WorldWideScience

Sample records for charge form factor

  1. Charge-symmetry-breaking nucleon form factors

    CERN Document Server

    Kubis, Bastian

    2009-01-01

    A quantitative understanding of charge-symmetry breaking is an increasingly important ingredient for the extraction of the nucleon's strange vector form factors. We review the theoretical understanding of the charge-symmetry-breaking form factors, both for single nucleons and for Helium-4.

  2. Electromagnetic Form Factor of Charged Scalar Meson

    Institute of Scientific and Technical Information of China (English)

    LI Heng-Mei; CHEN Ning; WANG Zhi-Gang; WAN Shao-Long

    2007-01-01

    Wavefunctions and the electromagnetic form factor of charged scalar mesons are studied with the vector-vectortype flat-bottom potential model under the framework of the spinor spinor Bethe Salpeter equation. The obtained results are in agreement with other theories.

  3. Information content of the weak-charge form factor

    CERN Document Server

    Reinhard, P -G; Nazarewicz, W; Agrawal, B K; Paar, N; Rocca-Maza, X

    2013-01-01

    Parity-violating electron scattering provides a model-independent determination of the nuclear weak-charge form factor that has widespread implications across such diverse areas as fundamental symmetries, nuclear structure, heavy-ion collisions, and neutron-star structure. We assess the impact of precise measurements of the weak-charge form factor of ${}^{48}$Ca and ${}^{208}$Pb on a variety of nuclear observables, such as the neutron skin and the electric-dipole polarizability. We use the nuclear Density Functional Theory with several accurately calibrated non-relativistic and relativistic energy density functionals. To assess the degree of correlation between nuclear observables and to explore systematic and statistical uncertainties on theoretical predictions, we employ the chi-square statistical covariance technique. We find a strong correlation between the weak-charge form factor and the neutron radius, that allows for an accurate determination of the neutron skin of neutron-rich nuclei. We determine the...

  4. Determination of Transverse Charge Density from Kaon Form Factor Data

    Science.gov (United States)

    Mejia-Ott, Johann; Horn, Tanja; Pegg, Ian; Mecholski, Nicholas; Carmignotto, Marco; Ali, Salina

    2016-09-01

    At the level of nucleons making up atomic nuclei, among subatomic particles made up of quarks, K-mesons or kaons represent the most simple hadronic system including the heavier strange quark, having a relatively elementary bound state of a quark and an anti-quark as its valence structure. Its electromagnetic structure is then parametrized by a single, dimensionless quantity known as the form factor, the two-dimensional Fourier transform of which yields the quantity of transverse charge density. Transverse charge density, in turn, provides a needed framework for the interpretation of form factors in terms of physical charge and magnetization, both with respect to the propagation of a fast-moving nucleon. To this is added the value of strange quarks in ultimately presenting a universal, process-independent description of nucleons, further augmenting the importance of studying the kaon's internal structure. The pressing character of such research questions directs the present paper, describing the first extraction of transverse charge density from electromagnetic kaon form factor data. The extraction is notably extended to form factor data at recently acquired higher energy levels, whose evaluation could permit more complete phenomenological models for kaon behavior to be proposed. This work was supported in part by NSF Grant PHY-1306227.

  5. Form Factor $g$ In Longitudinal Space Charge Impedance

    CERN Document Server

    Baartman, R

    2015-01-01

    In carrying out calculations of the effect of longitudinal space charge on longitudinal motion, the transverse beam size appears in a form factor which is usually written as $g=1+2\\ln (b/a)$. In fact, this expression applies to particles with vanishing betatron amplitude in a beam with uniform transverse distribution. It is argued that an average over the transverse distribution should be used instead of the value on axis. It is shown that for the realistic `binomial' family of distributions the 1 in the above expression for $g$ should be replaced by a value near 0.5 if $a$ is interpreted as twice the rms width of the beam.

  6. Nucleon Charges, Form-factors and Neutron EDM

    CERN Document Server

    Gupta, Rajan; Cirigliano, Vincenzo; Lin, Huey-Wen; Yoon, Boram

    2016-01-01

    We present an update of our analysis of statistical and systematic errors in the calculation of iso-vector scalar, axial and tensor charges of the nucleon. The calculations are done using $N_f=2+1+1$ flavor HISQ ensembles generated by the MILC Collaboration at three values of the lattice spacing ($a=0.12,\\ 0.09,$ and $0.06$ fm) and three values of the quark mass ($M_\\pi \\approx 310,\\ 220$ and $130$ MeV); and clover fermions for calculating the correlation functions, i.e., we use a clover-on-HISQ lattice formulation. The all-mode-averaging method allows us to increase the statistics by a factor of eight for the same computational cost leading to a better understanding of and control over excited state contamination. Our current results, after extrapolation to the continuum limit and physical pion mass are $g_A^{u-d} = 1.21(3)$, $g_T^{u-d} = 1.005(59)$ and $g_S^{u-d} = 0.95(12) $. Further checks of control over all systematic errors, especially in $g_A^{u-d}$, are still being performed. Using results for the fl...

  7. The Charge Form Factors of the Three- and Four-Body Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    R. Schiavilla; V.R. Pandharipande; D.O. Riska

    1990-01-01

    The charge form factors of 3H, 3He, and 4He are calculated using the Monte Carlo method and variational ground-state wave functions obtained for the Argonne two-nucleon and Urbana-VII three-nucleon interactions. The model for the charge density operator contains the two-body exchange contributions of longest range. With some spread due to the uncertainty in the electromagnetic form factors of the nucleon the calculated charge form factors are in good agreement with the empirical values over the whole experimentally covered range of momentum transfer.

  8. The dependence of the nuclear charge form factor on short range correlations and surface fluctuation effects

    CERN Document Server

    Massen, S E; Grypeos, M E

    1995-01-01

    We investigate the effects of fluctuations of the nuclear surface on the harmonic oscillator elastic charge form factor of light nuclei, while simultaneously approximating the short-range correlations through a Jastrow correlation ~factor. Inclusion of surface-fluctuation effects within this description, by truncating the cluster expansion at the two-body part, is found to improve somewhat the fit to the elastic charge form-factor of ^{16}O and ^{40}Ca. However, the convergence of the cluster expansion is expected to deteriorate. An additional finding is that the surface-fluctuation correlations produce a drastic change in the asymptotic behavior of the point-proton form factor, which now falls off quite slowly (i.e. as const. \\cdot q^{-4}) at large values of the momentum transfer q.

  9. Effect of the bound nucleon form factors on charged-current neutrino-nucleus scattering

    CERN Document Server

    Tsushima, K; Saitô, K; Kim, Hungchong

    2003-01-01

    We study the effect of bound nucleon form factors on charged-current neutrino-nucleus scattering. The bound nucleon form factors associated with the vector and axial-vector currents are calculated in the quark-meson coupling model. We compute the inclusive $^{12}$C($nu_mu,mu^-$)$X$ differential and total cross sections, which have been measured by the LSND collaboration at Los Alamos, using a relativistic Fermi gas model with the calculated bound nucleon form factors. It is shown that the bound nucleon form factors reduce the total cross section by about 8% relative to that calculated with the free nucleon form factors, where most of the conventional calculations overestimate the total cross section data by about 30% to 100%.

  10. The charge form factor of pseudoscalar mesons in a relativistic constituent quark model

    Energy Technology Data Exchange (ETDEWEB)

    Cardarelli, F.; Pace, E. [Univ. of Rome, Roma (Italy); Grach, I.L. [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation)] [and others

    1994-04-01

    The charge form factor of pseudoscalar mesons has been investigated in the light-cone formalism, up to Q{sup 2} relevant to CEBAF energies. The consequences of adopting the meson wave functions generated through the Godfrey-Isgur q{bar q} potential, which reproduces the mass spectra, are discussed.

  11. Pion charge form factor and constraints from space-time translations

    CERN Document Server

    Desplanques, Bertrand

    2010-01-01

    The role of Poincar\\'e covariant space-time translations is investigated in the case of a relativistic quantum mechanics approach to the pion charge form factor. It is shown that the related constraints are generally inconsistent with the assumption of a single-particle current, which is most often referred to. The only exception is the front-form approach with $q^+=0$. How accounting for the related constraints, as well as restoring the equivalence of different RQM approaches in estimating form factors, is discussed. Some extensions of this work and, in particular, the relationship with a dispersion-relation approach, are presented. Conclusions relative to the underlying dynamics are given.

  12. Nuclear monopole charge form factor calculation for relativistic models including center-of-mass corrections

    Energy Technology Data Exchange (ETDEWEB)

    Avancini, S.S.; Marinelli, J.R. [Universidade Federal de Santa Catarina Florianopolis, Depto de Fisica - CFM, Florianopolis (Brazil); Carlson, B.V. [Instituto Tecnologico de Aeronautica, Sao Jose dos Campos (Brazil)

    2013-06-15

    Relativistic models for finite nuclei contain spurious center-of-mass motion in most applications for the nuclear many-body problem, where the nuclear wave function is taken as a single Slater determinant within a space-fixed frame description. We use the Peierls-Yoccoz projection method, previously developed for relativistic approaches together with a reparametrization of the coupling constants that fits binding energies and charge radius and apply our results to calculate elastic electron scattering monopole charge form factors for light nuclei. (orig.)

  13. The time-like electromagnetic form factors of proton and charged kaon at high energies

    Science.gov (United States)

    Anulli, Fabio

    2016-05-01

    The Initial State Radiation method in the BABAR experiment has been used to measure the time-like electromagnetic form factors at the momentum transfer from 9 to 42 (GeV/c)2 for proton and from 7 to 56 (GeV/c)2 for charged kaon. The obtained data show the tendency to approach the QCD asymptotic prediction for kaons and space-like form factor values for proton. The BABAR data have been used together with data from other experiments, to perform a model-independent determination of the relative phases between the single-photon and the three-gluon amplitudes in ψ → KK ¯ decays. The values of the branching fractions measured in the reaction e+e- → K+ K- are shifted due to interference of resonant and nonresonant amplitudes. We have determined the absolute values of the shifts to be 5% for J/ψ and 15% for ψ(2S) decays.

  14. JLab Measurement of the $^4$He Charge Form Factor at Large Momentum Transfers

    CERN Document Server

    Camsonne, A; Olson, M; Sparveris, N; Acha, A; Allada, K; Anderson, B D; Arrington, J; Baldwin, A; Chen, J -P; Choi, S; Chudakov, E; Cisbani, E; Craver, B; Decowski, P; Dutta, C; Folts, E; Frullani, S; Garibaldi, F; Gilman, R; Gomez, J; Hahn, B; Hansen, J -O; Higinbotham, D; Holmstrom, T; Huang, J; Iodice, M; Jiang, X; Kelleher, A; Khrosinkova, E; Kievsky, A; Kuchina, E; Kumbartzki, G; Lee, B; LeRose, J J; Lindgren, R A; Lott, G; Lu, H; Marcucci, L E; Margaziotis, D J; Markowitz, P; Marrone, S; Meekins, D; Meziani, Z -E; Michaels, R; Moffit, B; Norum, B; Petratos, G G; Puckett, A; Qian, X; Rondon, O; Saha, A; Sawatzky, B; Segal, J; Shabestari, M; Shahinyan, A; Solvignon, P; Subedi, R R; Suleiman, R; Sulkosky, V; Urciuoli, G M; Viviani, M; Wang, Y; Wojtsekhowski, B B; Yan, X; Yao, H; Zhang, W -M; Zheng, X; Zhu, L

    2013-01-01

    The charge form factor of $^$4He has been extracted in the range 29 fm$^{-2}$ $\\le Q^2 \\le 77$ fm$^{-2}$ from elastic electron scattering, detecting $^4$He nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility of Jefferson Lab. The results are in qualitative agreement with realistic meson-nucleon theoretical calculations. The data have uncovered a second diffraction minimum, which was predicted in the $Q^2$ range of this experiment, and rule out conclusively long-standing predictions of dimensional scaling of high-energy amplitudes using quark counting.

  15. Form Factors and charge radii of heavy flavored mesons in a potential model

    CERN Document Server

    Das, T; Bordoloi, N S

    2016-01-01

    We report the results for charge radii of heavy flavored mesons ($D^+, D^0, D^+_s, B^+, B^0, B^0_s$) in a QCD model with the potential $V(r)=-4\\frac{\\alpha_s}{3r}+br+c$ by incorporating two scales $r^{short}$ and $r^{long}$ as an integration limit so that the perturbative procedure can be improved in a potential model. We also obtain the analytical expressions for Form Factors in terms of momentum transfer ($Q^2$). The obtained results are compared with our earlier works and with the other theoretical models.

  16. Relativistic effects on the neutron charge form factor in the constituent quark model

    CERN Document Server

    Cardarelli, F

    1999-01-01

    The neutron charge form factor GEn(Q**2) is investigated within a constituent quark model formulated on the light-front. It is shown that, if the quark initial motion is neglected in the Melosh rotations, the Dirac neutron form factor F1n(Q**2) receives a relativistic correction which cancels exactly against the Foldy term in GEn(Q**2), as it has been recently argued by Isgur. Moreover, at the same level of approximation the ratio of the proton to neutron magnetic form factors GMp(Q**2)/GMn(Q**2) is still given by the naive SU(6)-symmetry expectation, -3/2. However, it is also shown that the full Melosh rotations break SU(6) symmetry, giving rise to GEn(Q**2) neq 0 and GMp(Q**2)/GMn(Q**2) neq -3/2 even when a SU(6)-symmetric canonical wave function is assumed. It turns out that relativistic effects alone cannot explain simultaneously the experimental data on GEn(Q**2) and GMp(Q**2)/GMn(Q**2).

  17. JLab Measurement of the 4He Charge Form Factor at Large Momentum Transfers

    Energy Technology Data Exchange (ETDEWEB)

    Camsonne, Alexandre; Katramatou, A. T.; Olson, M.; Sparveris, Nikolaos; Acha, Armando; Allada, Kalyan; Anderson, Bryon; Arrington, John; Baldwin, Alan; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Cisbani, Evaristo; Craver, Brandon; Decowski, Piotr; Dutta, Chiranjib; Folts, Edward; Frullani, Salvatore; Garibaldi, Franco; Gilman, Ronald; Gomez, Javier; Hahn, Brian; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Huang, Jian; Iodice, Mauro; Kelleher, Aidan; Khrosinkova, Elena; Kievsky, A.; Kuchina, Elena; Kumbartzki, Gerfried; Lee, Byungwuek; LeRose, John; Lindgren, Richard; Lott, Gordon; Lu, H.; Marcucci, Laura; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Meekins, David; Meziani, Zein-Eddine; Michaels, Robert; Moffit, Bryan; Norum, Blaine; Petratos, Gerassimos; Puckett, Andrew; Qian, Xin; Rondon-Aramayo, Oscar; Saha, Arunava; Sawatzky, Bradley; Segal, John; Hashemi, Mitra; Shahinyan, Albert; Solvignon-Slifer, Patricia; Subedi, Ramesh; Suleiman, Riad; Sulkosky, Vincent; Urciuoli, Guido; Viviani, Michele; Wang, Y.; Wojtsekhowski, Bogdan; Yan, X.; Yao, H.; Zhang, W. -M.; Zheng, X.; Zhu, L.

    2014-04-01

    The charge form factor of 4He has been extracted in the range 29 fm-2 <= Q2 <= 77 fm-2 from elastic electron scattering, detecting 4He nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility of Jefferson Lab. The results are in qualitative agreement with realistic meson-nucleon theoretical calculations. The data have uncovered a second diffraction minimum, which was predicted in the Q2 range of this experiment, and rule out conclusively long-standing predictions of dimensional scaling of high-energy amplitudes using quark counting.

  18. Form factors and transverse charge and magnetization densities in the hard-wall AdS/QCD model

    CERN Document Server

    Mondal, Chandan

    2016-01-01

    We present a study of the flavor form factors in the framework of a hard-wall AdS/QCD model and compare with the available experimental data. We obtain the flavor form factors by decomposing the Dirac and Pauli form factors for the nucleons using the charge and isospin symmetry. Further, we present a detailed study of the flavor structures of the charge and anomalous magnetization densities in the transverse plane. Both the unpolarized and the transversely polarized nucleons are considered here. We compare the AdS/QCD results with two standard phenomenological parametrizations.

  19. Charged pion form factor between Q^2=0.60 and 2.45 GeV^2. II. Determination of, and results for, the pion form factor

    CERN Document Server

    Huber, G M; Horn, T; Beise, E J; Gaskell, D; Mack, D J; Tadevosyan, V; Volmer, J; Abbott, D; Aniol, K; Anklin, H; Armstrong, C; Arrington, J; Assamagan, K; Avery, S; Baker, O K; Barrett, B; Bochna, C; Boeglin, W; Brash, E J; Breuer, H; Chang, C C; Chant, N; Christy, M E; Dunne, J; Eden, T; Ent, R; Gibson, E; Gilman, R; Gustafsson, K; Hinton, W; Holt, R J; Jackson, H; Jin, S; Jones, M K; Keppel, C E; Kim, P H; Kim, W; King, P M; Klein, A; Koltenuk, D; Kovaltchouk, V; Kiang, M; Liu, J; Lolos, G J; Lung, A; Margaziotis, D J; Markowitz, P; Matsumura, A; McKee, D; Meekins, D; Mitchell, J; Miyoshi, T; Mkrtchyan, H; Müller, B; Niculescu, G; Niculescu, I; Okayasu, Y; Pentchev, L; Perdrisat, C; Pitz, D; Potterveld, D; Punjabi, V; Qin, L M; Reimer, P; Reinhold, J; Roche, J; Roos, P G; Sarty, A; Shin, I K; Smith, G R; Stepanyan, S; Tang, L G; Tvaskis, V; Van der Meer, R L J; Vansyoc, K; Van Westrum, D; Vidakovic, S; Vulcan, W; Warren, G; Wood, S A; Xu, C; Yan, C; Zhao, W -X; Zheng, X; Zihlmann, B

    2008-01-01

    The charged pion form factor, Fpi(Q^2), is an important quantity which can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,e'pi+)n reaction, and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Results for Fpi are presented for Q^2=0.60-2.45 GeV^2. Above Q^2=1.5 GeV^2, the Fpi values are systematically below the monopole parameterization that describes the low Q^2 data used to determine the pion charge radius. The pion form factor can be calculated in a wide variety of theoretical approaches, and the experimental results are compared to a number of calculations. This comparison is helpful in understanding the role of soft versus hard contributions to hadronic structure in the intermediate Q^2 regime.

  20. Charged pion form factor between $Q^2$=0.60 and 2.45 GeV$^2$. II. Determination of, and results for, the pion form factor

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Garth; Blok, Henk; Horn, Tanja; Beise, Elizabeth; Gaskell, David; Mack, David; Tadevosyan, Vardan; Volmer, Jochen; Abbott, David; Aniol, Konrad; Anklin, Heinz; Armstrong, Christopher; Arrington, John; Assamagan, Ketevi; Avery, Steven; Baker, O.; Barrett, Robert; Bochna, Christopher; Boeglin, Werner; Brash, Edward; Breuer, Herbert; Chang, C.; Chang, C.C.; Chant, Nicholas; Christy, Michael; Dunne, James; Eden, Thomas; Ent, Rolf; Fenker, Benjamin; Gibson, Edward; Gilman, Ronald; Gustafsson, Kenneth; Hinton, Wendy; Holt, Roy; Jackson, Harold; uk Jin, Seong; Jones, Mark; Keppel, Cynthia; Kim, pyunghun; Kim, Wooyoung; King, Paul; Klein, Andreas; Koltenuk, Douglas; Kovaltchouk, Vitali; Liang, Meihua; Liu, Jinghua; Lolos, George; Lung, Allison; Margaziotis, Demetrius; Markowitz, Pete; Matsumura, Akihiko; McKee, David; Meekins, David; Mitchell, Joseph; Miyoshi, Toshinobu; Mkrtchyan, Hamlet; Mueller, Robert; Niculescu, Gabriel; Niculescu, Maria-Ioana; Okayasu, Yuichi; Pentchev, Lubomir; Perdrisat, Charles; Pitz, David; Potterveld, David; Punjabi, Vina; Qin, Liming; Reimer, Paul; Reinhold, Joerg; Roche, Julie; Roos, Philip; Sarty, Adam; Shin, Ilkyoung; Smith, Gregory; Stepanyan, Stepan; Tang, Liguang; Tvaskis, Vladas; van der Meer, Rob; Vansyoc, Kelley; Van Westrum, Derek; Vidakovic, Sandra; Vulcan, William; Warren, Glen; Wood, Stephen; Xu, Chen; Yan, Chen; Zhao, Wenxia; Zheng, Xiaochao; Zihlmann, Benedikt

    2008-10-01

    DOI: http://dx.doi.org/10.1103/PhysRevC.78.045203
    The charged pion form factor, Fpi(Q2), is an important quantity that can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,e'pi+)n reaction and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Results for Fpi are presented for Q2=0.60-2.45 GeV2. Above Q2=1.5 GeV2, the Fpi values are systematically below the monopole parametrization that describes the low Q2 data used to determine the pion charge radius. The pion form factor can be calculated in a wide variety of theoretical approaches, and the experimental results are compared to a number of calculations. This comparison is helpful in understanding the role of soft versus hard c

  1. Baryon form factors

    CERN Document Server

    Kubis, B; Meißner, Ulf G; Mei{\\ss}ner, Ulf-G.

    1999-01-01

    We calculate the form factors of the baryon octet in the framework of heavy baryon chiral perturbation theory. The calculated charge radius of the show that kaon loop effects can play a significant role in the neutron electric form factor. Furthermore. we derive generalized Caldi-Pagels relations between various charge radii which are free of chiral loop effects.

  2. An Electromagnetic Form Factor of a Charged Scalar Meson with Schwinger-Dyson and Bethe-Salpeter Equations

    Institute of Scientific and Technical Information of China (English)

    XIE Chuan-Mei; LI Heng-Mei; WAN Shao-Long

    2009-01-01

    The wave functions and electromagnetic form factor of charged scalar mesons are studied with a modified vector-vector flat-bottom potential model under the framework of the Schwinger-Dyeon and Bethe-Salpeter equations.The obtained results agree well with other theories.

  3. Flavor structure of the nucleon electromagnetic form factors and transverse charge densities in the chiral quark-soliton model

    CERN Document Server

    Silva, Antonio; Kim, Hyun-Chul

    2013-01-01

    We investigate the flavor decomposition of the electromagnetic form factors of the nucleon, based on the chiral quark-soliton model with symmetry-conserving quantization. We consider the rotational 1/N_c and linear strange-quark mass (m_s) corrections. To extend the results to higher momentum transfer, we take into account the kinematical relativistic effects. We discuss the results of the flavor-decomposed electromagnetic form factors in comparison with the recent experimental data. In order to see the effects of the strange quark, we compare the SU(3) results with those of SU(2). We finally discuss the transverse charge densities for both unpolarized and polarized nucleons.

  4. Form factors and charge radii in a quantum chromodynamics-inspired potential model using variationally improved perturbation theory

    Indian Academy of Sciences (India)

    Bhaskar Jyoti Hazarika; D K choudhury

    2015-01-01

    We use variationally improved perturbation theory (VIPT) for calculating the elastic form factors and charge radii of , $D_{s}$, $B$, $B_{s}$ and $B_{c}$ mesons in a quantum chromodynamics (QCD)-inspired potential model. For that, we use linear-cum-Coulombic potential and opt the Coulombic part first as parent and then the linear part as parent. The results show that charge radii and form factors are quite small for the Coulombic parent compared to the linear parent. Also, the analysis leads to a lower as well as upper bounds on the four-momentum transfer 2, hinting at a workable range of 2 within this approach, which may be useful in future experimental analyses. Comparison of both the options shows that the linear parent is the better option.

  5. Charge-conjugation symmetric complete impulse approximation for the pion electromagnetic form factor in the Covariant Spectator Theory

    CERN Document Server

    Biernat, Elmar P; Peña, M T; Stadler, Alfred

    2015-01-01

    The pion form factor is calculated in the framework of the charge-conjugation invariant Covariant Spectator Theory. This formalism is established in Minkowski space and the calculation is set up in momentum space. In a previous calculation we included only the leading pole coming from the spectator quark (referred to as the relativistic impulse approximation). In this paper we also include the contributions from the poles of the quark which interacts with the photon and average over all poles in both the upper and lower half planes in order to preserve charge conjugation invariance (referred to as the $C$-symmetric complete impulse approximation). We find that for small pion mass these contributions are significant at all values of the four-momentum transfer, $Q^2$, but, surprisingly, do not alter the shape obtained from the spectator poles alone.

  6. Determination of the pion charge form factor for Q^2 = 0.60-1.60 (GeV/c)^2

    CERN Document Server

    Tadevosyan, V; Huber, G M; Abbott, D; Anklin, H; Armstrong, C; Arrington, J; Assamagan, K A; Avery, S; Baker, O K; Bochna, C; Brash, E J; Breuer, H; Chant, N; Dunne, J; Eden, T; Ent, R; Gaskell, D; Gilman, R; Gustafsson, K; Hinton, W; Jackson, H; Jones, M K; Keppel, C; Kim, P H; Kim, W; Klein, A; Koltenuk, D; Liang, M; Lolos, G J; Lung, A; Mack, D J; McKee, D; Meekins, D; Mitchell, J; Mkrtchyan, H; Müller, B; Niculescu, G N I; Pitz, D; Potterveld, D; Qin, L M; Reinhold, J; Shin, I K; Stepanyan, S; Tang, L G; Van der Meer, R L J; Vansyoc, K; Van Westrum, D; Volmer, J; Vulcan, W; Wood, S; Yan, C; Zhao, W X; Zihlmann, B

    2006-01-01

    The data analysis for the reaction H(e,e' pi^+)n, which was used to determine values for the charged pion form factor Fpi for values of Q2 = 0.6-1.6 (gEv/C)^2, has been repeated with careful inspection of all steps and special attention to systematic uncertainties. Also the method used to extract Fpi from the measured longitudinal cross section was critically reconsidered. Final values for the separated longitudinal and transverse cross sections and the extracted values of Fpi are presented.

  7. Charged Pion Form Factor Determination in the Range of Q2 = 0.6 ~ 1.6 (GeV/c)2

    Institute of Scientific and Technical Information of China (English)

    Nader Ghahramany; Kamran Rostami; Mohammad Ghanatian

    2004-01-01

    Using the most recent differential cross section data for ep quasi-elastic scattering, the charged pion formation and its form factor Fπ is calculated in the energy range of 2.4 ~ 4 GeV at Q2 = 0.6 ~ 1.6 (GeV/c)2. The functional dependence of the charged pion form factor to the separated cross section σL is investigated and compared to the previously determined result.

  8. Nucleon Electromagnetic Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Kees de Jager

    2004-08-01

    Although nucleons account for nearly all the visible mass in the universe, they have a complicated structure that is still incompletely understood. The first indication that nucleons have an internal structure, was the measurement of the proton magnetic moment by Frisch and Stern (1933) which revealed a large deviation from the value expected for a point-like Dirac particle. The investigation of the spatial structure of the nucleon, resulting in the first quantitative measurement of the proton charge radius, was initiated by the HEPL (Stanford) experiments in the 1950s, for which Hofstadter was awarded the 1961 Nobel prize. The first indication of a non-zero neutron charge distribution was obtained by scattering thermal neutrons off atomic electrons. The recent revival of its experimental study through the operational implementation of novel instrumentation has instigated a strong theoretical interest. Nucleon electro-magnetic form factors (EMFFs) are optimally studied through the exchange of a virtual photon, in elastic electron-nucleon scattering. The momentum transferred to the nucleon by the virtual photon can be selected to probe different scales of the nucleon, from integral properties such as the charge radius to scaling properties of its internal constituents. Polarization instrumentation, polarized beams and targets, and the measurement of the polarization of the recoiling nucleon have been essential in the accurate separation of the charge and magnetic form factors and in studies of the elusive neutron charge form factor.

  9. The power of two: Assessing the impact of a second measurement of the weak-charge form factor of 208Pb

    CERN Document Server

    Piekarewicz, J; Giuliani, P; Chicken, E

    2016-01-01

    [Background] Besides its intrinsic value as a fundamental nuclear-structure observable, the weak-charge density of 208Pb - a quantity that is closely related to its neutron distribution - is of fundamental importance in constraining the equation of state of neutron-rich matter. [Purpose] To assess the impact that a second electroweak measurement of the weak-charge form factor of 208Pb may have on the determination of its overall weak-charge density. [Methods] Using the two putative experimental values of the form factor, together with a simple implementation of Bayes' theorem, we calibrate a theoretically sound - yet surprisingly little known - symmetrized Fermi function, that is characterized by a density and form factor that are both known exactly in closed form. [Results] Using the charge form factor of 208Pb as a proxy for its weak-charge form factor, we demonstrate that using only two experimental points to calibrate the symmetrized Fermi function is sufficient to accurately reproduce the experimental ch...

  10. The K-meson form factor and charge radius: linking low-energy data to future high-energy Jefferson Laboratory results

    CERN Document Server

    Krutov, A F; Troitsky, V E

    2016-01-01

    Starting from a successful model of the $\\pi$-meson electromagnetic form factor, we calculate the similar form factor, f_K(Q^2), of the charged K meson for a wide range of the momentum transfer squared, Q^2. The only remaining free parameter is to be determined from the measurements of the K-meson charge radius, r_K. We fit this single parameter to the published data of the NA-7 experiment which measured f_K(Q^2) at Q^2->0 and determine our preferred range of r_K, which happens to be close to recent lattice results. Still, the accuracy in the determination of r_K is poor. However, future measurements of the K-meson electromagnetic form factor at Q^2<~5.5 GeV^2, scheduled in Jefferson Laboratory for 2017, will test our approach and will reduce the uncertainty in r_K significantly.

  11. Determination of the Charged Pion Form Factor at Q2=1.60 and 2.45 (GeV/c)2

    CERN Document Server

    Horn, T; Arrington, J; Barrett, B; Beise, E J; Blok, H P; Boeglin, W; Brash, E J; Breuer, H; Chang, C C; Christy, M E; Ent, R; Gaskell, D; Gibson, E; Holt, R J; Huber, G M; Jin, S; Jones, M K; Keppel, C E; Kim, W; King, P M; Kovaltchouk, V; Liu, J; Lolos, G J; Mack, D J; Margaziotis, D J; Markowitz, P; Matsumura, A; Meekins, D; Miyoshi, T; Mkrtchyan, H; Niculescu, I; Okayasu, Y; Pentchev, L; Perdrisat, C; Potterveld, D; Punjabi, V; Reimer, P; Reinhold, J; Roche, J; Roos, P G; Sarty, A; Smith, G R; Tadevosyan, V; Tang, L G; Tvaskis, V; Vidakovic, S; Volmer, J; Vulcan, W; Warren, G; Wood, S A; Xu, C; Zheng, X

    2006-01-01

    The H(e,e'pi+)n cross section was measured at four-momentum transfers of Q2=1.60 and 2.45 GeV2 at an invariant mass of the photon nucleon system of W=2.22 GeV. The charged pion form factor (F_pi) was extracted from the data by comparing the separated longitudinal pion electroproduction cross section to a Regge model prediction in which F_pi is a free parameter. The results indicate that the pion form factor deviates from the charge-radius constrained monopole form at these values of Q2 by one sigma, but is still far from its perturbative Quantum Chromo-Dynamics prediction.

  12. Charge and Matter Form Factors of Two-Neutron Halo Nuclei in Halo Effective Field Theory at Next-to-leading-order

    CERN Document Server

    Vanasse, Jared

    2016-01-01

    Using halo effective field theory (EFT), an expansion in $R_{core}/R_{halo}$, where $R_{core}$ is the radius of the core and $R_{halo}$ the radius of the halo nucleus, we calculate the charge and neutron form factors of the two-neutron halo nuclei $^{11}$Li, $^{14}$Be, and $^{22}$C to next-to-leading-order (NLO) by treating them as an effective three-body system. From the form factors we extract the point charge and point matter radii, inter-neutron distance, and neutron opening angle. Agreement is found with existing experimental extractions. Results are given for the point charge and point matter radii for arbitrary neutron core scattering effective range, $\\rho_{cn}$, that can be used for predictions once $\\rho_{cn}$ is measured. Estimates for $\\rho_{cn}$ are also used to make NLO predictions. Finally, our point charge radii are compared to other halo-EFT predictions, and setting the core mass equal to the neutron mass our point charge radius is found to agree with an analytical prediction in the unitary l...

  13. On the Covariance of the Charge Form Factor in the Transition Radiation Energy Spectrum of a Beam at Normal Incidence onto a Metallic Screen

    CERN Document Server

    Orlandi, Gian Luca

    2012-01-01

    A charge-density-like covariance is expected to characterize the transition radiation energy spectrum of a N electron bunch as far as the charge form factor is intended to account for bunch-density effects in the radiation emission. The beam charge passing from a single electron to a high density electron bunch, the covariance of the transition radiation energy is expected to evolve from a charge-point-like to a charge-density-like one. Besides covariance, the radiation energy spectrum is expected to conform to the temporal causality principle: the N single electron amplitudes composing the radiation field are expected to propagate from the metallic screen with relative emission phases causally correlated with the temporal sequence of the N particle collisions onto the metallic screen. In the present paper, the case of a N electron bunch hitting at a normal angle of incidence a flat metallic surface with arbitrary size and shape will be considered. For such an experimental situation, the distribution function...

  14. Mesonic Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Frederic D. R. Bonnet; Robert G. Edwards; George T. Fleming; Randal Lewis; David Richards

    2003-07-22

    We have started a program to compute the electromagnetic form factors of mesons. We discuss the techniques used to compute the pion form factor and present preliminary results computed with domain wall valence fermions on MILC asqtad lattices, as well as Wilson fermions on quenched lattices. These methods can easily be extended to rho-to-gamma-pi transition form factors.

  15. Method for forming electrically charged laser targets

    Science.gov (United States)

    Goodman, Ronald K.; Hunt, Angus L.

    1979-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  16. eta ' transition form factors

    NARCIS (Netherlands)

    Amo Sanchez, del P.; Raven, H.G.; Snoek, H.; BaBar, Collaboration

    2011-01-01

    eta((')) transition form factors in the momentum-transfer range from 4 to 40 GeV(2). The analysis is based on 469 fb(-1) of integrated luminosity collected at PEP-II with the BABAR detector at e(+)e(-) center-of-mass energies near 10.6 GeV.

  17. Baryon form factors in chiral perturbation theory

    CERN Document Server

    Kubis, B; Kubis, Bastian; Meissner, Ulf-G.

    2001-01-01

    We analyze the electromagnetic form factors of the ground state baryon octet to fourth order in relativistic baryon chiral perturbation theory. Predictions for the \\Sigma^- charge radius and the \\Lambda-\\Sigma^0 transition moment are found to be in excellent agreement with the available experimental information. Furthermore, the convergence behavior of the hyperon charge radii is shown to be more than satisfactory.

  18. Nucleon Electromagnetic Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  19. Pion form factor

    Energy Technology Data Exchange (ETDEWEB)

    Ryong Ji, C.; Pang, A.; Szczepaniak, A. [North Carolina State Univ., Raleigh, NC (United States)

    1994-04-01

    It is pointed out that the correct criterion to define the legal PQCD contribution to the exclusive processes in the lightcone perturbative expansion should be based on the large off-shellness of the lightcone energy in the intermediate states. In the lightcone perturbative QCD calculation of the pion form factor, the authors find that the legal PQCD contribution defined by the lightcone energy cut saturates in the smaller Q{sup 2} region compared to that defined by the gluon four-momentum square cut. This is due to the contribution by the highly off-energy-shell gluons in the end point regions of the phase space, indicating that the gluon four-momentum-square cut may have cut too much to define the legal PQCD.

  20. Study on Charge Form Factors of the Exotic Nuclei 6,8He%奇特原子核6,8He的电荷形状因子研究

    Institute of Scientific and Technical Information of China (English)

    王再军; 任中洲

    2007-01-01

    应用相对论Eikonal近似计算了用不同模型给出的6,8He的电荷半径和电荷分布的形状因子,并将结果与6He和4He的实验结果进行了比较.结果显示不同模型给出的电荷半径和电荷形状因子差别很大,表明不同模型给出的晕中子与α核芯的关联有很大的差异.计算和讨论结果为在下一代电子-原子核对撞机上可能进行的实验提供了理论参考,同时,也为现有讨论奇特原子核的理论模型提供了检验.%Charge radius and charge form factors of different charge density distributions for 6,8He are calculated with the relativistic Eikonal approximation. Detailed comparisons and discussions are presented.It is found that the charge form factors curves of 6,8He are much lower than the experimental ones of 4He.This is, in principle, consistent with the experimental fact. Whereas detailed comparison among the charge form factors which correspond to different charge distributions show significant deviations. This indicates that the effects of the correlations between the halo neutrons and the α-core in 6,8He with different charge density distributions are quite different. This result would provide a useful reference for the possible experiments on the next-generation electron-nucleus collider and for the tests of different theoretical models for the exotic nuclei 6,8He.

  1. Nucleon Form Factors - A Jefferson Lab Perspective

    Energy Technology Data Exchange (ETDEWEB)

    John Arrington, Kees de Jager, Charles F. Perdrisat

    2011-06-01

    The charge and magnetization distributions of the proton and neutron are encoded in their elastic electromagnetic form factors, which can be measured in elastic electron--nucleon scattering. By measuring the form factors, we probe the spatial distribution of the proton charge and magnetization, providing the most direct connection to the spatial distribution of quarks inside the proton. For decades, the form factors were probed through measurements of unpolarized elastic electron scattering, but by the 1980s, progress slowed dramatically due to the intrinsic limitations of the unpolarized measurements. Early measurements at several laboratories demonstrated the feasibility and power of measurements using polarization degrees of freedom to probe the spatial structure of the nucleon. A program of polarization measurements at Jefferson Lab led to a renaissance in the field of study, and significant new insight into the structure of matter.

  2. The form factors of the nucleons

    Science.gov (United States)

    Perdrisat, C. F.

    2013-11-01

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has been greatly improved by performing double-polarization experiments, in comparison with with previous unpolarized cross section data. Here we will review the experimental data base in view of the new results for the proton and the neutron, obtained at MIT-Bates, JLab and MAMI. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed. In particular, the possibility that the proton is non-spherical in its ground state, and that the transverse charge density are model independently defined in the infinite momentum frame. Likewise, flavor decomposition of the nucleon form factors into dressed u and d quark form factors, may give information about the quark-diquark structure of the nucleon. The current proton radius "crisis" will also be discussed.

  3. The Form Factors of the Nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Perdrisat, Charles F. [William and Mary College, JLAB

    2013-11-01

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has been greatly improved by performing double-polarization experiments, in comparison with with pre-vious unpolarized cross section data. Here we will review the experimental data base in view of the new results for the proton and the neutron, obtained at MIT-Bates, JLab and MAMI. The rapid evolution of phenomenological models triggered by these high- precision experiments will be discussed. In particular, the possibility that the proton is non-spherical in its ground state, and that the transverse charge density are model in- dependently defined in the infinite momentum frame. Likewise, flavor decomposition of the nucleon form factors into dressed u and d quark form factors, may give information about the quark-diquark structure of the nucleon. The current proton radius "crisis" will also be discussed.

  4. Higher-spin charges in Hamiltonian form. I. Bose fields

    CERN Document Server

    Campoleoni, Andrea; Hörtner, Sergio; Leonard, Amaury

    2016-01-01

    We study asymptotic charges for symmetric massless higher-spin fields on Anti de Sitter backgrounds of arbitrary dimension within the canonical formalism. We first analyse in detail the spin-3 example: we cast Fronsdal's action in Hamiltonian form, we derive the charges and we propose boundary conditions on the canonical variables that secure their finiteness. We then extend the computation of charges and the characterisation of boundary conditions to arbitrary spin.

  5. Effects of an electromagnetic quark form factor on meson properties

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre-Brac, B. E-mail: silvestre@isn.in2p3.fr

    2002-12-30

    A form factor is introduced in the quark electromagnetic current. Its effect is analyzed on charge mean square radii and form factors in the mesonic sector. The decay of a vector meson into lepton-antilepton pair is also affected. Two different expressions for the form factors, and two different types of quark potential are tested and some relativistic kinematical corrections are proposed. In any case the introduction of a quark form factor greatly improves the agreement with experimental data.

  6. TRASYS form factor matrix normalization

    Science.gov (United States)

    Tsuyuki, Glenn T.

    1992-01-01

    A method has been developed for adjusting a TRASYS enclosure form factor matrix to unity. This approach is not limited to closed geometries, and in fact, it is primarily intended for use with open geometries. The purpose of this approach is to prevent optimistic form factors to space. In this method, nodal form factor sums are calculated within 0.05 of unity using TRASYS, although deviations as large as 0.10 may be acceptable, and then, a process is employed to distribute the difference amongst the nodes. A specific example has been analyzed with this method, and a comparison was performed with a standard approach for calculating radiation conductors. In this comparison, hot and cold case temperatures were determined. Exterior nodes exhibited temperature differences as large as 7 C and 3 C for the hot and cold cases, respectively when compared with the standard approach, while interior nodes demonstrated temperature differences from 0 C to 5 C. These results indicate that temperature predictions can be artificially biased if the form factor computation error is lumped into the individual form factors to space.

  7. Baryon Form Factors at Threshold

    Energy Technology Data Exchange (ETDEWEB)

    Baldini Ferroli, Rinaldo [Museo Storico della Fisica e Centro Studi e Ricerche ' E. Fermi' , Rome (Italy); INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Pacetti, Simone [INFN and Dipartimento di Fisica, Universita di Perugia, Perugia (Italy)

    2012-04-15

    An extensive study of the e{sup +}e{sup -}{yields}pp{sup Macron }BABAR cross section data is presented. Two unexpected outcomes have been found: the modulus of the proton form factor is normalized to one at threshold, i.e.: |G{sup p}(4M{sub p}{sup 2})|=1, as a pointlike fermion, and the resummation factor in the Sommerfeld formula is not needed. Other e{sup +}e{sup -} {yields} baryon-antibaryon cross sections show a similar behavior near threshold.

  8. Pion and Kaon Electromagnetic Form Factors

    CERN Document Server

    Bijnens, J; Bijnens, Johan; Talavera, Pere

    2002-01-01

    We study the electromagnetic form factor of the pion and kaons at low-energies with the use of Chiral Perturbation Theory. The analysis is performed within the three flavour framework and at next-to-next-to-leading order. We explain carefully all the relevant consistency checks on the expressions, present full analytical results for the pion form factor and describe all the assumptions in the analysis. From the phenomenological point of view we make use of our expression and the available data to obtain the charge radius of the pion obtaining $_V^\\pi=(0.452+-0.013) fm^2$, as well as the low-energy constant $L_9^r(m_\\rho)= (5.93+-0.43)10^{-3}$. We also obtain experimental values for 3 combinations of order $p^6$ constants.

  9. Further comment on pion electroproduction and the axial form factor

    CERN Document Server

    Bernard, V; Meißner, Ulf G; Mei{\\ss}ner, Ulf-G.

    2001-01-01

    We show that a recent claim (H.Haberzettl, Phys. Rev. Lett. 85 (2000) 3576) that one cannot extract the nucleon weak axial form factor G_A (t) from charged pion threshold electroproduction is incorrect. Thus previous calculations remain valid and threshold charged pion electroproduction experiments can indeed be used to determine G_A (t), and they should certainly be pursued.

  10. Axial Nucleon form factors from lattice QCD

    CERN Document Server

    Alexandrou, C; Carbonell, J; Constantinou, M; Harraud, P A; Guichon, P; Jansen, K; Korzec, T; Papinutto, M

    2010-01-01

    We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects are investigated using three different values of the lattice spacings, namely $a=0.089$ fm, $a=0.070$ fm and $a=0.056$ fm. The nucleon axial charge is obtained in the continuum limit and chirally extrapolated to the physical pion mass enabling comparison with experiment.

  11. Electric Charge as a Form of Imaginary Energy

    Directory of Open Access Journals (Sweden)

    Tianxi Zhang

    2008-04-01

    Full Text Available Electric charge is considered as a form of imaginary energy. With this consideration, the energy of an electrically charged particle is a complex number. The real part is proportional to the mass, while the imaginary part is proportional to the electric charge. The energy of an antiparticle is given by conjugating the energy of its corresponding particle. Newton's law of gravity and Coulomb's law of electric force are classically unified into a single expression of the interaction between the complex energies of two electrically charged particles. Interaction between real energies (or masses is the gravitational force. Interaction between imaginary energies (or electric charges is the electromagnetic force. Since radiation is also a form of real energy, there are another two types of interactions between real energies: the mass-radiation interaction and the radiation-radiation interaction. Calculating the work done by the mass-radiation interaction on a photon, we can derive the Einsteinian gravitational redshift. Calculating the work done by the radiation-radiation interaction on a photon, we can obtain a radiation redshift. This study suggests the electric charge as a form of imaginary energy, so that classically unifies the gravitational and electric forces and derives the Einsteinian gravitational redshift.

  12. Strange chiral nucleon form factors

    CERN Document Server

    Hemmert, T R; Meißner, Ulf G; Hemmert, Thomas R.; Kubis, Bastian; Meissner, Ulf-G.

    1999-01-01

    We investigate the strange electric and magnetic form factors of the nucleon in the framework of heavy baryon chiral perturbation theory to third order in the chiral expansion. All counterterms can be fixed from data. In particular, the two unknown singlet couplings can be deduced from the parity-violating electron scattering experiments performed by the SAMPLE and the HAPPEX collaborations. Within the given uncertainties, our analysis leads to a small and positive electric strangeness radius, $ = (0.05 \\pm 0.16) fm^2$. We also deduce the consequences for the upcoming MAMI A4 experiment.

  13. Form function and variation of burning surface area for hexa-tubular charge

    Directory of Open Access Journals (Sweden)

    J. N. Kapur

    1964-10-01

    Full Text Available The problem of combustion of a hexa-tubular charge, which is a cylindrical charge with six holes of equal diameters- one at the centre and the other five symmetrically situated about it, has been considered in this paper. The burning of the charge proceeds in three distinct phases for each of which the form function and variation of burning surface area has been investigated. Equivalent form-factor has also been found. Numerical results for some important cases are tabulated.

  14. Charged pion form factor between $Q^2$=0.60 and 2.45 GeV$^2$. I. Measurements of the cross section for the ${^1}$H($e,e'\\pi^+$)$n$ reaction

    CERN Document Server

    Blok, H P; Huber, G M; Beise, E J; Gaskell, D; Mack, D J; Tadevosyan, V; Volmer, J; Abbott, D; Aniol, K; Anklin, H; Armstrong, C; Arrington, J; Assamagan, K; Avery, S; Baker, O K; Barrett, B; Bochna, C; Boeglin, W; Brash, E J; Breuer, H; Chang, C C; Chant, N; Christy, M E; Dunne, J; Eden, T; Ent, R; Fenker, H; Gibson, E; Gilman, R; Gustafsson, K; Hinton, W; Holt, R J; Jackson, H; Jin, S; Jones, M K; Keppel, C E; Kim, P H; Kim, W; King, P M; Klein, A; Koltenuk, D; Kovaltchouk, V; Liang, M; Liu, J; Lolos, G J; Lung, A; Margaziotis, D J; Markowitz, P; Matsumura, A; McKee, D; Meekins, D; Mitchell, J; Miyoshi, T; Mkrtchyan, H; Müller, B; Niculescu, G; Niculescu, I; Okayasu, Y; Pentchev, L; Perdrisat, C; Pitz, D; Potterveld, D; Punjabi, V; Qin, L M; Reimer, P; Reinhold, J; Roche, J; Roos, P G; Sarty, A; Shin, I K; Smith, G R; Stepanyan, S; Tang, L G; Tvaskis, V; Van der Meer, R L J; Vansyoc, K; Van Westrum, D; Vidakovic, S; Vulcan, W; Warren, G; Wood, S A; Xu, C; Yan, C; Zhao, W -X; Zheng, X; Zihlmann, B

    2008-01-01

    Cross sections for the reaction ${^1}$H($e,e'\\pi^+$)$n$ were measured in Hall C at Thomas Jefferson National Accelerator Facility (JLab) using the CEBAF high-intensity, continous electron beam in order to determine the charged pion form factor. Data were taken for central four-momentum transfers ranging from $Q^2$=0.60 to 2.45 GeV$^2$ at an invariant mass of the virtual photon-nucleon system of $W$=1.95 and 2.22 GeV. The measured cross sections were separated into the four structure functions $\\sigma_L$, $\\sigma_T$, $\\sigma_{LT}$, and $\\sigma_{TT}$. The various parts of the experimental setup and the analysis steps are described in detail, including the calibrations and systematic studies, which were needed to obtain high precision results. The different types of systematic uncertainties are also discussed. The results for the separated cross sections as a function of the Mandelstam variable $t$ at the different values of $Q^2$ are presented. Some global features of the data are discussed, and the data are co...

  15. Charged pion form factor between $Q^2$=0.60 and 2.45 GeV$^2$. I. Measurements of the cross section for the ${^1}$H($e,e'\\pi^+$)$n$ reaction.

    Energy Technology Data Exchange (ETDEWEB)

    Blok, Henk; Horn, Tanja; Huber, Garth; Beise, Elizabeth; Gaskell, David; Mack, David; Tadevosyan, Vardan; Volmer, Jochen; Abbott, David; Aniol, Konrad; Anklin, Heinz; Armstrong, Christopher; Arrington, John; Assamagan, Ketevi; Avery, Steven; Baker, O; Barrett, Robert; Bochna, Christopher; Boeglin, Werner; Brash, Edward; Breuer, Herbert; Chang, C; Chang, C C; Chant, Nicholas; Christy, Michael; Dunne, James; Eden, Thomas; Ent, Rolf; Fenker, Howard; Gibson, Edward; Gilman, Ronald; Gustafsson, Kenneth; Hinton, Wendy; Holt, Roy; Jackson, Harold; uk Jin, Seong; Jones, Mark; Keppel, Cynthia; Kim, pyunghun; Kim, Wooyoung; King, Paul; Klein, Andreas; Koltenuk, Douglas; Kovaltchouk, Vitali; Liang, Meihua; Liu, Jinghua; Lolos, George; Lung, Allison; Margaziotis, Demetrius; Markowitz, Pete; Matsumura, Akihiko; McKee, David; Meekins, David; Mitchell, Joseph; Miyoshi, Toshinobu; Mkrtchyan, Hamlet; Mueller, Robert; Niculescu, Gabriel; Niculescu, Maria-Ioana; Okayasu, Yuichi; Pentchev, Lubomir; Perdrisat, Charles; Pitz, David; Potterveld, David; Punjabi, Vina; Qin, Liming; Reimer, Paul; Reinhold, Joerg; Roche, Julie; Roos, Philip; Sarty, Adam; Shin, Ilkyoung; Smith, Gregory; Stepanyan, Stepan; Tang, Liguang; Tvaskis, Vladas; van der Meer, Rob; Vansyoc, Kelley; Van Westrum, Derek; Vidakovic, Sandra; Vulcan, William; Warren, Glen; Wood, Stephen; Xu, C; Yan, Chen; Zhao, Wenxia; Zheng, Xiaochao; Zihlmann, Benedikt

    2008-10-01

    DOI: http://dx.doi.org/10.1103/PhysRevC.78.045202
    Cross sections for the reaction 1H(e,e'pi+)n were measured in Hall C at Thomas Jefferson National Accelerator Facility (JLab) using the high-intensity Continuous Electron Beam Accelerator Facility (CEBAF) to determine the charged pion form factor. Data were taken for central four-momentum transfers ranging from Q2=0.60 to 2.45 GeV2 at an invariant mass of the virtual photon-nucleon system of W=1.95 and 2.22 GeV. The measured cross sections were separated into the four structure functions sigmaL,sigmaT,sigmaLT, and sigmaTT. The various parts of the experimental setup and the analysis steps are described in detail, including the calibrations and systematic studies, which were needed to obtain high-precision results. The different types of systematic uncertainties are also discussed. The results for the separated cross sections as a function of the Mandelstam variable t at the different values of Q2 are presented. Some global featu

  16. Deuteron form factor measurements at low momentum transfers

    Directory of Open Access Journals (Sweden)

    Schlimme B. S.

    2016-01-01

    Full Text Available A precise measurement of the elastic electron-deuteron scattering cross section at four-momentum transfers of 0.24 fm−1 ≤ Q ≤ 2.7 fm−1 has been performed at the Mainz Microtron. In this paper we describe the utilized experimental setup and the necessary analysis procedure to precisely determine the deuteron charge form factor from these data. Finally, the deuteron charge radius rd can be extracted from an extrapolation of that form factor to Q2 = 0.

  17. Electromagnetic form factors of the nucleon. Experiments at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Ostrick, M. [Universitaet Bonn, Physikalisches Institut, Bonn (Germany)

    2006-05-15

    Elastic form factors are of fundamental importance for the understanding of microscopic spatial structures. In case of the proton and the neutron, charge and magnetic form factors can be studied in elastic electron scattering. Techniques to accelerate polarised continuous electron beams, the availability of polarised targets as well as modern concepts and instrumentation for coincidence experiments and recoil polarimetry had an enormous impact on these measurements. The developments and experiments at the Mainz Microtron MAMI will be discussed in a general context. (orig.)

  18. Longitudinal vector form factors in weak decays of nuclei

    CERN Document Server

    Simkovic, F; Krivoruchenko, M I

    2015-01-01

    The longitudinal form factors of the weak vector current of particles with spin $ J = 1/2 $ and isospin $ I = 1/2 $ are determined by the mass difference and the charge radii of members of the isotopic doublets. The most promising reactions to measure these form factors are the reactions with large momentum transfers involving the spin-1/2 isotopic doublets with a maximum mass splitting. Numerical estimates of longitudinal form factors are given for nucleons and eight nuclear spin-1/2 isotopic doublets.

  19. Flavor decomposition of the nucleon electromagnetic form factors

    CERN Document Server

    Qattan, I A

    2012-01-01

    Background: The spatial distribution of charge and magnetization in the proton and neutron are encoded in the nucleon electromagnetic form factors. The form factors are all approximated by a simple dipole function, normalized to the charge or magnetic moment of the nucleon. The differences between the proton and neutron form factors and the deviation of GEn from zero are sensitive to the difference between up- and down-quark contributions to the form factors. Methods: We combine recent measurements of the neutron form factors with updated extractions of the proton form factors, accounting for two-photon exchange corrections and including an estimate of the uncertainties for all of the form factors to obtain a complete set of measurements up to Q^2 approximately 4 (GeV/c)^2. We use this to extract the up- and down-quark contributions which we compare to recent fits and calculations. Results: We find a large differences between the up- and down-quark contributions to G_E and G_M, implying significant flavor dep...

  20. Nucleon form factors with dynamical twisted mass fermions

    CERN Document Server

    Alexandrou, C; Brinet, M; Carbonell, J; Drach, V; Harraud, P A; Korzec, T; Koutsou, G

    2008-01-01

    The electromagnetic and axial form factors of the nucleon are evaluated in twisted mass QCD with two degenerate flavors of light, dynamical quarks. The axial charge g_A, magnetic moment and the Dirac and Pauli radii are determined for pion masses in the range 300 MeV to 500 MeV.

  1. Measurement of the pion form factor at higher energies

    Energy Technology Data Exchange (ETDEWEB)

    Mack, D.J. [CEBAF, Newport News, VA (United States)

    1994-04-01

    One of the strongest arguments for increasing the nominal CEBAF beam energy to equal or exceed 6 GeV is that one would be able to make quality high Q{sup 2} measurements of the charged pion form factor.

  2. Triton Electric Form Factor at Low-Energies

    CERN Document Server

    Sadeghi, H

    2009-01-01

    Making use of the Effective Field Theory(EFT) expansion recently developed by the authors, we compute the charge form factor of triton up to next-to-next-to-leading order (N$^2$LO). The three-nucleon forces(3NF) is required for renormalization of the three-nucleon system and it effects are predicted for process and is qualitatively supported by available experimental data. We also show that, by including higher order corrections, the calculated charge form factor and charge radius of $^3$H are in satisfactory agreement with the experimental data and the realistic Argonne $v_{18}$ two-nucleon and Urbana IX potential models calculations. This method makes possible a high precision few-body calculations in nuclear physics. Our result converges order by order in low energy expansion and also cut-off independent.

  3. On Duality Symmetry in Charged P-Form Theories

    CERN Document Server

    Menezes, R; Menezes, Roberto; Wotzasek, Clovis

    2004-01-01

    We study duality transformation and duality symmetry in the the electromagnetic-like charged p-form theories. It is shown that the dichotomic characterization of duality groups as $Z_2$ or SO(2) remains as the only possibilities but are now present in all dimensions even and odd. This is a property defined in the symplectic sector of the theory both for massive and massless tensors. It is shown that the duality groups depend, in general, both on the ranks of the fields and on the dimension of the spacetime. We search for the physical origin of this two-fold property and show that it is traceable to the dimensional and rank dependence of the parity of certain operator (a generalized-curl) that naturally decomposes the symplectic sector of the action. These operators are only slightly different in the massive and in the massless cases but their physical origin are quite distinct.

  4. Soliton form factors from lattice simulations

    CERN Document Server

    Rajantie, Arttu

    2010-01-01

    The form factor provides a convenient way to describe properties of topological solitons in the full quantum theory, when semiclassical concepts are not applicable. It is demonstrated that the form factor can be calculated numerically using lattice Monte Carlo simulations. The approach is very general and can be applied to essentially any type of soliton. The technique is illustrated by calculating the kink form factor near the critical point in 1+1-dimensional scalar field theory. As expected from universality arguments, the result agrees with the exactly calculable scaling form factor of the two-dimensional Ising model.

  5. Calculation of Nucleon Electromagnetic Form Factors

    CERN Document Server

    Renner, D B; Dolgov, D S; Eicker, N; Lippert, T; Negele, J W; Pochinsky, A V; Schilling, K; Lippert, Th.

    2002-01-01

    The fomalism is developed to express nucleon matrix elements of the electromagnetic current in terms of form factors consistent with the translational, rotational, and parity symmetries of a cubic lattice. We calculate the number of these form factors and show how appropriate linear combinations approach the continuum limit.

  6. Measurements of Semileptonic KL Decay Form Factors

    CERN Document Server

    Alexopoulos, T; Barbosa, R F; Barker, A R; Bellantoni, L; Bellavance, A; Blucher, E; Bock, G J; Cheu, E; Childress, S; Coleman, R; Corcoran, M D; Cox, B; Erwin, A R; Ford, R; Glazov, A; Golossanov, A; Graham, J; Hamm, J; Hanagaki, K; Hsiung, Y B; Huang, H; Jejer, V; Jensen, D A; Kessler, R; Kobrak, H G E; Kotera, K; La Due, J; Ledovskoy, A A; McBride, P L; Monnier, E; Nguyen, H; Niclasen, R; Prasad, V; Qi, X R; Ramberg, E J; Ray, R E; Ronquest, M; Santos, E; Shanahan, P; Shields, J; Slater, W; Smith, D; Solomey, Nickolas; Swallow, E C; Tesarek, R J; Toale, P A; Tschirhart, R S; Wah, Y W; Wang, J; White, H B; Whitmore, J; Wilking, M; Winstein, B; Winston, R; Worcester, E T; Yamanaka, T; Zimmerman, E D

    2004-01-01

    We present new measurements of KL semileptonic form factors using data collected in 1997 by the KTeV (E832) experiment at Fermilab. The measurements are based 1.9 million KL->pi e nu and 1.5 million KL->pi mu nu decays. For f+(t), we measure both a linear and quadratic term lambda+' = (20.64 +- 1.75)E-3 and lambda+'' = (3.20 +- 0.69)E-3. For f0(t), we find lambda0 = (13.72 +- 1.31)E-3. These form factors are consistent with K+- form factors, suggesting that isospin symmetry breaking effects are small. We use our measured values of the form factors to evaluate the decay phase space integrals, IK(e) = 0.15350 +- 0.00105 and IK(mu) =0.10165 +- 0.00080, where errors include uncertainties arising from the form factor parametrizations.

  7. Form Factors in radiative pion decay

    CERN Document Server

    Mateu, V

    2007-01-01

    We perform an analysis of the form factors that rule the structure-dependent amplitude in the radiative pion decay. The resonance contributions to pion -> e nu_e gamma decays are computed through the proper construction of the vector and axial-vector form factors by setting the QCD driven asymptotic properties of the three-point Green functions VVP and VAP, and by demanding the smoothing of the form factors at high transfer of momentum. A comparison between theoretical and experimental determinations of the form factors is also carried out. We also consider and evaluate the role played by a non-standard tensor form factor. We conclude that, at present and due to the hadronic incertitudes, the search for New Physics in this process is not feasible.

  8. Electromagnetic form factors of the Δ with D-waves

    Energy Technology Data Exchange (ETDEWEB)

    Ramalho, Gilberto T.F. [CFTP, Institute Superior Tecnico, Lisbon (Portugal); Pena, Maria Teresa [CFTP, Institute Superior Tecnico, Lisbon (Portugal); Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2010-06-01

    The electromagnetic form factors of the Δ baryon are evaluated within the framework of a covariant spectator quark model, where S and D-states are included in the Δ wave function. We predict all the four Δ multipole form factors: the electric charge GE0, the magnetic dipole GM1, the electric quadrupole GE2 and the magnetic octupole GM3. We compare our predictions with other theoretical calculations. Our results are compatible with the available experimental data and recent lattice QCD data.

  9. Electromagnetic form factors of the Delta with D-waves

    CERN Document Server

    Ramalho, G; Gross, Franz

    2010-01-01

    The electromagnetic form factors of the Delta baryon are evaluated within the framework of a covariant spectator quark model, where S and D-states are included in the $\\Delta$ wave function. We predict all the four Delta multipole form factors: the electric charge GE0, the magnetic dipole GM1, the electric quadrupole GE2 and the magnetic octupole GM3. We compare our predictions with other theoretical calculations. Our results are compatible with the available experimental data and recent lattice QCD data.

  10. Nucleon electromagnetic form factors in two-flavour QCD

    CERN Document Server

    Capitani, S; Djukanovic, D; von Hippel, G; Hua, J; Knippschild, B Jäger B; Meyer, H B; Rae, T D; Wittig, H

    2015-01-01

    We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured on the CLS ensembles. Particular focus is placed on a systematic evaluation of the influence of excited states in three-point correlation functions, which lead to a biased evaluation, if not accounted for correctly. We argue that the use of summed operator insertions and fit ans\\"atze including excited states allow us to suppress and control this effect. We employ a novel method to perform joint chiral and continuum extrapolations, by fitting the form factors directly to the expressions of covariant baryonic chiral effective field theory. The final results for the charge radii and magnetic moment from our lattice calculations include, for the first time, a full error budget. We find that our estimates are compatible with experimental results within their overall u...

  11. Electromagnetic Form Factors of the Nucleon

    CERN Document Server

    Bijker, R

    1997-01-01

    We reanalyze the world data on the electromagnetic form factors of the nucleon. The calculations are performed in the framework of an algebraic model of the nucleon combined with vector meson dominance.

  12. Make Projects Small Form Factor PCs

    CERN Document Server

    Wessels, Duane

    2006-01-01

    Shoebox sized and smaller, small-form-factor PCs can pack as much computing muscle as a full-sized desktop computer. They consumer less power, have few or no moving parts, and are very quiet. Whether you plan to use one as a standalone PC or want to embed it in your next hacking project, a small-form-factor PC can be a lot of fun to build. Make Projects: Small Form Factor PCs is the only book available that shows you how to build small-form-factor PCs -- from kits and from scratch -- that are more interesting and more personalized than what a full-sized PC can give you. Included in the book

  13. Pseudoscalar meson form factors and decays

    CERN Document Server

    Dorokhov, A E

    2011-01-01

    In this communication we discuss few topics related with modern experimental data on the physics of light pseudoscalar mesons. It includes the contribution of the pseudoscalar mesons to the muon anomalous magnetic moment (AMM), $g-2$, the rare decays of light pseudoscalar mesons to lepton pair, the transition form factors of pseudoscalar mesons at large momentum transfer, the pion transversity form factor. Measuring the muon anomalous magnetic moment $g-2$ and the rare decays of light pseudoscalar mesons into lepton pair $P\\rightarrow l^{+}l^{-} $ serve as important test of the standard model. To reduce the theoretical uncertainty in the standard model predictions the data on the transition form factors of light pseudoscalar mesons play significant role. Recently new data on behavior of these form factors at large momentum transfer was supplied by the BABAR collaboration. Within the nonlocal chiral quark model it shown how to describe these data and how the meson distribution amplitude evolves as a function o...

  14. An Algebraic Approach to Form Factors

    OpenAIRE

    Niedermaier, M. R.

    1994-01-01

    An associative $*$-algebra is introduced (containing a $TTR$-algebra as a subalgebra) that implements the form factor axioms, and hence indirectly the Wightman axioms, in the following sense: Each $T$-invariant linear functional over the algebra automatically satisfies all the form factor axioms. It is argued that this answers the question (posed in the functional Bethe ansatz) how to select the dynamically correct representations of the $TTR$-algebra. Applied to the case of integrable QFTs w...

  15. Asymptotics of Heavy-Meson Form Factors

    CERN Document Server

    Grozin, A.G.; Grozin, Andrey G.; Neubert, Matthias

    1997-01-01

    Using methods developed for hard exclusive QCD processes, we calculate the asymptotic behaviour of heavy-meson form factors at large recoil. It is determined by the leading- and subleading-twist meson wave functions. For $1\\ll |v\\cdot v'|\\ll m_Q/\\Lambda$, the form factors are dominated by the Isgur--Wise function, which is determined by the interference between the wave functions of leading and subleading twist. At $|v\\cdot v'|\\gg m_Q/\\Lambda$, they are dominated by two functions arising at order $1/m_Q$ in the heavy-quark expansion, which are determined by the leading-twist wave function alone. The sum of these contributions describes the form factors in the whole region $|v\\cdot v'|\\gg 1$. As a consequence, there is an exact zero in the form factor for the scattering of longitudinally polarized $B^*$ mesons at some value $v\\cdot v'\\sim m_b/\\Lambda$, and an approximate zero in the form factor of $B$ mesons in the timelike region ($v\\cdot v'\\sim -m_b/\\Lambda$). We obtain the evolution equations and sum rules ...

  16. Magnetic form factors of the trinucleons

    Energy Technology Data Exchange (ETDEWEB)

    Schiavilla, R; Pandharipande, V R; Riska, Dan-Olof

    1989-11-01

    The magnetic form factors of 3H and 3He are calculated with the Monte Carlo method from variational ground-state wave functions obtained for the Argonne and Urbana two- and three-nucleon interactions. The electromagnetic current operator contains one- and two-body terms that are constructed so as to satisfy the continuity equation with the two-nucleon potential in the Hamiltonian. The results obtained with the Argonne two-nucleon interaction are in overall agreement with the empirical values. It appears that the remaining theoretical uncertainty, in the calculation of these form factors from a given interaction model, is dominated by that in the electromagnetic form factors of the nucleon. It is found that the isovector magnetic form factors are rather sensitive to the details of the isospin-dependent tensor force, and they are much better reproduced with the Argonne than the Urbana potential. The isoscalar magnetic form factors appear to be sensitive to the spin-orbit interactions, and are better reproduced with the Urbana potential. The Argonne potential has a stronger τ1∙τ2 tensor force, while the Urbana one has a shorter-range spin-orbit interaction.

  17. Form factors for semileptonic D decays

    CERN Document Server

    Palmer, Teresa

    2013-01-01

    We study the form factors for semileptonic decays of $D$-mesons. That is, we consider the matrix element of the weak left-handed quark current for the transitions $D \\rightarrow P$ and $D \\rightarrow V$, where $P$ and $V$ are light pseudoscalar or vector mesons, respectively. Our motivation to perform the present study of these form factors are future calculations of non-leptonic decay amplitudes. We consider the form factors within a class of chiral quark models. Especially, we study how the Large Energy Effective Theory (LEET) limit works for $D$-meson decays. Compared to previous work we also introduce light vector mesons $V = \\rho, K^*,...$ within chiral quark models. In order to determine some of the parameters in our model, we use existing data and results based on some other methods like lattice calculations, light-cone sum rules, and heavy-light chiral perturbation theory. We also obtain some predictions within our framework.

  18. Color-kinematic duality for form factors

    Energy Technology Data Exchange (ETDEWEB)

    Boels, Rutger H.; Kniehl, Bernd A.; Tarasov, Oleg V.; Yang, Gang [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2012-12-15

    Recently a powerful duality between color and kinematics has been proposed for integrands of scattering amplitudes in quite general gauge theories. In this paper the duality proposal is extended to the more general class of gauge theory observables formed by form factors. After a discussion of the general setup the existence of the duality is verified in two and three loop examples in four dimensional maximally supersymmetric Yang-Mills theory which involve the stress energy tensor multiplet. In these cases the duality reproduces known results in a particularly transparent and uniform way. As a non-trivial application we obtain a very simple form of the integrand of the four-loop two-point (Sudakov) form factor which passes a large set of unitarity cut checks.

  19. Hyperfine splitting in hydrogen with form factors

    CERN Document Server

    Daza, F Garcia; Nowakowski, M

    2010-01-01

    Proton structure corrections to the hyperfine splittings in hydrogen are evaluated using the Breit potential with electromagnetic form factors. In contrast to other methods, several new features emerge: the Breit potential with $q^2$-dependent form factors is just an extension of the standard Breit equation which gives the hyperfine Hamiltonian. Order $\\alpha^5$ corrections are obtained from a one-photon exchange amplitude and time-independent perturbation theory. Structure corrections to $D_{21} = 8 E^{2S}_{hfs} - E^{1S}_{hfs}$ start at order $\\alpha^6$. QED corrections are comparable to structure corrections which must be evaluated ab initio.

  20. Wilson Loop Form Factors: A New Duality

    OpenAIRE

    Chicherin, Dmitry; Heslop, Paul; Korchemsky, Gregory P.; Sokatchev, Emery

    2016-01-01

    We find a new duality for form factors of lightlike Wilson loops in planar $\\mathcal N=4$ super-Yang-Mills theory. The duality maps a form factor involving an $n$-sided lightlike polygonal super-Wilson loop together with $m$ external on-shell states, to the same type of object but with the edges of the Wilson loop and the external states swapping roles. This relation can essentially be seen graphically in Lorentz harmonic chiral (LHC) superspace where it is equivalent to planar graph duality....

  1. Form factors for $B \\to \\pi l\

    CERN Document Server

    Riazuddin, M; Gilani, A H S; Gilani, Amjad H S

    2000-01-01

    The form factors for the $B-->\\pi$ transition are evaluated in the entire momentum transfer range by using the constraints obtained in the framework combining the heavy quark expansion and chiral symmetry for light quarks and the quark model. In particular, we calculate the valence quark contributions and show that it together with the equal time commutator contribution simulate a B-meson pole q^2-dependence of form factors in addition to the usual vector meson B^{*}-pole diagram for $B --> \\pi l\

  2. Nucleon electromagnetic form factors with Wilson fermions

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)

    2007-10-15

    The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV. (orig.)

  3. Possible diquark signatures in the elastic nucleon form factors

    Science.gov (United States)

    Cates, Gordon

    2013-10-01

    There has been considerable interest in the elastic nucleon form factors ever since the discovery that the proton form-factor ratio, GEp /GMp , decreases nearly linearly above roughly Q2 = 1 GeV2 . More recent measurements of the neutron form-factor ratio, GEn /GMn , up to 3 . 4 GeV2 have made it possible to constrain calculations using both proton and neutron data in the Q2 regime where the interesting behavior of the proton was first observed. Calculations based on QCD's Dyson-Schwinger equations, as well as certain relativistic constituent quark models, suggest that the observed behavior is related to the importance of diquark degrees of freedom. To understand this connection, it is particularly useful to consider the flavor-separated form factors, which can be extracted by combining proton and neutron data, and assuming charge symmetry. Distinctly different behavior is seen for the u - and d - quarks. The behaviors of the different quark flavors and the connection to diquarks can also be understood using naive scaling arguments, although this approach has yet to be made more rigorous. This talk will discuss how measurements of the nucleon form factors at high Q2 provides a rich opportunity to better understand the structure of the nucleon.

  4. Dispersion-theoretical analysis of the nucleon electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Belushkin, M.

    2007-09-29

    The structure of the proton and the neutron is of fundamental importance for the study of the strong interaction dynamics over a wide range of momentum transfers. The nucleon form factors encode information on the internal structure of the nucleon as probed by the electromagnetic interaction, and, to a certain extent, reflect the charge and magnetisation distributions within the proton and the neutron. In this thesis we report on our investigation of the electromagnetic form factors of the proton and the neutron with dispersion relation techniques, including known experimental input on the {pi}{pi}, K anti K and the {rho}{pi} continua and perturbative QCD constraints. We include new experimental data on the pion form factor and the nucleon form factors in our simultaneous analysis of all four form factors in both the space- and the timelike regions for all momentum transfers, and perform Monte- Carlo sampling in order to obtain theoretical uncertainty bands. Finally, we discuss the implications of our results on the pion cloud of the nucleon, the nucleon radii and the Okubo-Zweig-Iizuka rule, and present our results of a model-independent approach to estimating two-photon effects in elastic electron-proton scattering. (orig.)

  5. Electromagnetic Transition form Factor of Nucleon Resonances

    Science.gov (United States)

    Sato, Toru

    2016-10-01

    A dynamical coupled channel model for electron and neutrino induced meson production reactions is developed. The model is an extension of our previous reaction model to describe reactions at finite Q^2. The electromagnetic transition form factors of the first (3/2^+,3/2) and (3/2^-,1/2) resonances extracted from partial wave amplitude are discussed.

  6. From form factors to generalized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus

    2013-06-15

    I present an extraction of generalized parton distributions from selected data on the electromagnetic nucleon form factors. The extracted distributions can in particular be used to quantify the contribution to the proton spin from the total angular momentum carried by valence quarks, as well as their transverse spatial distribution inside the proton.

  7. Chiral analysis of baryon form factors

    Energy Technology Data Exchange (ETDEWEB)

    Gail, T.A.

    2007-11-08

    This work presents an extensive theoretical investigation of the structure of the nucleon within the standard model of elementary particle physics. In particular, the long range contributions to a number of various form factors parametrizing the interactions of the nucleon with an electromagnetic probe are calculated. The theoretical framework for those calculations is chiral perturbation theory, the exact low energy limit of Quantum Chromo Dynamics, which describes such long range contributions in terms of a pion-cloud. In this theory, a nonrelativistic leading one loop order calculation of the form factors parametrizing the vector transition of a nucleon to its lowest lying resonance, the {delta}, a covariant calculation of the isovector and isoscalar vector form factors of the nucleon at next to leading one loop order and a covariant calculation of the isoscalar and isovector generalized vector form factors of the nucleon at leading one loop order are performed. In order to perform consistent loop calculations in the covariant formulation of chiral perturbation theory an appropriate renormalization scheme is defined in this work. All theoretical predictions are compared to phenomenology and results from lattice QCD simulations. These comparisons allow for a determination of the low energy constants of the theory. Furthermore, the possibility of chiral extrapolation, i.e. the extrapolation of lattice data from simulations at large pion masses down to the small physical pion mass is studied in detail. Statistical as well as systematic uncertainties are estimated for all results throughout this work. (orig.)

  8. Nucleon and Elastic and Transition Form Factors

    Science.gov (United States)

    Segovia, Jorge; Cloët, Ian C.; Roberts, Craig D.; Schmidt, Sebastian M.

    2014-12-01

    We present a unified study of nucleon and elastic and transition form factors, and compare predictions made using a framework built upon a Faddeev equation kernel and interaction vertices that possess QCD-like momentum dependence with results obtained using a symmetry-preserving treatment of a vector vector contact-interaction. The comparison emphasises that experiments are sensitive to the momentum dependence of the running couplings and masses in the strong interaction sector of the Standard Model and highlights that the key to describing hadron properties is a veracious expression of dynamical chiral symmetry breaking in the bound-state problem. Amongst the results we describe, the following are of particular interest: possesses a zero at Q 2 = 9.5 GeV2; any change in the interaction which shifts a zero in the proton ratio to larger Q 2 relocates a zero in to smaller Q 2; there is likely a value of momentum transfer above which ; and the presence of strong diquark correlations within the nucleon is sufficient to understand empirical extractions of the flavour-separated form factors. Regarding the -baryon, we find that, inter alia: the electric monopole form factor exhibits a zero; the electric quadrupole form factor is negative, large in magnitude, and sensitive to the nature and strength of correlations in the Faddeev amplitude; and the magnetic octupole form factor is negative so long as rest-frame P- and D-wave correlations are included. In connection with the transition, the momentum-dependence of the magnetic transition form factor, , matches that of once the momentum transfer is high enough to pierce the meson-cloud; and the electric quadrupole ratio is a keen measure of diquark and orbital angular momentum correlations, the zero in which is obscured by meson-cloud effects on the domain currently accessible to experiment. Importantly, within each framework, identical propagators and vertices are sufficient to describe all properties discussed herein. Our

  9. Transaction charges allocation using sensitivity factor methodology

    Indian Academy of Sciences (India)

    S Charles Raja; J Jeslin Drusila Nesamalar; P Venkatesh

    2014-04-01

    Deregulation of the electricity industry aims for creating a competitive market to trade electricity, which generates a host of new technical challenges among market participants and power system researchers. One of the major challenges is to establish a cost for system services on a nondiscriminatory basis. In this paper, the evaluation of transmission cost is proposed based on sensitivity factor method like AC Power Transfer Distribution Factor (ACPTDF) method for bilateral and multilateral transactions. The transacted power is estimated by ACPTDF method for each transaction. The advantages of the proposed methodology are demonstrated on a sample 6 bus, IEEE 30 bus and Indian Utility 69 bus systems. The solution provides a better pricing approach that can impact a more reasonable economic indicator for transmission cost.

  10. A remark on the asymptotic form of BPS multi-dyon solutions and their conserved charges

    Science.gov (United States)

    Constantinidis, C. P.; Ferreira, L. A.; Luchini, G.

    2015-12-01

    We evaluate the gauge invariant, dynamically conserved charges, recently obtained from the integral form of the Yang-Mills equations, for the BPS multi-dyon solutions of a Yang-Mills-Higgs theory associated to any compact semi-simple gauge group G. Those charges are shown to correspond to the eigenvalues of the next-to-leading term of the asymptotic form of the Higgs field at spatial infinity, and so coinciding with the usual topological charges of those solutions. Such results show that many of the topological charges considered in the literature are in fact dynamical charges, which conservation follows from the global properties of classical Yang-Mills theories encoded into their integral dynamical equations. The conservation of those charges can not be obtained from the differential form of Yang-Mills equations.

  11. A remark on the asymptotic form of BPS multi-dyon solutions and their conserved charges

    CERN Document Server

    Constantinidis, C P; Luchini, G

    2015-01-01

    We evaluate the gauge invariant, dynamically conserved charges, recently obtained from the integral form of the Yang-Mills equations, for the BPS multi-dyon solutions of a Yang-Mills-Higgs theory associated to any compact semi-simple gauge group G. Those charges are shown to correspond to the eigenvalues of the next-to-leading term of the asymptotic form of the Higgs field at spatial infinity, and so coinciding with the usual topological charges of those solutions. Such results show that many of the topological charges considered in the literature are in fact dynamical charges, which conservation follows from the global properties of classical Yang-Mills theories encoded into their integral dynamical equations. The conservation of those charges can not be obtained from the differential form of Yang-Mills equations.

  12. Baryon octet electromagnetic form factors in a confining NJL model

    Directory of Open Access Journals (Sweden)

    Manuel E. Carrillo-Serrano

    2016-08-01

    Full Text Available Electromagnetic form factors of the baryon octet are studied using a Nambu–Jona-Lasinio model which utilizes the proper-time regularization scheme to simulate aspects of colour confinement. In addition, the model also incorporates corrections to the dressed quarks from vector meson correlations in the t-channel and the pion cloud. Comparison with recent chiral extrapolations of lattice QCD results shows a remarkable level of consistency. For the charge radii we find the surprising result that rEp

  13. Neutral pion form factor measurement at NA62

    CERN Document Server

    Goudzovski, Evgueni

    2016-01-01

    The NA62 experiment at CERN collected a large sample of charged kaon decays with a highly efficient trigger for decays into electrons in 2007. The kaon beam represents a source of tagged neutral pion decays in vacuum. A measurement of the electromagnetic transition form factor slope of the neutral pion in the time-like region from $1.05\\times10^6$ fully reconstructed $\\pi^0$ Dalitz decay is presented. The limits on dark photon production in $\\pi^0$ decays from the earlier kaon experiment at CERN, NA48/2, are also reported.

  14. Baryon transition form factors at the pole

    Science.gov (United States)

    Tiator, L.; Döring, M.; Workman, R. L.; Hadžimehmedović, M.; Osmanović, H.; Omerović, R.; Stahov, J.; Švarc, A.

    2016-12-01

    Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the GM, GE, and GC form factors for the Δ (1232 ) resonance excitation at the Breit-Wigner resonance and pole positions up to Q2=5 GeV2 . We also explore the E /M and S /M ratios as functions of Q2. For pole and residue extraction, we apply the Laurent + Pietarinen method.

  15. Baryon transition form factors at the pole

    CERN Document Server

    Tiator, L; Workman, R L; Hadžimehmedović, M; Osmanović, H; Omerović, R; Stahov, J; Švarc, A

    2016-01-01

    Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the $G_M$, $G_E$, and $G_C$ form factors for the $\\Delta(1232)$ resonance excitation at the Breit-Wigner resonance and pole positions up to $Q^2=5$ GeV$^2$. We also explore the $E/M$ and $S/M$ ratios as functions of $Q^2$. For pole and residue extraction, we apply the Laurent + Pietarinen method.

  16. Baryon transition form factors at the pole

    Energy Technology Data Exchange (ETDEWEB)

    Tiator, L.; Döring, M.; Workman, R. L.; Hadžimehmedović, M.; Osmanović, H.; Omerović, R.; Stahov, J.; Švarc, A.

    2016-12-01

    Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the $G_M$, $G_E$, and $G_C$ form factors for the $\\Delta(1232)$ resonance excitation at the Breit-Wigner resonance and pole positions up to $Q^2=5$ GeV$^2$. We also explore the $E/M$ and $S/M$ ratios as functions of $Q^2$. For pole and residue extraction, we apply the Laurent + Pietarinen method.

  17. On form factors and Macdonald polynomials

    CERN Document Server

    Lashkevich, Michael

    2013-01-01

    We are developing the algebraic construction for form factors of local operators in the sinh-Gordon theory proposed in [B.Feigin, M.Lashkeivch, 2008]. We show that the operators corresponding to the null vectors in this construction are given by the degenerate Macdonald polynomials with rectangular partitions and the parameters $t=-q$ on the unit circle. We obtain an integral representation for the null vectors and discuss its simple applications.

  18. CALCULATION OF KAON ELECTROMAGNETIC FORM FACTOR

    Institute of Scientific and Technical Information of China (English)

    WANG ZHI-GANG; WAN SHAO-LONG; WANG KE-LIN

    2001-01-01

    The kaon meson electromagnetic form factor is calculated in the framework of coupled Schwinger-Dyson and Bethe-Salpeter formulation in simplified impulse approximation (dressed vertex) with modified fiat-bottom potential,which is a combination of the flat-bottom potential taking into consideration the infrared and ultraviolet asymptotic behaviours of the effective quark-gluon coupling. All the numerical results give a good fit to experimental values.

  19. Elastic form factors at higher CEBAF energies

    Energy Technology Data Exchange (ETDEWEB)

    Petratos, G.G. [Kent State Univ., OH (United States)

    1994-04-01

    The prospects for elastic scattering from few body systems with higher beam energies at CEBAF is presented. The deuteron and{sup 3}He elastic structure functions A(Q{sup 2}) can be measured at sufficiently high momentum transfers to study the transition between the conventional meson-nucleon and the constituent quark-gluon descriptions. Possible improvements in the proton magnetic form factor data are also presented.

  20. Towards a four-loop form factor

    CERN Document Server

    Boels, Rutger; Yang, Gang

    2016-01-01

    The four-loop, two-point form factor contains the first non-planar correction to the lightlike cusp anomalous dimension. This anomalous dimension is a universal function which appears in many applications. Its planar part in N = 4 SYM is known, in principle, exactly from AdS/CFT and integrability while its non-planar part has been conjectured to vanish. The integrand of the form factor of the stress-tensor multiplet in N = 4 SYM including the non-planar part was obtained in previous work. We parametrise the difficulty of integrating this integrand. We have obtained a basis of master integrals for all integrals in the four-loop, two-point class in two ways. First, we computed an IBP reduction of the integrand of the N = 4 form factor using massive computer algebra (Reduze). Second, we computed a list of master integrals based on methods of the Mint package, suitably extended using Macaulay2 / Singular. The master integrals obtained in both ways are consistent with some minor exceptions. The second method indic...

  1. Higgs form factors in Associated Production

    CERN Document Server

    Isidori, Gino; CERN

    2014-01-01

    We further develop a form factor formalism characterizing anomalous interactions of the Higgs-like boson (h) to massive electroweak vector bosons (V) and generic bilinear fermion states (F). Employing this approach, we examine the sensitivity of pp -> F ->Vh associated production to physics beyond the Standard Model, and compare it to the corresponding sensitivity of h -> V F decays. We discuss how determining the Vh invariant-mass distribution in associated production at LHC is a key ingredient for model-independent determinations of h V F interactions. We also provide a general discussion about the power counting of the form factor's momentum dependence in a generic effective field theory approach, analyzing in particular how effective theories based on a linear and non-linear realization of the SU(2)_L x U(1)_Y gauge symmetry map into the form factor formalism. We point out how measurements of the differential spectra characterizing h -> V F decays and pp -> F -> Vh associated production could be the leadi...

  2. Electromagnetic form factors of the baryon octet in the perturbative chiral quark model

    CERN Document Server

    Cheedket, S; Gutsche, T; Faessler, A; Pumsa-ard, K; Yan, Y; Gutsche, Th.; Faessler, Amand

    2002-01-01

    We apply the perturbative chiral quark model at one loop to analyze the electromagnetic form factors of the baryon octet. The analytic expressions for baryon form factors, which are given in terms of fundamental parameters of low-energy pion-nucleon physics(weak pion decay constant, axial nucleon coupling, strong pion-nucleon form factor), and the numerical results for baryon magnetic moments, charge and magnetic radii are presented. Our results are in good agreement with experimental data.

  3. Pion Form Factor in Chiral Limit of Hard-Wall AdS/QCD Model

    Energy Technology Data Exchange (ETDEWEB)

    Anatoly Radyushkin; Hovhannes Grigoryan

    2007-12-01

    We develop a formalism to calculate form factor and charge density distribution of pion in the chiral limit using the holographic dual model of QCD with hard-wall cutoff. We introduce two conjugate pion wave functions and present analytic expressions for these functions and for the pion form factor. They allow to relate such observables as the pion decay constant and the pion charge electric radius to the values of chiral condensate and hard-wall cutoff scale. The evolution of the pion form factor to large values of the momentum transfer is discussed, and results are compared to existing experimental data.

  4. Survey of nucleon electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Perdrisat, Charles F. [William and Mary College; Punjabi, Vina A. [Norfolk State U.

    2011-09-20

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has been greatly improved by performing double polarization experiments, in compar- ison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at MIT-Bates, MAMI, and JLab. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed.

  5. Neutron electric form factor via recoil polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Madey, Richard; Semenov, Andrei; Taylor, Simon; Aghalaryan, Aram; Crouse, Erick; MacLachlan, Glen; Plaster, Bradley; Tajima, Shigeyuki; Tireman, William; Yan, Chenyu; Ahmidouch, Abdellah; Anderson, Brian; Asaturyan, Razmik; Baker, O; Baldwin, Alan; Breuer, Herbert; Carlini, Roger; Christy, Michael; Churchwell, Steve; Cole, Leon; Danagoulian, Samuel; Day, Donal; Elaasar, Mostafa; Ent, Rolf; Farkhondeh, Manouchehr; Fenker, Howard; Finn, John; Gan, Liping; Garrow, Kenneth; Gueye, Paul; Howell, Calvin; Hu, Bitao; Jones, Mark; Kelly, James; Keppel, Cynthia; Khandaker, Mahbubul; Kim, Wooyoung; Kowalski, Stanley; Lung, Allison; Mack, David; Manley, D; Markowitz, Pete; Mitchell, Joseph; Mkrtchyan, Hamlet; Opper, Allena; Perdrisat, Charles; Punjabi, Vina; Raue, Brian; Reichelt, Tilmann; Reinhold, Joerg; Roche, Julie; Sato, Yoshinori; Seo, Wonick; Simicevic, Neven; Smith, Gregory; Stepanyan, Samuel; Tadevosyan, Vardan; Tang, Liguang; Ulmer, Paul; Vulcan, William; Watson, John; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yan, Chen; Yang, Seunghoon; Yuan, Lulin; Zhang, Wei-Ming; Zhu, Hong Guo; Zhu, Xiaofeng

    2003-05-01

    The ratio of the electric to the magnetic form factor of the neutron, G_En/G_Mn, was measured via recoil polarimetry from the quasielastic d({pol-e},e'{pol-n)p reaction at three values of Q^2 [viz., 0.45, 1.15 and 1.47 (GeV/c)^2] in Hall C of the Thomas Jefferson National Accelerator Facility. Preliminary data indicate that G_En follows the Galster parameterization up to Q^2 = 1.15 (GeV/c)^2 and appears to rise above the Galster parameterization at Q^2 = 1.47 (GeV/c)^2.

  6. TCP transcription factors: architectures of plant form.

    Science.gov (United States)

    Manassero, Nora G Uberti; Viola, Ivana L; Welchen, Elina; Gonzalez, Daniel H

    2013-04-01

    After its initial definition in 1999, the TCP family of transcription factors has become the focus of a multiplicity of studies related with plant development at the cellular, organ, and tissue levels. Evidence has accumulated indicating that TCP transcription factors are the main regulators of plant form and architecture and constitute a tool through which evolution shapes plant diversity. The TCP transcription factors act in a multiplicity of pathways related with cell proliferation and hormone responses. In recent years, the molecular pathways of TCP protein action and biochemical studies on their mode of interaction with DNA have begun to shed light on their mechanism of action. However, the available information is fragmented and a unifying view of TCP protein action is lacking, as well as detailed structural studies of the TCP-DNA complex. Also important, the possible role of TCP proteins as integrators of plant developmental responses to the environment has deserved little attention. In this review, we summarize the current knowledge about the structure and functions of TCP transcription factors and analyze future perspectives for the study of the role of these proteins and their use to modify plant development.

  7. Measurements of Hadron Form Factors at BESIII

    CERN Document Server

    Morales, Cristina Morales

    2016-01-01

    BEPCII is a symmetric $e^+e^-$-collider located in Beijing running at center-of-mass energies between 2.0 and 4.6 GeV. This energy range allows the BESIII-experiment to measure hadron form factors both from direct $e^+e^-$-annihilation and from initial state radiation processes. In this paper, results on $e^+e^-\\rightarrow p\\bar{p}$ based on data collected by BESIII in 2011 and 2012 are presented. We also present preliminary results on $e^+e^-\\rightarrow \\Lambda \\bar{\\Lambda}$ based on the same data samples at 4 center-of-mass energies. BESIII results obtained from $e^+e^-\\rightarrow \\pi^+\\pi^-$ using the initial state radiation technique at the center-of-mass energy of 3.773 GeV are also summarized. Finally, expectations on the measurement of baryon electromagnetic form factors from the BESIII high luminosity energy scan in 2015 and from initial state radiation processes at different center-of-mass energies are also reported.

  8. Measurements of hadron form factors at BESIII

    Science.gov (United States)

    Morales, Cristina Morales

    2016-05-01

    BEPCII is a symmetric e+e--collider located in Beijing running at center-of-mass energies between 2.0 and 4.6 GeV. This energy range allows the BESIII-experiment to measure hadron form factors both from direct e+e--annihilation and from initial state radiation processes. In this paper, results on e+e- → p p ¯ based on data collected by BESIII in 2011 and 2012 are presented. We also present preliminary results on e+e- → Λ Λ ¯ based on the same data samples at 4 center-of-mass energies. BESIII results obtained from e+e- → π+π- using the initial state radiation technique at the center-of-mass energy of 3.773 GeV are also summarized. Finally, expectations on the measurement of baryon electromagnetic form factors from the BESIII high luminosity energy scan in 2015 and from initial state radiation processes at different center-of-mass energies are also explained.

  9. Holography, chiral Lagrangian and form factor relations

    CERN Document Server

    Zuo, Fen

    2013-01-01

    We perform a detailed study of mesonic properties in a class of holographic models of QCD, which is described by the Yang-Mills plus Chern-Simons action. By decomposing the 5 dimensional gauge field into resonances and integrating out the massive ones, we reproduce the Chiral Perturbative Theory Lagrangian up to ${\\cal O}(p^6)$ and obtain all the relevant low energy constants (LECs). The numerical predictions of the LECs show minor model dependence, and agree reasonably with the determinations from other approaches. Interestingly, various model-independent relations appear among them. Some of these relations are found to be the large-distance limits of universal relations between form factors of the anomalous and even-parity sectors of QCD.

  10. Elastic and Transition Form Factors in DSEs

    Science.gov (United States)

    Segovia, Jorge

    2016-06-01

    A symmetry preserving framework for the study of continuum quantum chromodynamics (QCD) is obtained from a truncated solution of the QCD equations of motion or QCD's Dyson-Schwinger equations (DSEs). A nonperturbative solution of the DSEs enables the study of, e.g., hadrons as composites of dressed-quarks and dressed-gluons, the phenomena of confinement and dynamical chiral symmetry breaking, and therefrom an articulation of any connection between them. It is within this context that we present a unified study of Nucleon, Delta and Roper elastic and transition form factors, and compare predictions made using a framework built upon a Faddeev equation kernel and interaction vertices that possess QCD-like momentum dependence with results obtained using a symmetry-preserving treatment of a vector ⊗ vector contact-interaction.

  11. Elastic and Transition Form Factors in DSEs

    CERN Document Server

    Segovia, Jorge

    2016-01-01

    A symmetry preserving framework for the study of continuum Quantum Chromodynamics (QCD) is obtained from a truncated solution of the QCD equations of motion or QCD's Dyson-Schwinger equations (DSEs). A nonperturbative solution of the DSEs enables the study of, e.g., hadrons as composites of dressed-quarks and dressed-gluons, the phenomena of confinement and dynamical chiral symmetry breaking (DCSB), and therefrom an articulation of any connection between them. It is within this context that we present a unified study of Nucleon, Delta and Roper elastic and transition form factors, and compare predictions made using a framework built upon a Faddeev equation kernel and interaction vertices that possess QCD-like momentum dependence with results obtained using a symmetry-preserving treatment of a vector$\\,\\otimes\\,$vector contact-interaction.

  12. Self-organized plasmas formed by accumulated charge in dielectric barrier discharge

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) have been widely applied to various research fields, such as bio-medical treatment, toxic decomposition and so on. However, the details of DBD have not been understood yet. Because the phenomena occur in nanosecond time scale under atmospheric pressure. It is known that DBDs are significantly affected by accumulated charges on dielectrics, but the distributions and development of accumulated charges are not known for years. To clarify the distributions and the developments of accumulated charges on dielectrics and electron behavior in the vicinity of dielectrics, DBDs in atmospheric pressure oxygen have been simulated using a two dimensional fluid model with relatively high electron emission coefficient. In this condition, DBD simulation results are obtained in so called self-organized form. As a result, the locations of highly accumulated charges are at where the primary streamers reached in a half cycle. And the charges on the dielectrics become almost zero by the electrons after the change of discharge voltage polarity. The electron distribution in the vicinity of the dielectric forms similar to that of accumulated charges to compensate the charges. Excess electrons in front of dielectric become the seed electrons for next half cycle. This continuation makes discharge in self-organized form.

  13. Form Factors of Few-Body Systems: Point Form Versus Front Form

    CERN Document Server

    Gómez-Rocha, Maria; Schweiger, Wolfgang

    2011-01-01

    We present a relativistic point-form approach for the calculation of electroweak form factors of few-body bound states that leads to results which resemble those obtained within the covariant light-front formalism of Carbonell et al. Our starting points are the physical processes in which such form factors are measured, i.e. electron scattering off the bound state, or the semileptonic weak decay of the bound state. These processes are treated by means of a coupled-channel framework for a Bakamjian-Thomas type mass operator. A current with the correct covariance properties is then derived from the pertinent leading-order electroweak scattering or decay amplitude. As it turns out, the electromagnetic current is affected by unphysical contributions which can be traced back to wrong cluster properties inherent in the Bakamjian-Thomas construction. These spurious contributions, however, can be separated uniquely, as in the covariant light-front approach. In this way we end up with form factors which agree with tho...

  14. Pion transition form factor in k_T factorization

    CERN Document Server

    Li, Hsiang-nan

    2009-01-01

    It has been pointed out that the recent BaBar data on the pi gamma^* -> gamma transition form factor F_{pi gamma}(Q^2) at low (high) momentum transfer squared Q^2 indicate an asymptotic (flat) pion distribution amplitude. These seemingly contradictory observations can be reconciled in the k_T factorization theorem: the increase of the measured Q^2F_{pi gamma}(Q^2) for Q^2 > 10 GeV^2 is explained by convoluting a k_T dependent hard kernel with a flat pion distribution amplitude, k_T being a parton transverse momentum. The low Q^2 data are accommodated by including the resummation of alpha_s ln^2x, x being a parton momentum fraction, which provides a stronger suppression at the endpoints of x. The next-to-leading-order correction to the pion transition form factor is found to be less than 20% in the considered range of Q^2.

  15. Pion transition form factor in k{sub T} factorization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hsiang-nan [Academica Sinica, Taipei, Taiwan (China). Inst. of Physics; Tsing-Hua Univ., Hsinchu, Taiwan (China). Dept. of Phyiscs; National Cheng-Kung Univ., Tainan, Taiwan (China). Dept. of Physics; National Cheng-Chi Univ, Taipei, Taiwan (China). Inst. of Applied Physics; Mishima, Satoshi [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-07-15

    It has been pointed out that the recent BaBar data on the {pi}{gamma}{sup *} {yields} {gamma} transition form factor F{sub {pi}}{sub {gamma}}(Q{sup 2}) at low (high) momentum transfer squared Q{sup 2} indicate an asymptotic (flat) pion distribution amplitude. These seemingly contradictory observations can be reconciled in the k{sub T} factorization theorem: the increase of the measured Q{sup 2}FF{sub {pi}}{sub {gamma}}(Q{sup 2}) for Q{sup 2} > 10 GeV{sup 2} is explained by convoluting a k{sub T} dependent hard kernel with a flat pion distribution amplitude, k{sub T} being a parton transverse momentum. The low Q{sup 2} data are accommodated by including the resummation of {alpha}{sub s} ln{sup 2}x, x being a parton momentum fraction, which provides a stronger suppression at the endpoints of x. The next-to-leading-order correction to the pion transition form factor is found to be less than 20% in the considered range of Q{sup 2}. (orig.)

  16. A review of factors affecting electrostatic charging of pharmaceuticals and adhesive mixtures for inhalation.

    Science.gov (United States)

    Kaialy, Waseem

    2016-04-30

    Pharmaceutical powders are typically insulators consisting of relatively small particles and thus they usually exhibit significant electrostatic charging behaviours. In the inhalation field, the measurement of electrostatic charge is an imperative stage during pharmaceutical formulation development. The electrostatic charge is affected by the interplay of many factors. This article reviews the factors affecting the electrostatic charging of pharmaceutical powders with a focus on dry powder inhalations. The influences of particle resistivity, size distribution, shape distribution, surface roughness, polymorphic form and hygroscopicity, as well as the effects of moisture uptake, environmental conditions, pharmaceutical processing (i.e., milling, sieving, spray drying and blending), and storage on the electrostatic charge behaviours of pharmaceuticals, with focus on inhalation powders, were reviewed. The influence of electrostatic charge on the performance of dry powder inhaler formulations in terms of drug content homogeneity, the passage of drug through the inhaler device, drug-carrier adhesion/detachment, and drug deposition on the respiratory airways were discussed. The understanding gained is crucial to improving the safety, quality, and efficiency of the pharmaceutical inhalation products.

  17. The neutral pion form factor at NA62

    Science.gov (United States)

    Cenci, Patrizia

    2016-11-01

    In 2007 the NA62 experiment at CERN collected a large sample of charged kaon decays with a highly efficient trigger selecting events with electrons in the final state. The kaon beam represents a rich source of tagged neutral pion decays in vacuum. The electromagnetic transition form factor slope of the π0 in the time-like region has been measured from about 106 fully reconstructed π0 Dalitz decays collected in 2007. The preliminary result a = (3.68 ± 0.51stat ± 0.25syst) × 10-2 is the most precise to date. This value is compatible with theoretical expectations and consistent with the previous measurements.

  18. Lattice calculation of composite dark matter form factors

    CERN Document Server

    Appelquist, T; Buchoff, M I; Cheng, M; Cohen, S D; Fleming, G T; Kiskis, J; Lin, M F; Neil, E T; Osborn, J C; Rebbi, C; Schaich, D; Schroeder, C; Syritsyn, S N; Voronov, G; Vranas, P; Wasem, J

    2013-01-01

    Composite dark matter candidates, which can arise from new strongly-coupled sectors, are well-motivated and phenomenologically interesting, particularly in the context of asymmetric generation of the relic density. In this work, we employ lattice calculations to study the electromagnetic form factors of electroweak-neutral dark-matter baryons for a three-color, QCD-like theory with Nf = 2 and 6 degenerate fermions in the fundamental representation. We calculate the (connected) charge radius and anomalous magnetic moment, both of which can play a significant role for direct detection of composite dark matter. We find minimal Nf dependence in these quantities. We generate mass-dependent cross-sections for dark matter-nucleon interactions and use them in conjunction with experimental results from XENON100, excluding dark matter candidates of this type with masses below 10 TeV.

  19. Gravitational form factors and nucleon spin structure

    Science.gov (United States)

    Teryaev, O. V.

    2016-10-01

    Nucleon scattering by the classical gravitational field is described by the gravitational (energy-momentum tensor) form factors (GFFs), which also control the partition of nucleon spin between the total angular momenta of quarks and gluons. The equivalence principle (EP) for spin dynamics results in the identically zero anomalous gravitomagnetic moment, which is the straightforward analog of its electromagnetic counterpart. The extended EP (ExEP) describes its (approximate) validity separately for quarks and gluons and, in turn, results in equal partition of the momentum and total angular momentum. It is violated in quantum electrodynamics and perturbative quantum chromodynamics (QCD), but may be restored in nonperturbative QCD because of confinement and spontaneous chiral symmetry breaking, which is supported by models and lattice QCD calculations. It may, in principle, be checked by extracting the generalized parton distributions from hard exclusive processes. The EP for spin-1 hadrons is also manifested in inclusive processes (deep inelastic scattering and the Drell-Yan process) in sum rules for tensor structure functions and parton distributions. The ExEP may originate in either gravity-proof confinement or in the closeness of the GFF to its asymptotic values in relation to the mediocrity principle. The GFFs in time-like regions reveal some similarity between inflation and annihilation.

  20. Proton Form Factor Measurements at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Charles Perdrisat; Vina Punjabi

    2004-09-27

    In two experiments at Jefferson Lab in Hall A, the first one in 1998 and the second in 2000, the ratio of the electromagnetic form factors of the proton was obtained by measuring P{sub t} and P{sub ell}, the transverse and longitudinal recoil proton polarization components, respectively, in {rvec e}p {yields} e{rvec p}; the ratio G{sub E{sub p}}/G{sub M{sub p}} is proportional to P{sub t}/P{sub {ell}}. Simultaneous measurement of P{sub t} and P{sub {ell}} provides good control of the systematic uncertainty. The first measurement of G{sub E{sub p}}/G{sub M{sub p}} ratio was made to Q{sup 2} = 3.5 GeV{sup 2} and the second measurement to Q{sup 2} = 5.6 GeV{sup 2}. The results from these two experiments indicate that the ratio scales like 1/Q{sup 2}, in stark contrast with cross section data analyzed by the Rosenbluth separation method which gives a constant value for this ratio. The incompatibility of the recoil polarization results with most of the Rosenbluth separation results appears now well established above Q{sup 2} of about 3 GeV{sup 2}. The consensus at the present time is that the interference of the two-photon exchange with the Born term, which had been deemed negligible until recently, might explain the discrepancy between the results of the two techniques; the possibility that the discrepancy is due to incomplete radiative correction has also been recently discussed.

  1. Measurement of the $\\Lambda_{b}^{0}$ Decay Form Factor

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crawley, B; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, Lucia; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, Borut P; Kerzel, U; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Meyer, W T; Myagkov, A; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L M; Murray, W; Muryn, B; Myatt, Gerald; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Pukhaeva, N; Pullia, Antonio; Rames, J; Ramler, L; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Rosenberg, E I; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vegni, G; Veloso, F; Venus, W A; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zinchenko, A I; Zupan, M

    2004-01-01

    The form factor of Lambda_b^0 baryons is estimated using 3.46 10^6 hadronic Z decays collected by the DELPHI experiment between 1992 and 1995. Charmed Lambda_c^+ baryons fully reconstructed in the pK-pi+, pK0_S, and Lambda pi+pi+pi- modes, are associated to a lepton with opposite charge in order to select Lambda_b^0 -> Lambda_c^+ l^- anti-nu_l decays. From a combined likelihood and event rate fit to the distribution of the Isgur-Wise variable w, and using the Heavy Quark Effective Theory (HQET), the slope of the b-baryon form factor is measured to be: rho-hat^2 = 2.03 +/- 0.46 (stat) ^{+0.72}_{-1.00} (syst). The exclusive semileptonic branching fraction Br(Lambda_b^0 -> Lambda_c^+ l^- anti-nu_l) can be derived from rho-hat^2 and is found to be (5.0^{+1.1}_{-0.8} (stat) ^{+1.6}_{-1.2} (syst))%. Limits on other branching fractions are also obtained.

  2. Nucleon shape and electromagnetic form factors in the chiral constituent quark model

    CERN Document Server

    Dahiya, Harleen

    2010-01-01

    The electromagnetic form factors are the most fundamental quantities to describe the internal structure of the nucleon and the shape of a spatially extended particle is determined by its intrinsic quadrupole moment which can be related to the charge radii. We have calculated the electromagnetic form factors, nucleon charge radii and the intrinsic quadrupole moment of the nucleon in the framework of chiral constituent quark model. The results obtained are comparable to the latest experimental studies and also show improvement over some theoretical interpretations.

  3. The magnetic moments and electromagnetic form factors of the decuplet baryons in chiral perturbation theory

    CERN Document Server

    Li, Hao-Song; Chen, Xiao-Lin; Deng, Wei-Zhen; Zhu, Shi-Lin

    2016-01-01

    We have systematically investigated the magnetic moments and magnetic form factors of the decuplet baryons to the next-to-next-leading order in the framework of the heavy baryon chiral perturbation theory. Our calculation includes the contributions from both the intermediate decuplet and octet baryon states in the loops. We also calculate the charge and magnetic dipole form factors of the decuplet baryons. Our results may be useful to the chiral extrapolation of the lattice simulations of the decuplet electromagnetic properties.

  4. g factor of the charged leptons in noncommutative spacetime

    Directory of Open Access Journals (Sweden)

    M Haghighat

    2011-12-01

    Full Text Available  The g-factor of the charged leptons has always been considered by many physicists, both experimentaly as well as theoretically. In fact the electron and muon g-factor play the main role in testing the QED as well as the standard model. Meanwhile, there is a discrepancy between the standard model prediction of the muon anomalies magnetic moment and its experimental determination as large as (25.5±8.0×10-10.Therefore the g-factor can be used as the best place to study the new physics beyond the standard model. In this article, we consider the g-factor of the lepton in the noncommutative space time as a new physics model. In the ordinary theory, Schwinger evaluated the first correction to the g-factor of free electron, which arises from the electron interaction with photon at one loop level in the QED. In noncommutative space time, we show that at one loop, there is an NC-contribution to the g-factor of leptons which leads to a new bound on the noncommutative parameter (NC parameter. The obtained bounds are comparable with the current bounds on the NC-parameters of the order TeV.

  5. The pion form factor from analyticity and unitarity

    Indian Academy of Sciences (India)

    B Ananthanarayan; Irinel Caprini; I Sentitemsu Imsong

    2012-11-01

    Analyticity and unitarity techniques are employed to estimate Taylor coefficients of the pion electromagnetic form factor at = 0 by exploiting the recently evaluated two-pion contribution to the muon ( − 2) and the phase of the pion electromagnetic form factor in the elastic region, known from scattering by Fermi–Watson theorem and the values of the form factor at several points in the space-like region. Regions in the complex -plane are isolated where the form factor cannot have zeros.

  6. MesonNet Workshop on Meson Transition Form Factors

    CERN Document Server

    Eidelman, S; Hanhart, C; Kubis, B; Kupsc, A; Leupold, S; Moskal, P; Schadmand, S

    2012-01-01

    The mini-proceedings of the Workshop on Meson Transition Form Factors held in Cracow from May 29th to 30th, 2012 introduce the meson transition form factor project with special emphasis on the interrelations between the various form factors (on-shell, single off-shell, double off-shell). Short summaries of the talks presented at the workshop follow.

  7. Nucleon Form Factors in the Space- and Timelike Regions

    CERN Document Server

    Hammer, H W

    2001-01-01

    Dispersion relations provide a powerful tool to describe the electromagnetic form factors of the nucleon both in the spacelike and timelike regions with constraints from unitarity and perturbative QCD. We give a brief introduction into dispersion theory for nucleon form factors and present results from a recent form factor analysis. Particular emphasis is given to the form factors in the timelike region. Furthermore, some recent results for the spacelike form factors at low momentum transfer from a ChPT calculation by Kubis and Meissner are discussed.

  8. JLab Measurements of the 3He Form Factors at Large Momentum Transfers

    CERN Document Server

    Camsonne, A; Olson, M; Acha, A; Allada, K; Anderson, B D; Arrington, J; Baldwin, A; Chen, J -P; Choi, S; Chudakov, E; Cisbani, E; Craver, B; Decowski, P; Dutta, C; Folts, E; Frullani, S; Garibaldi, F; Gilman, R; Gomez, J; Hahn, B; Hansen, J -O; Higinbotham, D W; Holmstrom, T; Huang, J; Iodice, M; Jiang, X; Kelleher, A; Khrosinkova, E; Kievsky, A; Kuchina, E; Kumbartzki, G; Lee, B; LeRose, J J; Lindgren, R A; Lott, G; Lu, H; Marcucci, L E; Margaziotis, D J; Markowitz, P; Marrone, S; Meekins, D; Meziani, Z -E; Michaels, R; Moffit, B; Norum, B; Petratos, G G; Puckett, A; Qian, X; Rondon, O; Saha, A; Sawatzky, B; Segal, J; Shabestari, M; Shahinyan, A; Solvignon, P; Sparveris, N; Subedi, R R; Suleiman, R; Sulkosky, V; Urciuoli, G M; Viviani, M; Wang, Y; Wojtsekhowski, B B; Yan, X; Yao, H; Zhang, W -M; Zheng, X; Zhu, L

    2016-01-01

    The charge and magnetic form factors, FC and FM, of 3He have been extracted in the kinematic range 25 fm-2 < Q2 < 61 fm-2 from elastic electron scattering by detecting 3He recoil nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility at Jefferson Lab. The measurements are indicative of a second diffraction minimum for the magnetic form factor, which was predicted in the Q2 range of this experiment, and of a continuing diffractive structure for the charge form factor. The data are in qualitative agreement with theoretical calculations based on realistic interactions and accurate methods to solve the three-body nuclear problem.

  9. Characterization of Protein and Peptide Binding to Nanogels Formed by Differently Charged Chitosan Derivatives

    Directory of Open Access Journals (Sweden)

    Anastasia Zubareva

    2013-07-01

    Full Text Available Chitosan (Chi is a natural biodegradable cationic polymer with remarkable potency as a vehicle for drug or vaccine delivery. Chi possesses multiple groups, which can be used both for Chi derivatization and for particle formation. The aim of this work was to produce stable nanosized range Chi gels (nanogels, NGs with different charge and to study the driving forces of complex formation between Chi NGs and proteins or peptides. Positively charged NGs of 150 nm in diameter were prepared from hexanoyl chitosan (HC by the ionotropic gelation method while negatively charged NGs of 190 nm were obtained from succinoyl Chi (SC by a Ca2+ coacervation approach. NGs were loaded with a panel of proteins or peptides with different weights and charges. We show that NGs preferentially formed complexes with oppositely charged molecules, especially peptides, as was demonstrated by gel-electrophoresis, confocal microscopy and HPLC. Complex formation was accompanied by a change in zeta-potential and decrease in size. We concluded that complex formation between Chi NGs and peptide/proteins is mediated mostly by electrostatic interactions.

  10. The neutron electric form factor to Q² = 1.45 (GeV/c)²

    Energy Technology Data Exchange (ETDEWEB)

    Bradley Plaster

    2004-02-01

    The nucleon elastic electromagnetic form factors are fundamental quantities needed for an understanding of nucleon and nuclear electromagnetic structure. The evolution of the Sachs electric and magnetic form factors with Q2, the square of the four-momentum transfer, is related to the distribution of charge and magnetization within the nucleon. High precision measurements of the nucleon form factors are essential for stringent tests of our current theoretical understanding of confinement within the nucleon. Measurements of the neutron form factors, in particular, those of the neutron electric form factor, have been notoriously difficult due to the lack of a free neutron target and the vanishing integral charge of the neutron. Indeed, a precise measurement of the neutron electric form factor has eluded experimentalists for decades; however, with the advent of high duty-factor polarized electron beam facilities, experiments employing polarization degrees of freedom have finally yielded the first precise measurements of this fundamental quantity. Following a general overview of the experimental and theoretical status of the nucleon form factors, a detailed description of an experiment designed to extract the neutron electric form factor from measurements of the neutron's recoil polarization in quasielastic 2H(e, e')1H scattering is presented. The experiment described here employed the Thomas Jefferson National Accelerator Facility's longitudinally polarized electron beam, a magnetic spectrometer for detection of the scattered electron, and a neutron polarimeter designed specifically for this experiment. Measurements were conducted at three Q2 values of 0.45, 1.13, and 1.45 (GeV/c)2, and the final results extracted from an analysis of the data acquired in this experiment are reported and compared with recent theoretical predictions for the nucleon form factors.

  11. The neutron electric form factor to Q² = 1.45 (GeV/c)²

    Energy Technology Data Exchange (ETDEWEB)

    Plaster, Bradley [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2004-02-01

    The nucleon elastic electromagnetic form factors are fundamental quantities needed for an understanding of nucleon and nuclear electromagnetic structure. The evolution of the Sachs electric and magnetic form factors with Q2, the square of the four-momentum transfer, is related to the distribution of charge and magnetization within the nucleon. High precision measurements of the nucleon form factors are essential for stringent tests of our current theoretical understanding of confinement within the nucleon. Measurements of the neutron form factors, in particular, those of the neutron electric form factor, have been notoriously difficult due to the lack of a free neutron target and the vanishing integral charge of the neutron. Indeed, a precise measurement of the neutron electric form factor has eluded experimentalists for decades; however, with the advent of high duty-factor polarized electron beam facilities, experiments employing polarization degrees of freedom have finally yielded the first precise measurements of this fundamental quantity. Following a general overview of the experimental and theoretical status of the nucleon form factors, a detailed description of an experiment designed to extract the neutron electric form factor from measurements of the neutron's recoil polarization in quasielastic 2H(e, e')1H scattering is presented. The experiment described here employed the Thomas Jefferson National Accelerator Facility's longitudinally polarized electron beam, a magnetic spectrometer for detection of the scattered electron, and a neutron polarimeter designed specifically for this experiment. Measurements were conducted at three Q2 values of 0.45, 1.13, and 1.45 (GeV/c)2, and the final results extracted from an analysis of the data acquired in this experiment are reported and compared with recent theoretical predictions for the nucleon form factors.

  12. Nuclear tests for the strange charge from factor of the nucleon

    Science.gov (United States)

    Bernabéu, J.; Bilenky, S. M.; Segura, J.; Singh, S. K.

    1992-05-01

    It is shown that the measurements of elastic and inelastic scattering of neutrinos and parity-violating asymmetry of longitudinally polarized electrons on spin-isospin zero nuclei would yield model independent information about the strangeness charge form factor. Nunerical estimates of the contribution of this form factor are presented for 4He, 12C and 16O nuclei in impulse approximation using strangeness vector from factors of the nucleon recently suggested in the literature. A general relation between the P-odd asymmetry in electron scattering and the cross sections of neutrino and unpolarized electron scattering on spin zero nuclei is obtained. On leave of academic pursuit from Aligarh Muslim University, Aligarh 202 001, India.

  13. THE FACTORS FORMING QUALITY OF GRANULATED SUGAR

    Directory of Open Access Journals (Sweden)

    N. G. Kulneva

    2015-01-01

    Full Text Available Sugar, with good taste and high caloric, is one of the most popular human food. Consumers sugar must be sure that the sugar under normal conditions of use is of high quality and is not harmful to the health of the product. One reason for the decline in the quality of sugar is bacterial contamination. This is because the sugar industry products are good targets for the development of different groups of microorganisms, e.g., Bacillus subtilis, Clostridium perfringes, Leuconostoc dextranicum, Torula alba, Pseudomonas fluorescens, Sarcina lutea and others. These organisms are affected with beets, and then with sugar beet chips and diffusion juice fall into the processing line of sugar production. Their number in the diffusion juice varies and depends on many facto rs such as the quality of raw materials, the quality of cleaning beet root colonization of transporter-washing and the supply of water to the diffusion process, the temperature of the diffusion and others. In the diffusion unit has the most favorable conditions for the development of micro-organisms. Some of them, especially resistant bacteria and thermophilic bacteria or their spores, forming a capsule which protects against external influences occur in the final product sugar. When injected into the fresh crop of product (juice, syrup, they begin to multiply rapidly, causing difficulties in the process. The higher seeding beet microorganisms, the more they decompose and emit sucrose metabolism byproducts. To reduce the negative impact of microbiological and reduce losses from decomposition of sucrose conducted research on the possibility of using chlorine-containing substances in the sugar industry. It was established experimentally that the investigated chlorinated drug has bacteriostatic action and can be recommended for use in sugar beet production.

  14. Progress in the Calculation of Nucleon Transition form Factors

    Science.gov (United States)

    Eichmann, Gernot

    2016-10-01

    We give a brief account of the Dyson-Schwinger and Faddeev-equation approach and its application to nucleon resonances and their transition form factors. We compare the three-body with the quark-diquark approach and present a quark-diquark calculation for the low-lying nucleon resonances including scalar, axialvector, pseudoscalar and vector diquarks. We also discuss the timelike structure of transition form factors and highlight the advantages of form factors over helicity amplitudes.

  15. Progress in the calculation of nucleon transition form factors

    CERN Document Server

    Eichmann, Gernot

    2016-01-01

    We give a brief account of the Dyson-Schwinger and Faddeev-equation approach and its application to nucleon resonances and their transition form factors. We compare the three-body with the quark-diquark approach and present a quark-diquark calculation for the low-lying nucleon resonances including scalar, axialvector, pseudoscalar and vector diquarks. We also discuss the timelike structure of transition form factors and highlight the advantages of form factors over helicity amplitudes.

  16. The Solar Wind Charge-Exchange Production Factor for Hydrogen

    CERN Document Server

    Kuntz, K D; Collier, M R; Connor, H K; Cravens, T E; Koutroumpa, D; Porter, F S; Robertson, I P; Sibeck, D G; Snowden, S L; Thomas, N E; Wash, B M

    2015-01-01

    The production factor, or broad band averaged cross-section, for solar wind charge-exchange with hydrogen producing emission in the ROSAT 1/4 keV (R12) band is $3.8\\pm0.2\\times10^{-20}$ count degree$^{-2}$ cm$^4$. This value is derived from a comparison of the Long-Term (background) Enhancements in the ROSAT All-Sky Survey with magnetohysdrodynamic simulations of the magnetosheath. This value is 1.8 to 4.5 times higher than values derived from limited atomic data, suggesting that those values may be missing a large number of faint lines. This production factor is important for deriving the exact amount of 1/4 keV band flux that is due to the Local Hot Bubble, for planning future observations in the 1/4 keV band, and for evaluating proposals for remote sensing of the magnetosheath. The same method cannot be applied to the 3/4 keV band as that band, being composed primarily of the oxygen lines, is far more sensitive to the detailed abundances and ionization balance in the solar wind. We also show, incidentally,...

  17. Nucleon form factors in the canonically quantized Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Acus, A.; Norvaisas, E. [Lithuanian Academy of Sciences, Vilnius (Lithuania). Inst. of Theoretical Physics and Astronomy; Riska, D.O. [Helsinki Univ. (Finland). Dept. of Physics; Helsinki Univ. (Finland). Helsinki Inst. of Physics

    2001-08-01

    The explicit expressions for the electric, magnetic, axial and induced pseudoscalar form factors of the nucleons are derived in the ab initio quantized Skyrme model. The canonical quantization procedure ensures the existence of stable soliton solutions with good quantum numbers. The form factors are derived for representations of arbitrary dimension of the SU(2) group. After fixing the two parameters of the model, f{sub {pi}} and e, by the empirical mass and electric mean square radius of the proton, the calculated electric and magnetic form factors are fairly close to the empirical ones, whereas the the axial and induced pseudoscalar form factors fall off too slowly with momentum transfer. (orig.)

  18. Nucleon form factors in the canonically quantized Skyrme model

    CERN Document Server

    Acus, A; Riska, D O

    2001-01-01

    The explicit expressions for the electric, magnetic, axial and induced pseudoscalar form factors of the nucleons are derived in the {\\it ab initio} quantized Skyrme model. The canonical quantization procedure ensures the existence of stable soliton solutions with good quantum numbers. The form factors are derived for representations of arbitrary dimension of the SU(2) group. After fixing the two parameters of the model, $f_\\pi$ and $e$, by the empirical mass and electric mean square radius of the proton, the calculated electric and magnetic form factors are fairly close to the empirical ones, whereas the the axial and induced pseudoscalar form factors fall off too slowly with momentum transfer.

  19. Dispersion Relation for the Nucleon Electromagnetic Form Factors

    CERN Document Server

    Furuichi, Susumu; Watanbe, Keiji

    2010-01-01

    Elastic electromagnetic form factors of nucleons are investigated both for the time-like and the space-like momentums by using the unsubtracted dispersion relation with QCD constraints. It is shown that the calculated form factors reproduce the experimental data reasonably well; they agree with recent experimental data for the neutron magnetic form factors for the space-like data obtained by the CLAS collaboration and are compatible with the ratio of the electric and magnetic form factors for the time-like momentum obtained by the BABAR collaboration.

  20. Analytical evaluation of atomic form factors: application to Rayleigh scattering

    CERN Document Server

    Safari, L; Amaro, P; Jänkälä, K; Fratini, F

    2014-01-01

    Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wavefunctions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.

  1. Greybody factors of massive charged fermionic fields in a charged two-dimensional dilatonic black hole

    Energy Technology Data Exchange (ETDEWEB)

    Becar, Ramon [Universidad Catolica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Saavedra, Joel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2015-02-01

    We study massive charged fermionic perturbations in the background of a charged two-dimensional dilatonic black hole, and we solve the Dirac equation analytically. Then we compute the reflection and transmission coefficients and the absorption cross section for massive charged fermionic fields, and we show that the absorption cross section vanishes at the low- and high-frequency limits. However, there is a range of frequencies where the absorption cross section is not null. Furthermore, we study the effect of the mass and electric charge of the fermionic field over the absorption cross section. (orig.)

  2. Virtual photons in the pion form factors and the energy-momentum tensor

    CERN Document Server

    Kubis, B; Kubis, Bastian; Mei{\\ss}ner, Ulf-G.

    2000-01-01

    We evaluate the vector and scalar form factor of the pion in the presence of virtual photons at next-to-leading order in two-flavor chiral perturbation theory. We also consider the scalar and tensor pion form factors of the energy-momentum tensor. We find that the intrinsic electromagnetic corrections are very small for the vector and charged pion scalar form factor. The scalar radius of the neutral pion is reduced by two percent. We perform infrared regularization by considering electron-positron annihilation into pions and the decay of a light Higgs boson into a pion pair. We discuss the detector resolution dependent contributions to the various form factors and pion radii.

  3. Form factors in an algebraic model of the nucleon

    CERN Document Server

    Bijker, R

    1995-01-01

    We study the electromagnetic form factors of the nucleon in a collective model of baryons. In an algebraic approach to hadron structure, we derive closed expressions for both elastic and transition form factors, and consequently for the helicity amplitudes that can be measured in electro- and photoproduction.

  4. A relativistic quark model for the Omega- electromagnetic form factors

    CERN Document Server

    Ramalho, G; Gross, Franz

    2009-01-01

    We compute the Omega- electromagnetic form factors and the decuplet baryon magnetic moments using a quark model application of the Covariant Spectator Theory. Our predictions for the Omega- electromagnetic form factors can be tested in the future by lattice QCD simulations at the physical strange quark mass.

  5. Relativistic quark model for the Omega- electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    G. Ramalho, K. Tsushima, Franz Gross

    2009-08-01

    We compute the Omega- electromagnetic form factors and the decuplet baryon magnetic moments using a quark model application of the Covariant Spectator Theory. Our predictions for the Omega- electromagnetic form factors can be tested in the future by lattice QCD simulations at the physical strange quark mass.

  6. Molecular form factors in X-ray crystallography

    NARCIS (Netherlands)

    Groenewegen, P.P.M.; Feil, D.

    1969-01-01

    The calculation of molecular form factors from ab initio molecular electronic wavefunctions is discussed, and a scheme for application to X-ray diffraction structure analysis is given. The method is used to calculate the form factor of the NH+4 molecular ion from three accurate molecular wavefunctio

  7. Octet baryon electromagnetic form factors in nuclear medium

    CERN Document Server

    Ramalho, G; Thomas, A W

    2012-01-01

    We study the octet baryon electromagnetic form factors in nuclear matter using the covariant spectator quark model extended to the nuclear matter regime. The parameters of the model in vacuum are fixed by the study of the octet baryon electromagnetic form factors. In nuclear matter the changes in hadron properties are calculated by including the relevant hadron masses and the modification of the pion-baryon coupling constants calculated in the quark-meson coupling model. In nuclear matter the magnetic form factors of the octet baryons are enhanced in the low $Q^2$ region, while the electric form factors show a more rapid variation with $Q^2$. The results are compared with the modification of the bound proton electromagnetic form factors observed at Jefferson Lab. In addition, the corresponding changes for the bound neutron are predicted.

  8. Model Independent Form Factors for Spin Independent Neutralino-Nucleon Scattering from Elastic Electron Scattering Data

    CERN Document Server

    Duda, G; Kemper, A; Duda, Gintaras; Gondolo, Paolo; Kemper, Ann

    2006-01-01

    Theoretical calculations of neutralino cross sections with various nuclei are of great interest to direct dark matter searches such as CDMS, EDELWEISS, ZEPLIN, and other experiments. These cross sections and direct detection rates are generally computed with standard, one or two parameter model-dependent nuclear form factors, which may not exactly mirror the actual form factor for the particular nucleus in question. As is well known, elastic electron scattering can allow for very precise determinations of nuclear form factors and hence nuclear charge densities for spherical or near-spherical nuclei. We use charge densities derived from elastic electron scattering data to calculate model independent form factors for various target nuclei important in dark matter searches, such as Si, Ge, S, Ca and others. We have found that for nuclear recoils in the range of 1-100 keV significant differences in cross sections and rates exist when the model independent form factors are used. DarkSUSY, a publicly-available adva...

  9. A combined study of the pion's static properties and form factors

    CERN Document Server

    El-Bennich, B; Frederico, T

    2012-01-01

    We study consistently the pion's static observables and the elastic and \\gamma*\\gamma -> \\pi^0 transition form factors within a light-front model. Consistency requires that all calculations are performed within a given model with the same and single adjusted length or mass-scale parameter of the associated pion bound-state wave function. Our results agree well with all extent data including recent Belle data on the \\gamma*\\gamma -> \\pi^0 form factor at large q^2, yet the BaBar data on this transition form factor resists a sensible comparison. We relax the initial constraint on the bound-state wave function and show the BaBar data can partially be accommodated. This, however, comes at the cost of a hard elastic form factor not in agreement with experiment. Moreover, the pion charge radius is about 40% smaller than its experimentally determined value. It is argued that a decreasing charge radius produces an ever harder form factor with a bound-state amplitude difficultly reconcilable with soft QCD. We also disc...

  10. Charge filling factors in clean and disordered arrays of tunnel junctions.

    Science.gov (United States)

    Walker, Kelly A; Vogt, Nicolas; Cole, Jared H

    2015-12-02

    We simulate one-dimensional arrays of tunnel junctions using the kinetic Monte Carlo method to study charge filling behaviour in the large charging energy limit. By applying a small fixed voltage bias and varying the offset voltage, we investigate this behaviour in clean and disordered arrays (both weak and strong disorder effects). The offset voltage dependent modulation of the current is highly sensitive to background charge disorder and exhibits substantial variation depending on the strength of the disorder. We show that while small fractional charge filling factors are likely to be washed out in experimental devices due to strong background charge disorder, larger factors may be observable.

  11. On the ππ continuum in the nucleon form factors and the proton radius puzzle

    Science.gov (United States)

    Hoferichter, M.; Kubis, B.; Ruiz de Elvira, J.; Hammer, H.-W.; Meißner, U.-G.

    2016-11-01

    We present an improved determination of the ππ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the ππ→bar{N} N partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the ππ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius.

  12. On the pi pi continuum in the nucleon form factors and the proton radius puzzle

    CERN Document Server

    Hoferichter, M; de Elvira, J Ruiz; Hammer, H -W; Meißner, U -G

    2016-01-01

    We present an improved determination of the $\\pi\\pi$ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the $\\pi\\pi\\to\\bar N N$ partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the $\\pi\\pi$ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius.

  13. Analysis of nucleon electromagnetic form factors from light-front holographic QCD: The spacelike region

    Science.gov (United States)

    Sufian, Raza Sabbir; de Téramond, Guy F.; Brodsky, Stanley J.; Deur, Alexandre; Dosch, Hans Günter

    2017-01-01

    We present a comprehensive analysis of the spacelike nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front (LF) holographic QCD (LFHQCD) We show that the inclusion of the higher Fock components |q q q q q ¯ ⟩ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD results for the proton and neutron form factors at any momentum transfer range, including asymptotic predictions, and show that our results agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30% in the proton and about 40% in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters needed to describe the experimental nucleon form factors are very few: two parameters for the probabilities of higher Fock states for the spin-flip form factor and a phenomenological parameter r , required to account for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form factors are normalized to the experimental values of the anomalous magnetic moments. The covariant spin structure for the Dirac and Pauli nucleon form factors prescribed by AdS5 semiclassical gravity incorporates the correct twist scaling behavior from hard scattering and also leads to vector dominance at low energy.

  14. Nucleon Structure and hyperon form factors from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Huey-Wen

    2007-06-11

    In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point to be 1.23(5), consistant with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(26), consistent with the Adelaide-JLab Collaboration's result. The hyperon Sigma and Xi axial coupling constants are also performed for the first time in a lattice calculation, g_SigmaSigma = 0.441(14) and g_XiXi = -0.277(11).

  15. Nucleon Structure and Hyperon Form Factors from Lattice QCD.

    Energy Technology Data Exchange (ETDEWEB)

    Lin,H.W.

    2007-06-11

    In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point. to be 1.23(5), consistent with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(2G), consistent with the Adelaide-JLab Collaboration's result. The hyperon {Sigma} and {Xi} axial coupling constants are also performed for the first time in a lattice calculation, g{sub {Sigma}{Sigma}} = 0.441(14) and g{sub {Xi}{Xi}} = -0.277(11).

  16. NOISE AND HYSTERESIS IN CHARGED STRIPE, CHECKERBOARD, AND CLUMP FORMING SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reichhardt, Cynthia J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bishop, Alan R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2007-05-07

    We numerically examine noise fluctuations and hysteresis phenomena in charged systems that form stripe, labyrinth or clump patterns. It is believed that charge inhomogeneities of this type arise in two-dimensional (2D) quantum hall systems and in electron crystal structures in high temperature superconductors, while related patterns appear in manganites and type-I superconductors. Recent noise and transport experiments in twodimensional electron gases and high temperature superconducting samples revealed both 1/ fα. noise signatures and hysteretic phenomena. Using numerical simulations we show that 1/ fα. noise fluctuations and hysteresis are generic features that occur in charge systems which undergo a type of phase separation that results in stripes, clumps, checkerboards, or other inhomogeneous patterns. We find that these systems exhibit 1/ fα. fluctuations with 1.2 < α < 1.8, rather than simple 1/ f or 1/ f 2 fluctuations. We also propose that the 2D metal insulator transition may be associated with a clump electron glass phase rather than a Wigner glass phase.

  17. A note on connected formula for form factors

    CERN Document Server

    He, Song

    2016-01-01

    In this note we study the connected prescription, originally derived from Witten's twistor string theory, for tree-level form factors in ${\\cal N}=4$ super-Yang-Mills theory. The construction is based on the recently proposed four-dimensional scattering equations with $n$ massless on-shell states and one off-shell state, which we expect to work for form factors of general operators. To illustrate the universality of the prescription, we propose compact formulas for super form factors with chiral stress-tensor multiplet operator, and bosonic ones with scalar operators ${\\rm Tr}(\\phi^m)$ for arbitrary $m$.

  18. Light-cone sum rule approach for Baryon form factors

    CERN Document Server

    Offen, Nils

    2016-01-01

    We present the state-of-the-art of the light-cone sum rule approach to Baryon form factors. The essence of this approach is that soft Feynman contributions are calculated in terms of small transverse distance quantities using dispersion relations and duality. The form factors are thus expressed in terms of nucleon wave functions at small transverse separations, called distribution amplitudes, without any additional parameters. The distribution amplitudes, therefore, can be extracted from the comparison with the experimental data on form factors and compared to the results of lattice QCD simulations.

  19. Light-Cone Sum Rule Approach for Baryon Form Factors

    Science.gov (United States)

    Offen, Nils

    2016-10-01

    We present the state-of-the-art of the light-cone sum rule approach to Baryon form factors. The essence of this approach is that soft Feynman contributions are calculated in terms of small transverse distance quantities using dispersion relations and duality. The form factors are thus expressed in terms of nucleon wave functions at small transverse separations, called distribution amplitudes, without any additional parameters. The distribution amplitudes, therefore, can be extracted from the comparison with the experimental data on form factors and compared to the results of lattice QCD simulations.

  20. The structure of the nucleon: Elastic electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Punjabi, V. [Norfolk State University, Norfolk, VA (United States); Perdrisat, C.F.; Carlson, C.E. [The College of William and Mary, Williamsburg, VA (United States); Jones, M.K. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Brash, E.J. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Christopher Newport University, Newport News, VA (United States)

    2015-07-15

    Precise proton and neutron form factor measurements at Jefferson Lab, using spin observables, have recently made a significant contribution to the unraveling of the internal structure of the nucleon. Accurate experimental measurements of the nucleon form factors are a test-bed for understanding how the nucleon's static properties and dynamical behavior emerge from QCD, the theory of the strong interactions between quarks. There has been enormous theoretical progress, since the publication of the Jefferson Lab proton form factor ratio data, aiming at reevaluating the picture of the nucleon. We will review the experimental and theoretical developments in this field and discuss the outlook for the future. (orig.)

  1. Pion Electromagnetic Form Factor at Lower and Higher Momentum Transfer

    CERN Document Server

    de Melo, J P B C; Tsushima, Kazuo

    2016-01-01

    The pion electromagnetic form factor is calculated at lower and higher momentum transfer in order to explore constituent quark models and the differences among those models. In particular, the light-front constituent quark model is utilized here to calculate the pion electromagnetic form factor at lower and higher energies. The matrix elements of the electromagnetic current, are calculated with both "plus" and "minus" components of the electromagnetic current in the light-front. Further, the electromagnetic form factor is compared with other models in the literature and experimental data.

  2. Roaming form factors for the tricritical to critical Ising flow

    CERN Document Server

    Horvath, D X; Takacs, G

    2016-01-01

    We study the massless flows described by the staircase model introduced by Al.B. Zamolodchikov through the analytic continuation of the sinh-Gordon S-matrix, focusing on the renormalisation group flow from the tricritical to the critical Ising model. We show that the properly defined roaming limits of certain sinh-Gordon form factors are identical to the form factors of the order and disorder operators for the massless flow. As a by-product, we also construct form factors for a semi-local field in the sinh-Gordon model, which can be associated with the twist field in the ultraviolet limiting free massless bosonic theory.

  3. A note on connected formula for form factors

    Science.gov (United States)

    He, Song; Liu, Zhengwen

    2016-12-01

    In this note we study the connected prescription, originally derived from Witten's twistor string theory, for tree-level form factors in N = 4 super-Yang-Mills theory. The construction is based on the recently proposed four-dimensional scattering equations with n massless on-shell states and one off-shell state, which we expect to work for form factors of general operators. To illustrate the universality of the prescription, we propose compact formulas for super form factors with chiral stress-tensor multiplet operator, and bosonic ones with scalar operators Tr( ϕ m ) for arbitrary m.

  4. Isospin violation in the vector form factors of the nucleon

    CERN Document Server

    Kubis, B; Kubis, Bastian; Lewis, Randy

    2006-01-01

    A quantitative understanding of isospin violation is an increasingly important ingredient for the extraction of the nucleon's strange vector form factors from experimental data. We calculate the isospin violating electric and magnetic form factors in chiral perturbation theory to leading and next-to-leading order respectively, and we extract the low-energy constants from resonance saturation. Uncertainties are dominated largely by limitations in the current knowledge of some vector meson couplings. The resulting bounds on isospin violation are sufficiently precise to be of value to on-going experimental studies of the strange form factors.

  5. Fourth dimension of the nucleon structure: Spacetime analysis of the timelike electromagnetic proton form factors

    Science.gov (United States)

    Bianconi, Andrea; Tomasi-Gustafsson, Egle

    2017-01-01

    As is well known, spacelike proton form factors expressed in the Breit frame may be interpreted as the Fourier transform of static space distributions of electric charge and current. In particular, the electric form factor is simply the Fourier transform of the charge distribution F (q ) =∫ei q ⃗.r ⃗ρ (r ) d3r . We do not have an intuitive interpretation of the same level of simplicity for the proton timelike form factor appearing in the reactions e+e-↔p ¯p . However, one may suggest that, in the center-of-mass frame, where qμxμ=q t , a timelike electric form factor is the Fourier transform F (q ) =∫ei q tR (t ) d t of a function R (t ) expressing how the electric properties of the forming (or annihilating) proton-antiproton pair evolve in time. Here we analyze in depth this idea and show that the functions ρ (r ) and R (t ) can be formally written as the time and space integrals of a unique correlation function depending on both time and space coordinates.

  6. The fourth dimension of the nucleon structure: spacetime analysis of the timelike electromagnetic proton form factors

    CERN Document Server

    Bianconi, Andrea

    2016-01-01

    As well known, spacelike proton form factors expressed in the Breit frame may be interpreted as the Fourier transform of static space distributions of electric charge and current. In particular, the electric form factor is simply the Fourier transform of the charge distribution $F(q)=\\int e^{i\\vec q \\cdot \\vec r} \\rho(r)d^3r$. We don't have an intuitive interpretation of the same level of simplicity for the proton timelike form factor appearing in the reactions $e^+e^-\\leftrightarrow \\bar{p}p$. However, one may suggest that in the center of mass (CM) frame, where $q_\\mu x^\\mu =qt$, a timelike electric form factor is the Fourier transform $F(q) =\\int e^{iqt} R(t)dt$ of a function $R(t)$ expressing how the electric properties of the forming (or annihilating) proton-antiproton pair evolve in time. Here we analyze in depth this idea, show that the functions $\\rho(r)$ and $R(t)$ can be formally written as the time and space integrals of a unique correlation function depending on both time and space coordinates.

  7. Comment on "High-Precision Determination of the Electric and Magnetic Form Factors of the Proton"

    CERN Document Server

    Arrington, J

    2011-01-01

    In a recent Letter, Bernauer, et al. present fits to the proton electromagnetic form factors, GEp(Q^2) and GMp(Q^2), along with extracted proton charge and magnetization radii based on large set of new, high statistical precision (<0.2%) cross section measurements. The Coulomb corrections they apply differ dramatically from more modern and complete calculations, implying significant error in their final results.

  8. Supercharging with m-nitrobenzyl alcohol and propylene carbonate: forming highly charged ions with extended, near-linear conformations.

    Science.gov (United States)

    Going, Catherine C; Williams, Evan R

    2015-04-07

    The effectiveness of the supercharging reagents m-nitrobenzyl alcohol (m-NBA) and propylene carbonate at producing highly charged protein ions in electrospray ionization is compared. Addition of 5% m-NBA or 15% propylene carbonate increases the average charge of three proteins by ∼21% or ∼23%, respectively, when these ions are formed from denaturing solutions (water/methanol/acetic acid). These results indicate that both reagents are nearly equally effective at supercharging when used at their optimum concentrations. A narrowing of the charge state distribution occurs with both reagents, although this effect is greater for propylene carbonate. Focusing the ion signal into fewer charge states has the advantage of improving sensitivity. The maximum charge state of ubiquitin formed with propylene carbonate is 21+, four charges higher than previously reported. Up to nearly 30% of all residues in a protein can be charged, and the collisional cross sections of the most highly charged ions of both ubiquitin and cytochrome c formed with these supercharging reagents were measured for the first time and found to be similar to those calculated for theoretical highly extended, linear or near-linear conformations. Under native supercharging conditions, m-NBA is significantly more effective at producing high charge states than propylene carbonate.

  9. Radiation reaction on a classical charged particle: a modified form of the equation of motion.

    Science.gov (United States)

    Alcaine, Guillermo García; Llanes-Estrada, Felipe J

    2013-09-01

    We present and numerically solve a modified form of the equation of motion for a charged particle under the influence of an external force, taking into account the radiation reaction. This covariant equation is integro-differential, as Dirac-Röhrlich's, but has several technical improvements. First, the equation has the form of Newton's second law, with acceleration isolated on the left hand side and the force depending only on positions and velocities: Thus, the equation is linear in the highest derivative. Second, the total four-force is by construction perpendicular to the four-velocity. Third, if the external force vanishes for all future times, the total force and the acceleration automatically vanish at the present time. We show the advantages of this equation by solving it numerically for several examples of external force.

  10. Normalization Of Thermal-Radiation Form-Factor Matrix

    Science.gov (United States)

    Tsuyuki, Glenn T.

    1994-01-01

    Report describes algorithm that adjusts form-factor matrix in TRASYS computer program, which calculates intraspacecraft radiative interchange among various surfaces and environmental heat loading from sources such as sun.

  11. Elastic and transition form factors of the \\Delta(1232)

    CERN Document Server

    Segovia, Jorge; Cloët, Ian C; Roberts, Craig D; Schmidt, Sebastian M; Wan, Shaolong

    2013-01-01

    Predictions obtained with a confining, symmetry-preserving treatment of a vector-vector contact interaction at leading-order in a widely used truncation of QCD's Dyson-Schwinger equations are presented for \\Delta and \\Omega baryon elastic form factors and the \\gamma N -> \\Delta transition form factors. This simple framework produces results that are practically indistinguishable from the best otherwise available, an outcome which highlights that the key to describing many features of baryons and unifying them with the properties of mesons is a veracious expression of dynamical chiral symmetry breaking in the hadron bound-state problem. The following specific results are of particular interest. The \\Delta elastic form factors are very sensitive to m_\\Delta. Hence, given that the parameters which define extant simulations of lattice-regularised QCD produce \\Delta-resonance masses that are very large, the form factors obtained therewith are a poor guide to properties of the \\Delta(1232). Considering the \\Delta-b...

  12. The connected prescription for form factors in twistor space

    CERN Document Server

    Brandhuber, Andreas; Panerai, Rodolfo; Spence, Bill; Travaglini, Gabriele

    2016-01-01

    We propose a connected prescription formula in twistor space for all tree-level form factors of the stress tensor multiplet operator in $\\mathcal{N}=4$ super Yang-Mills, which is a generalisation of the expression of Roiban, Spradlin and Volovich for superamplitudes. By introducing link variables, we show that our formula is identical to the recently proposed four-dimensional scattering equations for form factors. Similarly to the case of amplitudes, the link representation of form factors is shown to be directly related to BCFW recursion relations, and is considerably more tractable than the scattering equations. We also discuss how our results are related to a recent Grassmannian formulation of form factors, and comment on a possible derivation of our formula from ambitwistor strings.

  13. Electromagnetic form factors of baryons in an algebraic approach

    Energy Technology Data Exchange (ETDEWEB)

    Bijker, R. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510 Mexico D.F. (Mexico); Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    1999-07-01

    We present a simultaneous analysis of elastic and transition form factors of the nucleon. The calculations are performed in the framework of an algebraic model of baryons. Effects of meson cloud couplings are considered. (Author)

  14. Electromagnetic form factors of baryons in an algebraic approach

    CERN Document Server

    Bijker, R

    1999-01-01

    We present a simultaneous analysis of elastic and transition form factors of the nucleon. The calculations are performed in the framework of an algebraic model of baryons. Effects of meson cloud couplings are considered.

  15. The connected prescription for form factors in twistor space

    Science.gov (United States)

    Brandhuber, A.; Hughes, E.; Panerai, R.; Spence, B.; Travaglini, G.

    2016-11-01

    We propose a connected prescription formula in twistor space for all tree-level form factors of the stress tensor multiplet operator in {N} = 4 super Yang-Mills, which is a generalisation of the expression of Roiban, Spradlin and Volovich for superamplitudes. By introducing link variables, we show that our formula is identical to the recently proposed four-dimensional scattering equations for form factors. Similarly to the case of amplitudes, the link representation of form factors is shown to be directly related to BCFW recursion relations, and is considerably more tractable than the scattering equations. We also discuss how our results are related to a recent Grassmannian formulation of form factors, and comment on a possible derivation of our formula from ambitwistor strings.

  16. Hadronic Form Factors in Asymptotically Free Field Theories

    Science.gov (United States)

    Gross, D. J.; Treiman, S. B.

    1974-01-01

    The breakdown of Bjorken scaling in asymptotically free gauge theories of the strong interactions is explored for its implications on the large q{sup 2} behavior of nucleon form factors. Duality arguments of Bloom and Gilman suggest a connection between the form factors and the threshold properties of the deep inelastic structure functions. The latter are addressed directly in an analysis of asymptotically free theories; and through the duality connection we are then led to statements about the form factors. For very large q{sup 2} the form factors are predicted to fall faster than any inverse power of q{sup 2}. For the more modest range of q{sup 2} reached in existing experiments the agreement with data is fairly good, though this may well be fortuitous. Extrapolations beyond this range are presented.

  17. Rare $B$ decays using lattice QCD form factors

    CERN Document Server

    Horgan, R R; Meinel, S; Wingate, M

    2015-01-01

    In this write-up we review and update our recent lattice QCD calculation of $B \\to K^*$, $B_s \\to \\phi$, and $B_s \\to K^*$ form factors [arXiv:1310.3722]. These unquenched calculations, performed in the low-recoil kinematic regime, provide a significant improvement over the use of extrapolated light cone sum rule results. The fits presented here include further kinematic constraints and estimates of additional correlations between the different form factor shape parameters. We use these form factors along with Standard Model determinations of Wilson coefficients to give Standard Model predictions for several observables [arXiv:1310.3887]. The modest improvements to the form factor fits lead to improved determinations of $F_L$, the fraction of longitudinally polarized vector mesons, but have little effect on most other observables.

  18. Proton Form Factors Measurements in the Time-Like Region

    Energy Technology Data Exchange (ETDEWEB)

    Anulli, F.; /Frascati

    2007-10-22

    I present an overview of the measurement of the proton form factors in the time-like region. BABAR has recently measured with great accuracy the e{sup +}e{sup -} {yields} p{bar p} reaction from production threshold up to an energy of {approx} 4.5 GeV, finding evidence for a ratio of the electric to magnetic form factor greater than unity, contrary to expectation. In agreement with previous measurements, BABAR confirmed the steep rise of the magnetic form factor close to the p{bar p} mass threshold, suggesting the possible presence of an under-threshold N{bar N} vector state. These and other open questions related to the nucleon form factors both in the time-like and space-like region, wait for more data with different experimental techniques to be possibly solved.

  19. Form factors and other measures of strangeness in the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Feldmann, T. [Siegen Univ. (Germany). Theoretische Physik I; Kroll, P. [Bergische Univ., Wuppertal (Germany). Fachbereich Physik

    2007-11-15

    We discuss the phenomenology of strange-quark dynamics in the nucleon, based on experimental and theoretical results for electroweak form factors and for parton densities. In particular, we construct a model for the generalized parton distribution that relates the asymmetry s(x)- anti s(x) between the longitudinal momentum distributions of strange quarks and antiquarks with the form factor F{sup s}{sub 1}(t), which describes the distribution of strangeness in transverse position space. (orig.)

  20. Form Factors for Exclusive Semileptonic $B$--Decays

    CERN Document Server

    Kim, C S; Kim, Y G; Lee, K Y; Kim, Jae Kwan; Kim, Yeong Gyun; Lee, Kang Young

    1996-01-01

    We investigate the form factors for exclusive semileptonic decays of $B$-meson to $D,~D^*$, based on the parton picture and helped by the results of the HQET. We obtain the numerical results for the slope of the Isgur-Wise function, which is consistent with the experimental results, and we extracte the dependences of hadronic form factors on $q^2$ by varying input heavy quark fragmentation function without the nearest pole dominance ansätze.

  1. Future Perspectives on Baryon Form Factor Measurements with BES III

    Science.gov (United States)

    Schönning, Karin; Li, Cui

    2017-03-01

    The electromagnetic structure of hadrons, parameterised in terms of electromagnetic form factors, EMFF's, provide a key to the strong interaction. Nucleon EMFF's have been studied rigorously for more than 60 years but the new techniques and larger data samples available at modern facilities have given rise to a renewed interest for the field. Recently, the access to hyperon structure by hyperon time-like EMFF provides an additional dimension. The BEijing Spectrometer (BES III) at the Beijing Electron Positron Collider (BEPC-II) in China is the only running experiment where time-like baryon EMFF's can be studied in the e+e- → BB̅ reaction. The BES III detector is an excellent tool for baryon form factor measurements thanks to its near 4π coverage, precise tracking, PID and calorimetry. All hyperons in the SU(3) spin 1/2 octet and spin 3/2 decuplet are energetically accessible within the BEPC-II energy range. Recent data on proton and Λ hyperon form factors will be presented. Furthermore, a world-leading data sample was collected in 2014-2015 for precision measurements of baryon form factors. In particular, the data will enable a measurement of the relative phase between the electric and the magnetic form factors for Λ and Λc+ and hyperons. The modulus of the phase can be extracted from the hyperon polarisation, which in turn is experimentally accessible via the weak, parity violating decay. Furthermore, from the spin correlation between the outgoing hyperon and antihyperon, the sign of the phase can be extracted. This means that the time-like form factors can be completely determined for the first time. The methods will be outlined and the prospects of the BES III form factor measurements will be given. We will also present a planned upgrade of the BES III detector which is expected to improve future form factor measurements.

  2. Electromagnetic form factors in a collective model of the nucleon

    CERN Document Server

    Bijker, R; Leviatan, A

    1995-01-01

    We study the electromagnetic form factors of the nucleon in a collective model of baryons. Using the algebraic approach to hadron structure, we derive closed expressions for both elastic and transition form factors, and consequently for the helicity amplitudes that can be measured in electro- and photoproduction. Effects of spin-flavor symmetry breaking and of swelling of hadrons with increasing excitation energy are considered.

  3. Electromagnetic form factors in a collective model of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Bijker, R.; Iachello, F.; Leviatan, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510 (Mexico)]|[Distrito Federale (Mexico)]|[Center for Theoretical Physics, Sloane Laboratory, Yale University, New Haven, Connecticut 06520-8120 (United States)]|[Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    1996-10-01

    We study the electromagnetic form factors of the nucleon in a collective model of baryons. Using the algebraic approach to hadron structure, we derive closed expressions for both elastic and transition form factors, and consequently for the helicity amplitudes that can be measured in electro- and photoproduction. Effects of spin-flavor symmetry breaking and of swelling of hadrons with increasing excitation energy are considered. {copyright} {ital 1996 The American Physical Society.}

  4. Low energy analysis of the nucleon electromagnetic form factors

    CERN Document Server

    Kubis, B; Kubis, Bastian; Meissner, Ulf-G.

    2001-01-01

    We analyze the electromagnetic form factors of the nucleon to fourth order in relativistic baryon chiral perturbation theory. We employ the recently proposed infrared regularization scheme and show that the convergence of the chiral expansion is improved as compared to the heavy fermion approach. We also discuss the inclusion of vector mesons and obtain an accurate description of all four nucleon form factors for momentum transfer squared up to Q^2 \\simeq 0.4 GeV^2.

  5. Hyperon decay form factors in chiral perturbation theory

    CERN Document Server

    Lacour, Andre; Meißner, Ulf-G

    2007-01-01

    We present a complete calculation of the SU(3)-breaking corrections to the hyperon vector form factors up to O(p^4) in covariant baryon chiral perturbation theory. Partial higher-order contributions are obtained, and we discuss chiral extrapolations of the vector form factor at zero momentum transfer. In addition we derive low-energy theorems for the subleading moments in hyperon decays, the weak Dirac radii and the weak anomalous magnetic moments, up to O(p^4).

  6. Online Soil Science Lesson 3: Soil Forming Factors

    Science.gov (United States)

    This lesson explores the five major factors of soil formation, namely: 1) climate; 2) organisms; 3) time; 4) topography; and 5) parent material and their influence in forming soil. The distinction between active and passive factors, moisture and temperature regimes, organism and topographic influen...

  7. New large-$N_c$ relations for the electromagnetic nucleon-to-$\\Delta$ form factors

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir Pascalutsa; Marc Vanderhaeghen

    2007-12-01

    We establish relations which express the three $N\\to \\Delta$ transition form factors in terms of the nucleon form factors. These relations are based on the known large-$N_c$ relation between the $N\\to \\De$ electric quadrupole moment and the neutron charge radius, and a newly derived large-$N_c$ relation between the electric quadrupole ($E2$) and Coulomb quadrupole ($C2$) transitions. Namely, in the large-$N_c$ limit we find $C2=E2$. We show that these relations provide predictions for the $N\\to\\Delta$ electromagnetic form factors which are found to be in very good agreement with experiment for moderate momentum transfers. They also provide constraints for the $N \\to \\Delta$ GPDs.

  8. On a four-loop form factor in N=4

    CERN Document Server

    Boels, Rutger H; Yang, Gang

    2016-01-01

    We report on progress toward computing a four-loop supersymmetric form factor in maximally supersymmetric Yang-Mills theory. A representative example particle content from the involved supermultiplets is a stress-tensor operator with two on-shell gluons. In previous work, the integrand for this form factor was obtained using color-kinematic duality in a particularly simple form. Here the result of applying integration-by-parts identities is discussed and cross-checks of the result is performed. Rational IBP relations and their reduction are introduced as a potentially useful aide.

  9. Charge transport and rectification in molecular junctions formed with carbon-based electrodes.

    Science.gov (United States)

    Kim, Taekyeong; Liu, Zhen-Fei; Lee, Chulho; Neaton, Jeffrey B; Venkataraman, Latha

    2014-07-29

    Molecular junctions formed using the scanning-tunneling-microscope-based break-junction technique (STM-BJ) have provided unique insight into charge transport at the nanoscale. In most prior work, the same metal, typically Au, Pt, or Ag, is used for both tip and substrate. For such noble metal electrodes, the density of electronic states is approximately constant within a narrow energy window relevant to charge transport. Here, we form molecular junctions using the STM-BJ technique, with an Au metal tip and a microfabricated graphite substrate, and measure the conductance of a series of graphite/amine-terminated oligophenyl/Au molecular junctions. The remarkable mechanical strength of graphite and the single-crystal properties of our substrates allow measurements over few thousand junctions without any change in the surface properties. We show that conductance decays exponentially with molecular backbone length with a decay constant that is essentially the same as that for measurements with two Au electrodes. More importantly, despite the inherent symmetry of the oligophenylamines, we observe rectification in these junctions. State-of-art ab initio conductance calculations are in good agreement with experiment, and explain the rectification. We show that the highly energy-dependent graphite density of states contributes variations in transmission that, when coupled with an asymmetric voltage drop across the junction, leads to the observed rectification. Together, our measurements and calculations show how functionality may emerge from hybrid molecular-scale devices purposefully designed with different electrodes beyond the so-called "wide band limit," opening up the possibility of assembling molecular junctions with dissimilar electrodes using layered 2D materials.

  10. Space- and time-like kaon electromagnetic form factors in perturbative QCD

    Institute of Scientific and Technical Information of China (English)

    JIN Dan; YANG Ya-Dong

    2012-01-01

    We present a phenomenological analysis of the space- and time-like charged kaon electromagnetic form factors in factorized perturbative QCD (pQCD) by employing an analytic model for αs(Q2) and an infrared (IR) finite gluon propagator.In the space-like region,due to the lack of available experimental data above Q2 ~ 0.2 GeV2,we only give our results for intermediate energies and make no comparison.In the time-like region,our results agree reasonably well with the available experimental data at moderate energies,including the CLEO data and the J/ψ result.

  11. OPE for all Helicity Amplitudes II. Form Factors and Data analysis

    CERN Document Server

    Basso, Benjamin; Cordova, Lucia; Sever, Amit; Vieira, Pedro

    2015-01-01

    We present the general flux tube integrand for MHV and non-MHV amplitudes, in planar N = 4 SYM theory, up to a group theoretical rational factor. We find that the MHV and non-MHV cases only differ by simple form factors which we derive. This information allows us to run the operator product expansion program for all sorts of non-MHV amplitudes and to test the recently proposed map with the so called charged pentagons transitions. Perfect agreement is found, on a large sample of non-MHV amplitudes, with the perturbative data available in the literature.

  12. EFFECTS OF NEUTRINO ELECTROMAGNETIC FORM FACTORS ON NEUTRINO INTERACTION WITH FINITE TEMPERATURE ELECTRON MATTERS

    Directory of Open Access Journals (Sweden)

    Anto Sulaksono

    2011-11-01

    Full Text Available The differential cross-section of neutrino interaction with dense and warm electron gasses has been calculated by takinginto account the neutrino electromagnetic form factors. The significant effect of electromagnetic properties of neutrinocan be found if the neutrino dipole moment, μ ν , is ≥ 5.10-9 μB and neutrino charge radius, Rv, is ≥ 5.10-6 MeV-1. Theimportance of the retarded correction, detailed balance and Pauli blocking factors is shown and analyzed. Many-bodyeffects on the target matter which are included via random phase approximation (RPA correlation as well as photoneffective mass are also investigated.

  13. Factors Affecting Sensitivity of Variable Charge Soils to Acid Rain

    Institute of Scientific and Technical Information of China (English)

    WANGJING-HUA

    1995-01-01

    The sensitivity of a large number of variable charge soils to acid rain was evaluated through examining pH-H2SO4 input curves.Two derivative parameters,the consumption of hydrogen ions by the soil and the acidtolerant limit as defined as the quantity of sulfuric acid required to bring the soil to pH 3.5 in a 0.001mol L-1 Ca(NO3)2 solution,were used.The sensitivity of variable charge soils was higher than that of constant charge soils,due to the predominance of kaolinite in clay mineralogical composition.Among these soils the sensitivity was generally of the order lateritic red soil>red soil> latosol.For a given type of soil within the same region the sensitivity was affected by parent material,due to differences in clay minerals and texture.The sensitivity of surface soil may be lower or higher than that of subsiol,depending on whether organic matter or texture plays the dominant role in determining the buffering capacity.Paddy soils consumed more acid within lower range of acid input when compared with upland soils,due to the presence of more exchangeable bases,but consumed less acid within higher acid input range,caused by the decrease in clay content.

  14. Analysis on influencing factors of EV charging station planning based on AHP

    Science.gov (United States)

    Yan, F.; Ma, X. F.

    2016-08-01

    As a new means of transport, electric vehicle (EV) is of great significance to alleviate the energy crisis. EV charging station planning has a far-reaching significance for the development of EV industry. This paper analyzes the impact factors of EV charging station planning, and then uses the analytic hierarchy process (AHP) to carry on the further analysis to the influencing factors, finally it gets the weight of each influence factor, and provides the basis for the evaluation scheme of the planning of charging stations for EV.

  15. Zero modes method and form factors in quantum integrable models

    Directory of Open Access Journals (Sweden)

    S. Pakuliak

    2015-04-01

    Full Text Available We study integrable models solvable by the nested algebraic Bethe ansatz and possessing GL(3-invariant R-matrix. Assuming that the monodromy matrix of the model can be expanded into series with respect to the inverse spectral parameter, we define zero modes of the monodromy matrix entries as the first nontrivial coefficients of this series. Using these zero modes we establish new relations between form factors of the elements of the monodromy matrix. We prove that all of them can be obtained from the form factor of a diagonal matrix element in special limits of Bethe parameters. As a result we obtain determinant representations for form factors of all the entries of the monodromy matrix.

  16. Form factor and width of a quantum string

    CERN Document Server

    Rajantie, Arttu; Weir, David J

    2012-01-01

    In the Yang-Mills theory, the apparent thickness of the confining string is known to grow logarithmically when its length increases. The same logarithmic broadening also happens to strings in other quantum field theories and domain walls in statistical physics models. Even in quantum field theories, the observables used to measure and characterise this phenomenon are largely borrowed from statistical physics. In this paper, we describe it using the string form factor, which is a meaningful quantum observable, and show how the form factor can be obtained from field correlation functions calculated in lattice Monte Carlo simulations. We apply this method to 2+1-dimensional scalar theory in the strong coupling limit, where it is equivalent to the 3D Ising model, and through duality also to 2+1-dimensional $\\mathbb{Z}_2$ gauge theory. We measure the string form factor by simulating the Ising model, and demonstrate that it displays the same logarithmic broadening as statistical physics observables.

  17. Form factor ratio from unpolarized elastic electron-proton scattering

    Science.gov (United States)

    Pacetti, Simone; Tomasi-Gustafsson, Egle

    2016-11-01

    A reanalysis of unpolarized electron-proton elastic scattering data is done in terms of the electric to magnetic form factor squared ratio. This observable is in principle more robust against experimental correlations and global normalizations. The present analysis shows indeed that it is a useful quantity that contains reliable and coherent information. The comparison with the ratio extracted from the measurement of the longitudinal to transverse polarization of the recoil proton in polarized electron-proton scattering shows that the results are compatible within the experimental errors. Limits are set on the kinematics where the physical information on the form factors can be safely extracted. The results presented in this work bring a decisive piece of information to the controversy on the deviation of the proton form factors from the dipole dependence.

  18. Two-Loop SL(2) Form Factors and Maximal Transcendentality

    CERN Document Server

    Loebbert, Florian; Wilhelm, Matthias; Yang, Gang

    2016-01-01

    Form factors of composite operators in the SL(2) sector of N=4 SYM theory are studied up to two loops via the on-shell unitarity method. The non-compactness of this subsector implies the novel feature and technical challenge of an unlimited number of loop momenta in the integrand's numerator. At one loop, we derive the full minimal form factor to all orders in the dimensional regularisation parameter. At two loops, we construct the complete integrand for composite operators with an arbitrary number of covariant derivatives, and we obtain the remainder functions as well as the dilatation operator for composite operators with up to three covariant derivatives. The remainder functions reveal curious patterns suggesting a hidden maximal uniform transcendentality for the full form factor. Finally, we speculate about an extension of these patterns to QCD.

  19. Kaon semileptonic decay form factors with HISQ valence quarks

    CERN Document Server

    Gamiz, E; Bazavov, A; Bernard, C; Bouchard, C; DeTar, C; Du, D; El-Khadra, A X; Foley, J; Freeland, E D; Gottlieb, Steven; Heller, U M; Kim, J; Kronfeld, A S; Laiho, J; Levkova, L; Mackenzie, P B; Neil, E T; Oktay, M B; Qiu, Si-Wei; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S; Zhou, R

    2012-01-01

    We report on the status of our kaon semileptonic form factor calculations using the highly-improved staggered quark (HISQ) formulation to simulate the valence fermions. We present results for the form factor f_+^{K \\pi}(0) on the asqtad N_f=2+1 MILC configurations, discuss the chiral-continuum extrapolation, and give a preliminary estimate of the total error. We also present a more preliminary set of results for the same form factor but with the sea quarks also simulated with the HISQ action; these results include data at the physical light quark masses. The improvements that we expect to achieve with the use of the HISQ configurations and simulations at the physical quark masses are briefly discussed.

  20. The Proton Form Factor Ratio Measurements at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Punjabi, Vina A. [Norfolk State University, Norfolk, VA (United States); Perdrisat, Charles F. [William and Mary College, Williamsburg, VA (United States)

    2014-03-01

    The ratio of the proton form factors, G{sub Ep}/G{sub Mp}, has been measured from Q{sup 2} of 0.5 GeV{sup 2} to 8.5 GeV{sup 2}, at the Jefferson Laboratory, using the polarization transfer method. This ratio is extracted directly from the measured ratio of the transverse and longitudinal polarization components of the recoiling proton in elastic electron-proton scattering. The discovery that the proton form factor ratio measured in these experiments decreases approximately linearly with four-momentum transfer, Q{sup 2}, for values above ~1 GeV{sup 2}, is one of the most significant results to come out of JLab. These results have had a large impact on progress in hadronic physics; and have required a significant rethinking of nucleon structure. The increasingly common use of the double-polarization technique to measure the nucleon form factors, in the last 15 years, has resulted in a dramatic improvement of the quality of all four nucleon electromagnetic form factors, G{sub Ep}, G{sub Mp}, G{sub En} and G{sub Mn}. There is an approved experiment at JLab, GEP(V), to continue the ratio measurements to 12 GeV{sup 2}. A dedicated experimental setup, the Super Bigbite Spectrometer (SBS), will be built for this purpose. It will be equipped with a focal plane polarimeter to measure the polarization of the recoil protons. The scattered electrons will be detected in an electromagnetic calorimeter. In this presentation, I will review the status of the proton elastic electromagnetic form factors and discuss a number of theoretical approaches to describe nucleon form factors.

  1. Master integrals for the four-loop Sudakov form factor

    Directory of Open Access Journals (Sweden)

    Rutger H. Boels

    2016-01-01

    Full Text Available The light-like cusp anomalous dimension is a universal function in the analysis of infrared divergences. In maximally (N=4 supersymmetric Yang–Mills theory (SYM in the planar limit, it is known, in principle, to all loop orders. The non-planar corrections are not known in any theory, with the first appearing at the four-loop order. The simplest quantity which contains this correction is the four-loop two-point form factor of the stress tensor multiplet. This form factor was largely obtained in integrand form in a previous work for N=4 SYM, up to a free parameter. In this work, a reduction of the appearing integrals obtained by solving integration-by-parts (IBP identities using a modified version of Reduze is reported. The form factor is shown to be independent of the remaining parameter at integrand level due to an intricate pattern of cancellations after IBP reduction. Moreover, two of the integral topologies vanish after reduction. The appearing master integrals are cross-checked using independent algebraic-geometry techniques explored in the Mint package. The latter results provide the basis of master integrals applicable to generic form factors, including those in Quantum Chromodynamics. Discrepancies between explicitly solving the IBP relations and the MINT approach are highlighted. Remaining bottlenecks to completing the computation of the four-loop non-planar cusp anomalous dimension in N=4 SYM and beyond are identified.

  2. Pion Form Factor in the Light-Front

    CERN Document Server

    Pacheco-Bicudo-Cabral de Melo, J

    2004-01-01

    The pion electromagnetic form factor is calculated with a light-front quark model. The "plus" and "minus" component of the electromagnetic current are used to calculate the electromagnetic form factor in the Breit frame with two models for the q\\bar{q} vertex. The light front constituent quark models describes very well hadronic wave function for pseudo-scalar and vector particles. Symmetry problems arinsing in the light-front approach are solved by the pole dislocation method. The results are compared with new experimental data and with other quark models.

  3. The $B\\to K^*$ form factors on the lattice

    CERN Document Server

    Agadjanov, Andria; Meißner, Ulf-G; Rusetsky, Akaki

    2016-01-01

    The extraction of the $B\\to K^*$ transition form factors from lattice data is studied, applying non-relativistic effective field theory in a finite volume. The possible mixing of $\\pi K$ and $\\eta K$ states is taken into account. The two-channel analogue of the Lellouch-L\\"uscher formula is reproduced. Due to the resonance nature of the $K^*$, an equation is derived, which allows to determine the form factors at the pole position in a process-independent manner. The infinitely-narrow width approximation of the results is discussed.

  4. Exploring strange nucleon form factors on the lattice

    CERN Document Server

    Babich, Ronald; Clark, Michael A; Fleming, George T; Osborn, James C; Rebbi, Claudio; Schaich, David

    2010-01-01

    We discuss techniques for evaluating sea quark contributions to hadronic form factors on the lattice and apply these to an exploratory calculation of the strange electromagnetic, axial, and scalar form factors of the nucleon. We employ the Wilson gauge and fermion actions on an anisotropic 24^3 x 64 lattice, probing a range of momentum transfer with Q^2 _0. We discuss the unique systematic uncertainties affecting the latter quantity relative to the continuum, as well as prospects for improving future determinations with Wilson-like fermions.

  5. Pion transition form factor through Dyson-Schwinger equations

    CERN Document Server

    Raya, Khépani

    2016-01-01

    In the framework of Dyson-Schwinger equations (DSE), we compute the $\\gamma^*\\gamma\\to\\pi^0$ transition form factor, $G(Q^2)$. For the first time, in a continuum approach to quantun chromodynamics (QCD), it was possible to compute $G(Q^2)$ on the whole domain of space-like momenta. Our result agrees with CELLO, CLEO and Belle collaborations and, with the well-known asymptotic QCD limit, $2f_\\pi$. Our analysis unifies this prediction with that of the pion's valence-quark parton distribution amplitude (PDA) and elastic electromagnetic form factor.

  6. Pion transition form factor through Dyson-Schwinger equations

    Science.gov (United States)

    Raya, Khépani

    2016-10-01

    In the framework of Dyson-Schwinger equations (DSE), we compute the γ*γ→π0 transition form factor, G(Q2). For the first time, in a continuum approach to quantun chromodynamics (QCD), it was possible to compute G(Q2) on the whole domain of space-like momenta. Our result agrees with CELLO, CLEO and Belle collaborations and, with the well- known asymptotic QCD limit, 2ƒπ. Our analysis unifies this prediction with that of the pion's valence-quark parton distribution amplitude (PDA) and elastic electromagnetic form factor.

  7. Vector and Axial Form Factors Applied to Neutrino Quasielastic Scattering

    CERN Document Server

    Budd, H; Arrington, J

    2005-01-01

    We calculate the quasielastic cross sections for neutrino scattering on nucleons using up to date fits to the nucleon elastic electromagnetic form factors GEp, GEn, GMp, GMn, and weak form factors. We show the extraction of Fa for neutrino experiments. We show how well \\minerva, a new approved experiment at FNAL, can measure Fa. We show the that Fa has a different contribution to the anti-neutrino cross section, and how the anti-neutrino data can be used to check Fa extracted from neutrino scattering.

  8. Reanalysis of Rosenbluth measurements of the proton form factors

    Science.gov (United States)

    Gramolin, Alexander; Nikolenko, Dmitry

    2017-01-01

    We have reanalyzed the elastic electron-proton scattering data from SLAC experiments E140 and NE11. This work was motivated by recent progress in calculating the corresponding radiative corrections and by the apparent discrepancy between the Rosenbluth and polarization transfer measurements of the proton electromagnetic form factors. New, corrected values for the scattering cross sections are presented, as well as a new form factor fit in the Q2 range from 1 to 8 . 83GeV2 . Our reanalysis brings the combined results of the SLAC experiments into better agreement with the polarization transfer data, but a significant discrepancy remains for Q2 > 3GeV2 .

  9. Tensor form factors of the octet hyperons in QCD

    CERN Document Server

    kucukarslan, A; Ozpineci, A

    2016-01-01

    Light-cone QCD sum rules to leading order in QCD are used to investigate the tensor form factors of the $\\Sigma-\\Sigma$, $\\Xi-\\Xi$ and $ \\Sigma-\\Lambda$ transitions in the range $1 GeV^2 \\leq Q^2 \\leq 10 GeV^2$. The DAs of $\\Sigma$, $\\Xi$ and $\\Lambda$ baryon have been calculated without higher order terms. Then, study including higher order corrections have been done for $\\Sigma$ and $\\Lambda$ baryon. The result of form factors are obtained using these two DAs. We make a comparison with the predictions of the chiral quark soliton model.

  10. Nucleon form factors and O(a) Improvement

    CERN Document Server

    Capitani, S; Horsley, R; Klaus, B; Oelrich, H; Perlt, H; Petters, D; Pleiter, D; Rakow, P E L; Schierholz, G; Schiller, A; Stephenson, P W

    1999-01-01

    Nucleon form factors have been extensively studied both experimentally and theoretically for many years. We report here on new results of a high statistics quenched lattice QCD calculation of vector and axial-vector nucleon form factors at low momentum transfer within the Symanzik improvement programme. The simulations are performed at three kappa and three beta values allowing first an extrapolation to the chiral limit and then an extrapolation in the lattice spacing to the continuum limit. The computations are all fully non-perturbative. A comparison with experimental results is made.

  11. Sudakov effects in B -> pi l nu form factors

    CERN Document Server

    Descotes, S

    2002-01-01

    In order to obtain information about the Standard Model from exclusive hadronic two-body B-decays, we have to quantify non-perturbative QCD effects. Approaches based on the factorization of mass singularities into hadronic distribution amplitudes and form factors provide a rigorous theoretical framework for the evaluation of these effects in the heavy quark limit. But it is not possible to calculate power corrections in a model-independent way, because of non-factorizing long-distance contributions. It has been argued that Sudakov effects suppress these contributions and render the corresponding corrections perturbatively calculable. In this paper we examine this claim for the related example of semileptonic B -> pi decays and conclude that it is not justified. The uncertainties in our knowledge of the mesons' distribution amplitudes imply that the calculations of the form factors are not sufficiently precise to be useful phenomenologically. Moreover, a significant contribution comes from the non-perturbative...

  12. Pion Electromagnetic Form Factor in Virtuality Distribution Formalism

    Energy Technology Data Exchange (ETDEWEB)

    Radyushkin, Anatoly V. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States)

    2016-01-01

    We discuss two applications of the {\\it Virtuality Distribution Amplitudes} (VDA) formalism developed in our recent papers. We start with an overview of the main properties of the pion distribution amplitude emphasizing the quantitative measures of its width, and possibility to access them through the pion transition form factor studies. We formulate the basic concepts of the VDA approach and introduce the pion {\\it transverse momentum distribution amplitude} (TMDA) which plays, in a covariant Lagrangian formulation, a role similar to that of the pion wave function in the 3-dimensional Hamiltonian light-front approach. We propose simple factorized models for soft TMDAs, and use them to describe existing data on the pion transition form factor, thus fixing the scale determining the size of the transverse-momentum effects. Finally, we apply the VDA approach to the one-gluon exchange contribution for the pion electromagnetic form factor. We observe a very late $Q^2 \\gtrsim 20$ GeV$^2$ onset of transition to the asymptotic pQCD predictions and show that in the $Q^2 \\lesssim 10$ GeV$^2$ region there is essentially no sensitivity to the shape of the pion distribution amplitude. Furthermore, the magnitude of the one-gluon exchange contribution in this region is estimated to be an order of magnitude below the Jefferson Lab data, thus leaving the Feynman mechanism as the only one relevant to the pion electromagnetic form factor behavior for accessible $Q^2$.

  13. Factorization, resummation and sum rules for heavy-to-light form factors

    CERN Document Server

    Wang, Yu-Ming

    2016-01-01

    Precision calculations of heavy-to-light form factors are essential to sharpen our understanding towards the strong interaction dynamics of the heavy-quark system and to shed light on a coherent solution of flavor anomalies. We briefly review factorization properties of heavy-to-light form factors in the framework of QCD factorization in the heavy quark limit and discuss the recent progress on the QCD calculation of $B \\to \\pi$ form factors from the light-cone sum rules with the $B$-meson distribution amplitudes. Demonstration of QCD factorization for the vacuum-to-$B$-meson correlation function used in the sum-rule construction and resummation of large logarithms in the short-distance functions entering the factorization theorem are presented in detail. Phenomenological implications of the newly derived sum rules for $B \\to \\pi$ form factors are further addressed with a particular attention to the extraction of the CKM matrix element $|V_{ub}|$.

  14. Response of colony-forming units-spleen to heavy charged particles.

    Science.gov (United States)

    Ainsworth, E J; Kelly, L S; Mahlmann, L J; Schooley, J C; Thomas, R H; Howard, J; Alpen, E L

    1983-10-01

    Survival of colony-forming units-spleen (CFU-S) was measured after single doses of photons or heavy charged particles from the BEVALAC. The purposes were to define the radiosensitivity to heavy ions used medically and to evaluate relationships between relative biological effectiveness (RBE) and dose-averaged linear energy transfer (LET infinity). In in vitro irradiation experiments. CFU-S suspensions were exposed to 220 kVp X rays or to 20Ne (372 MeV/micron) or 40Ar (447 MeV/micron) particles in the plateau portion of the Bragg curve. In in vivo irradiation experiments, donor mice from which CFU-S were harvested were exposed to 12C (400 MeV/micron). 20Ne (400 or 670 MeV/micron), or 40Ar (570 MeV/micron) particles in Bragg peaks spread to 4 or 10 cm by spiral ridge filters. Based on RBE at 10 survival, the maximum RBE of 2.1 was observed for 40Ar particles characterized by an LET infinity of approximately 100 keV/micron. Lower RBEs were determined at lower or higher estimated values of LET infinity and ranged from 1.1 for low energy 40Ar particles to 1.5-1.6 for low energy 12C and 20Ne. The responses of CFU-S are compared with responses of other model systems to heavy charged particles and with the reported sensitivity of CFU-S to neutrons of various energies. The maximum RBE reported here, 2.1 for high energy 40Ar particles, is somewhat lower than values reported for fission-spectrum neutrons, and is appreciably lower than values for monoenergetic 0.43-1.8 MeV neutrons. Low energy 12C and 20Ne particles have RBEs in the range of values reported for 14.7 MeV neutrons.

  15. Spin-2 Form Factors at Three Loop in QCD

    CERN Document Server

    Ahmed, Taushif; Mathews, Prakash; Rana, Narayan; Ravindran, V

    2015-01-01

    Spin-2 fields are often candidates in physics beyond the Standard Model namely the models with extra-dimensions where spin-2 Kaluza-Klein gravitons couple to the fields of the SM. Also, in the context of Higgs searches, spin-2 fields have been studied as an alternative to the scalar Higgs boson. In this article, we present the complete three loop QCD radiative corrections to the spin-2 quark-antiquark and spin-2 gluon-gluon form factors in SU(N) gauge theory with $n_f$ light flavors. These form factors contribute to both quark-antiquark and gluon-gluon initiated processes involving spin-2 particle in the hadronic reactions at the LHC. We have studied the structure of infrared singularities in these form factors up to three loop level using Sudakov integro-differential equation and found that the anomalous dimensions originating from soft and collinear regions of the loop integrals coincide with those of the electroweak vector boson and Higgs form factors confirming the universality of the infrared singulariti...

  16. Ward Identities, B-> \\rho Form Factors and |V_ub|

    CERN Document Server

    Gilani, A H S; Riazuddin, M; Gilani, Amjad Hussain Shah

    2003-01-01

    The exclusive FCNC beauty semileptonic decay B-> \\rho is studied using Ward identities in a general vector meson dominance framework, predicting vector meson couplings involved. The long distance contributions are discussed which results to obtain form factors and |V_ub|. A detailed comparison is given with other approaches.

  17. Nucleon form factors program with SBS at JLAB

    Energy Technology Data Exchange (ETDEWEB)

    Wojtsekhowski, Bogdan B. [JLAB

    2014-12-01

    The physics of the nucleon form factors is the basic part of the Jefferson Laboratory program. We review the achievements of the 6-GeV era and the program with the 12- GeV beam with the SBS spectrometer in Hall A, with a focus on the nucleon ground state properties.

  18. P and T Violating Form Factors of the Deuteron

    NARCIS (Netherlands)

    de Vries, J.; Mereghetti, E.; Timmermans, R. G. E.; van Kolck, U.

    2011-01-01

    We calculate the electric-dipole and magnetic-quadrupole form factors of the deuteron that arise as a low-energy manifestation of parity and time-reversal violation in quark-gluon interactions. We consider the QCD vacuum angle and the dimension-six operators that originate from physics beyond the st

  19. Analytic two-loop form factors in N=4 SYM

    CERN Document Server

    Brandhuber, Andreas; Yang, Gang

    2012-01-01

    We derive a compact expression for the three-point MHV form factors of half-BPS operators in N=4super Yang-Mills at two loops. The main tools of our calculation are generalised unitarity applied at the form factor level, and the compact expressions for supersymmetric tree-level form factors and amplitudes entering the cuts. We confirm that infrared divergences exponentiate as expected, and that collinear factorisation is entirely captured by an ABDK/BDS ansatz. Next, we construct the two-loop remainder function obtained by subtracting this ansatz from the full two-loop form factor and compute it numerically. Using symbology, combined with various physical constraints and symmetries, we find a unique solution for its symbol. With this input we construct a remarkably compact analytic expression for the remainder function, which contains only classical polylogarithms, and compare it to our numerical results. Furthermore, we make the surprising observation that our remainder is equal to the maximally transcendent...

  20. The Proton Form Factor Ratio Measurements at Jefferson Lab

    CERN Document Server

    Punjabi, Vina

    2014-01-01

    The ratio of the proton form factors, GEp/GMp, has been measured from Q2 of 0.5 GeV2 to 8.5 GeV2, at the Jefferson Laboratory, using the polarization transfer method. This ratio is extracted directly from the measured ratio of the transverse and longitudinal polarization components of the recoiling proton in elastic electron-proton scattering. The discovery that the proton form factor ratio measured in these experiments decreases approximately linearly with four-momentum transfer, Q2, for values above ? 1 GeV2, is one of the most significant results to come out of JLab. These results have had a large impact on progress in hadronic physics; and have required a significant rethinking of nucleon structure. The increasingly common use of the double-polarization technique to measure the nucleon form factors, in the last 15 years, has resulted in a dramatic improvement of the quality of all four nucleon electromagnetic form factors, GEp, GMp, GEn and GMn. There is an approved experiment at JLab, GEP(V), to continue...

  1. Proton and kaon timelike form factors from BABAR

    CERN Document Server

    Serednyakov, S I

    2015-01-01

    The latest BABAR results on the proton and kaon timelike form factors (FF) are presented. The special emphasize is made on comparison of the spacelike and timelike FFs and the rise of the proton FF near threshold. The behavior of the cross section of e+e- annihilation into hadrons near the nucleon-antinucleon threshold is discussed.

  2. On Form Factors and Correlation Functions in Twistor Space

    CERN Document Server

    Koster, Laura; Staudacher, Matthias; Wilhelm, Matthias

    2016-01-01

    In this paper, we continue our study of form factors and correlation functions of gauge-invariant local composite operators in the twistor-space formulation of N=4 super Yang-Mills theory. Using the vertices for these operators obtained in our recent papers arXiv:1603.04471 and arXiv:1604.00012, we show how to calculate the twistor-space diagrams for general N^kMHV form factors via the inverse soft limit, in analogy to the amplitude case. For general operators without $\\dot\\alpha$ indices, we then reexpress the NMHV form factors from the position-twistor calculation in terms of momentum twistors, deriving and expanding on a relation between the two twistor formalisms previously observed in the case of amplitudes. Furthermore, we discuss the calculation of generalized form factors and correlation functions as well as the extension to loop level, in particular providing an argument promised in arXiv:1410.6310.

  3. Spin-2 form factors at three loop in QCD

    Science.gov (United States)

    Ahmed, Taushif; Das, Goutam; Mathews, Prakash; Rana, Narayan; Ravindran, V.

    2015-12-01

    Spin-2 fields are often candidates in physics beyond the Standard Model namely the models with extra-dimensions where spin-2 Kaluza-Klein gravitons couple to the fields of the Standard Model. Also, in the context of Higgs searches, spin-2 fields have been studied as an alternative to the scalar Higgs boson. In this article, we present the complete three loop QCD radiative corrections to the spin-2 quark-antiquark and spin-2 gluon-gluon form factors in SU(N) gauge theory with n f light flavors. These form factors contribute to both quark-antiquark and gluon-gluon initiated processes involving spin-2 particle in the hadronic reactions at the LHC. We have studied the structure of infrared singularities in these form factors up to three loop level using Sudakov integro-differential equation and found that the anomalous dimensions originating from soft and collinear regions of the loop integrals coincide with those of the electroweak vector boson and Higgs form factors confirming the universality of the infrared singularities in QCD amplitudes.

  4. Dispersive analysis of the pion transition form factor

    CERN Document Server

    Hoferichter, Martin; Leupold, Stefan; Niecknig, Franz; Schneider, Sebastian P

    2014-01-01

    We analyze the pion transition form factor using dispersion theory. We calculate the singly-virtual form factor in the time-like region based on data for the $e^+e^-\\to 3\\pi$ cross section, generalizing previous studies on $\\omega,\\phi\\to3\\pi$ decays and $\\gamma\\pi\\to\\pi\\pi$ scattering, and verify our result by comparing to $e^+e^-\\to\\pi^0\\gamma$ data. We perform the analytic continuation to the space-like region, predicting the poorly-constrained space-like transition form factor below 1 GeV, and extract the slope of the form factor at vanishing momentum transfer $a_\\pi=(30.7\\pm0.6)\\times 10^{-3}$. We derive the dispersive formalism necessary for the extension of these results to the doubly-virtual case, as required for the pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon.

  5. Form factors of the finite quantum XY-chain

    Energy Technology Data Exchange (ETDEWEB)

    Iorgov, Nikolai, E-mail: iorgov@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Kiev 03680 (Ukraine)

    2011-08-19

    Explicit factorized formulas for the matrix elements (form factors) of the spin operators {sigma}{sup x} and {sigma}{sup y} between the eigenvectors of the Hamiltonian of the finite quantum periodic XY-chain in a transverse field were derived. The derivation is based on the relations between three models: the model of quantum XY-chain, Ising model on 2D lattice and N = 2 Baxter-Bazhanov-Stroganov {tau}{sup (2)}-model. Due to these relations we transfer the formulas for the form factors of the latter model recently obtained by the use of separation of variables method to the model of quantum XY-chain. Hopefully, the formulas for the form factors will help in analysis of multipoint dynamic correlation functions at a finite temperature. As an example, we re-derive the asymptotics of the two-point correlation function in the disordered phase without the use of the Toeplitz determinants and the Wiener-Hopf factorization method.

  6. Electromagnetic form factors of heavy flavored vector mesons

    Science.gov (United States)

    Priyadarsini, M.; Dash, P. C.; Kar, Susmita; Patra, Sweta P.; Barik, N.

    2016-12-01

    We study the electromagnetic form factors of heavy flavored vector mesons such as (D*,Ds*,J /Ψ ) , (B*,Bs*,ϒ ) via one photon radiative decays (V →P γ ) in the relativistic independent quark (RIQ) model based on a flavor independent average interaction potential in the scalar vector harmonic form. The momentum dependent spacelike (q2<0 ) form factors calculated in this model are analytically continued to the physical timelike region 0 ≤q2≤(MV-MP)2 . The predicted coupling constant gV P γ=FV P(q2=0 ) for real photon case in the limit q2→0 and decay widths Γ (V →P γ ) are found in reasonable agreement with experimental data and other model predictions.

  7. Nucleon form factors, generalized parton distributions and quark angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kroll, Peter [Bergische Univ., Wuppertal (Germany). Fachbereich Physik; Regensburg Univ. (Germany). Institut fuer Theoretische Physik

    2013-02-15

    We extract the individual contributions from u and d quarks to the Dirac and Pauli form factors of the proton, after a critical examination of the available measurements of electromagnetic nucleon form factors. From this data we determine generalized parton distributions for valence quarks, assuming a particular form for their functional dependence. The result allows us to study various aspects of nucleon structure in the valence region. In particular, we evaluate Ji's sum rule and estimate the total angular momentum carried by valence quarks at the scale {mu}=2 GeV to be J{sup u}{sub v}=0.230{sup +0.009}{sub -0.024} and J{sup d}{sub v}=-0.004{sup +0.010}{sub -0.016}.

  8. Factors Affecting the Form of Substitute Family Care

    Directory of Open Access Journals (Sweden)

    Monika Chrenková

    2015-11-01

    Full Text Available Recently, the system of care for endangered children has changed from the institutional as well as legislative point of view. In one of the partial areas of ongoing changes, research activities realised within the Students’ Grant Competition called The Factors Affecting the Form of Substitute Family Care are being focused. We deal with this topic because various forms of substitute family care are distinguished in the Czech Republic, where children are placed for various reasons, but we do not know the correct context of such placements. The main aim of the realised research was to find out the frequency of choosing a given form of placing children in substitute family care according to followed variables. The research sample of the quantitative research was consisted of children placed in one of the forms of substitute family care in the Moravian-Silesian region.

  9. Master integrals for the four-loop Sudakov form factor

    CERN Document Server

    Boels, Rutger; Yang, Gang

    2016-01-01

    The light-like cusp anomalous dimension is a universal function in the analysis of infrared divergences. In maximally ($\\mathcal{N}=4$) supersymmetric Yang-Mills theory (SYM) in the planar limit, it is known, in principle, to all loop orders. The non-planar corrections are not known in any theory, with the first appearing at the four-loop order. Probably the simplest quantity which contains this correction is the four-loop two-point form factor of the stress tensor multiplet. This form factor was obtained in integrand form in a previous work for $\\mathcal{N}=4$ SYM, up to a single parameter. In this work, a reduction of the appearing integrals obtained by solving integration-by-parts (IBP) identities using (a tweaked version of) Reduze is reported. The form factor is shown to be independent of the remaining parameter at integrand level due to an intricate pattern of cancellations after IBP reduction. The appearing master integrals are cross-checked using algebraic techniques explored in the Mint package. The ...

  10. Pseudo-scalar Form Factors at Three Loops in QCD

    CERN Document Server

    Ahmed, Taushif; Mathews, Prakash; Rana, Narayan; Ravindran, V

    2015-01-01

    The coupling of a pseudo-scalar Higgs boson to gluons is mediated through a heavy quark loop. In the limit of large quark mass, it is described by an effective Lagrangian that only admits light degrees of freedom. In this effective theory, we compute the three-loop massless QCD corrections to the form factor that describes the coupling of a pseudo-scalar Higgs boson to gluons. Due to the axial anomaly, the pseudo-scalar operator for the gluonic field strength mixes with the divergence of the axial vector current. Working in dimensional regularization and using the 't~Hooft-Veltman prescription for the axial vector current, we compute the three-loop pseudo-scalar form factors for massless quarks and gluons. Using the universal infrared factorization properties, we independently derive the three-loop operator mixing and finite operator renormalisation from the renormalisation group equation for the form factors, thereby confirming recent results in the operator product expansion. The finite part of the three-lo...

  11. Pion Electromagnetic Form Factor in Virtuality Distribution Formalism

    CERN Document Server

    Radyushkin, A V

    2015-01-01

    We discuss two applications of the {\\it Virtuality Distribution Amplitudes} (VDA) formalism developed in our recent papers. We start with an overview of the main properties of the pion distribution amplitude emphasizing the quantitative measures of its width, and possibility to access them through the pion transition form factor studies. We formulate the basic concepts of the VDA approach and introduce the pion transverse momentum distribution amplitude (TMDA) which plays, in a covariant Lagrangian formulation, a role similar to that of the pion wave function in the 3-dimensional Hamiltonian light-front approach. We propose simple factorized models for soft TMDAs, and use them to describe existing data on the pion transition form factor, thus fixing the scale determining the size of the transverse-momentum effects. Finally, we apply the VDA approach to the one-gluon exchange contribution for the pion electromagnetic form factor. We observe a very late $Q^2 \\gtrsim 20$ GeV$^2$ onset of transition to the asympt...

  12. Electromagnetic spin-1 form-factor free of zero-modes

    CERN Document Server

    de Melo, J P B C; Mello, Clayton S; Frederico, T

    2014-01-01

    The electromagnetic current~$J^+$ for spin-1, is used here to extract the electromagnetic form-factors of a light-front constituent quark model. The charge ($G_0$), magnetic ($G_1$) and quadrupole $G_2$ form factors are calculated using different prescriptions known in the literature, for the combinations of the four independent matrix elements of the current between the polarisations states in the Drell-Yan frame. However, the results for some prescriptions relying only on the valence contribution breaks the rotational symmetry as they violate the angular condition. In the present work, we use some relations between the matrix elements of the electromagnetic current in order to eliminate the breaking of the rotational symmetry, by computing the zero-mode contributions to matrix elements resorting only to the valence ones.

  13. Electronic and Nuclear Factors in Charge and Excitation Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Piotr Piotrowiak

    2004-09-28

    We report the and/or state of several subprojects of our DOE sponsored research on Electronic and Nuclear Factors in Electron and Excitation Transfer: (1) Construction of an ultrafast Ti:sapphire amplifier. (2) Mediation of electronic interactions in host-guest molecules. (3) Theoretical models of electrolytes in weakly polar media. (4) Symmetry effects in intramolecular excitation transfer.

  14. The Vector and Scalar Form Factors of the Pion to Two Loops

    CERN Document Server

    Bijnens, J; Talavera, P

    1998-01-01

    We calculate the vector and scalar form factors of the pion to two loops in Chiral Perturbation Theory. We estimate the unknown O(p^6) constants using resonance exchange. We make a careful comparison to the available data and determine two O(p^4) constants rather precisely, and two O(p^6) constants less precisely. We also use Chiral Perturbation Theory to two loops to extract in a model--independent manner the charge radius of the pion from the available data, and obtain \\rpiV=0.437\\pm 0.016 fm^2.

  15. arXiv Measurement of the $\\pi^0$ electromagnetic transition form factor slope

    CERN Document Server

    Lazzeroni, C.; Romano, A.; Blazek, T.; Koval, M.; Ceccucci, A.; Danielsson, H.; Falaleev, V.; Gatignon, L.; Goy Lopez, S.; Hallgren, B.; Maier, A.; Peters, A.; Piccini, M.; Riedler, P.; Frabetti, P.L.; Gersabeck, E.; Kekelidze, V.; Madigozhin, D.; Misheva, M.; Molokanova, N.; Movchan, S.; Potrebenikov, Yu.; Shkarovskiy, S.; Zinchenko, A.; Rubin, P.; Baldini, W.; Cotta Ramusino, A.; Dalpiaz, P.; Fiorini, M.; Gianoli, A.; Norton, A.; Petrucci, F.; Savrié, M.; Wahl, H.; Bizzeti, A.; Bucci, F.; Iacopini, E.; Lenti, M.; Veltri, M.; Antonelli, A.; Moulson, M.; Raggi, M.; Spadaro, T.; Eppard, K.; Hita-Hochgesand, M.; Kleinknecht, K.; Renk, B.; Wanke, R.; Winhart, A.; Winston, R.; Bolotov, V.; Duk, V.; Gushchin, E.; Ambrosino, F.; Di Filippo, D.; Massarotti, P.; Napolitano, M.; Palladino, V.; Saracino, G.; Anzivino, G.; Imbergamo, E.; Piandani, R.; Sergi, A.; Cenci, P.; Pepe, M.; Costantini, F.; Doble, N.; Giudici, S.; Pierazzini, G.; Sozzi, M.; Venditti, S.; Balev, S.; Collazuol, G.; DiLella, L.; Gallorini, S.; Goudzovski, E.; Lamanna, G.; Mannelli, I.; Ruggiero, G.; Cerri, C.; Fantechi, R.; Kholodenko, S.; Kurshetsov, V.; Obraztsov, V.; Semenov, V.; Yushchenko, O.; D'Agostini, G.; Leonardi, E.; Serra, M.; Valente, P.; Fucci, A.; Salamon, A.; Bloch-Devaux, B.; Peyaud, B.; Engelfried, J.; Coward, D.; Kozhuharov, V.; Litov, L.; Arcidiacono, R.; Bifani, S.; Biino, C.; Dellacasa, G.; Marchetto, F.; Numao, T.; Retière, F.

    2017-01-01

    The NA62 experiment collected a large sample of charged kaon decays in 2007 with a highly efficient trigger for decays into electrons. A measurement of the $\\pi^{0}$ electromagnetic transition form factor slope parameter from $1.11\\times10^{6}$ fully reconstructed $K^\\pm \\to \\pi^\\pm \\pi^0_D, \\; \\pi^0_D \\to e^+ e^- \\, \\gamma$ events is reported. The measured value $a = \\left(3.68 \\pm 0.57\\right)\\times 10^{-2}$ is in good agreement with theoretical expectations and previous measurements, and represents the most precise experimental determination of the slope in the time-like momentum transfer region.

  16. Flavor Analysis of Nucleon, Δ , and Hyperon Electromagnetic Form Factors

    Science.gov (United States)

    Rohrmoser, Martin; Choi, Ki-Seok; Plessas, Willibald

    2017-03-01

    By the analysis of the world data base of elastic electron scattering on the proton and the neutron (for the latter, in fact, on ^2H and ^3He) important experimental insights have recently been gained into the flavor compositions of nucleon electromagnetic form factors. We report on testing the Graz Goldstone-boson-exchange relativistic constituent-quark model in comparison to the flavor contents in low-energy nucleons, as revealed from electron-scattering phenomenology. It is found that a satisfactory agreement is achieved between theory and experiment for momentum transfers up to Q^2˜ 4 GeV^2, relying on three-quark configurations only. Analogous studies have been extended to the Δ and the hyperon electromagnetic form factors. For them we here show only some sample results in comparison to data from lattice quantum chromodynamics.

  17. Two-photon transition form factor of c ¯ quarkonia

    Science.gov (United States)

    Chen, Jing; Ding, Minghui; Chang, Lei; Liu, Yu-xin

    2017-01-01

    The two-photon transition of c ¯c quarkonia are studied within a covariant approach based on the consistent truncation scheme of the quantum chromodynamics Dyson-Schwinger equation for the quark propagator and the Bethe-Salpeter equation for the mesons. We find the decay widths of ηc→γ γ and χc 0 ,2→γ γ in good agreement with experimental data. The obtained transition form factor of ηc→γ γ* for a wide range of spacelike photon-momentum-transfer squared is also in agreement with the experimental findings of the BABAR experiment. As a by-product, the decay widths of ηb,χb 0 ,2→γ γ and the transition form factor of ηb,χc 0 ,b 0→γ γ* are predicted, which await experimental testing.

  18. A reanalysis of Rosenbluth measurements of the proton form factors

    CERN Document Server

    Gramolin, A V

    2016-01-01

    We present a reanalysis of the data from SLAC experiments E140 [R. C. Walker et al., Phys. Rev. D 49, 5671 (1994)] and NE11 [L. Andivahis et al., Phys. Rev. D 50, 5491 (1994)] on elastic electron-proton scattering. This work is motivated by recent progress in calculating the corresponding radiative corrections and by the apparent discrepancy between the Rosenbluth and polarization transfer measurements of the proton electromagnetic form factors. New, corrected values for the scattering cross sections are presented, as well as a new form factor fit in the $Q^2$ range from 1 to 8.83 $\\text{GeV}^2$. We also provide a complete set of revised formulas to account for radiative corrections in single-arm measurements of unpolarized elastic electron-proton scattering.

  19. Reanalysis of Rosenbluth measurements of the proton form factors

    Science.gov (United States)

    Gramolin, A. V.; Nikolenko, D. M.

    2016-05-01

    We present a reanalysis of the data from Stanford Linear Accelerator Center (SLAC) experiments E140 [R. C. Walker et al., Phys. Rev. D 49, 5671 (1994), 10.1103/PhysRevD.49.5671] and NE11 [L. Andivahis et al., Phys. Rev. D 50, 5491 (1994), 10.1103/PhysRevD.50.5491] on elastic electron-proton scattering. This work is motivated by recent progress in calculating the corresponding radiative corrections and by the apparent discrepancy between the Rosenbluth and polarization transfer measurements of the proton electromagnetic form factors. New, corrected values for the scattering cross sections are presented, as well as a new form factor fit in the Q2 range from 1 to 8.83 GeV2. We also provide a complete set of revised formulas to account for radiative corrections in single-arm measurements of unpolarized elastic electron-proton scattering.

  20. Nucleon form factors on the lattice with light dynamical fermions

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik T39; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)

    2007-09-15

    The electromagnetic form factors provide important insight into the internal structure of the nucleon and continue to be of major interest for experiment and phenomenology. For an intermediate range of momenta the form factors can be calculated on the lattice. However, the reliability of the results is limited by systematic errors mostly due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet inaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with dynamical N{sub f}=2, non-perturbatively O(a)-improved Wilson fermions at pion masses as low as 350 MeV. (orig.)

  1. Octet Baryon Electromagnetic Form Factors in a Relativistic Quark Model

    Energy Technology Data Exchange (ETDEWEB)

    Gilberto Ramalho, Kazuo Tsushima

    2011-09-01

    We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.

  2. Octet baryon electromagnetic form factors in a relativistic quark model

    CERN Document Server

    Ramalho, G

    2011-01-01

    We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.

  3. η' transition form factor from space- and timelike experimental data

    Science.gov (United States)

    Escribano, R.; Gonzàlez-Solís, S.; Masjuan, P.; Sanchez-Puertas, P.

    2016-09-01

    The η' transition form factor is reanalyzed in view of the recent first observation by BESIII of the Dalitz decay η'→γ e+e- in both space- and timelike regions at low and intermediate energies using the Padé approximants method. The present analysis provides a suitable parametrization for reproducing the measured form factor in the whole energy region and allows one to extract the corresponding low-energy parameters together with a prediction of their values at the origin, related to Γη'→γ γ , and the asymptotic limit. The η - η' mixing is reassessed within a mixing scheme compatible with the large-Nc chiral perturbation theory at next-to-leading order, with particular attention to the Okubo-Zweig-Iizuka-rule-violating parameters. The J /ψ , Z →η(')γ decays are also considered and predictions are reported.

  4. Strong CP violation and the neutron electric dipole form factor

    CERN Document Server

    Kuckei, J; Faessler, A; Gutsche, T; Kovalenko, S; Lyubovitskij, V E; Pumsa-ard, K; Dib, Claudio; Faessler, Amand; Gutsche, Th.; Kovalenko, Sergey

    2005-01-01

    We calculate the neutron electric dipole form factor induced by the CP violating theta-term of QCD, within a perturbative chiral quark model which includes pion and kaon clouds. On this basis we derive the neutron electric dipole moment and the electron-neutron Schiff moment. From the existing experimental upper limits on the neutron electric dipole moment we extract constraints on the theta-parameter and compare our results with other approaches.

  5. Flavour decomposition of electromagnetic transition form factors of nucleon resonances

    CERN Document Server

    Segovia, Jorge

    2016-01-01

    In Poincar\\'e-covariant continuum treatments of the three valence-quark bound-state problem, the force behind dynamical chiral symmetry breaking also generates nonpointlike, interacting diquark correlations in the nucleon and its resonances. We detail the impact of these correlations on the nucleon's elastic and nucleon-to-Roper transition electromagnetic form factors, providing flavour-separation versions that can be tested at modern facilities.

  6. FACTORS AFFECTING FORMING PRECISION IN PATTERNLESS CASTING MANUFACTURING

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The patternless casting manufacturing(PCM) technique adopts a new method of double scanning which combines the principle of discreteness and deposition with the resin-bonded sand technique.Two main factors, the liquid penetration regularities in the space between particles and the shape and dimension of the agglomeration unit body, are studied qualitatively and quantitatively.This provides the theoretical basis for selecting the forming technical parameters.The experiments verify the analysis.

  7. Calculation of the π Meson Electromagnetic Form Factor

    Institute of Scientific and Technical Information of China (English)

    王志刚; 汪克林; 完绍龙

    2001-01-01

    The modified flat-bottom potential (MFBP) is given by the combination of the flat-bottom potential with considerations for the infrared and ultraviolet asymptotic behaviour of the effective quark-gluon coupling. The πmeson electromagnetic form factor is calculated in the framework of the coupled Schwinger-Dyson equation andthe Bethe-Salpeter equation in the simplified impulse approximation (dressed vertex) with the MFBP. All ournumerical results give a good fit to experimental values.

  8. Axial form factor of the nucleon at large momentum transfers

    CERN Document Server

    Anikin, I V; Offen, N

    2016-01-01

    Motivated by the emerging possibilities to study threshold pion electroproduction at large momentum transfers at Jefferson Laboratory following the 12 GeV upgrade, we provide a short theory summary and an estimate of the nucleon axial form factor for large virtualities in the $Q^2 = 1-10~\\text{GeV}^2$ range using next-to-leading order light-cone sum rules.

  9. Low Energy Constants from Kl4 Form-Factors

    CERN Document Server

    Amorós, G; Talavera, P

    2000-01-01

    We have calculated the form-factors F and G in K ---> pi pi e nu decays (Kl4) to two-loop order in Chiral Perturbation Theory (ChPT). Combining this together with earlier two-loop calculations an updated set of values for the L's, the ChPT constants at p^4, is obtained. We discuss the uncertainties in the determination and the changes compared to previous estimates.

  10. Massive three-loop form factor in the planar limit

    CERN Document Server

    Henn, Johannes; Smirnov, Vladimir A; Steinhauser, Matthias

    2016-01-01

    We compute the three-loop QCD corrections to the massive quark-anti-quark-photon form factors $F_1$ and $F_2$ in the large-$N_c$ limit. The analytic results are expressed in terms of Goncharov polylogarithms. This allows for a straightforward numerical evaluation. We also derive series expansions, including power suppressed terms, for three kinematic regions corresponding to small and large invariant masses of the photon momentum, and small velocities of the heavy quarks.

  11. Finite volume form factors and correlation functions at finite temperature

    CERN Document Server

    Pozsgay, Balázs

    2009-01-01

    In this thesis we investigate finite size effects in 1+1 dimensional integrable QFT. In particular we consider matrix elements of local operators (finite volume form factors) and vacuum expectation values and correlation functions at finite temperature. In the first part of the thesis we give a complete description of the finite volume form factors in terms of the infinite volume form factors (solutions of the bootstrap program) and the S-matrix of the theory. The calculations are correct to all orders in the inverse of the volume, only exponentially decaying (residual) finite size effects are neglected. We also consider matrix elements with disconnected pieces and determine the general rule for evaluating such contributions in a finite volume. The analytic results are tested against numerical data obtained by the truncated conformal space approach in the Lee-Yang model and the Ising model in a magnetic field. In a separate section we also evaluate the leading exponential correction (the $\\mu$-term) associate...

  12. $\\pi_{e3}$ form factor $f_{-}$ near mass shell

    CERN Document Server

    Krivoruchenko, M I

    2014-01-01

    Generalized Ward-Takahashi identity (gWTI) in the pion sector for broken isotopic symmetry is derived and used for the model-independent calculation of the longitudinal form factor $f_{-}$ of the $\\pi_{e3}$ vector vertex. The on-shell $f_{-}$ is found to be proportional to the mass difference of pions and the difference between vector isospin $ T = 1 $ and scalar isospin $ T = 2 $ pion radii. A numerical estimate of the form factor gives a value two times higher than the earlier estimate in the quark model. Off-shell form factors are known to be ambiguous because of the gauge dependence and the freedom in parameterization of the fields. The near-mass-shell $f_{-}$ appears to be an exception, allowing the experimental verification of the gWTI consequences. We calculate the near-mass-shell $f_{-}$ using the gWTI and dispersion techniques. The results are discussed in the context of the conservation of vector current (CVC) condition.

  13. Helicity non-conserving form factor of the proton

    Energy Technology Data Exchange (ETDEWEB)

    Voutier, E.; Furget, C.; Knox, S. [Universite Joseph Fourier, Grenoble (France)] [and others

    1994-04-01

    The study of the hadron structure in the high Q{sup 2} range contributes to the understanding of the mechanisms responsible for the confinement of quarks and gluons. Among the numerous experimental candidates sensitive to these mechanisms, the helicity non-conserving form factor of the proton is a privileged observable since it is controlled by non-perturbative effects. The authors investigate here the feasibility of high Q{sup 2} measurements of this form factor by means of the recoil polarization method in the context of the CEBAF 8 GeV facility. For that purpose, they discuss the development of a high energy proton polarimeter, based on the H({rvec p},pp) elastic scattering, to be placed at the focal plane of a new hadron spectrometer. It is shown that this experimental method significantly improves the knowledge of the helicity non-conserving form factor of the proton up to 10 GeV{sup 2}/c{sup 2}.

  14. Meson Transition Form Factors in Light-Front Holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; Cao, Fu-Guang; /Massey U.; de Teramond, Guy F.; /Costa Rica U.

    2011-06-22

    We study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The Chern-Simons action, which is a natural form in 5-dimensional anti-de Sitter (AdS) space, leads directly to an expression for the photon-to-pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical to the leading order QCD result where the distribution amplitude has asymptotic form. The Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability. It only retains the q{bar q} component of the pion wavefunction, and further, it projects out only the asymptotic form of the meson distribution amplitude. It is found that in order to describe simultaneously the decay process {pi}{sup 0} {yields} {gamma}{gamma} and the pion TFF at the asymptotic limit, a probability for the q{bar q} component of the pion wavefunction P{sub q{bar q}} = 0.5 is required; thus giving indication that the contributions from higher Fock states in the pion light-front wavefunction need to be included in the analysis. The probability for the Fock state containing four quarks (anti-quarks) which follows from analyzing the hadron matrix elements, P{sub q{bar q}q{bar q}} {approx} 10%, agrees with the analysis of the pion elastic form factor using light-front holography including higher Fock components in the pion wavefunction. The results for the TFFs for the {eta} and {eta}{prime} mesons are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q{sup 2} is not compatible with the models discussed in this article, whereas the theoretical calculations are in agreement with the experimental data for the {eta} and {eta}{prime} TFFs.

  15. Forms and factors of peer violence and victimisation

    Directory of Open Access Journals (Sweden)

    Dinić Bojana

    2014-01-01

    Full Text Available The main aim of this study was to explore the latent structure of violence and victimisation based on the factor analysis of the Peer Violence and Victimisation Questionnaire (PVVQ, as well as to examine the correlates of violence and victimisation. The sample included 649 secondary school students (61.8% male from the urban area. Besides the PVVQ, the Aggressiveness questionnaire AVDH was administered. Based on parallel analysis, three factors were extracted in the violence domain, as well as in the victimisation domain of the PVVQ. The factors were interpreted as a physical, verbal and relational form of violence and victimisation, which is in line with common classifications. The correlations of those forms with the aggressiveness dimensions were positive. The relationships with gender, school grade and school achievement referred to the importance of interaction effects between the mentioned characteristics of students and the tendency towards violence or being exposed to it. The main result is that boys from lower school grades and students with lower school achievement in general, are more prone to manifesting physical violence and more often are the target of physical violence. These groups of students are the target groups for preventive programs. The resulting effects indicated the complexity of the violence phenomenon and pointed to the need to consider the wider context of student’s characteristics in the determination of violence. [Projekat Ministarstva nauke Republike Srbije, br. 179037 i br. 179053

  16. Neutron distribution, electric dipole polarizability and weak form factor of 48Ca from chiral effective field theory

    Science.gov (United States)

    Wendt, Kyle

    2016-03-01

    How large is the 48Ca nucleus? While the electric charge distribution of this nucleus was accurately measured decades ago, both experimental and ab initio descriptions of the neutron distribution are deficient. We address this question using ab initio calculations of the electric charge, neutron, and weak distributions of 48Ca based on chiral effective field theory. Historically, chiral effective field theory calculations of systems larger than 4 nucleons have been plagued by strong systematic errors which result in theoretical descriptions that are too dense and over bound. We address these errors using a novel approach that permits us to accurately reproduce binding energy and charge radius of 48Ca, and to constrain electroweak observables such as the neutron radius, electric dipole polarizability, and the weak form factor. For a full list of contributors to this work, please see ``Neutron and weak-charge distributions of the 48Ca nucleus,'' Nature Physics (2015) doi:10.1038/nphys3529.

  17. Electromagnetic rho-meson form factors in point-form relativistic quantum mechanics

    CERN Document Server

    Biernat, Elmar P

    2014-01-01

    The relativistic point-form formalism which we proposed for the study of the electroweak structure of few-body bound states is applied to calculate the elastic form factors of spin-1 mesons, such as the rho, within constituent-quark models. We treat electron-meson scattering as a Poincare-invariant coupled-channel problem for a Bakamjian-Thomas mass operator and extract the meson current from the resulting invariant 1-photon-exchange amplitude. Wrong cluster properties inherent in the Bakamjian-Thomas framework are seen to cause spurious contributions in the current. These contributions, however, can be separated unambiguously from the physical ones and we end up with a meson current with all required properties. Numerical results for the rho-meson form factors are presented assuming a simple harmonic-oscillator bound-state wave function. The comparison with other approaches reveals a remarkable agreement of our results with those obtained within the covariant light-front scheme proposed by Carbonell et al.

  18. Clostridial pore-forming toxins: powerful virulence factors.

    Science.gov (United States)

    Popoff, Michel R

    2014-12-01

    Pore formation is a common mechanism of action for many bacterial toxins. More than one third of clostridial toxins are pore-forming toxins (PFTs) belonging to the β-PFT class. They are secreted as soluble monomers rich in β-strands, which recognize a specific receptor on target cells and assemble in oligomers. Then, they undergo a conformational change leading to the formation of a β-barrel, which inserts into the lipid bilayer forming functional pore. According to their structure, clostridial β-PFTs are divided into several families. Clostridial cholesterol-dependent cytolysins form large pores, which disrupt the plasma membrane integrity. They are potent virulence factors mainly involved in myonecrosis. Clostridial heptameric β-PFTs (aerolysin family and staphylococcal α-hemolysin family) induce small pores which trigger signaling cascades leading to different cell responses according to the cell types and toxins. They are mainly responsible for intestinal diseases, like necrotic enteritis, or systemic diseases/toxic shock from intestinal origin. Clostridial intracellularly active toxins exploit pore formation through the endosomal membrane to translocate the enzymatic component or domain into the cytosol. Single chain protein toxins, like botulinum and tetanus neurotoxins, use hydrophobic α-helices to form pores, whereas clostridial binary toxins encompass binding components, which are structurally and functionally related to β-PFTs, but which have acquired the specific activity to internalize their corresponding enzymatic components. Structural analysis suggests that β-PFTs and binding components share a common evolutionary origin.

  19. Dispersive analysis of the scalar form factor of the nucleon

    CERN Document Server

    Hoferichter, M; Kubis, B; Meißner, U -G

    2012-01-01

    Based on the recently proposed Roy-Steiner equations for pion-nucleon scattering, we derive a system of coupled integral equations for the pi pi --> N-bar N and K-bar K --> N-bar N S-waves. These equations take the form of a two-channel Muskhelishvili-Omnes problem, whose solution in the presence of a finite matching point is discussed. We use these results to update the dispersive analysis of the scalar form factor of the nucleon fully including K-bar K intermediate states. In particular, we determine the correction Delta_sigma=sigma(2M_pi^2)-sigma_{pi N}, which is needed for the extraction of the pion-nucleon sigma term from pi N scattering, as a function of pion-nucleon subthreshold parameters and the pi N coupling constant.

  20. Electric and magnetic form factors of the proton

    CERN Document Server

    Bernauer, J C; Friedrich, J.; Walcher, Th.; Achenbach, P.; Gayoso, C. Ayerbe; Böhm, R.; Bosnar, D.; Debenjak, L.; Doria, L.; Esser, A.; Fonvieille, H.; Gomez Rodriguez de la Paz, M.; Friedrich, J.M.; Makek, M.; Merkel, H.; Middleton, D.G.; Müller, U.; Nungesser, L.; Pochodzalla, J.; Potokar, M.; Sanchez Majos, S.; Schlimme, B.S.; Sirca, S.; Weinriefer, M.

    2014-01-01

    The paper describes a precise measurement of electron scattering off the proton at momentum transfers of $0.003 \\lesssim Q^2 \\lesssim 1$\\ GeV$^2$. The average point-to-point error of the cross sections in this experiment is $\\sim$ 0.37%. These data are used for a coherent new analysis together with all world data of unpolarized and polarized electron scattering from the very smallest to the highest momentum transfers so far measured. The extracted electric and magnetic form factors provide new insight into their exact shape, deviating from the classical dipole form, and of structure on top of this gross shape. The data reaching very low $Q^2$ values are used for a new determination of the electric and magnetic radii. An empirical determination of the Two-Photon-Exchange (TPE) correction is presented. The implications of this correction on the radii and the question of a directly visible signal of the pion cloud are addressed.

  1. Bonner Prize: The Elastic Form Factors of the Nucleon

    Science.gov (United States)

    Perdrisat, Charles F.

    2017-01-01

    A series of experiments initiated in 1998 at the then new Continuous Electron Beam Accelerator, or CEBAF in Newport News Virginia, resulted in unexpected results, changing significantly our understanding of the structure of the proton. These experiments used a relatively new technique to obtain the ratio of the two form factors of the proton, namely polarization. An intense beam of highly polarized electrons with energy up to 6 GeV was made to interact elastically with un-polarized protons in a hydrogen target. The polarization of the recoiling protons, with energies up to 5 GeV, was measured from a second interaction in a polarimeter consisting of blocs of graphite or CH2 and tracking wire chambers. The scattered electrons were detected in an electromagnetic lead-glass calorimeter, to select elastically scattered events. After a short introduction describing the path which brought me from the University of Geneva to the College of William and Mary in 1966, I will introduce the subject of elastic electron scattering, describe some of the apparatus required for such experiments, and show the results which were unexpected at the time. These results demonstrated unequivocally that the two form factors required to describe elastic ep scattering, electric GE and magnetic GM in the Born approximation, had a drastically different dependence upon the four-momentum squared q2 = q2 -ω2 with q the momentum, and ω the energy transferred in the reaction. The finding, in flagrant disagreement with the data available at the time, which had been obtained dominantly from cross section measurements of the type first used by Nobel Prize R. Hofstadter 60 years ago, have led to a reexamination of the information provided by form factors on the structure of the nucleon, in particular its quark-gluon content. The conclusion will then be a brief outline of several theoretical considerations to put the results in a proper perspective.

  2. Scattering form factors for self-assembled network junctions

    Science.gov (United States)

    Foster, T.; Safran, S. A.; Sottmann, T.; Strey, R.

    2007-11-01

    The equilibrium microstructures in microemulsions and other self-assembled systems show complex, connected shapes such as symmetric bicontinuous spongelike structures and asymmetric bicontinuous networks formed by cylinders interconnected at junctions. In microemulsions, these cylinder network microstructures may mediate the structural transition from a spherical or globular phase to the bicontinuous microstructure. To understand the structural and statistical properties of such cylinder network microstructures as measured by scattering experiments, models are needed to extract the real-space structure from the scattering data. In this paper, we calculate the scattering functions appropriate for cylinder network microstructures. We focus on such networks that contain a high density of network junctions that connect the cylindrical elements. In this limit, the network microstructure can be regarded as an assembly of randomly oriented, closed packed network junctions (i.e., the cylinder scattering contributions are neglected). Accordingly, the scattering spectrum of the network microstructure can be calculated as the product of the junction number density, the junction form factor, which describes the scattering from the surface of a single junction, and a structure factor, which describes the local correlations of different junctions due to junction interactions (including their excluded volume). This approach is applied to analyze the scattering data from a bicontinuous microemulsion with equal volumes of water and oil. In a second approach, we included the cylinder scattering contribution in the junction form factor by calculating the scattering intensity of Y junctions to which three rods with spherical cross section are attached. The respective theoretical predictions are compared with results of neutron scattering measurements on a water-in-oil microemulsion with a connected microstructure.

  3. Kaon Eletromagnetic Form Factor in the Light-Front Formalism

    CERN Document Server

    Pereira, F P; Frederico, T; Tomio, L; Pereira, Fabiano P.; Tomio, Lauro

    2005-01-01

    Numerical calculations are performed and compared to the experimental data for the electromagnetic form factor of the kaon, which is extracted from both components of the electromagnetic current, $J^{+}$ and $J^{-}$, with a pseudo-scalar coupling of the quarks to the kaon. In the case of $J^{+}$ there is no pair term contribution in the Drell-Yan frame ($q^{+}=0$). However, for $J^{-}$, the pair term contribution is different from zero and necessary in order to preserve the rotational symmetry of the current. The free parameters are the quark masses and the regulator mass.

  4. Nucleon electromagnetic form factors in twisted mass lattice QCD

    CERN Document Server

    Alexandrou, C; Carbonell, J; Constantinou, M; Harraud, P A; Guichon, P; Jansen, K; Korzec, T; Papinutto, M

    2011-01-01

    We present results on the nucleon electromagnetic form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cut-off effects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 and a=0.056 fm. The nucleon magnetic moment, Dirac and Pauli radii are obtained in the continuum limit and chirally extrapolated to the physical pion mass allowing for a comparison with experiment.

  5. Nucleon form factors with Nf=2 dynamical twisted mass fermions

    CERN Document Server

    Alexandrou, C; Koutsou, G; Baron, R; Guichon, P; Brinet, M; Carbonell, J; Harraud, P -A; Jansen, K

    2009-01-01

    We present results on the electromagnetic and axial nucleon form factors using two degenerate flavors of twisted mass fermions on lattices of spatial size 2.1 fm and 2.7 fm and a lattice spacing of about 0.09 fm. We consider pion masses in the range of 260-470 MeV. We chirally extrapolate results on the nucleon axial ch arge, the isovector Dirac and Pauli root mean squared radii and magnetic moment to the physical point and co mpare to experiment.

  6. Minimal form factor digital-image sensor for endoscopic applications

    Science.gov (United States)

    Wäny, Martin; Voltz, Stephan; Gaspar, Fabio; Chen, Lei

    2009-02-01

    This paper presents a digital image sensor SOC featuring a total chip area (including dicing tolerances) of 0.34mm2 for endoscopic applications. Due to this extremely small form factor the sensor enables integration in endoscopes, guide wires and locater devices of less than 1mm outer diameter. The sensor embeds a pixel matrix of 10'000 pixels with a pitch of 3um x 3um covered with RGB filters in Bayer pattern. The sensor operates fully autonomous, controlled by an on chip ring oscillator and readout state machine, which controls integration AD conversion and data transmission, thus the sensor only requires 4 pin's for power supply and data communication. The sensor provides a frame rate of 40Frames per second over a LVDS serial data link. The endoscopic application requires that the sensor must work without any local power decoupling capacitances at the end of up to 2m cabling and be able to sustain data communication over the same wire length without deteriorating image quality. This has been achieved by implementation of a current mode successive approximation ADC and current steering LVDS data transmission. An band gap circuit with -40dB PSRR at the data frequency was implemented as on chip reference to improve robustness against power supply ringing due to the high series inductance of the long cables. The B&W versions of the sensor provides a conversion gain of 30DN/nJ/cm2 at 550nm with a read noise in dark of 1.2DN when operated at 2m cable. Using the photon transfer method according to EMVA1288 standard the full well capacity was determined to be 18ke-. According to our knowledge the presented work is the currently world smallest fully digital image sensor. The chip was designed along with a aspheric single surface lens to assemble on the chip without increasing the form factor. The extremely small form factor of the resulting camera permit's to provide visualization with much higher than state of the art spatial resolution in sub 1mm endoscopic

  7. CEBAF at higher energies and the kaon electromagnetic form factor

    Energy Technology Data Exchange (ETDEWEB)

    Baker, O.K.

    1994-04-01

    The electromagnetic production of strangeness, the physics of exciting systems having strangeness degrees of freedom (production of hadrons with one or more strange constituent quarks) using electromagnetic probes (real or virtual photons), is one of the frontier areas of research which will be investigated at the Continuous Electron Beam Accelerator Facility (CEBAF) when it becomes operational. CEBAF is expected to have an important impact upon this field of research using its specialized set of detection instruments and high quality electron beam. This paper focusses upon one aspect of the associated production of strangeness - the determination of the kaon electromagnetic form factor at high squared momentum transfers.

  8. The JLab polarization transfer measurements of proton elastic form factor

    Indian Academy of Sciences (India)

    C F Perdrisat; V Punjabi

    2003-11-01

    The ratio of the electric and magnetic proton form factors, /, has been obtained in two Hall A experiments, from measurements of the longitudinal and transverse polarizations of the recoil proton, ℓ and , in the elastic scattering of polarized electrons, $\\overrightarrow{e}p→ e\\overrightarrow{p}$. Together these experiments cover the 2 range of 0.5 to 5.6 GeV2. A new experiment is currently being prepared, to extend the 2 range to 9 GeV2 in Hall C.

  9. Tests of Higgs boson compositeness through the HHH form factor

    CERN Document Server

    Gounaris, G J

    2015-01-01

    We show how the $q^2$-dependence of the triple Higgs boson HHH form factor can reveal the presence of various types of new physics contributions, like new particles coupled to the Higgs boson or Higgs boson constituents, without directly observing them. We compare the effect of such new contributions to the one of higher order SM corrections to the point-like HHH coupling, due to triangle, 4-leg and s.e. diagrams. We establish simple analytic expressions describing accurately at high energy these SM corrections, as well as the examples of new physics contributions.

  10. Introducing soil forming factors with mini campus field trips

    Science.gov (United States)

    Quinton, John; Haygarth, Phil

    2013-04-01

    Students like field work, yet the proportion of time spent in the field during many soil science courses is small. Here we describe an introductory lecture on the soil forming factors based around a mini field trip in which we spend 45 minutes exploring these factors on the Lancaster University campus. In the 'trip' we visit some woodland to consider the effects of organic matter , vegetation and time on soil development and then take in a football pitch to examine the effects of landscape position, parent material and climate. Student responses are overwhelmingly positive and we suggest that more use can be made of our often mundane surroundings to explore soil formation. Soil functions and soil processes.

  11. Electromagnetic form factors and static properties of the nucleon in a relativistic potential model of independent quarks with chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Dash, B.K.

    1986-10-01

    Nucleon charge and magnetic form factors G/sub E//sub ,//sub M//sup p//sup ,//sup n/(q/sup 2/) have been presented in a quark model with an equally mixed scalar and vector potential in harmonic form taking the pionic contributions into account. The static properties such as the magnetic moment, charge radius, and axial-vector coupling constant in the neutron-..beta..-decay process are shown to be in excellent agreement with the corresponding experimental values. The role of the finite extension of the quark-pion vertex in determining the charge radius and magnetic moment due to the pion cloud surrounding the nucleons has been studied.

  12. Closed-form solution of mid-potential between two parallel charged plates with more extensive application

    Institute of Scientific and Technical Information of China (English)

    商翔宇; 杨晨; 周国庆

    2015-01-01

    Efficient calculation of the electrostatic interactions including repulsive force between charged molecules in a biomolecule system or charged particles in a colloidal system is necessary for the molecular scale or particle scale me-chanical analyses of these systems. The electrostatic repulsive force depends on the mid-plane potential between two charged particles. Previous analytical solutions of the mid-plane potential, including those based on simplified assumptions and modern mathematic methods, are reviewed. It is shown that none of these solutions applies to wide ranges of inter-particle distance from 0 to 10 and surface potential from 1 to 10. Three previous analytical solutions are chosen to develop a semi-analytical solution which is proven to have more extensive applications. Furthermore, an empirical closed-form expression of mid-plane potential is proposed based on plenty of numerical solutions. This empirical solution has extensive applications, as well as high computational efficiency.

  13. Measurement of the Neutral Weak Form Factors of the Proton

    Energy Technology Data Exchange (ETDEWEB)

    Deur, Alexandre; Fleck, Andre; Saha, Arunava; Gasparian, Ashot; Frois, Bernard; Wojtsekhowski, Bogdan; Vlahovic, Branislav; Perdrisat, Charles; Cavata, Christian; Jutier, Christophe; De Jager, Cornelis; Neyret, Damien; Dale, Daniel; Armstrong, David; Lhuillier, David; Prout, David; Margaziotis, Demetrius; Kim, Donghee; Burtin, Etienne; Chudakov, Eugene; Hersman, F.; Garibaldi, Franco; Marie, Frederic; Miller, Greg; Rutledge, Gary; Gerstner, George; Petratos, Gerassimos; Quemener, Gilles; Cates, Gordon; Thompson, J.; Martino, Jacques; Gomez, Javier; Jorda, Jean-Paul; Hansen, Jens-Ole; Chen, Jian-Ping; Jardillier, Johann; Calarco, John; LeRose, John; Price, John; Gao, Juncai; McIntyre, Justin; McCormick, Kathy; Fissum, Kevin; Kramer, Kevin; Aniol, Konrad; Kumar, Krishna; Wijesooriya, Krishni; Ewell, Lars; Todor, Luminita; Spradlin, Marcus; Jones, Mark; Leuschner, Mark; Epstein, Martin; Baylac, Maud; Holtrop, Maurik; Finn, Michael; Kuss, Michael; Kim, Min; Falletto, Nicolas; Liyanage, Nilanga; Glamazdin, Oleksandr; Rutt, Paul; Souder, Paul; Ulmer, Paul; Mastromarino, Peter; Djawotho, Pibero; Wilson, Richard; Suleiman, Riad; Holmes, Richard; Madey, Richard; Lourie, Robert; Michaels, Robert; Pomatsalyuk, Roman; Gilman, Ronald; Incerti, Sebastien; Escoffier, Stephanie; Pussieux, Thierry; Humensky, Thomas; Gorbenko, Viktor; Punjabi, Vina; Kahl, William; Meziani, Zein-Eddine

    1999-02-01

    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton. The kinematic point [(Thetalab) = 12.3r and (Q2) = 0.48 (GeV/c)2] is chosen to provide sensitivity, at a level that is of theoretical interest, to the strange electric form factor GsE. The result, A = - 14.5 + or - 2.2 ppm, is consistent with the electroweak standard model and no additional contributions from strange quarks. In particular, the measurement implies GsE + 0.39GsM = 0.023 + or - 0.034(stat) + or - 0.022(syst) + or - 0.026(delta-GnE), where the last uncertainty arises from the estimated uncertainty in the neutron electric form factor.

  14. Vector meson dominance and the pi^0 transition form factor

    CERN Document Server

    Lichard, Peter

    2010-01-01

    It is shown that the pi^0 transition form factor F(Q_1^2,Q_2^2) differs substantially from its one-real-photon limit F(Q_1^2,0) even for rather small values of Q_2^2 (approx 0.1 GeV^2), which cannot be excluded in experiments with one "untagged" electron. It indicates that the comparison of data with theoretical calculations, which usually assume Q_2^2=0, may be untrustworthy. Our phenomenological model of the pi^0 transition form factor is based on the vector-meson-dominance (VMD) hypothesis and all its parameters are fixed by using the experimental data on the decays of vector mesons. The model soundness is checked in the two-real-photon limit, where it provides a good parameter-free description of the pi^0 -> 2 gamma decay rate, and in the pi^0 Dalitz decay. The dependence of F(Q_1^2,Q_2^2) on Q_1^2 at several fixed values of Q_2^2 is presented and the comparison with existing data performed.

  15. The photon-pion transition form factor: incompatible data or incompatible models?

    CERN Document Server

    de Melo, J P B C; Frederico, T

    2013-01-01

    The elastic and $\\gamma \\to \\pi$ transition form factors of the pion along with its usual static observables are calculated within a light-front field approach to the constituent quark model. The focus of this exercise in a simple model is on a unified description of all observables with one singly parametrized light-front wave function to detect possible discrepancies in experimental data, in particular the contentious large momentum-squared data on the transition factor as reported by BaBar and Belle. We also discuss the relation of a small to vanishing pion charge radius with an almost constant pion distribution amplitude and compare our results with those obtained in a holographic light-front model.

  16. Light meson electromagnetic form factors from three-flavor lattice QCD with exact chiral symmetry

    Science.gov (United States)

    Aoki, S.; Cossu, G.; Feng, X.; Hashimoto, S.; Kaneko, T.; Noaki, J.; Onogi, T.

    2016-02-01

    We study the chiral behavior of the electromagnetic (EM) form factors of pions and kaons in three-flavor lattice QCD. In order to make a direct comparison of the lattice data with chiral perturbation theory (ChPT), we employ the overlap quark action that has exact chiral symmetry. Gauge ensembles are generated at a lattice spacing of 0.11 fm with four pion masses ranging between Mπ≃290 MeV and 540 MeV and with a strange quark mass ms close to its physical value. We utilize the all-to-all quark propagator technique to calculate the EM form factors with high precision. Their dependence on ms and on the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields, respectively. A detailed comparison with SU(2) and SU(3) ChPT reveals that the next-to-next-to-leading order terms in the chiral expansion are important to describe the chiral behavior of the form factors in the pion mass range studied in this work. We estimate the relevant low-energy constants and the charge radii, and find reasonable agreement with phenomenological and experimental results.

  17. Analysis of Nucleon Electromagnetic Form Factors from Light-Front Holographic QCD : The Space-Like Region

    CERN Document Server

    Sufian, Raza Sabbir; Brodsky, Stanley J; Deur, Alexandre; Dosch, Hans Günter

    2016-01-01

    We present a comprehensive analysis of the nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front holographic QCD. We show that the inclusion of the higher Fock components $|qqqq\\bar{q}>$ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD predictions of proton and neutron form factors in the momentum transfer range of $0\\leq Q^2 \\leq 20\\, \\text{GeV}^2$ and show that these predictions agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30$\\%$ in the proton and about 40$\\%$ in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The number of free parameters needed to describe the experimental nucleon form factors in the space-like domain...

  18. Algebraic approach to form factors in the complex sinh-Gordon theory

    CERN Document Server

    Lashkevich, Michael

    2016-01-01

    We study form factors of the quantum complex sinh-Gordon theory in the algebraic approach. In the case of exponential fields the form factors can be obtained from the known form factors of the $Z_N$-symmetric Ising model. The algebraic construction also provides an Ansatz for form factors of descendant operators. We obtain generating functions of such form factors and establish their main properties: the cluster factorization and reflection equations.

  19. Algebraic approach to form factors in the complex sinh-Gordon theory

    Science.gov (United States)

    Lashkevich, Michael; Pugai, Yaroslav

    2017-01-01

    We study form factors of the quantum complex sinh-Gordon theory in the algebraic approach. In the case of exponential fields the form factors can be obtained from the known form factors of the ZN-symmetric Ising model. The algebraic construction also provides an Ansatz for form factors of descendant operators. We obtain generating functions of such form factors and establish their main properties: the cluster factorization and reflection equations.

  20. Charge-density analysis of 1-nitroindoline: refinement quality using free R factors and restraints.

    Science.gov (United States)

    Zarychta, Bartosz; Zaleski, Jacek; Kyzioł, Janusz; Daszkiewicz, Zdzisław; Jelsch, Christian

    2011-06-01

    Nitramines and related N-nitro compounds have attracted significant attention owing to their use in rocket fuel and as explosives. The charge density of 1-nitroindoline was determined experimentally and from theoretical calculations. Electron-density refinements were performed using the multipolar atom formalism. In order to design the ideal restraint strategy for the charge-density parameters, R-free analyses were performed involving a series of comprehensive refinements. Different weights were applied to the charge-density restraints, namely the similarity between chemically equivalent atoms and local symmetry. Additionally, isotropic thermal motion and an anisotropic model calculated by rigid-body analysis were tested on H atoms. The restraint weights which resulted in the lowest values of the averaged R-free factors and the anisotropic H-atom model were considered to yield the best charge density and were used in the final refinement. The derived experimental charge density along with intra- and intermolecular interactions was analysed and compared with theoretical calculations, notably with respect to the symmetry of multipole parameters. A comparison of different refinements suggests that the appropriate weighting scheme applied to charge-density restraints can reduce the observed artefacts. The topological bond orders of the molecule were calculated.

  1. Current correlators and form factors in the resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Rosell, I. [Departamento de Ciencias Fisicas, Matematicas y de la Computacion, Universidad CEU Cardenal Herrera, c/Sant Bartomeu 55, E-46115 Alfara del Patriarca, Valencia (Spain); IFIC, Universitat de Valencia - CSIC, Apt. Correus 22085, E-46071 Valencia (Spain)

    2009-01-15

    Within Resonance Chiral Theory and in the context of QCD current correlators at next-to-leading order in 1/N{sub C}, we have analyzed the two-body form factors which include resonances as a final state. The short-distance constraints have been studied. One of the main motivations is the estimation of the chiral low-energy constants at subleading order, that is, keeping full control of the renormalization scale dependence. As an application we show the resonance estimation of some coupling, L{sub 10}{sup r}({mu}{sub 0})=(-4.4{+-}0.9).10{sup -3} and C{sub 87}{sup r}({mu}{sub 0})=(3.1{+-}1.1).10{sup -5}.

  2. Geometrical form factor calculation using Monte Carlo integration for lidar

    Science.gov (United States)

    Mao, Feiyue; Gong, Wei; Li, Jun

    2012-06-01

    We proposed a geometrical form factor (GFF) calculation using Monte Carlo integration (GFF-MC) for lidar that is practical and can be applied to any laser intensity distribution. Theoretical results have been calculated with our method based on the functions of measured, uniform and Gaussian laser intensity distribution. Two experimental GFF traces on clear days are obtained to verify the validity of the theoretical results. The results indicated that the measured distribution function outperformed the Gaussian and uniform functions. That means that the deviation of the measured laser intensity distribution from an ideal one can be too large to neglect. In addition, the theoretical GFF of the uniform distribution had a larger error than that of the Gaussian distribution. Furthermore, the effects of the inclination angle of the laser beam and the central obstruction of the support structure of the second mirror of the telescope are discussed in this study.

  3. Form factors and related quantities in clothed-particle representation

    Directory of Open Access Journals (Sweden)

    Shebeko Alexander

    2017-01-01

    Full Text Available We show new applications of the notion of clothed particles in quantum field theory. Its realization by means of the clothing procedure put forward by Greenberg and Schweber allows one to express the total Hamiltonian H and other generators of the Poincaré group for a given system of interacting fields through the creation (annihilation operators for the so-called clothed particles with physical (observed properties. Here such a clothed particle representation is used to calculate the matrix elements (shortly, form factors of the corresponding Nöther current operators sandwiched between the H eigenstates. Our calculations are performed with help of an iterative technique suggested by us earlier when constructing the NN → πNN transition operators. As an illustration, we outline some application of our approach in the spinor quantum electrodynamics.

  4. Form factor approach to dynamical correlation functions in critical models

    CERN Document Server

    Kitanine, N; Maillet, J M; Slavnov, N A; Terras, V

    2012-01-01

    We develop a form factor approach to the study of dynamical correlation functions of quantum integrable models in the critical regime. As an example, we consider the quantum non-linear Schr\\"odinger model. We derive long-distance/long-time asymptotic behavior of various two-point functions of this model. We also compute edge exponents and amplitudes characterizing the power-law behavior of dynamical response functions on the particle/hole excitation thresholds. These last results confirm predictions based on the non-linear Luttinger liquid method. Our results rely on a first principles derivation, based on the microscopic analysis of the model, without invoking, at any stage, some correspondence with a continuous field theory. Furthermore, our approach only makes use of certain general properties of the model, so that it should be applicable, with possibly minor modifications, to a wide class of (not necessarily integrable) gapless one dimensional Hamiltonians.

  5. Thin and small form factor cells : simulated behavior.

    Energy Technology Data Exchange (ETDEWEB)

    Clews, Peggy Jane; Pluym, Tammy; Grubbs, Robert K.; Cruz-Campa, Jose Luis; Zubia, David (University of Texas at El Paso, El Paso, TX); Young, Ralph Watson; Okandan, Murat; Gupta, Vipin P.; Nielson, Gregory N.; Resnick, Paul James

    2010-07-01

    Thin and small form factor cells have been researched lately by several research groups around the world due to possible lower assembly costs and reduced material consumption with higher efficiencies. Given the popularity of these devices, it is important to have detailed information about the behavior of these devices. Simulation of fabrication processes and device performance reveals some of the advantages and behavior of solar cells that are thin and small. Three main effects were studied: the effect of surface recombination on the optimum thickness, efficiency, and current density, the effect of contact distance on the efficiency for thin cells, and lastly the effect of surface recombination on the grams per Watt-peak. Results show that high efficiency can be obtained in thin devices if they are well-passivated and the distance between contacts is short. Furthermore, the ratio of grams per Watt-peak is greatly reduced as the device is thinned.

  6. Study of the phi-pi0 transition form factor

    CERN Document Server

    Pacetti, Simone

    2009-01-01

    Recently the BaBar Collaboration published new data on the cross section for the annihilation e+e- -> phi pi0, obtained using the initial state radiation technique at a center of mass energy of 10.6 GeV. Such a process represents an interesting test bed for the quark model. Indeed, since the phi-pi0 production via e+e- annihilation proceeds through a mechanism which violates the Okubo-Zweig-Iizuka rule, the corresponding cross section could be characterized by contributions from non-qqbar bound states, like hybrids or tetraquarks. The phi-pi0 cross section is analyzed in connection with other data coming from different processes, that involve the same mesons, using a method which implements the analyticity in the phi-pi0 transition form factor by means of a dispersion relation procedure.

  7. Pion Form Factor in QCD at Intermediate Momentum Transfers

    CERN Document Server

    Braun, V M; Maul, M

    1999-01-01

    We present a quantitative analysis of the electromagnetic pion form factor in the light-cone sum rule approach, including radiative corrections and higher-twist effects. The comparison to the existing data favors the asymptotic profile of the pion distribution amplitude and allows to estimate the deviation: $(\\int du/u \\phi_\\pi(u))/ (\\int du/u \\phi^{\\rm as}_\\pi(u))=$ 1.1$\\pm$ 0.1 at the scale 1 GeV. Special attention is payed to the precise definition and interplay of soft and hard contributions at intermediate momentum transfer, and to matching of the sum rule to the perturbative QCD prediction. We observe a strong numerical cancellation between the soft (end point) contribution and power suppressed hard contributions of higher twist, so that the total nonperturbative correction to the usual pQCD result turns out to be of order 30% for $Q^2\\sim 1$ GeV$^2$.

  8. Measurement of Baryon Electromagnetic Form Factors at BESIII

    CERN Document Server

    Morales, Cristina Morales

    2016-01-01

    The Beijing $e^+e^-$-collider (BEPCII) is a double-ring symmetric collider running at center-of-mass energies between 2.0 and 4.6 GeV. This energy range allows the BESIII-experiment to measure baryon electromagnetic form factors in direct $e^+e^-$-annihilation and in initial state radiation processes. In this paper, results on $e^+e^-\\rightarrow p\\bar{p}$ and $e^+e^-\\rightarrow \\Lambda \\bar{\\Lambda}$ based on data collected by BESIII in 2011 and 2012 are presented. Expectations from the BESIII high luminosity energy scan from 2015 and from radiative return at different center-of-mass energies are also reported.

  9. Clean measurements of the nucleon axial-vector and free-neutron magnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Deur, Alexandre P. [JLAB

    2013-11-01

    We discuss the feasibility of a weak charged current experiment using a low energy electron beam. A first goal is to measure the Q^2 dependence of the axial-vector form factor g_a(Q^2). It can be measured model-independently and as robustly as for electromagnetic form factors from typical electron scattering experiments, in contrast to the methods used so far to measure g_a(Q^2). If g_a(Q^2) follows a dipole form, the axial mass can be extracted with a better accuracy than the world data altogether. The most important detection equipment would be a segmented neutron detector with good momentum and angular resolution that is symmetric about the beam direction, and covers a moderate angular range. A high intensity beam (100 uA) is necessary. Beam polarization is highly desirable as it provides a clean measurement of the backgrounds. Beam energies between 70 and 110 MeV are ideal. This range would provide a Q^2 mapping of g_a between 0.01

  10. Nucleon form factors and static properties of baryons in a quark model

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N. (Department of Physics, Utkal University, Bhubaneswar 751004, Orissa, India (IN) ); Jena, S.N. (Department of Physics, Berhampur University, Berhampur 760007, Orissa, India (IN)); Rath, D.P. (Department of Physics, Aska Science College, Aska 761110, Orissa, India (IN))

    1990-03-01

    The nucleon electromagnetic form factors {ital G}{sub {ital E}}{sup {ital p}}(q{sup 2}), {ital G}{sub {ital M}}{sup {ital p}}(q{sup 2}), {ital G}{sub {ital M}}{sup {ital n}}(q{sup 2}), and the axial-vector form factor {ital G}{sub {ital A}}(q{sup 2}) are calculated in a simple independent-quark model based on the Dirac equation with a logarithmic confining potential of the form {ital V}{prime}({ital r})=(1+{gamma}{sup 0})a ln({ital r}/{ital b}). The respective rms radii associated with {ital G}{sub {ital E}}{sup {ital p}}(q{sup 2}) and {ital G}{sub {ital A}}(q{sup 2}) come out as ({l angle}{ital r}{sup 2}{r angle}{sub E}{sup P}){sup 1/2}=0.938 fm and {l angle}{ital r}{sub {ital A}}{sup 2}{r angle}{sup 1/2}=0.953 fm. The magnetic moments, charge radii, and axial-vector coupling-constant ratios for octet baryons are also calculated with the appropriate center-of-mass correction. The results so obtained are quite comparable to experimental data.

  11. Gyromagnetic factor of rotating disks of electrically charged dust in general relativity

    Science.gov (United States)

    Liu Pynn, Yu-Chun; Macedo, Rodrigo Panosso; Breithaupt, Martin; Palenta, Stefan; Meinel, Reinhard

    2016-11-01

    We calculated the dimensionless gyromagnetic ratio ("g -factor") of self-gravitating, uniformly rotating disks of dust with a constant specific charge ɛ . These disk solutions to the Einstein-Maxwell equations depend on ɛ and a "relativity parameter" γ (0 <γ ≤1 ) up to a scaling parameter. Accordingly, the g -factor is a function g =g (γ ,ɛ ). The Newtonian limit is characterized by γ ≪1 , whereas γ →1 leads to a black-hole limit. The g -factor, for all ɛ , approaches the values g =1 as γ →0 and g =2 as γ →1 .

  12. Gyromagnetic factor of rotating disks of electrically charged dust in general relativity

    CERN Document Server

    Pynn, Yu-Chun; Breithaupt, Martin; Palenta, Stefan; Meinel, Reinhard

    2016-01-01

    We calculated the dimensionless gyromagnetic ratio ("$g$-factor") of self-gravitating, uniformly rotating disks of dust with a constant specific charge $\\epsilon$. These disk solutions to the Einstein-Maxwell equations depend on $\\epsilon$ and a "relativity parameter" $\\gamma$ ($0<\\gamma\\le 1$) up to a scaling parameter. Accordingly, the $g$-factor is a function $g=g(\\gamma,\\epsilon)$. The Newtonian limit is characterized by $\\gamma \\ll 1$, whereas $\\gamma\\to 1$ leads to a black-hole limit. The $g$-factor, for all $\\epsilon$, approaches the values $g=1$ as $\\gamma\\to 0$ and $g=2$ as $\\gamma\\to 1$.

  13. Chemical and Charge Imbalance Induced by Radionuclide Decay: Effects on Waste Form Structure

    Energy Technology Data Exchange (ETDEWEB)

    Van Ginhoven, Renee M.; Jaffe, John E.; Jiang, Weilin; Strachan, Denis M.

    2011-04-01

    This is a milestone document covering the activities to validate theoretical calculations with experimental data for the effect of the decay of 90Sr to 90Zr on materials properties. This was done for a surragate waste form strontium titanate.

  14. Strange Baryon Electromagnetic Form Factors and SU(3) Flavor Symmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Huey-Wen; Orginos, Konstantinos

    2009-01-01

    We study the nucleon, Sigma and cascade octet baryon electromagnetic form factors and the effects of SU(3) flavor symmetry breaking from 2+1-flavor lattice calculations. We find that electric and magnetic radii are similar; the maximum discrepancy is about 10\\%. In the pion-mass region we explore, both the quark-component and full-baryon moments have small SU(3) symmetry breaking. We extrapolate the charge radii and the magnetic moments using three-flavor heavy-baryon chiral perturbation theory (HBXPT). The systematic errors due to chiral and continuum extrapolations remain significant, giving rise to charge radii for $p$ and $\\Sigma^-$ that are 3--4 standard deviations away from the known experimental ones. Within these systematics the predicted $\\Sigma^+$ and $\\Xi^-$ radii are 0.67(5) and 0.306(15)~fm$^2$ respectively. When the next-to-next-to-leading order of HBXPT is included, the extrapolated magnetic moments are less than 3 standard deviations away from PDG values, and the d

  15. Determination of the Axial Nucleon Form Factor from the MiniBooNE Data

    Energy Technology Data Exchange (ETDEWEB)

    Butkevich, A. V. [Moscow, INR; Perevalov, D. [Fermilab

    2014-03-26

    Both neutrino and antineutrino charged-current quasi-elastic scattering on a carbon target are studied to investigate the nuclear effect on the determination of the axial form factor F_A(Q^2). A method for extraction of F_A(Q^2) from the flux-integrated $d\\sigma/dQ^2$ cross section of (anti)neutrino scattering on nuclei is presented. Data from the MiniBooNE experiment are analyzed in the relativistic distorted-wave impulse approximation, Fermi gas model, and in the Fermi gas model with enhancements in the transverse cross section. We found that the values of the axial form factor, extracted in the impulse approximation and predicted by the dipole approximation with the axial mass M_A~1.37 GeV are in good agreement. On the other hand, the Q^2-dependence of F_A extracted in the approach with the transverse enhancement is found to differ significantly from the dipole approximation.

  16. Three-Loop Slope of the Dirac Form Factor and the 1S Lamb Shift in Hydrogen.

    Science.gov (United States)

    Melnikov, K; van Ritbergen, T

    2000-02-21

    The last unknown contribution to hydrogen energy levels at order mα^{7}, due to the slope of the Dirac form factor at three loops, is evaluated in a closed analytical form. The resulting shift of the hydrogen nS energy level is found to be 3.016/n^{3} kHz. Using the QED calculations of the 1S Lamb shift, we extract a precise value of the proton charge radius r_{p}=0.883±0.014 fm.

  17. Conserved charge of gravity theory with $p$-form gauge fields and its property under Kaluza-Klein reduction

    CERN Document Server

    Peng, Jun-Jin

    2016-01-01

    In this paper, we investigate the conserved charges of generally diffeomorphism invariant gravity theories with a wide variety of matter fields, particularly of the theories with multiple scalar fields and $p$-form potentials, in the context of the off-shell generalized Abbott-Deser-Tekin (ADT) formalism. We first construct a new off-shell ADT current that consists of the terms for the variation of a Killing vector and expressions of the field equations as well as the Lie derivative of a surface term with respect to the Killing vector within the framework of generally diffeomorphism invariant gravity theories involving various matter fields. After deriving the off-shell ADT potential corresponding to this current, we propose a formula of conserved charges for these theories due to the potential. Next, we derive the off-shell ADT potential associated with the generic Lagrangian that describes a large range of gravity theories with a number of scalar fields and $p$-form potentials. Finally, the properties of th...

  18. Comparison of microstructures in electroformed and spin-formed copper liners of shaped charge undergone high-strain-rate deformation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The as-formed and post-deformed microstructures in both electroformed and spin-formed copper liners of shaped charge were studied by optical microscopy(OM), electron backscattering Kikuchi patterns(EBSP) technique and transmission electron microscopy(TEM). The deformation was carried out at an ultra-high strain rate. OM analysis shows that the initial grains of the electroformed copper liner are finer than those of the spin-formed copper liners. Meanwhile, EBSP analysis reveals that the fiber texture exists in the electroformed copper liners, whereas there is no texture observed in the spin-formed copper liners before deformation. Having undergone high-strain-rate deformation the grains in the recovered slugs, which are transformed from both the electroformed and spin-formed copper liners, all become small. TEM observations of the above two kinds of post-deformed specimens show the existence of cellular structures characterized by tangled dislocations and subgrain boundaries consisting of dislocation arrays. These experimental results indicate that dynamic recovery and recrystallization play an important role in the high-strain-rate deformation process.

  19. Local Quark-Hadron Duality and Magnetic Form Factors of Bound Proton

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-Min; ZHANG Ben-Ai

    2005-01-01

    We discuss the consequence of local duality for elastic scattering, and derive a model-independent equation between structure functions at x ~ 1 and elastic electromagnetic form factors. Then the electromagnetic form factors of proton are discussed using the quark-hadron duality theory. We also debate the form factor of proton in a bound state.It may be an effective approach to study the form factor of proton in media.

  20. A spectroscopic study of factors affecting charge transfer at organo-metallic interfaces

    CERN Document Server

    Tucker, C E

    2001-01-01

    polydiacetylene and omega-tricosenoic acid LB films. The resulting analyses have allowed comparison of charge trapping within the different bulk films and also at the film to substrate interface. In addition to DBARS, Fourier Transform Infra-red (FTIR) and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopies have been used to investigate the factors affecting the carboxylic acid group at the head of the LB molecule and the role this plays in charge transport across the organo-metallic boundary. The properties of organic films produced by the Langmuir-Blodgett (LB) technique have become more widely known in the last few decades, as the variety of organic molecules suitable for this method of production has increased. One class of LB molecule receiving particular attention has been that of conjugated polymers. These organic materials exhibit an anisotropic semi-conductor like behavior along the polymer chain, making them suitable candidate materials for use in molecular electronic devices. However,...

  1. A Model for the Colour Form Factor of the Proton

    CERN Document Server

    Dischler, J

    2000-01-01

    The total cross-section and the jet cross-section differ at a proton-proton collision. The latter is divergent if arbitrarily small transverse momenta are allowed. Even with some fixed lower pt cutoff, increases the jet cross-section much faster than the total cross-section at high energies. We have in this paper studied how the divergence could be tamed by colour screening effects among the partons. To do this we have built a proton model where we assign momenta, positions and colour-charge to all partons in the proton. We find that the relative behaviour of the cross-section can be better understood by the inclusion of this effect.

  2. Bs → f0(980) Transition Form Factors Within the kT Factorization Approach

    Institute of Scientific and Technical Information of China (English)

    ZENG Dai-Min; FANG Zhen-Yun

    2013-01-01

    In the paper,we apply the kT factorization approach to deal with the Bs → f0(980) transition form factors in the large recoil regions,i.e.the small q2 regions.For the purpose,we adopt the B-meson wave-functions ΨB,ψ B and δ that include the three-Fock states contributions to do our discussion.Although the scalar meson f0(980) is widely perceived as the 4-quark bound state (scenario 2),but the distribution amplitudes of 4-quark states are still unknown to us,so we adopt 2-quark model (scenario 1) for scalar meson f0(980) in our discussion.By varying the B-meson wave-function parameters within their reasonable regions,we obtain F0(0) =F+(0) =0.20 ± 0.02,FT(0) =0.24 ± 0.02.Our present results for these form factors are consistent with the light-cone sum rule results obtained in the literature.

  3. Strontium Insertion in Methylammonium Lead Iodide: Long Charge Carrier Lifetime and High Fill-Factor Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-del-Rey, Daniel [Instituto de Ciencia Molecular, Universidad de Valencia, C/J. Beltran 2 46980 Paterna Spain; Forgács, Dávid [Instituto de Ciencia Molecular, Universidad de Valencia, C/J. Beltran 2 46980 Paterna Spain; Hutter, Eline M. [Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft The Netherlands; Savenije, Tom J. [Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft The Netherlands; Nordlund, Dennis [Stanford Linear Accelerator Campus, Stanford Synchrotron Laboratory, Menlo Park CA 94025 USA; Schulz, Philip [National Center for Photovoltaics, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Berry, Joseph J. [National Center for Photovoltaics, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Sessolo, Michele [Instituto de Ciencia Molecular, Universidad de Valencia, C/J. Beltran 2 46980 Paterna Spain; Bolink, Henk J. [Instituto de Ciencia Molecular, Universidad de Valencia, C/J. Beltran 2 46980 Paterna Spain

    2016-09-22

    The addition of Sr2+ in CH3NH3PbI3 perovskite films enhances the charge carrier collection efficiency of solar cells leading to very high fill factors, up to 85%. The charge carrier lifetime of Sr2+-containing perovskites is in excess of 40 us, longer than those reported for perovskite single crystals.

  4. Chemical Forms of Mercury in Soils and Their Influencing Factors

    Institute of Scientific and Technical Information of China (English)

    QINGCHANGLE; MOUSHUSEN; 等

    1998-01-01

    Experiments were carried out study the transformation of mercury in soils,Results showed that Hg2+ was immediatel converted into other forms once it entered into soils,Bentonite,humus or CaCO3 accelerated the transformaiton of Hg2+ by various mechanisms.Bentonite could convert Hg2+ into residual form eventually,and application of CaCO3 enhanced the formation of inorganic Hg,Humus competed strongly with clay minerals for binding Hg2+,thus increase of soil hums content led to increased formation of organically bound Hg.

  5. Bound Nucleon Form Factors, Quark-Hadron Duality, and Nuclear EMC Effect

    CERN Document Server

    Tsushima, K; Melnitchouk, W; Saitô, K; Thomas, A W

    2003-01-01

    We discuss the electromagnetic form factors, axial form factors, and structure functions of a bound nucleon in the quark-meson coupling (QMC) model. Free space nucleon form factors are calculated using the improved cloudy bag model (ICBM). After describing finite nuclei and nuclear matter in the quark-based QMC model, we compute the in-medium modification of the bound nucleon form factors in the same framework. Finally, limits on the medium modification of the bound nucleon $F_2$ structure function are obtained using the calculated in-medium electromagnetic form factors and local quark-hadron duality.

  6. Investigation on influence factors of dual laterologs curve form

    Institute of Scientific and Technical Information of China (English)

    Xiaomin FAN; Lei LU

    2008-01-01

    In order to investigate the influences of caliper, formation thickness and invaded zone on the form of dual laterologs, forward modeling technique were applied to calculate the dual laterologs for different cases. The result shows that the resistivity logs become smoother and lower as the borehole diameter increases, the increase of the contrast between mud resistivity and formation resistivity induce the logs to be more pointed. When the formation thickness is less than 1m, the two-peak on the logs for resistive invasion vanished, and for thickness between 1 m and 4 m, the form of logs does not vary significantly. If the formation thickness is greater than 4 m, a platform appears on the logs at the middle of the formation. The thinner the invaded zone is, the more obvious the invasion feature on the laterologs is. For thick invaded zone the form of logs tend to be that of an uninvaded resistive formation. The form and amplitude of logs depend on the resistivity contrast between invaded zone, uninvaded formation and adjacentlayers.

  7. Utility of Charge Transfer and Ion-Pair Complexation for Spectrophotometric Determination of Eletriptan Hydrobromide in Pure and Dosage Forms

    Directory of Open Access Journals (Sweden)

    Ayman A. Gouda

    2013-01-01

    Full Text Available Three simple, sensitive, and accurate spectrophotometric methods have been developed for the determination of eletriptan hydrobromide (ELT in pure and dosage forms. The first two methods are based on charge transfer complex formation between ELT and chromogenic reagents quinalizarin (Quinz and alizarin red S (ARS producing charge transfer complexes which showed an absorption maximum at 569 and 533 nm for Quinz and ARS, respectively. The third method is based on the formation of ion-pair complex between ELT with molybdenum(V-thiocyanate inorganic complex in hydrochloric acid medium followed by extraction of the colored ion-pair with dichloromethane and measured at 470 nm. Different variables affecting the reactions were studied and optimized. Beer's law is obeyed in the concentration ranges 2.0–18, 1.0–8.0, and 2.0–32 μg mL−1 for Quinz, ARS, and Mo(V-thiocyanate, respectively. The molar absorptivity, Sandell sensitivity, detection, and quantification limits are also calculated. The correlation coefficients were ≥0.9994 with a relative standard deviation (R.S.D%. of ≤0.925. The proposed methods were successfully applied for simultaneous determination of ELT in tablets with good accuracy and precision and without interferences from common additives, and the validity is assessed by applying the standard addition technique, which is compared with those obtained using the reported method.

  8. Channel-forming activity of syringopeptin 25A in mercury-supported phospholipid monolayers and negatively charged bilayers.

    Science.gov (United States)

    Becucci, Lucia; Toppi, Arianna; Fiore, Alberto; Scaloni, Andrea; Guidelli, Rolando

    2016-10-01

    Interactions of the cationic lipodepsipeptide syringopeptin 25A (SP25A) with mercury-supported dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylserine (DOPS) and dioeleoylphosphatidic acid (DOPA) self-assembled monolayers (SAMs) were investigated by AC voltammetry in 0.1M KCl at pH3, 5.4 and 6.8. SP25A targets and penetrates the DOPS SAM much more effectively than the other SAMs not only at pH6.8, where the DOPS SAM is negatively charged, but also at pH3, where it is positively charged just as SP25A. Similar investigations at tethered bilayer lipid membranes (tBLMs) consisting of a thiolipid called DPTL anchored to mercury, with a DOPS, DOPA or DOPC distal monolayer on top of it, showed that, at physiological transmembrane potentials, SP25A forms ion channels spanning the tBLM only if DOPS is the distal monolayer. The distinguishing chemical feature of the DOPS SAM is the ionic interaction between the protonated amino group of a DOPS molecule and the carboxylate group of an adjacent phospholipid molecule. Under the reasonable assumption that SP25A preferentially interacts with this ion pair, the selective lipodepsipeptide antimicrobial activity against Gram-positive bacteria may be tentatively explained by its affinity for similar protonated amino-carboxylate pairs, which are expected to be present in the peptide moieties of peptidoglycan strands.

  9. Effect of charge at an amino acid of basic fibroblast growth factor on its mitogenic activity

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The amino acid at the 119th position of human basic fibroblast growth factor(hbFGF),lysine(K119),is a critical component for its mitogenic activity.However,little is known about the effects of the characteristics of this residue including charge on the mitogenic activity of hbFGF.Herein,this basic residue was replaced with neutral glutamine residue and acidic glutamic acid residue to construct mutants hbFGF~(K119Q) and hbFGF~(K119E),respectively.The mutants were produced by BL21(DE3)/pET3c expression sys...

  10. Axial form factors of the octet baryons in a covariant quark model

    CERN Document Server

    Ramalho, G

    2015-01-01

    We study the weak interaction axial form factors of the octet baryons, within the covariant spectator quark model, focusing on the dependence of four-momentum transfer squared, Q^2. In our model the axial form factors G_A(Q^2) (axial-vector form factor) and G_P(Q^2) (induced pseudoscalar form factor), are calculated based on the constituent quark axial form factors and the octet baryon wave functions. The quark axial current is parametrized by the two constituent quark form factors, the axial-vector form factor g_A^q(Q^2), and the induced pseudoscalar form factor g_P^q(Q^2). The baryon wave functions are composed of a dominant S-state and a P-state mixture for the relative angular momentum of the quarks. First, we study in detail the nucleon case. We assume that the quark axial-vector form factor g_A^q(Q^2) has the same function form as that of the quark electromagnetic isovector form factor. The remaining parameters of the model, the P-state mixture and the Q^2-dependence of g_P^q(Q^2), are determined by a f...

  11. The role of seasonal factor in congenital abnormality forming

    Directory of Open Access Journals (Sweden)

    O. V. Antonov

    2012-01-01

    Full Text Available The results of prevalence, structure and timerisk study in children birth with malformations inOmskin the period of 1998—2008 are presented. Birth of children with congenital abnormality weight average index accounted for (47.72 ± 0.66%. Musculoskeletal and cardiovascular malformations prevailed in birth abnormality total number structure. Accor­ding to ICD-10 the congenital malformations were united in groups and seasonal variation indices nave been determined for them. Study results indicated the predominance of children conception cases with high risk malformations forming in August, November and December.

  12. Proton form-factor dependence of the finite-size correction to the Lamb shift in muonic hydrogen

    CERN Document Server

    Carroll, J D; Rafelski, J; Miller, G A

    2011-01-01

    The measurement of the 2P^{F=2}_{3/2} to 2S^{F=1}_{1/2} transition in muonic hydrogen by Pohl et al. and subsequent analysis has led to the conclusion that the rms radius of the proton differs from the accepted (CODATA) value by approximately 4%, corresponding to a 4.9 sigma discrepancy. We investigate the finite-size effects - in particular the dependence on the shape of the proton electric form-factor - relevant to this transition using bound-state QED with nonperturbative, relativistic Dirac wave-functions for a wide range of idealised charge-distributions and a parameterization of experimental data in order to comment on the extent to which the perturbation-theory analysis which leads to the above conclusion can be confirmed. We find no statistically significant dependence of this correction on the shape of the proton form-factor.

  13. Polymer-Free Carbon Nanotube Thermoelectrics with Improved Charge Carrier Transport and Power Factor

    Energy Technology Data Exchange (ETDEWEB)

    Norton-Baker, Brenna; Ihly, Rachelle; Gould, Isaac E.; Avery, Azure D.; Owczarczyk, Zbyslaw R.; Ferguson, Andrew J.; Blackburn, Jeffrey L.

    2016-12-09

    Semiconducting single-walled carbon nanotubes (s-SWCNTs) have recently attracted attention for their promise as active components in a variety of optical and electronic applications, including thermoelectricity generation. Here we demonstrate that removing the wrapping polymer from the highly enriched s-SWCNT network leads to substantial improvements in charge carrier transport and thermoelectric power factor. These improvements arise primarily from an increase in charge carrier mobility within the s-SWCNT networks because of removal of the insulating polymer and control of the level of nanotube bundling in the network, which enables higher thin-film conductivity for a given carrier density. Ultimately, these studies demonstrate that highly enriched s-SWCNT thin films, in the complete absence of any accompanying semiconducting polymer, can attain thermoelectric power factors in the range of approximately 400 uW m-1K-2, which is on par with that of some of the best single-component organic thermoelectrics demonstrated to date.

  14. Overview of high-Q2 nucleon form factor program with Super BigBite Spectrometer in JLab's Hall A

    Science.gov (United States)

    Puckett, Andrew; Jefferson Lab Hall A; Super BigBite Spectrometer Collaboration

    2017-01-01

    The elastic electromagnetic form factors (EMFFs) of the nucleon describe the impact-parameter-space distributions of electric charge and magnetization in the nucleon in the infinite momentum frame. The form factors are among the simplest and most fundamental measurable dynamical quantities describing the nucleon's structure. Precision measurements of the nucleon form factors provide stringent benchmarks testing the most sophisticated theoretical models of the nucleon, as well as ab initio calculations in lattice QCD and continuum non-perturbative QCD calculations based on the Dyson-Schwinger equations. Measurements at momentum transfers Q in the few-GeV range probe the theoretically challenging region of transition between the non-perturbative and perturbative regimes of QCD. The recent upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) to a maximum electron beam energy of 11 GeV will facilitate the measurement of the nucleon helicity-conserving (F1) and helicity-flip (F2) form factors of both proton and neutron to Q2 > 10 GeV2, In this talk, I will present an overview of the Super BigBite Spectrometer, currently under construction in CEBAF's experimental Hall A, and its physics program of high-Q2 nucleon EMFF measurements. Supported by US DOE award DE-SC0014230.

  15. Resource Form Factor and Installation of GFA Controllers

    Energy Technology Data Exchange (ETDEWEB)

    DeSteese, John G.; Hammerstrom, Donald J.

    2009-11-15

    The focus of this task is to optimize the form and placement of a controller comprising the Grid Friendly™ appliance (GFA) controller, power supply and power relay (and/or a solid-state power electronic switch) that would command a domestic water heater to shed its load in response to stress on the electric power grid. The GFA controller would disconnect the water heater from its supply circuit whenever it senses a low voltage signal or other indicators of system stress communicated via the electric power distribution system. Power would be reconnected to the appliance when the GFA controller senses the absence of these signals. This project has also considered more frequent cycling of this controller’s relay switch to perform demand-side frequency regulation. The principal criteria considered in this optimization are reliability, cost and life expectancy of the GFA components. The alternative embodiments of the GFA equipment under consideration are: Option 1- installation inside the insulation space of the water heater between the tank and jacket Option 2 containment in a separate nearby electrical enclosure Option 3 - as a modification or adjunct to the distribution panel housing and/or the breaker that protects the water heater supply circuit.

  16. Markov-Yukawa Transversality On Covariant Null-Plane Baryon Form Factor And Magnetic Moments

    CERN Document Server

    Mitra, A N

    2001-01-01

    The baryon-$qqq$ vertex function governed by the Markov-Yukawa Transversality Principle ($MYTP$), is formulated via the Covariant Null-Plane Ansatz ($CNPA$) as a 3-body generalization of the corresponding $q{\\bar q}$ problem, and employed to calculate the proton e.m. form factor and baryon octet magnetic moments.The e.m. coupling scheme is specified by letting the e.m. field interact by turn with the `spectator' while the two interacting quarks fold back into the baryon. The $S_3$ symmetry of the matrix element is preserved in all d.o.f.'s together. The $CNPA$ formulation ensures, as in the $q{\\bar q}$ case, that the loop integral is free from the Lorentz mismatch disease of covariant instantaneity ($CIA$), while the simple trick of `Lorentz completion'ensures a Lorentz invariant structure. The $k^{-4}$ scaling behaviour at large $k^2$ is reproduced. And with the infrared structure of the gluonic propagator attuned to spectroscopy, the charge radius of the proton comes out at $0.96 fm$. The magnetic moments o...

  17. Highly Efficient Small Form Factor LED Retrofit Lamp

    Energy Technology Data Exchange (ETDEWEB)

    Steven Allen; Fred Palmer; Ming Li

    2011-09-11

    This report summarizes work to develop a high efficiency LED-based MR16 lamp downlight at OSRAM SYLVANIA under US Department of Energy contract DE-EE0000611. A new multichip LED package, electronic driver, and reflector optic were developed for these lamps. At steady-state, the lamp luminous flux was 409 lumens (lm), luminous efficacy of 87 lumens per watt (LPW), CRI (Ra) of 87, and R9 of 85 at a correlated color temperature (CCT) of 3285K. The LED alone achieved 120 lumens per watt efficacy and 600 lumen flux output at 25 C. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.90 at a power of only 5 watts. Compared to similar existing MR16 lamps using LED sources, these lamps had much higher efficacy and color quality. The objective of this work was to demonstrate a LED-based MR16 retrofit lamp for replacement of 35W halogen MR16 lamps having (1) luminous flux of 500 lumens, (2) luminous efficacy of 100 lumens per watt, (3) beam angle less than 40{sup o} and center beam candlepower of at least 1000 candelas, and (4) excellent color quality.

  18. Charging performance of automotive batteries-An underestimated factor influencing lifetime and reliable battery operation

    Science.gov (United States)

    Sauer, Dirk Uwe; Karden, Eckhard; Fricke, Birger; Blanke, Holger; Thele, Marc; Bohlen, Oliver; Schiffer, Julia; Gerschler, Jochen Bernhard; Kaiser, Rudi

    Dynamic charge acceptance and charge acceptance under constant voltage charging conditions are for two reasons essential for lead-acid battery operation: energy efficiency in applications with limited charging time (e.g. PV systems or regenerative braking in vehicles) and avoidance of accelerated ageing due to sulphation. Laboratory tests often use charge regimes which are beneficial for the battery life, but which differ significantly from the operating conditions in the field. Lead-acid batteries in applications with limited charging time and partial-state-of-charge operation are rarely fully charged due to their limited charge acceptance. Therefore, they suffer from sulphation and early capacity loss. However, when appropriate charging strategies are applied most of the lost capacity and thus performance for the user may be recovered. The paper presents several aspects of charging regimes and charge acceptance. Theoretical and experimental investigations show that temperature is the most critical parameter. Full charging within short times can be achieved only at elevated temperatures. A strong dependency of the charge acceptance during charging pulses on the pre-treatment of the battery can be observed, which is not yet fully understood. But these effects have a significant impact on the fuel efficiency of micro-hybrid electric vehicles.

  19. Quasi-Elastic Electron-Deuteron Scattering and Calculation of Neutron Electromagnetic Form Factors at Q2 = 1.75 to 4.00 (GeV/c)2

    Institute of Scientific and Technical Information of China (English)

    N. Ghahramany; M. Vaez zadeh Asadi; G.R. Boroun

    2003-01-01

    Electric and Magnetic form factors of neutron are calculated via electron-deuteron scattering at 1.511 ~5.507 GeV energy using SLAC group data. Our results show that the neutron electric form factor is not equal to zero;rather it has a small value, indicating that in spite of the fact that total charge is almost neutral, there is a nonuniformcharge distribution within the neutron, and that magnetic form factor follows the dipole fit.

  20. Electromagnetic form factor via Minkowski and Euclidean Bethe-Salpeter amplitudes

    CERN Document Server

    Karmanov, V A; Mangin-Brinet, M

    2007-01-01

    The electromagnetic form factors calculated through Euclidean Bethe-Salpeter amplitude and through the light-front wave function are compared with the one found using the Bethe-Salpeter amplitude in Minkowski space. The form factor expressed through the Euclidean Bethe-Salpeter amplitude (both within and without static approximation) considerably differs from the Minkowski one, whereas form factor found in the light-front approach is almost indistinguishable from it.

  1. Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models

    CERN Document Server

    Hutsalyuk, A; Pakuliak, S Z; Ragoucy, E; Slavnov, N A

    2016-01-01

    We study integrable models solvable by the nested algebraic Bethe ansatz and described by $\\mathfrak{gl}(2|1)$ or $\\mathfrak{gl}(1|2)$ superalgebras. We obtain explicit determinant representations for form factors of the monodromy matrix entries. We show that all form factors are related to each other at special limits of the Bethe parameters. Our results allow one to obtain determinant formulas for form factors of local operators in the supersymmetric t-J model.

  2. Form factors of the monodromy matrix entries in gl (2 | 1)-invariant integrable models

    Science.gov (United States)

    Hutsalyuk, A.; Liashyk, A.; Pakuliak, S. Z.; Ragoucy, E.; Slavnov, N. A.

    2016-10-01

    We study integrable models solvable by the nested algebraic Bethe ansatz and described by gl (2 | 1) or gl (1 | 2) superalgebras. We obtain explicit determinant representations for form factors of the monodromy matrix entries. We show that all form factors are related to each other at special limits of the Bethe parameters. Our results allow one to obtain determinant formulas for form factors of local operators in the supersymmetric t- J model.

  3. Calculation of the Nucleon Axial Form Factor Using Staggered Lattice QCD

    CERN Document Server

    Meyer, Aaron S; Kronfeld, Andreas S; Li, Ruizi; Simone, James N

    2016-01-01

    The nucleon axial form factor is a dominant contribution to errors in neutrino oscillation studies. Lattice QCD calculations can help control theory errors by providing first-principles information on nucleon form factors. In these proceedings, we present preliminary results on a blinded calculation of $g_A$ and the axial form factor using HISQ staggered baryons with 2+1+1 flavors of sea quarks. Calculations are done using physical light quark masses and are absolutely normalized. We discuss fitting form factor data with the model-independent $z$ expansion parametrization.

  4. Charged particle nuclear modification factor in PbPb at 5.02 TeV with CMS

    CERN Document Server

    Baty, Austin Alan

    2016-01-01

    In the high-luminosity 5.02 TeV collision-energy per nucleon pair PbPb and pp data provided by LHC in 2015, CMS measured the nuclear modification factor of charged particles from a transverse momentum of 0.7 GeV/c to 400 GeV/c in the central rapidity region. The centrality dependence of the nuclear modification factor is explored in several bins of collision centrality, from the most central 0-5pct to the peripheral 50-70pct centrality range. Comparisons of the measured nuclear modification factor of charged particles at 5.02 TeV are made to theory calculations and to measurements at lower collision energies. The nuclear modification factors are also compared to the measurements at 2.76 TeV with charged particles and fully reconstructed jets.

  5. η′-g*-g transition form factor with gluon content contribution tested

    OpenAIRE

    Muta, Taizo; Yang, Mao-Zhi

    2000-01-01

    We study the η′-g*-g transition form factor by using the η′ wave function constrained by the experimental data on the η′-γ*-γ transition form factor provided by CLEO and L3. We also take into account the contribution of the possible gluonic content of the η′ meson.

  6. $\\eta'-g^*-g$ Transition Form Factor with Gluon Content Contribution Tested

    OpenAIRE

    Muta, Taizo; Yang, Mao-Zhi

    1999-01-01

    We study the $\\eta'-g^*-g$ transition form factor by using the $\\eta'$ wave function constrained by the experimental data on the $\\eta'-\\gamma^*-\\gamma$ transition form factor provided by CLEO and L3 . We also take into account the contribution of the possible gluonic content of the $\\eta'$ meson.

  7. $\\eta'-g*-g$ Transition Form Factor with Gluon Content Contribution Tested

    CERN Document Server

    Muta, T; Muta, Taizo; Yang, Mao-Zhi

    2000-01-01

    We study the $\\eta'-g^*-g$ transition form factor by using the $\\eta'$ wave function constrained by the experimental data on the $\\eta'-\\gamma^*-\\gamma$ transition form factor provided by CLEO and L3 . We also take into account the contribution of the possible gluonic content of the $\\eta'$ meson.

  8. Connection between the elastic GEp/GMp and P to Delta form factors

    CERN Document Server

    Stoler, P

    2003-01-01

    It is suggested that the falloff in Qsq of the P to Delta magnetic form factor GM* is related to the recently observed falloff of the elastic electric form factor GEp/GMp. Calculation is carried out in the framework of a two-body GPD mechanism.

  9. On super form factors of half-BPS operators in N=4 super Yang-Mills

    CERN Document Server

    Penante, Brenda; Travaglini, Gabriele; Wen, Congkao

    2014-01-01

    We compute form factors of half-BPS operators in N=4 super Yang-Mills dual to massive Kaluza-Klein modes in supergravity. These are appropriate supersymmetrisations T_k of the scalar operators Tr(\\phi^k) for any k, which for k=2 give the chiral part of the stress-tensor multiplet operator. Using harmonic superspace, we derive simple Ward identities for these form factors, which we then compute perturbatively at tree level and one loop. We propose a novel on-shell recursion relation which links form factors with different numbers of fields. Using this, we conjecture a general formula for the n-point MHV form factors of T_k for arbitrary k and n. Finally, we use supersymmetric generalised unitarity to derive compact expressions for all one-loop MHV form factors of T_k in terms of one-loop triangles and finite two-mass easy box functions.

  10. Skyrme-Model $\\pi NN$ Form Factor and Nucleon-Nucleon Interaction

    CERN Document Server

    Holzwarth, G

    1997-01-01

    We apply the strong $\\pi NN$ form factor, which emerges from the Skyrme model, in the two-nucleon system using a one-boson-exchange (OBE) model for the nucleon-nucleon (NN) interaction. Deuteron properties and phase parameters of NN scattering are reproduced well. In contrast to the form factor of monopole shape that is traditionally used in OBE models, the Skyrme form factor leaves low momentum transfers essentially unaffected while it suppresses the high-momentum region strongly. It turns out that this behavior is very appropriate for models of the NN interaction and makes possible to use a soft pion form factor in the NN system. As a consequence, the $\\pi N$ and the $NN$ systems can be described using the same soft $\\pi NN$ form factor, which is impossible with the monopole.

  11. On-shell Diagrams, Gra{\\ss}mannians and Integrability for Form Factors

    CERN Document Server

    Frassek, Rouven; Nandan, Dhritiman; Wilhelm, Matthias

    2015-01-01

    We apply on-shell and integrability methods that have been developed in the context of scattering amplitudes in N=4 SYM theory to tree-level form factors of this theory. Focussing on the colour-ordered super form factors of the chiral part of the stress-energy multiplet as an example, we show how to systematically construct on-shell diagrams for these form factors with the minimal form factor as an additional building block. Moreover, we obtain analytic representations in terms of Gra{\\ss}mannian integrals in spinor helicity, twistor and momentum twistor variables. While Yangian invariance is broken by the operator insertion, we find that form factors are eigenstates of the integrable transfer matrix. As a consequence, we can construct them via the method of R operators, which also allows to introduce deformations that preserve the integrable structure.

  12. New high statistics measurement of $K_{e4}$ decay form factors and $\\pi \\pi$ scattering phase shifts

    CERN Document Server

    Batley, J Richard; Kalmus, George Ernest; Lazzeroni, C; Munday, D J; Slater, M W; Wotton, S A; Arcidiacono, R; Bocquet, G; Cabibbo, Nicola; Ceccucci, A; Cundy, Donald C; Falaleev, V; Fidecaro, Maria; Gatignon, L; Gonidec, A; Kubischta, Werner; Norton, A; Maier, A; Patel, M; Peters, A; Balev, S; Frabetti, P L; Goudzovski, E; Khristov, P Z; Kekelidze, V; Kozhuharov, V; Litov, L; Madigozhin, D T; Marinova, E; Molokanova, N; Polenkevich, I; Potrebenikov, Yu; Stoynev, S; Zinchenko, A; Monnier, E; Swallow, E; Winston, R; Rubin, P; Walker, A; Baldini, W; Cotta-Ramusino, A; Dalpiaz, P; Damiani, C; Fiorini, M; Gianoli, A; Martini, M; Petrucci, F; Savrié, M; Scarpa, M; Wahle, H; Bizzeti, A; Calvetti, M; Celeghini, E; Iacopini, E; Lenti, M; Martelli, F; Ruggiero, G; Veltri, M; Behler, M; Eppard, K; Kleinknecht, K; Marouelli, P; Masetti, L; Moosbrugger, U; Morales-Morales, C; Renk, B; Wache, M; Wanke, R; Winhart, A; Coward, D; Dabrowski, A; Fonseca-Martin, T; Shieh, M; Szleper, M; Velasco, M; Wood, M D; Anzivino, Giuseppina; Cenci, P; Imbergamo, E; Nappi, A; Pepé, M; Petrucci, M C; Piccini, M; Raggi, M; Valdata-Nappi, M; Cerri, C; Collazuol, G; Costantini, F; Di Lella, L; Doble, N; Fantechi, R; Fiorini, L; Giudici, S; Lamanna, G; Mannelli, I; Michetti, A; Pierazzini, G; Sozzi, M; Bloch-Devaux, B; Cheshkov, C; Chèze, J B; De Beer, M; Derré, J; Marel, Gérard; Mazzucato, E; Peyaud, B; Vallage, B; Holder, M; Ziolkowski, M; Bifani, S; Biino, C; Cartiglia, N; Clemencic, M; Goy-Lopez, S; Marchetto, F; Dibon, Heinz; Jeitler, Manfred; Markytan, Manfred; Mikulec, I; Neuhofer, G; Widhalm, L

    2008-01-01

    We report results from a new measurement of the K_{e4} decay K^{+-} -> \\pi^+ \\pi^- e^{+-} v by the NA48/2 collaboration at the CERN SPS, based on a partial sample of more than 670000 Ke4 decays in both charged modes collected in 2003. The form factors of the hadronic current (F, G, H) and pi pi scattering phase shift delta00-delta11 have been measured using a model-independent method and their variation with the pi pi mass has been investigated. Thanks to a sizeable acceptance at large pi pi mass, a low background and a very good resolution, an improved accuracy (+- 0.006 stat +- 0.002 syst), a factor two better than in the previous measurement, is reached when extracting the pi pi scattering length a00.

  13. 48 CFR 247.372 - DD Form 1654, Evaluation of Transportation Cost Factors.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false DD Form 1654, Evaluation... Transportation in Supply Contracts 247.372 DD Form 1654, Evaluation of Transportation Cost Factors. Contracting personnel may use the DD Form 1654 to furnish information to the transportation office for development...

  14. 17 CFR 274.303 - Form N-27I-2, notice of withdrawal right and statement of charges for variable life insurance...

    Science.gov (United States)

    2010-04-01

    ... withdrawal right and statement of charges for variable life insurance contractholders required pursuant to... variable life insurance contractholders required pursuant to Rule 6e-2 (§ 270.6e-2 of this chapter). Editorial Note: For Federal Register citations affecting Form N-27I-2, see the List of CFR Sections...

  15. Electromagnetic form factor via Bethe-Salpeter amplitude in Minkowski space

    CERN Document Server

    Carbonell, J; Mangin-Brinet, M

    2008-01-01

    For a relativistic system of two scalar particles, we find the Bethe-Salpeter amplitude in Minkowski space and use it to compute the electromagnetic form factor. The comparison with Euclidean space calculation shows that the Wick rotation in the form factor integral induces errors which increase with the momentum transfer Q^2. At JLab domain (Q^2=10 GeV^2/c^2), they are about 30%. Static approximation results in an additional and more significant error. On the contrary, the form factor calculated in light-front dynamics is almost indistinguishable from the Minkowski space one.

  16. Axial form factor of the nucleon in the perturbative chiral quark model

    CERN Document Server

    Khosonthongkee, K; Faessler, Amand; Gutsche, T; Lyubovitskij, V E; Pumsa-ard, K; Yan, Y

    2004-01-01

    We apply the perturbative chiral quark model (PCQM) at one loop to analyze the axial form factor of the nucleon. This chiral quark model is based on an effective Lagrangian, where baryons are described by relativistic valence quarks and a perturbative cloud of Goldstone bosons as dictated by chiral symmetry. We apply the formalism to obtain analytical expressions for the axial form factor of the nucleon, which is given in terms of fundamental parameters of low-energy pion-nucleon physics (weak pion decay constant, strong pion-nucleon form factor) and of only one model parameter (radius of the nucleonic three-quark core).

  17. Grassmannians and form factors with $q^2=0$ in N=4 sym theory

    CERN Document Server

    Bork, L V

    2016-01-01

    We consider tree level form factors of operators from stress tensor operator supermultiplet with light-like operator momentum $q^2=0$. We present a conjecture for the Grassmannian integral representation both for these tree level form factors as well as for leading singularities of their loop counterparts. The presented conjecture was successfully checked by reproducing several known answers in $\\mbox{MHV}$ and $\\mbox{N}^{k-2}\\mbox{MHV}$, $k\\geq3$ sectors together with appropriate soft limits. We also discuss the cancellation of spurious poles and relations between different BCFW representations for such form factors on simple examples.

  18. On form factors of the conjugated field in the non-linear Schroedinger model

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K.

    2011-05-15

    Izergin-Korepin's lattice discretization of the non-linear Schroedinger model along with Oota's inverse problem provides one with determinant representations for the form factors of the lattice discretized conjugated field operator. We prove that these form factors converge, in the zero lattice spacing limit, to those of the conjugated field operator in the continuous model. We also compute the large-volume asymptotic behavior of such form factors in the continuous model. These are in particular characterized by Fredholm determinants of operators acting on closed contours. We provide a way of defining these Fredholm determinants in the case of generic paramaters. (orig.)

  19. Generalized vector form factors of the pion in a chiral quark model

    CERN Document Server

    Broniowski, Wojciech

    2008-01-01

    Generalized vector form factors of the pion, related to the moments of the generalized parton distribution functions, are evaluated in the Nambu--Jona-Lasinio model with the Pauli-Villars regularization. The lowest moments (the electromagnetic and the gravitational form factors) are compared to recent lattice data, with fair agreement. Predictions for higher-order moments are also made. Relevant features of the generalized form factors in the chiral quark models are highlighted and the role of the QCD evolution for the higher-order GFFs is stressed.

  20. Delta and Omega electromagnetic form factors in a Dyson-Schwinger/Bethe-Salpeter approach

    Energy Technology Data Exchange (ETDEWEB)

    Diana Nicmorus, Gernot Eichmann, Reinhard Alkofer

    2010-12-01

    We investigate the electromagnetic form factors of the Delta and the Omega baryons within the Poincare-covariant framework of Dyson-Schwinger and Bethe-Salpeter equations. The three-quark core contributions of the form factors are evaluated by employing a quark-diquark approximation. We use a consistent setup for the quark-gluon dressing, the quark-quark bound-state kernel and the quark-photon interaction. Our predictions for the multipole form factors are compatible with available experimental data and quark-model estimates. The current-quark mass evolution of the static electromagnetic properties agrees with results provided by lattice calculations.

  1. The omega --> pi0 gamma* and phi --> pi0 gamma* transition form factors in dispersion theory

    CERN Document Server

    Schneider, Sebastian P; Niecknig, Franz

    2012-01-01

    We calculate the omega --> pi0 gamma* and phi --> pi0 gamma* electromagnetic transition form factors based on dispersion theory, relying solely on a previous dispersive analysis of the corresponding three-pion decays and the pion vector form factor. We compare our findings to recent measurements of the omega --> pi0 mu+ mu- decay spectrum by the NA60 collaboration, and strongly encourage experimental investigation of the Okubo-Zweig-Iizuka-forbidden phi --> pi0 l+ l- decays in order to understand the strong deviations from vector-meson dominance found in these transition form factors.

  2. Measurement of B -> D Form Factors in the Semileptonic Decay B -> D* l nu at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Mandeep Singh; /SLAC

    2006-01-27

    We present here the results of a measurement of the three semileptonic form factors involved in the decay B{sup 0} {yields} D*{ell}{nu}, where {ell} is one of the two light charged leptons (i.e. an electron or muon--though the final results in this work are determined only for {ell} = electron). This measurement uses the Babar 2000-2002 data set, which is altogether approximately 85 x 10{sup 6} B{bar B}-pairs in 78 fb{sup -1} of integrated luminosity. The D*{sup +} was reconstructed in the channel D*{sup +} {yields} D{sup 0}{pi}{sup +}, and the D{sup 0} in the channel D{sup 0} {yields} K{sup -}{pi}{sup +}. This analysis was based ultimately on {approx} 16,386 reconstructed events with an estimated background contamination of {approx} 15%. The method of the measurement was to perform a unbinned maximum likelihood fit in the four kinematic variables that describe the decay for the three form factor parameters R{sub 1}, R{sub 2}, and {rho}{sup 2}. The results obtained for the form factor ratios are R{sub 1} = 1.328 {+-} 0.055 {+-} 0.025 {+-} 0.025 and R{sub 2} = 0.920 {+-} 0.044 {+-} 0.020 {+-} 0.013 for the ratios and {rho}{sup 2} = 0.769 {+-} 0.039 {+-} 0.019 {+-} 0.032 for the form factor slope. The errors given are statistical, Monte Carlo statistical and systematic respectively.

  3. Transition electromagnetic form factor in the Minkowski space Bethe-Salpeter approach

    CERN Document Server

    Carbonell, J

    2013-01-01

    Using the solutions of the Bethe-Salpeter equation in Minkowski space for bound and scattering states found in previous works, we calculate the transition electromagnetic form factor describing the electro-disintegration of a bound system.

  4. New Precision Limit on the Strange Vector Form Factors of the Proton

    CERN Document Server

    Ahmed, Z; Aniol, K A; Armstrong, D S; Arrington, J; Baturin, P; Bellini, V; Benesch, J; Beminiwattha, R; Benmokhtar, F; Canan, M; Camsonne, A; Cates, G D; Chen, J -P; Chudakov, E; Cisbani, E; Dalton, M M; de Jager, C W; De Leo, R; Deconinck, W; Decowski, P; Deng, X; Deur, A; Dutta, C; Franklin, G B; Friend, M; Frullani, S; Garibaldi, F; Giusa, A; Glamazdin, A; Golge, S; Grimm, K; Hansen, O; Higinbotham, D W; Holmes, R; Holmstrom, T; Huang, J; Huang, M; Hyde, C E; Jen, C M; Jin, G; Jones, D; Kang, H; King, P; Kowalski, S; Kumar, K S; Lee, J H; LeRose, J J; Liyanage, N; Long, E; McNulty, D; Margaziotis, D; Meddi, F; Meekins, D G; Mercado, L; Meziani, Z -E; Michaels, R; Munoz-Camacho, C; Mihovilovic, M; Muangma, N; Myers, K E; Nanda, S; Narayan, A; Nelyubin, V; Nuruzzaman,; Oh, Y; Pan, K; Parno, D; Paschke, K D; Phillips, S K; Qian, X; Qiang, Y; Quinn, B; Rakhman, A; Reimer, P E; Rider, K; Riordan, S; Roche, J; Rubin, J; Russo, G; Saenboonruang, K; Saha, A; Sawatzky, B; Silwal, R; Sirca, S; Souder, P A; Sperduto, M; Subedi, R; Suleiman, R; Sulkosky, V; Sutera, C M; Tobias, W A; Urciuoli, G M; Waidyawansa, B; Wang, D; Wexler, J; Wilson, R; Wojtsekhowski, B; Zhan, X; Yan, X; Yao, H; Ye, L; Zhao, B; Zheng, X

    2011-01-01

    The parity-violating cross-section asymmetry in the elastic scattering of polarized electrons from unpolarized protons has been measured at a four-momentum transfer squared Q2 = 0.624 GeV and beam energy E =3.48 GeV to be A_PV = -23.80 +/- 0.78 (stat) +/- 0.36 (syst) parts per million. This result is consistent with zero contribution of strange quarks to the combination of electric and magnetic form factors G_E^s + 0.517 G_M^s = 0.003 +/- 0.010 (stat) +/- 0.004 (syst) +/- 0.009 (ff), where the third error is due to the limits of precision on the electromagnetic form factors and radiative corrections. With this measurement, the world data on strange contributions to nucleon form factors are seen to be consistent with zero and not more than a few percent of the proton form factors.

  5. Form factors for semi-leptonic and radiative decays of heavy mesons to light mesons

    CERN Document Server

    Stech, B

    1996-01-01

    To know and understand form factors of hadronic currents is of decisive importance for analysing exclusive weak decays. The ratios of different form factors of a given process depend on the relativistic spin structure of initial and final particles. It is shown --- assuming simple properties of the spectator particle --- that these ratios can entirely be expresssed in terms of particle and quark mass parameters. For quark masses large compared to the spectator mass the Isgur-Wise relations follow. The corresponding amplitudes for heavy-to-light transitions show a very similar structure. In particular, the F_0 and A_1 form factors behave again differently from the F_1, A_2, V and T_1 form factors.

  6. Progress on charm semileptonic form factors from 2+1 flavor lattice QCD

    CERN Document Server

    Bailey, Jon A; Bernard, C; Bouchard, C; DeTar, C; El-Khadra, A X; Freeland, E D; Freeman, W; Gamiz, E; Gottlieb, Steven; Heller, U M; Hetrick, J E; Kronfeld, A S; Laiho, J; Levkova, L; Mackenzie, P B; Oktay, M B; Di Pierro, M; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S

    2009-01-01

    Lattice calculations of the form factors for the charm semileptonic decays D to K l nu and D to pi l nu provide inputs to direct determinations of the CKM matrix elements |V(cs)| and |V(cd)| and can be designed to validate calculations of the form factors for the bottom semileptonic decays B to pi l nu and B to K l l-bar. We are using Fermilab charm (bottom) quarks and asqtad staggered light quarks on the 2+1 flavor asqtad MILC ensembles to calculate the charm (bottom) form factors. We outline improvements to the previous calculation of the charm form factors and detail our progress. We expect our current round of data production to allow us to reduce the theoretical uncertainties in |V(cs)| and |V(cd)| from 10.5% and 11%, respectively, to about 7%.

  7. Scalar and vector form factors of the in-medium nucleon

    CERN Document Server

    Saitô, K

    2003-01-01

    Using the quark-meson coupling model, we calculate the form factors at sigma- and omega-nucleon strong-interaction vertices in nuclear matter. The Peierls-Yoccoz projection technique is used to take account of center of mass and recoil corrections. We also apply the Lorentz contraction to the internal quark wave function. The form factors are reduced by the nuclear medium relative to those in vacuum. At normal nuclear matter density and Q^2 = 1 GeV^2, the reduction rate in the scalar form factor is about 15%, which is almost identical to that in the vector one. We parameterize the ratios of the form factors in symmetric nuclear matter to those in vacuum as a function of nuclear density and momentum transfer.

  8. Constraints on the $\\omega\\pi$ form factor from analyticity and unitarity

    CERN Document Server

    Ananthanarayan, B; Kubis, B

    2014-01-01

    Motivated by the discrepancies noted recently between the theoretical calculations of the electromagnetic $\\omega\\pi$ form factor and certain experimental data, we investigate this form factor using analyticity and unitarity in a framework known as the method of unitarity bounds. We use a QCD correlator computed on the spacelike axis by operator product expansion and perturbative QCD as input, and exploit the unitarity of its spectral function, including the two-pion contribution that can be reliably calculated using high-precision data on the pion form factor, as well as narrow isoscalar vector meson states. From this information, we derive upper and lower bounds on the modulus of the form factor in the elastic region. The results provide a significant check on those obtained with standard dispersion relations, confirming the existence of a disagreement with experimental data in the region around 0.6 GeV.

  9. A nonlinear electrophoretic model for PeakMaster: part III. Electromigration dispersion in systems that contain a neutral complex-forming agent and a fully charged analyte. Theory.

    Science.gov (United States)

    Hruška, Vlastimil; Svobodová, Jana; Beneš, Martin; Gaš, Bohuslav

    2012-12-07

    We introduce a new nonlinear electrophoretic model for complex-forming systems with a fully charged analyte and a neutral ligand. The background electrolyte is supposed to be composed of two constituents, which do not interact with the ligand. In order to characterize the electromigration dispersion (EMD) of the analyte zone we define a new parameter, the nonlinear electromigration mobility slope, S(EMD,A). The parameter can be easily utilized for quantitative prediction of the EMD and for comparisons of the model with the simulated and experimental profiles. We implemented the model to the new version of PeakMaster 5.3 Complex that can calculate some characteristic parameters of the electrophoretic system and can plot the dependence of S(EMD,A) on the concentration of the ligand. Besides S(EMD,A), also the relative velocity slope, S(X), can be calculated. It is commonly used as a measure of EMD in electrophoretic systems. PeakMaster 5.3 Complex software can be advantageously used for optimization of the separation conditions to avoid high EMD in complexing systems. Based on the theoretical model we analyze the S(EMD,A) and reveal that this parameter is composed of six terms. We show that the major factor responsible for the electromigration dispersion in complex-forming electrophoretic systems is the complexation equilibrium and particularly its impact on the effective mobility of the analyte. To prove the appropriateness of the model we showed that there is a very good agreement between peak shapes calculated by PeakMaster 5.3 Complex (plotted using the HVLR function) and the profiles simulated by means of Simul 5 Complex. The detailed experimental verification of the new mode of PeakMaster 5.3 Complex is in the next part IV of the series.

  10. Constraints on the $K_{l_{3}}$ form factors from analyticity and unitarity

    Indian Academy of Sciences (India)

    Gauhar Abbas; B Ananthanarayan; Irinel Caprini; I Sentitemsu Imsong

    2012-10-01

    The $K $ form factors are investigated at low energies by the method of unitarity bounds adapted so as to include information on the phase and modulus along the elastic region of the unitarity cut. Using as input the values of the form factors at = 0, and at the Callan–Treiman point in the scalar case, stringent constraints are obtained on the slope and curvature parameters of the Taylor expansion at the origin.

  11. A Form Factor Model for Exclusive B- and D-Decays

    CERN Document Server

    Stech, B

    1996-01-01

    An explicit model is presented which gives the momentum transfer-dependent ratios of form factors of hadronic currents. For the unknown Isgur-Wise function and its generalization for transitions to light particles a simple phenomenological Ansatz is added. The model allows a calculation of all form factors in terms of mass parameters only. It is tested by comparison with experimental data, QCD sum rules and lattice calculations.

  12. $\\pi^0\\to\\gamma^*\\gamma$ transition form factor within Light Front Quark Model

    CERN Document Server

    Lih, Chong-Chung

    2012-01-01

    We study the transition form factor of $\\pi^0\\to\\gamma^* \\gamma$ as a function of the momentum transfer $Q^2$ within the light-front quark model (LFQM). We compare our result with the experimental data by BaBar as well as other calculations based on the LFQM in the literature. We show that our predicted form factor fits well with the experimental data, particularly those at the large $Q^2$ region.

  13. Study of pesudoscalar transition form factors within light front quark model

    CERN Document Server

    Geng, Chao-Qiang

    2012-01-01

    We study the transition form factors of the pesudoscalar mesons ($\\pi,\\eta$ and $\\eta^{\\prime}$) as functions of the momentum transfer $Q^2$ within the light-front quark model. We compare our results with the recent experimental data by CELLO, CLEO, BaBar and Belle. By considering the possible uncertainties from the quark masses, we illustrate that our predicted form factors can fit with all the data, including those at the large $Q^2$ regions.

  14. Nucleon-to-Delta axial transition form factors in relativistic baryon chiral perturbation theory

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vacas, M J Vicente

    2008-01-01

    We report a theoretical study of the axial Nucleon to Delta(1232) ($N\\to\\Delta$) transition form factors up to one-loop order in relativistic baryon chiral perturbation theory. We adopt a formalism in which the $\\Delta$ couplings obey the spin-3/2 gauge symmetry and, therefore, decouple the unphysical spin-1/2 fields. We compare the results with phenomenological form factors obtained from neutrino bubble chamber data and in quark models.

  15. Proton electromagnetic form factors: present status and future perspectives at PANDA

    Science.gov (United States)

    Tomasi-Gustafsson, E.

    2015-05-01

    Data and models on electromagnetic proton form factors are reviewed, highlighting the contribution foreseen by the PANDA collaboration. Electromagnetic hadron form factors contain essential information on the internal structure of hadrons. Precise and surprising data have been obtained at electron accelerators, applying the polarization method in electron-proton elastic scattering. At electron-positron colliders, using initial state radiation, BABAR measured proton time-like form factors in a wide time-like kinematical region and the BESIII collaboration will measure very precisely proton and neutron form factors in the threshold region. In the next future an antiproton beam with momentum up to 15 GeV/c will be available at FAIR (Darmstadt). Measurements of the reaction p̅ + p → e+ + e- by the PANDA collaboration will contribute to the individual determination of electric and magnetic form factors in the time-like region of momentum transfer squared, as well as to their first determination in the unphysical region (below the kinematical threshold), through the reaction p̅ + p → e+ + e- + π0. From the discussion on feasibility studies at PANDA, we focus on the consequences of such measurements in view of an unified description of form factors in the full kinematical region. We present models which have the necessary analytical requirements and apply to the data in the whole kinematical region.

  16. Proton electromagnetic form factors: present status and future perspectives at PANDA

    Directory of Open Access Journals (Sweden)

    Tomasi-Gustafsson E.

    2015-01-01

    Full Text Available Data and models on electromagnetic proton form factors are reviewed, highlighting the contribution foreseen by the PANDA collaboration. Electromagnetic hadron form factors contain essential information on the internal structure of hadrons. Precise and surprising data have been obtained at electron accelerators, applying the polarization method in electron-proton elastic scattering. At electron-positron colliders, using initial state radiation, BABAR measured proton time-like form factors in a wide time-like kinematical region and the BESIII collaboration will measure very precisely proton and neutron form factors in the threshold region. In the next future an antiproton beam with momentum up to 15 GeV/c will be available at FAIR (Darmstadt. Measurements of the reaction p̅ + p → e+ + e− by the PANDA collaboration will contribute to the individual determination of electric and magnetic form factors in the time-like region of momentum transfer squared, as well as to their first determination in the unphysical region (below the kinematical threshold, through the reaction p̅ + p → e+ + e− + π0. From the discussion on feasibility studies at PANDA, we focus on the consequences of such measurements in view of an unified description of form factors in the full kinematical region. We present models which have the necessary analytical requirements and apply to the data in the whole kinematical region.

  17. Mixed-state form factors of U(1) twist fields in the Dirac theory

    Science.gov (United States)

    Chen, Yixiong

    2016-08-01

    Using the ‘Liouville space’ (the space of operators) of the massive Dirac theory, we define mixed-state form factors of U(1) twist fields. We consider mixed states with density matrices diagonal in the asymptotic particle basis. This includes the thermal Gibbs state as well as all generalized Gibbs ensembles of the Dirac theory. When the mixed state is specialized to a thermal Gibbs state, using a Riemann-Hilbert problem and low-temperature expansion, we obtain finite-temperature form factors of U(1) twist fields. We then propose the expression for form factors of U(1) twist fields in general diagonal mixed states. We verify that these form factors satisfy a system of nonlinear functional differential equations, which is derived from the trace definition of mixed-state form factors. At last, under weak analytic conditions on the eigenvalues of the density matrix, we write down the large distance form factor expansions of two-point correlation functions of these twist fields. Using the relation between the Dirac and Ising models, this provides the large-distance expansion of the Rényi entropy (for integer Rényi parameter) in the Ising model in diagonal mixed states.

  18. Complex Analysis of Askaryan Radiation: A Fully Analytic Treatment including the LPM effect and Cascade Form Factor

    CERN Document Server

    Hanson, Jordan C

    2016-01-01

    The Askaryan effect describes coherent electromagnetic radiation from the collective charge within high-energy cascades in dense media. We present the first fully analytic model of Askaryan radiation that accounts simultaneously for the three-dimensional form factor of the electromagnetic cascade and the Landau-Pomeranchuk-Migdal (LPM) effect. Analytic calculations avoid computationally intensive Monte Carlo simulations of the cascades. Searches for cosmogenic neutrinos in Askaryan- based detectors benefit from computational speed, because neutrino event parameters affect the shape of the electromagnetic field, requiring scans of parameter space. The Askaryan field is derived and verified against Geant4 simulations, and compared with prior numerical and semi-analytic calculations. Finally, two special cases of the model are transformed from the Fourier domain to the time-domain, analytically. Next-generation in situ detectors like ARA and ARIANNA can use analytic time-domain signal models to search for phase ...

  19. The "approach unifying spin and charges" predicts the fourth family and a stable family forming the dark matter clusters

    CERN Document Server

    Borstnik, N S Mankoc

    2010-01-01

    The Approach unifying spin and charges, assuming that all the internal degrees of freedom---the spin, all the charges and the families---originate in $d > (1+3)$ in only two kinds of spins (the Dirac one and the only one existing beside the Dirac one and anticommuting with the Dirac one), is offering a new way in understanding the appearance of the families and the charges (in the case of charges the similarity with the Kaluza-Klein-like theories must be emphasized). A simple starting action in $d >(1+3)$ for gauge fields (the vielbeins and the two kinds of the spin connections) and a spinor (which carries only two kinds of spins and interacts with the corresponding gauge fields) manifests after particular breaks of the starting symmetry the massless four (rather than three) families with the properties as assumed by the Standard model for the three known families, and the additional four massive families. The lowest of these additional four families is stable. A part of the starting action contributes, toget...

  20. Extraction of the isovector magnetic form factor of the nucleon at zero momentum

    CERN Document Server

    Alexandrou, Constantia; Koutsou, Giannis; Ottnad, Konstantin; Petschlies, Marcus

    2014-01-01

    The extraction of the magnetic form factor of the nucleon at zero momentum transfer is usually performed by adopting a parametrization for its momentum dependence and fitting the results obtained at finite momenta. We present position space methods that rely on taking the derivative of relevant correlators to extract directly the magnetic form factor at zero momentum without the need to assume a functional form for its momentum dependence. These methods are explored on one ensemble using $N_f=2+1+1$ Wilson twisted mass fermions.

  1. Enhanced charge detection: Amplification factor, phase reversal and measurement time dependence

    Energy Technology Data Exchange (ETDEWEB)

    Thorgrimson, J.; Sachrajda, A. S. [National Research Council Canada, Ottawa, ON Canada K1A 0R6 and Department of Physics, McGill University, 3600 rue University, Montreal, QC (Canada); Studenikin, S. A.; Bogan, A. [National Research Council Canada, Ottawa, ON Canada K1A 0R6 and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON (Canada); Aers, G. C.; Kam, A.; Zawadzki, P.; Wasilewski, Z. R. [National Research Council Canada, Ottawa, ON (Canada)

    2013-12-04

    Studenikin et al. recently demonstrated a significant enhancement of the fringe contrast of coherent Landau-Zener-Stückelberg (LZS) oscillations between singlet S and triplet T+ two-spin states using a modified charge detection technique called enhanced charge detection (ECD). In this paper we explain the amplitude phase reversal and confirm the magnitude of the effect is consistent with our calibrations. We also show that the enhancement cannot be explained by a T{sub 1} effect.

  2. Important Factors for Early Market Microgrids: Demand Response and Plug-in Electric Vehicle Charging

    Science.gov (United States)

    White, David Masaki

    Microgrids are evolving concepts that are growing in interest due to their potential reliability, economic and environmental benefits. As with any new concept, there are many unresolved issues with regards to planning and operation. In particular, demand response (DR) and plug-in electric vehicle (PEV) charging are viewed as two key components of the future grid and both will likely be active technologies in the microgrid market. However, a better understanding of the economics associated with DR, the impact DR can have on the sizing of distributed energy resource (DER) systems and how to accommodate and price PEV charging is necessary to advance microgrid technologies. This work characterizes building based DR for a model microgrid, calculates the DER systems for a model microgrid under DR through a minimization of total cost, and determines pricing methods for a PEV charging station integrated with an individual building on the model microgrid. It is shown that DR systems which consist only of HVAC fan reductions provide potential economic benefits to the microgrid through participation in utility DR programs. Additionally, peak shaving DR reduces the size of power generators, however increasing DR capacity does not necessarily lead to further reductions in size. As it currently stands for a microgrid that is an early adopter of PEV charging, current installation costs of PEV charging equipment lead to a system that is not competitive with established commercial charging networks or to gasoline prices for plug-in hybrid electric vehicles (PHEV).

  3. Spectroscopic investigation of the novel charge-transfer complex [(phen)(TCNE)(12)] formed in the reaction of phenacetin with tetracyanoethylene.

    Science.gov (United States)

    Alqaradawi, Siham Y; Nour, El-Metwally

    2005-11-01

    The charge-transfer (CT) interaction of the electron donor phenacetin (phen) and the pi-electron acceptor tetracyanoethylene (TCNE) has been studied in CH(2)Cl(2). The results obtained indicate the formation of the novel CT-complex with the general formula [(phen)(TCNE)(12)]. The 1:12 stoichiometry of the reaction was based on photometric titration, elemental analysis, infrared, thermal and cyclic voltametry measurements of the formed CT-complex.

  4. Feasibility studies of time-like proton electromagnetic form factors at PANDA-FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Dbeyssi, Alaa; Capozza, Luigi; Deiseroth, Malte; Froehlich, Bertold; Khaneft, Dmitry; Mora Espi, Maria Carmen; Noll, Oliver; Rodriguez Pineiro, David; Valente, Roserio; Zambrana, Manuel; Zimmermann, Iris [Helmholtz-Institut Mainz, Mainz (Germany); Maas, Frank [Helmholtz-Institut Mainz, Mainz (Germany); Institute of Nuclear Physics, Mainz (Germany); PRISMA Cluster of Excellence, Mainz (Germany); Marchand, Dominique; Tomasi-Gustafsson, Egle; Wang, Ying [Institut de Physique Nucleaire, Orsay (France); Collaboration: PANDA-Collaboration

    2015-07-01

    Electromagnetic form factors are fundamental quantities which describe the intrinsic electric and magnetic distributions of hadrons. Time-like proton form factors are experimentally accessible through the annihilation processes anti p+p <-> e{sup +}+e{sup -}. Their measurement in the time-like region had been limited by the low statistics achieved by the experiments. This contribution reports on the results of Monte Carlo simulations for future measurements of electromagnetic proton form factors at PANDA (antiProton ANnihilation at DArmstadt). In frame of the PANDARoot software, the statistical precision at which the proton form factors will be determined is estimated. The signal (anti p+p → e{sup +}+e{sup -}) identification and the suppression of the main background process (anti p+p → π{sup +}+π{sup -}) are studied. Different methods have been used and/or developed to generate and analyse the processes of interest. The results show that time-like proton form factors will be measured at PANDA with unprecedented statistical accuracy.

  5. Measurements of charged particle spectra and nuclear modification factor in p+Pb collisions with the ATLAS detector

    CERN Document Server

    Balek, Petr

    2014-01-01

    The ATLAS detector at the LHC obtained the sample of p+Pb data at $\\sqrt{s_{NN}}={}$5.02TeV with integrated luminosity of 25nb${}^{-1}$, which can be compared to the pp data obtained by interpolating pp measurements at $\\sqrt{s}={}$2.76TeV and 7TeV. Due to the excellent capabilities of the ATLAS detector, and its stable operation in heavy ion as well as proton-proton physics runs, the data allow measurements of the nuclear modification factor, ratio of heavy ion charged particle spectra divided by pp reference, in different centrality classes over a wide range of rapidity. The charged particle nuclear modification factor is found to vary significantly as a function of transverse momentum with a stronger dependence in more peripheral collisions.

  6. Lattice calculation of the pion transition form factor $\\pi^0 \\to \\gamma^* \\gamma^*$

    CERN Document Server

    Antoine, Gérardin; Nyffeler, Andreas

    2016-01-01

    We calculate the pion transition form factor ${\\cal F}_{\\pi^0\\gamma^*\\gamma^*}(q_1^2,q_2^2)$, which describe the interaction of an on-shell pion with two off-shell photons, using lattice QCD simulations with two degenerate flavors of dynamical quarks. This form factor is the main ingredient in the calculation of the pion-pole contribution to hadronic light-by-light scattering in the muon $g-2$, $a_\\mu^{\\mathrm{HLbL}; \\pi^0}$. We focus our study on the spacelike region with photon virtualities up to $1.5~\\mathrm{GeV}^2$, not yet measured experimentally. Several lattice spacings and pion masses are used to extrapolate the results to the physical point and a comparison with different phenomenological models is performed. Finally, we use our extrapolated form factor to provide a lattice determinaiton of $a_\\mu^{\\mathrm{HLbL}; \\pi^0}$.

  7. B{yields}D{sup (*)} form factors from QCD light-cone sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Faller, S. [Universitaet Siegen, Theoretische Physik 1, Fachbereich Physik, Siegen (Germany); CERN, Theory Division, Department of Physics, Geneva 23 (Switzerland); Khodjamirian, A.; Klein, C.; Mannel, T. [Universitaet Siegen, Theoretische Physik 1, Fachbereich Physik, Siegen (Germany)

    2009-04-15

    We derive new QCD sum rules for B{yields}D and B{yields}D{sup *} form factors. The underlying correlation functions are expanded near the light-cone in terms of B-meson distribution amplitudes defined in HQET, whereas the c-quark mass is kept finite. The leading-order contributions of two- and three-particle distribution amplitudes are taken into account. From the resulting light-cone sum rules we calculate all B{yields}D{sup (*)} form factors in the region of small momentum transfer (maximal recoil). In the infinite heavy-quark mass limit the sum rules reduce to a single expression for the Isgur-Wise function. We compare our predictions with the form factors extracted from experimental B{yields}D{sup (*)}l{nu} {sub l} decay rates fitted to dispersive parameterizations. (orig.)

  8. B→ D (*) form factors from QCD light-cone sum rules

    Science.gov (United States)

    Faller, S.; Khodjamirian, A.; Klein, Ch.; Mannel, Th.

    2009-04-01

    We derive new QCD sum rules for B→ D and B→ D * form factors. The underlying correlation functions are expanded near the light-cone in terms of B-meson distribution amplitudes defined in HQET, whereas the c-quark mass is kept finite. The leading-order contributions of two- and three-particle distribution amplitudes are taken into account. From the resulting light-cone sum rules we calculate all B→ D (*) form factors in the region of small momentum transfer (maximal recoil). In the infinite heavy-quark mass limit the sum rules reduce to a single expression for the Isgur-Wise function. We compare our predictions with the form factors extracted from experimental B→(*) l ν l decay rates fitted to dispersive parameterizations.

  9. $B \\to D^{(*)}$ Form Factors from QCD Light-Cone Sum Rules

    CERN Document Server

    Faller, S; Klein, Ch; Mannel, T

    2009-01-01

    We derive new QCD sum rules for $B\\to D$ and $B\\to D^*$ form factors. The underlying correlation functions are expanded near the light-cone in terms of $B$-meson distribution amplitudes defined in HQET, whereas the $c$-quark mass is kept finite. The leading-order contributions of two- and three-particle distribution amplitudes are taken into account. From the resulting light-cone sum rules we calculate all $B\\to \\Dst $ form factors in the region of small momentum transfer (maximal recoil). In the infinite heavy-quark mass limit the sum rules reduce to a single expression for the Isgur-Wise function. We compare our predictions with the form factors extracted from experimental $B\\to \\Dst l \

  10. Form factors of descendant operators: $A^{(1)}_{L-1}$ affine Toda theory

    CERN Document Server

    Alekseev, Oleg

    2009-01-01

    In the framework of the free field representation we obtain exact form factors of local operators in the two-dimensional affine Toda theories of the $A^{(1)}_{L-1}$ series. The construction generalizes Lukyanov's well-known construction to the case of descendant operators. Besides, we propose a free field representation with a countable number of generators for the `stripped' form factors, which generalizes the recent proposal for the sine/sinh-Gordon model. As a check of the construction we compare numbers of the operators defined by these form factors in level subspaces of the chiral sectors with the corresponding numbers in the Lagrangian formalism. We argue that the construction provides a correct counting for operators with both chiralities. At last we study the properties of the operators with respect to the Weyl group. We show that for generic values of parameters there exist Weyl invariant analytic families of the bases in the level subspaces.

  11. Form Factors and Wave Functions of Vector Mesons in Holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Hovhannes R. Grigoryan; Anatoly V. Radyushkin

    2007-07-01

    Within the framework of a holographic dual model of QCD, we develop a formalism for calculating form factors of vector mesons. We show that the holographic bound states can be described not only in terms of eigenfunctions of the equation of motion, but also in terms of conjugate wave functions that are close analogues of quantum-mechanical bound state wave functions. We derive a generalized VMD representation for form factors, and find a very specific VMD pattern, in which form factors are essentially given by contributions due to the first two bound states in the Q^2-channel. We calculate electric radius of the \\rho-meson, finding the value < r_\\rho^2>_C = 0.53 fm^2.

  12. Effects of nuclear deformation on the form factor for direct dark matter detection

    Institute of Scientific and Technical Information of China (English)

    CHEN Ya-Zheng; CHEN Jun-Mou; LUO Yan-An; SHEN Hong; LI Xue-Qian

    2012-01-01

    For the detection of direct dark matter,in order to extract useful information about the fundamental interactions from the data,it is crucial to properly determine the nuclear form factor.The form factor for the spin-independent cross section of collisions between dark matter particles and the nucleus has been thoroughly studied by many authors.When the analysis was carried out,the nuclei were always supposed to be spherically symmetric.In this work,we investigate the effects of the deformation of nuclei from a spherical shape to an elliptical one on the form factor.Our results indicate that as long as the ellipticity is not too large,such deformation will not cause any substantial effects.In particular,when the nuclei are randomly orientated in room-temperature circumstances,one can completely neglect them.

  13. Feasibility studies of time-like proton electromagnetic form factors at overlinePANDA at FAIR

    Science.gov (United States)

    Singh, B.; Erni, W.; Krusche, B.; Steinacher, M.; Walford, N.; Liu, B.; Liu, H.; Liu, Z.; Shen, X.; Wang, C.; Zhao, J.; Albrecht, M.; Erlen, T.; Fink, M.; Heinsius, F.; Held, T.; Holtmann, T.; Jasper, S.; Keshk, I.; Koch, H.; Kopf, B.; Kuhlmann, M.; Kümmel, M.; Leiber, S.; Mikirtychyants, M.; Musiol, P.; Mustafa, A.; Pelizäus, M.; Pychy, J.; Richter, M.; Schnier, C.; Schröder, T.; Sowa, C.; Steinke, M.; Triffterer, T.; Wiedner, U.; Ball, M.; Beck, R.; Hammann, C.; Ketzer, B.; Kube, M.; Mahlberg, P.; Rossbach, M.; Schmidt, C.; Schmitz, R.; Thoma, U.; Urban, M.; Walther, D.; Wendel, C.; Wilson, A.; Bianconi, A.; Bragadireanu, M.; Caprini, M.; Pantea, D.; Patel, B.; Czyzycki, W.; Domagala, M.; Filo, G.; Jaworowski, J.; Krawczyk, M.; Lisowski, F.; Lisowski, E.; Michałek, M.; Poznański, P.; Płażek, J.; Korcyl, K.; Kozela, A.; Kulessa, P.; Lebiedowicz, P.; Pysz, K.; Schäfer, W.; Szczurek, A.; Fiutowski, T.; Idzik, M.; Mindur, B.; Przyborowski, D.; Swientek, K.; Biernat, J.; Kamys, B.; Kistryn, S.; Korcyl, G.; Krzemien, W.; Magiera, A.; Moskal, P.; Pyszniak, A.; Rudy, Z.; Salabura, P.; Smyrski, J.; Strzempek, P.; Wronska, A.; Augustin, I.; Böhm, R.; Lehmann, I.; Nicmorus Marinescu, D.; Schmitt, L.; Varentsov, V.; Al-Turany, M.; Belias, A.; Deppe, H.; Dzhygadlo, R.; Ehret, A.; Flemming, H.; Gerhardt, A.; Götzen, K.; Gromliuk, A.; Gruber, L.; Karabowicz, R.; Kliemt, R.; Krebs, M.; Kurilla, U.; Lehmann, D.; Löchner, S.; Lühning, J.; Lynen, U.; Orth, H.; Patsyuk, M.; Peters, K.; Saito, T.; Schepers, G.; Schmidt, C. J.; Schwarz, C.; Schwiening, J.; Täschner, A.; Traxler, M.; Ugur, C.; Voss, B.; Wieczorek, P.; Wilms, A.; Zühlsdorf, M.; Abazov, V.; Alexeev, G.; Arefiev, V. A.; Astakhov, V.; Barabanov, M. Yu.; Batyunya, B. V.; Davydov, Y.; Dodokhov, V. Kh.; Efremov, A.; Fechtchenko, A.; Fedunov, A. G.; Galoyan, A.; Grigoryan, S.; Koshurnikov, E. K.; Lobanov, Y. Yu.; Lobanov, V. I.; Makarov, A. F.; Malinina, L. V.; Malyshev, V.; Olshevskiy, A. G.; Perevalova, E.; Piskun, A. A.; Pocheptsov, T.; Pontecorvo, G.; Rodionov, V.; Rogov, Y.; Salmin, R.; Samartsev, A.; Sapozhnikov, M. G.; Shabratova, G.; Skachkov, N. B.; Skachkova, A. N.; Strokovsky, E. A.; Suleimanov, M.; Teshev, R.; Tokmenin, V.; Uzhinsky, V.; Vodopianov, A.; Zaporozhets, S. A.; Zhuravlev, N. I.; Zorin, A. G.; Branford, D.; Glazier, D.; Watts, D.; Böhm, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Dobbs, S.; Seth, K.; Tomaradze, A.; Xiao, T.; Bettoni, D.; Carassiti, V.; Cotta Ramusino, A.; Dalpiaz, P.; Drago, A.; Fioravanti, E.; Garzia, I.; Savrie, M.; Akishina, V.; Kisel, I.; Kozlov, G.; Pugach, M.; Zyzak, M.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Bersani, A.; Bracco, G.; Macri, M.; Parodi, R. F.; Biguenko, K.; Brinkmann, K.; Di Pietro, V.; Diehl, S.; Dormenev, V.; Drexler, P.; Düren, M.; Etzelmüller, E.; Galuska, M.; Gutz, E.; Hahn, C.; Hayrapetyan, A.; Kesselkaul, M.; Kühn, W.; Kuske, T.; Lange, J. S.; Liang, Y.; Metag, V.; Nanova, M.; Nazarenko, S.; Novotny, R.; Quagli, T.; Reiter, S.; Rieke, J.; Rosenbaum, C.; Schmidt, M.; Schnell, R.; Stenzel, H.; Thöring, U.; Ullrich, M.; Wagner, M. N.; Wasem, T.; Wohlfahrt, B.; Zaunick, H.; Ireland, D.; Rosner, G.; Seitz, B.; Deepak, P. N.; Kulkarni, A.; Apostolou, A.; Babai, M.; Kavatsyuk, M.; Lemmens, P. J.; Lindemulder, M.; Loehner, H.; Messchendorp, J.; Schakel, P.; Smit, H.; Tiemens, M.; van der Weele, J. C.; Veenstra, R.; Vejdani, S.; Dutta, K.; Kalita, K.; Kumar, A.; Roy, A.; Sohlbach, H.; Bai, M.; Bianchi, L.; Büscher, M.; Cao, L.; Cebulla, A.; Dosdall, R.; Gillitzer, A.; Goldenbaum, F.; Grunwald, D.; Herten, A.; Hu, Q.; Kemmerling, G.; Kleines, H.; Lehrach, A.; Nellen, R.; Ohm, H.; Orfanitski, S.; Prasuhn, D.; Prencipe, E.; Pütz, J.; Ritman, J.; Schadmand, S.; Sefzick, T.; Serdyuk, V.; Sterzenbach, G.; Stockmanns, T.; Wintz, P.; Wüstner, P.; Xu, H.; Zambanini, A.; Li, S.; Li, Z.; Sun, Z.; Xu, H.; Rigato, V.; Isaksson, L.; Achenbach, P.; Corell, O.; Denig, A.; Distler, M.; Hoek, M.; Karavdina, A.; Lauth, W.; Liu, Z.; Merkel, H.; Müller, U.; Pochodzalla, J.; Sanchez, S.; Schlimme, S.; Sfienti, C.; Thiel, M.; Ahmadi, H.; Ahmed, S.; Bleser, S.; Capozza, L.; Cardinali, M.; Dbeyssi, A.; Deiseroth, M.; Feldbauer, F.; Fritsch, M.; Fröhlich, B.; Jasinski, P.; Kang, D.; Khaneft, D.; Klasen, R.; Leithoff, H. H.; Lin, D.; Maas, F.; Maldaner, S.; Martínez, M.; Michel, M.; Mora Espí, M. C.; Morales Morales, C.; Motzko, C.; Nerling, F.; Noll, O.; Pflüger, S.; Pitka, A.; Rodríguez Piñeiro, D.; Sanchez-Lorente, A.; Steinen, M.; Valente, R.; Weber, T.; Zambrana, M.; Zimmermann, I.; Fedorov, A.; Korjik, M.; Missevitch, O.; Boukharov, A.; Malyshev, O.; Marishev, I.; Balanutsa, V.; Balanutsa, P.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.; Goryachev, V.; Chandratre, V.; Datar, V.; Dutta, D.; Jha, V.; Kumawat, H.; Mohanty, A. K.; Parmar, A.; Roy, B.; Sonika, G.; Fritzsch, C.; Grieser, S.; Hergemöller, A.; Hetz, B.; Hüsken, N.; Khoukaz, A.; Wessels, J. P.; Khosonthongkee, K.; Kobdaj, C.; Limphirat, A.; Srisawad, P.; Yan, Y.; Barnyakov, M.; Barnyakov, A. Yu.; Beloborodov, K.; Blinov, A. E.; Blinov, V. E.; Bobrovnikov, V. S.; Kononov, S.; Kravchenko, E. A.; Kuyanov, I. A.; Martin, K.; Onuchin, A. P.; Serednyakov, S.; Sokolov, A.; Tikhonov, Y.; Atomssa, E.; Kunne, R.; Marchand, D.; Ramstein, B.; van de Wiele, J.; Wang, Y.; Boca, G.; Costanza, S.; Genova, P.; Montagna, P.; Rotondi, A.; Abramov, V.; Belikov, N.; Bukreeva, S.; Davidenko, A.; Derevschikov, A.; Goncharenko, Y.; Grishin, V.; Kachanov, V.; Kormilitsin, V.; Levin, A.; Melnik, Y.; Minaev, N.; Mochalov, V.; Morozov, D.; Nogach, L.; Poslavskiy, S.; Ryazantsev, A.; Ryzhikov, S.; Semenov, P.; Shein, I.; Uzunian, A.; Vasiliev, A.; Yakutin, A.; Tomasi-Gustafsson, E.; Roy, U.; Yabsley, B.; Belostotski, S.; Gavrilov, G.; Izotov, A.; Manaenkov, S.; Miklukho, O.; Veretennikov, D.; Zhdanov, A.; Makonyi, K.; Preston, M.; Tegner, P.; Wölbing, D.; Bäck, T.; Cederwall, B.; Rai, A. K.; Godre, S.; Calvo, D.; Coli, S.; De Remigis, P.; Filippi, A.; Giraudo, G.; Lusso, S.; Mazza, G.; Mignone, M.; Rivetti, A.; Wheadon, R.; Balestra, F.; Iazzi, F.; Introzzi, R.; Lavagno, A.; Olave, J.; Amoroso, A.; Bussa, M. P.; Busso, L.; De Mori, F.; Destefanis, M.; Fava, L.; Ferrero, L.; Greco, M.; Hu, J.; Lavezzi, L.; Maggiora, M.; Maniscalco, G.; Marcello, S.; Sosio, S.; Spataro, S.; Birsa, R.; Bradamante, F.; Bressan, A.; Martin, A.; Calen, H.; Ikegami Andersson, W.; Johansson, T.; Kupsc, A.; Marciniewski, P.; Papenbrock, M.; Pettersson, J.; Schönning, K.; Wolke, M.; Galnander, B.; Diaz, J.; Pothodi Chackara, V.; Chlopik, A.; Kesik, G.; Melnychuk, D.; Slowinski, B.; Trzcinski, A.; Wojciechowski, M.; Wronka, S.; Zwieglinski, B.; Bühler, P.; Marton, J.; Steinschaden, D.; Suzuki, K.; Widmann, E.; Zmeskal, J.

    2016-10-01

    Simulation results for future measurements of electromagnetic proton form factors at overlinePANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel bar{p}p→ e+e- is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. bar{p}p→ π+π-, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance.

  14. Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    CERN Document Server

    Singh, B.; Krusche, B.; Steinacher, M.; Walford, N.; Liu, B.; Liu, H.; Liu, Z.; Shen, X.; Wang, C.; Zhao, J.; Albrecht, M.; Erlen, T.; Fink, M.; Heinsius, F.; Held, T.; Holtmann, T.; Jasper, S.; Keshk, I.; Koch, H.; Kopf, B.; Kuhlmann, M.; Kümmel, M.; Leiber, S.; Mikirtychyants, M.; Musiol, P.; Mustafa, A.; Pelizäus, M.; Pychy, J.; Richter, M.; Schnier, C.; Schröder, T.; Sowa, C.; Steinke, M.; Triffterer, T.; Wiedner, U.; Ball, M.; Beck, R.; Hammann, C.; Ketzer, B.; Kube, M.; Mahlberg, P.; Rossbach, M.; Schmidt, C.; Schmitz, R.; Thoma, U.; Urban, M.; Walther, D.; Wendel, C.; Wilson, A.; Bianconi, A.; Bragadireanu, M.; Caprini, M.; Pantea, D.; Patel, B.; Czyzycki, W.; Domagala, M.; Filo, G.; Jaworowski, J.; Krawczyk, M.; Lisowski, F.; Lisowski, E.; Michałek, M.; Poznański, P.; Płażek, J.; Korcyl, K.; Kozela, A.; Kulessa, P.; Lebiedowicz, P.; Pysz, K.; Schäfer, W.; Szczurek, A.; Fiutowski, T.; Idzik, M.; Mindur, B.; Przyborowski, D.; Swientek, K.; Biernat, J.; Kamys, B.; Kistryn, S.; Korcyl, G.; Krzemien, W.; Magiera, A.; Moskal, P.; Pyszniak, A.; Rudy, Z.; Salabura, P.; Smyrski, J.; Strzempek, P.; Wronska, A.; Augustin, I.; Böhm, R.; Lehmann, I.; Marinescu, D. Nicmorus; Schmitt, L.; Varentsov, V.; Al-Turany, M.; Belias, A.; Deppe, H.; Dzhygadlo, R.; Ehret, A.; Flemming, H.; Gerhardt, A.; Götzen, K.; Gromliuk, A.; Gruber, L.; Karabowicz, R.; Kliemt, R.; Krebs, M.; Kurilla, U.; Lehmann, D.; Löchner, S.; Lühning, J.; Lynen, U.; Orth, H.; Patsyuk, M.; Peters, K.; Saito, T.; Schepers, G.; Schmidt, C.J.; Schwarz, C.; Schwiening, J.; Täschner, A.; Traxler, M.; Ugur, C.; Voss, B.; Wieczorek, P.; Wilms, A.; Zühlsdorf, M.; Abazov, V.; Alexeev, G.; Arefiev, V.A.; Astakhov, V.; Barabanov, M. Yu.; Batyunya, B.V.; Davydov, Y.; Dodokhov, V. Kh.; Efremov, A.; Fechtchenko, A.; Fedunov, A.G.; Galoyan, A.; Grigoryan, S.; Koshurnikov, E.K.; Lobanov, Y. Yu.; Lobanov, V.I.; Makarov, A.F.; Malinina, L.V.; Malyshev, V.; Olshevskiy, A.G.; Perevalova, E.; Piskun, A.A.; Pocheptsov, T.; Pontecorvo, G.; Rodionov, V.; Rogov, Y.; Salmin, R.; Samartsev, A.; Sapozhnikov, M.G.; Shabratova, G.; Skachkov, N.B.; Skachkova, A.N.; Strokovsky, E.A.; Suleimanov, M.; Teshev, R.; Tokmenin, V.; Uzhinsky, V.; Vodopianov, A.; Zaporozhets, S.A.; Zhuravlev, N.I.; Zorin, A.G.; Branford, D.; Glazier, D.; Watts, D.; Böhm, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Dobbs, S.; Seth, K.; Tomaradze, A.; Xiao, T.; Bettoni, D.; Carassiti, V.; Cotta Ramusino, A.; Dalpiaz, P.; Drago, A.; Fioravanti, E.; Garzia, I.; Savrie, M.; Akishina, V.; Kisel, I.; Kozlov, G.; Pugach, M.; Zyzak, M.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Bersani, A.; Bracco, G.; Macri, M.; Parodi, R.F.; Biguenko, K.; Brinkmann, K.; Di Pietro, V.; Diehl, S.; Dormenev, V.; Drexler, P.; Düren, M.; Etzelmüller, E.; Galuska, M.; Gutz, E.; Hahn, C.; Hayrapetyan, A.; Kesselkaul, M.; Kühn, W.; Kuske, T.; Lange, J.S.; Liang, Y.; Metag, V.; Nanova, M.; Nazarenko, S.; Novotny, R.; Quagli, T.; Reiter, S.; Rieke, J.; Rosenbaum, C.; Schmidt, M.; Schnell, R.; Stenzel, H.; Thöring, U.; Ullrich, M.; Wagner, M.N.; Wasem, T.; Wohlfahrt, B.; Zaunick, H.; Ireland, D.; Rosner, G.; Seitz, B.; Deepak, P.N.; Kulkarni, A.; Apostolou, A.; Babai, M.; Kavatsyuk, M.; Lemmens, P.J.; Lindemulder, M.; Loehner, H.; Messchendorp, J.; Schakel, P.; Smit, H.; Tiemens, M.; van der Weele, J.C.; Veenstra, R.; Vejdani, S.; Dutta, K.; Kalita, K.; Kumar, A.; Roy, A.; Sohlbach, H.; Bai, M.; Bianchi, L.; Büscher, M.; Cao, L.; Cebulla, A.; Dosdall, R.; Gillitzer, A.; Goldenbaum, F.; Grunwald, D.; Herten, A.; Hu, Q.; Kemmerling, G.; Kleines, H.; Lehrach, A.; Nellen, R.; Ohm, H.; Orfanitski, S.; Prasuhn, D.; Prencipe, E.; Pütz, J.; Ritman, J.; Schadmand, S.; Sefzick, T.; Serdyuk, V.; Sterzenbach, G.; Stockmanns, T.; Wintz, P.; Wüstner, P.; Xu, H.; Zambanini, A.; Li, S.; Li, Z.; Sun, Z.; Rigato, V.; Isaksson, L.; Achenbach, P.; Corell, O.; Denig, A.; Distler, M.; Hoek, M.; Karavdina, A.; Lauth, W.; Merkel, H.; Müller, U.; Pochodzalla, J.; Sanchez, S.; Schlimme, S.; Sfienti, C.; Thiel, M.; Ahmadi, H.; Ahmed, S.; Bleser, S.; Capozza, L.; Cardinali, M.; Dbeyssi, A.; Deiseroth, M.; Feldbauer, F.; Fritsch, M.; Fröhlich, B.; Jasinski, P.; Kang, D.; Khaneft, D.; Klasen, R.; Leithoff, H.H.; Lin, D.; Maas, F.; Maldaner, S.; Marta, M.; Michel, M.; Espí, M. C. Mora; Morales Morales, C.; Motzko, C.; Nerling, F.; Noll, O.; Pflüger, S.; Pitka, A.; Piñeiro, D. Rodríguez; Sanchez-Lorente, A.; Steinen, M.; Valente, R.; Weber, T.; Zambrana, M.; Zimmermann, I.; Fedorov, A.; Korjik, M.; Missevitch, O.; Boukharov, A.; Malyshev, O.; Marishev, I.; Balanutsa, V.; Balanutsa, P.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.; Goryachev, V.; Chandratre, V.; Datar, V.; Dutta, D.; Jha, V.; Kumawat, H.; Mohanty, A.K.; Parmar, A.; Roy, B.; Sonika, G.; Fritzsch, C.; Grieser, S.; Hergemöller, A.; Hetz, B.; Hüsken, N.; Khoukaz, A.; Wessels, J.P.; Khosonthongkee, K.; Kobdaj, C.; Limphirat, A.; Srisawad, P.; Yan, Y.; Barnyakov, M.; Barnyakov, A. Yu.; Beloborodov, K.; Blinov, A.E.; Blinov, V.E.; Bobrovnikov, V.S.; Kononov, S.; Kravchenko, E.A.; Kuyanov, I.A.; Martin, K.; Onuchin, A.P.; Serednyakov, S.; Sokolov, A.; Tikhonov, Y.; Atomssa, E.; Kunne, R.; Marchand, D.; Ramstein, B.; van de Wiele, J.; Wang, Y.; Boca, G.; Costanza, S.; Genova, P.; Montagna, P.; Rotondi, A.; Abramov, V.; Belikov, N.; Bukreeva, S.; Davidenko, A.; Derevschikov, A.; Goncharenko, Y.; Grishin, V.; Kachanov, V.; Kormilitsin, V.; Levin, A.; Melnik, Y.; Minaev, N.; Mochalov, V.; Morozov, D.; Nogach, L.; Poslavskiy, S.; Ryazantsev, A.; Ryzhikov, S.; Semenov, P.; Shein, I.; Uzunian, A.; Vasiliev, A.; Yakutin, A.; Tomasi-Gustafsson, E.; Roy, U.; Yabsley, B.; Belostotski, S.; Gavrilov, G.; Izotov, A.; Manaenkov, S.; Miklukho, O.; Veretennikov, D.; Zhdanov, A.; Makonyi, K.; Preston, M.; Tegner, P.; Wölbing, D.; Bäck, T.; Cederwall, B.; Rai, A.K.; Godre, S.; Calvo, D.; Coli, S.; De Remigis, P.; Filippi, A.; Giraudo, G.; Lusso, S.; Mazza, G.; Mignone, M.; Rivetti, A.; Wheadon, R.; Balestra, F.; Iazzi, F.; Introzzi, R.; Lavagno, A.; Olave, J.; Amoroso, A.; Bussa, M.P.; Busso, L.; De Mori, F.; Destefanis, M.; Fava, L.; Ferrero, L.; Greco, M.; Hu, J.; Lavezzi, L.; Maggiora, M.; Maniscalco, G.; Marcello, S.; Sosio, S.; Spataro, S.; Birsa, R.; Bradamante, F.; Bressan, A.; Martin, A.; Calen, H.; Andersson, W. Ikegami; Johansson, T.; Kupsc, A.; Marciniewski, P.; Papenbrock, M.; Pettersson, J.; Schönning, K.; Wolke, M.; Galnander, B.; Diaz, J.; Chackara, V. Pothodi; Chlopik, A.; Kesik, G.; Melnychuk, D.; Slowinski, B.; Trzcinski, A.; Wojciechowski, M.; Wronka, S.; Zwieglinski, B.; Bühler, P.; Marton, J.; Steinschaden, D.; Suzuki, K.; Widmann, E.; Zmeskal, J.

    2016-01-01

    The results of simulations for future measurements of electromagnetic form factors at \\PANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision at which the proton form factors can be determined is estimated. The signal channel $\\bar p p \\to e^+ e^-$ is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. the $\\bar p p \\to \\pi^+ \\pi^-$, is studied. Furthermore, the background versus signal efficiency, statistic and systematic uncertainties on the extracted proton form factors are evaluated using to the two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam condition and detector performances.

  15. Electromagnetic form factors of the Delta in a S-wave approach

    CERN Document Server

    Ramalho, G

    2008-01-01

    Without any further adjusting of parameters, a relativistic constituent quark model, successful in the description of the data for the nucleon elastic form factors and the dominant contribution to the nucleon to $\\Delta$ electromagnetic transition, is used here to predict the dominant electromagnetic form factors of the $\\Delta$ baryon. The model considered is based on a simple $\\Delta$ wave function corresponding to a quark-diquark system in an S-state. The results for E0 and M1 are consistent both with experimental results and lattice calculations. The remaining form factors M1 and E2 are negligible for small $Q^2$, as expected, given the symmetric structure considered for the $\\Delta$.

  16. $D$ semileptonic form factors and $|V_{cs(d)}|$ from 2+1 flavor lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Jon A.; Bazavov, A.; El-Khadra, A.X.; Gottlieb, Steven; Jain, R.D.; Kronfeld, A.S.; Van de Water, R.S.; Zhou, R.

    2011-11-01

    The measured partial widths of the semileptonic decays D {yields} K{ell}{nu} and D {yields} {pi}{ell}{nu} can be combined with the form factors calculated on the lattice to extract the CKM matrix elements |V{sub cs}| and |V{sub cd}|. The lattice calculations can be checked by comparing the form factor shapes from the lattice and experiment. We have generated a sizable data set by using heavy clover quarks with the Fermilab interpretation for charm and asqtad staggered light quarks on 2+1 flavor MILC ensembles with lattice spacings of approximately 0.12, 0.09, 0.06, and 0.045 fm. Preliminary fits to staggered chiral perturbation theory suggest that we can reduce the uncertainties in the form factors at q{sup 2} = 0 to below 5%.

  17. Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B. [Aligarth Muslim Univ., Aligarth (India). Physics Dept.; Erni, W.; Krusche, B. [Basel Univ. (Switzerland); Collaboration: The PANDA Collaboration; and others

    2016-10-15

    Simulation results for future measurements of electromagnetic proton form factors at PANDA(FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel anti pp → e{sup +}e{sup -} is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. anti pp → π{sup +}π{sup -}, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance. (orig.)

  18. Research on Design Method of the Full Form Ship with Minimum Thrust Deduction Factor

    Institute of Scientific and Technical Information of China (English)

    张宝吉; 缪爱琴; 张竹心

    2015-01-01

    In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust deduction factor has been developed, which combined the potential flow theory and boundary layer theory with the optimization technique. In the optimization process, the Sequential Unconstrained Minimization Technique (SUMT) interior point method of Nonlinear Programming (NLP) was proposed with the minimum thrust deduction factor as the objective function. An appropriate displacement is a basic constraint condition, and the boundary layer separation is an additional one. The parameters of the hull form modification function are used as design variables. At last, the numerical optimization example for lines of after-body of 50000 DWT product oil tanker was provided, which indicated that the propulsion efficiency was improved distinctly by this optimal design method.

  19. Constraints on the ωπ form factor from analyticity and unitarity

    Science.gov (United States)

    Ananthanarayan, B.; Caprini, Irinel; Kubis, Bastian

    2016-05-01

    Form factors are important low-energy quantities and an accurate knowledge of these sheds light on the strong interactions. A variety of methods based on general principles have been developed to use information known in different energy regimes to constrain them in regions where experimental information needs to be tested precisely. Here we review our recent work on the electromagnetic ωπ form factor in a model-independent framework known as the method of unitarity bounds, partly motivated by the discrepancies noted recently between the theoretical calculations of the form factor based on dispersion relations and certain experimental data measured from the decay ω → π0γ∗. We have applied a modified dispersive formalism, which uses as input the discontinuity of the ωπ form factor calculated by unitarity below the ωπ threshold and an integral constraint on the square of its modulus above this threshold. The latter constraint was obtained by exploiting unitarity and the positivity of the spectral function of a QCD correlator, computed on the spacelike axis by operator product expansion and perturbative QCD. An alternative constraint is obtained by using data available at higher energies for evaluating an integral of the modulus squared with a suitable weight function. From these conditions we derived upper and lower bounds on the modulus of the ωπ form factor in the region below the ωπ threshold. The results confirm the existence of a disagreement between dispersion theory and experimental data on the ωπ form factor around 0.6 GeV, including those from NA60 published in 2016.

  20. Relativistic quark-diquark model of baryons. Non strange spectrum and nucleon electromagnetic form factors

    CERN Document Server

    De Sanctis, M; Santopinto, E; Vassallo, A

    2015-01-01

    We briefly describe our relativistic quark-diquark model, developed within the framework of point form dynamics, which is the relativistic extension of the interacting quark-diquark model. In order to do that we have to show the main properties and quantum numbers of the effective degree of freedom of constituent diquark. Our results for the nonstrange baryon spectrum and for the nucleon electromagnetic form factors are discussed.

  1. Light-Front Model of Transition Form-Factors in Heavy Meson Decay

    CERN Document Server

    de Melo, J P B C

    2010-01-01

    Electroweak transition form factors of heavy meson decays are important ingredients in the extraction of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements from experimental data. In this work, within a light-front framework, we calculate electroweak transition form factor for the semileptonic decay of $D$ mesons into a pion or a kaon. The model results underestimate in both cases the new data of CLEO for the larger momentum transfers accessible in the experiment. We discuss possible reasons for that in order to improve the model.

  2. Computation of form factors in massless QCD with finite master integrals

    Science.gov (United States)

    von Manteuffel, Andreas; Panzer, Erik; Schabinger, Robert M.

    2016-06-01

    We present the bare one-, two-, and three-loop form factors in massless quantum chromodynamics as linear combinations of finite master integrals. Using symbolic integration, we compute their ɛ expansions and thereby reproduce all known results with an independent method. Remarkably, in our finite basis, only integrals with a less-than-maximal number of propagators contribute to the cusp anomalous dimensions. We report on indications of this phenomenon at four loops, including the result for a finite, irreducible, twelve-propagator form factor integral. Together with this article, we provide our automated software setup for the computation of finite master integrals.

  3. On the Computation of Form Factors in Massless QCD with Finite Master Integrals

    CERN Document Server

    von Manteuffel, Andreas; Schabinger, Robert M

    2015-01-01

    We present the bare one-, two-, and three-loop form factors in massless Quantum Chromodynamics as linear combinations of finite master integrals. Using symbolic integration, we compute their $\\epsilon$ expansions and thereby reproduce all known results with an independent method. Remarkably, in our finite basis, only integrals with a less-than-maximal number of propagators contribute to the cusp anomalous dimensions. We report on indications of this phenomenon at four loops, including the result for a finite, irreducible, twelve-propagator form factor integral. Together with this article, we provide our automated software setup for the computation of finite master integrals.

  4. Light Cone Sum Rules for gamma*N ->Delta Transition Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    V.M. Braun; A. Lenz; G. Peters; A. Radyushkin

    2006-02-01

    A theoretical framework is suggested for the calculation of {gamma}* N {yields} {Delta} transition form factors using the light-cone sum rule approach. Leading-order sum rules are derived and compared with the existing experimental data. We find that the transition form factors in a several GeV region are dominated by the ''soft'' contributions that can be thought of as overlap integrals of the valence components of the hadron wave functions. The ''minus'' components of the quark fields contribute significantly to the result, which can be reinterpreted as large contributions of the quark orbital angular momentum.

  5. Hyperon elastic electromagnetic form factors in the space-like momentum region

    Energy Technology Data Exchange (ETDEWEB)

    Sanchis-Alepuz, Helios [Justus-Liebig-Universitaet Giessen, Institut fuer Theoretische Physik, Giessen (Germany); Karl-Franzens-Universitaet Graz, Institut fuer Physik, Graz (Austria); Fischer, Christian S. [Justus-Liebig-Universitaet Giessen, Institut fuer Theoretische Physik, Giessen (Germany)

    2016-02-15

    We present a calculation of the electric and magnetic form factors of ground-state octet and decuplet baryons including strange quarks. We work with a combination of Dyson-Schwinger equations for the quark propagator and covariant Bethe-Salpeter equations describing baryons as bound states of three (non-perturbative) quarks. Our form factors for the octet baryons are in good agreement with corresponding lattice data at finite Q{sup 2}; deviations in some isospin channels for the magnetic moments can be explained by missing meson cloud effects. At larger Q{sup 2} our quark core calculation has predictive power for both, the octet and decuplet baryons. (orig.)

  6. Measurement of the γγ*→π0 transition form factor

    Science.gov (United States)

    Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M.; Khan, A.; Randle-Conde, A.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.; Sharma, V.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Wilson, R. J.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.; Bernard, D.; Latour, E.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Chaisanguanthum, K. S.; Morii, M.; Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.; Bernlochner, F. U.; Klose, V.; Lacker, H. M.; Bard, D. J.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Charles, M. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Béquilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Clarke, C. K.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Saremi, S.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.; Patel, P. M.; Robertson, S. H.; Schram, M.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.; Simard, M.; Taras, P.; Nicholson, H.; de Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Del Amo Sanchez, P.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Gladney, L.; Biasini, M.; Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Li Gioi, L.

    2009-09-01

    We study the reaction e+e-→e+e-π0 in the single tag mode and measure the differential cross section dσ/dQ2 and the γγ*→π0 transition form factor in the momentum transfer range from 4 to 40GeV2. At Q2>10GeV2 the measured form factor exceeds the asymptotic limit predicted by perturbative QCD. The analysis is based on 442fb-1 of integrated luminosity collected at PEP-II with the BABAR detector at e+e- center-of-mass energies near 10.6 GeV.

  7. Form Factors and Generalized Parton Distributions in Basis Light-Front Quantization

    CERN Document Server

    Adhikari, Lekha; Zhao, Xingbo; Maris, Pieter; Vary, James P; El-Hady, Alaa Abd

    2016-01-01

    We calculate the elastic form factors and the Generalized Parton Distributions (GPDs) for four low-lying bound states of a demonstration fermion-antifermion system, strong coupling positronium ($e \\bar{e}$), using Basis Light-Front Quantization (BLFQ). Using this approach, we also calculate the impact-parameter dependent GPDs $q(x, {\\vec b_\\perp})$ to visualize the fermion density in the transverse plane (${\\vec b_\\perp}$). We compare selected results with corresponding quantities in the non-relativistic limit to reveal relativistic effects. Our results establish the foundation within BLFQ for investigating the form factors and the GPDs for hadronic systems.

  8. Nucleon and gamma N -> Delta lattice form factors in a constituent quark model

    CERN Document Server

    Ramalho, G

    2008-01-01

    A covariant quark model, based both on the spectator formalism and on Vector Meson Dominance, and previously calibrated by the physical data, is here extended to the unphysical region of the lattice data by means of one single extra adjustable parameter - the constituent quark mass in the chiral limit. We calculated the Nucleon (N) and the Gamma N -> Delta form factors in the universe of values for that parameter described by quenched lattice QCD. A qualitative description of the Nucleon and Gamma N -> Delta form factors lattice data is achieved for light pion masses.

  9. Analysis of the J /ψ →π0γ* transition form factor

    Science.gov (United States)

    Kubis, Bastian; Niecknig, Franz

    2015-02-01

    In view of the first measurement of the branching fraction for J /ψ →π0e+e- by the BESIII collaboration, we analyze what can be learned on the corresponding transition form factor using dispersion theory. We show that light-quark degrees of freedom dominate the spectral function, in particular two-pion intermediate states. Estimating the effects of multipion states as well as charmonium, we arrive at a prediction for the complete form factor that should be scrutinized experimentally in the future.

  10. Electromagnetic form factors for spin-1 particles with the light-front

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Clayton S. [Laboratório de Física Teórica e Computacional (LFTC), Universidade Cruzeiro do Sul, 01506-000, São Paulo (Brazil); Departamento de Física, Instituto Tecnológico de Aeronáutica, 12.228-900 São José dos Campos, São Paulo (Brazil); Nunes da Silva, Anacé; Melo, J.P.B.C. de [Laboratório de Física Teórica e Computacional (LFTC), Universidade Cruzeiro do Sul, 01506-000, São Paulo (Brazil); Frederico, T. [Departamento de Física, Instituto Tecnológico de Aeronáutica, 12.228-900 São José dos Campos, São Paulo (Brazil)

    2014-06-15

    This work is dedicate to investigate the spin-1 electromagnetic form factors with the light-front quantum field theory approach. All prescriptions with the light-front approach are contamined by the zero-modes contribuitions to the electromagnetic matrix elements of the electromagnetic current with the plus component of the current; however, the Inna Grach prescriptions it is immune for the zero modes contribuitions. We show numerically the contribution of zero-modes for the electromagnetic current in the case of the vector particles in the light-front quantum field theory. Also the electromagnetic observables, like electromagnetic form factors, radius and the decay constant are presented.

  11. Analysis of the J/psi --> pi^0 gamma^* transition form factor

    CERN Document Server

    Kubis, Bastian

    2014-01-01

    In view of the first measurement of the branching fraction for J/psi --> pi^0 e^+ e^- by the BESIII collaboration, we analyze what can be learnt on the corresponding transition form factor using dispersion theory. We show that light-quark degrees of freedom dominate the spectral function, in particular two-pion intermediate states. Estimating the effects of multi-pion states as well as charmonium, we arrive at a prediction for the complete form factor that should be scrutinized experimentally in the future.

  12. Test of the triple Higgs boson form factor in $\\mu^-\\mu^+\\to HH$

    CERN Document Server

    Gounaris, G J

    2016-01-01

    We study the sensitivity of the process $\\mu^-\\mu^+\\to HH$ to the $q^2$-dependence of the $HHH$ form factor, which can reflect the Higgs boson structure, especially in the case of compositeness. We compute the Born and 1 loop SM contribution to this process. We then show how the $\\mu^-\\mu^+\\to HH$ polarized and unpolarized cross sections are modified by the presence of various types of anomalous contributions to the $HHH$ form factor, in particular Higgs constituents in the case of compositeness.

  13. Kaon photoproduction with form factors in a gauge-invariant approach

    CERN Document Server

    Haberzettl, H; Mart, T; Feuster, T

    1998-01-01

    The general gauge-invariant photoproduction formalism given by Haberzettl is applied to kaon photoproduction off the nucleon at the tree level, with form factors describing composite nucleons. We demonstrate that, in contrast to Ohta's gauge-invariance prescription, this formalism allows electric current contributions to be multiplied by a form factor, i.e., they do not need to be treated like bare currents. Numerical results show that Haberzettl's gauge procedure, when compared to Ohta's, leads to much improved $\\chi^2$ values. Moreover, predictions for the new Bonn SAPHIR data for $p(\\gamma,K^+)\\Lambda$ are given.

  14. Phenomenological analysis of near threshold periodic modulations of the proton timelike form factor

    CERN Document Server

    Bianconi, A

    2015-01-01

    We have recently highlighted the presence of a periodically oscillating 10 \\% modulation in the BABAR data on the proton timelike form factors, in the reaction $e^++e^-$ $\\rightarrow$ $\\bar{p}+p$. Here we deepen our previous data analysis, and confirm that in the case of several standard parametrizations it is possible to write the form factor in the form $F_0$ $+$ $F_{osc}$, where $F_0$ is a parametrization expressing the long-range trend of the form factor (for $q^2$ ranging from the $\\bar{p}p$ threshold to 36 GeV$^2$), and $F_{osc}$ is a function of the form $\\exp(-Bp)\\cos(Cp)$, where $p$ is the relative momentum of the final $\\bar{p}p$ pair. Error bars allow for a clean identification of the main features of this modulation for $q^2$ $<$ 10 GeV$^2$. Assuming this oscillatory modulation to be an effect of final state interactions between the forming proton and the antiproton, we propose a phenomenological model based on a double-layer imaginary optical potential. This potential is flux-absorbing when th...

  15. Separated exclusive kaon production cross sections up to Q2=2.1 GeV2 and the kaon form factor

    Science.gov (United States)

    Carmignotto, Marco; Horn, Tanja

    2017-01-01

    Electromagnetic form factors are a key observable in probing hadronic structure, providing us with important information about underlying physical quantities related to nonperturbative QCD. Light mesons composed of a valence quark-antiquark pair can be described by a single electric form factor and have been shown to be a great laboratory for these studies. Using electroproduction experiments, a successful program was developed at Jefferson Laboratory for probing the charged pion form factor in the regime of Q2 up to 2.45 GeV2. This provided a first glimpse at a possible transition from the nonperturbative to the perturbative regime, and also information on the structure of the pion. The kaon is the next lightest existing hadron, providing an interesting channel for assessing the strangeness degree of freedom with mesons. Although the kaon is relatively unexploited to date, there are promising results from experiments of the 6 GeV era of Jefferson Laboratory with potential for kaon form factor extractions. In this talk we will present the recent analysis of the t-channel kaon cross section and discuss the relative contribution of longitudinal and transverse photons to the cross section up to Q2 values of 2.1 GeV2 and prospects for form factor extractions. Supported in part by NSF grants PHY-1306227 and PHY-1306418 and by the JSA Graduate Fellowship.

  16. Eletroweak Form Factors in the Light-Front for Spin-1 Particles

    CERN Document Server

    de Melo, J P B C; 10.1007/s00601-011-0295-9

    2012-01-01

    The contribution of the light-front valence wave function to the electromagnetic current of spin-1 composite particles is not enough to warranty the proper transformation of the current under rotations. The naive derivation of the plus component of the current in the Drell-Yan-West frame within an analytical and covariant model of the vertex leads to the violation of the rotational symmetry. Computing the form-factors in a quasi Drell-Yan-West frame $q^+\\rightarrow 0$, we were able to separate out in an analytical form the contributions from Z-diagrams or zero modes using the instant-form cartesian polarization basis.

  17. Nucleon momentum distributions and elastic electron scattering form factors for some 1p-shell nuclei

    Indian Academy of Sciences (India)

    A K Hamoudi; M A Hasan; A R Ridha

    2012-05-01

    The nucleon momentum distributions (NMD) and elastic electron scattering form factors of the ground state for 1p-shell nuclei with = (such as 6Li, 10B, 12C and 14N nuclei) have been calculated in the framework of the coherent density fluctuation model (CDFM) and expressed in terms of the weight function $|f(x)|^2$. The weight function has been expressed in terms of nucleon density distribution (NDD) of the nuclei and determined from the theory and the experiment. The feature of the long-tail behaviour at high-momentum region of the NMDs has been obtained by both the theoretical and experimental weight functions. The experimental form factors $F(q)$ of all the considered nuclei are very well reproduced by the present calculations for all values of momentum transfer . It is found that the contributions of the quadrupole form factors $F_{C2}(q)$ in 10B and 14N nuclei, which are described by the undeformed p-shell model, are essential for obtaining a remarkable agreement between the theoretical and experimental form factors.

  18. Nonperturbative study of the 't Hooft-Polyakov monopole form factors

    CERN Document Server

    Rajantie, Arttu

    2011-01-01

    The mass and interactions of a quantum 't Hooft-Polyakov monopole are measured nonperturbatively using correlation functions in lattice Monte Carlo simulations. A method of measuring the form factors for interactions between the monopole and fundamental particles, such as the photon, is demonstrated. These quantities are potentially of experimental relevance in searches for magnetic monopoles.

  19. Nonperturbative study of the 't Hooft-Polyakov monopole form factors

    Science.gov (United States)

    Rajantie, Arttu; Weir, David J.

    2012-01-01

    The mass and interactions of a quantum ’t Hooft-Polyakov monopole are measured nonperturbatively using correlation functions in lattice Monte Carlo simulations. A method of measuring the form factors for interactions between the monopole and fundamental particles, such as the photon, is demonstrated. These quantities are potentially of experimental relevance in searches for magnetic monopoles.

  20. Strangeness Vector and Axial-Vector Form Factors of the Nucleon

    Directory of Open Access Journals (Sweden)

    Pate Stephen

    2014-03-01

    Full Text Available A revised global fit of electroweak ep and vp elastic scattering data has been performed, with the goal of determining the strange quark contribution to the vector and axial-vector form factors of the nucleon in the momentum-transfer range 0 < Q2 < 1 GeV2. The two vector (electric and magnetic form factors GsE(Q2 and GsM(Q2 are strongly constrained by ep elastic scattering data, while the major source of information on the axial-vector form factor GsA(Q2 is vp scattering data. Combining the two kinds of data into a single global fit makes possible additional precision in the determination of these form factors, and provides a unique way to determine the strange quark contribution to the nucleon spin, ΔS , independently of leptonic deep-inelastic scattering. The fit makes use of data from the BNL-E734, SAMPLE, HAPPEx, G0, and PVA4 experiments; we will also compare the result of the fit with recent data from MiniBooNE, and anticipate how this fit can be improved when new data from MicroBooNE become available.

  1. Mesonic Form Factors and the Isgur-Wise Function on the Light-Front

    CERN Document Server

    Cheng, H Y; Hwang, C W; Cheng, Hai-Yang; Cheung, Chi-Yee; Hwang, Chien-Wen

    1997-01-01

    Within the light-front framework, form factors for $P\\to P$ and $P\\to V$ transitions ($P$: pseudoscalar meson, $V$: vector meson) due to the valence-quark configuration are calculated directly in the entire physical range of momentum transfer. The behavior of form factors in the infinite quark mass limit are examined to see if the requirements of heavy-quark symmetry are fulfilled. We find that the Bauer-Stech-Wirbel type of light-front wave function fails to give a correct normalization for the Isgur-Wise function at zero recoil in $P\\to V$ transition. Some of the $P\\to V$ form factors are found to depend on the recoiling direction of the daughter mesons relative to their parents. Thus, the inclusion of the non-valence configuration arising from quark-pair creation is mandatory in order to ensure that the physical form factors are independent of the recoiling direction. The main feature of the non-valence contribution is discussed.

  2. The electric dipole form factor of the nucleon in chiral perturbation theory to subleading order

    NARCIS (Netherlands)

    Mereghetti, E; de Vries, Jordy; Hockings, W.H.; Maekawa, C.M.; van Kolck, U

    2011-01-01

    The electric dipole form factor (EDFF) of the nucleon stemming from the QCD ¯ term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable, non-analytic contribution

  3. The nucleon electric dipole form factor from dimension-six time-reversal violation

    NARCIS (Netherlands)

    de Vries, J.; Mereghetti, E.; Timmermans, R. G. E.; van Kolck, U.

    2011-01-01

    We calculate the electric dipole form factor of the nucleon that arises as a low-energy manifestation of time-reversal violation in quark-gluon interactions of effective dimension 6: the quark electric and chromoelectric dipole moments, and the gluon chromoelectric dipole moment. We use the framewor

  4. Calculation of heavy meson decay form factors using QCD light cone sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Christoph; Faller, Sven; Khodjamirian, Alexander; Mannel, Thomas [Theoretische Physik 1, Fachbereich Physik, Universitaet Siegen (Germany); Offen, Nils [Laboratoire de Physique Theorique CNRS/Univ. Paris-Sud 11, Orsay (France)

    2009-07-01

    For the determination of CKM-matrix elements from exclusive semileptonic heavy meson decays it is important to know the corresponding form factors, which describe the hadronic dynamics. Since the form factors need some theoretical input, it is crucial to have a few independent calculations to extract the CKM-parameters from experimental data. One of these is the method of QCD sum rules, which will be applied here. In this talk we present our results from the use of different versions of the method of light cone sum rules (LCSR) for the determination of the B{yields} D{sup (*)}- as well as the D{yields}{pi} and D{yields}K-form factors. For B{yields}D{sup (*)} we use the new version of LCSR with B-meson-distribution amplitudes, which is applicable in the kinematical region of high recoil of the produced meson. The results are compared with recent experimental data and their expansion in the heavy quark mass is discussed. Concerning D{yields} {pi},K we employ and update the conventional LCSR with {pi}/K-distribution amplitudes. With the calculated form factors we determine the ratio vertical stroke V{sub cd} vertical stroke / vertical stroke V{sub cs} vertical stroke from new experimental data.

  5. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kyung Ho; Kim, Young-Cheol [Department of System Dynamics, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Jae Eun, E-mail: jekim@cu.ac.kr [School of Mechanical and Automotive Engineering, Catholic University of Daegu, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan-Si, Gyeongsangbuk-Do 712-702 (Korea, Republic of)

    2014-10-15

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.

  6. Influence of crystals fields on the magnetic form factor of samarium

    NARCIS (Netherlands)

    Wijn, H.W. de; Diepen, A.M. van; Buschow, K.H.J.

    1974-01-01

    It is calculated that crstal fields, with inclusion of mixing of higher multiplets into the ground J = 5/2 state, have a substantial effect on the magnetic form factor of Sm3+. From the neutron diffraction data obtained by Koehler and Moon for the cubic site in Sm metal it follows that the quartet Γ

  7. The Short Form of the Five-Factor Narcissism Inventory: Psychometric Equivalence of the Turkish Version

    Science.gov (United States)

    Eksi, Füsun

    2016-01-01

    This study intends to examine the psychometric properties of the Turkish version of the short form of the Five-Factor Narcissism Inventory (FFNI-SF). The study group consists of a total of 526 university students (54% were female) whose ages range from 18 to 32. In the translational equivalence study made over a two-week interval, the FFNI-SF…

  8. Reply to "Comment about pion electroproduction and the axial form factors"

    CERN Document Server

    Haberzettl, H

    2001-01-01

    It is shown that comments by Guichon [hep-ph/0012126], and also by Bernard, Kaiser, and Mei{\\ss}ner [hep-ph/0101062], regarding my recent criticism [Phys. Rev. Lett. 85, 3576 (2000)] of how the axial form factor is supposed to enter pion electroproduction do not address the main point of my argument and therefore are irrelevant.

  9. Axial Nucleon to Delta transition form factors on 2+1 flavor hybrid lattices

    CERN Document Server

    Alexandrou, C; Leontiou, Th; Negele, J W; Tsapalis, A; 10.1103/PhysRevD.80.099901

    2009-01-01

    We correct the values of the dominant nucleon to Delta axial transition form factors CA_5 and CA_6 published in C. Alexandrou et.al., Phys. Rev. D 76,094511 (2007). The analysis error affects only the values obtained when using the hybrid action in the low Q^2 regime bringing them into agreement with those obtained with Wilson fermions.

  10. Flavour dependence of the pion and kaon form factors and parton distribution functions

    CERN Document Server

    Hutauruk, Parada T P; Thomas, Anthony W

    2016-01-01

    The separate quark flavour contributions to the pion and kaon valence quark distribution functions are studied, along with the corresponding electromagnetic form factors in the space-like region. The calculations are made using the solution of the Bethe-Salpeter equation for the model of Nambu and Jona-Lasinio with proper-time regularization. Both the pion and kaon form factors and the valence quark distribution functions reproduce many of the features of the available empirical data. The larger mass if the strange quark naturally explains the empirical fact that the ratio $u_{K^+}(x)/u_{\\pi^+}(x)$ drops below unity at large $x$, with a value of approximately $M^2_u/M_s^2$ as $x \\to 1$. With regard to the elastic form factors we report a large flavour dependence, with the $u$-quark contribution to the kaon form factor being an order of magnitude smaller than that of the $s$-quark at large $Q^2$, which may be a sensitive measure of confinement effects in QCD. Surprisingly though, the total $K^+$ and $\\pi^+$ fo...

  11. Thermodynamic limit of particle-hole form factors in the massless XXZ Heisenberg chain

    Energy Technology Data Exchange (ETDEWEB)

    Kitanine, N. [Univ. de Bourgogne (France). IMB, UMR 5584 du CNRS; Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maillet, J.M.; Terras, V. [ENS Lyon (France). UMR 5672 du CNRS, Lab. de Physique; Slavnov, N.A. [Steklov Mathematical Inst., Moscow (Russian Federation)

    2011-03-15

    We study the thermodynamic limit of the particle-hole form factors of the XXZ Heisenberg chain in the massless regime. We show that, in this limit, such form factors decrease as an explicitly computed power-law in the system size. Moreover, the corresponding amplitudes can be obtained as a product of a ''smooth'' and a ''discrete'' part: the former depends continuously on the rapidities of the particles and holes, whereas the latter has an additional explicit dependence on the set of integer numbers that label each excited state in the associated logarithmic Bethe equations. We also show that special form factors corresponding to zero-energy excitations lying on the Fermi surface decrease as a power-law in the system size with the same critical exponents as in the longdistance asymptotic behavior of the related two-point correlation functions. The methods we develop in this article are rather general and can be applied to other massless integrable models associated to the six-vertex R-matrix and having determinant representations for their form factors. (orig.)

  12. Measurement of the proton form factor by studying e(+)e(-) -> p(p)over-tilde

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrie, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.

    2015-01-01

    Using data samples collected with the BESIII detector at the BEPCII collider, we measure the Born cross section of e(+)e(-) -> p (p) over tilde at 12 center-of-mass energies from 2232.4 to 3671.0 MeV. The corresponding effective electromagnetic form factor of the proton is deduced under the assumpti

  13. Nucleon generalized form factors and sigma term from lattice QCD near the physical quark mass

    CERN Document Server

    Bali, G S; Gläßle, B; Göckeler, M; Najjar, J; Rödl, R; Schäfer, A; Schiel, R; Söldner, W; Sternbeck, A; Wein, P

    2013-01-01

    We present new N_f=2 data for the nucleon generalized form factors, varying volume, lattice spacing and pion mass, down to 150 MeV. We also give an update of our direct calculation of the nucleon sigma term for a range of pion mass values including the lightest one.

  14. $B\\to Kl^+l^-$ decay form factors from three-flavor lattice QCD

    CERN Document Server

    Bailey, Jon A; Bernard, C; Bouchard, C M; DeTar, C; Du, Daping; El-Khadra, A X; Foley, J; Freeland, E D; Gámiz, E; Gottlieb, Steven; Heller, U M; Jain, R D; Komijani, J; Kronfeld, A S; Laiho, J; Levkova, L; Liu, Yuzhi; Mackenzie, P B; Meurice, Y; Neil, E T; Qiu, Si-Wei; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S; Zhou, Ran

    2015-01-01

    We compute the form factors for the $B \\to Kl^+l^-$ semileptonic decay process in lattice QCD using gauge-field ensembles with 2+1 flavors of sea quark, generated by the MILC Collaboration. The ensembles span lattice spacings from 0.12 to 0.045 fm and have multiple sea-quark masses to help control the chiral extrapolation. The asqtad improved staggered action is used for the light valence and sea quarks, and the clover action with the Fermilab interpretation is used for the heavy $b$ quark. We present results for the form factors $f_+(q^2)$, $f_0(q^2)$, and $f_T(q^2)$, where $q^2$ is the momentum transfer, together with a comprehensive examination of systematic errors. Lattice QCD determines the form factors for a limited range of $q^2$, and we use the model-independent $z$ expansion to cover the whole kinematically allowed range. We present our final form-factor results as coefficients of the $z$ expansion and the correlations between them, where the errors on the coefficients include statistical and all sys...

  15. Structure of the neutral pion and its electromagnetic transition form factor

    CERN Document Server

    Raya, K; Bashir, A; Cobos-Martinez, J J; Gutiérrez-Guerrero, L X; Roberts, C D; Tandy, P C

    2015-01-01

    The $\\gamma^\\ast \\gamma \\to \\pi^0$ transition form factor, $G(Q^2)$, is computed on the entire domain of spacelike momenta using a continuum approach to the two valence-body bound-state problem in relativistic quantum field theory: the result agrees with data obtained by the CELLO, CLEO and Belle Collaborations. The analysis unifies this prediction with that of the pion's valence-quark parton distribution amplitude (PDA) and elastic electromagnetic form factor, and demonstrates, too, that a fully self-consistent treatment can readily connect a pion PDA that is a broad, concave function at the hadronic scale with the perturbative QCD prediction for the transition form factor in the hard photon limit. The normalisation of that limit is set by the scale of dynamical chiral symmetry breaking, which is a crucial feature of the Standard Model. Understanding of the latter will thus remain incomplete until definitive transition form factor data is available on $Q^2>10\\,$GeV$^2$.

  16. Vector form factor of the pion in chiral effective field theory

    Directory of Open Access Journals (Sweden)

    D. Djukanovic

    2015-03-01

    Full Text Available The vector form factor of the pion is calculated in the framework of chiral effective field theory with vector mesons included as dynamical degrees of freedom. To construct an effective field theory with a consistent power counting, the complex-mass scheme is applied.

  17. Electromagnetic Transition Form Factor of the η meson with WASA-at-COSY

    Directory of Open Access Journals (Sweden)

    Goswami A.

    2016-01-01

    Full Text Available In this work we present a study of the Dalitz decay η → γe+e−. The aim of this work is to measure the transition form factor of the η meson. The transition form factor of the η meson describes the electromagnetic structure of the meson. The study of the Dalitz decay helps to calculate the transition form factor of the η meson. When a particle is point-like it’s decay rate can be calculated within QED. However, the complex structure of the meson modifies its decay rate. The transition form factor is determined by comparing the lepton-antilepton invariant mass distribution with QED. For this study data on proton-proton reaction at a beam energy of 1.4 GeV has been collected with WASA-at-COSY detector at Forschungszentrum Juelich, Germany. In the higher invariant mass region recent theoretical calculations slightly deviate from the fit to the data. We expect better results in the higher invariant mass region than previous measurements. The preliminary results of the analysis will be presented.

  18. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    Directory of Open Access Journals (Sweden)

    Kyung Ho Sun

    2014-10-01

    Full Text Available While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm3, which was designed for a target frequency of as low as 100 Hz.

  19. Urban form and psychosocial factors : Do they interact for leisure-time walking?

    NARCIS (Netherlands)

    Beenackers, Mariëlle A.; Kamphuis, Carlijn B M; Prins, Richard G.; Mackenbach, Johan P.; Burdorf, Alex; Van Lenthe, Frank J.

    2014-01-01

    INTRODUCTION: This cross-sectional study uses an adaptation of a social-ecological model on the hierarchy of walking needs to explore direct associations and interactions of urban-form characteristics and individual psychosocial factors for leisure-time walking. METHODS: Questionnaire data (n = 736)

  20. A Diquark-Quark Model with Its Use in Nucleon Form Factors

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-Min; ZHANG Ben-Ai

    2005-01-01

    The nucleon electromagnetic form factors are investigated within a simple diquark-quark model using the light-front formalism. In this model, baryon is described as a bound state of one quark and one clustering diquark.The calculational results are compared with the experimental ones. We also regard the quarks in a baryon as pointlike constituent quarks.

  1. Bethe ansatz matrix elements as non-relativistic limits of form factors of quantum field theory

    NARCIS (Netherlands)

    Kormos, M.; Mussardo, G.; Pozsgay, B.

    2010-01-01

    We show that the matrix elements of integrable models computed by the algebraic Bethe ansatz (BA) can be put in direct correspondence with the form factors of integrable relativistic field theories. This happens when the S-matrix of a Bethe ansatz model can be regarded as a suitable non-relativistic

  2. Electric form factors of the octet baryons from lattice QCD and chiral extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M. [Adelaide Univ., SA (Australia). ARC Centre of Excellence in Particle Physics at the Terascale and CSSM; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich (Germany). JSC; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Collaboration: CSSM and QCDSF/UKQCD Collaborations

    2014-03-15

    We apply a formalism inspired by heavy baryon chiral perturbation theory with finite-range regularization to dynamical 2+1-flavor CSSM/QCDSF/UKQCD Collaboration lattice QCD simulation results for the electric form factors of the octet baryons. The electric form factor of each octet baryon is extrapolated to the physical pseudoscalar masses, after finite-volume corrections have been applied, at six fixed values of Q{sup 2} in the range 0.2-1.3 GeV{sup 2}. The extrapolated lattice results accurately reproduce the experimental form factors of the nucleon at the physical point, indicating that omitted disconnected quark loop contributions are small. Furthermore, using the results of a recent lattice study of the magnetic form factors, we determine the ratio μ{sub p}G{sub E}{sup p}/G{sub M}{sup p}. This quantity decreases with Q{sup 2} in a way qualitatively consistent with recent experimental results.

  3. Constraints on the form factors for K ---> pi l nu and implications for |V(us)|

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Richard J.; /Fermilab

    2006-07-01

    Rigorous bounds are established for the expansion coefficients governing the shape of semileptonic K {yields} {pi} form factors. The constraints enforced by experimental data from {tau} {yields} K{pi}{nu} eliminate uncertainties associated with model parameterizations in the determination of |V{sub us}|. The results support the validity of a powerful expansion that can be applied to other semileptonic transitions.

  4. Light-Front Quark Model Analysis of Meson-Photon Transition Form Factor

    CERN Document Server

    Choi, Ho-Meoyng

    2016-01-01

    We discuss $(\\pi^0,\\eta,\\eta')\\to\\gamma^*\\gamma$ transition form factors using the light-front quark model. Our discussion includes the analysis of the mixing angles for $\\eta-\\eta'$. Our results for $Q^2 F_{(\\pi^0,\\eta,\\eta')\\to\\gamma^*\\gamma}(Q^2)$ show scaling behavior for high $Q^2$ consistent with pQCD predictions.

  5. Double-logarithmic asymptotics of the magnetic form factor of electron and quark

    CERN Document Server

    Ermolaev, B I

    1999-01-01

    The asymptotical behaviour of the magnetic form factor for electron and quark is obtained in the double-logarithmic approximation for the Sudakov kinematics, i.e. for the case when the value of the transfer momentum is much greater than the mass of the particle.

  6. Double-logarithmic asymptotics of the electromagnetic form factors of the electron and quark

    CERN Document Server

    Ermolaev, B I

    2000-01-01

    The asymptotic behaviour of the electromagnetic form factors of the electron and quark is obtained in the double-logarithmic approximation for Sudakov kinematics, i.e. for the case that the value of the momentum transfer is much greater than the mass of the particle.

  7. Nucleon electromagnetic form factors in a relativistic quark model with chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Das, M.

    1987-05-01

    The nucleon electromagnetic form factors are computed in an independent quark model based on the Dirac equation. Corrections for centre-of-mass motion and pion-cloud effects are incorporated. Results for static quantities are in reasonable agreement with the experimental data.

  8. Proton Form Factor Puzzle and the CEBAF Large Acceptance Spectrometer (CLAS) Two-Photon Exchange Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rimal, Dipak [Florida Intl Univ., Miami, FL (United States)

    2014-05-01

    The electromagnetic form factors are the most fundamental observables that encode information about the internal structure of the nucleon. This dissertation explored dependence of R on kinematic variables such as squared four-momentum transfer (Q2) and the virtual photon polarization parameter (ε).

  9. A Relativistic Coupled-Channel Formalism for the Pion Form Factor

    Directory of Open Access Journals (Sweden)

    Klink W.H.

    2010-04-01

    Full Text Available The electromagnetic form factor of a confined quark-antiquark pair is calculated within the framework of point-form relativistic quantum mechanics. The dynamics of the exchanged photon is explicitly taken into account by treating the electromagnetic scattering of an electron by a meson as a relativistic two-channel problem for a Bakamjian-Thomas type mass operator. This approach guarantees Poincare invariance. Using a Feshbach reduction the coupled-channel problem can be converted into a one-channel problem for the elastic electron-meson channel. By comparing the one-photon-exchange optical potential at the constituent and hadronic levels, we are able to unambiguously identify the electromagnetic meson form factor. Violations of cluster-separability properties, which are inherent in the Bakamjian-Thomas approach, become negligible for su?ciently large invariant mass of the electron-meson system. In the limit of an in?nitely large invariant mass, an equivalence with form-factor calculations done in front-form relativistic quantum mechanics is established analytically.

  10. Molecular self ordering and charge transport in layer by layer deposited poly (3,3‴-dialkylquarterthiophene) films formed by Langmuir-Schaefer technique

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Rajiv K.; Singh, Arun Kumar; Upadhyay, C.; Prakash, Rajiv, E-mail: rprakash.mst@itbhu.ac.in [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2014-09-07

    The performance of π-conjugated polymer based electronic devices is directly governed by the molecular morphology of polymer aggregation, the extent to which a molecule is electronically coupled (self ordered and interacted) to neighboring molecules, and orientation. The well electronic coupled and crystalline/ordered polymer films have the potential to enhance the charge transport properties up to a benchmark. However, there is insufficient knowledge about the direct formation of large area, oriented, crystalline, and smooth films. In this study, we have presented Langmuir Schaefer technique to obtain the large area, oriented, crystalline, and smooth film of Poly (3,3‴-dialkylquarterthiophene) (PQT-12) polymer. The effect of self ordering and orientation of PQT-12 polymer on optical, morphological, and charge transport properties has been investigated. The prepared films have been characterized by UV-vis spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), selected area diffractions pattern (SAED), and atomic force microscopy (AFM) techniques. UV-vis spectra, TEM, SAED, and AFM images of monolayer films reveal the formation of well ordered and electronically coupled polymer domains. Layer by layer deposited films reveal the change in the orientation, which is confirmed by Raman spectra. Electronic properties and layer dependent charge transport properties are investigated using sandwiched structure Al/PQT-12/ITO Schottky configuration with perpendicular to the deposited films. It is observed that the charge transport properties and device electronic parameters (ideality factor and turn on voltage) are significantly changing with increasing the number of PQT-12 layers. Our study also demonstrates the charge transport between polymer crystallites and cause of deviation of ideal behavior of organic Schottky diodes. It may be further explored for improving the performance of other organic and optoelectronic devices.

  11. Photon-to-pion transition form factor and pion distribution amplitude from holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Fen [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); Chinese Academy of Sciences, Theoretical Physics Research Center for Science Facilities, Beijing (China); Istituto Nazionale di Fisica Nucleare, Secione di Bari, Bari (Italy); Huang, Tao [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); Chinese Academy of Sciences, Theoretical Physics Research Center for Science Facilities, Beijing (China)

    2012-01-15

    We try to understand the recently observed anomalous behavior of the photon-to-pion transition form factor in the holographic QCD approach. First the holographic description of the anomalous {gamma}{sup *}{gamma}{sup *}{pi}{sup 0} form factor is reviewed and applied to various models. It is pointed out that the holographic identification of the pion mode from the 5D gauge field strength rather than the gauge potential, as first made by Sakai and Sugimoto, naturally reproduces the scaling behavior of various pion form factors. It is also illustrated that in describing the anomalous form factor, the holographic approach is asymptotically dual to the perturbative QCD (pQCD) framework, with the pion mode {pi}(z){proportional_to}z corresponding to the asymptotic pion distribution amplitude. This indicates some inconsistency in light-front holography, since {pi}(z){proportional_to}z would be dual to {phi}(x){proportional_to}{radical}(x(1-x)) there. This apparently contradictory can be attributed to the fact that the holographic wave functions are effective ones, as observed early by Radyushkin. After clarifying these subtleties, we employ the relation between the holographic and the perturbative expressions to study possible asymptotic violation of the transition form factor. It is found that if one require that the asymptotic form factor possess a pQCD-like expression, the pion mode can only be ultraviolet-enhanced by logarithmic factors. The minimally deformed pion mode will then be of the form {pi}(z){proportional_to}zln(z{lambda}){sup -1}. We suppose that this deformation may be due to the coupling of the pion with a nontrivial open string tachyon field, and then the parameter {lambda} will be related to the quark condensate. Interestingly, this pion mode leads immediately to Radyushkin's logarithmic model, which fitted very well the experimental data in the large-Q{sup 2} region. On the other side, the pQCD interpretation with a flat-like pion distribution

  12. QCD corrections to B→π form factors from light-cone sum rules

    Directory of Open Access Journals (Sweden)

    Yu-Ming Wang

    2015-09-01

    Full Text Available We compute perturbative corrections to B→π form factors from QCD light-cone sum rules with B-meson distribution amplitudes. Applying the method of regions we demonstrate factorization of the vacuum-to-B-meson correlation function defined with an interpolating current for pion, at one-loop level, explicitly in the heavy quark limit. The short-distance functions in the factorization formulae of the correlation function involves both hard and hard-collinear scales; and these functions can be further factorized into hard coefficients by integrating out the hard fluctuations and jet functions encoding the hard-collinear information. Resummation of large logarithms in the short-distance functions is then achieved via the standard renormalization-group approach. We further show that structures of the factorization formulae for fBπ+(q2 and fBπ0(q2 at large hadronic recoil from QCD light-cone sum rules match that derived in QCD factorization. In particular, we perform an exploratory phenomenological analysis of B→π form factors, paying attention to various sources of perturbative and systematic uncertainties, and extract |Vub|=(3.05−0.38+0.54|th.±0.09|exp.×10−3 with the inverse moment of the B-meson distribution amplitude ϕB+(ω determined by reproducing fBπ+(q2=0 obtained from the light-cone sum rules with π distribution amplitudes. Furthermore, we present the invariant-mass distributions of the lepton pair for B→πℓνℓ (ℓ=μ,τ in the whole kinematic region. Finally, we discuss non-valence Fock state contributions to the B→π form factors fBπ+(q2 and fBπ0(q2 in brief.

  13. Heterodimers formed through a partial anionic exchange process: scanning tunneling spectroscopy to monitor bands across the junction vis-à-vis photoinduced charge separation

    Science.gov (United States)

    Bera, Abhijit; Saha, Sudip K.; Pal, Amlan J.

    2015-10-01

    We report controlled formation of heterodimers and their charge separation properties. CdS|CdTe heterodimers were formed through an anionic exchange process of CdS nanostructures. With control over the duration of the anionic exchange process, bulk|dot, bulk|bulk, and then dot|bulk phases of the semiconductors could be observed to have formed. A mapping of density of states as derived from scanning tunneling spectroscopy (STS) brought out conduction and valence band-edges along the nanostructures and heterodimers. The CdS|CdTe heterodimers evidenced a type-II band-alignment between the semiconductors along with the formation of a depletion region at the interface. The width (of the depletion region) and the energy-offset at the interface depended on the size of the semiconductors. We report that the width that is instrumental for photoinduced charge separation in the heterodimers has a direct correlation with the performance of hybrid bulk-heterojunction solar cells based on the nanostructures in a polymer matrix.We report controlled formation of heterodimers and their charge separation properties. CdS|CdTe heterodimers were formed through an anionic exchange process of CdS nanostructures. With control over the duration of the anionic exchange process, bulk|dot, bulk|bulk, and then dot|bulk phases of the semiconductors could be observed to have formed. A mapping of density of states as derived from scanning tunneling spectroscopy (STS) brought out conduction and valence band-edges along the nanostructures and heterodimers. The CdS|CdTe heterodimers evidenced a type-II band-alignment between the semiconductors along with the formation of a depletion region at the interface. The width (of the depletion region) and the energy-offset at the interface depended on the size of the semiconductors. We report that the width that is instrumental for photoinduced charge separation in the heterodimers has a direct correlation with the performance of hybrid bulk

  14. Form factors of descendant operators: Reduction to perturbed $M(2,2s+1)$ models

    CERN Document Server

    Lashkevich, Michael

    2014-01-01

    In the framework of the algebraic approach to form factors in two-dimensional integrable models of quantum field theory we consider the reduction of the sine-Gordon model to the $\\Phi_{13}$\\=/perturbation of minimal conformal models of the $M(2,2s+1)$ series. We find in an algebraic form the condition of compatibility of local operators with the reduction. We propose a construction that make it possible to obtain reduction compatible local operators in terms of screening currents. As an application we obtain exact multiparticle form factors for the compatible with the reduction conserved currents $T_{\\pm2k}$, $\\Theta_{\\pm(2k-2)}$, which correspond to the spin $\\pm(2k-1)$ integrals of motion, for any positive integer~$k$. Furthermore, we obtain all form factors of the operators $T_{2k}T_{-2l}$, which generalize the famous $T\\bar T$ operator. The construction is analytic in the $s$ parameter and, therefore, makes sense in the sine-Gordon theory.

  15. Form factors of descendant operators: reduction to perturbed M(2,2s+1) models

    Energy Technology Data Exchange (ETDEWEB)

    Lashkevich, Michael [Landau Institute for Theoretical Physics,1a prospekt Akademika Semenova, 142432 Chernogolovka (Russian Federation); Moscow Institute of Physics and Technology,9 Institutsky per., 141707 Dolgoprudny (Russian Federation); Kharkevich Institute for Information Transmission Problems,19 Bolshoy Karetny per., 127994 Moscow (Russian Federation); Pugai, Yaroslav [Landau Institute for Theoretical Physics,1a prospekt Akademika Semenova, 142432 Chernogolovka (Russian Federation); Moscow Institute of Physics and Technology,9 Institutsky per., 141707 Dolgoprudny (Russian Federation)

    2015-04-23

    In the framework of the algebraic approach to form factors in two-dimensional integrable models of quantum field theory we consider the reduction of the sine-Gordon model to the Φ{sub 13}-perturbation of minimal conformal models of the M(2,2s+1) series. We find in an algebraic form the condition of compatibility of local operators with the reduction. We propose a construction that make it possible to obtain reduction compatible local operators in terms of screening currents. As an application we obtain exact multiparticle form factors for the compatible with the reduction conserved currents T{sub ±2k}, Θ{sub ±(2k−2)}, which correspond to the spin ±(2k−1) integrals of motion, for any positive integer k. Furthermore, we obtain all form factors of the operators T{sub 2k}T{sub −2l}, which generalize the famous TT̄ operator. The construction is analytic in the s parameter and, therefore, makes sense in the sine-Gordon theory.

  16. Bound state structure and electromagnetic form factor beyond the ladder approximation

    CERN Document Server

    Gigante, V; Ydrefors, E; Gutierrez, C; Karmanov, V A; Frederico, T

    2016-01-01

    We investigate the response of the bound state structure of a two-boson system, within a Yukawa model with a scalar boson exchange, to the inclusion of the cross-ladder contribution to the ladder kernel of the Bethe-Salpeter equation. The equation is solved by means of the Nakanishi integral representation and light-front projection. The valence light-front wave function and the elastic electromagnetic form factor beyond the impulse approximation, with the inclusion of the two-body current, generated by the cross-ladder kernel, are computed. The valence wave function and electromagnetic form factor, considering both ladder and ladder plus cross-ladder kernels, are studied in detail. Their asymptotic forms are found to be quite independent of the inclusion of the cross-ladder kernel, for a given binding energy. The asymptotic decrease of form factor agrees with the counting rules. This analysis can be generalized to fermionic systems, with a wide application in the study of the meson structure.

  17. Inelastic magnetic electron scattering form factors of the 26Mg nucleus

    Indian Academy of Sciences (India)

    Khalid S Jassim; Raad A Radhi; Najlla M Hussain

    2016-01-01

    Magnetic electron scattering (3) form factors with core polarization effects, energy levels and (3) values to 3+ states of the 26Mg nucleus have been studied using shell model calculations. The universal sd of the Wildenthal interaction, universal sd-shell interaction A, universal sd-shell interaction B, are used for the sd-shell orbits. Core polarization effects according to microscopic theory are taken into account by the excitations of nucleons from the (11/2 13/2 11/2) core and also from valence 15/2 21/2 13/2 orbits into higher shells, with $4\\hbar \\omega$ excitation. In form factor calculations, the universal sd-shell interaction B for the sd-shell is used with the Michigan three-range Yakawa effective NN interaction as a residual interaction for the core polarization calculations. The wave functions of the radial single-particle matrix elements have been calculated using harmonic oscillator potentials. The level schemes are compared with the experimental data up to 9.902 MeV. In this study, very good agreements are obtained for all nuclei. Results from 3 form factor calculations with the inclusion of core polarization and new -factors give good agreement with the experimental data.

  18. Interstellar molecule CCCN may be formed by charge-stripping of [CCCN]- in the gas phase, and when energized, undergoes loss of C with partial carbon scrambling.

    Science.gov (United States)

    Maclean, Micheal J; Fitzgerald, Mark; Bowie, John H

    2007-12-20

    Deprotonation of CH2=CHCN with HO- in the chemical ionization source of a VG ZAB 2HF mass spectrometer gives CH2=-CCN which fragments through [H- (HCCCN)] to give [CCCN]-. Similar reactions with 13CH2CHCN and CH2CH13CN give [13CCCN]- and [CC13CN]-. Collision induced dissociations of these anions, together with calculations at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31+G(d) level of theory indicate that the anions do not rearrange under conditions used to charge strip them to their neutrals. A comparison of the charge reversal (-CR+) and neutralization/reionization (-NR+) mass spectra of [CCCN]- indicate that neutral C3N species (formed by charge stripping of the anion) decompose by loss of C. Experimental studies with the 13C labeled analogues indicate that the loss of C occurs subsequent to or accompanying partial carbon scrambling of the CCCN backbone. Theoretical studies suggest that this scrambling may occur during equilibration of CCCN and CCNC via a decomposing "rhombic" C3N intermediate.

  19. Cherenkov and parametric (quasi-Cherenkov) radiation from relativistic charged particles moving in crystals formed by metallic wires

    CERN Document Server

    Baryshevsky, Vladimir

    2016-01-01

    Until recently, the interaction of electromagnetic waves with crystals built from parallel metallic wires (wire media) was analyzed in the approximation of isotropic scattering of the electromagnetic wave by a single wire. However, if the wires are thick (kR~1), electromagnetic wave scattering by a wire is anisotropic, i.e., the scattering amplitude depends on the scattering angle. In this work, we derive the equations that describe diffraction of electromagnetic waves and spontaneous emission of charged particles in wire media, and take into account the angular dependence of scattering amplitude. Numerical solutions of these equations show that the radiation intensity increases as the wire radius is increased and achieves its maximal value in the range kR~1. The case when the condition kR~1 is fulfilled in the THz frequency range is considered in detail. The calculations show that the instantaneous power of Cherenkov and parametric (quasi-Cherenkov) radiations from electron bunches in the crystal can be tens...

  20. THE ROLE OF INSTITUTIONAL FACTORS IN THE CREATION OF NEW FORMS OF ENTREPRENEURSHIP

    Directory of Open Access Journals (Sweden)

    M. A. Yakhjyaev

    2016-01-01

    Full Text Available Supporting entrepreneurship in diff erent countries of the world it is realized through the participation of financial and non-financial institutions, which together form the infrastructure for the development of small and medium-sized businesses. In this context, one can not underestimate the infl uence of institutional factors that have a stimulating eff ect on the modeling and the creation of new forms of entrepreneurship.Objectives. The aim of the article is to research and analysis of modern concepts and identifying common trends in the creation of new forms of entrepreneurship.Methodology. Theoretical and methodological basis of research are general scientific principles and laws of economics, analysis and synthesis, review of scientific concepts, leading Russian and foreign specialists in the sphere of small and medium-sized businesses.Results. The role of institutional factors in the creation of new forms of entrepreneurship. The features of the creation of new forms and areas of business through the use of eff ective tools of XXI century, identifies key factors and trends in the development of this market.Conclusions / relevance. The relevance of the article due to the fact that in modern conditions, when the national economy is in the stage of turbulence, it is necessary to find new solutions that will ensure the sustainability of national social and economic development in line with global trends. The theme of the article is selected aspect of sustainable economic development in Russia in view of increase of innovative activity of business that will be achieved, including through the creation of new forms of entrepreneurship.

  1. Development of a Short Form of the Five-Factor Narcissism Inventory: the FFNI-SF.

    Science.gov (United States)

    Sherman, Emily D; Miller, Joshua D; Few, Lauren R; Campbell, W Keith; Widiger, Thomas A; Crego, Cristina; Lynam, Donald R

    2015-09-01

    The Five-Factor Narcissism Inventory (FFNI; Glover, Miller, Lynam, Crego, & Widiger, 2012) is a 148-item self-report inventory of 15 traits designed to assess the basic elements of narcissism from the perspective of a 5-factor model. The FFNI assesses both vulnerable (i.e., cynicism/distrust, need for admiration, reactive anger, and shame) and grandiose (i.e., acclaim seeking, arrogance, authoritativeness, entitlement, exhibitionism, exploitativeness, grandiose fantasies, indifference, lack of empathy, manipulativeness, and thrill seeking) variants of narcissism. The present study reports the development of a short-form version of the FFNI in 4 diverse samples (i.e., 2 undergraduate samples, a sample recruited from MTurk, and a clinical community sample) using item response theory. The validity of the resultant 60-item short form was compared against the validity of the full scale in the 4 samples at both the subscale level and the level of the grandiose and vulnerable composites. Results indicated that the 15 subscales remain relatively reliable, possess a factor structure identical to the structure of the long-form scales, and manifest correlational profiles highly similar to those of the long-form scales in relation to a variety of criterion measures, including basic personality dimensions, other measures of grandiose and vulnerable narcissism, and indicators of externalizing and internalizing psychopathology. Grandiose and vulnerable composites also behave almost identically across the short- and long-form versions. It is concluded that the FFNI-Short Form (FFNI-SF) offers a well-articulated assessment of the basic traits comprising grandiose and vulnerable narcissism, particularly when assessment time is limited.

  2. The Role of Nerve Growth Factor (NGF) and Its Precursor Forms in Oral Wound Healing

    Science.gov (United States)

    Schenck, Karl; Schreurs, Olav; Hayashi, Katsuhiko; Helgeland, Kristen

    2017-01-01

    Nerve growth factor (NGF) and its different precursor forms are secreted into human saliva by salivary glands and are also produced by an array of cells in the tissues of the oral cavity. The major forms of NGF in human saliva are forms of pro-nerve growth factor (pro-NGF) and not mature NGF. The NGF receptors tropomyosin-related kinase A (TrkA) and p75 neurotrophin receptor (p75NTR) are widely expressed on cells in the soft tissues of the human oral cavity, including keratinocytes, endothelial cells, fibroblasts and leukocytes, and in ductal and acinar cells of all types of salivary glands. In vitro models show that NGF can contribute at most stages in the oral wound healing process: restitution, cell survival, apoptosis, cellular proliferation, inflammation, angiogenesis and tissue remodeling. NGF may therefore take part in the effective wound healing in the oral cavity that occurs with little scarring. As pro-NGF forms appear to be the major form of NGF in human saliva, efforts should be made to study its function, specifically in the process of wound healing. In addition, animal and clinical studies should be initiated to examine if topical application of pro-NGF or NGF can be a therapy for chronic oral ulcerations and wounds. PMID:28208669

  3. Measurement of the form factor ratios in semileptonic decays of charm mesons

    Energy Technology Data Exchange (ETDEWEB)

    Zaliznyak, Renata [Stanford Univ., CA (United States)

    1998-05-01

    I have measured the form factor ratios r2 = A2 (0)/A1 (0) and rV = V (0)/A1 (0) in the semileptonic charm meson decay D+ → $\\bar{K}$*0 e+ve from data collected by the Fermilab E791 collaboration. Form factors are introduced in the calculation of the hadronic current in semileptonic decays of strange, charm, or bottom mesons, such as D+ → $\\bar{K}$*0 e+ ve . Semileptonic decays provide insight into quark coupling to the W boson since the leptonic and hadronic amplitudes in the Feynman diagram for the decay are completely separate. There are no strong interactions between the final state leptons and quarks. A number of theoretical models predict the values of the form factors for D+ → $\\bar{K}$*0 e+ ve , though there is a large range of predictions. E791 is a hadroproduction experiment that recorded over 20 billion interactions with a 500 GeV π- beam incident on five thin targets during the 1991-92 Fermilab fixed-target run. Approximately 3000 D+ → $\\bar{K}$*0 e+ ve decays are fully reconstructed. In order to extract the form factor ratios from the data, I implement a multidimensional unbinned maximum likelihood fit with a large sample of simulated (Monte Carlo) D+ → $\\bar{K}$*0 e+ve events. The large E791 data sample provides the most precise measurement of the form factor ratios to date. The measured values for the form factor ratios are r2 = 0.71 ± 0.08 ± 0.09 and rV = 1.84 ± 0.11 ±} 0.08. These results are in good agreement with some Lattice Gauge calculations. However the agreement with quark model predictions is not as good.

  4. Cationic Net Charge and Counter Ion Type as Antimicrobial Activity Determinant Factors of Short Lipopeptides

    Science.gov (United States)

    Greber, Katarzyna E.; Dawgul, Malgorzata; Kamysz, Wojciech; Sawicki, Wieslaw

    2017-01-01

    To get a better insight into the antimicrobial potency of short cationic lipopeptides, 35 new entities were synthesized using solid phase peptide strategy. All newly obtained lipopeptides were designed to be positively charged from +1 to +4. This was achieved by introducing basic amino acid - lysine - into the lipopeptide structure and had a hydrophobic fatty acid chain attached. Lipopeptides were subjected to microbiological tests using reference strains of Gram-negative bacteria: Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Gram-positive bacteria: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, Enterococcus faecalis, and fungi: Candida albicans, Candida tropicalis, Aspergillus brasiliensis. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimal fungicidal concentration (MFC) were established for each strain. The toxicity toward human cells was determined by hemolysis tests via minimum hemolytic concentration (MHC) determination. The effect of the trifluoroacetic acid (TFA) counter ion on the antimicrobial activity of lipopeptides was also examined by its removing and performing the antimicrobial tests using counter ion-free compounds. The study shows that lipopeptides are more potent against Gram-positive than Gram-negative strains. It was revealed that positive charge equals at least +2 is a necessary condition to observe significant antimicrobial activity, but only when it is balanced with a proper length of hydrophobic fatty acid chain. The hemolytic activity of lipopeptides strongly depends on amino acid composition of the hydrophilic portion of the molecule as well as fatty acid chain length. Compounds endowed with a greater positive charge were more toxic to human erythrocytes. This should be considered during new lipopeptide molecules design. Our studies also revealed the TFA counter ion has no significant effect on the antimicrobial behavior of cationic

  5. Transition electromagnetic form factor and current conservation in the Bethe-Salpeter approach

    CERN Document Server

    Carbonell, J

    2015-01-01

    The transition form factor for electrodisintegration of a two-body bound system is calculated in the Bethe-Salpeter framework. For the initial (bound) and the final (scattering) states, we use our solutions of the Bethe-Salpeter equation in Minkowski space which were first obtained recently. The gauge invariance, which manifests itself in the conservation of the transition electromagnetic current Jq = 0, is studied numerically. It results from a cancellation between the plane wave and the final state interaction contributions. This cancellation takes place only if the initial bound state BS amplitude, the final scattering state and the operator of electromagnetic current are strictly consistent with each other, that is if they are found in the same dynamical framework. A reliable result for the transition form factor can be obtained in this case only.

  6. High statistic measurement of the K- -> pi0 e- nu decay form-factors

    CERN Document Server

    Filin, A P; Akimenko, S A; Britvich, G I; Datsko, K V; Inyakin, A V; Konstantinov, A S; Konstantinov, V F; Korolkov, I Ya; Khmelnikov, V A; Leontiev, V M; Novikov, V P; Obraztsov, V F; Polyakov, V A; Romanovsky, V I; Ronjin, V M; Shelikhov, V I; Smirnov, N E; Chikilev, O G; Uvarov, V A; Bolotov, V N; Laptev, S V; Polyarush, A Yu

    2004-01-01

    The decay K- -> pi0 e- nu is studied using in-flight decays detected with the ISTRA+ spectrometer. About 920K events are collected for the analysis. The lambda+ slope parameter of the decay form-factor f+(t) in the linear approximation (average slope) is measured: lambda+(lin)= 0.02774 +- 0.00047(stat) +- 0.00032(syst). The quadratic contribution to the form-factor was estimated to be lambda'+ = 0.00084 +- 0.00027(stat) +- 0.00031(syst). The linear slope, which has a meaning of df+(t)/dt|_{t=0} for this fit, is lambda+ = 0.02324 +- 0.00152(stat) +- 0.00032(syst). The limits on possible tensor and scalar couplings are derived: f_{T}/f_{+}(0)=-0.012 +- 0.021(stat) +- 0.011$(syst), f_{S}/f_{+}(0)=-0.0037^{+0.0066}_{-0.0056}(stat) +- 0.0041(syst).

  7. The semiclassical origin of the logarithmic singularity in the symplectic form factor

    Energy Technology Data Exchange (ETDEWEB)

    Heusler, Stefan [Fachbereich Physik, Universitaet Essen, Essen (Germany)). E-mail: heusler@theo-phys.uni-essen.de

    2001-08-31

    Sieber and Richter achieved a breakthrough towards a proof of the universality of spectral fluctuations of chaotic quantum systems conjectured by Bohigas, Giannoni and Schmidt by calculating semiclassically the first term beyond the diagonal approximation of the orthogonal form factor. In this letter, the semiclassical origin of the logarithmic singularity of the symplectic form factor is deduced perturbatively by combining this result with the contribution that arises due to the spin. This approach stands in contrast to the duality approach introduced by Bogomolny and Keating, which is essentially non-perturbative, and where the structure around the Heisenberg time is related to the structure for very small time which can be deduced using the diagonal approximation. (author). Letter-to-the-editor.

  8. Two-Photon Exchange Corrections to Precise Measurements of Proton Electroweak Form Factors

    Science.gov (United States)

    Afanasev, Andrei

    2004-10-01

    Higher-order QED effects play an important role for extracting information on proton form factors from electron scattering data. For the electric form factor of the proton, a previously neglected two-photon-exchange correction reconciles an observed discrepancy between Rosenbluth and polarization techniques [1]. We use a similar approach based on General Parton Distributions to compute additional radiative corrections to parity-violating electron scattering. [1] Y.C. Chen, A. Afanasev, S.J. Brodsky, C.E. Carlson and M. Vanderhaeghen, ``Partonic calculation of the two-photon exchange contribution to elastic electron proton scattering at large momentum transfer,`` arXiv:hep-ph/0403058, to appear in Phys.Rev.Lett.

  9. CFD-based method of determining form factor k for different ship types and different drafts

    Science.gov (United States)

    Wang, Jinbao; Yu, Hai; Zhang, Yuefeng; Xiong, Xiaoqing

    2016-09-01

    The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low-speed model test. However, this method is problematic for ships with bulbous bows and transom. In this article, a Computational Fluid Dynamics (CFD)-based method is introduced to obtain k for different type of ships at different drafts, and a comparison is made between the CFD method and the model test. The results show that the CFD method produces reasonable k values. A grid generating method and turbulence model are briefly discussed in the context of obtaining a consistent k using CFD.

  10. CFD-Based Method of Determining Form Factor k for Different Ship Types and Different Drafts

    Institute of Scientific and Technical Information of China (English)

    Xiaoqing Xiong

    2016-01-01

    The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low-speed model test. However, this method is problematic for ships with bulbous bows and transom. In this article, a Computational Fluid Dynamics (CFD)-based method is introduced to obtain k for different type of ships at different drafts, and a comparison is made between the CFD method and the model test. The results show that the CFD method produces reasonable k values. A grid generating method and turbulence model are briefly discussed in the context of obtaining a consistent k using CFD.

  11. $\\eta$-$\\gamma$ and $\\eta'$-$\\gamma$ transition form factors in a nonlocal NJL model

    CERN Document Server

    Dumm, D Gomez; Scoccola, N N

    2016-01-01

    We study the $\\eta$ and $\\eta'$ distribution amplitudes (DAs) in the context of a nonlocal SU(3)_L x SU(3)_R chiral quark model. The corresponding Lagrangian allows to reproduce the phenomenological values of pseudoscalar meson masses and decay constants, as well as the momentum dependence of the quark propagator arising from lattice calculations. It is found that the obtained DAs have two symmetric maxima, which arise from new contributions generated by the nonlocal character of the interactions. These DAs are then applied to the calculation of the $\\eta$-$\\gamma$ and $\\eta'$-$\\gamma$ transition form factors. Implications of our results regarding higher twist corrections and/or contributions to the transition form factors originated by gluon-gluon components in the $\\eta$ and $\\eta'$ mesons are discussed.

  12. Covariant spectator theory for the electromagnetic three-nucleon form factors: Complete impulse approximation

    CERN Document Server

    Pinto, Sérgio Alexandre; Gross, Franz

    2009-01-01

    We present the first calculations of the electromagnetic form factors of $^3$He and $^3$H within the framework of the Covariant Spectator Theory (CST). This first exploratory study concentrates on the sensitivity of the form factors to the strength of the scalar meson-nucleon off-shell coupling, known from previous studies to have a strong influence on the three-body binding energy. Results presented here were obtained using the complete impulse approximation (CIA), which includes contributions of relativistic origin that appear as two-body corrections in a non-relativistic framework, such as "Z-graphs", but omits other two and three-body currents. We compare our results to non-relativistic calculations augmented by relativistic corrections of ${\\cal O}(v/c)^2$.

  13. High-precision calculation of the strange nucleon electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Green, Jeremy [Johannes Gutenberg Univ., Mainz (Germany); Meinel, Stefan [Univ. of Arizona, Tucson, AZ (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Engelhardt, Michael G. [New Mexico State Univ., Las Cruces, NM (United States); Krieg, Stefan [Bergische Univ., Wuppertal (Germany); Julich Supercomputing Centre, Julich (Germany); Laeuchli, Jesse [College of William and Mary, Williamsburg, VA (United States); Negele, John W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pochinsky, Andrew [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Syritsyn, Sergey [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-08-26

    We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors GsE and GsM in the kinematic range 0 ≤ Q2 ≤ 1.2GeV2. For the first time, both GsE and GsM are shown to be nonzero with high significance. This work uses closer-to-physical lattice parameters than previous calculations, and achieves an unprecented statistical precision by implementing a recently proposed variance reduction technique called hierarchical probing. We perform model-independent fits of the form factor shapes using the z-expansion and determine the strange electric and magnetic radii and magnetic moment. As a result, we compare our results to parity-violating electron-proton scattering data and to other theoretical studies.

  14. Two Photon Transition Form Factor of $\\bar{c}c $ Quarkonia

    CERN Document Server

    Chen, Jing; Chang, Lei; Liu, Yu-xin

    2016-01-01

    The two photon transition of $\\bar{c}c$ quarkonia are studied within a covariant approach based on the consistent truncation scheme of the quantum chromodynamics Dyson-Schwinger equation for the quark propagator and the Bethe--Salpeter equation for the mesons. We find the decay widths of $\\eta_{c}^{} \\to \\gamma\\gamma$ and $\\chi_{c0,2}^{} \\to \\gamma\\gamma$ in good agreement with experimental data. The obtained transition form factor of $\\eta_{c}^{} \\to \\gamma\\gamma^{\\ast}$ for a wide range of space-like photon momentum transfer squared is also in agreement with the experimental findings of the BABAR experiment. As a by-product, the decay widths of $\\eta_{b}^{},\\chi_{b0,2}^{} \\to \\gamma\\gamma$ and the transition form factor of $\\eta_{b}^{}, \\chi_{c0,b0}^{} \\to\\gamma\\gamma^{\\ast}$ are predicted, which await for experimental test.

  15. A study of the gamma* - f0(980) transition form factors

    CERN Document Server

    Kroll, P

    2016-01-01

    The spin wave function of the f0(980)-meson is constructed under the assumption that the meson is dominantly a quark-antiquark state. This wave function is used in a calculation of the gamma* - f0 transition form factors. In the real-photon limit the results for the transverse form factor are compared to the large momentum transfer data measured by the BELLE collaboration recently. It turns out that, for the momentum-transfer range explored by BELLE, the collinear approximation does not suffer, power corrections to it, modeled as quark transverse moment effects, seem to be needed. Mixing of the f0 with the sigma(500) is also briefly discussed.

  16. Form factors of $\\eta_c$ in light front quark model

    CERN Document Server

    Geng, Chao-Qiang

    2013-01-01

    We study the form factors of the $\\eta_c$ meson in the light-front quark model. We explicitly show that the transition form factor of $\\eta_c \\to \\gamma^* \\gamma$ as a function of the momentum transfer is consistent with the experimental data by the BaBar collaboration, while the decay constant of $\\eta_c$ is found to be $f_{\\eta_{c}}=230.5^{+52.2}_{-61.0}$ and $303.6^{+115.2}_{-116.4}$ MeV for $\\eta_c\\sim c\\bar{c}$ by using two $\\eta_c \\to \\gamma \\gamma$ decay widths of $5.3\\pm 0.5$ and $7.2\\pm2.1$ keV, given by Particle Data Group and Lattice QCD calculation, respectively.

  17. Form factors of {eta}{sub c} in light-front quark model

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Chao-Qiang [Chongqing University of Posts and Telecommunications, College of Mathematics and Physics, Chongqing (China); National Center for Theoretical Sciences, Physics Division, Hsinchu (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Lih, Chong-Chung [Shu-Zen College of Medicine and Management, Department of Optometry, Kaohsiung Hsien (China); National Center for Theoretical Sciences, Physics Division, Hsinchu (China); National Tsing Hua University, Department of Physics, Hsinchu (China)

    2013-08-15

    We study the form factors of the {eta}{sub c} meson in the light-front quark model. We explicitly show that the transition form factor of {eta}{sub c} {yields} {gamma}{sup *}{gamma} as a function of the momentum transfer is consistent with the experimental data by the BaBar collaboration, while the decay constant of {eta}{sub c} is found to be f{sub {eta}{sub c}} = 230.5{sup +52.2}{sub -61.0} and 303.6{sup +115.2}{sub -116.4} MeV for {eta}{sub c} {proportional_to} c anti c by using two {eta}{sub c} {yields} {gamma}{gamma} decay widths of 5.3 {+-} 0.5 and 7.2 {+-} 2.1 keV, given by Particle Data Group and Lattice QCD calculation, respectively. (orig.)

  18. Near Threshold Neutral Pion Electroproduction at High Momentum Transfers and Generalized Form Factors

    CERN Document Server

    Khetarpal, P; Aznauryan, I G; Kubarovsky, V; Adhikari, K P; Adikaram, D; Aghasyan, M; Amaryan, M J; Anderson, M D; Pereira, S Anefalos; Anghinolfi, M; Avakian, H; Baghdasaryan, H; Ball, J; Baltzell, N A; Battaglieri, M; Batourine, V; Bedlinskiy, I; Biselli, A S; Bono, J; Boiarinov, S; Briscoe, W J; Brooks, W K; Burkert, V D; Carman, D S; Celentano, A; Charles, G; Cole, P L; Contalbrigo, M; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; Alaoui, A El; Fassi, L El; Eugenio, P; Fedotov, G; Fegan, S; Fersch, R; Fleming, J A; Fradi, A; Gabrielyan, M Y; Garçon, M; Gevorgyan, N; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gohn, W; Golovatch, E; Gothe, R W; Griffioen, K A; Guegan, B; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Harrison, N; Hicks, K; Ho, D; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Kubarovsky, A; Kuleshov, S V; Kvaltine, N D; Lewis, S; Livingston, K; Lu, H Y; MacGregor, I J D; Mao, Y; Martinez, D; Mayer, M; McKinnon, B; Meyer, C A; Mineeva, T; Mirazita, M; Mokeev, V; Montgomery, R A; Moutarde, H; Munevar, E; Camacho, C Munoz; Nadel-Turonski, P; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Pappalardo, L L; Paremuzyan, R; Park, K; Park, S; Pasyuk, E; Phelps, E; Phillips, J J; Pisano, S; Pogorelko, O; Pozdniakov, S; Price, J W; Procureur, S; Protopopescu, D; Puckett, A J R; Raue, B A; Ricco, G; Rimal, D; Ripani, M; Rosner, G; Rossi, P; Sabatié, F; Saini, M S; Salgado, C; Saylor, N A; Schott, D; Schumacher, R A; Seder, E; Seraydaryan, H; Sharabian, Y G; Smith, G D; Sober, D I; Sokhan, D; Stepanyan, S S; Stepanyan, S; Strakovsky, I I; Strauch, S; Taiuti, M; Tang, W; Taylor, C E; Tkachenko, S; Ungaro, M; Vernarsky, B; Voskanyan, H; Voutier, E; Walford, N K; Weinstein, L B; Weygand, D P; Wood, M H; Zachariou, N; Zhang, J; Zhao, Z W; Zonta, I

    2012-01-01

    We report the measurement of near threshold neutral pion electroproduction cross sections and the extraction of the associated structure functions on the proton in the kinematic range $Q^2$ from 2 to 4.5 GeV$^2$ and $W$ from 1.08 to 1.16 GeV. These measurements allow us to access the dominant pion-nucleon s-wave multipoles $E_{0+}$ and $S_{0+}$ in the near-threshold region. In the light-cone sum-rule framework (LCSR), these multipoles are related to the generalized form factors $G_1^{\\pi^0 p}(Q^2)$ and $G_2^{\\pi^0 p}(Q^2)$. The data are compared to these generalized form factors and the results for $G_1^{\\pi^0 p}(Q^2)$ are found to be in good agreement with the LCSR predictions, but the level of agreement with $G_2^{\\pi^0 p}(Q^2)$ is poor.

  19. The $\\eta^\\prime$ transition form factor from space- and time-like experimental data

    CERN Document Server

    Escribano, Rafel; Masjuan, Pere; Sanchez-Puertas, Pablo

    2015-01-01

    The $\\eta^\\prime$ transition form factor is reanalysed in view of the recent BESIII first observation of the Dalitz decay $\\eta^\\prime\\to\\gamma e^+e^-$ in both space- and time-like regions at low and intermediate energies using the Pad\\'e approximants method. The present analysis provides a suitable parameterization for reproducing the measured form factor in the whole energy region and allows to extract the corresponding low-energy parameters together with a prediction of its values at the origin, related to $\\Gamma_{\\eta^\\prime\\to\\gamma\\gamma}$, and the asymptotic limit. The $\\eta$-$\\eta^\\prime$ mixing is reassessed, with particular attention to the OZI-rule violating parameters, and the $J/\\psi\\to\\eta^{(\\prime)}\\gamma$ decays discussed.

  20. Form factors of descendant operators: Resonance identities in the sinh-Gordon model

    CERN Document Server

    Lashkevich, Michael

    2014-01-01

    We study the space of local operators in the sinh-Gordon model in the framework of the bootstrap form factor approach. Our final goal is to identify the operators obtained by solving bootstrap equations with those defined in terms of the Lagrangian field. Here we try to identify operators at some very particular points, where the phenomenon of operator resonance takes place. The operator resonance phenomenon being perturbative, nevertheless, results in exact identities between some local operators. By applying an algebraic approach developed earlier for form factors we derive an infinite set of identities between particular descendant and exponential operators in the sinh-Gordon theory, which generalize the quantum equation of motion. We identify the corresponding descendant operators by comparing them with the result of perturbation theory.

  1. $B\\to\\pi\\ell\\ell$ form factors for new-physics searches from lattice QCD

    CERN Document Server

    Bailey, Jon A; Bernard, C; Bouchard, C M; DeTar, C; Du, Daping; El-Khadra, A X; Freeland, E D; Gamiz, E; Gottlieb, Steven; Heller, U M; Kronfeld, A S; Laiho, J; Levkova, L; Liu, Yuzhi; Lunghi, E; Mackenzie, P B; Meurice, Y; Neil, E; Qiu, Si-Wei; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S; Zhou, Ran

    2015-01-01

    The rare decay $B\\to\\pi\\ell^+\\ell^-$ is sensitive to $b\\to d$ flavor-changing neutral currents, which could arise from physics beyond the Standard Model. Here, we present the first $ab$-$initio$ QCD calculation of the $B\\to\\pi$ tensor form factor $f_T$. Together with the vector and scalar form factors $f_+$ and $f_0$ from our companion work [J. A. Bailey $et~al.$, arXiv:1503.07839], these parameterize the hadronic contribution to $B\\to\\pi$ semileptonic decays in any extension of the Standard Model. We obtain the total branching ratio $\\text{BR}(B^+\\to\\pi^+\\mu^+\\mu^-)=19.5(2.2)\\times10^{-9}$ in the Standard Model, which is the most precise theoretical determination to date, and agrees with the recent measurement from LHCb [R. Aaij, $et~al.$, JHEP $\\mathbf{1212}$, 125 (2012)].

  2. The electromagnetic form factors of the $\\Lambda$ in the timelike region

    CERN Document Server

    Haidenbauer, J

    2016-01-01

    The reaction $e^+e^- \\to \\bar \\Lambda \\Lambda$ is investigated for energies close to the threshold. Specific emphasis is put on the role played by the interaction in the final $\\bar \\Lambda \\Lambda$ system which is taken into account rigorously. For that interaction a variety of $\\bar \\Lambda \\Lambda$ potential models is employed that have been constructed for the analysis of the reaction $\\bar p p \\to \\bar \\Lambda \\Lambda$ in the past. The enhancement of the effective form factor for energies close to the $\\bar \\Lambda \\Lambda$ threshold, seen in pertinent experiments, is reproduced. Predictions for the $\\Lambda$ electromagnetic form factors $G_M$ and $G_E$ in the timelike region and for spin-dependent observables such as spin-correlation parameters are presented.

  3. Form factor approach to the asymptotic behavior of correlation functions in critical models

    CERN Document Server

    Kitanine, N; Maillet, J M; Slavnov, N A; Terras, V

    2011-01-01

    We propose a form factor approach for the computation of the large distance asymptotic behavior of correlation functions in quantum critical (integrable) models. In the large distance regime we reduce the summation over all excited states to one over the particle/hole excitations lying on the Fermi surface in the thermodynamic limit. We compute these sums, over the so-called critical form factors, exactly. Thus we obtain the leading large distance behavior of each oscillating harmonic of the correlation function asymptotic expansion, including the corresponding amplitudes. Our method is applicable to a wide variety of integrable models and yields precisely the results stemming from the Luttinger liquid approach, the conformal field theory predictions and our previous analysis of the correlation functions from their multiple integral representations. We argue that our scheme applies to a general class of non-integrable quantum critical models as well.

  4. Color-Kinematics Duality and Sudakov Form Factor at Five Loops

    CERN Document Server

    Yang, Gang

    2016-01-01

    Using color-kinematics duality, we construct for the first time the full integrand of the five-loop Sudakov form factor in N=4 super-Yang-Mills theory, including non-planar contributions. This result also provides a first manifestation of the color-kinematics duality at five loops. The integrand is explicitly ultraviolet finite when D<26/5, coincident with the known finiteness bound for amplitudes. If the double-copy method could be applied to the form factor, this would indicate an interesting ultraviolet finiteness bound for N=8 supergravity at five loops. The result is also expected to provide an essential input towards understanding the five-loop non-planar cusp anomalous dimension.

  5. Two-pion exchange and strong form-factors in covariant field theories

    CERN Document Server

    Ramalho, G; Peña, M T

    1999-01-01

    In this work improvements to the application of the Gross equation to nuclear systems are tested. In particular we evaluate the two pion exchange diagrams, including the crossed-box diagram, using models developed within the spectator-on-mass-shell covariant formalism. We found that the form factors used in these models induce spurious contributions that violate the unitary cut requirement. We tested then some alternative form-factors in order to preserve the unitarity condition. With this new choice, the difference between the exact and the spectator-on-mass-shell amplitudes is of the order of the one boson scalar exchange, supporting the idea that this difference may be parameterized by this type of terms.

  6. The Proton Coulomb Form Factor from Polarized Inclusive e-p Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chris Harris

    2001-08-01

    The proton form factors provide information on the fundamental properties of the proton and provide a test for models based on QCD. In 1998 at Jefferson Lab (JLAB) in Newport News, VA, experiment E93026 measured the inclusive e-p scattering cross section from a polarized ammonia (15NH3) target at a four momentum transfer squared of Q2 = 0.5 (GeV/c)2. Longitudinally polarized electrons were scattered from the polarized target and the scattered electron was detected. Data has been analyzed to obtain the asymmetry from elastically scattered electrons from hydrogen in 15NH3. The asymmetry, Ap, has been used to determine the proton elastic form factor GEp. The result is consistent with the dipole model and data from previous experiments. However, due to the choice of kinematics, the uncertainty in the measurement is large.

  7. Covariant spectator theory for the electromagnetic three-nucleon form factors: Complete impulse approximation

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Sérgio Alexandre; Stadler, Alfred; Gross, Franz

    2009-05-01

    We present the first calculations of the electromagnetic form factors of 3He and 3H within the framework of the Covariant Spectator Theory (CST). This first exploratory study concentrates on the sensitivity of the form factors to the strength of the scalar meson-nucleon off-shell coupling, known from previous studies to have a strong influence on the three-body binding energy. Results presented here were obtained using the complete impulse approximation (CIA), which includes contributions of relativistic origin that appear as two-body corrections in a non-relativistic framework, such as "Z-graphs," but omits other two and three-body currents. Finally, we compare our results to non-relativistic calculations augmented by relativistic corrections of O(v/c)2.

  8. Isospin mixing in the nucleon and 4He and the nucleon strange electric form factor

    CERN Document Server

    Viviani, M; Kievsky, A; Kubis, B; Lewis, R; Marcucci, L E; Rosati, S; Schiavilla, R

    2007-01-01

    In order to isolate the contribution of the nucleon strange electric form factor to the parity-violating asymmetry measured in 4He(\\vec e,e')4He experiments, it is crucial to have a reliable estimate of the magnitude of isospin-symmetry-breaking (ISB) corrections in both the nucleon and 4He. We examine this issue in the present letter. Isospin admixtures in the nucleon are determined in chiral perturbation theory, while those in 4He are derived from nuclear interactions, including explicit ISB terms. A careful analysis of the model dependence in the resulting predictions for the nucleon and nuclear ISB contributions to the asymmetry is carried out. We conclude that, at the low momentum transfers of interest in recent measurements reported by the HAPPEX collaboration at Jefferson Lab, these contributions are of comparable magnitude to those associated with strangeness components in the nucleon electric form factor.

  9. The electromagnetic form factors of the Λ in the timelike region

    Science.gov (United States)

    Haidenbauer, J.; Meißner, U.-G.

    2016-10-01

    The reaction e+e- → Λ bar Λ is investigated for energies close to the threshold. Specific emphasis is put on the role played by the interaction in the final Λ bar Λ system which is taken into account rigorously. For that interaction a variety of Λ bar Λ potential models is employed that have been constructed for the analysis of the reaction p bar p → Λ bar Λ in the past. The enhancement of the effective form factor for energies close to the Λ bar Λ threshold, seen in pertinent experiments, is reproduced. Predictions for the Λ electromagnetic form factors GM and GE in the timelike region and for spin-dependent observables such as spin-correlation parameters are presented.

  10. Investigation of the Dalitz decays and the electromagnetic form factors of the {eta} and {pi}{sup 0}-meson

    Energy Technology Data Exchange (ETDEWEB)

    Berghaeuser, Henning

    2010-08-20

    In this thesis the Dalitz decays of the {pi}{sup 0}, {eta} and {omega}-meson have been studied in photon induced reactions off the proton: {gamma}+p {yields} {pi}{sup 0}+p{yields} e{sup +}e{sup -}{gamma}+p, {gamma}+p {yields} {eta}+p{yields}e{sup +}e{sup -}{gamma}+p, and {gamma}+p {yields} {omega}+p{yields} e{sup +}e{sup -}{pi}{sup 0}+p. The main aim has been to determine the electromagnetic transition form factor of the {eta}-meson. Beside the Dalitz decays other decay modes of the {eta} and the {omega}-meson were analyzed and the branching ratios of the decays {eta} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0}, {eta}{yields} e{sup +}e{sup -}{gamma} and {omega} {yields} {gamma}{sup +}{pi}{sup 0} were determined. Furthermore the cross section of {eta}-production as well as the cross section of {pi}{sup 0}-{eta}-production in photon induced reactions off the proton were determined. Another aspect of this work was to investigate the possibility of separating electrons and positrons from charged pions with the Crystal Ball and TAPS detector systems at MAMI-C in Mainz. It was shown in this work, that an accurate separation and identification of those particles is possible by exploiting the full kinematic information available in exclusive analyses. Thereby Dalitz decays were identified. The background from charged pions was suppressed further. The probability for the misidentification of a {pi}{sup +}{pi}{sup -} pair as an e{sup +}e{sup -}-pair is less than 3.10{sup -7}. A new analysis program called AR{sub HB}2v3 was developed in C++. In all analyses the detection of the meson and the recoiling proton was required; thus the full kinematic information could be exploited. Cuts were applied on the energy balance, momentum balance, missing mass and the coplanarity. Depending on the particular decay channel further cuts were applied on the relative angle between particles, the incident energy, the {theta}-angle of the proton and if applicable on the cluster sizes of the

  11. Electromagnetic Form Factor of a Composed Particle in the Light-Front

    CERN Document Server

    Pacheco-Bicudo-Cabral de Melo, J

    2003-01-01

    The violation of the rotational symmetry constraint of the matrix elements of the plus component of the vector current, in the Drell-Yan frame, is studied using an analytical and covariant model of spin-1 composite particle. The contributions from pair terms or zero modes, if missed cause the violation of the rotational symmetry. We reanalyze the prescription by Grach and Kondratyuk to extract form factors which can eliminate theses contributions in particular models.

  12. The pion electromagnetic form-factor in a QCD-inspired model

    CERN Document Server

    Pacheco-Bicudo-Cabral de Melo, J; Pace, E; Salmè, G

    2004-01-01

    We present detailed numerical results for the pion space-like electromagnetic form factor obtained within a recently proposed model of the pion electromagnetic current in a confining light-front QCD-inspired model. The model incorporates the vector meson dominance mechanism at the quark level, where the dressed photon with $q^+>0$ decay in an interacting quark-antiquark pair,wich absorbs the initial pion and produces the pion in the final state.

  13. N-Delta(1232) axial form factors from weak pion production

    CERN Document Server

    Hernandez, E; Valverde, M; Vicente-Vacas, M J

    2010-01-01

    The N-Delta axial form factors are determined from neutrino induced pion production ANL & BNL data by using a state of the art theoretical model, which accounts both for background mechanisms and deuteron effects. We find violations of the off diagonal Goldberger-Treiman relation at the level of 2 sigma which might have an impact in background calculations for T2K and MiniBooNE low energy neutrino oscillation precision experiments.

  14. Non-local form factors for curved-space antisymmetric fields

    CERN Document Server

    Netto, Tiberio de Paula

    2016-01-01

    In the recent paper Buchbinder, Kirillova and Pletnev presented formal arguments concerning quantum equivalence of free massive antisymmetric tensor fields of second and third rank to the free Proca theory and massive scalar field with minimal coupling to gravity, respectively. We confirm this result using explicit covariant calculations of non-local form factors based on the heart-kernel technique, and discuss the discontinuity of quantum contributions in the massless limit.

  15. Boundary form factors in the Smirnov--Fateev model with a diagonal boundary $S$ matrix

    CERN Document Server

    Lashkevich, Michael

    2008-01-01

    The boundary conditions with diagonal boundary $S$ matrix and the boundary form factors for the Smirnov--Fateev model on a half line has been considered in the framework of the free field representation. In contrast to the case of the sine-Gordon model, in this case the free field representation is shown to impose severe restrictions on the boundary $S$ matrix, so that a finite number of solutions is only consistent with the free field realization.

  16. Pion distribution amplitude from holographic QCD and the electromagnetic form factor F_pi(Q2)

    CERN Document Server

    Agaev, S S

    2008-01-01

    The holographic QCD prediction for the pion distribution amplitude (DA) $\\phi_{hol}(u)$ is used to compute the pion spacelike electromagnetic form factor $F_{\\pi}(Q^2)$ within the QCD light-cone sum rule method. In calculations the pion's renormalon-based model twist-4 DA, as well as the asymptotic twist-4 DA are employed. Obtained theoretical predictions are compared with experimental data and with results of the holographic QCD.

  17. The proton electromagnetic form factor 2 and quark orbital angular momentum

    Indian Academy of Sciences (India)

    Pankaj Jain; John P Ralston

    2003-11-01

    We analyse the proton electromagnetic form factor ratio (2)= 2(2)/1(2) as a function of momentum transfer 2 within perturbative QCD. We find that the prediction for (2) at large momentum transfer depends on the exclusive quark wave functions, which are unknown. For a wide range of wave functions we find that 2/1∼ const. at large momentum transfer, which is in agreement with recent JLAB data.

  18. Electromagnetic Form Factors of Hadrons in Dual-Large $N_c$ QCD

    CERN Document Server

    Dominguez, C A

    2010-01-01

    In this talk, results are presented of determinations of electromagnetic form factors of hadrons (pion, proton, and $\\Delta(1236)$) in the framework of Dual-Large $N_c$ QCD (Dual-$QCD_\\infty$). This framework improves considerably tree-level VMD results by incorporating an infinite number of zero-width resonances, with masses and couplings fixed by the dual-resonance (Veneziano-type) model.

  19. Ideas of four-fermion operators in electromagnetic form factor calculations

    Directory of Open Access Journals (Sweden)

    Ji Chueng-Ryong

    2014-06-01

    Full Text Available Four-fermion operators have been utilized in the past to link the quark-exchange processes in the interaction of hadrons with the effective meson-exchange amplitudes. In this presentation, we apply the similar idea of Fierz rearrangement to the electromagnetic processes and focus on the electromagnetic form factors of nucleon and electron. We explain the motivation of using four-fermion operators and discuss the advantage of this method in computing electromagnetic processes.

  20. Above-Threshold Poles in Model-Independent Form Factor Parametrizations

    CERN Document Server

    Grinstein, Benjamin

    2015-01-01

    The model-independent parametrization for exclusive hadronic form factors commonly used for semileptonic decays is generalized to allow for the inclusion of above-threshold resonant poles of known mass and width. We discuss the interpretation of such poles, particularly with respect to the analytic structure of the relevant two-point Green's function in which they reside. Their presence has a remarkably small effect on the parametrization, as we show explicitly for the case of $D \\to \\pi e^+ \

  1. $K_{l4}$ Form-Factors and $\\pi-\\pi$ Scattering

    CERN Document Server

    Amorós, G; Talavera, P

    2000-01-01

    The $F$ and $G$ form-factors of $K_{\\ell4}$ and the quark condensates are calculated to ${\\cal O}(p^6)$ in Chiral Perturbation Theory (CHPT). Full formulas are presented as much as possible. A full refit of most of the ${\\cal O}(p^4)$ CHPT parameters is done with a discussion of all inputs and underlying assumptions. We discuss the consequences for the vacuum expectation values, decay constants, pseudoscalar masses and $\\pi$-$\\pi$ scattering.

  2. Analytic results for planar three-loop integrals for massive form factors

    CERN Document Server

    Henn, Johannes M; Smirnov, Vladimir A

    2016-01-01

    We use the method of differential equations to analytically evaluate all planar three-loop Feynman integrals relevant for form factor calculations involving massive particles. Our results for ninety master integrals at general $q^2$ are expressed in terms of multiple polylogarithms, and results for fiftyone master integrals at the threshold $q^2=4m^2$ are expressed in terms of multiple polylogarithms of argument one, with indices equal to zero or to a sixth root of unity.

  3. Analytic results for planar three-loop integrals for massive form factors

    Science.gov (United States)

    Henn, Johannes M.; Smirnov, Alexander V.; Smirnov, Vladimir A.

    2016-12-01

    We use the method of differential equations to analytically evaluate all planar three-loop Feynman integrals relevant for form factor calculations involving massive particles. Our results for ninety master integrals at general q 2 are expressed in terms of multiple polylogarithms, and results for fiftyone master integrals at the threshold q 2 = 4 m 2 are expressed in terms of multiple polylogarithms of argument one, with indices equal to zero or to a sixth root of unity.

  4. $\\eta$ and $\\eta'$ transition form factors from Pad\\'e approximants

    CERN Document Server

    Sanchez-Puertas, Pablo

    2014-01-01

    We employ a systematic and model-independent method to extract, from space- and time-like data, the $\\eta$ and $\\eta'$ transition form factors (TFFs) obtaining the most precise determination for their low-energy parameters and discuss the $\\Gamma_{\\eta\\rightarrow\\gamma\\gamma}$ impact on them. Using TFF data alone, we also extract the $\\eta-\\eta'$ mixing parameters, which are compatible to those obtained from more sophisticated and input-demanding procedures.

  5. Model Independent Measurement of Form Factors in the Decay $D^+\\to K^-\\pi^+ e^+\

    CERN Document Server

    Shepherd, M R; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Smith, A; Zweber, P; Dobbs, S; Metreveli, Z V; Seth, K K; Tomaradze, A G; Ernst, J; Severini, H; Dytman, S A; Love, W; Savinov, V; Aquines, O; Li, Z; López, A; Mehrabyan, S S; Méndez, H; Ramírez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Blusk, S; Butt, J; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Briere, R A; Brock, I; Chen, J; Ferguson, T; Tatishvili, G T; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Weinberger, M; Athar, S B; Patel, R; Potlia, V; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J

    2006-01-01

    We present model independent measurements of the helicity basis form factors in the decay D+ -> K- pi+ e+ nu_e obtained from about 2800 decays reconstructed from a 281 pb^{-1} data sample collected at the psi(3770) center-of-mass energy with the CLEO-c detector. We confirm the existence of a previously observed spin-zero K- pi+ component interfering with the K*0bar amplitude. We see no evidence for additional d- or f-wave contributions.

  6. Measurement of the proton form factor by studying $e^{+} e^{-}\\rightarrow p\\bar{p}$

    CERN Document Server

    Lara,; Leng, C; Li, C H; Li, Cheng; Li, D M; Li, F; Li, G; Li, H B; Li, J C; Li, Jin; Li, K; Li, Lei; Li, P R; Li, T; Li, W D; Li, W G; Li, X L; Li, X M; Li, X N; Li, X Q; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B J; Liu, C X; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H M; Liu, J; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, X X; Liu, Y B; Liu, Z A; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, R Q; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lv, M; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, Q M; Ma, S; Ma, T; Ma, X N; Ma, X Y; Maas, F E; Maggiora, M; Malik, Q A; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Min, J; Min, T J; Mitchell, R E; Mo, X H; Mo, Y J; Morales, C Morales; Moriya, K; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Pu, Y N; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Y; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ren, H L; Ripka, M; Rong, G; Ruan, X D; Santoro, V; Sarantsev, A; Savrié, M; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, Y J; Sun, Y Z; Sun, Z J; un, Z T S; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Toth, D; Ullrich, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, Q J; Wang, S G; Wang, W; Wang, X F; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Weber, T; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, Z; Xia, L G; Xia, Y; Xiao, D; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H X; Yang, L; Yang, Y; Yang, Y X; Ye, H; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, H W; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, S H; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y T; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, Li; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2015-01-01

    Using data samples collected with the BESIII detector at the BEPCII collider, we measure the Born cross section of $e^{+}e^{-}\\rightarrow p\\bar{p}$ at 12 center-of-mass energies from 2232.4 to 3671.0 MeV. The corresponding effective electromagnetic form factor of the proton is deduced under the assumption that the electric and magnetic form factors are equal $(|G_{E}|= |G_{M}|)$. In addition, the ratio of electric to magnetic form factors, $|G_{E}/G_{M}|$, and $|G_{M}|$ are extracted by fitting the polar angle distribution of the proton for the data samples with larger statistics, namely at $\\sqrt{s}=$ 2232.4 and 2400.0 MeV and a combined sample at $\\sqrt{s}$ = 3050.0, 3060.0 and 3080.0 MeV, respectively. The measured cross sections are in agreement with recent results from BaBar, improving the overall uncertainty by about 30\\%. The $|G_{E}/G_{M}|$ ratios are close to unity and consistent with BaBar results in the same $q^{2}$ region, which indicates the data are consistent with the assumption that $|G_{E}|=|...

  7. Hadron Form Factors And Interactions: Comparing Ads/cft And Qcd

    CERN Document Server

    Hong, S

    2004-01-01

    The hadron form factors and the couplings are computed in AdS/CFT contexts and compared with QCD. In particular, adding fundamental matter of mass mQ to N = 4 Yang Mills theory, we study quarkonium, and “generalized quarkonium” containing light adjoint particles. At large 't Hooft coupling the states of spin ≤1 are anomalously light. We examine their form factors, and show these hadrons are unlike any known in QCD. By a traditional yardstick they appear infinite in size (as with strings in flat space) but we show that this is a failure of the yardstick. All of the hadrons are actually of finite size ∼ g2N /mQ, regardless of their radial excitation level and of how many valence adjoint particles they contain. Certain form factors for spin-1 quarkonia vanish in the large- g2N limit; thus these hadrons resemble neither the observed J/Ψ quarkonium states nor ρ mesons. We also address the issue of the ρ meson coupling universality and the vector meso...

  8. Light meson electromagnetic form factors from three-flavor lattice QCD with exact chiral symmetry

    CERN Document Server

    Aoki, S; Feng, X; Hashimoto, S; Kaneko, T; Noaki, J; Onogi, T

    2015-01-01

    We study the chiral behavior of the electromagnetic (EM) form factors of pion and kaon in three-flavor lattice QCD. In order to make a direct comparison of the lattice data with chiral perturbation theory (ChPT), we employ the overlap quark action that has exact chiral symmetry. Gauge ensembles are generated at a lattice spacing of 0.11 fm with four pion masses ranging between M_pi \\simeq 290 MeV and 540 MeV and with a strange quark mass m_s close to its physical value. We utilize the all-to-all quark propagator technique to calculate the EM form factors with high precision. Their dependence on m_s and on the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields, respectively. A detailed comparison with SU(2) and SU(3) ChPT reveals that the next-to-next-to-leading order terms in the chiral expansion are important to describe the chiral behavior of the form factors in the pion mass range studied in this work. We estimate the relevant low-energy...

  9. Accessing the Elastic Form-Factors of the $Delta(1232)$ Using the Beam-Normal Asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, Mark M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-08-01

    The beam-normal single-spin asymmetry, $B_n$, exists in the scattering of high energy electrons, polarized transverse to their direction of motion, from nuclear targets. To first order, this asymmetry is caused by the interference of the one-photon exchange amplitude with the imaginary part of the two-photon exchange amplitude. Measurements of $B_n$, for the production of a $\\Delta(1232)$ resonance from a proton target, will soon become available from the Qweak experiment at Jefferson Lab and the A4 experiment at Mainz. The imaginary part of two-photon exchange allows only intermediate states that are on-shell, including the $\\Delta$ itself. Therefore such data is sensitive to $\\gamma\\Delta\\Delta$, the elastic form-factors of the $\\Delta$. This article will introduce the form-factors of the $\\Delta$, discuss what might be learned about the elastic form-factors from these new data, describe ongoing efforts in calculation and measurement, and outline the possibility of future measurements.

  10. Partonic structure of neutral pseudoscalars via two photon transition form factors

    CERN Document Server

    Raya, Khepani; Bashir, Adnan; Chang, Lei; Roberts, Craig D

    2016-01-01

    The $\\gamma \\gamma^\\ast \\to \\eta_{c,b}$ transition form factors are computed using a continuum approach to the two valence-body bound-state problem in relativistic quantum field theory, and thereby unified with equivalent calculations of electromagnetic pion elastic and transition form factors. The resulting $\\gamma \\gamma^\\ast \\to \\eta_c$ form factor, $G_{\\eta_c}(Q^2)$, is consistent with available data: significantly, at accessible momentum transfers, $Q^2 G_{\\eta_c}(Q^2)$ lies well below its conformal limit. These observations confirm that the leading-twist parton distribution amplitudes (PDAs) of heavy-heavy bound-states are compressed relative to the conformal limit. A clear understanding of the distribution of valence-quarks within mesons thus emerges; a picture which connects Goldstone modes, built from the lightest-quarks in Nature, with systems containing the heaviest valence-quarks that can now be studied experimentally, and highlights basic facts about manifestations of mass within the Standard Mod...

  11. Thermodynamic limit of particle-hole form factors in the massless XXZ Heisenberg chain

    CERN Document Server

    Kitanine, N; Maillet, J M; Slavnov, N A; Terras, V

    2010-01-01

    We study the thermodynamic limit of the particle-hole form factors of the XXZ Heisenberg chain in the massless regime. We show that, in this limit, such form factors decrease as an explicitly computed power-law in the system-size. Moreover, the corresponding amplitudes can be obtained as a product of a "smooth" and a "discrete" part: the former depends continuously on the rapidities of the particles and holes, whereas the latter has an additional explicit dependence on the set of integer numbers that label each excited state in the associated logarithmic Bethe equations. We also show that special form factors corresponding to zero-energy excitations lying on the Fermi surface decrease as a power-law in the system size with the same critical exponents as in the long-distance asymptotic behavior of the related two-point correlation functions. The methods we develop in this article are rather general and can be applied to other massless integrable models associated to the six-vertex R-matrix and having determina...

  12. $\\gamma^\\ast N \\to N^\\ast(1520)$ form factors in the timelike regime

    CERN Document Server

    Ramalho, G

    2016-01-01

    The covariant spectator quark model, tested before in a variety of electromagnetic baryon excitations, is applied here to the $\\gamma^\\ast N \\to N^\\ast(1520)$ reaction in the timelike regime. The transition form factors are first parametrized in the spacelike region in terms of a valence quark core model together with a parametrization of the meson cloud contribution. The form factor behavior in the timelike region is then predicted, as well as the $N^\\ast(1520) \\to \\gamma N$ decay width and the $N^\\ast (1520)$ Dalitz decay, $N^\\ast (1520) \\to e^+ e^- N$. Our results may help in the interpretation of dielectron production from elementary $pp$ collisions and from the new generation of HADES results using a pion beam. In the $q^2=0$--1 GeV$^2$ range we conclude that the {\\it QED approximation} (a $q^2$ independent form factor model) underestimates the electromagnetic coupling of the $N^\\ast(1520)$ from 1 up to 2 orders of magnitude. We conclude also that the $N^\\ast (1520)$ and the $\\Delta(1232)$ Dalitz decay w...

  13. Measurement of the Hadronic Form Factors in Ds to phi e nu Decays

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, J

    2006-09-26

    Based on the measured four-dimensional rate for D{sub s}{sup +} {yields} {phi}e{sup +}{nu}{sub e} decays, they have determined the ratios of the three hadronic form factors, {tau}{sub V} = V(0)/A{sub 1}(0) = 1.636 {+-} 0.067 {+-} 0.038 and {tau}{sub 2} = A{sub 2}(0)/A{sub 1}(0) = 0.705 {+-} 0.056 {+-} 0.029, using a simple pole ansatz for the q{sup 2} dependence, with fixed values of the pole masses for both the vector and axial form factors. By a separate fit to the same data, they have also extracted the pole mass for the axial form factors, m{sub A}: {tau}{sub V} = V(0)/A{sub 1}(0) = 1.633 {+-} 0.081 {+-} 0.068, {tau}{sub 2} = A{sub 2}(0)/A{sub 1}(0) = 0.711 {+-} 0.111 {+-} 0.096 and m{sub A} = (2.53{sub -0.35}{sup +0.54} {+-} 0.54)GeV/c{sup 2}.

  14. $J=0$ fixed pole and $D$-term form factor in deeply virtual Compton scattering

    CERN Document Server

    Müller, Dieter

    2015-01-01

    S.~Brodsky, F.~J.~Llanes-Estrada, and A.~Szczepaniak emphasized the importance of the $J=0$ fixed pole manifestation in real and (deeply) virtual Compton scattering measurements and argued that the $J=0$ fixed pole is universal, {\\it i.e.}, independent on the photon virtualities \\cite{Brodsky:2008qu}. In this paper we review the $J=0$ fixed pole issue in deeply virtual Compton scattering. We employ the dispersive approach to derive the sum rule that connects the $J=0$ fixed pole contribution and the subtraction constant, called the $D$-term form factor for deeply virtual Compton scattering. We show that in the Bjorken limit the $J=0$ fixed pole universality hypothesis is equivalent to the conjecture that the $D$-term form factor is given by the inverse moment sum rule for the Compton form factor. This implies that the $D$-term is an inherent part of corresponding generalized parton distribution (GPD). Any supplementary $D$-term added to a GPD results in an additional $J=0$ fixed pole contribution and implies ...

  15. Non-perturbative gluon-hadron inputs for all available forms of QCD factorization

    CERN Document Server

    Ermolaev, B I

    2016-01-01

    Description of hadronic reactions at high energies is conventionally done on basis of QCD factoriza- tion so that factorization convolutions involve non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct the inputs for the gluon- hadron scattering amplitudes in the forward kinematics and, using the Optical theorem, convert them into inputs for gluon distributions in the both polarized and unpolarized hadrons. Firstly, we derive general mathematical criteria which any model for the inputs should obey and then suggest a Resonance Model satisfying those criteria. This model is inspired by a simple observation: after emitting an active parton off the hadron, the remaining ensemble of spectators becomes unstable and therefore it can be described through factors of the resonance type. Exploiting Resonance Model, we obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available forms of QCD factorization...

  16. Precision Measurements of the Nucleon Strange Form Factors at Q^2 ~0.1 GeV^2

    CERN Document Server

    Acha, A; Armstrong, D S; Arrington, J; Averett, T; Bailey, S L; Barber, J; Beck, A; Benaoum, H; Benesch, J; Bertin, P Y; Bosted, P; Butaru, F; Burtin, E; Cates, G D; Chao Yu Chiu; Chen, J P; Chudakov, E; Cisbani, E; Craver, B; Cusanno, F; De Leo, R; Decowski, P; Deur, A; Feuerbach, R J; Finn, J M; Frullani, S; Fuchs, S A; Fuoti, K; Gilman, R; Glesener, L E; Grimm, K; Grames, J M; Hansen, J O; Hansknecht, J; Higinbotham, D W; Holmes, R; Holmstrom, T; Ibrahim, H; De Jager, C W; Jiang, X; Katich, J; Kaufman, L J; Kelleher, A; King, P M; Kolarkar, A; Kowalski, S; Kuchina, E; Kumar, K S; Lagamba, L; La Violette, P; Le Rose, J; Lindgren, R A; Lhuillier, D; Liyanage, N; Margaziotis, D J; Markowitz, P; Meekins, D G; Meziani, Z E; Michaels, R; Moffit, B; Nanda, S; Nelyubin, V V; Otis, K; Paschke, K D; Phillips, S K; Poelker, M; Pomatsalyuk, R I; Potokar, M; Prok, Y; Puckett, A; Qian, Y; Qiang, Y; Reitz, B; Roche, J; Saha, A; Sawatzky, B; Singh, J; Slifer, K J; Sirca, S; Snyder, R; Solvignon, P; Souder, P A; Stutzman, M L; Subedi, R; Suleiman, R; Sulkosky, V; Tobias, W A; Ulmer, P E; Urciuoli, G M; Wang, K; Whitbeck, A; Wilson, R; Wojtsekhowski, B; Yao, H; Ye, Y; Zhan, X; Zheng, X; Zhou, S; Ziskin, V

    2006-01-01

    We report new measurements of the parity-violating asymmetry A_PV in elastic scattering of 3 GeV electrons off hydrogen and 4He targets with ~0.6 degrees. The 4He result is A_PV = (+6.40 +/- 0.23 (stat) +/- 0.12 (syst)) x10^-6. The hydrogen result is A_PV = (-1.58 +/- 0.12 (stat) +/- 0.04 (syst)) x10^-6. These results significantly improve constraints on the electric and magnetic strange form factors G_E^s and G_M^s. We extract G_E^s = 0.002 +/- 0.014 +/- 0.007 at = 0.077 GeV^2, and G_E^s + 0.09 G_M^s = 0.007 +/- 0.011 +/- 0.006 at = 0.109 GeV^2, providing new limits on the role of strange quarks in the nucleon charge and magnetization distributions.

  17. Precision Measurements of the Nucleon Strange Form Factors at Q^2 ~ 0.1GeV^2

    Energy Technology Data Exchange (ETDEWEB)

    Armando Acha Quimper; Konrad Aniol; David Armstrong; John Arrington; Todd Averett; Stephanie Bailey; James Barber; Arie Beck; Hachemi Benaoum; Jay Benesch; Pierre Bertin; Peter Bosted; Florentin Butaru; Etienne Burtin; Gordon Cates; Yu-Chiu Chao; Jian-Ping Chen; Eugene Chudakov; Evaristo Cisbani; Brandon Craver; Francesco Cusanno; Raffaele De Leo; Piotr Decowski; Alexandre Deur; Robert Feuerbach; John Finn; Salvatore Frullani; Sabine Fuchs; Kirsten Fuoti; Ronald Gilman; Lindsay Glesener; Klaus Grimm; Joseph Grames; Jens-ole Hansen; John Hansknecht; Douglas Higinbotham; Richard Holmes; Timothy Holmstrom; Hassan Ibrahim; Cornelis De Jager; Xiaodong Jiang; Joseph Katich; Lisa Kaufman; Aidan Kelleher; Paul King; Ameya Kolarkar; Stanley Kowalski; Elena Kuchina; Krishna Kumar; Luigi Lagamba; Peter Laviolette; John LeRose; Richard Lindgren; David Lhuillier; Nilanga Liyanage; Demetrius Margaziotis; Pete Markowitz; David Meekins; Zein-Eddine Meziani; Robert Michaels; Bryan Moffit; Sirish Nanda; Vladimir Nelyubin; Keith Otis; Kent Paschke; Sasha Philips; Benard Poelker; Roman Pomatsalyuk; Milan Potokar; Yelena Prok; Andrew Puckett; Y. Qian; Yi Qiang; Bodo Reitz; Julie Roche; Arunava Saha; Bradley Sawatzky; Jaideep Singh; Karl Slifer; Simon Sirca; Ryan Snyder; Patricia Solvignon; Paul Souder; Marcy Stutzman; Ramesh Subedi; Riad Suleiman; Vincent Sulkosky; William Tobias; Paul Ulmer; Guido Urciuoli; Kebin Wang; Richard Wilson; Bogdan Wojtsekhowski; Huan Yao; Yunxiu Ye; Xiaohui Zhan; Xiaochao Zheng; Shi-Lin Zhu; Vitaliy Ziskin

    2006-09-11

    We report new measurements of the parity-violating asymmetry A{sub PV} in elastic scattering of 3 GeV electrons off hydrogen and {sup 4}He targets with ({theta}{sub lab}) {approx} 6.0{sup o}. The {sup 4}He result is A{sub PV} = (+6.40 {+-} 0.23 (stat) {+-} 0.12 (syst)) x 10{sup -6}. The hydrogen result is A{sub PV} = (-1.58 {+-} 0.12 (stat) {+-} 0.04 (syst)) x 10{sup -6}. These results significantly improve constraints on the electric and magnetic strange form factors G{sub E}{sup s} and G{sub M}{sup s}. We extract G{sub E}{sup s} = 0.002 {+-} 0.014 {+-} 0.007 at (Q{sup 2}) = 0.077 GeV{sup 2}, and G{sub E}{sup s} + 0.09 G{sub M}{sup s} = 0.007 {+-} 0.011 {+-} 0.006 at (Q{sup 2}) = 0.109 GeV{sup 2}, providing new limits on the role of strange quarks in the nucleon charge and magnetization distributions.

  18. Proton elastic form factor ratios to Q2 = 3.5 GeV2 by polarization transfer

    Energy Technology Data Exchange (ETDEWEB)

    Vina Punjabi; Konrad Aniol; F. Baker; J. Berthot; Martine Bertin; William Bertozzi; Auguste Besson; Louis Bimbot; Werner Boeglin; Edward Brash; Daniel Brown; John Calarco; Lawrence Cardman; Zhengwei Chai; C. Chang; Jian-ping Chen; Chudakov; Steve Churchwell; Evaristo Cisbani; Daniel Dale; Raffaele De Leo; Alexandre Deur; Brian Diederich; John Domingo; Martin Epstein; Lars Ewell; Kevin Fissum; A. Fleck; Helene Fonvieille; Salvatore Frullani; Juncai Gao; Franco Garibaldi; Ashot Gasparian; Gerstner; Shalev Gilad; Ronald Gilman; Oleksandr Glamazdin; Charles Glashausser; Javier Gomez; Viktor Gorbenko; Alphonza Green; Jens-ole Hansen; Calvin Howell; Garth Huber; Mauro Iodice; Cornelis De Jager; Stephanie Jaminion; Xiaodong Jiang; Mark Jones; W. Kahl; J.J. Kelly; M. Khayat; L.H. Kramer; G. Kumbartzki; M. Kuss; E. Lakuriki; G. Lavessiere; J.J. LeRose; M. Liang; R.A. Lindgren; N. Liyanage; G.J. Lolos; R. Macri; R. Madey; S. Malov; D.J. Margaziotis; P. Markowitz; K. McCormick; J.I. McIntyre; R.L.J. van der Meer; R. Michaels; B.D. Milbrath; J.Y. Mougey; S.K. Nanda; E.A.J.M. Offermann; Z. Papandreou; L. Pentchev; C.F. Perdrisat; G.G. Petratos; N.M. Piskunov; R.I. Pomatsalyuk; D.L. Prout; G. Quemener; R.D. Ransome; B.A. Raue; Y. Roblin; R. Roche; G. Rutledge; P.M. Rutt; A. Saha; T. Saito; A.J. Sarty; T.P. Smith; P. Sorokin; S. Strauch; R. Suleiman; K. Takahashi; J.A. Templon; L. Todor; P.E. Ulmer; G.M. Urciuoli; P. Vernin; B. Vlahovic; H. Voskanyan; K. Wijesooriya; B.B. Wojtsekhowski; R.J. Woo; F. Xiong; G.D. Zainea; Z.-L. Zhou

    2003-05-01

    The ratio of the proton's elastic electromagnetic form factors, G{sub Ep}/G{sub Mp}, was obtained by measuring P{sub t} and P{sub {ell}}, the transverse and longitudinal recoil proton polarization components, respectively, for the elastic {rvec e}p {yields} e{rvec p} reaction in the four-momentum transfer squared range of 0.5 to 3.5 GeV{sup 2}. In the single photon exchange approximation, the ratio G{sub Ep}/G{sub Mp} is directly proportional to the ratio P{sub t}/P{sub {ell}}. The simultaneous measurement of P{sub t} and P{sub {ell}} in a polarimeter reduces systematic uncertainties. The results for the ratio G{sub Ep}/G{sub Mp} show a systematic decrease with increasing Q{sup 2}, indicating for the first time a definite difference in the distribution of charge and magnetization in the proton. The data have been reanalyzed and systematic uncertainties have become significantly smaller than previously published results.

  19. Chiral behavior of light meson form factors in 2+1 flavor QCD with exact chiral symmetry

    CERN Document Server

    Kaneko, T; Cossu, G; Feng, X; Fukaya, H; Hashimoto, S; Noaki, J; Onogi, T

    2016-01-01

    We present a study of chiral behavior of light meson form factors in QCD with three flavors of overlap quarks. Gauge ensembles are generated at single lattice spacing 0.12 fm with pion masses down to 300 MeV. The pion and kaon electromagnetic form factors and the kaon semileptonic form factors are precisely calculated using the all-to-all quark propagator. We discuss their chiral behavior using the next-to-next-to-leading order chiral perturbation theory.

  20. 8 CFR 204.309 - Factors requiring denial of a Form I-800A or Form I-800.

    Science.gov (United States)

    2010-01-01

    ... abuse, child abuse, and/or family violence, or any other criminal history as an offender; the fact that... met with, or had any other form of contact with, the child's parents, legal custodian, or other... petitioner had at least one grandparent in common with the child's parent), second cousin (that is,...