive clay to act as a filler to occupy the voids in the sand and thus reduce the hydraulic conductivity of the mixture. The hydraulic conductivity and transfer of water and other substances through sand-clay mixtures are of prime concern in the design of liners and hydraulic barriers. Many successful research studies have been undertaken to achieve appropriate mixtures that satisfy hydraulic conductivity requirements. This study investigates compressibility and swelling properties of mixtures to ensure that they were acceptable for light structures, roads, and slabs on grade. A range of sand-expansive clay mixtures were investigated for swell and compression properties. The swelling and compressibility indices were found to increase with increasing clay content. The use of highly expansive material can result in large volume changes due to swell and shrinkage. The inclusion of less expansive soil material as partial replacement of bentonite by one-third to two-thirds is found to reduce the compressibility by 60% to 70% for 10% and 15% clay content, respectively. The swelling pressure and swell percent were also found significantly reduced. Adding less expansive natural clay to bentonite can produce liners that are still sufficiently impervious and at the same time less problematic.

  10. Charge transport in polycrystalline alumina materials: application to the optimization of dielectric breakdown strength; Transport de charges dans les alumines polycristallines: application a l'optimisation de la rigidite dielectrique

    Energy Technology Data Exchange (ETDEWEB)

    Touzin, M.

    2005-12-15

    Dielectric breakdown constitutes an important limitation in the use of insulating materials under high-tension since it leads to the local fusion and the sublimation of material. The microstructure (average grain size, intergranular phase) has a great influence on the ability of material to resist this catastrophic phenomenon. Indeed, the interfaces between the various phases constitute potential sites of trapping for the charges. The optimization of the dielectric breakdown strength of a polycrystalline alumina sintered with a liquid phase passes necessarily through the control of the microstructural parameters. Thus, it is shown that by controlling the conditions of the process (rate of sintering aids, powder grain size and thermal cycle), it is possible to control the density (by the average grain size) but also the nature (by the crystallization or not of anorthite) of the grain boundaries. The study of the influence of these two parameters as well temperature on the properties of charge transport and storage was carried out by methods ICM and SEMME. The results, interpreted in light of the numerical simulation of the charge transport in bulk alumina sample during electron beam irradiation, allowed to highlight behaviors, and the corresponding microstructures, favourable to the dielectric breakdown resistance according to the considered temperature. Thus, at room temperature a high density of interfaces (low grain size and crystallized intergranular phase) makes it possible material to durably trap a great amount of charges, which leads to a high dielectric strength. On the other hand, at higher temperature, the presence of shallow traps (vitreous intergranular phase) supports the charge diffusion and makes it possible to delay breakdown. (author)

  11. Evaluation of hardness and colour change of soft liners after accelerated ageing.

    Science.gov (United States)

    Mancuso, Daniela Nardi; Goiato, Marcelo Coelho; Zuccolotti, Bruna Carolina Rossatti; Moreno, Amália; dos Santos, Daniela Micheline

    2009-07-01

    Soft liners have been developed to offer comfort to denture wearers. However, this comfort is compromised when there is a change in the properties of the material, causing colour change, solubility, absorption and hardening. These characteristics can compromise the longevity of soft liners. The aim of this in vitro study was to investigate the effect of ageing on both the hardness and colour change of two soft liners following accelerated ageing. Two denture liners, one resin based (Trusoft, Bosworth, Illinois, USA) and one silicone based (Ufi Gel P, Voco GMBH, Cuxhaven, Germany), were tested in this study for both hardness (using the Shore A scale) and colour change (using the CIE L*a*b* colour scale), initially and after 1008 hours (6 weeks) of accelerated ageing. Statistical analysis was performed using the unpaired t-test with the Welch correction. These indicated that both materials increased in hardness and underwent colour change after accelerated ageing. The initial hardness of Trusoft was far lower than that of Ufi Gel P (18.2 Shore A units vs 34.8 Shore A units). However, for Trusoft the changes for both hardness (from 18.2 to 52.1 Shore A units) and colour change (16.85 on the CIE L*a*b* colour scale) were greater than those for Ufi Gel P, for which hardness changed from 34.8 to 36.5 Shore A units and the colour change was 5.19 on the CIE L*a*b* colour scale. Ufi Gel P underwent less hardness and colour change after accelerated ageing than Trusoft. On the other hand, the use of Trusoft may be preferable in cases where initial softness is a major consideration, such as when relining an immediate denture after implant surgery.

  12. Cargo-mix optimization in Liner Shipping

    DEFF Research Database (Denmark)

    Christensen, Jonas Mark; Pacino, Dario; Fonseca, Joao Filipe Paiva

    ’ utilization.The more containers a vessel carries the smaller is the resulting CO2 emissions per transported tonof cargo. This is what can be seen as a win-win situation. Better vessel utilization will result bothin cleaner transport and in better revenue margins for the shippers. Focus on vessel intake...... maximization is old news for liner shippers. Container vessels are deliveredwith a nominal capacity that ship owners know is only theoretical. Unless the cargo weightdistribution is perfect, the nominal intake cannot be reached. Stowage coordinators fight this battleeveryday. They are the planners of the cargo...... and have to find a load configuration (stowage plan)that both suits the current cargo to be loaded but also guarantees that the vessel can be utilizedto its maximum in future ports. The size of nowadays vessels is, however, making this work harderand harder (Pacino et al. (2011)). Moreover, the cargo...

  13. A matheuristic for the liner shipping network design problem

    DEFF Research Database (Denmark)

    Brouer, Berit Dangaard; Desaulniers, Guy

    2012-01-01

    We present a matheuristic, an integer programming based heuristic, for the Liner Shipping Network Design Problem. The heuristic applies a greedy construction heuristic based on an interpretation of the liner shipping network design problem as a multiple quadratic knapsack problem. The construction...... heuristic is combined with an improvement heuristic with a neighborhood defined by the solution space of a mixed integer program. The mixed integer program optimizes the removal and insertion of several port calls on a liner shipping service. The objective function is based on evaluation functions...

  14. Effect of electrode materials on the space charge distribution of an Al2O3 nano-modified transformer oil under impulse voltage conditions

    Science.gov (United States)

    Yang, Qing; Liu, Mengna; Sima, Wenxia; Jin, Yang

    2017-11-01

    The combined effect mechanism of electrode materials and Al2O3 nanoparticles on the insulating characteristics of transformer oil was investigated. Impulse breakdown tests of pure transformer oil and Al2O3 nano-modified transformer oil of varying concentrations with different electrode materials (brass, aluminum and stainless steel) showed that the breakdown voltage of Al2O3 nano-modified transformer oil is higher than that of pure transformer oil and there is a there is an optimum concentration for Al2O3 nanoparticles when the breakdown voltage reaches the maximum. In addition, the breakdown voltage was highest with the brass electrode, followed by that with stainless steel and then aluminum, irrespective of the concentration of nanoparticles in the transformer oil. This is explained by the charge injection patterns from different electrode materials according to the results of space charge measurements in pure and nano-modified transformer oil using the Kerr electro-optic system. The test results indicate that there are electrode-dependent differences in the charge injection patterns and quantities and then the electric field distortion, which leads to the difference breakdown strength in result. As for the nano-modified transformer oil, due to the Al2O3 nanoparticle’s ability of shielding space charges of different polarities and the charge injection patterns of different electrodes, these two factors have different effects on the electric field distribution and breakdown process of transformer oil between different electrode materials. This paper provides a feasible approach to exploring the mechanism of the effect of the electrode material and nanoparticles on the breakdown strength of liquid dielectrics and analyzing the breakdown process using the space charge distribution.

  15. Far infrared conductivity of charge density wave materials and the oxygen isotope effect in high-T sub c superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Creager, W.N.

    1991-09-01

    The far infrared reflectance and conductivity of (Ta{sub 1-x}Nb{sub x}Se{sub 4}){sub 2}I and TaS{sub 3} have been measured to determine the origin of a huge infrared resonance that dominates the charge density wave (CDW) dynamics along with the pinned acoustic phason mode in the related materials (TaSe{sub 4}){sub 2}I and K{sub 0. 3}MoO{sub 3}. The measurements cover frequencies from 3 to 700cm{sup {minus}1} and the temperature range from 15K to 300K. In the niobium-doped alloys (Ta{sub 1-x}Nb{sub x}Se{sub 4}){sub 2}I, the size and frequency of the giant infrared mode remain nearly constant as the impurity concentration x is increased. For TaS{sub 3}, the pinned acoustic phason near 0.5cm{sup {minus}1} dominates {var epsilon}({omega}) and an additional small mode lies near 9cm{sup {minus}1}. The latter mode is much smaller than the infrared mode in other CDW materials. These results rule out several models of a generic infrared mode'' in CDW excitations. They are compared in detail to the predictions of a recent theory attributing the infrared mode to a bound collective mode localized at impurity sites within the crystal. The transmittance of K{sub 0.3}MoO{sub 3} has been measured at 1.2K with a strong dc electric field applied across the crystal. Under these conditions, the charge density wave depins abruptly and carries large currents with near-zero differential resistance. For some samples, the low-frequency transmittance is enhanced slightly when the CDW depins. The magnitude of the oxygen isotope effect in the high-{Tc} superconductor YBa{sub 2}Cu{sub 3}O{sub 7} has been determined by substitution of {sup 18}O for {sup 16}O. A series of cross-exchanges was performed on high-quality polycrystalline specimens to eliminate uncertainties due to sample heat treatments and sample inhomogeneities.

  16. An indirect method for the characterization of locally reacting liners.

    Science.gov (United States)

    Taktak, Mohamed; Ville, Jean Michel; Haddar, Mohamed; Gabard, Gwénaël; Foucart, Felix

    2010-06-01

    An indirect technique for educing the homogenized acoustic impedance of a liner mounted on the wall of a barrel is presented. It is based on measurements and computational simulations of the multimodal scattering matrix of this lined duct. Measurements are performed with a multisource method and the use of an anechoic duct termination. The numerical computation of the scattering matrix relies on a finite element model, and assume that the duct is axisymmetric and uniformly covered by a locally reacting material. The impedance is educed by minimizing the difference between the theoretical and experimental acoustic power dissipations, which are deduced from the scattering matrix. The source is an incoming pressure field generated at one end of the duct only and composed of all cut-on modes. This technique was tested on a cylindrical barrel whose wall was partially lined with a realistic, locally reacting material made of honeycomb cells and a perforated facing sheet. Results for the acoustic impedance are compared with those deduced from semiempirical models and the experimental two microphone method. The best agreement with the indirect method is found with the semiempirical impedance results when the difference between the acoustic power dissipated by the actual lined barrel and the reference barrel is chosen as the cost function of the minimizing procedure.

  17. Charge, spin and orbital order in the candidate multiferroic material LuFe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Groot, Joost de

    2012-06-28

    This thesis is a detailed study of the magnetic, structural and orbital order parameters of the candidate multiferroic material LuFe{sub 2}O{sub 4}. Multiferroic oxides with a strong magnetoelectric coupling are of high interest for potential information technology applications, but they are rare because the traditional mechanism of ferroelectricity is incompatible with magnetism. Consequently, much attention is focused on various unconventional mechanisms of ferroelectricity. Of these, ferroelectricity originating from charge ordering (CO) is particularly intriguing because it potentially combines large electric polarizations with strong magneto-electric coupling. However, examples of oxides where this mechanism occurs are exceedingly rare and none is really well understood. LuFe{sub 2}O{sub 4} is often cited as the prototypical example of CO-based ferroelectricity. In this material, the order of Fe valences has been proposed to render the triangular Fe/O bilayers polar by making one of the two layers rich in Fe{sup 2+} and the other rich in Fe{sup 3+}, allowing for a possible ferroelectric stacking of the individual bilayers. Because of this new mechanism for ferroelectricity, and also because of the high transition temperatures of charge order (T{sub CO} {proportional_to}320K) and ferro magnetism (T{sub N}{proportional_to}240 K) LuFe{sub 2}O{sub 4} has recently attracted increasing attention. Although these polar bilayers are generally accepted in the literature for LuFe{sub 2}O{sub 4}, direct proof is lacking. An assumption-free experimental determination of whether or not the CO in the Fe/O bilayers is polar would be crucial, given the dependence of the proposed mechanism of ferroelectricity from CO in LuFe{sub 2}O{sub 4} on polar bilayers. This thesis starts with a detailed characterization of the macroscopic magnetic properties, where growing ferrimagnetic contributions observed in magnetization could be ascribed to increasing oxygen off-stoichiometry. The

  18. Final Technical Report for the Energy Frontier Research Center Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST)

    Energy Technology Data Exchange (ETDEWEB)

    Vanden Bout, David A. [Univ. of Texas, Austin, TX (United States)

    2015-09-14

    Our EFRC was founded with the vision of creating a broadly collaborative and synergistic program that would lead to major breakthroughs in the molecular-level understanding of the critical interfacial charge separation and charge transfer (CST) processes that underpin the function of candidate materials for organic photovoltaic (OPV) and electrical-energy-storage (EES) applications. Research in these energy contexts shares an imposing challenge: How can we understand charge separation and transfer mechanisms in the presence of immense materials complexity that spans multiple length scales? To address this challenge, our 50-member Center undertook a total of 28 coordinated research projects aimed at unraveling the CST mechanisms that occur at interfaces in these nanostructured materials. This rigorous multi-year study of CST interfaces has greatly illuminated our understanding of early-timescale processes (e.g., exciton generation and dissociation dynamics at OPV heterojunctions; control of Li+-ion charging kinetics by surface chemistry) occurring in the immediate vicinity of interfaces. Program outcomes included: training of 72 graduate student and postdoctoral energy researchers at 5 institutions and spanning 7 academic disciplines in science and engineering; publication of 94 peer-reviewed journal articles; and dissemination of research outcomes via 340 conference, poster and other presentations. Major scientific outcomes included: implementation of a hierarchical strategy for understanding the electronic communication mechanisms and ultimate fate of charge carriers in bulk heterojunction OPV materials; systematic investigation of ion-coupled electron transfer processes in model Li-ion battery electrode/electrolyte systems; and the development and implementation of 14 unique technologies and instrumentation capabilities to aid in probing sub-ensemble charge separation and transfer mechanisms.

  19. Design of crusher liner based on time - varying uncertainty theory

    Science.gov (United States)

    Tang, J. C.; Shi, B. Q.; Yu, H. J.; Wang, R. J.; Zhang, W. Y.

    2017-09-01

    This article puts forward the time-dependent design method considering the load fluctuation factors for the liner based on the time-varying uncertainty theory. In this method, the time-varying uncertainty design model of liner is constructed by introducing the parameters that affect the wear rate, the volatility and the drift rate. Based on the design example, the timevarying design outline of the moving cone liner is obtained. Based on the theory of minimum wear, the gap curve of wear resistant cavity is designed, and the optimized cavity is obtained by the combination of the thickness of the cone and the cavity gap. Taking the PYGB1821 multi cylinder hydraulic cone crusher as an example, it is proved that the service life of the new liner is improved by more than 14.3%.

  20. Pining for home: Studying crew homesickness aboard a cruise liner

    African Journals Online (AJOL)

    crew are working and living in a situation that is very different to their home. ... and practices. Keywords: homesickness, cruise-liner, crewmembers, shipboard hotel services ... such as age, gender, social class, or culture have an impact of.

  1. Conceptual design of the W7-X port liners

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Reinhold J., E-mail: reinhold.stadler@ipp.mpg.de [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Peacock, A.; Boscary, J.; Mendelevitch, B [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Scholz, P. [Max Planck Institute for Plasma Physics, 17491 Greifswald (Germany); Schubert, W. [Max Planck Institute for Plasma Physics, 85748 Garching (Germany)

    2016-11-15

    The experimental stellarator Wendelstein 7-X has a large variety of ports for plasma diagnostics. For the steady-state operation with 10 MW input power and a plasma pulse length of up to 30 min, 101 diagnostics ports need to be shielded with actively cooled port liners made of stainless steel. A total of 41 variants of port liners taking into account the various port geometries and the interfaces with different types of diagnostics have to be installed. Before starting the production, different concepts have been studied. Five full-scale demonstrators and three different technologies representative of the port liner variety have been designed and are being produced. Results of this fabrication will serve as a basis for the procurement of the 101 port liners.

  2. Response of subsurface soils covered by sand clay liners to temperature variations

    Science.gov (United States)

    Dafalla, Muawia

    2017-04-01

    The use of sand clay liners as a cover for near surface material works as a heat insulator as well as a hydraulic barrier. The soil temperature profile below grade level is normally a function of soil type, dampness and state of compaction. The temperature rise and fall is closely related to the moisture content conditions within the strata. This study is aimed at investigating the effect of a sand clay liner placed on ground surface on the temperature moisture profile. A section of clay sand liners was constructed on site on top of a silty sand formation with some clay. The field section was observed for variable temperature and weather conditions over six month's period. 5TE Decagon sensors capable of recording moisture content, temperature and electrical conductivity connected to Em50 data loggers were employed. A weather station equipped with rainfall, temperature, humidity and wind sensors was installed on site throughout the period of the investigation. The measurements of electrical conductivity were found extremely sensitive to wetting and drying and to temperature changes. Profiles for dry soil being wetted and wet soil being dried out are presented and compared in this study. Mineralogy and chemical composition of the subsurface soil in addition to the chemistry of water do have a remarkable influence on shaping these profiles.

  3. The Effect of Thermocycling on Tensile Bond Strength of Two Soft Liners

    Directory of Open Access Journals (Sweden)

    Farideh Geramipanah

    2013-01-01

    Full Text Available Objective: Failure of soft liners depends mostly on separation from the denture base resin; therefore measurement of the bond strength is very important. The purpose of this study was to compare the tensile bond strength of two soft liners (Acropars, Molloplast-B to denture base resin before and after thermocycling.Materials and Methods: Twenty specimens from each of the two different soft liners were processed according to the manufacturer’s instructions between two polymethyl methacrylate (PMMA sheets. Ten specimens in each group were maintained in 37°C water for 24 hours and 10 were thermocycled (5000 cycles among baths of 5° and 55°C. The tensile bond strength was measured using a universal testing machine at a crosshead speed of 5 mm/min. Mode of failure was determined with SEM (magnification ×30. Two-way ANOVA was used to analyze the data.Results: The mean and standard deviation of tensile bond strength of Acropars and Molloplast-B before thermocycling were 6.59±1.85 and 1.51±0.22 MPa, respectively and 5.89±1.52 and 1.37±0.18 MPa, respectively after thermocycling. There was no significant difference before and after thermocycling. Mode of failure in Acropars and Molloplast-B were adhesive and cohesive, respectivley.Conclusion: The bond strength of Acropars was significantly higher than Molloplast-B (P<0.05.

  4. Acidic ammonothermal growth of gallium nitride in a liner-free molybdenum alloy autoclave

    Science.gov (United States)

    Malkowski, Thomas F.; Pimputkar, Siddha; Speck, James S.; DenBaars, Steven P.; Nakamura, Shuji

    2016-12-01

    This paper discusses promising materials for use as internal, non-load bearing components as well as molybdenum-based alloys for autoclave structural components for an ammonothermal autoclave. An autoclave was constructed from the commercial titanium-zirconium-molybdenum (TZM) alloy and was found to be chemically inert and mechanically stable under acidic ammonothermal conditions. Preliminary seeded growth of GaN was demonstrated with negligible incorporation of transition metals (including molybdenum) into the grown material (560 °C). The possibility of a 'universal', inexpensive, liner-free ammonothermal autoclave capable of exposure to basic and acidic chemistry is demonstrated.

  5. Classification of routing and scheduling problems in liner shipping

    DEFF Research Database (Denmark)

    Hjortshøj Kjeldsen, Karina

    A classification scheme for routing and scheduling problems in liner shipping is developed and subsequently used to classify existing literature on the subject. Based on the classification the articles are grouped, and the main characteristics of each group and article are described. The grouping...... may serve as a catalyst towards developing a model or a group of models that covers the main problems within routing and scheduling in liner shipping....

  6. The influence of liners on the pulp inflammation

    OpenAIRE

    Davidović Lado; Ćuk Mirjana; Živković-Sandić Marija; Grga Đurica; Živković Slavoljub

    2015-01-01

    Introduction. The study included application of liners and dental composites in to cavities of six experimental animals - rabbits (Oryctolagus cuniculus). Objective. The aim of the study was to investigate rabbit dental pulp response to different liners. Methods. Cavity preparation for class V were made on the maxillary central incisors and one lower incisor, while the second lower incisor served as a control tooth. These teeth were restored with the use of...

  7. Landing Gear Door Liners for Airframe Noise Reduction

    Science.gov (United States)

    Jones, Michael G. (Inventor); Howerton, Brian M. (Inventor); Van De Ven, Thomas (Inventor)

    2014-01-01

    A landing gear door for retractable landing gear of aircraft includes an acoustic liner. The acoustic liner includes one or more internal cavities or chambers having one or more openings that inhibit the generation of sound at the surface and/or absorb sound generated during operation of the aircraft. The landing gear door may include a plurality of internal chambers having different geometries to thereby absorb broadband noise.

  8. A Conventional Liner Acoustic/Drag Interaction Benchmark Database

    Science.gov (United States)

    Howerton, Brian M.; Jones, Michael G.

    2017-01-01

    The aerodynamic drag of acoustic liners has become a significant topic in the design of such for aircraft noise applications. In order to evaluate the benefits of concepts designed to reduce liner drag, it is necessary to establish the baseline performance of liners employing the typical design features of conventional configurations. This paper details a set of experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of a number of perforate-over-honeycomb liner configurations at flow speeds of M=0.3 and 0.5. These conventional liners are investigated to determine their resistance factors using a static pressure drop approach. Comparison of the resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 Hz at source sound pressure levels of 140 and 150 dB. Educed impedance and attenuation spectra are used to determine the interaction between acoustic performance and drag.

  9. Composite Liner, Multi-Megabar Shock Driver Development

    Energy Technology Data Exchange (ETDEWEB)

    Cochrane, J.C. Jr.; Bartsch, R.R.; Clark, D.A.; Morgan, D.V.; Anderson, W.E.; Lee, H.; Bowers, R.L.; Atchison, W.L.; Oona, H.; Stokes, J.L.; Veeser, L.R.; Broste, W.B.

    1998-10-18

    The multi-megabar shock driver development is a series of experiments in support of the Los Alamos High Energy Density Physics Experimental Program. Its purpose is to develop techniques to impact a uniform, stable, composite liner upon a high Z target to produce a multi-megabar shock for EOS studies. To date, experiments have been done on the Pegasus II capacitor bank with a current of {approximately}12MA driving the impactor liner. The driving field is {approximately}200 T at the target radius of 1cm. Data will be presented on the impactor liner. The driving field is {approximately}200 T at the target radius of 1 cm. Data will be presented on the stability and uniformity of the impactor liner when it impacts the target cylinder. Three experiments have been done with emphasis on liner development. Shock pressures greater than a megabar have been done with emphasis on liner development. Shock pressures greater than a megabar have been produced with an Al target cylinder. A Pt target cylinder should produce shock pressures in th e 5-megabar range.

  10. Formation of Imploding Plasma Liners for HEDP and MIF Application

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, F. Douglas [HyperV Technologies Corp., Chantilly, VA (United States); Case, Andrew [HyperV Technologies Corp., Chantilly, VA (United States); Brockington, Samuel [HyperV Technologies Corp., Chantilly, VA (United States); Messer, Sarah [HyperV Technologies Corp., Chantilly, VA (United States); Bomgardner, Richard [HyperV Technologies Corp., Chantilly, VA (United States); Phillips, Mike [HyperV Technologies Corp., Chantilly, VA (United States); Wu, Linchun [HyperV Technologies Corp., Chantilly, VA (United States); Elton, Ray [Univ. of Maryland, College Park, MD (United States)

    2014-11-11

    Plasma jets with high density and velocity have a number of important applications in fusion energy and elsewhere, including plasma refueling, disruption mitigation in tokamaks, magnetized target fusion, injection of momentum into centrifugally confined mirrors, plasma thrusters, and high energy density plasmas (HEDP). In Magneto-Inertial Fusion (MIF), for example, an imploding material liner is used to compress a magnetized plasma to fusion conditions and to confine the resulting burning plasma inertially to obtain the necessary energy gain. The imploding shell may be solid, liquid, gaseous, or a combination of these states. The presence of the magnetic field in the target plasma suppresses thermal transport to the plasma shell, thus lowering the imploding power needed to compress the target to fusion conditions. This allows the required imploding momentum flux to be generated electromagnetically using off-the-shelf pulsed power technology. Practical schemes for standoff delivery of the imploding momentum flux are required and are open topics for research. One approach for accomplishing this, called plasma jet driven magneto-inertial fusion (PJMIF), uses a spherical array of pulsed plasma guns to create a spherically imploding shell of very high velocity, high momentum flux plasma. This approach requires development of plasma jet accelerators capable of achieving velocities of 50-200 km/s with very precise timing and density profiles, and with high total mass and density. Low-Z plasma jets would require the higher velocities, whereas very dense high-Z plasma shells could achieve the goal at velocities of only 50-100 km/s. In this report, we describe our work to develop the pulsed plasma gun technology needed for an experimental scientific exploration of the PJMIF concept, and also for the other applications mentioned earlier. The initial goal of a few hundred of hydrogen at 200 km/s was eventually replaced with accelerating 8000 μg of argon or xenon to 50 km

  11. The Use of a Pressure-Indicating Film to Determine the Effect of Liner Type on the Measured Teat Load Caused by a Collapsing Liner

    Science.gov (United States)

    Demba, Susanne; Paul, Viktoria; Ammon, Christian; Rose-Meierhöfer, Sandra

    2017-01-01

    During milking the teat cup liner is the interface between the teat of a dairy cow and the milking system, so it should be very well adapted to the teat. Therefore, the aim of the present study was to determine the effect of liner type on the directly measuring teat load caused by a collapsing liner with a pressure-indicating film. The Extreme Low pressure-indicating film was used to detect the effect of six different liners on teat load. For each liner, six positions in the teat cup were specified, and six repetitions were performed for each position with a new piece of film each time. Analysis of variance was performed to detect differences between the six liners, the positions within a liner, and the measuring areas. The pressure applied to the teat by a liner depends on the technical characteristics of the liner, especially the shape of the barrel, and for all tested liners, a higher teat load was found at the teat end. In conclusion, with the help of pressure-indicating film, it is possible to determine the different effects of liner type by directly measuring teat load due to liner collapse. PMID:28406465

  12. Charge injection in thin dielectric layers by atomic force microscopy: influence of geometry and material work function of the AFM tip on the injection process.

    Science.gov (United States)

    Villeneuve-Faure, C; Makasheva, K; Boudou, L; Teyssedre, G

    2016-06-17

    Charge injection and retention in thin dielectric layers remain critical issues for the reliability of many electronic devices because of their association with a large number of failure mechanisms. To overcome this drawback, a deep understanding of the mechanisms leading to charge injection close to the injection area is needed. Even though the charge injection is extensively studied and reported in the literature to characterize the charge storage capability of dielectric materials, questions about charge injection mechanisms when using atomic force microscopy (AFM) remain open. In this paper, a thorough study of charge injection by using AFM in thin plasma-processed amorphous silicon oxynitride layers with properties close to that of thermal silica layers is presented. The study considers the impact of applied voltage polarity, work function of the AFM tip coating and tip curvature radius. A simple theoretical model was developed and used to analyze the obtained experimental results. The electric field distribution is computed as a function of tip geometry. The obtained experimental results highlight that after injection in the dielectric layer the charge lateral spreading is mainly controlled by the radial electric field component independently of the carrier polarity. The injected charge density is influenced by the nature of electrode metal coating (work function) and its geometry (tip curvature radius). The electron injection is mainly ruled by the Schottky injection barrier through the field electron emission mechanism enhanced by thermionic electron emission. The hole injection mechanism seems to differ from the electron one depending on the work function of the metal coating. Based on the performed analysis, it is suggested that for hole injection by AFM, pinning of the metal Fermi level with the metal-induced gap states in the studied silicon oxynitride layers starts playing a role in the injection mechanisms.

  13. Radiation production and absorption in human spacecraft shielding systems under high charge and energy Galactic Cosmic Rays: Material medium, shielding depth, and byproduct aspects

    Science.gov (United States)

    Barthel, Joseph; Sarigul-Klijn, Nesrin

    2018-03-01

    Deep space missions such as the planned 2025 mission to asteroids require spacecraft shields to protect electronics and humans from adverse effects caused by the space radiation environment, primarily Galactic Cosmic Rays. This paper first reviews the theory on how these rays of charged particles interact with matter, and then presents a simulation for a 500 day Mars flyby mission using a deterministic based computer code. High density polyethylene and aluminum shielding materials at a solar minimum are considered. Plots of effective dose with varying shield depth, charged particle flux, and dose in silicon and human tissue behind shielding are presented.

  14. Ultrafast Charge and Triplet State Formation in Diketopyrrolopyrrole Low Band Gap Polymer/Fullerene Blends: Influence of Nanoscale Morphology of Organic Photovoltaic Materials on Charge Recombination to the Triplet State

    Directory of Open Access Journals (Sweden)

    René M. Williams

    2017-01-01

    Full Text Available Femtosecond transient absorption spectroscopy of thin films of two types of morphologies of diketopyrrolopyrrole low band gap polymer/fullerene-adduct blends is presented and indicates triplet state formation by charge recombination, an important loss channel in organic photovoltaic materials. At low laser fluence (approaching solar intensity charge formation characterized by a 1350 nm band (in ~250 fs dominates in the two PDPP-PCBM blends with different nanoscale morphologies and these charges recombine to form a local polymer-based triplet state on the sub-ns timescale (in ~300 and ~900 ps indicated by an 1100 nm absorption band. The rate of triplet state formation is influenced by the morphology. The slower rate of charge recombination to the triplet state (in ~900 ps belongs to a morphology that results in a higher power conversion efficiency in the corresponding device. Nanoscale morphology not only influences interfacial area and conduction of holes and electrons but also influences the mechanism of intersystem crossing (ISC. We present a model that correlates morphology to the exchange integral and fast and slow mechanisms for ISC (SOCT-ISC and H-HFI-ISC. For the pristine polymer, a flat and unstructured singlet-singlet absorption spectrum (between 900 and 1400 nm and a very minor triplet state formation (5% are observed at low laser fluence.

  15. Elastomeric liners for people with transtibial amputation: Survey of prosthetists' clinical practices.

    Science.gov (United States)

    Hafner, Brian J; Cagle, John C; Allyn, Katheryn J; Sanders, Joan E

    2017-04-01

    A diverse range of elastomeric liner products are available to people with transtibial amputation. However, little information is available about how prosthetists select the product best suited to each patient. To determine how prosthetists obtain information about liners, which features are most relevant to the selection process, and which products are used most for patients with transtibial amputation. Cross-sectional survey. A custom online survey was developed to solicit information about prosthetists' liner selection practices. Prosthetists with experience managing transtibial patients were recruited via advertisements posted in magazines, at conferences, and on a listserv. Responses were analyzed to characterize prosthetists' liner selection practices. Data from 106 experienced prosthetists (mean age: 44.4 years, mean experience: 15.7 years) were included. Most prosthetists (94%) obtained liner information from manufacturer representatives, websites, or literature. On average, respondents factored nine different liner characteristics into their selection processes. Prosthetists reported experience with 16 unique liner products with their transtibial patients, but routinely used fewer than 3. Although many different prosthetic liners are available, prosthetists regularly use only a few select liner products. Tools or strategies to objectively compare prosthetic liners across manufacturers are likely needed to facilitate more diverse prescription practices. Clinical relevance Knowledge of prosthetists' prosthetic liner selection practices may guide development of evidence-based resources or tools to facilitate matching patients with appropriate liners. Results of this study may also inform researchers and manufacturers about desirable liner characteristics and direct development of novel liner products to address prosthetists' clinical needs.

  16. GAS PERMEABILITY OF GEOSYNTHETIC CLAY LINERS

    Directory of Open Access Journals (Sweden)

    Helena Vučenović

    2017-01-01

    Full Text Available Geosynthetic clay liners (GCL are manufactured hydraulic barriers consisting of mineral and geosynthetic components. They belong to a group of geosynthetic products whose primary purpose is to seal and they have been used in many geotechnical and hydrotechnical applications, landfi lls and liquid waste lagoons for quite a while. They are used in landfill final cover systems to prevent the infi ltration of precipitation into the landfi ll body and the penetration of gases and liquids from the landfill into the atmosphere and environment. Laboratory and fi eld research and observations on regulated landfi lls have proven the eff ectiveness of GCL as a barrier for the infi ltration of precipitation into the landfi ll body as well as the drainage of fl uid beneath the landfill. Due to the presence of high concentrations of gases in the landfill body, there is a growing interest in determining the efficiency of GCL as a gas barrier. It was not until the last twenty years that the importance of this topic was recognized. In this article, current GCL gas permeability studies, the testing methods and test results of gas permeability in laboratory conditions are described.

  17. Re-Use of Clean Coal Technology By-Products in the Construction of Low Permeability Liners. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, William E. [The Ohio State Univ., Columbus, OH (United States); Butalia, Tarunjit S. [The Ohio State Univ., Columbus, OH (United States); Walker, Harold [The Ohio State Univ., Columbus, OH (United States); Mitsch, William [The Ohio State Univ., Columbus, OH (United States)

    2005-07-15

    This final project report presents the results of a research program conducted at The Ohio State University from January 3, 2000 to June 30, 2005 to investigate the long-term use of stabilized flue gas desulfurization (FGD) materials in the construction of low permeability liners for ponds and wetlands. The objective of the research program was to establish long-term field-verified time-dependent relationships for the performance of liners constructed from stabilized FGD byproducts generated in Ohio. The project objective was accomplished with a coordinated program of testing and analyzing small-scale laboratory specimens under controlled conditions, mediumscale wetland experiments, and monitoring of a full-scale FGD-lined pond facility. Although the specific uses directly addressed by this report include liners for surface impoundments, the results presented in this study are also useful in other applications especially in the design of daily covers and liners for landfills, seepage cutoff walls and trenches, and for nutrient retention and pollution mitigation wetlands. The small-scale laboratory tests and monitoring of the full-scale FGD lined facility (capacity of one million gallons) shows that stabilized FGD materials can be used as low permeability liners in the construction of water and manure holding ponds. Actual long-term permeability coefficients in the range of 10-7 cm/sec (3 x 10-9 ft/sec) can be obtained in the field by compacting lime and fly ash enriched stabilized FGD materials. Leachate from the FGD material meets Ohio’s non-toxic criteria for coal combustion by-products, and for most potential contaminants the national primary and secondary drinking water standards are also met. The low permeability non-toxic FGD material investigated in this study poses very minimal risks, if any, for groundwater contamination. The FGD wetland experiments indicated no significant differences in phosphorus retention between the clay and FGD

  18. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    NARloy-Z alloy (Cu-3 percent, Ag-0.5 percent, Zr) is a state of the art alloy currently used for fabricating rocket engine combustion chamber liners. Research conducted at NASA-MSFC and Penn State – Applied Research Laboratory has shown that thermal conductivity of NARloy-Z can be increased significantly by adding diamonds to form a composite (NARloy-Z-D). NARloy-Z-D is also lighter than NARloy-Z. These attributes make this advanced composite material an ideal candidate for fabricating combustion chamber liner for an advanced rocket engine. Increased thermal conductivity will directly translate into increased turbopump power and increased chamber pressure for improved thrust and specific impulse. This paper describes the process development for fabricating a subscale high thermal conductivity NARloy-Z-D combustion chamber liner using Field Assisted Sintering Technology (FAST). The FAST process uses a mixture of NARloy-Z and diamond powders which is sintered under pressure at elevated temperatures. Several challenges were encountered, i.e., segregation of diamonds, machining the super hard NARloy-Z-D composite, net shape fabrication and nondestructive examination. The paper describes how these challenges were addressed. Diamonds coated with copper (CuD) appear to give the best results. A near net shape subscale combustion chamber liner is being fabricated by diffusion bonding cylindrical rings of NARloy-Z-CuD using the FAST process.

  19. Three Year RSA Evaluation of Vitamin E Diffused Highly Cross-linked Polyethylene Liners and Cup Stability.

    Science.gov (United States)

    Sillesen, Nanna H; Greene, Meridith E; Nebergall, Audrey K; Nielsen, Poul T; Laursen, Mogens B; Troelsen, Anders; Malchau, Henrik

    2015-07-01

    Vitamin E diffusion into highly cross-linked polyethylene (E-XLPE) is a method for enhancing oxidative stability of acetabular liners. The purpose of this study was to evaluate in vivo penetration of E-XLPE using radiostereometric analysis (RSA). Eighty-four hips were recruited into a prospective 10-year RSA. This is the first evaluation of the multicenter cohort after 3-years. All patients received E-XLPE liners (E1, Biomet) and porous-titanium coated cups (Regenerex, Biomet). There was no difference (P=0.450) in median femoral head penetration into the E-XLPE liners at 3-years comparing cobalt-chrome heads (-0.028mm; inter-quartile range (IQR) - 0.065 to 0.047) with ceramic heads (-0.043mm, IQR - 0.143to0.042). The 3-year follow-up indicates minimal E-XLPE liner penetration regardless of head material and minimal early cup movement. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Recent works carried out at the IDIEM by the group in charge of probabilistic strength of materials

    Directory of Open Access Journals (Sweden)

    Kittl, P.

    1990-09-01

    Full Text Available This updating review describes, from the conceptual standpoint, all the research works so far carried out at the IDIEM by the group in charge of Probabilistic Strength of Materials as well as research activities under way at present. This description considers three aspects. First, the general purposes of the commented discipline and the discussion of its theoretical foundations are presented. In the second place, an analysis is conducted in connection with materials subjected to diverse stresses of tension, compression, shearing, bending, torsion, eccentrical bending, and also subjected to buckling, eccentrical compressive and eccentrical tensile stresses: in all these cases the pertaining parameters of Weibull's function are determined. Thirdly, sundry engineering applications of said discipline are set out in such fields as, for example, soil mechanics, rock mechanics, seismology, nuclear reactors industry, fatigue, and concrete pavements. At last a brief description of research work now in progress is given.

    Se describen, desde un punto de vista conceptual, todos los trabajos desarrollados hasta la fecha por el grupo de Resistencia Probabilística de Materiales del IDIEM así como los que están actualmente en ejecución. Se consideran tres aspectos en la descripción. En primer lugar, se comentan los objetivos generales de la disciplina discutiendo su fundamentación teórica. En segundo lugar, se analizan casos de materiales sometidos a esfuerzos de tracción, compresión, corte, flexión, torsión, flexión excéntrica, pandeo, compresión y tracción excéntricas y la consecuente determinación de los parámetros de la función de Weibull en todos ellos. En tercer lugar, se mencionan las aplicaciones que esta disciplina tiene en la ingeniería, tales como en: mecánica de suelos, mecánica de rocas, fatiga, pavimentos de hormigón, sismología, industria nuclear, entre otras. Por último, se hace una sucinta descripción de los

  1. Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    National Research Council Canada - National Science Library

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung-Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao-Qing

    2014-01-01

    .... Here we report such changes in opposite directions for lithium molybdenum trioxide (Li2MoO3). A 'unit cell breathing' mechanism is proposed based on crystal and electronic structural changes of transition metal oxides during charge-discharge...

  2. Comparative evaluation of tensile bond strength of a polyvinyl acetate-based resilient liner following various denture base surface pre-treatment methods and immersion in artificial salivary medium: An in vitro study

    Directory of Open Access Journals (Sweden)

    Jacob M Philip

    2012-01-01

    Full Text Available Background and Aim: This study was formulated to evaluate and estimate the influence of various denture base resin surface pre-treatments (chemical and mechanical and combinations upon tensile bond strength between a poly vinyl acetate-based denture liner and a denture base resin. Materials and Methods: A universal testing machine was used for determining the bond strength of the liner to surface pre-treated acrylic resin blocks. The data was analyzed by one-way analysis of variance and the t-test (α =.05. Results: This study infers that denture base surface pre-treatment can improve the adhesive tensile bond strength between the liner and denture base specimens. The results of this study infer that chemical, mechanical, and mechano-chemical pre-treatments will have different effects on the bond strength of the acrylic soft resilient liner to the denture base. Conclusion: Among the various methods of pre-treatment of denture base resins, it was inferred that the mechano-chemical pre-treatment method with air-borne particle abrasion followed by monomer application exhibited superior bond strength than other methods with the resilient liner. Hence, this method could be effectively used to improve bond strength between liner and denture base and thus could minimize delamination of liner from the denture base during function.

  3. Contractor Software Charges

    National Research Council Canada - National Science Library

    Granetto, Paul

    1994-01-01

    .... Examples of computer software costs that contractors charge through indirect rates are material management systems, security systems, labor accounting systems, and computer-aided design and manufacturing...

  4. The influence of microstructure on charge separation dynamics in organic bulk heterojunction materials for solar cell applications

    KAUST Repository

    Scarongella, Mariateresa

    2014-01-01

    Light-induced charge formation is essential for the generation of photocurrent in organic solar cells. In order to gain a better understanding of this complex process, we have investigated the femtosecond dynamics of charge separation upon selective excitation of either the fullerene or the polymer in different bulk heterojunction blends with well-characterized microstructure. Blends of the pBTTT and PBDTTPD polymers with PCBM gave us access to three different scenarios: either a single intermixed phase, an intermixed phase with additional pure PCBM clusters, or a three-phase microstructure of pure polymer aggregates, pure fullerene clusters and intermixed regions. We found that ultrafast charge separation (by electron or hole transfer) occurs predominantly in intermixed regions, while charges are generated more slowly from excitons in pure domains that require diffusion to a charge generation site. The pure domains are helpful to prevent geminate charge recombination, but they must be sufficiently small not to become exciton traps. By varying the polymer packing, backbone planarity and chain length, we have shown that exciton diffusion out of small polymer aggregates in the highly efficient PBDTTPD:PCBM blend occurs within the same chain and is helped by delocalization. This journal is © the Partner Organisations 2014.

  5. Hydride reorientation and its impact on ambient temperature mechanical properties of high burn-up irradiated and unirradiated recrystallized Zircaloy-2 nuclear fuel cladding with an inner liner

    Science.gov (United States)

    Auzoux, Q.; Bouffioux, P.; Machiels, A.; Yagnik, S.; Bourdiliau, B.; Mallet, C.; Mozzani, N.; Colas, K.

    2017-10-01

    Precipitation of radial hydrides in zirconium-based alloy cladding concomitant with the cooling of spent nuclear fuel during dry storage can potentially compromise cladding integrity during its subsequent handling and transportation. This paper investigates hydride reorientation and its impact on ductility in unirradiated and irradiated recrystallized Zircaloy-2 cladding with an inner liner (cladding for boiling water reactors) subjected to hydride reorientation treatments. Cooling from 400 °C, hydride reorientation occurs in recrystallized Zircaloy-2 with liner at a lower effective stress in irradiated samples (below 40 MPa) than in unirradiated specimens (between 40 and 80 MPa). Despite significant hydride reorientation, unirradiated recrystallized Zircaloy-2 with liner cladding containing ∼200 wppm hydrogen shows a high diametral strain at fracture (>15%) during burst tests at ambient temperature. This ductile behavior is due to (1) the lower yield stress of the recrystallized cladding materials in comparison to hydride fracture strength (corrected by the compression stress arising from the precipitation) and (2) the hydride or hydrogen-depleted zone as a result of segregation of hydrogen into the liner layer. In irradiated Zircaloy-2 with liner cladding containing ∼340 wppm hydrogen, the conservation of some ductility during ring tensile tests at ambient temperature after reorientation treatment at 400 °C with cooling rates of ∼60 °C/h is also attributed to the existence of a hydride-depleted zone. Treatments at lower cooling rates (∼6 °C/h and 0.6 °C/h) promote greater levels of hydrogen segregation into the liner and allow for increased irradiation defect annealing, both of which result in a significant increase in ductility. Based on this investigation, given the very low cooling rates typical of dry storage systems, it can be concluded that the thermal transients associated with dry storage should not degrade, and more likely should actually

  6. Re-Use of Clean Coal Technology By-Products in the Construction of Low Permeability Liners. Final report, 10/1/1996 - 3/31/2000

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, William E. [The Ohio State Univ., Columbus, OH (United States); Butalia, Tarunjit S. [The Ohio State Univ., Columbus, OH (United States); Whitlach, Jr., E. Earl [The Ohio State Univ., Columbus, OH (United States); Mitsch, William [The Ohio State Univ., Columbus, OH (United States)

    2000-12-31

    This final project report presents the results of a research program conducted at The Ohio State University from October 1, 1996 to March 31, 2000 to investigate the use of stabilized flue gas desulfurization (FGD) materials in the construction of low permeability liners. The objective of the research program was to establish field-verified time-dependent relationships for the performance of liners constructed from stabilized FGD by-products generated in Ohio. The project objective was accomplished with a coordinated program of testing and analyzing small scale laboratory specimens under controlled conditions, medium-scale wetland mesocosms, and a full-scale pond facility. Although the specific uses directly addressed by this report include liners for surface impoundments, the results presented in this study are also useful in other applications including design of daily cover and liners for landfills, seepage cutoff walls and trenches and for nutrient retention and pollution mitigation wetlands. The small scale laboratory tests, medium scale mesocosm wetland experiments, and construction and monitoring of a full-scale FGD lined facility (capacity of one million gallons) shows that stabilized FGD materials can be used as low permeability liners in the construction of water and manure holding ponds, and constructed wetlands for wastewater treatment. Actual permeability coefficients in the range of 10-7 cm/sec (3 x 10-9 ft/sec) can be obtained in the field by properly compacting lime and fly ash enriched stabilized FGD materials. Leachate from the FGD material meets Ohio’s non-toxic criteria for coal combustion by-products, and for most potential contaminants the national primary and secondary drinking water standards are also met. The low permeability non-toxic FGD material investigated in this study poses very minimal risks, if any, for groundwater contamination. Constructed FGD-lined wetlands offer the opportunity for increased phosphorous

  7. Creep behaviour of a polymer-based underground support liner

    Science.gov (United States)

    Guner, Dogukan; Ozturk, Hasan

    2017-09-01

    All underground excavations (tunnels, mines, caverns, etc.) need a form of support to ensure that excavations remain safe and stable for the designed service lifetime. In the last decade, a new support material, thin spray-on liner (TSL) has started to take place of traditional underground surface supports of bolts and shotcrete. TSLs are generally cement, latex, polymer-based and also reactive or non-reactive, multi-component materials applied to the rock surface with a layer of few millimeter thickness. They have the advantages of low volume, logistics, rapid application and low operating cost. The majority of current TSLs are two-part products that are mixed on site before spraying onto excavation rock surfaces. Contrary to the traditional brittle supports, the high plastic behaviour of TSLs make them to distribute the loads on larger lining area. In literature, there is a very limited information exist on the creep behavior of TSLs. In this study, the creep behavior of a polymer-based TSL was investigated. For this purpose, 7-day cured dogbone TSL specimens were tested under room temperature and humidity conditions according to ASTM-D2990 creep testing standard. A range of dead weights (80, 60, 40, and 20 % of the tensile strength) were applied up to 1500 hours. As a result of this study, the time-dependent strain behavior of a TSL was presented for different constant load conditions. Moreover, a new equation was derived to estimate tensile failure time of the TSL for a given loading condition. If the tensile stress acting on the TSL is known, the effective permanent support time of the TSL can be estimated by the proposed relationship.

  8. An Evaluation of Long-Term Performance of Liner Systems for Low-Level Waste Disposal Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Arthur S. Rood; Annette L. Schafer; A. Jeffrey Sondrup

    2011-03-01

    Traditional liner systems consisting of a geosynthetic membrane underlying a waste disposal facility coupled with a leachate collection system have been proposed as a means of containing releases of low-level radioactive waste within the confines of the disposal facility and thereby eliminating migration of radionuclides into the vadose zone and groundwater. However, this type of hydraulic containment liner system is only effective as long as the leachate collection system remains functional or an overlying cover limits the total infiltration to the volumetric pore space of the disposal system. If either the leachate collection system fails, or the overlying cover becomes less effective during the 1,000’s of years of facility lifetime, the liner may fill with water and release contaminated water in a preferential or focused manner. If the height of the liner extends above the waste, the waste will become submerged which could increase the release rate and concentration of the leachate. If the liner extends near land surface, there is the potential for contamination reaching land surface creating a direct exposure pathway. Alternative protective liner systems can be engineered that eliminate radionuclide releases to the vadose zone during operations and minimizing long term migration of radionuclides from the disposal facility into the vadose zone and aquifer. Non-traditional systems include waste containerization in steel or composite materials. This type of system would promote drainage of clean infiltrating water through the facility without contacting the waste. Other alternatives include geochemical barriers designed to transmit water while adsorbing radionuclides beneath the facility. Facility performance for a hypothetical disposal facility has been compared for the hydraulic and steel containerization liner alternatives. Results were compared in terms of meeting the DOE Order 435.1 low-level waste performance objective of 25 mrem/yr all-pathways dose

  9. Comparative evaluation of tensile bond strength of silicone-based denture liners after thermocycling and surface treatment

    Directory of Open Access Journals (Sweden)

    Harsimran Kaur

    2015-01-01

    Full Text Available Purpose: To examine, evaluate, and compare the tensile bond strength of two silicone-based liners; one autopolymerizing and one heat cured, when treated with different chemical etchants to improve their adhesion with denture base resin. Materials and Methods: Hundred and sixty test specimens of heat-cured polymethyl methacrylate (PMMA were fabricated; out of which 80 specimens were tested for tensile bond strength after bonding it to autopolymerizing resilient liner (Ufigel P and rest 80 to heat-cured resilient liner (Molloplast B. Each main group was further divided into four subgroups of 20 specimens each, one to act as a control and three were subjected to surface treatment with different chemical etchants namely dichloromethane, MMA monomer, and chloroform. The two silicone-based denture liners were processed between 2 PMMA specimens (10 mm × 10 mm × 40 mm in the space provided by a spacer of 3 mm, thermocycled (5-55°C for 500 cycles, and then their tensile strength measurements were done in the universal testing machine. Results: One-way ANOVA technique showed a highly significant difference in the mean tensile bond strength values for all the groups. The Student′s t-test computed values of statistics for the compared groups were greater than the critical values both at 5% and at 1% levels. Conclusion: Surface treatment of denture base resin with chemical etchants prior to the application of silicone-based liner (Ufigel P and Molloplast-B increased the tensile bond strength. The increase was the highest with specimens subjected to 180 s of MMA surface treatment and the lowest with control group specimens.

  10. Protective effect of overlying geosynthetic on geomembrane liner observed from landfill field tests and inclined board laboratory experiments.

    Science.gov (United States)

    Chung, Moonkyung; Seo, Min Woo; Kim, Kang Suk; Park, Jun Boum

    2006-06-01

    Geosynthetic liner systems are generally installed in landfill sites to prevent toxic leachate from escaping into the adjoining environment by utilizing their impervious characteristics. Therefore, it is important to protect the geomembrane from being damaged or destroyed during all phases of landfilling, namely landfill construction, waste tipping and landfill closure. This paper presents firstly the observed performance of a geomembrane liner from a landfill site where the geomembrane liner was installed on the slopes of a Korean landfill; and secondly the results of an inclined board laboratory test. Two types of experiments were conducted to identify the protecting effect of the overlaying geosynthetic on the geomembrane liners. At a testing landfill site, the slope consisted of three different sub-inclines and two 2-m-wide intermediate levels. The sub-inclines were each 8 m in vertical height and their angle of inclination was 1: 1.5 (vertical: horizontal). The reported observations were made for a time period of approximately 1 year, until the landfill was filled with wastes to the top of the uppermost slope. In addition, inclined board laboratory tests were carried out. During the inclined board test, a base table is inclined slowly and steadily until the block located on the base table starts to slide, when the tension and displacements of two geosynthetics, namely the geomembrane liner and protecting geotextile, are measured. In conclusion, test results showed that the down-drag force generated by waste accumulation and sliding of upper material was to a large extent dissipated through the elongation of the protecting geosynthetic overlying the geomembrane and thus was not transferred to the geomembrane. Unless the protecting geosynthetic undergoes structural failure, this stress relaxation phenomenon continues to occur so that the magnitude of tensile force to be applied on the geomembrane remains marginal.

  11. Computational and experimental research of explosive meteorial devices with combined cumulative liners of the semi-sphere-cylinder shape

    Science.gov (United States)

    Fedorov, S. V.; Ladov, S. V.; Nikolskaya, Ya M.

    2017-10-01

    On the basis of numerical modeling within the two-dimensional axisymmetric problem of continuum mechanics and experimental studies, the features of the formation of high-speed compact elements using cumulative charges with liners of the combined form have been analysed.Such liners may have a jet-forming part in the form of a hemisphere, a slightly stretched semi-ellipsoid or a truncated sphere and an ellipsoid, as well as a cutting part in the form of a cylinder.The constructive solutions promoting increase in mass and high-speed parametrs of the compact element formed by explosion are proposed.The variants of steel combined cumulative liners as a part of an explosive device provided the formation of non-gradient elements with a mass from15 to a fraction of a gram moving at speeds from 7.5 to 10 km / s respectively are defined.Such fairly simple explosive devices can be used to simulate, in terrestrial conditions, single and group effects of micrometeorites and fragments of space debris on rocket and space equipment.

  12. Effect of hydrogen charging on fracture toughness obtained by small specimen of SUS304L : Study on low temperature materials used in WE-NET 19

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, T.; Saito, M.; Yuri, T. [National Institute for Materials Science (Japan). Materials Information Technology Station; Hirayama, Y. [Mitsubishi Heavy Industries Ltd. (Japan); Eguchi, H. [Ishikawajima-Harima Heavy Industries Co. Ltd. (Japan)

    2002-07-01

    The ductility of austenitic stainless steels even at cryogenic temperatures and a hydrogen environment make it a widely used material in cryogenic applications. The evaluation of mechanical properties of structural materials including weld metals at low temperatures is important, as fracture toughness of cryogenic materials is required for the design of large scale facilities such as clean energy to transport and store liquid hydrogen. The authors used a new testing procedure of J-evaluation on tensile test (JETT) to evaluate local fracture toughness of top, middle, bottom, and heat-affected zone of welds of SUS304L. The tests revealed that a decrease of 9 parts per million hydrogen-charging occurred in fracture toughness in 5 per cent and 10 per cent delta-ferrite welds, and that toughness decreased by only 4 parts per million hydrogen-charging in 10 per cent welds. The authors concluded that less amount of delta-ferrite weld has less influence of hydrogen embrittlement and a critical amount of hydrogen-charging. 7 refs., 1 tab., 5 figs.

  13. In-situ studies on the performance of landfill caps (compacted soil liners, geomembranes, geosynthetic clay liners, capillary barriers)

    Energy Technology Data Exchange (ETDEWEB)

    Melchior, S. [IGB - Ingenieurbuero fuer Grundbau, Hamburg (Germany)

    1997-12-31

    Since 1986 different types of landfill covers have been studied in-situ on the Georgswerder landfill in Hamburg, Germany. Water balance data are available for eight years. The performance of different carriers has been measured by collecting the leakage on areas ranging from 100 m{sup 2} to 500 m{sup 2}. Composite liners with geomembranes performed best, showing no leakage. An extended capillary barrier also performed well. The performance of compacted soil liners, however, decreased severely within five years due to desiccation, shrinkage and plant root penetration (liner leakage now ranging from 150 mm/a to 200 mm/a). About 50 % of the water that reaches the surface of the liner is leaking through it. The maximum leakage rates have increased from 2 x 10{sup -10} m{sup 3} m{sup -2} s{sup -1} to 4 x 10{sup -8} m{sup 3} m{sup -2} s{sup -1}. Two types of geosynthetic clay liners (GCL) have been tested for two years now with disappointing results. The GCL desiccated during the first dry summer of the study. High percolation rates through the GCL were measured during the following winter (45 mm resp. 63 mm in four months). Wetting of the GCL did not significantly reduce the percolation rates.

  14. Acoustic Liner Drag: Measurements on Novel Facesheet Perforate Geometries

    Science.gov (United States)

    Howerton, Brian M.; Jones, Michael G.

    2016-01-01

    Interest in characterization of the aerodynamic drag of acoustic liners has increased in the past several years. This paper details experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of several perforate-over-honeycomb liner configurations at flow speeds of centerline flow Mach number equals 0.3 and 0.5. Various perforate geometries and orientations are investigated to determine their resistance factors using a static pressure drop approach. Comparison of these resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 hertz at source sound pressure levels of 140 and 150 decibels. Educed impedance and attenuation spectra are used to determine the impact of variations in perforate geometry on acoustic performance.

  15. A semi-analytic model of magnetized liner inertial fusion

    CERN Document Server

    McBride, Ryan D

    2015-01-01

    Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primary fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized alpha-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original Ma...

  16. Beam-Wall interaction in the LHC liner

    CERN Document Server

    Mostacci, A

    2001-01-01

    The beam pipe foreseen for the LHC is rather unconventional. To shield the cold bore of the magnets from the synchrotron radiation emitted by protons at 7 TeV, a beam screen (the so called "liner") has been introduced practically along all the machine. The present design of the liner is a compromise among beam stability issues, vacuum requirements, heat load on the cold bore, electron cloud effects and mechanical constraints. Three main potential sources of beam energy loss in the actual LHC liner are addressed, namely the interaction with the pumping holes, the (sawtooth) surface corrugation and the effect of an azimuthally inhomogeneous metallic beam pipe modelling the high resistivity of the welding. The losses are estimated through a detailed electromagnetic analysis (by means of standard theories) seeking for analytical expressions of electromagnetic fields and/or coupling impedance. An analytical (or semi-analytical) approach is considered for each problem, to better understand the relevant parameters t...

  17. Non-contact optical three dimensional liner metrology

    CERN Document Server

    Sebring, R J; Salazar, M A

    2001-01-01

    Summary form only given, as follows. We optically captured the "as- built" geometry of NTLX cylindrical liners for Shiva Star using an ultra-precision ranging laser. We subsequently verified the resulting digitized geometry against the 3D CAD model of the part. The results confirmed that the liner contours are within designed tolerances but revealed subtle fabrication artifacts that would typically go undetected. These features included centimeters long waviness and saddle and bulge regions of 1 micron or less in magnitude. The laser technology typically provided 10 micron spatial resolution with 112 nanometer ranging precision. Atlas liners in the future may have to be diamond turned and will have the centimeter wavelength and 100 angstrom amplitude requirements. The advantages of using laser technology is 1) it avoids surface damage that may occur with conventional contact probes and 2) dramatically improves spatial resolution over CMM, LVDT, capacitance and inductance type probes. Our work is the result of...

  18. The Effect of Microwave Disinfection on Denture Base Polymers, Liners and Teeth: A Basic Overview

    Science.gov (United States)

    Katsimpali, Aspasia; Polyzois, Gregory

    2015-01-01

    The aim of this paper was to overview the current scientific knowledge concerning the effect of microwave disinfection on denture related material properties. Cross-infection control in dentistry is a significant issue in everyday clinical practice due to the recent increase in some infectious diseases such as hepatitis B, C and AIDS and therefore numerous methods of disinfection have been used. The most widespread method of disinfection used in everyday practice is chemical, however, studies have suggested that chemical disinfectants alter the physical and mechanical properties of the acrylic resins and enable the growth and proliferation of certain bacteria. Therefore, microwaves were introduced as an easy to use-and-access, low cost, chemical free alternative. The question that arose was if and in what way the microwave irradiation affected the denture related material properties. Microwaving affects the denture resin bases, liners and teeth in different ways. The results showed that microwave disinfection could be a safe alternative for the disinfection of denture bases and liners compared to the chemical one, when the procedure is carried out in dry conditions, but could possibly cause dimensional changes of clinical significance on them when the irradiation takes place in wet environment. It also seems to have no detrimental effects of clinical importance on the flexural properties, impact strength and hardness of denture resins and the bond, flexural strength, porosity and hardness of denture liners. The effects of microwave disinfection on the hardness of denture teeth and teeth/denture bond strength are still controversial and no safe conclusions can be drawn. PMID:27688409

  19. Influence of ozone and paracetic acid disinfection on adhesion of resilient liners to acrylic resin

    Science.gov (United States)

    2016-01-01

    PURPOSE The aim of this study was to evaluate the effect of paracetic acid (PAA) and ozone disinfection on the tensile bond strength (TBS) of silicone-based resilient liners to acrylic resins. MATERIALS AND METHODS One hundred and twenty dumbbell shaped heat-polymerized acrylic resins were prepared. From the mid segment of the specimens, 3 mm of acrylic were grinded off and separated parts were reattached by resilient liners. The specimens were divided into 2 control (control1, control7) and 4 test groups of PAA and ozone disinfection (PAA1, PAA7, ozone1 and ozone7; n=10). While control groups were immersed in distilled water for 10 min (control1) and 7 days (control7), test groups were subjected to PAA (16 g/L) or ozone rich water (4 mg/L) for 1 cycle (10 min for PAA and 60 min for ozone) per day for 7 days prior to tensile tests. Measurements of the TBS were analyzed using 3-way ANOVA and Tukey's HSD test. RESULTS Adhesive strength of Mollosil decreased significantly by application of ozone disinfection. PAA disinfection had no negative effect on the TBS values of Mollosil and Molloplast B to acrylic resin. Single application of ozone disinfection did not have any negative effect on TBS values of Molloplast B, but prolonged exposure to ozone decreased its adhesive strength. CONCLUSION The adhesion of resilient liners to acrylic was not adversely affected by PAA disinfection. Immersion in ozonated water significantly decreased TBS of Mollosil. Prolonged exposure to ozone negatively affects adhesion of Molloplast B to denture base materials. PMID:27555898

  20. Increased Electromer Formation and Charge Trapping in Solution-Processed versus Vacuum-Deposited Small Molecule Host Materials of Organic Light-Emitting Devices.

    Science.gov (United States)

    Cho, Yong Joo; Taylor, Scott; Aziz, Hany

    2017-11-22

    We investigate and compare between organic light-emitting devices (OLEDs) fabricated by solution-coating versus vacuum-deposition. Electroluminescence, photoluminescence, and chromatographic measurements on typical OLED host materials reveal significant electromer formation in layers fabricated by solution-processing, pointing to stronger intermolecular interactions in these systems. Delayed electroluminescence measurements reveal that solution-processed layers also have increased charge traps. The findings provide insights on the morphological differences between solution-processed and vacuum-deposited materials and shed light on the root causes behind the lower electroluminescence stability of solution-processed OLEDs.

  1. Peel bond strength of resilient liner modified by the addition of antimicrobial agents to denture base acrylic resin

    Directory of Open Access Journals (Sweden)

    Cristiane S. Alcântara

    2012-12-01

    Full Text Available In order to prolong the clinical longevity of resilient denture relining materials and reduce plaque accumulation, incorporation of antimicrobial agents into these materials has been proposed. However, this addition may affect their properties. OBJECTIVE: This study evaluated the effect of the addition of antimicrobial agents into one soft liner (Soft Confort, Dencril on its peel bond strength to one denture base (QC 20, Dentsply. MATERIAL AND METHODS: Acrylic specimens (n=9 were made (75x10x3 mm and stored in distilled water at 37ºC for 48 h. The drug powder concentrations (nystatin 500,000U - G2; nystatin 1,000,000U - G3; miconazole 125 mg - G4; miconazole 250 mg - G5; ketoconazole 100 mg - G6; ketoconazole 200 mg - G7; chlorhexidine diacetate 5% - G8; and 10% chlorhexidine diacetate - G9 were blended with the soft liner powder before the addition of the soft liner liquid. A group (G1 without any drug incorporation was used as control. Specimens (n=9 (75x10x6 mm were plasticized according to the manufacturers' instructions and stored in distilled water at 37ºC for 24 h. Relined specimens were then submitted to a 180-degree peel test at a crosshead speed of 10 mm/min. Data (MPa were analyzed by analysis of variance (α=0.05 and the failure modes were visually classified. RESULTS: No significant difference was found among experimental groups (p=0.148. Cohesive failure located within the resilient material was predominantly observed in all tested groups. CONCLUSIONS: Peel bond strength between the denture base and the modified soft liner was not affected by the addition of antimicrobial agents.

  2. Optimization of Microphone Locations for Acoustic Liner Impedance Eduction

    Science.gov (United States)

    Jones, M. G.; Watson, W. R.; June, J. C.

    2015-01-01

    Two impedance eduction methods are explored for use with data acquired in the NASA Langley Grazing Flow Impedance Tube. The first is an indirect method based on the convected Helmholtz equation, and the second is a direct method based on the Kumaresan and Tufts algorithm. Synthesized no-flow data, with random jitter to represent measurement error, are used to evaluate a number of possible microphone locations. Statistical approaches are used to evaluate the suitability of each set of microphone locations. Given the computational resources required, small sample statistics are employed for the indirect method. Since the direct method is much less computationally intensive, a Monte Carlo approach is employed to gather its statistics. A comparison of results achieved with full and reduced sets of microphone locations is used to determine which sets of microphone locations are acceptable. For the indirect method, each array that includes microphones in all three regions (upstream and downstream hard wall sections, and liner test section) provides acceptable results, even when as few as eight microphones are employed. The best arrays employ microphones well away from the leading and trailing edges of the liner. The direct method is constrained to use microphones opposite the liner. Although a number of arrays are acceptable, the optimum set employs 14 microphones positioned well away from the leading and trailing edges of the liner. The selected sets of microphone locations are also evaluated with data measured for ceramic tubular and perforate-over-honeycomb liners at three flow conditions (Mach 0.0, 0.3, and 0.5). They compare favorably with results attained using all 53 microphone locations. Although different optimum microphone locations are selected for the two impedance eduction methods, there is significant overlap. Thus, the union of these two microphone arrays is preferred, as it supports usage of both methods. This array contains 3 microphones in the upstream

  3. Axial magnetic field injection in magnetized liner inertial fusion

    Science.gov (United States)

    Gourdain, P.-A.; Adams, M. B.; Davies, J. R.; Seyler, C. E.

    2017-10-01

    MagLIF is a fusion concept using a Z-pinch implosion to reach thermonuclear fusion. In current experiments, the implosion is driven by the Z-machine using 19 MA of electrical current with a rise time of 100 ns. MagLIF requires an initial axial magnetic field of 30 T to reduce heat losses to the liner wall during compression and to confine alpha particles during fusion burn. This field is generated well before the current ramp starts and needs to penetrate the transmission lines of the pulsed-power generator, as well as the liner itself. Consequently, the axial field rise time must exceed hundreds of microseconds. Any coil capable of being submitted to such a field for that length of time is inevitably bulky. The space required to fit the coil near the liner, increases the inductance of the load. In turn, the total current delivered to the load decreases since the voltage is limited by driver design. Yet, the large amount of current provided by the Z-machine can be used to produce the required 30 T field by tilting the return current posts surrounding the liner, eliminating the need for a separate coil. However, the problem now is the field penetration time, across the liner wall. This paper discusses why skin effect arguments do not hold in the presence of resistivity gradients. Numerical simulations show that fields larger than 30 T can diffuse across the liner wall in less than 60 ns, demonstrating that external coils can be replaced by return current posts with optimal helicity.

  4. Synergistic Integration of Liner Shipping and Economic Development

    Directory of Open Access Journals (Sweden)

    Edvard Roškar

    2008-07-01

    Full Text Available Liner shipping with all its specific features plays an importantrole in the economic development of a country whose portsare involved. In the strategic goals of maritime policy for the period2005-2009 the European Commission stresses the needfor a sustainable environmental development and economicgrowth. Besides, it points out the necessity for the fulfilment ofall maritime potentials. Yet, individual EU member states frequentlycreate the environment, which discourages the developmentof their own national maritime economy. Unfortunately,this applies also to the Republic of Slovenia. The current paperoffers a detailed analysis of the weaknesses and benefits of theclassical liner shipping in present day.

  5. Fracture Test Methods for Plastically Responding COPV Liners

    Science.gov (United States)

    Dawicke, David S.; Lewis, Joseph C.

    2009-01-01

    An experimental procedure for evaluating the validity of using uniaxial tests to provide a conservative bound on the fatigue crack growth rate behavior small cracks in bi-axially loaded Composite Overwrapped Pressure Vessel (COPV) liners is described. The experimental procedure included the use of a laser notch to quickly generate small surface fatigue cracks with the desired size and aspect ratios. An out-of-plane constraint system was designed to allow fully reversed, fully plastic testing of thin sheet uniaxial coupons. Finally, a method was developed to determine to initiate small cracks in the liner of COPVs.

  6. Contestability of Container Liner Shipping Market in Alliance Era

    Directory of Open Access Journals (Sweden)

    Enna Hirata

    2017-03-01

    Full Text Available A cross section panel model is applied to estimate the effect that the Herfindahl-Hirschman Index (HHI has on container freight rates for a sample of six major container liner shipping routes during 2009 to 2011. The estimated coefficient of HHI is non-positive and statistically insignificant, indicating that higher concentration level does not lead to high price and the container liner shipping market is contestable for the period under consideration. The suggestion that efficiency can be achieved without actual competition in a contestable market is highly significant for policy makers.

  7. Measurement of the dynamic charge response of materials using low-energy, momentum-resolved electron energy-loss spectroscopy (M-EELS

    Directory of Open Access Journals (Sweden)

    Sean Vig, Anshul Kogar, Matteo Mitrano, Ali A. Husain, Vivek Mishra, Melinda S. Rak, Luc Venema, Peter D. Johnson, Genda D. Gu, Eduardo Fradkin, Michael R. Norman, Peter Abbamonte

    2017-10-01

    Full Text Available One of the most fundamental properties of an interacting electron system is its frequency- and wave-vector-dependent density response function, $\\chi({\\bf q},\\omega$. The imaginary part, $\\chi''({\\bf q},\\omega$, defines the fundamental bosonic charge excitations of the system, exhibiting peaks wherever collective modes are present. $\\chi$ quantifies the electronic compressibility of a material, its response to external fields, its ability to screen charge, and its tendency to form charge density waves. Unfortunately, there has never been a fully momentum-resolved means to measure $\\chi({\\bf q},\\omega$ at the meV energy scale relevant to modern electronic materials. Here, we demonstrate a way to measure $\\chi$ with quantitative momentum resolution by applying alignment techniques from x-ray and neutron scattering to surface high-resolution electron energy-loss spectroscopy (HR-EELS. This approach, which we refer to here as ``M-EELS" allows direct measurement of $\\chi''({\\bf q},\\omega$ with meV resolution while controlling the momentum with an accuracy better than a percent of a typical Brillouin zone. We apply this technique to finite-{\\bf q} excitations in the optimally-doped high temperature superconductor, Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ (Bi2212, which exhibits several phonons potentially relevant to dispersion anomalies observed in ARPES and STM experiments. Our study defines a path to studying the long-sought collective charge modes in quantum materials at the meV scale and with full momentum control.

  8. Liner Optimization Studies Using the Ducted Fan Noise Prediction Code TBIEM3D

    Science.gov (United States)

    Dunn, M. H.; Farassat, F.

    1998-01-01

    In this paper we demonstrate the usefulness of the ducted fan noise prediction code TBIEM3D as a liner optimization design tool. Boundary conditions on the interior duct wall allow for hard walls or a locally reacting liner with axially segmented, circumferentially uniform impedance. Two liner optimization studies are considered in which farfield noise attenuation due to the presence of a liner is maximized by adjusting the liner impedance. In the first example, the dependence of optimal liner impedance on frequency and liner length is examined. Results show that both the optimal impedance and attenuation levels are significantly influenced by liner length and frequency. In the second example, TBIEM3D is used to compare radiated sound pressure levels between optimal and non-optimal liner cases at conditions designed to simulate take-off. It is shown that significant noise reduction is achieved for most of the sound field by selecting the optimal or near optimal liner impedance. Our results also indicate that there is relatively large region of the impedance plane over which optimal or near optimal liner behavior is attainable. This is an important conclusion for the designer since there are variations in liner characteristics due to manufacturing imprecisions.

  9. Effect of liner and porcelain application on zirconia surface structure and composition

    Science.gov (United States)

    Alghazzawi, Tariq F; Janowski, Gregg M

    2016-01-01

    The purpose of this study was to determine if there is an effect of liner and porcelain application (layering and pressing techniques) on the surface of yttria-stabilized tetragonal zirconia polycrystals (Y-TZP), which were exposed to permutations of liner, layered porcelain, and pressed porcelain. Scanning electron microscope (SEM)/energy dispersive spectroscope (EDS) was used to identify changes in composition and microstructure after removing liner and porcelain with hydrofluoric acid. Simulated aging was also conducted to determine the effect of liner and porcelain on low-temperature degradation. The control group had a typical equiaxed grain structure, referred to as unaffected. When covered with liner or porcelain, some areas changed in structure and composition and were termed affected. The frequency of affected structure decreased when liner was covered with either layered porcelain or pressed porcelain. There were statistical differences (Pporcelain with liner: affected=60% (0.8%) (m/m), unaffected=69% (4%), layered porcelain without liner: affected=59% (3%), unaffected=65% (3%)) and oxygen (layered porcelain with liner: affected=35% (2%), unaffected=26% (4%), layered porcelain without liner: affected=35% (3%), unaffected=30% (2%)). However, there were statistical differences (Pporcelain without liner only. The liner should not be used before porcelain application, especially when using the layering technique for zirconia restorations. Furthermore, pressing should be considered the technique of choice over layering. PMID:27445089

  10. Degradation rate of sludge/fly ash mixture used as landfill liner; Nedbrytningshastigheten foer taetskikt uppbyggda av slam och aska

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus [AaF-Process AB, Stockholm (Sweden); Svensson, Malin; Ecke, Holger [Luleaa Univ. of Technology (Sweden)

    2005-10-01

    In order to be able to use mixtures of ash and sludge as landfill liner an important aspect is to demonstrate that the degradation of organic matter is slow enough. Therefore, the goal of this project has been to find out for how long a landfill liner material of sludge and ash will be stable and keep its function. The degradation of organic material in two different mixtures of sludge and ash has been studied in laboratory experiments. The rate of degradation was then estimated for barriers of sludge and ash, taking into account construction techniques (mixture, compaction, water content), climate conditions (freezing, drying) and biological processes (NaN{sub 3} additive). The effect of the degradation on the permeability has also been quantified. Organic material may disappear for the landfill liner material through 1) initial leaching of soluble organic material, 2) leaching of organic material after chemical reactions or 3) evaporation during biological degradation. Bacterial activity was not found in the sludge/ash mixtures during the experiments. Therefore, the organic material is probably reduced mainly though leaching according to 1) and 2). The leached amount of TOC (total organic carbon) was measured for all samples of sludge/ash in several experimental cycles. The leached amount of TOC was compared to the initial amount of TOC in the material. The results show a small initial reduction of organic material through leaching but the TOC content in the material is then stabilized. In relation to the total weight of the material the leaching of TOC was similar for the mixtures with 80 % ash and 20 % ash. However, this means that a larger amount of TOC was leached out from the mixtures with a high ash content since the initial amount of organic material was smaller. General conclusions about which ash-sludge ratio that is suitable for a landfill liner material could not be drawn from the experiments from a degradation point of view. If the initial

  11. Adenosine triphosphate bioluminescence for hygiene testing of rubber liners and tubes on dairy farms.

    Science.gov (United States)

    Lindell, Ida Clemensson; Lundh, Åse; Sjaunja, Kerstin Svennersten; Cederholm, Marika

    2017-12-28

    Prevention of biofilm formation in milking equipment is important to ensure good hygiene quality of raw milk. Key factors to achieving good results are a successful cleaning procedure and a method to check the cleanliness of milking equipment surfaces. Adenosine triphosphate bioluminescence is a fast and easy method for investigating bacterial contamination of surfaces. However, previous studies on the potential of ATP bioluminescence to assess the hygiene status of milking equipment have been hampered by lack of a validated test procedure. The aim of this work was therefore to establish a test procedure for assessing the cleanliness of milking equipment using ATP bioluminescence, and apply the method on-farm to study the hygiene status of aging rubber material in milking equipment. In developing the test procedure, the effects of sampling location in tubes and liners, sampling of dry versus wet barrels, milking point in the parlor, and acid or alkali detergent on ATP values were investigated. The results showed that, to obtain reproducible results, replicate sampling from the same milking points in the parlor is important. For milk tubes, samples should preferably be taken from the milk meter side, for liners on the inside of the barrel. For best results, sampling should be performed after use of alkali detergent. No beneficial effect was observed of sampling dry liner barrels, so sampling in the standardized test procedure is performed directly after cleaning. The standardized test procedure was used on 3 different commercial farms and sampling was initiated after replacement of old rubber parts. On one of the farms, additional sampling was performed to evaluate total bacteria count and determine the association with ATP level. The results suggest that, provided an efficient cleaning procedure is used, the hygiene quality of milking equipment can be maintained during the recommended lifetime of the rubberware. However, due to occasional variation in cleaning

  12. Peel bond strength of resilient liner modified by the addition of antimicrobial agents to denture base acrylic resin.

    Science.gov (United States)

    Alcântara, Cristiane S; Macêdo, Allana F C de; Gurgel, Bruno C V; Jorge, Janaina H; Neppelenbroek, Karin H; Urban, Vanessa M

    2012-01-01

    In order to prolong the clinical longevity of resilient denture relining materials and reduce plaque accumulation, incorporation of antimicrobial agents into these materials has been proposed. However, this addition may affect their properties. This study evaluated the effect of the addition of antimicrobial agents into one soft liner (Soft Confort, Dencril) on its peel bond strength to one denture base (QC 20, Dentsply). Acrylic specimens (n=9) were made (75x10x3 mm) and stored in distilled water at 37 ºC for 48 h. The drug powder concentrations (nystatin 500,000 U--G2; nystatin 1,000,000 U--G3; miconazole 125 mg--G4; miconazole 250 mg--G5; ketoconazole 100 mg - G6; ketoconazole 200 mg--G7; chlorhexidine diacetate 5%--G8; and 10% chlorhexidine diacetate--G9) were blended with the soft liner powder before the addition of the soft liner liquid. A group (G1) without any drug incorporation was used as control. Specimens (n=9) (75x10x6 mm) were plasticized according to the manufacturers' instructions and stored in distilled water at 37 ºC for 24 h. Relined specimens were then submitted to a 180-degree peel test at a crosshead speed of 10 mm/min. Data (MPa) were analyzed by analysis of variance (α=0.05) and the failure modes were visually classified. No significant difference was found among experimental groups (p=0.148). Cohesive failure located within the resilient material was predominantly observed in all tested groups. Peel bond strength between the denture base and the modified soft liner was not affected by the addition of antimicrobial agents.

  13. The effect of rebonding and liner type on microleakage of Class V amalgam restorations

    Directory of Open Access Journals (Sweden)

    Moosavi H.

    2008-10-01

    Full Text Available Background and Aim: Application of varnish and dentin bonding agents can effectively reduce microleakage under amalgam restorations. Also rebonding may show some effects on microleakage and its complications. The aim of this study was to evaluate the effect of liner/ adhesives on microleakage of Class V amalgam restoration with or without rebonding. Materials and Methods: In this in vitro study Class V cavities were prepared on sixty sound human maxillary premolars with the gingival floor 1mm below the CEJ. Cases were divided into six groups of ten teeth each. Specimens in group 1 and 2 were lined with Copalite and Scotchbond Multi-Purpose (SBMP respectively. In the third group (control no liner was applied. The teeth were then restored with spherical amalgam. Specimens in group 4 to 6 received the same treatments but after filling, the interfaces of restorations and teeth were etched with 37% phosphoric acid gel, rinsed and dried. Adhesive resin of SBMP was applied over amalgam and tooth margins and polymerized (rebonding. Specimens were thermocycled, exposed to dye and sectioned. Microleakage was graded (0-3 using a stereomicroscope at X40 magnification. Data were analyzed with Kruskal-Wallis, Mann-Whitney and Wilcoxon pair wise statistical tests. P<0.05 was considered as the limit of significance. Results: The groups lined with SBMP showed the lowest and the groups without liner the highest microleakage (p= 0.001. Significant difference was observed in microleakage mean rank of enamel and dentin margins (p=0.048. Rebonding with resin did not improve the seal (p> 0.05. Conclusion: Based on the results of this study, total etch adhesive system had significant effect on microleakage of Class V amalgam restorations especially in cervical margin. Rebonding did not show a significant effect on microleakage.

  14. Simultaneous Fleet Deployment and Network Design of Liner Shipping

    DEFF Research Database (Denmark)

    Gelareh, Shahin; Pisinger, David

    A mixed integer linear programming formulation is proposed for the simultaneous design of network and fleet deployment of a liner service providers for deep-sea shipping. The underlying network design problem is based on a 4-index (5-index by considering capacity type) formulation of the hub...

  15. Diagnostic Techniques to Elucidate the Aerodynamic Performance of Acoustic Liners

    Science.gov (United States)

    June, Jason; Bertolucci, Brandon; Ukeiley, Lawrence; Cattafesta, Louis N., III; Sheplak, Mark

    2017-01-01

    In support of Topic A.2.8 of NASA NRA NNH10ZEA001N, the University of Florida (UF) has investigated the use of flow field optical diagnostic and micromachined sensor-based techniques for assessing the wall shear stress on an acoustic liner. Stereoscopic particle image velocimetry (sPIV) was used to study the velocity field over a liner in the Grazing Flow Impedance Duct (GFID). The results indicate that the use of a control volume based method to determine the wall shear stress is prone to significant error. The skin friction over the liner as measured using velocity curve fitting techniques was shown to be locally reduced behind an orifice, relative to the hard wall case in a streamwise plane centered on the orifice. The capacitive wall shear stress sensor exhibited a linear response for a range of shear stresses over a hard wall. PIV over the liner is consistent with lifting of the near wall turbulent structure as it passes over an orifice, followed by a region of low wall shear stress.

  16. The Liner Shipping Routing and Scheduling Problem Under Environmental Considerations

    DEFF Research Database (Denmark)

    Dithmer, Philip; Reinhardt, Line Blander; Kontovas, Christos

    2017-01-01

    This paper deals with the Liner Shipping Routing and Scheduling Problem (LSRSP), which consists of designing the time schedule for a vessel to visit a fixed set of ports while minimizing costs. We extend the classical problem to include the external cost of ship air emissions and we present some...

  17. A matheuristic for the liner shipping network design problem

    DEFF Research Database (Denmark)

    Brouer, Berit Dangaard; Desaulniers, Guy; Pisinger, David

    2014-01-01

    and removals on each service. Computational results are reported for the benchmark suite LINER-LIB 2012 following the industry standard of weekly departures on every schedule. The heuristic shows overall good performance and is able to find high quality solutions within competitive execution times...

  18. Applied algorithm in the liner inspection of solid rocket motors

    Science.gov (United States)

    Hoffmann, Luiz Felipe Simões; Bizarria, Francisco Carlos Parquet; Bizarria, José Walter Parquet

    2018-03-01

    In rocket motors, the bonding between the solid propellant and thermal insulation is accomplished by a thin adhesive layer, known as liner. The liner application method involves a complex sequence of tasks, which includes in its final stage, the surface integrity inspection. Nowadays in Brazil, an expert carries out a thorough visual inspection to detect defects on the liner surface that may compromise the propellant interface bonding. Therefore, this paper proposes an algorithm that uses the photometric stereo technique and the K-nearest neighbor (KNN) classifier to assist the expert in the surface inspection. Photometric stereo allows the surface information recovery of the test images, while the KNN method enables image pixels classification into two classes: non-defect and defect. Tests performed on a computer vision based prototype validate the algorithm. The positive results suggest that the algorithm is feasible and when implemented in a real scenario, will be able to help the expert in detecting defective areas on the liner surface.

  19. Retrospective Study of In-Service CIPP Liners

    Science.gov (United States)

    Cured-in-place pipe (CIPP) has been used for rehabilitation of deteriorating wastewater pipes for nearly 30 years in the US with much success. However, little quantitative data is available regarding the performance of these liners, to verify their estimated design life of 50 yea...

  20. FORENSIC INVESTIGATION OF A GENERATION OLD CIPP LINER

    Science.gov (United States)

    There is limited information regarding the in-situ performance of rehabilitation methods used for prolonging the service life of buried municipal pipeline systems. With some CIPP liners nearly 30 years in service, municipalities are expressing a strong interest in the collection ...

  1. Thermal boundary effects on a GT liner structure

    NARCIS (Netherlands)

    Salvatore, M.; Laget, H.; Vanderhaegen, E.; Altunlu, A.C.; Tufano, S.; Daumantas, Ciplys

    2012-01-01

    GT combustor liners are subjected to mechanical and thermal loads that damage the structure and reduce their operational life. Among those, the thermo-acoustic instabilities develop, generating pressure oscillations because of the interaction between heat release, acoustic waves and structure

  2. Contoured-gap coaxial guns for imploding plasma liner experiments

    Science.gov (United States)

    Witherspoon, F. D.; Case, A.; Brockington, S.; Cassibry, J. T.; Hsu, S. C.

    2014-10-01

    Arrays of supersonic, high momentum flux plasma jets can be used as standoff compression drivers for generating spherically imploding plasma liners for driving magneto-inertial fusion, hence the name plasma-jet-driven MIF (PJMIF). HyperV developed linear plasma jets for the Plasma Liner Experiment (PLX) at LANL where two guns were successfully tested. Further development at HyperV resulted in achieving the PLX goal of 8000 μg at 50 km/s. Prior work on contoured-gap coaxial guns demonstrated an approach to control the blowby instability and achieved substantial performance improvements. For future plasma liner experiments we propose to use contoured-gap coaxial guns with small Minirailgun injectors. We will describe such a gun for a 60-gun plasma liner experiment. Discussion topics will include impurity control, plasma jet symmetry and topology (esp. related to uniformity and compactness), velocity capability, and techniques planned for achieving gun efficiency of >50% using tailored impedance matched pulse forming networks. Mach2 and UAH SPH code simulations will be included. Work supported by US DOE DE-FG02-05ER54810.

  3. The liner shipping berth scheduling problem with transit times

    DEFF Research Database (Denmark)

    Reinhardt, Line Blander; Plum, Christian E.M.; Pisinger, David

    2016-01-01

    In this paper speed optimization of an existing liner shipping network is solved by adjusting the port berth times. The objective is to minimize fuel consumption while retaining the customer transit times including the transhipment times. To avoid too many changes to the time table, changes of port...

  4. Hydrodynamic Liner Experiments Using the Ranchero Flux Compression Generator System

    Energy Technology Data Exchange (ETDEWEB)

    Goforth, J.H.; Atchison, W.L.; Fowler, C.M.; Lopez, E.A.; Oona, H.; Tasker, D.G.; King, J.C.; Herrera, D.H.; Torres, D.T.; Sena, F.C.; McGuire, J.A.; Reinovsky, R.E.; Stokes, J.L.; Tabaka, L.J.; Garcia, O.F.; Faehl, R.J.; Lindemuth, I.R.; Keinigs, R.K.; Broste, B.

    1998-10-18

    The authors have developed a system for driving hydrodynamic liners at currents approaching 30 MA. Their 43 cm module will deliver currents of interest, and when fully developed, the 1.4 m module will allow similar currents with more total system inductance. With these systems they can perform interesting physics experiments and support the Atlas development effort.

  5. Performance of semi-transportation-cooled liner in high-temperature-rise combustors

    Science.gov (United States)

    Wear, J. D.; Trout, A. M.; Smith, J. M.

    1981-01-01

    Results from tests with the Lamilloy combustor liner are compared with results obtained from a conventionally designed, film cooled, step-louver liner. Operation of the Lamilloy liner with counterrotating swirl combustor fuel modules with mixing venturis was possible to a fuel-air ratio of 0.065 without obtaining excessive liner metal temperatures. At the 0.065 fuel-air condition the average liner metal temperature was 140 K and the maximum local temperature 280 K above the inlet air temperature. Combustion efficiency, pattern factor, and smoke data are discussed.

  6. Investigation of electronic band structure and charge transfer mechanism of oxidized three-dimensional graphene as metal-free anodes material for dye sensitized solar cell application

    Science.gov (United States)

    Loeblein, Manuela; Bruno, Annalisa; Loh, G. C.; Bolker, Asaf; Saguy, Cecile; Antila, Liisa; Tsang, Siu Hon; Teo, Edwin Hang Tong

    2017-10-01

    Dye-sensitized solar cells (DSSCs) offer an optimal trade-off between conversion-efficiency and low-cost fabrication. However, since all its electrodes need to fulfill stringent work-function requirements, its materials have remained unchanged since DSSC's first report early-90s. Here we describe a new material, oxidized-three-dimensional-graphene (o-3D-C), with a band gap of 0.2 eV and suitable electronic band-structure as alternative metal-free material for DSSCs-anodes. o-3D-C/dye-complex has a strong chemical bonding via carboxylic-group chemisorption with full saturation after 12 sec at capacity of ∼450 mg/g (600x faster and 7x higher than optimized metal surfaces). Furthermore, fluorescence quenching of life-time by 28-35% was measured demonstrating charge-transfer from dye to o-3D-C.

  7. Charge gradient microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, Andreas; Hong, Seungbum

    2018-02-06

    A method for rapid imaging of a material specimen includes positioning a tip to contact the material specimen, and applying a force to a surface of the material specimen via the tip. In addition, the method includes moving the tip across the surface of the material specimen while removing electrical charge therefrom, generating a signal produced by contact between the tip and the surface, and detecting, based on the data, the removed electrical charge induced through the tip during movement of the tip across the surface. The method further includes measuring the detected electrical charge.

  8. Discharge/charge reaction mechanisms of FeS2 cathode material for aluminum rechargeable batteries at 55°C

    Science.gov (United States)

    Mori, Takuya; Orikasa, Yuki; Nakanishi, Koji; Kezheng, Chen; Hattori, Masashi; Ohta, Toshiaki; Uchimoto, Yoshiharu

    2016-05-01

    The aluminum rechargeable battery is a desirable device for large-scale energy storage owing to the high capacity derived from the properties of the aluminum metal anode. The development of cathode materials is needed to compose battery systems. However, the design principles of the cathode materials have not been determined. We focus on the high capacity FeS2 cathode materials and investigate the discharge/charge reaction mechanisms in chloroaluminate ionic liquids as the electrolyte at 55°C. X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements are performed for the discharged and charged samples. S 3p-orbitals are shown to play an important role in the redox reactions from the results of the S and Fe K-edge XANES spectra. As a result of the redox reaction, FeS2 is transformed into low crystalline FeS and amorphous Al2S3, as shown by the XRD and S, Al, and Fe K-edge XANES spectra. This reaction mechanism is different from the reaction observed with lithium ion.

  9. Effect of denture base surface pretreatment on microleakage of a silicone-based resilient liner.

    Science.gov (United States)

    Saraç, Y Sinasi; Başoğlu, Tarik; Ceylan, Gözlem K; Saraç, Duygu; Yapici, Oktay

    2004-09-01

    Microleakage between resilient liner and denture base resins is a significant clinical problem, often responsible for debonding of the resilient liner from the denture base resin. This study investigated the effect of 2 surface treatments, airborne-particle abrasion (APA) and wetting with methyl methacrylate monomer (MMA), on microleakage between a silicone-based resilient liner and denture base resin using a gamma camera imaging technique. Thirty-three specimens, each having 2 plates measuring 40 x 40 x 2 mm, were prepared by packing and processing an acrylic denture base resin (QC-20) into square plates following manufacturer's instructions. Specimens were divided into 3 groups (n=11) as APA-, MMA-, and control-treatment groups. For the APA group, the inner surfaces of both plates were airborne-particle abraded with 250-microm Al 2 O 3 particles and, for the MMA group, surfaces were treated with monomer (QC-20). Control specimens were not surface treated. Following application of an adhesive (Ufi Gel P-specific), a silicone lining material (Ufi Gel P) was prepared and applied to the inner surfaces of all 33 specimens. Eleven size-matched polymethyl methacrylate (PMMA) specimen blocks (40 x 40 x 6 mm) were prepared to calculate the level of residual radioactivity for the denture base itself, the entire outer surface count (OSC). All specimens and PMMA blocks were immersed in a radioactive solution (thallium-201 chloride) for 24 hours. Specimen activities (gamma-ray cts/sec, representing thallium-201 concentration) were then measured using a high-resolution gamma camera. The amount of OSC-subtracted total specimen counts was a direct indicator of the quantity of inward diffusing tracer. The subtracted values were analyzed using a 1-way analysis of variance (ANOVA) and Bonferroni multiple comparison tests (alpha=.05). OSC levels averaged 754 +/- 110 gamma-ray cts/sec. OSC-subtracted APA, control, and MMA values were 5,546 +/- 1,534, 3,392 +/- 738, and 1,405 +/- 392

  10. Peel strength of denture liner to PMMA and polyamide: laser versus air-abrasion

    Science.gov (United States)

    Bagis, Bora; Özcan, Mutlu; Durkan, Rukiye; Turgut, Sedanur; Ates, Sabit Melih

    2013-01-01

    PURPOSE This study investigated the effect of laser parameters and air-abrasion on the peel strength of silicon-based soft denture liner to different denture resins. MATERIALS AND METHODS Specimens (N=180) were prepared out of three different denture base resins (Rodex, cross-linked denture base acrylic resin; Paladent, heat-cured acrylic resin; Deflex, Polyamide resin) (75 mm × 25 mm × 3 mm). A silicon-based soft denture liner (Molloplast B) was applied to the denture resins after the following conditioning methods: a) Air-abrasion (50 µm), b) Er,Cr:YSGG laser (Waterlase MD Turbo, Biolase Technology) at 2 W-20 Hz, c) Er,Cr:YSGG laser at 2 W-30 Hz, d) Er,Cr:YSGG laser at 3 W-20 Hz, e) Er,Cr:YSGG laser at 3 W-30 Hz. Non-conditioned group acted as the control group. Peel test was performed in a universal testing machine. Failure modes were evaluated visually. Data were analyzed using two-way ANOVA and Tukey's test (α=.05). RESULTS Denture liner tested showed increased peel strength after laser treatment with different parameters (3.9±0.4 - 5.58±0.6 MPa) compared to the control (3.64±0.5 - 4.58±0.5 MPa) and air-abraded groups (3.1±0.6 - 4.46±0.3 MPa), but the results were not statistically significant except for Paladent, with the pretreatment of Er,Cr:YSGG laser at 3 W-20 Hz. Polyamide resin after air-abrasion showed significantly lower peel strength than those of other groups (3.1±0.6 MPa). CONCLUSION Heat-cured acrylic resin, PMMA, may benefit from Er,Cr:YSGG laser treatment at 3 W-20 Hz irradiation. Air-abrasion of polyamide resins should be avoided not to impair their peel bond strengths to silicon-based soft denture liners. PMID:24049570

  11. Car-Parrinello molecular dynamics study of the charge-discharge cycle in lithium-ion battery materials

    Science.gov (United States)

    Kung, Y. F.; Jia, C. J.; Gent, W. E.; Lee, I.; Moritz, B.; Devereaux, T. P.

    Lithium-ion transition metal oxide compounds have shown great potential for use as battery electrodes. However, the underlying structural modifications which accompany delithiation during battery charging remain less well understood. Formation of peroxide-like species and cation migration between layers comprise two promising candidates for describing numerous experimental observations. Taking Li2RuO3 as a model system, we use Car-Parrinello molecular dynamics to examine the structural changes that occur during delithiation and lithiation. We compare our results to existing experimental observations in other compounds and provide guidance for future experiments, including resonant inelastic x-ray scattering (RIXS).

  12. A comparative survey on the increased fracture resistance of amalgam restored teeth using three types of Glass Ionomer as adhesive liners

    Directory of Open Access Journals (Sweden)

    Shafiee F.

    2004-08-01

    Full Text Available Statement of Problem: Because dental amalgam does not adhere to tooth structure, using adhesive cements in amalgam-bonded restorations have been increased. Purpose: The goal of this in-vitro study was to compare the effects of three types of glass ionomer as adhesive liners as well as varnish liner in increasing fracture resistance of teeth restored with amalgam. Materials and Methods: Seventy extracted human maxillary premolars were selected and MOD cavities were prepared on them excluding ten intact teeth as positive control group and ten cavity prepared teeth without restoration as negative control group. All the prepared teeth were then restored with spherical amalgam (gs.80 with one of the following liners silver alloy glass ionomer liner, conventional glass ionomer liner, varnish liner, resin-modified glass ionomer and resin-modified glass ionomer with delayed light curing. The teeth were stored in 37C distilled water for 7 days and were then loaded under compressive strength using an Instron testing machine. The force required to fracture teeth were recorded and the data were analyzed statistically using ANOVA and Tukey HSD tests. Results: Statistically significant differences were observed in fracture resistance between restored and non-restored samples. Comparisons between groups attributed significant effects to resin-modified glass ionomer in increasing fracture resistance of amalgam restored teeth (P<0.05. In most specimens, one cusp was separated from tooth structure whereas amalgam remained bonded to the intact cusp. Conclusion: According to these findings, resin-modified glass ionomer put a statistically significant effect in fracture resistance of amalgam-restored teeth.

  13. Synthesis and Characterization of Porous Carbon-MoS2 Nanohybrid Materials for Charge-Enhanced Electrocatalysis

    NARCIS (Netherlands)

    Dolinska, J.; Chidambaram, A.; Adamkiewicz, W.; Estili, M.; Lisowski, W.; Iwan, M.; Palys, B.; Sudholter, E.J.R.; Marken, F.; Opallo, M.; Rassaei, L.

    2016-01-01

    Porous carbon nanohybrids are promising materials as high-performance electrodes for both sensing and energy conversion applications. This is mainly due to their high specific surface area and specific physicochemical properties. Here, new porous nanohybrid materials are developed based on

  14. Charge collection efficiency in SI GaAs grown from melts with variable composition as a material for solar neutrino detection

    CERN Document Server

    Verbitskaya, E; Ivanov, A; Strokan, N; Vasilev, V; Markov, A; Polyakov, A; Gavrin, V; Kozlova, Y; Veretenkin, E; Bowles, T J

    2000-01-01

    The results on electrical characteristics and charge collection efficiency in the detectors from bulk SI GaAs developed as a material for solar neutrino spectroscopy are presented. SI GaAs crystals were grown by the Czochralski method. The changes in the stoichiometric components are permanently controlled. It is shown that the performance of GaAs p sup + -i-n sup + structures provided the range of operational reverse voltage up to 1 kV. Measurement of deep level spectra and their analysis reveal the dominant deep levels - hole traps E sub v +0.51 and +0.075 eV in GaAs grown from stoichiometric and nonstoichiometric melts, respectively. Investigation of carrier transport properties and bulk homogeneity evinced in charge collection efficiency has shown advantageous results for SI GaAs grown from stoichiometric melt. The reduction of carrier transport parameters and charge collection efficiency in GaAs grown from nonstoichiometric melt is analyzed taking into consideration formation of the hole trap E sub v +0....

  15. The Role of Charge Density and Hydrophobicity on the Biocidal Properties of Self-Protonable Polymeric Materials.

    Science.gov (United States)

    Matrella, Simona; Vitiello, Carmela; Mella, Massimo; Vigliotta, Giovanni; Izzo, Lorella

    2015-07-01

    Intrinsic antimicrobial thermoplastic A(BC)n copolymers (n = 1, 2, 4), where A was poly(ethylene glycol) (PEG), BC was a random chain of methylmethacrylate (MMA), and alkyl-aminoethyl methacrylate (AAEMA), were synthesized and the antimicrobial activity and hemolyticity were evaluated on plaques obtained by casting as a function of the architecture, the N-substituent groups of the AAEMAs (methyl, ethyl, isopropyl, and tert-butyl groups) and the hydrophobic/charge density balance. Antimicrobial effectiveness and efficiency is controlled by the surface charge density and by the influence of N-alkyl groups on the surface morphology. Also interestingly, it is the absence of hemolitytic activity in all copolymers. In presence of Escherichia coli, the A(BC)2 copolymer with 40% of N-methyl groups is the most efficient, killing 91% of the bacteria already after 1.5 h. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Consideration of liners and covers in performance assessments

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, Mark A. [Savannah River National Laboratory, Aiken, SC (United States); Seitz, Robert R. [Savannah River National Laboratory, Aiken, SC (United States); Suttora, Linda C. [USDOE Enviromental Management, Washington, DC (United States)

    2014-09-18

    On-site disposal cells are in use and being considered at several United States Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These disposal cells are typically regulated by States and/or the U.S. Environmental Protection Agency under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) in addition to having to comply with requirements in DOE Order 435.1, Radioactive Waste Management due to the radioactive waste. The USDOE-Environmental Management Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these CERCLA disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to CERCLA risk assessments and DOE Order 435.1 performance assessments in support of a Record of Decision and Disposal Authorization Statement, respectively. One of the issues considered by the working group, which is addressed in this report, was how to appropriately consider the performance of covers and liners/leachate collections systems in the context of a DOE Order 435.1 performance assessment (PA). This same information may be appropriate for consideration within CERCLA risk assessments for these facilities. These OSDCs are generally developed to meet hazardous waste (HW) disposal design standards under the Resource Conservation and Recovery Act (RCRA) as well as the DOE Order 435.1 performance based standards for disposal of radioactive waste. To meet the standards for HW, the facilities typically include engineered covers and liner/leachate collection systems. Thus, when considering such facilities in the context of a DOE Order 435.1 PA, there is a need to address the evolution of performance of covers and liner/leachate collection systems in the context of meeting a performance standard considering time

  17. Thin Spray-on Liner - a potential application. Demonstrated at a longwall installation on Dendrobium mine

    Energy Technology Data Exchange (ETDEWEB)

    Byrnes, Roger [BHP Billiton, NSW (Australia). Dendrobium Mine; Martin, Philip [BASF AG Australia (Australia). BASF-CC Australia Ltd' s

    2008-08-21

    The paper describes a potential application of a Thin Spray-on Liner, on a longwall installation in Australia. The BHPBilliton mine, Dendrobium, is a relatively new mine in the Southern New South Wales coalfields, near to Wollongong. Normal installation and start-up operations for a new longwall face is to completely rock bolt and mesh the face. The operations use plastic/glassfibre cutable rock bolts, with steel/plastic mesh to prevent spalling. The biggest problem on face start up is the sheets of steel or plastic mesh getting wrapped around the shearer disc, which requires time consuming additional work removing the mesh. BASF Construction Chemicals Australia Pty Ltd's Underground Construction group, (UGC), proposed the use of Masterseal 845A, a fast sprayable cementitious/polymer membrane material that could be trialed and used to replace the steel mesh, as a surface support in unison with the conventional cutable rock bolts. The application took 12 h spraying to cover the 240 m long face line which averaged about 3.3 m high. The product was sprayed between 3.5 m to 4 mm thick, and according to the mine operators was at least three times quicker than mesh installation, not withstanding the savings in transport of the awkward bundles of mesh. In conclusion the Thin Spray-on Liner (TSL) performed adequately and achieved it's objective in this installation at Dendrobium mine. (orig.)

  18. Hydraulic conductivity of compacted clay liners permeated with inorganic salt solutions.

    Science.gov (United States)

    Yilmaz, Gonca; Yetimoglu, Temel; Arasan, Seracettin

    2008-10-01

    Due to their low permeability, geosynthetic clay liners (GCLs) and compacted clay liners (CCLs) are the main materials used in waste disposal landfills. The hydraulic conductivity of GCLs and CCLs is closely related to the chemistry of the permeant fluid. In this study, the effect on the hydraulic conductivity of clays of five different inorganic salt solutions as permeant fluid was experimentally investigated. For this purpose, NaCl, NH(4)Cl, KCl, CaCl(2), and FeCl( 3) inorganic salt solutions were used at concentrations of 0.01, 0.10, 0.25, 0.50, 0.75 and 1 M. Laboratory hydraulic conductivity tests were conducted on low plasticity (CL) and high plasticity (CH) compacted raw clays. The change in electrical conductivity and pH values of the clay samples with inorganic salt solutions were also determined. The experimental test results indicated that the effect of inorganic salt solutions on CL clay was different from that on CH clay. The hydraulic conductivity was found to increase for CH clay when the salt concentrations increased whereas when the salt concentrations were increased, the hydraulic conductivity decreased for the CL clay.

  19. Polypropylene Fiber Amendments to Alleviate Initiation and Evolution of Desiccation Cracks in Bentonite Liners

    Science.gov (United States)

    Tuller, M.; Gebrenegus, T. B.

    2009-12-01

    Sodium saturated bentonite is a major constituent of compacted and geosynthetic liners and covers for hydraulic isolation of hazardous waste, playing a crucial role in protecting groundwater and other environmental resources from harmful landfill leachates. Due to favorable hydraulic properties (i.e., low permeability), large surface area and associated adsorption capacity for particular contaminants, and relative abundance and low cost, bentonite is the material of choice in many modern waste containment systems. However, long-term interactions between bentonite and waste leachate and exposure of bentonite to desiccative conditions may significantly deteriorate liner or cover performance and ultimately lead to failure of containment systems. In the presented study, the potential usefulness of polypropylene fiber amendments for preventing initiation and evolution of desiccation cracks, while maintaining acceptably low permeability under saturated conditions was investigated. Well-controlled desiccation experiments were conducted using initially saturated bentonite-sand mixtures that contained varying amounts of polypropylene fibers. Initiation and evolution of surface cracks were observed by means of X-Ray Computed Tomography (CT). Advanced image analysis techniques were employed to characterize and quantify 2-D and 3-D features of the evolving crack networks. Potential negative effects of employed additives on saturated hydraulic conductivity were determined with fully-automated Flexible Wall Permeametry (FWP).

  20. Container repositioning management in liner shipping industry

    Directory of Open Access Journals (Sweden)

    Nasser Saeidi

    2013-06-01

    Full Text Available Managing empty containers in shipping industry plays an important role to increase the profitability on marine shipping industry. This paper presents an empirical investigation to detect influential factors in container transportation and estimates the value of empty containers transportation. The study also evaluates and compares different strategies employed to reduce the charge of empty container transportation. By selecting three major passages including Trans-pacific, trans-Atlantic and Europe-Asia and considering the balance in transportation network, regardless of the origin of shipping companies, an optimistic estimation of empty container transportation would be possible; therefore, empty container transportation could be explained, quantitatively. Furthermore, since shipping companies organize the movement of containers in various routes, four different strategies are also proposed.

  1. Electrostatic Spray Deposition-Based Manganese Oxide Films-From Pseudocapacitive Charge Storage Materials to Three-Dimensional Microelectrode Integrands

    National Research Council Canada - National Science Library

    Richa Agrawal; Ebenezer Adelowo; Amin Rabiei Baboukani; Michael Franc Villegas; Alexandra Henriques; Chunlei Wang

    2017-01-01

    ...) and evaluated as pseudocapacitive electrode materials in neutral aqueous media. Very interestingly, the gravimetric specific capacitance of the ESD-based electrodes underwent a marked enhancement upon electrochemical cycling, from 72 F∙g−1 to 225 F∙g...

  2. The MEM/Rietveld method with nano-applications - accurate charge-density studies of nano-structured materials by synchrotron-radiation powder diffraction.

    Science.gov (United States)

    Takata, Masaki

    2008-01-01

    Structural studies of materials with nano-sized spaces, called nano-structured materials, have been carried out by high-resolution powder diffraction. Our developed analytical method, which is the combination of the maximum-entropy method (MEM) and Rietveld refinement, the so-called MEM/Rietveld method, has been successfully applied to the analysis of synchrotron-radiation (SR) powder diffraction data measured at SPring-8, a third-generation SR light source. In this article, structural studies of nano-porous coordination polymers and endohedral metallofullerenes are presented with the advanced technique of SR powder experiment. The structure of the adsorbed guest molecule in the coordination polymer and encapsulated atoms in the fullerene cage are clearly revealed by the MEM charge density. The methodology of MEM/Rietveld analysis is also presented.

  3. Scientific Computation Application Partnerships in Materials and Chemical Sciences, Charge Transfer and Charge Transport in Photoactivated Systems, Developing Electron-Correlated Methods for Excited State Structure and Dynamics in the NWChem Software Suite

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, Christopher J. [Univ. of Minnesota, Minneapolis, MN (United States)

    2017-11-12

    Charge transfer and charge transport in photoactivated systems are fundamental processes that underlie solar energy capture, solar energy conversion, and photoactivated catalysis, both organometallic and enzymatic. We developed methods, algorithms, and software tools needed for reliable treatment of the underlying physics for charge transfer and charge transport, an undertaking with broad applicability to the goals of the fundamental-interaction component of the Department of Energy Office of Basic Energy Sciences and the exascale initiative of the Office of Advanced Scientific Computing Research.

  4. Surface Charging and Points of Zero Charge

    CERN Document Server

    Kosmulski, Marek

    2009-01-01

    Presents Points of Zero Charge data on well-defined specimen of materials sorted by trademark, manufacturer, and location. This text emphasizes the comparison between particular results obtained for different portions of the same or very similar material and synthesizes the information published in research reports over the past few decades

  5. A Pegasus Dynamic Liner Friction Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hammerberg, J.E.; Kyrala, G.A.; Oro, D.M.; Fulton, R.D.; Anderson, W.E.; Obst, A.W.; Oona, H.; Stokes, J.; Wilke, M.D.

    1999-06-28

    The authors report on a pulsed power experiment performed at the Los Alamos National Laboratory Pegasus facility which was designed to measure material flow at metal interfaces driven to high relative velocities. Material motion at and near four flat Ta/Al(6061) interfaces was measured using flash radiographic techniques. A series of fine Pb wires (407 micron diameter) was implanted in the Al normal to the interfaces. The motion of these markers under shock loading provided a picture of material motion in the Al interfacial region. The surface roughness of the interfaces was varied between 32 and 125 micro-inches. The authors discuss the implications of these measurements for constitutive models of high speed friction and interfacial morphological change.

  6. Modeling and Solving the Liner Shipping Service Selection Problem

    DEFF Research Database (Denmark)

    Karsten, Christian Vad; Balakrishnan, Anant

    served less shipping costs. We propose a new hop-constrained multi-commodity arc flow model for the LSSSP that is based on an augmented network containing, for each candidate route, an arc (representing a sub-path) between every pair of ports that the route visits. This sub-path construct permits us......We address a tactical planning problem, the Liner Shipping Service Selection Problem (LSSSP), facing container shipping companies. Given estimated demand between various ports, the LSSSP entails selecting the best subset of non-simple cyclic sailing routes from a given pool of candidate routes......, and transporting as much demand as possible over the chosen routes. Since most containers are sent directly or transshipped at most twice in current liner shipping networks, we impose limits on the number of transshipments for each container. The objective is to maximize the net revenue, i.e., revenue from demand...

  7. Precision high energy liner implosion experiments PHELIX [1

    Energy Technology Data Exchange (ETDEWEB)

    Reass, William A [Los Alamos National Laboratory; Baca, David M [Los Alamos National Laboratory; Griego, Jeffrey R [Los Alamos National Laboratory; Reinovsky, Robert E [Los Alamos National Laboratory; Rousculp, Christopher L [Los Alamos National Laboratory; Turchi, Peter J [Los Alamos National Laboratory

    2009-01-01

    This paper describes the hardware design of a small megajoule sized transformer coupled pulse power system utilized to drive hydrodynamic liner experiments with a nominal current capability of 10 megAmperes. The resulting liner velocities and characteristics provide properties of physics interest. The capacitor banks utilize the ''Atlas'' plastic cased 60 kV, 60 kJ capacitors [2] and railgaps [3]. The air insulated marx'S are configured to dive a multi-filar toroidal transformer. The 4:1 multi-filar toroidal transformer is mechanically part of a circular disc line and this feature results in an attractive inductance budget. Because of the compact size, re-usable transformer, and resulting low maintenance cost, shot rates can be high compared to other ''large'' machines or explosively driven hydrodynamic methods. The PHELIX modeling, construction status, and test results will also be provided.

  8. External Acoustic Liners for Multi-Functional Aircraft Noise Reduction

    Science.gov (United States)

    Jones, Michael G. (Inventor); Thomas, Russell H. (Inventor); Nark, Douglas M. (Inventor); Howerton, Brian M. (Inventor); Czech, Michael J. (Inventor)

    2017-01-01

    Acoustic liners for aircraft noise reduction include one or more chambers that are configured to provide a pressure-release surface such that the engine noise generation process is inhibited and/or absorb sound by converting the sound into heat energy. The size and shape of the chambers can be selected to inhibit the noise generation process and/or absorb sound at selected frequencies.

  9. Reliability-based condition assessment of steel containment and liners

    Energy Technology Data Exchange (ETDEWEB)

    Ellingwood, B.; Bhattacharya, B.; Zheng, R. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

    1996-11-01

    Steel containments and liners in nuclear power plants may be exposed to aggressive environments that may cause their strength and stiffness to decrease during the plant service life. Among the factors recognized as having the potential to cause structural deterioration are uniform, pitting or crevice corrosion; fatigue, including crack initiation and propagation to fracture; elevated temperature; and irradiation. The evaluation of steel containments and liners for continued service must provide assurance that they are able to withstand future extreme loads during the service period with a level of reliability that is sufficient for public safety. Rational methodologies to provide such assurances can be developed using modern structural reliability analysis principles that take uncertainties in loading, strength, and degradation resulting from environmental factors into account. The research described in this report is in support of the Steel Containments and Liners Program being conducted for the US Nuclear Regulatory Commission by the Oak Ridge National Laboratory. The research demonstrates the feasibility of using reliability analysis as a tool for performing condition assessments and service life predictions of steel containments and liners. Mathematical models that describe time-dependent changes in steel due to aggressive environmental factors are identified, and statistical data supporting the use of these models in time-dependent reliability analysis are summarized. The analysis of steel containment fragility is described, and simple illustrations of the impact on reliability of structural degradation are provided. The role of nondestructive evaluation in time-dependent reliability analysis, both in terms of defect detection and sizing, is examined. A Markov model provides a tool for accounting for time-dependent changes in damage condition of a structural component or system. 151 refs.

  10. Friction and wear behaviour of self lubricating bearing liners

    Science.gov (United States)

    Gay, Russell

    The thesis describes a numerical model for evaluating the variation of friction and wear of a self lubricating bearing liner over its useful wear life. Self-lubricating bearings have been in widespread use since the mid-1950s, particularly in the aerospace industry where they have the advantage of being low maintenance components. They are commonly used in relatively low speed, reciprocating applications such as control surface actuators, and usually consist of a spherical bearing with the inner and outer elements separated by a composite textile resin-bonded liner. A finite element model has been developed to predict the local stiffness of a particular liner at different states of wear. Results obtained using the model were used to predict the overall friction coefficient as it evolves due to wear, which is a novel approach. Experimental testing was performed on a bespoke flat-on-flat wear test rig with a reciprocating motion to validate the results of the friction model.. These tests were carried out on a commercially-available bearing liner, predominantly at a high contact pressure and an average sliding speed of 0.2 ms-1. Good agreement between predicted and experimentally measured wear was obtained when appropriate coefficients of friction were used in the friction model, and when the reciprocating sliding distance was above a critical value. A numerical wear model was also developed to predict the trend of backlash development in real bearing geometries using a novel approach. Results from the wear model were validated against full-scale bearing tests carried out elsewhere by the sponsoring company. Good agreement was obtained between the model predictions and the experimental results for the first 80% of the bearing wear life, and explanations for the discrepancy during the last 20% of the wear life have been proposed..

  11. Sorption behavior of charged and neutral polar organic compounds on solid phase extraction materials: which functional group governs sorption?

    NARCIS (Netherlands)

    Bäuerlein, P.S.; Mansell, J.E.; ter Laak, T.L.; de Voogt, P.

    2012-01-01

    Numerous polar anthropogenic organic chemicals have been found in the aqueous environment. Solid phase extraction (SPE) has been applied for the isolation of these from aqueous matrices, employing various materials. Nevertheless, little is known about the influence of functional groups on the

  12. Impact of consolidation pressure on contaminant migration in clay liner

    Directory of Open Access Journals (Sweden)

    Zhi-hong Zhang

    2013-07-01

    Full Text Available Consolidation deformation occurs in clay liners under the self-weight of wastes at a simple garbage dump or dredged sediment dump, which leads to a decrease in the porosity. However, the migration of contaminants in clay liners is influenced by the porosity. Thus, the impact of consolidation deformation of clay liners on the migration of contaminants cannot be ignored. Based on Biot's consolidation theory, the contaminant migration theory, and consideration of the three kinds of migration mechanisms of convection, diffusion, and adsorption, a one-dimensional migration model of contaminants in deforming porous media was established, and the finite difference method was adopted to obtain the numerical solutions for an established initial-boundary value problem. The impact of consolidation pressure on the migration law of a contaminant was studied. The results show that, regardless of adsorption modes, different consolidation pressures have similar impacts on the migration law of the contaminant. Namely, over a certain migration time, the greater the consolidation pressure is, the smaller the migration depth of the contaminant. The results also show that, while the migration time increases, the impact of a certain increment of consolidation pressure on the variation of contaminant concentration with the depth increases gradually and, while the migration depth increases, the impact of a certain increment of consolidation pressure on the variation of the contaminant concentration with time increases gradually.

  13. A Physics Exploratory Experiment on Plasma Liner Formation

    Science.gov (United States)

    Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter

    2002-01-01

    Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

  14. Effect of flowable composite liner and glass ionomer liner on class II gingival marginal adaptation of direct composite restorations with different bonding strategies.

    Science.gov (United States)

    Aggarwal, Vivek; Singla, Mamta; Yadav, Suman; Yadav, Harish

    2014-05-01

    The purpose of the present study was to comparatively evaluate the effect of flowable composite resin liner and resin modified glass ionomer liner on gingival marginal adaptation of class II cavities restored using three bonding agents (Single Bond 3M ESPE, One Coat Self Etching Bond Coltene Whaledent; Adper Easy Bond Self-Etch Adhesive 3M ESPE) and respective composite resins, under cyclic loading. The marginal adaptation was evaluated in terms of 'continuous margin' (CM) at the gingival margin. Ninety class II cavities with margins extending 1mm below the cement-enamel junction were prepared in extracted mandibular third molars. The samples were divided into three groups: no liner placement; 0.5-1mm thick flowable resin liner placement (Filtek Z350 XT flowable resin) on gingival floor and; light cure glass ionomer (Ketac N100) liner. The groups were further subdivided into three sub-groups on the basis of the bonding agents used. Cavities were restored with composite resins (Z350 for Single Bond and Adper Easy Bond; and Synergy D6 Universal, for One Coat Self Etching Bond) in 2mm increments and the samples were mechanically loaded (60N, 1,50,000 cycles). Marginal adaptation was evaluated using a low vacuum scanning electron microscope. Statistical analysis was done with two way ANOVA with Holm-Sidak's correction for multiple comparisons. Placement of flowable composite liner significantly improved the CM values of Single Bond (78±11%) and One Coat Self Etching Bond (77±9%) compared with no liner group, but the values of CM of Adper Easy Bond were not improved (61±12%). Placement of glass ionomer liner significantly improved the values of CM in all the sub-groups (78±9%, 72±10% and 77±10% for Single Bond, One Coat Self Etching Bond & Adper Easy Bond respectively) compared with no liner group. Placement of liners improved the values of 'continuous margin' in the gingival floor of the proximal cavities restored with composite resins using different bonding

  15. Comparison of Heavy-Duty Scuffing Behavior between Chromium-Based Ceramic Composite and Nickel-Chromium-Molybdenum-Coated Ring Sliding against Cast Iron Liner under Starvation

    Science.gov (United States)

    Shen, Yan; Yu, Baihong; Lv, Yutao; Li, Bin

    2017-01-01

    A running-in and starved lubrication experiment is designed to investigate the heavy-duty scuffing behavior of piston ring coatings against cast iron (Fe) cylinder liner using the piston ring reciprocating liner test rig. The scuffing resistance of the piston ring with the chromium-based ceramic composite coating (CKS), and that with the thermally sprayed nickel-chromium-molybdenum coating (NCM) is compared at different nominal pressures (40~100 MPa) and temperatures (180~250 °C). With the failure time as a criterion, the rank order is as follows: NCM/Fe > CKS/Fe. Before the scoring occurs at the interface of the piston ring and cylinder liner (PRCL), the cast iron liner enters into a “polish wear” stage, and iron-based adhesive materials begin to form on the piston ring surface. With the macroscopic adhesion formation, the plastic shearing cycle causes surface damages mainly due to abrasive effects for the CKS/Fe pairs and adhesive effects for the NCM/Fe pairs. PMID:29036911

  16. Comparison of Heavy-Duty Scuffing Behavior between Chromium-Based Ceramic Composite and Nickel-Chromium-Molybdenum-Coated Ring Sliding against Cast Iron Liner under Starvation

    Directory of Open Access Journals (Sweden)

    Yan Shen

    2017-10-01

    Full Text Available A running-in and starved lubrication experiment is designed to investigate the heavy-duty scuffing behavior of piston ring coatings against cast iron (Fe cylinder liner using the piston ring reciprocating liner test rig. The scuffing resistance of the piston ring with the chromium-based ceramic composite coating (CKS, and that with the thermally sprayed nickel-chromium-molybdenum coating (NCM is compared at different nominal pressures (40~100 MPa and temperatures (180~250 °C. With the failure time as a criterion, the rank order is as follows: NCM/Fe > CKS/Fe. Before the scoring occurs at the interface of the piston ring and cylinder liner (PRCL, the cast iron liner enters into a “polish wear” stage, and iron-based adhesive materials begin to form on the piston ring surface. With the macroscopic adhesion formation, the plastic shearing cycle causes surface damages mainly due to abrasive effects for the CKS/Fe pairs and adhesive effects for the NCM/Fe pairs.

  17. Tendency of spherically imploding plasma liners formed by merging plasma jets to evolve toward spherical symmetry

    OpenAIRE

    Cassibry, J. T.; Stanic, M.; Hsu, S.C.; Abarzhi, S. I.; Witherspoon, F. D.

    2012-01-01

    Three dimensional hydrodynamic simulations have been performed using smoothed particle hydrodynamics (SPH) in order to study the effects of discrete jets on the processes of plasma liner formation, implosion on vacuum, and expansion. The pressure history of the inner portion of the liner was qualitatively and quantitatively similar from peak compression through the complete stagnation of the liner among simulation results from two one dimensional radiationhydrodynamic codes, 3D SPH with a uni...

  18. ECN experiments in the HAW project. Liner A1 deformation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Vonka, V.; Middleton, D.W.

    1994-10-01

    In borehole A1 in the Arse salt mine special instrumentation is installed to measure the liner tube deformation caused by salt pressure. Two types of instrument are used. They are called by the names of their chief-constructers. The so called KOOTER unit is used to learn the salt pressure on the liner tube and a HOEKSTRA unit to obtain the liner ovality. Data obtained from these instruments are analyzed. (orig./HP).

  19. Heat dissipating nuclear reactor with metal liner

    Science.gov (United States)

    Gluekler, E.L.; Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    A nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel is described in this disclosure. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.

  20. Present status and future subjects of the analytical studies related with application of charged particles and RI to materials science and biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    The position in the research field of radiation application of Theoretical Analysis Group for Radiation Application' which will be set up within fiscal 2003, and the relation between the research that this analytical group will advance in future and the analytical research made so far at Takasaki Radiation Chemistry Establishment (JAERI, Takasaki) are summarized. Since the JAERI Takasaki was founded as the center of the research and development on radiation chemistry, a lot of outcomes have been obtained in the research and development of radiation application using large-sized {sup 60}Co gamma ray irradiation facilities and high power electron accelerators, etc. After the ion irradiation research facility (TIARA) started operation, many outstanding outcomes have been obtained in the research of up-to-date science and technologies in the fields of material science and bio-technology, etc., making use of ions in addition to gamma rays and electron beams. Although these results of the research are mainly produced experimentally, theoretical analyses also are thought to be important because these results will be applied and expanded in future. We aim to set up 'Theoretical Analysis Group for Radiation Application' in fiscal 2003, and we aim at performing theoretical and engineering analyses about phenomena and things such as radiation chemical reactions, irradiation/implantation effects to semiconductors, model for plant function, etc. The irradiation effects of charged particles to materials are divided into the primary effects like generation of radicals and lattice defects, etc., which occurs immediately after charged particles impinge on materials, and the secondary effects like chemical changes and physical changes caused in materials as a result of the primary effects. The subjects of our analytical research are the analyses of the secondary effects and the systems which utilize the chemical and the physical changes to the radiation application

  1. A service flow model for the liner shipping network design problem

    DEFF Research Database (Denmark)

    Plum, Christian Edinger Munk; Pisinger, David; Sigurd, Mikkel M.

    2014-01-01

    Global liner shipping is a competitive industry, requiring liner carriers to carefully deploy their vessels efficiently to construct a cost competitive network. This paper presents a novel compact formulation of the liner shipping network design problem (LSNDP) based on service flows...... of the network and a penalty for not flowed cargo. The model can be used to design liner shipping networks to utilize a container carrier’s assets efficiently and to investigate possible scenarios of changed market conditions. The model is solved as a Mixed Integer Program. Results are presented for the two...

  2. High heat flux test on the thermocouple embedded ITER neutral beam duct liner mock-up

    Energy Technology Data Exchange (ETDEWEB)

    Park, C.K., E-mail: ckpark@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kim, H.S., E-mail: hskim@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kim, G.H.; Ahn, H.J. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kim, S.K.; Lee, D.W. [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Urbani, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067, St. Paul Lez Durance, Cedex (France)

    2016-11-01

    Highlights: • Twenty thermocouples have been installed on the NB duct liner full scale mock-up. • High heat flux test has been performed. • Four thermocouple fixation schemes had been verified by high heat flux test. • Temperature behavior of the NB duct liner has been successfully simulated. - Abstract: The ITER neutral beam duct liner is located within the tokamak VV port extension and is mounted on the VV port extension flange. The duct liner is made from CuCrZr copper alloy and is actively cooled through deep-drilled channels. A number of thermocouples should be installed on the neutral beam duct liner in order to provide the ability to detect temperature excursions on the surface of the duct liner. Twenty thermocouples have been installed on the neutral beam duct liner full scale mock-up, and a high heat flux test has been performed at the KoHLT-EB test facility, in order to simulate temperature detection in the neutral beam duct liner during ITER operation. For each thermocouple, the fixation method has been verified by high heat flux test with uniform electron beam profile, and the temperature behavior of the neutral beam duct liner has been successfully simulated by Gaussian electron beam profile.

  3. Mineralogical and chemical-physical effects of hydrocarbon permeation in composite liners and cut-off walls. Final report; Mineralogische und chemisch-physikalische Auswirkungen der Permeation von Kohlenwasserstoffen in Kombinationsdichtungen und -dichtwaenden. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kalbe, U.; Berger, W.; Mueller, W.; Brune, M.; Eckardt, J.; Tatzky-Gerth, R.; Ache, W.; Goebbels, J. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Breu, J.; Kerzdoerfer, H. [Regensburg Univ. (Germany). Inst. fuer Anorganische Chemie

    2000-05-31

    Composite liner systems (HDPE geomembrane and compacted mineral liner) are used in Germany in landfills and for the lining of contaminated sites according to the technical regulations. It is expected that these lining systems provide a highly efficient and reliable technical barrier for the long-term groundwater protection. To support these expectations and assess the performance of the liner system even under extreme conditions, various composite liner systems were exposed to a mixture of 9 liquid hydrocarbons and their permeation behaviour was studied in permeation cells over 12 years. The cells were now dismantled and changes in the liner materials were carefully measured and controlled. The following issues were pursued in the research project: - effect of long-term hydrocarbon permeation and immersion on the properties of the geomembrane, - determination of the vertical distribution of organic contaminants in the mineral liner, - changes in the mineralogical, micromorphological and soil mechanical properties of the mineral liner brought about by the contaminant mixture, - investigation of the influence of microbial activity on the mineral layer, - modelling of the pollutant transport in the composite liner system. Neither geomembrane nor most of the tested mineral liners exhibited significant changes. Hydrocarbon permeation was proved to have been substantially suppressed by the composite liner. (orig.) [German] Zur Sicherung von Deponien und Altlasten mit dem Ziel eines langfristig wirksamen Grundwasserschutzes werden seit Mitte der 80er Jahre Kombinationsdichtungen (Verbund aus Kunststoffdichtungsbahn und mineralischer Dichtschichten) eingesetzt. Um deren Langzeitbestaendigkeit auch unter extremen Bedingungen bewerten zu koennen, wurden Permeationsmesszellen, welche die Verhaeltnisse in der Deponie nachstellen und ueber einen Zeitraum von 12 Jahren mit einem Mehrkomponentengemisch konzentrierter organischer Verbindungen beaufschlagt worden waren, zerlegt und

  4. [Medical-legal aspects in fractured ceramic liners after implantation of a hip endoprosthesis].

    Science.gov (United States)

    Jäger, M; Wild, A; Krauspe, R

    2002-01-01

    We report the case of a male patient after implantation of a thrust plate endoprosthesis to discuss reliable questions concerning the insurance and liability fields. The indication for implantation of this type of endoprosthesis should be decided critically. To prevent an early implant failure, both articulating ceramic partners - the liner and the femoral head - should be exchanged in any case of doubt during a hip revision surgery. In case of an implant failure, a surface analysis of the broken fragments can show signs of material insufficiencies. A detailed preoperative consent of the patient combined with an exact documentation is necessary to prevent potential medical claims by the patient, and also increases the compliance and reduces the costs for the health system.

  5. Effect of resilient liner on masticatory efficiency and general patient satisfaction in completely edentulous patients

    DEFF Research Database (Denmark)

    Mangtani, Nidhi; Pillai, Rajath; Babu, Dinesh

    2015-01-01

    Objectives: To assess the effect of resilient lined denture on patient masticatory efficiency, general patient satisfaction and denture quality as compare to conventional complete denture over a period of one year. Material and methodology: A total of 28 completely edentulous patients (14 males...... denture liner – group 2). All patients were clinically evaluated to assess the denture quality, and administered questionnaires for masticatory efficiency and patients general satisfaction level at three intervals i.e. one month (T0), 6 months (T1) and 1 year post-insertion (T2). Results: Statistical...... masticatory efficiency improved significantly over time in controls, while in experimental group masticatory efficiency remained the same (p>.05) for almost all the questions. Patient general satisfaction score at different time intervals for each question showed no significant difference (P>.05) on inter...

  6. Casing and liners for drilling and completion

    CERN Document Server

    Byrom, Ted G

    2007-01-01

    The Gulf Drilling Series is a joint project between Gulf Publishing Company and the International Association of Drilling Contractors. The first text in this Series presents casing design and mechanics in a concise, two-part format. The first part focuses on basic casing design and instructs engineers and engineering students how to design a safe casing string. The second part covers more advanced material and special problems in casing design in a user-friendly format. Learn how to select sizes and setting depths to achieve well objectives, determine casing loads for design purposes, design casing properties to meet burst, collapse and tensile strength requirements and conduct casing running operations safely and successfully.

  7. Temperature rise during intraoral polymerization of self-cured hard denture base liners.

    Science.gov (United States)

    Yannikakis, Stavros; Polychronakis, Nick; Zissis, Alcibiades

    2010-06-01

    The aim of this in-vivo study was to evaluate the temperature rise during polymerization of five chairside self-cured hard denture base reliners. For the same patient, 30 identical baseplates, exposing a space on their tissue surface to accommodate the lining material, were made of a light-cured denture base material. A hole was drilled in the center of this area to enable the thermocouple wire of the temperature measuring device to have direct access to the palatal surface of the baseplate. Six baseplates were used for each of the five lining materials tested. Temperature recordings were made every 15 seconds. Data were analyzed using single factor analysis of variance (ANOVA) and the Scheffe's post-hoc analysis for multiple comparisons. The mean maximum temperature values ranged from 40.2 degrees C to 45.7 degrees C being statistically different among the materials (Ptemperature was 53 degrees C and the lowest 39 degrees C. Also the difference between the time each material reached the peak of temperature was statistically significant (Ptemperature range of 5.5 degrees C was demonstrated among materials, with the highest polymerization temperatures recorded for Flexacryl Hard and the lowest for Rebase and GC Reline hard. Ufi-gel hard showed the fastest polymerization cycle and was the first to reach the maximum temperature. The available chairside hard liners must be chosen with care considering the thermal effect on the oral mucosa and the discomfort of patient.

  8. Utilization of Natural Zeolite and Perlite as Landfill Liners for in Situ Leachate Treatment in Landfills

    Directory of Open Access Journals (Sweden)

    Osman Nuri Ergun

    2012-05-01

    Full Text Available The potential long term environmental impacts of a landfill on groundwater quality depend on its liner material properties. In case synthetic liner materials are damaged during the construction or operation, many of the original chemical and biological constituents are removed by filtration and the adsorptive action of natural liner materials such as natural zeolite, perlite and bentonite minerals. Before leachate treatment, reduction of these constituents is important not only to leachate percolation, but also treatment cost and efficiency. In this study, the pollutant removal efficiency from the leachate was investigated for natural natural zeolite, expanded perlite and bentonite. Experimental studies was performed in boxes made of glass and with 1:10 sloping. Leachate quantity was determined and pH, electrical conductivity (EC, nitrate (NO3-N, ammonium-nitrogen (NH4-N, phosphate (PO4, chemical oxygen demand (COD and organic matter in leachate samples were measured and the measurement was compared with control process (System 4. The results showed that natural zeolite was effective in removing NO3, NH4, PO4, COD and organic matter with removal efficiencies of 91.20, 95.6, 95.5, 83.4 and 87.8%, respectively. Expanded perlite has high efficiency removing of NO3, PO4 and COD 83.2, 91.0 and 62.5%, respectively, but it was unsuccessful in reducing NH4 (1.5%.

  9. Hydraulic conductivity of fly ash-sewage sludge mixes for use in landfill cover liners.

    Science.gov (United States)

    Herrmann, Inga; Svensson, Malin; Ecke, Holger; Kumpiene, Jurate; Maurice, Christian; Andreas, Lale; Lagerkvist, Anders

    2009-08-01

    Secondary materials could help meeting the increasing demand of landfill cover liner materials. In this study, the effect of compaction energy, water content, ash ratio, freezing, drying and biological activity on the hydraulic conductivity of two fly ash-sewage sludge mixes was investigated using a 2(7-1) fractional factorial design. The aim was to identify the factors that influence hydraulic conductivity, to quantify their effects and to assess how a sufficiently low hydraulic conductivity can be achieved. The factors compaction energy and drying, as well as the factor interactions material x ash ratio and ash ratio x compaction energy affected hydraulic conductivity significantly (alpha=0.05). Freezing on five freeze-thaw cycles did not affect hydraulic conductivity. Water content affected hydraulic conductivity only initially. The hydraulic conductivity data were modelled using multiple linear regression. The derived models were reliable as indicated by R(adjusted)(2) values between 0.75 and 0.86. Independent on the ash ratio and the material, hydraulic conductivity was predicted to be between 1.7 x 10(-11)m s(-1) and 8.9 x 10(-10)m s(-1) if the compaction energy was 2.4 J cm(-3), the ash ratio between 20% and 75% and drying did not occur. Thus, the investigated materials met the limit value for non-hazardous waste landfills of 10(-9)m s(-1).

  10. Electrostatic Spray Deposition-Based Manganese Oxide Films—From Pseudocapacitive Charge Storage Materials to Three-Dimensional Microelectrode Integrands

    Directory of Open Access Journals (Sweden)

    Richa Agrawal

    2017-07-01

    Full Text Available In this study, porous manganese oxide (MnOx thin films were synthesized via electrostatic spray deposition (ESD and evaluated as pseudocapacitive electrode materials in neutral aqueous media. Very interestingly, the gravimetric specific capacitance of the ESD-based electrodes underwent a marked enhancement upon electrochemical cycling, from 72 F∙g−1 to 225 F∙g−1, with a concomitant improvement in kinetics and conductivity. The change in capacitance and resistivity is attributed to a partial electrochemical phase transformation from the spinel-type hausmannite Mn3O4 to the conducting layered birnessite MnO2. Furthermore, the films were able to retain 88.4% of the maximal capacitance after 1000 cycles. Upon verifying the viability of the manganese oxide films for pseudocapacitive applications, the thin films were integrated onto carbon micro-pillars created via carbon microelectromechanical systems (C-MEMS for examining their application as potential microelectrode candidates. In a symmetric two-electrode cell setup, the MnOx/C-MEMS microelectrodes were able to deliver specific capacitances as high as 0.055 F∙cm−2 and stack capacitances as high as 7.4 F·cm−3, with maximal stack energy and power densities of 0.51 mWh·cm−3 and 28.3 mW·cm−3, respectively. The excellent areal capacitance of the MnOx-MEs is attributed to the pseudocapacitive MnOx as well as the three-dimensional architectural framework provided by the carbon micro-pillars.

  11. Liner shipping hub network design in a competitive environment

    DEFF Research Database (Denmark)

    Gelareh, Shahin; Nickel, Stefan; Pisinger, David

    2010-01-01

    A mixed integer programming formulation is proposed for hub-and-spoke network design in a competitive environment. It addresses the competition between a newcomer liner service provider and an existing dominating operator, both operating on hub-and-spoke networks. The newcomer company maximizes its...... market share—which depends on the service time and transportation cost—by locating a predefined number of hubs at candidate ports and designing its network. While general-purpose solvers do not solve instances of even small size, an accelerated Lagrangian method combined with a primal heuristic obtains...

  12. Liner Shipping Hub Network Design in a Competitive Environment

    DEFF Research Database (Denmark)

    Gelareh, Shahin; Nickel, Stefan; Pisinger, David

    A new mixed integer programming formulation is proposed for hub-and-spoke network design in a competitive environment. It addresses competition between a newcomer liner service provider and an alliance, both operating on hub-and-spoke networks. The newcomer company maximizes its market share...... — proportional to service time and transportation cost —by locating a predefined number of hubs at candidate ports and designing its network. While general-purpose solvers do not solve instances of even small size, an accelerated lagrangian method coupled with a primal heuristic obtains very good bounds. Our...

  13. A matheuristic for the liner shipping network design problem

    DEFF Research Database (Denmark)

    Brouer, Berit Dangaard; Desaulniers, Guy; Pisinger, David

    the available fleet of container vessels. The cargo transports make extensive use of transshipments between routes and the number of transshipments of the cargo flow is decisive for network profitability. Computational results are reported for the benchmark suite LINER-LIB 2012 following the industry standard...... of weekly departures on every schedule. The heuristic shows overall good performance and is able to find high quality solutions within competitive execution times. The matheuristic can also be applied as a decision support tool to improve an existing network by optimizing on a designated subset...

  14. Key enabling design features of the ITER HNB Duct Liner

    Energy Technology Data Exchange (ETDEWEB)

    Chuilon, Ben, E-mail: ben.chuilon@ccfe.ac.uk; Mistry, Sanjay; Andrews, Rodney; Verhoeven, Roel; Xue, Yongkuan

    2015-10-15

    Highlights: • Key engineering design details of the ITER HND Duct Liner are presented. • A standardised CuCrZr water cooled panel that can be remotely handled is detailed. • Bolts are protected from beam power by means of a tungsten cap to radiate heat away. • Water connections placed coaxially are protected from beam power by a tungsten ring. • Explosion-bonded CuCrZr-316L panels result in a tenfold disruption torque reduction. - Abstract: The Duct Liner (DL) for the ITER Heating Neutral Beam (HNB) is a key component in the beam transport system. Duct Liners installed into equatorial ports 4 and 5 of the Vacuum Vessel (VV) will protect the port extension from power deposition due to re-ionisation and direct interception of the HNB. Furthermore, the DL contributes towards the shielding of the VV and superconducting coils from plasma photons and neutrons. The DL incorporates a 316L(N)-IG, deep-drilled and water cooled Neutron Shield (NS) whose internal walls are lined with actively cooled CuCrZr Duct Liner Modules (DLMs). These Remote Handling Class 2 and 3 panels provide protection from neutral beam power. This paper provides an overview of the preliminary design for the ITER HNB DL and focusses on critical features that ensure compatibility with: high heat flux requirements, remote maintenance procedures, and transient magnetic fields arising from major plasma disruptions. The power deposited on a single DLM can reach 300 kW with a peak power density of 2.4 MW/m{sup 2}. Feeding coolant to the DLMs is accomplished via welded connections to the internal coolant network of the NS. These are placed coaxially to allow for thermal expansion of the DLMs without the use of deformable connections. Critically, the remote maintenance of individual DLMs necessitates access to water connections and bolts from the beam facing surface, thus subjecting them to high heat flux loads. This design challenge will become more prevalent as fusion devices become more powerful

  15. Constrained liners for recurrent dislocations in total hip arthroplasty

    DEFF Research Database (Denmark)

    Knudsen, R; Ovesen, O; Kjaersgaard-Andersen, P

    2009-01-01

    This study reports the results and complications from treating recurrent hip dislocations with a constrained liner (CL) after total hip arthroplasty (THA). Forty patients who had a CL inserted as a secondary prophylactic treatment were retrospectively reviewed after a median observation period...... of 27 months (range 7-77 months). During the observation period five patients had to be revised: one for deep infection and four on account of re-dislocations. Our results indicate that patients with recurrent THA dislocations can be treated with a CL and has a satisfactory low complication rate...... and a relatively low risk of re-dislocation....

  16. The liner shipping berth scheduling problem with transit times

    DEFF Research Database (Denmark)

    Reinhardt, Line Blander; Plum, Christian E.M.; Pisinger, David

    2016-01-01

    berth times are only accepted if they lead to savings above a threshold value. Since the fuel consumption of a vessel is a non-linear convex function of the speed, it is approximated by a piecewise linear function. The developed model is solved using exact methods in less than two minutes for large...... instances. Computational experiments on real-size liner shipping networks are presented showing that fuels savings in the magnitude 2–10% can be obtained. The work has been carried out in collaboration with Maersk Line and the tests instances are confirmed to be representative of real-life networks....

  17. 49 CFR 173.12 - Exceptions for shipment of waste materials.

    Science.gov (United States)

    2010-10-01

    ... UN 4G fiberboard box made out of 500 pound burst-strength fiberboard fitted with a polyethylene liner... (IBC) or a UN 11HH2 composite IBC, fitted with a polyethylene liner at least 6 mils (0.24 inches) thick... materials meeting the definition of a hazardous substance must be described as required in § 172.203 of this...

  18. [Comparative study of the antimicrobial effect of various cavity liners used in conservative dentistry].

    Science.gov (United States)

    Pumarola Suñé, J; Espias Gómez, A; Canalda Sahli, C

    1989-01-01

    We have compared the microbiological activity of the following cavity liners: Life, Dycal II, Calcipulpe, Pure calcium hydroxide and Cavitec; against five different bacterial strains: Veillonella parvula, Bacteroides fragilis, Peptococcus s.p., Staphylococcus aureus, and Streptococcus beta hemolytic: The results demonstrate the higher antimicrobial activity of the manufactured cavity liners with calcium hydroxide base in comparison with the pure calcium hydroxide.

  19. Imaging of ceramic liner fractures in total hip arthroplasty: the value of CT

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Yoshimi; Mintz, Douglas N. [Hospital for Special Surgery, Department of Radiology and Imaging, New York, NY (United States); Renner, Lisa; Schmidt-Braekling, Tom; Boettner, Friedrich [Hospital for Special Surgery, Adult Reconstruction and Joint Replacement Division, New York, NY (United States)

    2015-08-15

    Fracture of a ceramic liner of a total hip arthroplasty is rare and is radiographically occult if not displaced. We report on two patients in whom ceramic liner fracture was radiographically occult but was diagnosed on subsequent CT scan through appropriate windowing. (orig.)

  20. Large volume sample introduction using temperature programmable injectors: imlications of liner diameter.

    NARCIS (Netherlands)

    Mol, H.G.J.; Janssen, H.G.; Cramers, C.A.; Brinkman, U.A.T.

    1995-01-01

    Temperature programmable injectors with liner diameters ranging from 1 to 3.5 mm are evaluated and compared for solvent split injection of large volumes in capillary gas chromatography. The liner dimensions determine whether a large sample volume can be introduced rapidly or has to be introduced in

  1. Single string planning problem arising in liner shipping industries: A heuristic approach

    DEFF Research Database (Denmark)

    Gelareh, Shahin; Neamatian Monemi, Rahimeh; Mahey, Philippe

    2013-01-01

    We propose an efficient heuristic approach for solving instances of the Single String Planning Problem (SSPP) arising in the liner shipping industry. In the SSPP a Liner Service Provider (LSP) only revises one of its many operational strings, and it is assumed that the other strings are unchangea...

  2. Optimization of Variable-Depth Liner Configurations for Increased Broadband Noise Reduction

    Science.gov (United States)

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Schiller, N. H.; Born, J. C.

    2016-01-01

    This paper employs three acoustic propagation codes to explore variable-depth liner configurations for the NASA Langley Grazing Flow Impedance Tube (GFIT). The initial study demonstrates that a variable impedance can acceptably be treated as a uniform impedance if the spatial extent over which this variable impedance occurs is less than one-third of a wavelength of the incident sound. A constrained optimization study is used to design a variable-depth liner and to select an optimization metric. It also provides insight regarding how much attenuation can be achieved with variable-depth liners. Another optimization study is used to design a liner with much finer chamber depth resolution for the Mach 0.0 and 0.3 test conditions. Two liners are designed based on spatial rearrangement of chambers from this liner to determine whether the order is critical. Propagation code predictions suggest this is not the case. Both liners are fabricated via additive manufacturing and tested in the GFIT for the Mach 0.0 condition. Predicted and measured attenuations compare favorably across the full frequency range. These results clearly suggest that the chambers can be arranged in any order, thus offering the potential for innovative liner designs to minimize depth and weight.

  3. Experimental Validation of Numerical Simulations for an Acoustic Liner in Grazing Flow

    Science.gov (United States)

    Tam, Christopher K. W.; Pastouchenko, Nikolai N.; Jones, Michael G.; Watson, Willie R.

    2013-01-01

    A coordinated experimental and numerical simulation effort is carried out to improve our understanding of the physics of acoustic liners in a grazing flow as well our computational aeroacoustics (CAA) method prediction capability. A numerical simulation code based on advanced CAA methods is developed. In a parallel effort, experiments are performed using the Grazing Flow Impedance Tube at the NASA Langley Research Center. In the experiment, a liner is installed in the upper wall of a rectangular flow duct with a 2 inch by 2.5 inch cross section. Spatial distribution of sound pressure levels and relative phases are measured on the wall opposite the liner in the presence of a Mach 0.3 grazing flow. The computer code is validated by comparing computed results with experimental measurements. Good agreements are found. The numerical simulation code is then used to investigate the physical properties of the acoustic liner. It is shown that an acoustic liner can produce self-noise in the presence of a grazing flow and that a feedback acoustic resonance mechanism is responsible for the generation of this liner self-noise. In addition, the same mechanism also creates additional liner drag. An estimate, based on numerical simulation data, indicates that for a resonant liner with a 10% open area ratio, the drag increase would be about 4% of the turbulent boundary layer drag over a flat wall.

  4. 30 CFR 250.425 - What are the requirements for pressure testing liners?

    Science.gov (United States)

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations... drilling or other down-hole operations until you obtain a satisfactory pressure test. If the pressure...) You must test each drilling liner (and liner-lap) to a pressure at least equal to the anticipated...

  5. Evaluation of Variable-Depth Liner Configurations for Increased Broadband Noise Reduction

    Science.gov (United States)

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Howerton, B. M.

    2015-01-01

    This paper explores the effects of variable-depth geometry on the amount of noise reduction that can be achieved with acoustic liners. Results for two variable-depth liners tested in the NASA Langley Grazing Flow Impedance Tube demonstrate significant broadband noise reduction. An impedance prediction model is combined with two propagation codes to predict corresponding sound pressure level profiles over the length of the Grazing Flow Impedance Tube. The comparison of measured and predicted sound pressure level profiles is sufficiently favorable to support use of these tools for investigation of a number of proposed variable-depth liner configurations. Predicted sound pressure level profiles for these proposed configurations reveal a number of interesting features. Liner orientation clearly affects the sound pressure level profile over the length of the liner, but the effect on the total attenuation is less pronounced. The axial extent of attenuation at an individual frequency continues well beyond the location where the liner depth is optimally tuned to the quarter-wavelength of that frequency. The sound pressure level profile is significantly affected by the way in which variable-depth segments are distributed over the length of the liner. Given the broadband noise reduction capability for these liner configurations, further development of impedance prediction models and propagation codes specifically tuned for this application is warranted.

  6. Gas Turbine Combustor Liner Life Assessment Using a Combined Fluid/Structural Approach

    NARCIS (Netherlands)

    T. Tinga; B. de Jager; J.B.W. Kok; J.F. van Kampen

    2007-01-01

    A life assessment was performed on a fighter jet engine annular combustor liner, using a combined fluid/structural approach. Computational fluid dynamics analyses were performed to obtain the thermal loading of the combustor liner and finite element analyses were done to calculate the temperature

  7. Effect of microseparation and third-body particles on dual-mobility crosslinked hip liner wear.

    Science.gov (United States)

    Netter, Jonathan D; Hermida, Juan C; Chen, Peter C; Nevelos, James E; D'Lima, Darryl D

    2014-09-01

    Large heads have been recommended to reduce the risk of dislocation after total hip arthroplasty. One of the issues with larger heads is the risk of increased wear and damage in thin polyethylene liners. Dual-mobility liners have been proposed as an alternative to large heads. We tested the wear performance of highly crosslinked dual-mobility liners under adverse conditions simulating microseparation and third-body wear. No measurable increase in polyethylene wear rate was found in the presence of third-body particles. Microseparation induced a small increase in wear rate (2.9mm(3)/million cycles). A finite element model simulating microseparation in dual-mobility liners was validated using these experimental results. The results of our study indicate that highly crosslinked dual-mobility liners have high tolerance for third-body particles and microseparation. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Field performance assessment of synthetic liners for uranium tailings ponds: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.H.; Spanner, G.E.

    1984-03-01

    The objective of this study is to provide a database to support US Nuclear Regulatory Commission (NRC) licensing of uranium tailings leachate isolation impoundments. This objective is being accomplished by determining the effectiveness of design, installation, and quality assurance practices associated with uranium mill tailings impoundments with flexible membrane liners. The program includes testing of chemical resistance and physical performance of liners, leak detection systems, and seam inspection techniques. This report presents the status of the program through September 1983. The report addresses impoundment design, installation, and inspection techniques used by the uranium milling industry. To determine the relative successes of these techniques, information has been collected from consultants, mill operators, and the synthetic liner industry. Progress in experimental tasks on chemical resistance of liners, physical properties of liners, and nondestructive examination of seams is reported. 25 references, 9 figures, 13 tables.

  9. Precision of radiostereometric analysis (RSA) of acetabular cup stability and polyethylene wear improved by adding tantalum beads to the liner

    DEFF Research Database (Denmark)

    Nebergall, Audrey K; Rader, Kevin; Palm, Henrik

    2015-01-01

    Background and purpose - In traditional radiostereometric analysis (RSA), 1 segment defines both the acetabular shell and the polyethylene liner. However, inserting beads into the polyethylene liner permits employment of the shell and liner as 2 separate segments, enabling distinct analysis of th...

  10. CHARGE IMBALANCE

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, John

    1980-09-01

    The purpose of this article is to review the theory of charge imbalance, and to discuss its relevance to a number of experimental situations. We introduce the concepts of quasiparticle charge and charge imbalance, and discuss the generation and detection of charge imbalance by tunneling. We describe the relaxation of the injected charge imbalance by inelastic scattering processes, and show how the Boltzmann equation can be solved to obtain the steady state quasiparticle distribution and the charge relaxation rate. Details are given of experiments to measure charge imbalance and the charge relaxation rate when inelastic scattering is the predominant relaxation mechanism. Experiments on and theories of other charge relaxation mechanisms are discussed, namely relaxation via elastic scattering in the presence of energy gap anisotropy, or in the presence of a pair breaking mechanism such as magnetic impurities or an applied supercurrent or magnetic field. We describe three other situations in which charge imbalance occurs, namely the resistance of the NS interface, phase slip centers, and the flow of a supercurrent in the presence of a temperature gradient.

  11. Stagnation morphology in Magnetized Liner Inertial Fusion experiments

    Science.gov (United States)

    Gomez, M. R.; Harding, E. C.; Ampleford, D. J.; Jennings, C. A.; Awe, T. J.; Chandler, G. A.; Glinsky, M. E.; Hahn, K. D.; Hansen, S. B.; Jones, B.; Knapp, P. F.; Martin, M. R.; Peterson, K. J.; Rochau, G. A.; Ruiz, C. L.; Schmit, P. F.; Sinars, D. B.; Slutz, S. A.; Weis, M. R.; Yu, E. P.

    2017-10-01

    In Magnetized Liner Inertial Fusion (MagLIF) experiments on the Z facility, an axial current of 15-20 MA is driven through a thick metal cylinder containing axially-magnetized, laser-heated deuterium fuel. The cylinder implodes, further heating the fuel and amplifying the axial B-field. Instabilities, such as magneto-Rayleigh-Taylor, develop on the exterior of the liner and may feed through to the inner surface during the implosion. Monochromatic x-ray emission at stagnation shows the stagnation column is quasi-helical with axial variations in intensity. Recent experiments demonstrated that the stagnation emission structure changed with modifications to the target wall thickness. Additionally, applying a thick dielectric coating to the exterior of the target modified the stagnation column. A new version of the x-ray self-emission diagnostic has been developed to investigate stagnation with higher resolution. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  12. Tank 241-AY-102 Secondary Liner Corrosion Evaluation - 14191

    Energy Technology Data Exchange (ETDEWEB)

    Boomer, Kayle D. [Washington River Protection Solutions (United States); Washenfelder, Dennis J. [Washington River Protection Solutions (United States); Johnson, Jeremy M. [Department of Energy, Washington, DC (United States). Office of River Protection

    2014-01-07

    In October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of 241-AY-102 (AY-102) was leaking. A number of evaluations were performed after discovery of the leak which identified corrosion from storage of waste at the high waste temperatures as one of the major contributing factors in the failure of the tank. The propensity for corrosion of the waste on the annulus floor will be investigated to determine if it is corrosive and must be promptly removed or if it is benign and may remain in the annulus. The chemical composition of waste, the temperature and the character of the steel are important factors in assessing the propensity for corrosion. Unfortunately, the temperatures of the wastes in contact with the secondary steel liner are not known; they are estimated to range from 45 deg C to 60 deg C. It is also notable that most corrosion tests have been carried out with un-welded, stress-relieved steels, but the secondary liner in tank AY-102 was not stress-relieved. In addition, the cold weather fabrication and welding led to many problems, which required repeated softening of the metal to flatten secondary bottom during its construction. This flame treatment may have altered the microstructure of the steel.

  13. Formation of imploding plasma liners for fundamental HEDP studies and MIF Standoff Driver Concept

    Energy Technology Data Exchange (ETDEWEB)

    Cassibry, Jason [Univ. of AL in Huntsville; Hatcher, Richard [Univ. of AL in Huntsville; Stanic, Milos [Univ. of AL in Huntsville

    2013-08-17

    The disciplines of High Energy Density Physics (HEDP) and Inertial Confinement Fusion (ICF) are characterized by hypervelocity implosions and strong shocks. The Plasma Liner Experiment (PLX) is focused on reaching HEDP and/or ICF relevant regimes in excess of 1 Mbar peak pressure by the merging and implosion of discrete plasma jets, as a potentially efficient path towards these extreme conditions in a laboratory. In this work we have presented the first 3D simulations of plasma liner, formation, and implosion by the merging of discrete plasma jets in which ionization, thermal conduction, and radiation are all included in the physics model. The study was conducted by utilizing a smoothed particle hydrodynamics code (SPHC) and was a part of the plasma liner experiment (PLX). The salient physics processes of liner formation and implosion are studied, namely vacuum propagation of plasma jets, merging of the jets (liner forming), implosion (liner collapsing), stagnation (peak pressure), and expansion (rarefaction wave disassembling the target). Radiative transport was found to significantly reduce the temperature of the liner during implosion, thus reducing the thermal leaving more pronounced gradients in the plasma liner during the implosion compared with ideal hydrodynamic simulations. These pronounced gradients lead to a greater sensitivity of initial jet geometry and symmetry on peak pressures obtained. Accounting for ionization and transport, many cases gave higher peak pressures than the ideal hydrodynamic simulations. Scaling laws were developed accordingly, creating a non-dimensional parameter space in which performance of an imploding plasma jet liner can be estimated. It is shown that HEDP regimes could be reached with ~ 5 MJ of liner energy, which would translate to roughly 10 to 20 MJ of stored (capacitor) energy. This is a potentially significant improvement over the currently available means via ICF of achieving HEDP and nuclear fusion relevant parameters.

  14. Steady State Analytical Equation of Motion of Linear Shaped Charges Jet Based on the Modification of Birkhoff Theory

    Directory of Open Access Journals (Sweden)

    Seokbin Lim

    2012-01-01

    Full Text Available Birkhoff theory exhibits an analytical steady state liner collapse model of shaped charges followed by jetting process. It also provides the fundamental idea in study of shaped charges and has widened its application in many areas, including a configuration where the detonation front strikes the entire liner surface at the same time providing the α = β (liner apex angle α, and the liner collapse point angle β condition in the literature. Upon consideration of the detonation front propagation along the lateral length of the core charge in LSCs (linear shaped charges, a further modification of the Birkhoff theory motivated by the unique geometrical condition of LSCs and the α = β condition is necessary to correctly describe the jetting behavior of LSCs which is different than that of CSCs (conical shaped charges. Based on such unique geometrical properties of LSCs, the original Birkhoff theory was modified and an analytical steady state LSCs model was built. The analytical model was then compared to the numerical simulation results created from Autodyn™ in terms of M/C ratio and apex angles in three different sized LSCs, and it exhibits favorable results in a limited range.

  15. Experimental Investigation of Micrometer Scale Areal Density Variations in Metal Liners Driven by the 1 MA COBRA Pulsed Power Generator

    Science.gov (United States)

    Atoyan, Levon; Pikuz, Sergei; Shelkovenko, Tania; Hammer, David; Byvank, Tom

    2017-10-01

    On the 20 MA Z machine, the seed for the MRT instability was mitigated in the Magnetized Liner Inertial Fusion experiment using a thick dielectric coating. We have used high-resolution radiography to study the development of small-scale ( 10-30 μm) features in thin foils on the 1 MA, 100-200 ns COBRA pulsed power generator. We examined those features quantitatively in a 16 µm thick cylindrical Al liner, where we show areal density variation of up to 40-50%. We then show how the features' wavelength decreases when the material is changed from Al to Ni, Cu, and Ti, going from 21 +/-4 µm for Al to 11 +/-2 µm for Ti. Moreover, we show that expansion inhibition on both sides by dielectric material reduces small-scale feature size and density, and we show how pattern seeding can affect those parameters. This work is supported by the National Nuclear Security Administration Stewardship Sciences Academic Programs under Department of Energy Cooperative Agreement DE-NA0001836 as well as by the Department of Energy Grant Number DE-NA0002952.

  16. The effect of poly(methyl methacrylate) surface treatments on the adhesion of silicone-based resilient denture liners.

    Science.gov (United States)

    Cavalcanti, Yuri Wanderley; Bertolini, Martinna Mendonça; Cury, Altair Antoninha Del Bel; da Silva, Wander José

    2014-12-01

    Different surface treatment protocols of poly(methyl methacrylate) have been proposed to improve the adhesion of silicone-based resilient denture liners to poly(methyl methacrylate) surfaces. The purpose of this study was to evaluate the effect of different poly(methyl methacrylate) surface treatments on the adhesion of silicone-based resilient denture liners. Poly(methyl methacrylate) specimens were prepared and divided into 4 treatment groups: no treatment (control), methyl methacrylate for 180 seconds, acetone for 30 seconds, and ethyl acetate for 60 seconds. Poly(methyl methacrylate) disks (30.0 × 5.0 mm; n = 10) were evaluated regarding surface roughness and surface free energy. To evaluate tensile bond strength, the resilient material was applied between 2 treated poly(methyl methacrylate) bars (60.0 × 5.0 × 5.0 mm; n = 20 for each group) to form a 2-mm-thick layer. Data were analyzed by 1-way ANOVA and the Tukey honestly significant difference tests (α = .05). A Pearson correlation test verified the influence of surface properties on tensile bond strength. Failure type was assessed, and the poly(methyl methacrylate) surface treatment modifications were visualized with scanning electron microscopy. The surface roughness was increased (P methyl methacrylate treatment. For the acetone and ethyl acetate groups, the surface free energy decreased (P methyl methacrylate and ethyl acetate groups (P methyl methacrylate presented a cleaner surface, whereas the ethyl acetate treatment produced a porous topography. The methyl methacrylate and ethyl acetate surface treatment protocols improved the adhesion of a silicone-based resilient denture liner to poly(methyl methacrylate). Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Na(+) doping induced changes in the reduction and charge transport characteristics of Al2O3-stabilized, CuO-based materials for CO2 capture.

    Science.gov (United States)

    Imtiaz, Q; Abdala, P M; Kierzkowska, A M; van Beek, W; Schweiger, S; Rupp, J L M; Müller, C R

    2016-04-28

    Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are emerging CO2 capture technologies that could reduce appreciably the costs associated with the capture of CO2. In CLC and CLOU, the oxygen required to combust a hydrocarbon is provided by a solid oxygen carrier. Among the transition metal oxides typically considered for CLC and CLOU, copper oxide (CuO) stands out owing to its high oxygen carrying capacity, exothermic reduction reactions and fast reduction kinetics. However, the low Tammann (sintering) temperature of CuO is a serious drawback. In this context, it has been proposed to support CuO on high Tammann temperature and low cost alumina (Al2O3), thus, reducing the morphological changes occurring over multiple CLC or CLOU redox cycles and stabilizing, in turn, the high activity of CuO. However, in CuO-Al2O3 systems, phase stabilization and avoiding the formation of the CuAl2O4 spinel is key to obtaining a material with a high redox stability and activity. Here, we report a Na(+) doping strategy to phase stabilize Al2O3-supported CuO, yielding in turn an inexpensive material with a high redox stability and CO2 capture efficiency. We also demonstrate that doping CuO-Al2O3 with Na(+) improves the oxygen uncoupling characteristics and coke resistance of the oxygen carriers. Utilizing in situ and ex situ X-ray absorption spectroscopy (XAS), the local structure of Cu and the reduction pathways of CuO were determined as a function of the Na(+) content and cycle number. Finally, using 4-point conductivity measurements, we confirm that doping of Al2O3-supported CuO with Na(+) lowers the activation energy for charge transport explaining conclusively the improved redox characteristics of the new oxygen carriers developed.

  18. Early time studies of cylindrical liner implosions at 1 MA on COBRA

    Science.gov (United States)

    Atoyan, L.; Byvank, T.; Cahill, A. D.; Hoyt, C. L.; de Grouchy, P. W. L.; Potter, W. M.; Kusse, B. R.; Hammer, D. A.

    2014-12-01

    Tests of the magnetized liner inertial fusion (MagLIF) concept will make use of the 27 MA Z machine at Sandia National Laboratories, Albuquerque, to implode a cylindrical metal liner to compress and heat preheated, magnetized plasma contained within it. While most pulsed power machines produce much lower currents than the Z-machine, there are issues that can still be addressed on smaller scale facilities. Recent work on the Cornell Beam Research Accelerator (COBRA) has made use of 10 mm long and 4 mm diameter metal liners having different wall thicknesses to study the initiation of plasma on the liner's surface as well as axial magnetic field compression [P.-A. Gourdain et al., Nucl. Fusion 53, 083006 (2013)]. This report presents experimental results with non-imploding liners, investigating the impact the liner's surface structure has on initiation and ablation. Extreme ultraviolet (XUV) imaging and optical 12 frame camera imaging were used to observe and assess emission non-uniformities as they developed. Axial and side-on interferometry was used to determine the distribution of plasma near the liner surface, including the impact of non-uniformities during the plasma initiation and ablation phases of the experiments.

  19. Experimental Evaluation of Acoustic Engine Liner Models Developed with COMSOL Multiphysics

    Science.gov (United States)

    Schiller, Noah H.; Jones, Michael G.; Bertolucci, Brandon

    2017-01-01

    Accurate modeling tools are needed to design new engine liners capable of reducing aircraft noise. The purpose of this study is to determine if a commercially-available finite element package, COMSOL Multiphysics, can be used to accurately model a range of different acoustic engine liner designs, and in the process, collect and document a benchmark dataset that can be used in both current and future code evaluation activities. To achieve these goals, a variety of liner samples, ranging from conventional perforate-over-honeycomb to extended-reaction designs, were installed in one wall of the grazing flow impedance tube at the NASA Langley Research Center. The liners were exposed to high sound pressure levels and grazing flow, and the effect of the liner on the sound field in the flow duct was measured. These measurements were then compared with predictions. While this report only includes comparisons for a subset of the configurations, the full database of all measurements and predictions is available in electronic format upon request. The results demonstrate that both conventional perforate-over-honeycomb and extended-reaction liners can be accurately modeled using COMSOL. Therefore, this modeling tool can be used with confidence to supplement the current suite of acoustic propagation codes, and ultimately develop new acoustic engine liners designed to reduce aircraft noise.

  20. One-dimensional MHD simulations of MTF systems with compact toroid targets and spherical liners

    Science.gov (United States)

    Khalzov, Ivan; Zindler, Ryan; Barsky, Sandra; Delage, Michael; Laberge, Michel

    2017-10-01

    One-dimensional (1D) MHD code is developed in General Fusion (GF) for coupled plasma-liner simulations in magnetized target fusion (MTF) systems. The main goal of these simulations is to search for optimal parameters of MTF reactor, in which spherical liquid metal liner compresses compact toroid plasma. The code uses Lagrangian description for both liner and plasma. The liner is represented as a set of spherical shells with fixed masses while plasma is discretized as a set of nested tori with circular cross sections and fixed number of particles between them. All physical fields are 1D functions of either spherical (liner) or small toroidal (plasma) radius. Motion of liner and plasma shells is calculated self-consistently based on applied forces and equations of state. Magnetic field is determined by 1D profiles of poloidal and toroidal fluxes - they are advected with shells and diffuse according to local resistivity, this also accounts for flux leakage into the liner. Different plasma transport models are implemented, this allows for comparison with ongoing GF experiments. Fusion power calculation is included into the code. We performed a series of parameter scans in order to establish the underlying dependencies of the MTF system and find the optimal reactor design point.

  1. Use of a Tantalum Liner to Reduce Bore Erosion and Increase Muzzle Velocity in Two-Stage Light Gas Guns

    Science.gov (United States)

    Bogdanoff, David W.

    2015-01-01

    Muzzle velocities and gun erosion predicted by earlier numerical simulations of two stage light gas guns with steel gun tubes were in good agreement with experimental values. In a subsequent study, simulations of high performance shots were repeated with rhenium (Re) gun tubes. Large increases in muzzle velocity (2 - 4 km/sec) were predicted for Re tubes. In addition, the hydrogen-produced gun tube erosion was, in general, predicted to be zero with Re tubes. Tantalum (Ta) has some mechanical properties superior to those of Re. Tantalum has a lower modulus of elasticity than Re for better force transmission from the refractory metal liner to an underlying thick wall steel tube. Tantalum also has greater ductility than Re for better survivability during severe stress/strain cycles. Also, tantalum has been used as a coating or liner in military powder guns with encouraging results. Tantalum has, however, somewhat inferior thermal properties to those of rhenium, with a lower melting point and lower density and thermal conductivity. The present study was undertaken to see to what degree the muzzle velocity gains of rhenium gun tubes (over steel tubes) could be achieved with tantalum gun tubes. Nine high performance shots were modeled with a new version of our CFD gun code for steel, rhenium and tantalum gun tubes. For all except the highest velocity shot, the results with Ta tubes were nearly identical with those for Re tubes. Even for the highest velocity shot, the muzzle velocity gain over a steel tube using Ta was 82% of the gain obtained using Re. Thus, the somewhat inferior thermal properties of Ta (when compared to those of Re) translate into only very slightly poorer overall muzzle velocity performance. When this fact is combined with the superior mechanical properties of Ta and the encouraging performance of Ta liners/coatings in military powder guns, tantalum is to be preferred over Re as a liner/coating material for two stage light gas guns to increase muzzle

  2. Development of a Liner Design Methodology and Relevant Results of Acoustic Suppression in the Farfield for Mixer-Ejector Nozzles

    Science.gov (United States)

    Salikuddin, M.

    2006-01-01

    We have developed a process to predict noise field interior to the ejector and in the farfield for any liner design for a mixer-ejector of arbitrary scale factor. However, a number of assumptions, not verified for the current application, utilized in this process, introduce uncertainties in the final result, especially, on a quantitative basis. The normal impedance model for bulk with perforated facesheet is based on homogeneous foam materials of low resistivity. The impact of flow conditions for HSCT application as well as the impact of perforated facesheet on predicted impedance is not properly accounted. Based on the measured normal impedance for deeper bulk samples (i.e., 2.0 in.) the predicted reactance is much higher compared to the data at frequencies above 2 kHz for T-foam and 200 ppi SiC. The resistance is under predicted at lower frequencies (below 4 kHz) for these samples. Thus, the use of such predicted data in acoustic suppression is likely to introduce inaccuracies. It should be noted that the impedance prediction methods developed recently under liner technology program are not utilized in the studies described in this report due to the program closeout. Acoustic suppression prediction is based on the uniform flow and temperature conditions in a two-sided treated constant area rectangular duct. In addition, assumptions of equal energy per mode noise field and interaction of all frequencies with the treated surface for the entire ejector length may not be accurate. While, the use of acoustic transfer factor minimizes the inaccuracies associated with the prediction for a known test case, the assumption of the same factor for other liner designs and with different linear scale factor ejectors seems to be very optimistic. As illustrated in appendix D that the predicted noise suppression for LSM-1 is lower compared to the measured data is an indication of the above argument. However, the process seems to be more reliable when used for the same scale

  3. Aging of steel containments and liners in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.; Ellingwood, B. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering; Norris, W.E. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

    1998-01-01

    Aging of the containment pressure boundary in light water reactor plants is being addressed to understand the significant factors relating occurrence of corrosion efficacy of inspection and structural capacity reduction of steel containments and liners of concrete containments. and to make recommendations on use of risk models in regulatory decisions. Current regulatory in-service inspection requirements are reviewed and a summary of containment related degradation experience is presented. Current and emerging nondestructive examination techniques and a degradation assessment methodology for characterizing and quantifying the amount of damage present are described. Quantitative tools for condition assessment of aging structures using time dependent structural reliability analysis methods are summarized. Such methods provide a framework for addressing the uncertainties attendant to aging in the decision process. Results of this research provide a means for establishing current and estimating future structural capacity margins of containments, and to address the significance of incidences of reported containment degradation.

  4. Target compressions by working fluids driven with solid liner implosions

    Science.gov (United States)

    Chiang, P.-R.; Lewis, R. A.; Smith, G. A.; Dailey, J. M.; Chakrabarti, S.; Higman, K. I.; Bell, D.; Degnan, J. H.; Hussey, T. W.; Mullins, B. W.

    1994-01-01

    Compression by a spherical solid liner of a gold target surrounded by a hydrogen plasma is simulated. Two-dimensional simulations that treat only a subset of the physics included in the one-dimensional code were performed in an attempt to assess multidimensional effects. A one-dimensional numerical code has been developed to study the effects of thermal radiation and conduction. Results of pressure, density, and energy deposited for different initial plasma conditions are presented and discussed. Results from both one- and two-dimensional codes show that the average target density at peak compression is 39-43 g/cu cm, using the SHIVA Star facility at 90 kV discharge.

  5. Advantages of floating covers with LLDPE Liners; Ventajas del uso de geomembranas LLDPE en cubiertas flotantes

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Gomez, J. M.

    2014-02-01

    Using floating covers in irrigation pounds and waste dam gives many advantages. It is a very interesting investment for those place with a high evaporation ratio. this is an easy system which improves several aspects in irrigation or drinkable water reservoirs, mainly it saves water and it saves clean-works (time and cost). It is also used in waste dam to deodorization. Time ago this application was developed with PVC liners and TPO liners, now the innovation is LLDPE liners which improve mechanical properties, durability and an easier installation. This paper develops the state of art of this design technology, and the back ground of our experience. (Author)

  6. An integer programming model and benchmark suite for liner shipping network design

    DEFF Research Database (Denmark)

    Løfstedt, Berit; Alvarez, Jose Fernando; Plum, Christian Edinger Munk

    Maritime transportation is accountable for 2.7% of the worlds CO2 emissions and the liner shipping industry is committed to a slow steaming policy to provide low cost and environmentally conscious global transport of goods without compromising the level of service. The potential for making cost...... effective and energy efficient liner shipping networks using operations research is huge and neglected. The implementation of logistic planning tools based upon operations research has enhanced performance of both airlines, railways and general transportation companies, but within the field of liner...

  7. Follow up of test areas with FSS liners. Gaerstad and Sofielund landfills; Uppfoeljning av provytor med taetskikt av FSA. Gaerstad deponi och Sofielunds deponi

    Energy Technology Data Exchange (ETDEWEB)

    Laendell, Maerta; Carling, Maria; Haakansson, Karsten; Myrhede, Elke; Svensson, Bo

    2009-03-19

    In the coming years, a large number of landfills will be closed as a result of new environmental legislation and more stringent requirements. The availability of suitable material for covering and sealing is limited, especially in large urban areas. Sludge and ash are potentially useful materials for this purpose. The project 'Covering landfill with sludge and ash' was carried out from 2003 to 2005. The project involved the establishment and monitoring of different test areas having liners (sealing layers) of sewage sludge and fly ash. The experience gained from this project has also been used in the development of guidelines for using fly-ash-stabilised sewage sludge (FSS) as a liner. In the current project, two test areas have been monitored for a three-year period. Investigations have focused on the permeability of the materials, chemical properties of both runoff water and percolating water, resistance to decomposition, subsidence/compaction, strength, etc. The project was financed by Vaermeforsk, Svensk Vatten Utveckling and the two participating facilities (Tekniska Verken in Linkoeping and SRV Aatervinning in Huddinge). The study was carried out by Geo Innova in collaboration with both facilities, and the Department for Water and Environmental Studies at Linkoeping University. The project involved sampling and analysis of water, pore gas and solid material. In the field, subsidence and water levels have been measured. The results have been compared with the guideline levels for surface water, between different sampling and measurement locations (above and below the liner, with and without drainage, steep and flat areas, etc), and at different times. The results show that the FSS liner is impermeable. The requirement for landfills for non-hazardous waste is satisfied; in some cases the permeability is on a par with the requirement for hazardous waste landfills. Some decomposition of the material occurs, as indicated by the detection of methane and

  8. Structure-Packing-Property Correlation of Self-Sorted vs. Interdigitated Assembly in TTF.TCNQ Based Charge-Transport Materials.

    Science.gov (United States)

    Niyas, M A; Ramakrishnan, Remya; Vijay, Vishnu; Hariharan, Mahesh

    2018-01-03

    Among the various donor-acceptor (D-A) charge transfer cocrystals investigated in the past few decades, tetrathiafulvalene-tetracyanoquinodimethane (F.Q, popularly known as TTF.TCNQ) based cocrystals have fascinated materials chemists owing to its packing and exceptional properties. Here, crystallographic information files of eighteen F.Q based cocrystals were extracted from Cambridge Structural Database and classified into Class 1 (D on D and A on A segregated stacks; F.Q, F1.Q - F6.Q and F.Q1), Class 2 (-A-D-A-D-A-D- mixed stacks; F6a.Q - F11.Q and F.Q2) and Class 3 (-A-D-A-A-D-A-; Class 3a (F12.Q and F13.Q) and -D-D-A-A-D-D-; Class 3b (F14.Q)) systems based on their packing modes. PIXEL calculations revealed that the Q on Q dimer is the energetically most favored dimer in F.Q, the substituents on F capable of forming hydrogen bonding, C...S and other weak intermolecular interactions resulted in the greater stability of F on F dimer for F1.Q - F6.Q (except F2.Q). Band structure of F.Q and F6.Q with high interaction of electronic orbitals between D on D and A on A in segregated stacks were found to be metal-like (band gap, Eg = 0.003 eV) and metallic (overlapping bands in the Fermi level) respectively while the polymorph of F6.Q belonging to Class 2 (F6a.Q) displayed a semiconductor-type band structure (Eg = 0.053 eV). F12.Q of Class 3a exhibited a metal-like band structure (Eg = 0.001 eV). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Migration kinetics and mechanisms of plasticizers, stabilizers at interfaces of NEPE propellant/HTPB liner/EDPM insulation.

    Science.gov (United States)

    Huang, Zhi-ping; Nie, Hai-ying; Zhang, Yuan-yuan; Tan, Li-min; Yin, Hua-li; Ma, Xin-gang

    2012-08-30

    Migration appeared in the interfaces of nitrate ester plasticized polyether (NEPE) based propellant/hydroxyl-terminated polybutadiene (HTPB) based liner/ethylene propylene terpolymer (EPDM) based insulation was studied by aging at different temperatures. The migration components were extracted with solvent and determined by high performance liquid chromatography (HPLC). The migration occurred within 1mm to the interfaces, and the apparent migration activation energy (Ea) of nitroglycerin (NG), 1,2,4-butanetriol trinitrate (BTTN) and a kind of aniline stabilizer AD in propellant, liner and insulation was calculated respectively on the basis of HPLC data. The Ea values were among 15 and 50 kJ/mol, which were much less than chemical energy, and almost the same as hydrogen bond energy. The average diffusion coefficients were in the range of 10(-19)m(2)s(-1) to 10(-16)m(2)s(-1). It seemed the faster the migration rates, the smaller the apparent migration activation energy, the larger the diffusion coefficient and the less the amount of migration. It could be explained that the migration rate and energy were affected by the molecular volume of a mobile component and its diffusion property, and the amount of migration was resulted from the molecular polarity comparability of a mobile component to the based material. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Characterization and hardenability evaluation of gray cast iron used in the manufacture of diesel engine cylinder liners

    Directory of Open Access Journals (Sweden)

    Edgar L. Castellanos-Leal

    2017-09-01

    Full Text Available The increment of the mechanical properties (surface hardness of engine cylinder is one of the principal goals for foundry company, to increase the competitiveness of their products in the local and foreign market. This study focused on the characterization of the gray cast iron used in the production of engine cylinder liners and metallurgical parameters determination in the design of conventional quenching heat treatment. The characterization was performed by material hardenability evaluation using Grossmann method, and Jominy test; the austenitizing temperature and the severity of cooling medium to a proper hardening of material were selected. Results revealed that the excellent hardness value obtained is attributed to the suitable hardenability of the gray cast iron and adequate severity selection for hardening treatment.

  11. Materialism.

    Science.gov (United States)

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  12. 2D HYDRA Calculations of Magneto-Rayleigh-Taylor Growth and Feedthrough in Cylindrical Liners

    Science.gov (United States)

    Weis, Matthew; Zhang, Peng; Lau, Y. Y.; Gilgenbach, Ronald; Peterson, Kyle; Hess, Mark

    2014-10-01

    Cylindrical liner implosions are susceptible to the magneto-Rayleigh-Taylor instability (MRT), along with the azimuthal current-carrying modes (sausage, kink, etc). ``Feedthrough'' of these instabilities has a strong influence on the integrity of the liner/fuel interface in the magnetized liner inertial fusion concept (MagLIF). The linearized ideal MHD equations can be solved to quantify these effects, including the presence of an effective gravity and an axial magnetic field. We investigate the potential of this field to mitigate feedthrough, due to MRT growth from various initial surface finishes (seeded, rough), throughout the implosion using our analytic results and the LLNL code, HYDRA. We will present both low and high convergence cases. Lastly, we illustrate the effect shock compression can have on feedthrough in seeded liners for various fill gases (cold and pre-heated) and magnetic field configurations. M. R. Weis was supported by the Sandia National Laboratories.

  13. Water quality implications of culvert repair options : cementitious and polyurea spray-on liners.

    Science.gov (United States)

    2012-11-01

    Many commonly used culvert rehabilitation technologies entail the use of a resin or coating that cures to form a rigid : liner within the damaged culvert. However, the potential environmental impacts of leaching or release of contaminants during : no...

  14. A path based model for a green liner shipping network design problem

    DEFF Research Database (Denmark)

    Jepsen, Mads Kehlet; Brouer, Berit Dangaard; Plum, Christian Edinger Munk

    2011-01-01

    Liner shipping networks are the backbone of international trade providing low transportation cost, which is a major driver of globalization. These networks are under constant pressure to deliver capacity, cost effectiveness and environmentally conscious transport solutions. This article proposes...

  15. Thermal asymmetry model of single slope single basin solar still with sponge liner

    Directory of Open Access Journals (Sweden)

    Shanmugan Sengottain

    2014-01-01

    Full Text Available An attempt has been made to propose a thermal asymmetry model for single slope basin type solar still with sponge liner of different thickness (3cm, 5cm, and 10cm in the basin. Two different color sponge liners have been used i.e., yellow and black. In the proposed design, a suitable dripping arrangement has been designed and used to pour water drop by drop over the sponge liner instead of sponge liner in stagnant saline water in the basin. The special arrangement overcomes the dryness of the sponge during peak sunny hours. The performance of the system with black color sponge of 3cm thickness shows better result with an output of 5.3 kg/m2 day and the proposed model have used to find the thermal asymmetries during the working hours of the still.

  16. STS-112 workers perform post-polishing inspection on flow liners

    Science.gov (United States)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - United Space Alliance technician Jerry Goudy performs arc welding on one of Atlantis' flow liners. Following an extensive investigation into the cause of tiny cracks inside fuel lines of the four space shuttle orbiters, a welding and polishing process is being implemented that will restore flow-liner integrity to design condition. These liners are inside the space shuttle Main Propulsion System fuel lines to preclude liquid hydrogen and oxygen turbulent flow into the engines during launch and climb to orbit. The technique has called for welds of three very small cracks on Atlantis and two on Endeavour. Additionally, the microscopic rough edges of the liner holes are being smoothed by polishing to reduce the chance of more cracks developing in the future. Atlantis is scheduled on mission STS-112, an assembly flight to the International Space Station, no earlier than Sept. 28, 2002.

  17. Evaluation of two polyimides and of an improved liner retention design for self-lubricating bushings

    Science.gov (United States)

    Sliney, H. E.

    1984-01-01

    Two different polyimide polymers were studied and the effectiveness of a design feature to improve retention of the self lubricating composite liners under high load was evaluated. The basic bearing design consisted of a molded layer of chopped graphite-fiber-reinforced-polyimide (GFRP) composite bonded to the bore of a steel bushing. The friction, wear, and load carrying ability of the bushings were determined in oscillating tests at 25, 260 and 315 C at radial unit loads up to 260 MPa. Friction coefficients were typically 0.15 to 0.25. Bushings with liners containing a new partially fluorinated polymer were functional, but had a lower load capacity and higher wear rate than those containing a more conventional, high temperature polyimide. The liner retention design feature reduced the tendency of the liners to crack and work out of the contact zone under high oscillating loads.

  18. Simulation Study of Structure and Properties of Plasma Liners for the PLX- α Project

    Science.gov (United States)

    Samulyak, Roman; Shih, Wen; Hsu, Scott; PLX-Alpha Team

    2017-10-01

    Detailed numerical studies of the propagation and merger of high-Mach-number plasma jets and the formation and implosion of plasma liners have been performed using the FronTier code in support of the Plasma Liner Experiment-ALPHA (PLX- α) project. Physics models include radiation, physical diffusion, plasma-EOS models, and an anisotropic diffusion model that mimics deviations from fully collisional hydrodynamics in outer layers of plasma jets. Detailed structure and non-uniformity of plasma liners of due to primary and secondary shock waves have been studies as well as averaged quantities of ram pressure and Mach number. Synthetic data from simulations have been compared with available experimental data from a multi-chord interferometer and survey and high-resolution spectrometers. Numerical studies of the sensitivity of liner properties to experimental errors in the initial masses of jets and the synchronization of plasma gun valves have also been performed. Supported by the ARPA-E ALPHA program.

  19. Quantum lattice fluctuations in a 1-dimensional charge-density-wave material: Luminescence and resonance Raman studies of an MX solid

    Energy Technology Data Exchange (ETDEWEB)

    Long, F.H.; Love, S.P.; Swanson, B.I.

    1993-01-01

    Luminescence spectra, both emission and excitation, and the excitation dependence of the resonance Raman (RR) spectra were measured for a 1-dimensional charge-density-wave solid, [Pt(L)[sub 2]Cl[sub 2

  20. Friction Material Composites Materials Perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2012-01-01

    Friction Material Composites is the first of the five volumes which strongly educates and updates engineers and other professionals in braking industries, research and test labs. It explains besides the formulation of design processes and its complete manufacturing input. This book gives an idea of mechanisms of friction and how to control them by designing .The book is  useful for designers  of automotive, rail and aero industries for designing the brake systems effectively with the integration of friction material composite design which is critical. It clearly  emphasizes the driving  safety and how serious designers should  select the design input. The significance of friction material component like brake pad or a liner as an integral part of the brake system of vehicles is explained. AFM pictures at nanolevel illustrate broadly the explanations given.

  1. Spacecraft Surface Charging Handbook

    Science.gov (United States)

    1992-11-01

    Location High potential si&e of C Pulser output Wires on drive pU~ Sensor Woih-voltuge Probe Cuwaln prole Current protw Connection tard ...477, 1982. 316 Gabriel , S. B. and Garrett, H. B.. "An Overview of Charging Environments," Space Environmental Effects on Materials Workshop, p. 495

  2. Dynamic mechanical properties of oral mucosa: comparison with polymeric soft denture liners

    OpenAIRE

    Lacoste-Ferré, Marie-Hélène; Demont, Philippe; Dandurand, Jany; Dantras, Eric; Duran, Damien; Lacabanne, Colette

    2011-01-01

    The purpose of this work was to characterize the viscoelastic behaviour of oral mucosa and compare it with the dynamic mechanical properties of different soft liners. For this purpose, a sample of pig oral mucosa and six commercialized soft liner samples have been investigated. A comparison was also carried with the first suitable hard rubber for dental prosthetics: vulcanite. Creep recovery (CR) and dynamic mechanical analysis (DMA)have been used to determine the mechanical modulus of oral m...

  3. The effect of selected parameters of the honing process on cylinder liner surface topography

    Science.gov (United States)

    Pawlus, P.; Dzierwa, A.; Michalski, J.; Reizer, R.; Wieczorowski, M.; Majchrowski, R.

    2014-04-01

    Many truck cylinder liners made from gray cast iron were machined. Ceramic and diamond honing stones were used in the last stages of operation: coarse honing and plateau honing. The effect of honing parameters on the cylinder liner surface topography was studied. Selected surface topography parameters were response variables. It was found that parameters from the Sq group were sensitive to honing parameter change. When plateau honing time varied, the Smq parameter increased, while the other parameters, Spq and Svq, were stable.

  4. Studies of Cylindrical Liner Z-Pinches at 1 MA on COBRA

    Science.gov (United States)

    Atoyan, Levon; Byvank, Tom; Cahill, Adam; Potter, William; de Grouchy, Philip; Kusse, Bruce; Hammer, David

    2014-10-01

    Tests of the magnetized liner inertial fusion (MagLIF) concept will make use of the 27 MA Z-machine to implode a cylindrical metal liner onto a preheated plasma contained within it. While most pulsed power machines produce much lower currents than the Z-machine, there are questions that can be addressed on smaller scale facilities. Recent work on the 1 MA Cornell Beam Research Accelerator (COBRA) has made use of 10 mm long cylindrical metal liners having a 4 mm diameter and a varying wall thickness to study the initiation of plasma on the liner's outer surface as well as axial magnetic field compression. We will present experimental results with both imploding and non-imploding liners, investigating the impact the liner's external surface structure has on initiation, outer surface ablation, and implosion. The effect of a uniform axial external magnetic field on observed surface striations will also be discussed. This research is supported by the National Nuclear Security Administration Stewardship Sciences Academic Programs under Department of Energy Cooperative Agreement DE-NA0001836.

  5. Impact of landfill liner time-temperature history on the service life of HDPE geomembranes.

    Science.gov (United States)

    Rowe, R Kerry; Islam, M Z

    2009-10-01

    The observed temperatures in different landfills are used to establish a number of idealized time-temperature histories for geomembrane liners in municipal solid waste (MSW) landfills. These are then used for estimating the service life of different HDPE geomembranes. The predicted antioxidant depletion times (Stage I) are between 7 and 750 years with the large variation depending on the specific HDPE geomembrane product, exposure conditions, and most importantly, the magnitude and duration of the peak liner temperature. The higher end of the range corresponds to data from geomembranes aged in simulated landfill liner tests and a maximum liner temperature of 37 degrees C. The lower end of the range corresponds to a testing condition where geomembranes were immersed in a synthetic leachate and a maximum liner temperature of 60 degrees C. The total service life of the geomembranes was estimated to be between 20 and 3300 years depending on the time-temperature history examined. The range illustrates the important role that time-temperature history could play in terms of geomembrane service life. The need for long-term monitoring of landfill liner temperature and for geomembrane ageing studies that will provide improved data for assessing the likely long-term performance of geomembranes in MSW landfills are highlighted.

  6. Formation of Imploding Plasma Liners for HEDP and MIF Applications - Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering. Dept. of Physics and Astronomy; Hsu, Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Witherspoon, F. Douglas [HyperV Technologies Corp., Chantilly, VA (United States); Cassibry, Jason [Univ. of Alabama, Huntsville, AL (United States); Bauer, Bruno S. [Univ. of Nevada, Reno, NV (United States)

    2015-04-27

    The goal of the plasma liner experiment (PLX) was to explore and demonstrate the feasibility of forming imploding spherical plasma liners that can reach High Energy Density (HED)-relevant (~ 0.1 Mbar) pressures upon stagnation. The plasma liners were to be formed by a spherical array of 30 – 36 railgun-driven hypervelocity plasma jets (Mach 10 – 50). Due to funding and project scope reductions in year two of the project, this initial goal was revised to focus on studies of individual jet propagation, and on two jet merging physics. PLX was a collaboration between a number of partners including Los Alamos National Laboratory, HyperV Technologies, University of New Mexico (UNM), University of Alabama, Huntsville, and University of Nevada, Reno. UNM’s part in the collaboration was primary responsibility for plasma diagnostics. Though full plasma liner experiments could not be performed, the results of single and two jet experiments nevertheless laid important groundwork for future plasma liner investigations. Though challenges were encountered, the results obtained with one and two jets were overwhelmingly positive from a liner formation point of view, and were largely in agreement with predictions of hydrodynamic models.

  7. Status of duct liner technology for application to aircraft engine nacelles

    Science.gov (United States)

    Parrott, Tony L.; Jones, Michael G.; Watson, Willie R.

    2005-09-01

    The peculiar technical requirements that constrain the design of acoustic liners used to suppress turbo-machinery noise emission from commercial aircraft engine nacelles continue to make the design of such liners a challenge. The need for increased liner efficiency and suppression bandwidth is particularly critical in the face of ever decreasing nacelle wall area available for liner treatments in modern high bypass ratio engines. This paper reviews some of the key advances in the enabling measurement technologies that have been critical to creating and validating impedance models for liner structures suitable for the harsh aeroacoustic environments encountered on the inside of nacelle inlets and exhaust ducts. Specifically, the paper describes recent advances and outstanding issues related to determining liner impedance beneath high speed grazing flows combined with high sound levels. Evolution of this technology has resulted from the need for more reliable/accurate impedance determinations, and from the impetus provided by modern data acquisition systems and computational methodologies. Outstanding issues include discrepancies between impedances as educed in different laboratories under similar aeroacoustic conditions. For single layer, perforate over honeycomb type structures, these discrepancies are mainly confined to the normalized resistance component and may be as large as 0.50.

  8. SRM propellant and polymer materials structural test program

    Science.gov (United States)

    Moore, Carleton J.

    1988-01-01

    The SRM propellant and polymer materials structural test program has potentially wide application to the testing and structural analysis of polymer materials and other materials generally characterized as being made of viscoelastic materials. The test program will provide a basis for characterization of the dynamic failure criteria for Solid Rocket Motor (SRM) propellant, insulation, inhibitor and liners. This experimental investigation will also endeavor to obtain a consistent complete set of materials test data. This test will be used to improve and revise the presently used theoretical math models for SRM propellant, insulators, inhibitor, liners, and O-ring seals.

  9. Bond strength and degree of infiltration between acrylic resin denture liner after immersion in effervescent denture cleanser.

    Science.gov (United States)

    Pisani, Marina Xavier; Silva-Lovato, Cláudia Helena; Malheiros-Segundo, Antônio de Luna; Macedo, Ana Paula; Paranhos, Helena Freitas Oliveira

    2009-02-01

    The purpose of this study was to investigate the effect of sodium perborate on the bond strength and degree of infiltration between acrylic resin/resilient denture liners. Three denture liners (Elite Soft, Mucopren Soft, Kooliner) were investigated. Twenty specimens (83 x 10 x 10 mm(3)) of each material were made by processing the denture liners against two polymerized PMMA blocks. Ten specimens for each material were stored in artificial saliva at 37 degrees C (control group: TBS1), and the other ten specimens were stored in artificial saliva at 37 degrees C combined with sodium perborate (experimental group: TBS2). All specimens were placed under tension until failure in a Universal Testing Machine at a crosshead speed of 5 mm/min after 7 (T7) and 60 (T60) days (n = 5). Failure strength (MPa) was recorded, and mode of failure was characterized as cohesive, adhesive, or cohesive/adhesive. For the infiltration tests, ten circular specimens (14-mm diameter x 2-mm thick) of each material were stored in artificial saliva and 0.5% methylene blue at 37 degrees C (control group: I1), and ten specimens were stored in artificial saliva and 0.5% methylene blue at 37 degrees C combined with daily immersions for 5 minutes in an effervescent solution of sodium perborate (experimental group: I2). The degree of infiltration was obtained through photographs and using Software Image Tool after 120 days. For Kooliner, the statistical test did not show a significant difference in the bond strength due to the influence of the immersion period or to the use of sodium perborate. Elite Soft presented a significant increase in the average tension in T7 and in T60 in both TBS1 and TBS2. Inversely, the Mucopren suffered a significant decrease in the tension value in the same period as the TBS1 group as well as in the TBS2. The infiltration percentage was analyzed with the Kruskal-Wallis test (26.18; p sodium perborate did not promote significant alterations in the evaluated properties

  10. Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste.

    Science.gov (United States)

    Hamdi, Noureddine; Srasra, Ezzeddine

    2013-01-01

    Three natural clayey soils from Tunisia were studied to assess their suitability for use as a liner for an acid waste disposal site. An investigation of the effect of the mineral composition and mechanical compaction on the hydraulic conductivity and fluoride and phosphate removal of three different soils is presented. The hydraulic conductivity of these three natural soils are 8.5 × 10(-10), 2.08 × 10(-9) and 6.8 × 10(-10)m/s for soil-1, soil-2 and soil-3, respectively. Soil specimens were compacted under various compaction strains in order to obtain three wet densities (1850, 1950 and 2050 kg/m(3)). In this condition, the hydraulic conductivity (k) was reduced with increasing density of sample for all soils. The test results of hydraulic conductivity at long-term (>200 days) using acidic waste solution (pH=2.7, charged with fluoride and phosphate ions) shows a decrease in k with time only for natural soil-1 and soil-2. However, the specimens of soil-2 compressed to the two highest densities (1950 and 2050 kg/m(3)) are cracked after 60 and 20 days, respectively, of hydraulic conductivity testing. This damage is the result of a continued increase in the internal stress due to the swelling and to the effect of aggressive wastewater. The analysis of anions shows that the retention of fluoride is higher compared to phosphate and soil-1 has the highest sorption capacity. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  11. Fibre composite pressure vessel with polymer liner. Tightness against hydrogen; Fiberforstaerket trykbeholder med polymerliner - Taethed over for brint

    Energy Technology Data Exchange (ETDEWEB)

    Lystrup, Aage

    2005-10-01

    Pressure vessels are used as hydrogen storage on-board the car in a Danish hydrogen car project. To save energy the pressure vessels should have low weight, and carbon fibre composite pressure vessels were used. To ensure complete tightness against hydrogen, the vessels have an internal liner of aluminium. For structural reason the liner is relatively thick and the liner constitutes half of the weight of the complete pressure vessel. Further weight reduction can be obtained if the metal liner is replaced by a polymer liner, but this also means that the vessel no longer will be 100 % tight, as hydrogen will diffuse through the polymer liner. The diffusion of hydrogen can be reduced if the polymer liner is coated with a thin metal layer. Small 0.4-litre fibre composite pressure vessels with polymer liner and metal coated polymer liner were manufactured and the hydrogen tightness of the vessels were determined by measuring the weight loss during a period of 6 years of vessels pressurised by hydrogen to 10 MPa, equivalent to a hydrogen content of about 3.3 g. The loss of hydrogen during the first 3 years from vessels with pure polymer liner occurred linearly with an average loss of 0.055 g per month, or about 1.8 % per month. The loss of hydrogen from the vessels with metal coated liner occurred almost linear in the whole 6-years period. The average loss was 0.028 g per month for a vessel with a liner coated with a layer of a combination of Cu and Ag by vacuum deposition. The average loss was 0.017 g per month for a vessel with a liner coated with a plasma sprayed layer of Cu. This means that the metal coated liners are 2-3 times tighter than the pure polymer liner. The relative loss of hydrogen would be less for a larger pressure vessel with a larger ratio between volume and surface area. As an example, the relative loss for the 9-litre pressure vessel used in the Danish hydrogen car project would be 3.3 times less than the relative loss for the small 0.4 litre vessel

  12. The use of volcanic soil as mineral landfill liner--III. Heavy metals retention capacity.

    Science.gov (United States)

    Navia, Rodrigo; Fuentes, Bárbara; Diez, María C; Lorber, Karl E

    2005-06-01

    The volcanic soil of Southern Chile was tested for its heavy metal retention capacity. The maximum uptakes for CrO4(2-) (CrVI), Cu(2+), Zn(2+) and Pb(2+) were determined to be 2.74, 5.32, 5.86 and 7.44 mg g(-1), respectively. At a slightly alkaline pH value (7.5), it seems that a precipitation-adsorption process was responsible for the Cu(2+) and Zn(2+) uptake onto volcanic soil. All the determined values are of the same order of magnitude as natural zeolites heavy metals adsorption capacities. In addition, the heavy metals diffusion model through a 1 m volcanic soil mineral liner shows breakthrough times of 21.6, 10.2 and 8.9 years, for Pb(2+), Zn(2+) and Cu(2+), respectively, confirming the trend obtained in the adsorption isotherms. The natural volcanic soil of Southern Chile is an interesting material for possible use as landfill mineral basal sealing. It has an appropriate sealing potential (average Kf value of 5.85 x 10(-9) m s(-1)) and a heavy metals retention capacity comparable with natural zeolites. About two-thirds of the agricultural land in Chile (approximately 0.4 million km2) is derived from volcanic ash, suggesting an important soil volume for future landfill projects, that could be obtained in sufficient quantities from urban building activities.

  13. DT ignition in a Z pinch compressed by an imploding liner

    Science.gov (United States)

    Bilbao, L.; Bernal, L.; Linhart, J. G.; Verri, G.

    2001-11-01

    It has been shown that an m = 0 instability of a Z pinch carrying a current of the order of 10 MA with a rise time of less than 10 ns can generate a spark capable of igniting a fusion detonation in the adjacent DT plasma channel. A possible method for generating such currents, necessary for the implosion of an initial large radius, low temperature Z pinch, can be a radial implosion of a cylindrical fast liner. The problem has been addressed in previous publications without considering the role played by an initially impressed m = 0 perturbation, a mechanism indispensable for the generation of a spark. The liner-Z pinch dynamics can be solved at several levels of physical model completeness. The first corresponds to a zero dimensional model in which the liner has a given mass per unit length and a zero thickness, the plasma is compressed adiabatically and is isotropic, and there are no energy losses or Joule heating. The second level is one dimensional. The Z pinch plasma is described by the full set of MHD, two-fluid equations. The liner is treated first as thin and incompressible, and subsequently it is assumed that it has a finite thickness and is composed of a heavy ion plasma, having an artificial but realistic equation of state. Both plasma and liner are considered uniform in the Z direction and only DT reactions are considered. It is shown that, given sufficient energy and speed of the liner, the Z pinch can reach a volume ignition. The third level is two dimensional. Plasma and liner are treated as in the second level but either the Z pinch or the liner is perturbed by an m = 0 non-uniformity. Provided the liner energy is high enough and the initial m = 0 perturbation is correctly chosen, the final neck plasma can act as a spark for DT ignition. It is also shown that the liner energy required for generating a spark and the subsequent detonation propagation are considerably less than in the case of volume ignition.

  14. Data and material of the Safe-Range-Inventory: An assistance tool helping to improve the charging infrastructure for electric vehicles.

    Science.gov (United States)

    Carbon, Claus-Christian; Gebauer, Fabian

    2017-10-01

    The Safe-Range-Inventory (SRI) was constructed in order to help public authorities to improve the charging infrastructures for electric vehicles [1; 10.1016/j.trf.2017.04.011]. Specifically, the impact of fast (vs slow) charging stations on people's range anxiety was examined. Ninety-seven electric vehicle users from Germany (81 male; Mage=46.3 years, SD=12.1) were recruited to participate in the experimental design. Statistical analyses were conducted using ANOVA for repeated measures to test for interaction effects of available charging stations and remaining range with the dependent variable range anxiety. The full data set is publicly available via https://osf.io/bveyw/ (Carbon and Gebauer, 2017) [2].

  15. IUE and Einstein observations of the LINER galaxy NGC 4579

    Science.gov (United States)

    Reichert, G. A.; Puchnarewicz, E. M.; Mason, K. O.

    1990-01-01

    Results of International Ultraviolet Explorer (IUE) and Einstein observations of the LINER galaxy NGC 4579 are reported. Spatial profiles of the long wavelength IUE emission show a two component structure, with an unresolved core superimposed on broader underlying emission. The core spectrum shows strong C II lambda 2326 and broad Mg II lambda 2800 emission, and perhaps emission due to blends of Fe II multiplets (2300 to 23600 angstrom). The short wavelength emission is spatially unresolved, and shows C II lambda 1335, C III lambda 1909 broad C IV lambda 1550 emission, and a broad feature at approximately 1360 angstrom which may be due to 0.1 lambda 1356. Contrary to previous reports no evidence for He II lambda 1640 is found in the spectrum. An unresolved x ray source is detected at the location of the nucleus; its spectrum is well fitted by a power law of energy slope alpha approximately -0.5. These results further support the idea that NGC 4579 may contain a dwarf Seyfert nucleus.

  16. Liner Shipping Fleet Deployment with Sustainable Collaborative Transportation

    Directory of Open Access Journals (Sweden)

    Gang Du

    2016-02-01

    Full Text Available Facing sharp competition in the market for shipping companies, it is necessary to make reasonable and efficient decisions to optimize the container shipping line network so as to improve the shipping efficiency and reduce the transportation cost, as well as to realize the transportation sustainability. Therefore, the liner ship fleet deployment problem with collaborative transportation is proposed in this paper. This problem is formulated as a mixed-integer linear programming model that takes collaborative transportation into consideration. The model includes fixed cost, variable cost, berth cost, transport cost, penalty, compensation cost, and so on. To achieve the sustainable development of collaborative transportation, the shipping companies could make a selection between the internal routes and the external routes to serve each task by comparing the distance between the above routes. A real Asia-Europe-Oceania numerical experiment shows that the proposed sustainable collaborative transportation model can be efficiently solved by C++ calling ILOG CPLEX. Results demonstrate that the optimized shipping line network with sustainable collaborative transportation can improve the service efficiency, as well as the service level of shipping companies.

  17. Experimental observation of discrete helical modes in imploding cylindrical liners

    Science.gov (United States)

    Yager-Elorriaga, D. A.; Zhang, P.; Steiner, A. M.; Jordan, N. M.; Campbell, P. C.; Lau, Y. Y.; Gilgenbach, R. M.

    2016-10-01

    The 1-MA Linear Transformer Driver at the University of Michigan was used to implode ultrathin (400 nm thick) cylindrical aluminum liners1 that were pre-embedded with externally applied, axial magnetic fields of Bz = 0.2 - 2.0 T. Using 12-frame laser shadowgraphy and visible self-emission, helical striations were found that increased in pitch angle during the implosion and decreased in angle during the later time explosion, despite the relatively large, peak azimuthal magnetic field exceeding 40 T. The results are interpreted as a discrete, non-axisymmetric eigenmode of a helical instability that persists from implosion to explosion. The helical pitch angle φ was found to obey the simple relation φ = m / kR , where m, k, and R are the azimuthal mode number, axial wavenumber, and radius of the helical instability. Analytic growth rates2 for experimental parameters are presented, and show that early in the current pulse, axisymmetric modes (m = 0) are completely stabilized while non-axisymmetric modes (m > 1) are found to be unstable. This research was supported by DOE Award DE-SC0012328, Sandia National Laboratories, and the NSF. The fast framing camera was supported by AFOSR Grant #FA9550-15-1-0419.

  18. Development of a model capable of predicting the performance of piston ring-cylinder liner-like tribological interfaces

    DEFF Research Database (Denmark)

    Felter, C.L.; Vølund, A.; Imran, Tajammal

    2010-01-01

    Friction in the piston ring package (piston, piston rings, and liner) is a major source of power consumption in large two-stroke marine diesel engines. In order to improve the frictional and wear performance, knowledge about the tribological interface between piston rings and liner is needed...... at a high speed. This article represents the first steps in the pursuit of being able to accurately model the interface between a piston ring and the cylinder liner in large two-stroke diesel engines....

  19. Tensile-Creep Test Specimen Preparation Practices of Surface Support Liners

    Science.gov (United States)

    Guner, Dogukan; Ozturk, Hasan

    2017-12-01

    Ground support has always been considered as a challenging issue in all underground operations. Many forms of support systems and supporting techniques are available in the mining/tunnelling industry. In the last two decades, a new polymer based material, Thin Spray–on Liner (TSL), has attained a place in the market as an alternative to the current areal ground support systems. Although TSL provides numerous merits and has different application purposes, the knowledge on mechanical properties and performance of this material is still limited. In laboratory studies, since tensile rupture is the most commonly observed failure mechanism in field applications, researchers have generally studied the tensile testing of TSLs with modification of American Society for Testing and Materials (ASTM) D-638 standards. For tensile creep testing, specimen preparation process also follows the ASTM standards. Two different specimen dimension types (Type I, Type IV) are widely preferred in TSL tensile testing that conform to the related standards. Moreover, molding and die cutting are commonly used specimen preparation techniques. In literature, there is a great variability of test results due to the difference in specimen preparation techniques and practices. In this study, a ductile TSL product was tested in order to investigate the effect of both specimen preparation techniques and specimen dimensions under 7-day curing time. As a result, ultimate tensile strength, tensile yield strength, tensile modulus, and elongation at break values were obtained for 4 different test series. It is concluded that Type IV specimens have higher strength values compared to Type I specimens and moulded specimens have lower results than that of prepared by using die cutter. Moreover, specimens prepared by molding techniques have scattered test results. Type IV specimens prepared by die cutter technique are suggested for preparation of tensile test and Type I specimens prepared by die cutter

  20. Space charge

    CERN Document Server

    Schindl, Karlheinz

    2005-01-01

    The Coulomb forces between the charged particles of a high-intensity beam in an accelerator create a self-field which acts on the particles inside the beam like a distributed lens, defocusing in both transverse planes. A beam moving with speed n is accompanied by a magnetic field which partially cancels the electrostatic defocusing effect, with complete cancellation at c, the speed of light. The effect of this 'direct space charge' is evaluated for transport lines and synchrotrons where the number of betatron oscillations per machine turn, Q, is reduced by DQ. In a real accelerator, the beam is also influenced by the environment (beam pipe, magnets, etc.) which generates 'indirect' space charge effects. For a smooth and perfectly conducting wall, they can easily be evaluated by introducing image charges and currents. These 'image effects' do not cancel when n approaches c, thus they become dominant for high-energy synchrotrons. Each particle in the beam has its particular incoherent tune Q and incoherent tune...

  1. Hubungan Pemakaian Panty Liner dengan Kejadian Fluor Albus pada Siswi SMA di Kota Padang Berdasarkan Wawancara Terpimpin (Kuisioner

    Directory of Open Access Journals (Sweden)

    Anisa Persia

    2015-05-01

    Full Text Available AbstrakPenyebab tersering fluor albus (keputihan patologis adalah infeksi. Proses infeksi dapat dipicu oleh banyak hal, salah satunya adalah karena pemakaian panty liner. Tujuan penelitian ini adalah menentukan hubungan antara pemakaian panty liner dengan kejadian fluor albus pada siswi SMA. Penelitian dilakukan pada siswi di enam SMA di kota Padang. Penelitian ini menggunakan desain cross sectional study dengan responden sebanyak 289 orang. Pengumpulan data responden dilakukan dengan wawancara terpimpin (pengisian kuisioner. Analisis statistik yang digunakan adalah uji chi-square. Hasil penelitian didapatkan bahwa lebih dari separuh responden yang memakai panty liner mengalami fluor albus (69,2% dan 80% diantaranya mengganti panty liner <2 kali perhari. Uji statistik chi- square menunjukkan ada hubungan yang bermakna antara pemakaian panty liner dengan kejadian fluor albus (p<0,05 dan frekuensi penggantian panty liner perhari dengan kejadian fluor albus (p<0,05. Terdapat hubungan bermakna antara pemakaian panty liner dengan fluor albus pada siswi SMA di Kota Padang.Kata kunci: fluor albus, panty liner, siswi SMA AbstractThe most common of pathology fluor albus is infection. Infection can be cocked by panty liner uses. The objective of this study was to determine relationship between panty liner uses and the incidence of fluor albus in female student of Senior High School. The research was executed to female student of senior high school in Padang. There are six schoosl was chosen as sample. This research used cross sectional study design to 289 respondent. Data was collected by guided interview. Statistic analysis use chi-square test. The result of research found more than half respondent who use panty liner experience of fluor albus (69.2% and 80% of them just replace panty liner<2 times a day. Chi-square test showed that there is significant relationship between panty liner uses with fluor albus experience (p<0.05 and frequency of panty

  2. Preliminary Design Study of Main Rocket Engine for SpaceLiner High-Speed Passenger Transportation Concept

    OpenAIRE

    Sippel, Martin; Yamashiro, Ryoma

    2013-01-01

    The revolutionary ultrafast passenger transportation system SpaceLiner is under investigation at DLR in the EU-funded study Future high-Altitude high-Speed Transport 20XX. SpaceLiner’s configuration is being amended continuously, and SpaceLiner7 is the brand new version at the point of April in 2013. SpaceLiner7 is two staged reusable launch vehicle with liquid rocket engines. SpaceLiner Main Engine (SLME) is required to have high performance for the total system to be feasible, a...

  3. Candida albicans biofilms and MMA surface treatment influence the adhesion of soft denture liners to PMMA resin

    Directory of Open Access Journals (Sweden)

    Martinna de Mendonça e Bertolini

    2014-01-01

    Full Text Available The effect of Candida albicans biofilms and methyl methacrylate (MMA pretreatment on the bond strength between soft denture liners and polymethyl methacrylate (PMMA resin was analyzed. Specimens were prepared and randomly divided with respect to PMMA pretreatment, soft liner type (silicone-based or PMMA-based, and presence or absence of a C. albicans biofilm. Samples were composed of a soft denture liner bonded between two PMMA bars. Specimens (n = 10 were incubated to produce a C. albicans biofilm or stored in sterile PBS for 12 days. The tensile bond strength test was performed and failure type was determined using a stereomicroscope. Surface roughness (SR and scanning electron microscopy (SEM analysis were performed on denture liners (n = 8. Highest bond strength was observed in samples containing a silicone-based soft liner and stored in PBS, regardless of pretreatment (p < 0.01. Silicone-based specimens mostly underwent adhesive failures, while samples containing PMMA-based liners predominantly underwent cohesive failures. The silicone-based specimens SR decreased after 12 days of biofilm accumulation or PBS storage, while the SR of PMMA-based soft liners increased (p < 0.01. The PMMA-based soft liners surfaces presented sharp valleys and depressions, while silicone-based specimens surfaces exhibited more gentle features. In vitro exposure to C. albicans biofilms reduced the adhesion of denture liners to PMMA resin, and MMA pretreatment is recommended during relining procedures.

  4. Improving shear bond strength between feldspathic porcelain and zirconia substructure with lithium disilicate glass-ceramic liner.

    Science.gov (United States)

    Wattanasirmkit, Kamolporn; Srimaneepong, Viritpon; Kanchanatawewat, Kanchana; Monmaturapoj, Naruporn; Thunyakitpisal, Pasutha; Jinawath, Supatra

    2015-01-01

    This study investigated the shear bond strength (SBS) between veneering porcelain and zirconia substructure using lithium disilicate glass-ceramic as a liner. The mineral phases and microstructures of lithium disilicate glass-ceramic at temperature range of 800-900°C were preliminarily investigated. SBSs of porcelain-veneered zirconia specimens with and without lithium disilicate glassceramic liner fired at the same temperature were determined. Results showed that SBSs of veneering porcelain and zirconia with lithium disilicate glass-ceramic liner was notably increased (plithium disilicate glass-ceramic is a potential liner which generated high SBS between veneering porcelain and zirconia.

  5. Interface toughness of a zirconia-veneer system and the effect of a liner application.

    Science.gov (United States)

    Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui

    2014-09-01

    Chipping of veneering porcelain and delamination of a zirconia-veneer interface are 2 common clinical failure modes for zirconia-based restorations and may be partially due to weak interface bonding. The effect of liner on the bond strength of the interface has not been clearly identified. The purpose of the research was to evaluate the interface toughness between the zirconia core and veneering porcelain by means of a fracture mechanics test and to assess the effect of liner on the bond strength of the interface. Thirty bilayered beam-shape specimens were prepared and divided into 2 groups according to liner application. The specimens in each group were subdivided into 3 subgroups in accordance with 3 different veneer thicknesses. A fracture mechanics test was used on each specimen, and the energy release rate, G, and phase angle, ψ, were calculated according to the experimental results. A video microscope was used to monitor the crack propagation, and a scanning electron microscope was used to identify the fracture mode after testing. Two-way ANOVA and the Tukey honestly significant difference test were performed to analyze the experimental data (α=.05) . At each phase angle, the interfaces without a liner had higher mean G values than the interfaces with a liner. Both of the interfaces showed mixed failure mode with thin layers of a veneer or a liner that remained on the zirconia surfaces. Liner application before veneering reduced the interface toughness between zirconia and veneer. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. A review of bias flow liners for acoustic damping in gas turbine combustors

    Science.gov (United States)

    Lahiri, C.; Bake, F.

    2017-07-01

    The optimized design of bias flow liner is a key element for the development of low emission combustion systems in modern gas turbines and aero-engines. The research of bias flow liners has a fairly long history concerning both the parameter dependencies as well as the methods to model the acoustic behaviour of bias flow liners under the variety of different bias and grazing flow conditions. In order to establish an overview over the state of the art, this paper provides a comprehensive review about the published research on bias flow liners and modelling approaches with an extensive study of the most relevant parameters determining the acoustic behaviour of these liners. The paper starts with a historical description of available investigations aiming on the characterization of the bias flow absorption principle. This chronological compendium is extended by the recent and ongoing developments in this field. In a next step the fundamental acoustic property of bias flow liner in terms of the wall impedance is introduced and the different derivations and formulations of this impedance yielding the different published model descriptions are explained and compared. Finally, a parametric study reveals the most relevant parameters for the acoustic damping behaviour of bias flow liners and how this is reflected by the various model representations. Although the general trend of the investigated acoustic behaviour is captured by the different models fairly well for a certain range of parameters, in the transition region between the resonance dominated and the purely bias flow related regime all models lack the correct damping prediction. This seems to be connected to the proper implementation of the reactance as a function of bias flow Mach number.

  7. Laser-driven magnetized liner inertial fusion on OMEGA

    Science.gov (United States)

    Barnak, D. H.; Davies, J. R.; Betti, R.; Bonino, M. J.; Campbell, E. M.; Glebov, V. Yu.; Harding, D. R.; Knauer, J. P.; Regan, S. P.; Sefkow, A. B.; Harvey-Thompson, A. J.; Peterson, K. J.; Sinars, D. B.; Slutz, S. A.; Weis, M. R.; Chang, P.-Y.

    2017-05-01

    Magneto-inertial fusion (MIF) combines the compression of fusion fuel, a hallmark of inertial confinement fusion (ICF), with strongly magnetized plasmas that suppress electron heat losses, a hallmark of magnetic fusion. It can reduce the traditional velocity, pressure, and convergence ratio requirements of ICF. The magnetized liner inertial fusion (MagLIF) concept being studied at the Z Pulsed-Power Facility is a key target concept in the U.S. ICF Program. Laser-driven MagLIF is being developed on OMEGA to test the scaling of MagLIF over a range of absorbed energy of the order of 1 kJ on OMEGA to 500 kJ on Z. It is also valuable as a platform for studying the key physics of MIF. An energy-scaled point design has been developed for OMEGA that is roughly 10 × smaller in linear dimensions than Z MagLIF targets. A 0.6-mm-outer-diameter plastic cylinder filled with 2.4 mg/cm3 of D2 is placed in a ˜10-T axial magnetic field, generated by a Magneto-inertial fusion electrical discharge system, the cylinder is compressed by 40 OMEGA beams, and the gas fill is preheated by a single OMEGA beam propagating along the axis. Preheating to >100 eV and axially uniform compression over 0.7 mm have been demonstrated, separately, in a series of preparatory experiments that meet our initial expectations. The preliminary results from the first integrated experiments combining magnetization, compression, and preheat demonstrating a roughly 2 x increase in the neutron yield will be reported here for the first time.

  8. Using m = 0 instability of z-pinch liner for three-dimensional plasma implosion

    Energy Technology Data Exchange (ETDEWEB)

    Alikhanov, S.G.; Bakhtin, V.P.

    1982-03-01

    Previous research has shown that volumetric compression by the magnetic pressure of an imploding Z-pinch liner for nuclear fusion purposes reaches no more than 400 when a cylindrical configuration is used. The authors consider the feasibility of achieving three-dimensional plasma implosion without sacrificing the advantages of shell acceleration by longitudinal current. The evolution of a sausage instability (m = 0) is considered for the case where a liner accelerated by an azimuthal magnetic field compresses a longitudinal magnetic field. It is assumed that the liner is homogeneous in the azimuthal direction and has periodic inhomogeneity in the axial direction. Since the intensity of the magnetic pusher field is inversely proportional to the radius of the liner, pinches are formed in the thinnest sections. Each such pinch generates waves moving in opposite directions toward the parts of the liner that implode most slowly, resulting in nearly closed volumes that are both radially and axially compressed. Under the proper conditions, the compressed cavity develops without axial cumulative jets. 5 references, 1 figure.

  9. Theory of formation of helical structures in a perfectly conducting, premagnetized Z-pinch liner

    Science.gov (United States)

    Yu, Edmund; Velikovich, Alexander; Peterson, Kyle

    2014-10-01

    The magnetized liner inertial fusion (MagLIF) concept uses an azimuthal magnetic field to collapse a thick metallic liner containing preheated fusion fuel. A critical component of the concept is an axial magnetic field, permeating both the fuel and surrounding liner, which reduces the compression necessary to achieve fusion conditions. Recent experiments demonstrate that a liner premagnetized with a 10 T axial field develops helical structures with a pitch significantly larger than an estimate of Bz /Bθ would suggest. The cause of the helical perturbations is still not understood. In this work, we present an analytic, linear theory in which we model the liner as a perfectly conducting metal, and study how bumps and divots on its surface redirect current flow, resulting in perturbations to B as well as j × B . We show that in the presence of axial and azimuthal magnetic field, the theory predicts divots will grow and deform at an angle determined by the magnetic field. We compare theoretical results with three dimensional, resistive MHD simulations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under DE-AC04-94AL85000.

  10. The PLX- α project: demonstrating the viability of spherically imploding plasma liners as an MIF driver

    Science.gov (United States)

    Hsu, S. C.; Witherspoon, F. D.; Cassibry, J. T.; Gilmore, M.; Samulyak, R.; Stoltz, P.; the PLX-α Team

    2015-11-01

    Under ARPA-E's ALPHA program, the Plasma Liner Experiment-ALPHA (PLX- α) project aims to demonstrate the viability and scalability of spherically imploding plasma liners as a standoff, high-implosion-velocity magneto-inertial-fusion (MIF) driver that is potentially compatible with both low- and high- β targets. The project has three major objectives: (a) advancing existing contoured-gap coaxial-gun technology to achieve higher operational reliability/precision and better control/reproducibility of plasma-jet properties and profiles; (2) conducting ~ π / 2 -solid-angle plasma-liner experiments with 9 guns to demonstrate (along with extrapolations from modeling) that the jet-merging process leads to Mach-number degradation and liner uniformity that are acceptable for MIF; and (3) conducting 4 π experiments with up to 60 guns to demonstrate the formation of an imploding spherical plasma liner for the first time, and to provide empirical ram-pressure and uniformity scaling data for benchmarking our codes and informing us whether the scalings justify further development beyond ALPHA. This talk will provide an overview of the PLX- α project as well as key research results to date. Supported by ARPA-E's ALPHA program; original PLX construction supported by DOE Fusion Energy Sciences.

  11. Results of prosthetic rehabilitation on managing transtibial vascular amputation with silicone liner after wound closure.

    Science.gov (United States)

    Chin, Takaaki; Toda, Mitsunori

    2016-08-01

    To investigate the effect of a standardized silicone liner programme on the duration of prosthetic rehabilitation in patients who underwent transtibial amputation as a result of peripheral arterial disease. This retrospective study enrolled patients who underwent transtibial amputation followed by one of two stump management programmes at the same rehabilitation centre over a period of 14 years. The study compared the duration of rehabilitation following a standardized silicone liner programme compared with that following a conventional soft dressing programme. This study included 16 patients who underwent the silicone liner programme and 11 patients who underwent the soft dressing programme. There were no significant differences between the two groups in age, sex, interval between amputation and admission to the rehabilitation centre and stump length. The duration required for the completion of the rehabilitation programme was significantly shorter for the silicone liner programme compared with the soft dressing programme (mean ± SD: 77.3 days ± 13.4 versus 125.4 days ± 66.4 days, respectively). A standardized silicone liner programme reduced the duration of rehabilitation and could be a valuable replacement for soft dressing-based stump management. © The Author(s) 2016.

  12. Grazing incidence modeling of a metamaterial-inspired dual-resonance acoustic liner

    Science.gov (United States)

    Beck, Benjamin S.

    2014-03-01

    To reduce the noise emitted by commercial aircraft turbofan engines, the inlet and aft nacelle ducts are lined with acoustic absorbing structures called acoustic liners. Traditionally, these structures consist of a perforated facesheet bonded on top of a honeycomb core. These traditional perforate over honeycomb core (POHC) liners create an absorption spectra where the maximum absorption occurs at a frequency that is dictated by the depth of the honeycomb core; which acts as a quarter-wave resonator. Recent advances in turbofan engine design have increased the need for thin acoustic liners that are effective at low frequencies. One design that has been developed uses an acoustic metamaterial architecture to improve the low frequency absorption. Specifically, the liner consists of an array of Helmholtz resonators separated by quarter-wave volumes to create a dual-resonance acoustic liner. While previous work investigated the acoustic behavior under normal incidence, this paper outlines the modeling and predicted transmission loss and absorption of a dual-resonance acoustic metamaterial when subjected to grazing incidence sound.

  13. The impact of EndoBarrier gastrointestinal liner in obese patients with normal glucose tolerance and in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Rohde, Ulrich; Federspiel, Cecilie A; Vilmann, Peter

    2017-01-01

    metabolism, gut hormone secretion, gallbladder emptying, appetite and food intake in patients undergoing DJBS treatment. MATERIAL AND METHODS: Ten normal glucose tolerant (NGT) obese subjects and nine age, body weight and body mass index-matched metformin-treated T2D patients underwent a liquid mixed meal......AIMS: The duodenal-jejunal bypass sleeve ((DJBS) or EndoBarrier Gastrointestinal Liner) induces weight loss in obese subjects and may improve glucose homeostasis in patients with type 2 diabetes (T2D). To explore the underlying mechanisms, we evaluated postprandial physiology including glucose...

  14. Infrared nanoimaging of the metal-insulator transition in the charge-density-wave van der Waals material 1 T -TaS2

    Science.gov (United States)

    Frenzel, Alex J.; McLeod, Alexander S.; Wang, Dennis Zi-Ren; Liu, Yu; Lu, Wenjian; Ni, Guangxin; Tsen, Adam W.; Sun, Yuping; Pasupathy, Abhay N.; Basov, D. N.

    2018-01-01

    Using scanning near-field optical microscopy at cryogenic temperatures, we explored the first-order metal-insulator transition of exfoliated 1 T -TaS2 microcrystals on a SiO2/Si substrate. We clearly observed spatially separated metallic and insulating states during the transition between commensurate and nearly commensurate charge-density-wave phases. The capability to probe electrodynamics on nanometer length scales revealed temperature-dependent electronic properties of the insulating and metallic regions near the transition temperature. At fixed temperature, a remarkably broad spatial boundary between insulating and metallic regions was observed, across which the nano-optical signal smoothly evolved over a length scale of several hundred nanometers. To understand these observations, we performed Ginzburg-Landau calculations to determine the charge-density-wave structure of the domain boundary, which revealed the existence of an intermediate electronic phase with unique properties distinct from the bulk thermodynamic phases.

  15. Charge Storage, Conductivity and Charge Profiles of Insulators as Related to Spacecraft Charging

    Science.gov (United States)

    Dennison, J. R.; Swaminathan, Prasanna; Frederickson, A. R.

    2004-01-01

    Dissipation of charges built up near the surface of insulators due to space environment interaction is central to understanding spacecraft charging. Conductivity of insulating materials is key to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. To understand these processes requires knowledge of how charge is deposited within the insulator, the mechanisms for charge trapping and charge transport within the insulator, and how the profile of trapped charge affects the transport and emission of charges from insulators. One must consider generation of mobile electrons and holes, their trapping, thermal de-trapping, mobility and recombination. Conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator, rather than by flow of current across two electrodes around the sample. We have found that conductivity determined from charge storage decay methods is 102 to 104 smaller than values obtained from classical ASTM and IEC methods for a variety of thin film insulating samples. For typical spacecraft charging conditions, classical conductivity predicts decay times on the order of minutes to hours (less than typical orbit periods); however, the higher charge storage conductivities predict decay times on the order of weeks to months leading to accumulation of charge with subsequent orbits. We found experimental evidence that penetration profiles of radiation and light are exceedingly important, and that internal electric fields due to charge profiles and high-field conduction by trapped electrons must be considered for space applications. We have also studied whether the decay constants depend on incident voltage and flux or on internal charge distributions and electric fields; light-activated discharge of surface charge to distinguish among differing charge trapping centers; and radiation-induced conductivity. Our

  16. Preparation of Layered-Spinel Microsphere/Reduced Graphene Oxide Cathode Materials for Ultrafast Charge-Discharge Lithium-Ion Batteries.

    Science.gov (United States)

    Luo, Dong; Fang, Shaohua; Yang, Li; Hirano, Shin-Ichi

    2017-07-17

    Although Li-rich layered oxides (LLOs) have the highest capacity of any cathodes used, the rate capability of LLOs falls short of meeting the requirements of electric vehicles and smart grids. Herein, a layered-spinel microsphere/reduced graphene oxide heterostructured cathode (LS@rGO) is prepared in situ. This cathode is composed of a spinel phase, two layered structures, and a small amount of reduced graphene oxide (1.08 wt % of carbon). The assembly delivers a considerable charge capacity (145 mA h g(-1) ) at an ultrahigh charge- discharge rate of 60 C (12 A g(-1) ). The rate capability of LS@rGO is influenced by the introduced spinel phase and rGO. X-ray absorption and X-ray photoelectron spectroscopy data indicate that Cr ions move from octahedral lattice sites to tetrahedral lattice sites, and that Mn ions do not participate in the oxidation reaction during the initial charge process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Electrostatics with Computer-Interfaced Charge Sensors

    Science.gov (United States)

    Morse, Robert A.

    2006-01-01

    Computer interfaced electrostatic charge sensors allow both qualitative and quantitative measurements of electrostatic charge but are quite sensitive to charges accumulating on modern synthetic materials. They need to be used with care so that students can correctly interpret their measurements. This paper describes the operation of the sensors,…

  18. Cladding material, tube including such cladding material and methods of forming the same

    Science.gov (United States)

    Garnier, John E.; Griffith, George W.

    2016-03-01

    A multi-layered cladding material including a ceramic matrix composite and a metallic material, and a tube formed from the cladding material. The metallic material forms an inner liner of the tube and enables hermetic sealing of thereof. The metallic material at ends of the tube may be exposed and have an increased thickness enabling end cap welding. The metallic material may, optionally, be formed to infiltrate voids in the ceramic matrix composite, the ceramic matrix composite encapsulated by the metallic material. The ceramic matrix composite includes a fiber reinforcement and provides increased mechanical strength, stiffness, thermal shock resistance and high temperature load capacity to the metallic material of the inner liner. The tube may be used as a containment vessel for nuclear fuel used in a nuclear power plant or other reactor. Methods for forming the tube comprising the ceramic matrix composite and the metallic material are also disclosed.

  19. Effect of denture soft liner on mandibular ridge resorption in complete denture wearers after 6 and 12 months of denture insertion: A prospective randomized clinical study

    Directory of Open Access Journals (Sweden)

    B Dinesh Babu

    2017-01-01

    Conclusion: The use of soft denture liner significantly reduces the residual ridge resorption in complete denture wearers as compared to conventional denture wearers (without denture liner over a period of 1 year.

  20. Numerical Modeling of Plasma-Liner Formation and Implosion for PLX- α

    Science.gov (United States)

    Cassibry, Jason; Samulyak, Roman; Schillo, Kevin; Shih, Wen; Stoltz, Peter; Beckwith, Kris; Langendorf, Samuel; Hsu, Scott; PLX-α Team

    2017-10-01

    Numerical simulations of spherically imploding plasma liners formed by merging hypersonic plasma jets have been performed using the FronTier and smooth particle hydrodynamics (SPH) codes in support of the PLX- α project. The physics includes radiation, Braginskii thermal conductivity and ion viscosity, and tabular EOS (LTE and non-LTE). Solid-angle-averaged and standard deviation of liner ram pressure and Mach number reveal variations in these properties during formation and implosion. Spherical-harmonic mode-number analysis of spherical slices of ram pressure at various radii and times provide a quantitative means to assess the evolution of liner non-uniformity. Simulations of 6 and 7 jets support near-term experiments, and synthetic spectra and line-integrated densities are compared with experimental data. Supported by the ARPA-E ALPHA program.

  1. A Base Integer Programming Model and Benchmark Suite for Liner-Shipping Network Design

    DEFF Research Database (Denmark)

    Brouer, Berit Dangaard; Alvarez, Fernando; Plum, Christian Edinger Munk

    2014-01-01

    . The potential for making cost-effective and energy-efficient liner-shipping networks using operations research (OR) is huge and neglected. The implementation of logistic planning tools based upon OR has enhanced performance of airlines, railways, and general transportation companies, but within the field...... problem to be strongly NP-hard. A benchmark suite of data instances to reflect the business structure of a global liner shipping network is presented. The design of the benchmark suite is discussed in relation to industry standards, business rules, and mathematical programming. The data are based on real......-life data from the largest global liner-shipping company, Maersk Line, and supplemented by data from several industry and public stakeholders. Computational results yielding the first best known solutions for six of the seven benchmark instances is provided using a heuristic combining tabu search...

  2. Milking performance and udder health of cows milked with two different liners

    DEFF Research Database (Denmark)

    Rasmussen, Morten D.; Frimer, Erik S.; Kaartinen, L.

    1998-01-01

    the two liners). Aver age teat lengths of first lactation cows were 45 and 40 mm for front and rear teats. Older cows had teats similar to 10 min longer. There was no difference in milk yield or milk flow rates between the two groups. Average machine-on time was shorter for group L, and first lactation......The effects of milking cows with two different liners were measured for a period of 8 months with 115 Danish Holstein cows divided into two groups. G-roup H and L animals were milked with liners with mouthpiece cavity]heights of 30 and 18 mm respectively (other dimensions also differed between...... cows of group L were less restive. The frequency of red and blue discoloured teats immediately after milking was higher for group H, and teat length increased on average 5 mm during lactation with no increase for group L. The small overall differences in udder health between the two groups were...

  3. Vertical and horizontal liners. Expert seminar; Vertikale und horizontale Abdichtungssysteme. Fachseminar

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M.; Schulz, T. [comps.

    2000-07-01

    The seminar presented new findings in the fields of surface coverings and alternative liners, vertical liners (with a contribution on developments in Great Britain), and basic constructive problems of liner systems. Another session discussed problems, experience and developments of sealing walls, especially quality assurance measures during sealing wall construction. Apart from presenting a status report, the seminar also intended to provide a basis for an exchange of experience between the attendants. [German] Ein Schwerpunkt des diesjaehrigen Deponieseminars ist die Darstellung von neuen Erkenntnissen und Erfahrungen mit Oberflaechenabdichtungen und mit alternativen Dichtungssystemen fuer Deponien. Weiterhin werden vertikale Abdichtungen behandelt, fuer die ein Beitrag ueber Entwicklungen in Grossbritannien vorliegt sowie grundsaetzliche konstruktive Fragen zu Abdichtungssystemen. Der weitere Seminarschwerpunkt behandelt Problemstellungen, Erfahrungen und Entwicklungen der Dichtwandtechnologie, insbesondere Qualitaetssicherungsmassnahmen waehrend des Dichtwandbaus. Das Ziel des Seminars ist es, einerseits den Stand der Technik und der Forschung darzustellen, andererseits aber die Moeglichkeit zu bieten, Erfahrungen und Informationen auszutauschen. (orig.)

  4. Effects of equation of state, transport, and initial conditions on plasma liner formation and implosion from hypervelocity jets

    Science.gov (United States)

    Schillo, Kevin; Cassibry, Jason; Samulyak, Roman; Langendorf, Samuel; Hsu, Scott; PLX-Alpha Team

    2017-10-01

    The PLX- α project is studying plasma liner formation and implosion by merging a spherical array of plasma jets as a standoff driver for magneto-inertial fusion (MIF). A three-dimensional smoothed particle hydrodynamics (SPFMax) code is used to conduct simulations of merging of discrete plasma jets to form a plasma liner and the subsequent implosion of that liner. Peak ram pressure, Mach number, and uniformity of the liner are presented as a function of initial jet properties and assumptions about transport physics. The initial conditions include the number of jets, density, temperature, and implosion velocity. Solid-angle-averaged and standard deviation of liner ram pressure and Mach number reveal variations during liner formation and implosion. Spherical-harmonic mode-number analysis of spherical slices of ram pressure at various radii and times provide a quantitative means to assess the evolution of liner non-uniformity. Comparisons are made with select and equivalent cases of a uniform, imploding liner. Simulations of 6 and 7 jets are provided for select cases to support near-term experiments on PLX- α and will include synthetic spectra and line-integrated densities.

  5. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures

    Science.gov (United States)

    Wang, Congjun; Ohodnicki, Paul R.; Su, Xin; Keller, Murphy; Brown, Thomas D.; Baltrus, John P.

    2015-01-01

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an

  6. Development and application of a packer-type drilling-free liner hanger

    Directory of Open Access Journals (Sweden)

    Xin Tang

    2014-12-01

    Full Text Available In liner cementing, the upper cement plug and inner components of a common hanger needs to be drilled out after cementing, which will result in a poor cementing quality or even gas leakage at the flare opening. Therefore, a new packer-type drilling-free liner hanger has been developed, and a hydraulic setting-control packer, a flexible drilling-free seal box, and an auxiliary bearing back-off mechanism that go with the line hanger have been designed at the same time. Specific operation procedures include: (1 run in the liner string to the designed depth, then fully circulate the drilling fluid, finally drop the ball. When the tripping ball gets into the seat, the pressure will go up to cut off the hanging control pin and set the hanger; (2 continue to hold the pressure and cut off the ball seat pin to form circulation; (3 trip in the drill pipe to exert pressure on the hanger, back off to release the hanger from the running tool; (4 lower the drill pipe plug upon the completion of cement injection, cut off the releasing control pin of hollow casing plug, and run down further to bump with the bumping assembly; (5 remove the cementing head and connect the kelly driver, hold pressure again, then slowly pull up the drill tools, exert hydraulic pressure on the setting hydraulic cylinder of the packer assembly to cut off the setting control pin and set the packer; and (6 pull up the tools to the flare opening and wash out excessive cement slurry by circulating to realize free drilling of the whole hole. The successful application of the liner hanger in 127 mm diameter liner in Well BQ203-H1 indicates that the packer-type liner hanger has such advantages as easy hanging and back-off, accurate bumping, simple setting, and sound sealing performance.

  7. The use of volcanic soil as mineral landfill liner--I. Physicochemical characterization and comparison with zeolites.

    Science.gov (United States)

    Navia, Rodrigo; Hafner, Georg; Raber, Georg; Lorber, Karl E; Schöffmann, Elke; Vortisch, Walter

    2005-06-01

    The main physicochemical characteristics of the volcanic soil of Southern Chile, with allophane as the main pedogenic mineral phase were analysed and compared with common zeolites (clinoptilolite) of the European market. The ultimate goal of this study was to test volcanic soil for the use as mineral landfill liner. The main results indicated that the clay and silt fractions together of the volcanic soil were between 38 and 54%. The buffering capacity of the volcanic soil was higher compared with the studied zeolites, whereas the cationic exchange capacity of the volcanic soil (between 5.2 and 6.5 cmol + kg(-1)) is of the same order of magnitude of the studied zeolites (between 9.7 and 11.4 cmol + kg(-1)). Moreover, the anionic exchange capacity of the volcanic soil was higher compared to the zeolites analysed. The hydraulic conductivity of the volcanic soil, measured in the laboratory at maximum proctor density, ranges between 5.16 x 10(-9) and 6.48 x 10(-9) m s(-1), a range that is comparable to the value of 4.51 x 10(-9) m s(-1) of the studied zeolite. The Proctor densities of the volcanic soil are in a lower range (between 1.11 and 1.15 g ml(-1)) compared with zeolites (between 1.19 and 1.34 g ml(-1)). The volcanic soil physicochemical characteristics are comparable to all the requirements established in the Austrian landfill directive (DVO, 2000). Therefore, the use as mineral landfill basal sealing of the analysed volcanic soil appears reasonable, having a pollutant adsorption capacity comparable to zeolites. It is of special interest for Southern Chile, because there are no alternative mineral raw materials for basal liners of landfills.

  8. A special core liner for sub-sampling of aqueous sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.

    relatively short (<60 cm) samples of the sea floor 1 . The modern gravity corers are 6 m long against 4.6 m in the initial stages 2 , and the piston corers are 10–15 m long against 6.1 m earlier 2 . Considering the changes in temperature and pressure... in use for sub-sampling the cored sediments. Generally, the long (6 m or more) core liner(s) from the gravity or piston corer are cut in 1 m sections, capped and stored in the refrigerated room at 1–4°C for handling and preservation purpose 3...

  9. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas.

    Science.gov (United States)

    Lynn, Alan G; Gilmore, Mark

    2014-11-01

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10(4) T (100 Megagauss) over small volumes (∼10(-10)m(3)) at high plasma densities (∼10(28)m(-3)) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  10. A method for assessing teatcup liner performance during the peak milk flow period.

    Science.gov (United States)

    Penry, J F; Upton, J; Leonardi, S; Thompson, P D; Reinemann, D J

    2018-01-01

    The objective of this study was to develop a method to quantify the milking conditions under which circulatory impairment of teat tissues occurs during the peak flow period of milking. A secondary objective was to quantify the effect of the same milking conditions on milk flow rate during the peak flow rate period of milking. Additionally, the observed milk flow rate was a necessary input to the calculation of canal area, our quantitative measure of circulatory impairment. A central composite experimental design was used with 5 levels of each of 2 explanatory variables (system vacuum and pulsator ratio), creating 9 treatments including the center point. Ten liners, representing a wide range of liner compression (as indicated by overpressure), were assessed, with treatments applied using a novel quarter-milking device. Eight cows (32 cow-quarters) were used across 10 separate evening milkings, with quarter being the experimental unit. The 9 treatments, with the exception of a repeated center point, were randomly applied to all quarters within each individual milking. Analysis was confined to the peak milk flow period. Milk flow rate (MFR) and teat canal cross sectional area (CA) were normalized by dividing individual MFR, or CA, values by their within-quarter average value across all treatments. A multiple explanatory variable regression model was developed for normalized MFR and normalized CA. The methods presented in this paper provided sufficient precision to estimate the effects of vacuum (both at teat-end and in the liner mouthpiece), pulsation, and liner compression on CA, as an indicator of teat-end congestion, during the peak flow period of milking. Liner compression (as indicated by overpressure), teat-end vacuum, vacuum in the liner mouthpiece, milk-phase time, and their interactions are all important predictors of MFR and teat-end congestion during the peak milk flow period of milking. Increasing teat-end vacuum and milk-phase time increases MFR and

  11. A proposed Atlas liner design fabricated for hydrodynamic experiments on Shiva Star

    CERN Document Server

    Anderson, W; Armijo, E; Bartos, Yu; Cameron, B; García, F; Henneke, B; Randolph, B; Salazar, M A; Sandoval, D L; Steckle, W; Turchi, P J; Gale, D

    2001-01-01

    Summary form only given. An entirely new cylindrical liner system has been designed and fabricated for use at Shiva Star. The design incorporates features expected to be applicable to a future Atlas power flow channel with the intention of keeping any required liner design modifications to a minimum when the power flow channel at Atlas is available. Four shots were successfully conducted at Shiva Star that continued a series of hydrodynamics physics experiments started on Pegasus. Departures from the diagnostic suite that had previously been used at Pegasus required new techniques in the fabrication of the experiment insert package.

  12. The Vessel Schedule Recovery Problem (VSRP) – A MIP model for handling disruptions in liner shipping

    DEFF Research Database (Denmark)

    Brouer, Berit Dangaard; Dirksen, Jakob; Pisinger, David

    2013-01-01

    Containerized transport by liner shipping companies is a multi billion dollar industry carrying a major part of the world trade between suppliers and customers. The liner shipping industry has come under stress in the last few years due to the economic crisis, increasing fuel costs, and capacity...... or even omitting one. We present the Vessel Schedule Recovery Problem (VSRP) to evaluate a given disruption scenario and to select a recovery action balancing the trade off between increased bunker consumption and the impact on cargo in the remaining network and the customer service level. It is proven...

  13. Geometrical design parameters for journal bearings with flexure pads and compliant liners

    DEFF Research Database (Denmark)

    Thomsen, Kim; Klit, Peder

    2012-01-01

    A hydrodynamic journal bearing utilizing flexure pads with a compliant liner is studied and its performance enhanced through a parametric study. The main geometrical dimensions are varied and the affect on pad performance is analyzed. This will put more knowledge into the design and function...... of flexure pads. uidelines are given to the design of the pads and are also covering the polymer liner. It is found that the use of flexure pads is an attractive alternative to pivoted pads. Pivot contact-related failure modes are eliminated and load capacity is not restricted by the force that can...

  14. A Matheuristic for the Liner Shipping Network Design Problem with Transit Time Restrictions

    DEFF Research Database (Denmark)

    Brouer, Berit Dangaard; Desaulniers, Guy; Karsten, Christian Vad

    2015-01-01

    We present a mathematical model for the liner shipping network design problem with transit time restrictions on the cargo flow. We extend an existing matheuristic for the liner shipping network design problem to consider transit time restrictions. The matheuristic is an improvement heuristic, where...... an integer program is solved iteratively as a move operator in a large-scale neighborhood search. To assess the effects of insertions/removals of port calls, flow and revenue changes are estimated for relevant commodities along with an estimation of the change in the vessel cost. Computational results...

  15. Numerical design of the contoured wind-tunnel liner for the NASA swept-wing LFC test

    Science.gov (United States)

    Newman, P. A.; Anderson, E. C.; Peterson, J. B., Jr.

    1982-01-01

    A contoured, nonporous, wind-tunnel liner has been designed in order to simulate a free-flight infinite yawed-wing, transonic-flow condition about a large-chord, supercritical-section, laminar-flow-control (LFC), swept-wing test panel. The numerical procedure developed for this aerodynamic liner design is based upon the simple idea of streamlining and incorporates several existing transonic and boundary-layer analysis codes. A summary of the entire procedure is presented to indicate: what was done and why, the sequence of steps, and the overall data flow. The liner is being installed in the NASA Langley 8-Foot Transonic Pressure Tunnel (TPT). Test results indicating the aerodynamic performance of the liner are not yet available; thus, the liner design results given here are examples of the calculated requirements and the hardware implementation.

  16. Candida albicans biofilms and MMA surface treatment influence the adhesion of soft denture liners to PMMA resin.

    Science.gov (United States)

    Mendonça e Bertolini, Martinna de; Cavalcanti, Yuri Wanderley; Bordin, Dimorvan; Silva, Wander José da; Cury, Altair Antoninha Del Bel

    2014-01-01

    The effect of Candida albicans biofilms and methyl methacrylate (MMA) pretreatment on the bond strength between soft denture liners and polymethyl methacrylate (PMMA) resin was analyzed. Specimens were prepared and randomly divided with respect to PMMA pretreatment, soft liner type (silicone-based or PMMA-based), and presence or absence of a C. albicans biofilm. Samples were composed of a soft denture liner bonded between two PMMA bars. Specimens (n = 10) were incubated to produce a C. albicans biofilm or stored in sterile PBS for 12 days. The tensile bond strength test was performed and failure type was determined using a stereomicroscope. Surface roughness (SR) and scanning electron microscopy (SEM) analysis were performed on denture liners (n = 8). Highest bond strength was observed in samples containing a silicone-based soft liner and stored in PBS, regardless of pretreatment (p MMA pretreatment is recommended during relining procedures.

  17. Canted seating of the Stryker Modular Dual Mobility liner within a Trident hemispherical acetabular shell

    Directory of Open Access Journals (Sweden)

    Scott M. Eskildsen, MD

    2016-03-01

    Full Text Available A 75-year-old woman who suffered a left femoral neck fracture underwent a left total hip arthroplasty using a Stryker Trident (Kalamazoo, MI hemispherical acetabular shell and Modular Dual Mobility (MDM metal liner. Post-operative radiographs demonstrated canted seating of the liner. The patient was taken immediately back to the operating room where the acetabular liner appeared well seated superiorly but was in a canted position inferiorly. Removal and replacement was performed and post-operative radiographs demonstrated complete seating. Subsequent follow up at 6 months demonstrated good clinical function with no adverse radiographic findings. Canted seating is a potential complication of the MDM metal liner. Providers should be aware of potential incomplete seating inferiorly despite the superior portion of the liner being well seated.

  18. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures.

    Science.gov (United States)

    Wang, Congjun; Ohodnicki, Paul R; Su, Xin; Keller, Murphy; Brown, Thomas D; Baltrus, John P

    2015-02-14

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.

  19. Disposable plastic liners for a colostomy appliance: a controlled trial and follow-up survey of convenience, satisfaction, and costs.

    Science.gov (United States)

    Kelly, A W; Nelson, M L; Heppell, J; Weaver, A; Hentz, J

    2000-09-01

    The effectiveness of a disposable liner designed for a 2-piece colostomy appliance pouch was evaluated. Randomized, crossover trial with follow-up surveys. Nineteen participants were recruited from the Mayo Clinic in Scottsdale, Arizona, and the surrounding community. A Daily Colostomy Care Evaluation Record and tally sheet of times for ostomy care were designed by the authors. Participants, acting as their own controls, were randomly assigned to use either an unlined or a lined appliance for 9 days. On day 10, participants switched to the opposite regimen, which was maintained through day 18. They recorded the time required for daily colostomy care and perceptions of the lined and unlined appliances. The volume of ostomy supplies and cost were recorded at baseline, 1, 3, and 5 to 9 months after the initial trial. Odor, bother, perceived severity of leakage, and partner acceptance were better with unlined than lined appliances. Half of the participants were using a liner > or =75% of the time 3 months after the trial. There was no difference in cost when lined versus unlined ostomy systems were compared. Participants who chose to use the liners indicated high satisfaction. Problems noted included an inadequate seal with the liner (58%), inadequate liner size (16%), retention of flatus by the liner (11%), and difficulty removing the full liner (11%). The study supports recommending liners to patients who have a modest amount of fecal output or flatus. However, patients who are unable to manipulate the seal or have a large output volume are unlikely to find the liners a convenience. Satisfaction with the liners was sufficient to warrant investigation and design of a lined device with an improved design, greater capacity, and tighter seal.

  20. Charge migration and charge transfer in molecular systems

    Directory of Open Access Journals (Sweden)

    Hans Jakob Wörner

    2017-11-01

    Full Text Available The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a high temporal resolution now offers the possibility to unravel the most elementary quantum dynamics of both electrons and nuclei that participate in the complex process of charge transfer. This review covers recent research that addresses the following questions. Can we reconstruct the migration of charge across a molecule on the atomic length and electronic time scales? Can we use strong laser fields to control charge migration? Can we temporally resolve and understand intramolecular charge transfer in dissociative ionization of small molecules, in transition-metal complexes and in conjugated polymers? Can we tailor molecular systems towards specific charge-transfer processes? What are the time scales of the elementary steps of charge transfer in liquids and nanoparticles? Important new insights into each of these topics, obtained from state-of-the-art ultrafast spectroscopy and/or theoretical methods, are summarized in this review.