WorldWideScience

Sample records for charge exchange recombination

  1. Charge exchange recombination x-ray laser

    International Nuclear Information System (INIS)

    A recombining plasma x-ray laser using charge exchange recombination (CXR) is proposed. Fully stripped carbon ions collide with neutral He atoms and become excited hydrogenlike carbon ions, in which the excited levels with n=3 or 4 are mainly populated. We calculate the gain coefficients of the Balmer α and the Lyman β line of the hydrogenlike carbon ions by the use of a collisional-radiative model in which the CXR process is included. The calculated result shows that substantial gain can be generated for the Lyman β and Balmer α lines and that the gain of the Balmer α line can be strongly enhanced by the effect of CXR. We also report a preliminary experiment of this scheme. (author)

  2. Imaging charge exchange recombination spectroscopy on the TEXTOR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J [Plasma Research Laboratory, The Australian National University, Canberra 0200 (Australia); Jaspers, R [Eindhoven University of Technology, Eindhoven (Netherlands); Lischtschenko, O; Delabie, E [FOM Institute for Plasma Physics ' Rijnhuizen' , Nieuwegein (Netherlands); Chung, J [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2010-12-15

    We describe the application of a simple spatial-heterodyne coherence-imaging filter for 2D Doppler imaging of charge exchange recombination (CXR) emission from a heating beam in the TEXTOR tokamak. Results obtained by the CXR imaging system are found to be consistent with measurements obtained using a standard multi-channel spectrometer-based system. We describe the system, indicate possible enhancements and future applications for imaging CXRS.

  3. Imaging charge exchange recombination spectroscopy on the TEXTOR tokamak

    Science.gov (United States)

    Howard, J.; Jaspers, R.; Lischtschenko, O.; Delabie, E.; Chung, J.

    2010-12-01

    We describe the application of a simple spatial-heterodyne coherence-imaging filter for 2D Doppler imaging of charge exchange recombination (CXR) emission from a heating beam in the TEXTOR tokamak. Results obtained by the CXR imaging system are found to be consistent with measurements obtained using a standard multi-channel spectrometer-based system. We describe the system, indicate possible enhancements and future applications for imaging CXRS.

  4. Charge exchange recombination spectroscopy on the T-10 tokamak.

    Science.gov (United States)

    Klyuchnikov, L A; Krupin, V A; Nurgaliev, M R; Korobov, K V; Nemets, A R; Dnestrovskij, A Yu; Tugarinov, S N; Serov, S V; Naumenko, N N

    2016-05-01

    The charge exchange recombination spectroscopy (CXRS) diagnostics on the T-10 tokamak is described. The system is based on a diagnostic neutral beam and includes three high etendue spectrometers designed for the ITER edge CXRS system. A combined two-channel spectrometer is developed for simultaneous measurements of two beam-induced spectral lines using the same lines of sight. A basic element of the combined spectrometer is a transmitting holographic grating designed for the narrow spectral region 5291 ± 100 Å. The whole CXRS system provides simultaneous measurements of two CXRS impurity spectra and Hα beam line. Ion temperature measurements are routinely provided using the C(6+) CXRS spectral line 5291 Å. Simultaneous measurements of carbon densities and one more impurity (oxygen, helium, lithium etc.) are carried out. Two light collecting systems with 9 lines of sight in each system are used in the diagnostics. Spatial resolution is up to 2.5 cm and temporal resolution of 1 ms is defined by the diagnostic neutral beam diameter and pulse duration, respectively. Experimental results are shown to demonstrate a wide range of the CXRS diagnostic capabilities on T-10 for investigation of impurity transport processes in tokamak plasma. Developed diagnostics provides necessary experimental data for studying of plasma electric fields, heat and particle transport processes, and for investigation of geodesic acoustic modes. PMID:27250422

  5. Wavelength calibration of the charge exchange recombination spectroscopy system on the DIII-D tokamak

    International Nuclear Information System (INIS)

    A wavelength calibration of all the detectors on the charge exchange recombination spectroscopy (CER) system is performed after every plasma discharge on the DIII-D tokamak. This is done to insure that the rest wavelength position of the C VI 5290.5 angstrom charge exchange line on the detector is accurately known so that the Doppler shift of the spectral line emitted during the discharge can be used for measurements of plasma rotation. In addition, this calibration provides a check on the spectral dispersion needed to determine the ion temperature. The reference spectra for the calibration are Ne I lines created by neon capillary discharge lamps contained within specially designed, diffuse reflectors. The Ne I lines at 3520.4720 angstrom, 5274.0393 angstrom, 5280.0853 angstrom, 5298.1891 angstrom, and 5304.7580 angstrom are used in this work. The location of these lines on the linear detectors can be determined to an accuracy of 0.1 pixel, which corresponds to a plasma rotation accuracy of 1.2 km/s and 0.7 km/s for the central and edge rotation measurements, respectively. Use of oppositely directed views of the plasma at the same major radius have been used to verify that the nominal 5290.5 angstrom wavelength of the C VI (n = 8 → 7) multiplet is the correct wavelength for the line emitted owing to charge exchange excitation

  6. A high etendue spectrometer suitable for core charge eXchange recombination spectroscopy on ITER.

    Science.gov (United States)

    Jaspers, R J E; Scheffer, M; Kappatou, A; van der Valk, N C J; Durkut, M; Snijders, B; Marchuk, O; Biel, W; Pokol, G I; Erdei, G; Zoletnik, S; Dunai, D

    2012-10-01

    A feasibility study for the use of core charge exchange recombination spectroscopy on ITER has shown that accurate measurements on the helium ash require a spectrometer with a high etendue of 1mm(2)sr to comply with the measurement requirements [S. Tugarinov et al., Rev. Sci. Instrum. 74, 2075 (2003)]. To this purpose such an instrument has been developed consisting of three separate wavelength channels (to measure simultaneously He/Be, C/Ne, and H/D/T together with the Doppler shifted direct emission of the diagnostic neutral beam, the beam emission (BES) signal), combining high dispersion (0.02 nm/pixel), sufficient resolution (0.2 nm), high efficiency (55%), and extended wavelength range (14 nm) at high etendue. The combined measurement of the BES along the same sightline within a third wavelength range provides the possibility for in situ calibration of the charge eXchange recombination spectroscopy signals. In addition, the option is included to use the same instrument for measurements of the fast fluctuations of the beam emission intensity up to 2 MHz, with the aim to study MHD activity.

  7. A high etendue spectrometer suitable for core charge eXchange recombination spectroscopy on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, R. J. E.; Scheffer, M. [Science and Technology of Nuclear Fusion, Eindhoven University of Technology, Eindhoven (Netherlands); Kappatou, A. [FOM Institute DIFFER - Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Nieuwegein (Netherlands); Valk, N. C. J. van der; Durkut, M.; Snijders, B. [TNO Science and Industry, P.O. Box 155, 2600 AD Delft (Netherlands); Marchuk, O.; Biel, W. [Institut fuer Energie und Klimaforschung-IEK-4 Forschungszentrum, Juelich GmbH, 52425 Juelich (Germany); Pokol, G. I. [Institute of Nuclear Techniques, Budapest University of Technology and Economics, EURATOM Association, P. O. Box 91, H-1521 Budapest (Hungary); Erdei, G. [Department of Atomic Physics, Budapest University of Technology and Economics, EURATOM Association, P. O. Box 91, H-1521 Budapest (Hungary); Zoletnik, S.; Dunai, D. [WIGNER RCP, RMKI, EURATOM Association, P. O. Box 91, H-1521 Budapest (Hungary)

    2012-10-15

    A feasibility study for the use of core charge exchange recombination spectroscopy on ITER has shown that accurate measurements on the helium ash require a spectrometer with a high etendue of 1mm{sup 2}sr to comply with the measurement requirements [S. Tugarinov et al., Rev. Sci. Instrum. 74, 2075 (2003)]. To this purpose such an instrument has been developed consisting of three separate wavelength channels (to measure simultaneously He/Be, C/Ne, and H/D/T together with the Doppler shifted direct emission of the diagnostic neutral beam, the beam emission (BES) signal), combining high dispersion (0.02 nm/pixel), sufficient resolution (0.2 nm), high efficiency (55%), and extended wavelength range (14 nm) at high etendue. The combined measurement of the BES along the same sightline within a third wavelength range provides the possibility for in situ calibration of the charge eXchange recombination spectroscopy signals. In addition, the option is included to use the same instrument for measurements of the fast fluctuations of the beam emission intensity up to 2 MHz, with the aim to study MHD activity.

  8. Estimation of Charge Exchange Recombination Emission Based on Diagnostic Neutral Beam on the Experimental Advanced Superconducting Tokamak

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-Mei; WAN Bao-Nian; WU Zhen-Wei

    2007-01-01

    Diagnostic neutral beam (DNB) attenuation and charge exchange recombination emission are estimated on EAST tokamak. Approximately 40% of the beam with the energy of 50 keV can reach the plasma centre (r = 0) for the typical parameters of the Experimental Advanced Superconducting Tokamak (EAST) plasma. Emissivities of CVI (n = 8 → 7, 529.0nm) and OVⅢ (n = 10 → 9, 607.0 nm) visible charge exchange recombination emissions based on the DNB are estimated. The emissivities of the visible bremsstrahlung emission near this wavelength are also calculated for comparison. The results show that the charge exchange recombination emission is about two orders of magnitude greater than the bremsstrahlung emission. It is theoretically indicated that the ratio of signal of charge exchange recombination spectroscopy to the noise from background bremsstrahlung emission,S/N, is large enough in the EAST tokamak with the typical designed parameters. The present results are helpful for experiment design of charge-exchange recombination spectroscopy based on the DNB in the EAST tokamak.

  9. First measurement of the edge charge exchange recombination spectroscopy on EAST tokamak

    Science.gov (United States)

    Li, Y. Y.; Yin, X. H.; Fu, J.; Jiang, D.; Feng, S. Y.; Lyu, B.; Shi, Y. J.; Yi, Y.; Zhou, X. J.; Hu, C. D.; Ye, M. Y.; Wan, B. N.

    2016-11-01

    An edge toroidal charge exchange recombination spectroscopy (eCXRS) diagnostic, based on a heating neutral beam injection (NBI), has been deployed recently on the Experimental Advanced Superconducting Tokamak (EAST). The eCXRS, which aims to measure the plasma ion temperature and toroidal rotation velocity in the edge region simultaneously, is a complement to the exiting core CXRS (cCXRS). Two rows with 32 fiber channels each cover a radial range from ˜2.15 m to ˜2.32 m with a high spatial resolution of ˜5-7 mm. Charge exchange emission of Carbon VI CVI at 529.059 nm induced by the NBI is routinely observed, but can be tuned to any interested wavelength in the spectral range from 400 to 700 nm. Double-slit fiber bundles increase the number of channels, the fibers viewing the same radial position are binned on the CCD detector to improve the signal-to-noise ratio, enabling shorter exposure time down to 5 ms. One channel is connected to a neon lamp, which provides the real-time wavelength calibration on a shot-to-shot basis. In this paper, an overview of the eCXRS diagnostic on EAST is presented and the first results from the 2015 experimental campaign will be shown. Good agreements in ion temperature and toroidal rotation are obtained between the eCXRS and cCXRS systems.

  10. High spatial and temporal resolution charge exchange recombination spectroscopy on the HL-2A tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Y. L.; Yu, D. L., E-mail: yudl@swip.ac.cn; Liu, L.; Cao, J. Y.; Sun, A. P.; Ma, Q.; Chen, W. J.; Liu, Yi; Yan, L. W.; Yang, Q. W.; Duan, X. R.; Liu, Yong [Southwestern Institute of Physics, Chengdu 610041 (China); Ida, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Hellermann, M. von [ITER Diagnostic Team, IO, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); FOM-Institute for Plasma physics “Rijnhuizen,” Association EURATOM, Trilateral Euregio Cluster, 3430 BE Nieuwegein (Netherlands)

    2014-10-01

    A 32/64-channel charge exchange recombination spectroscopy (CXRS) diagnostic system is developed on the HL-2A tokamak (R = 1.65 m, a = 0.4 m), monitoring plasma ion temperature and toroidal rotation velocity simultaneously. A high throughput spectrometer (F/2.8) and a pitch-controlled fiber bundle enable the temporal resolution of the system up to 400 Hz. The observation geometry and an optimized optic system enable the highest radial resolution up to ~1 cm at the plasma edge. The CXRS system monitors the carbon line emission (C VI, n = 8–7, 529.06 nm) whose Doppler broadening and Doppler shift provide ion temperature and plasma rotation velocity during the neutral beam injection. The composite CX spectral data are analyzed by the atomic data and analysis structure charge exchange spectroscopy fitting (ADAS CXSFIT) code. First experimental results are shown for the case of HL-2A plasmas with sawtooth oscillations, electron cyclotron resonance heating, and edge transport barrier during the high-confinement mode (H-mode)

  11. Wall reflection modeling for charge exchange recombination spectroscopy (CXRS) measurements on Textor and ITER

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Santanu; Vasu, P [Institute for Plasma Research, Bhat, Gandhinagar 382 428, Gujarat (India); Von Hellermann, M [FOM Institute for Plasma Physics, Rijnhuizen (Netherlands); Jaspers, R J E, E-mail: sbanerje@ipr.res.i [Applied Physics Department, Eindhoven University of Technology, Eindhoven (Netherlands)

    2010-12-15

    Contamination of optical signals by reflections from the tokamak vessel wall is a matter of great concern. For machines such as ITER and future reactors, where the vessel wall will be predominantly metallic, this is potentially a risk factor for quantitative optical emission spectroscopy. This is, in particular, the case when bremsstrahlung continuum radiation from the bulk plasma is used as a common reference light source for the cross-calibration of visible spectroscopy. In this paper the reflected contribution to the continuum level in Textor and ITER has been estimated for the detection channels meant for charge exchange recombination spectroscopy (CXRS). A model assuming diffuse reflection has been developed for the bremsstrahlung which is a much extended source. Based on this model, it is shown that in the case of ITER upper port 3, a wall with a moderate reflectivity of 20% leads to the wall reflected fraction being as high as 55-60% of the weak signals in the edge channels. In contrast, a complete bidirectional reflectance distribution function (BRDF) based model has been developed in order to estimate the reflections from more localized sources like the charge exchange (CX) emission from a neutral beam in tokamaks. The largest signal contamination of {approx}15% is seen in the core CX channels, where the true CX signal level is much lower than that in the edge channels. Similar values are obtained for Textor also. These results indicate that the contributions from wall reflections may be large enough to significantly distort the overall spectral features of CX data, warranting an analysis at different wavelengths.

  12. Wall reflection modeling for charge exchange recombination spectroscopy (CXRS) measurements on Textor and ITER

    Science.gov (United States)

    Banerjee, Santanu; Vasu, P.; von Hellermann, M.; Jaspers, R. J. E.

    2010-12-01

    Contamination of optical signals by reflections from the tokamak vessel wall is a matter of great concern. For machines such as ITER and future reactors, where the vessel wall will be predominantly metallic, this is potentially a risk factor for quantitative optical emission spectroscopy. This is, in particular, the case when bremsstrahlung continuum radiation from the bulk plasma is used as a common reference light source for the cross-calibration of visible spectroscopy. In this paper the reflected contribution to the continuum level in Textor and ITER has been estimated for the detection channels meant for charge exchange recombination spectroscopy (CXRS). A model assuming diffuse reflection has been developed for the bremsstrahlung which is a much extended source. Based on this model, it is shown that in the case of ITER upper port 3, a wall with a moderate reflectivity of 20% leads to the wall reflected fraction being as high as 55-60% of the weak signals in the edge channels. In contrast, a complete bidirectional reflectance distribution function (BRDF) based model has been developed in order to estimate the reflections from more localized sources like the charge exchange (CX) emission from a neutral beam in tokamaks. The largest signal contamination of ~15% is seen in the core CX channels, where the true CX signal level is much lower than that in the edge channels. Similar values are obtained for Textor also. These results indicate that the contributions from wall reflections may be large enough to significantly distort the overall spectral features of CX data, warranting an analysis at different wavelengths.

  13. Modification to poloidal charge exchange recombination spectroscopy measurement in JT-60U tokamak

    Institute of Scientific and Technical Information of China (English)

    Ding Bo-Jiang; Sakamoto Yoshiteru; Miura Yukitoshi

    2007-01-01

    With consideration of the effects of the atomic process and the sight line direction on the charge exchange recombination spectroscopy (CXRS), a code used to modify the poloidal CXRS measurement on Tokamak-60 Upgrade (JT-60U) in Japan Atomic Energy Research Institute is developed, offering an effective tool to modify the measurement and analyse experimental results further. The results show that the poloidal velocity of ion is overestimated but the ion temperature is underestimated by the poloidal CXRS measurement, and they also indicate that the effect of observation angle on rotation velocity is a dominant one in a core region (r/a< 0.65), whereas in an edge region where the sight line is nearly normal to the neutral beam, the observation angle effect is very small. The difference between the modified velocity and the neoclassical velocity is not larger than the error in measurement. The difference inside the internal transport barrier (ITB) region is 2-3 times larger than that outside the ITB region, and it increases when the effect of excited components in neutral beam is taken into account. The radial electric field profile is affected greatly by the poloidal rotation term, which possibly indicates the correlation between the poloidal rotation and the transport barrier formation.

  14. Nongeminate Radiative Recombination of Free Charges in Cation-Exchanged PbS Quantum Dot Films

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Ashley R.; Beard, Matthew C.; Johnson, Justin C.

    2016-06-01

    Using photoluminescence (PL) spectroscopy we explore the radiative recombination pathways in PbS quantum dots (QDs) synthesized by two methods. We compare conventionally synthesized PbS from a PbO precursor to PbS synthesized using cation-exchange from CdS QDs. We show that strongly coupled films of PbS QDs from the cation-exchange luminesce with significant efficiency at room temperature. This is in stark contrast to conventional PbS QDs, which have exceedingly weak room temperature emission. Moreover, the power dependence of the emission is quadratic, indicating bimolecular radiative recombination that is reasonably competitive with trap-assisted recombination, a feature previously unreported in coupled PbS QD films. We interpret these results in terms of a greatly reduced defect concentration for cation-exchanged QDs that mitigates the influence of trap-assisted recombination. Cation-exchanged QDs have recently been employed in highly efficient and air-stable lead chalcogenide QD devices, and the reduced number of trap states inferred here may lead to improved current collection and higher open circuit voltage.

  15. Development of the gas puff charge exchange recombination spectroscopy (GP-CXRS) technique for ion measurements in the plasma edge

    International Nuclear Information System (INIS)

    A novel charge-exchange recombination spectroscopy (CXRS) diagnostic method is presented, which uses a simple thermal gas puff for its donor neutral source, instead of the typical high-energy neutral beam. This diagnostic, named gas puff CXRS (GP-CXRS), is used to measure ion density, velocity, and temperature in the tokamak edge/pedestal region with excellent signal-background ratios, and has a number of advantages to conventional beam-based CXRS systems. Here we develop the physics basis for GP-CXRS, including the neutral transport, the charge-exchange process at low energies, and effects of energy-dependent rate coefficients on the measurements. The GP-CXRS hardware setup is described on two separate tokamaks, Alcator C-Mod and ASDEX Upgrade. Measured spectra and profiles are also presented. Profile comparisons of GP-CXRS and a beam based CXRS system show good agreement. Emphasis is given throughout to describing guiding principles for users interested in applying the GP-CXRS diagnostic technique

  16. Development of the gas puff charge exchange recombination spectroscopy (GP-CXRS) technique for ion measurements in the plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, R. M.; Theiler, C.; Lipschultz, B. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Dux, R.; Pütterich, T.; Viezzer, E. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Collaboration: Alcator C-Mod Team; ASDEX Upgrade Team

    2013-09-15

    A novel charge-exchange recombination spectroscopy (CXRS) diagnostic method is presented, which uses a simple thermal gas puff for its donor neutral source, instead of the typical high-energy neutral beam. This diagnostic, named gas puff CXRS (GP-CXRS), is used to measure ion density, velocity, and temperature in the tokamak edge/pedestal region with excellent signal-background ratios, and has a number of advantages to conventional beam-based CXRS systems. Here we develop the physics basis for GP-CXRS, including the neutral transport, the charge-exchange process at low energies, and effects of energy-dependent rate coefficients on the measurements. The GP-CXRS hardware setup is described on two separate tokamaks, Alcator C-Mod and ASDEX Upgrade. Measured spectra and profiles are also presented. Profile comparisons of GP-CXRS and a beam based CXRS system show good agreement. Emphasis is given throughout to describing guiding principles for users interested in applying the GP-CXRS diagnostic technique.

  17. Charge exchange system

    Science.gov (United States)

    Anderson, Oscar A.

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  18. Optimization and application of cooled avalanche photodiodes for spectroscopic fluctuation measurements with ultra-fast charge exchange recombination spectroscopy

    Science.gov (United States)

    Truong, D. D.; Fonck, R. J.; McKee, G. R.

    2016-11-01

    The Ultra-Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic is a highly specialized spectroscopic instrument with 2 spatial channels consisting of 8 spectral channels each and a resolution of ˜0.25 nm deployed at DIII-D to measure turbulent ion temperature fluctuations. Charge exchange emissions are obtained between 528 and 530 nm with 1 μs time resolution to study plasma instabilities. A primary challenge of extracting fluctuation measurements from raw UF-CHERS signals is photon and electronic noise. In order to reduce dark current, the Avalanche Photodiode (APD) detectors are thermo-electrically cooled. State-of-the-art components are used for the signal amplifiers and conditioners to minimize electronic noise. Due to the low incident photon power (≤1 nW), APDs with a gain of up to 300 are used to optimize the signal to noise ratio. Maximizing the APDs' gain while minimizing the excess noise factor (ENF) is essential since the total noise of the diagnostic sets a floor for the minimum level of detectable broadband fluctuations. The APDs' gain should be high enough that photon noise dominates electronic noise, but not excessive so that the ENF overwhelms plasma fluctuations. A new generation of cooled APDs and optimized preamplifiers exhibits significantly enhanced signal-to-noise compared to a previous generation. Experiments at DIII-D have allowed for characterization and optimization of the ENF vs. gain. A gain of ˜100 at 1700 V is found to be near optimal for most plasma conditions. Ion temperature and toroidal velocity fluctuations due to the edge harmonic oscillation in quiescent H-mode plasmas are presented to demonstrate UF-CHERS' capabilities.

  19. Profile Measurement of Ion Temperature and Toroidal Rotation Velocity with Charge Exchange Recombination Spectroscopy Diagnostics in the HL-2A Tokamak

    Institute of Scientific and Technical Information of China (English)

    吴静; 姚列明; 朱建华; 韩晓玉; 李文柱

    2012-01-01

    This paper deals with the profile measurement of impurity ion temperature and toroidal rotation velocity that can be achieved by using the charge exchange recombination spectrum (CXRS) diagnostics tool built on the HL-2A toknmak. By using CXRS, an accurate impurity ion temperature and toroidal plasma rotation velocity profile can be achieved under the condition of neutrM beam injection (NBI) heating. Considering the edge effect of the line of CVI 529.06 nm (n= 8-7), which contains three lines (active exciting spectral line (ACX), passivity exciting spectral line (PCX) and electron exciting spectral line (ICE)), and using three Gaussian fitted curves, we obtain the following experimental results: the core ion temperature of HL-2A device is nearly thousands of eV, and the plasma rotation velocity reaches about 104 m· s^-1. At the end of paper, some explanations are presented for the relationship between the curves and the inner physical mechanism.

  20. Profile Measurement of Ion Temperature and Toroidal Rotation Velocity with Charge Exchange Recombination Spectroscopy Diagnostics in the HL-2A Tokamak

    Science.gov (United States)

    Wu, Jing; Yao, Lieming; Zhu, Jianhua; Han, Xiaoyu; Li, Wenzhu

    2012-11-01

    This paper deals with the profile measurement of impurity ion temperature and toroidal rotation velocity that can be achieved by using the charge exchange recombination spectrum (CXRS) diagnostics tool built on the HL-2A tokamak. By using CXRS, an accurate impurity ion temperature and toroidal plasma rotation velocity profile can be achieved under the condition of neutral beam injection (NBI) heating. Considering the edge effect of the line of CVI 529.06 nm (n = 8~7), which contains three lines (active exciting spectral line (ACX), passivity exciting spectral line (PCX) and electron exciting spectral line (ICE)), and using three Gaussian fitted curves, we obtain the following experimental results: the core ion temperature of HL-2A device is nearly thousands of eV, and the plasma rotation velocity reaches about 104 m · s-1. At the end of paper, some explanations are presented for the relationship between the curves and the inner physical mechanism.

  1. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D

    Science.gov (United States)

    Haskey, S. R.; Grierson, B. A.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Kaplan, D. H.; Pablant, N. A.; Stagner, L.

    2016-11-01

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.

  2. Fine structure of charge exchange lines observed in laboratory plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ida, K.; Nishimura, S. [National Inst. for Fusion Science, Nagoya (Japan); Kondo, K.

    1997-01-01

    The influence of the fine structure of charge exchange lines appears only at the plasma edge or in the recombining phase where the ion temperature is low enough. The observed spectra in Li III and C VI are consistent with the sum of fine-structure components populated by statistical weights (assuming complete l-mixing) not by direct charge exchange cross sections. Some discrepancy was observed in the intensity ratio of fine-structure components between the observation and calculation for C VI in the recombining phase. The fine-structure of charge exchange lines gives an apparent Doppler shift in plasma rotation velocity measurement using charge exchange spectroscopy. (author)

  3. Development of a laser cleaning method for the first mirror surface of the charge exchange recombination spectroscopy diagnostics on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A. P., E-mail: APKuznetsov@mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Buzinskij, O. I. [State Research Center Troitsk Institute for Innovation and Fusion Research (TRINITI) (Russian Federation); Gubsky, K. L.; Nikitina, E. A.; Savchenkov, A. V.; Tarasov, B. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Tugarinov, S. N. [State Research Center Troitsk Institute for Innovation and Fusion Research (TRINITI) (Russian Federation)

    2015-12-15

    A set of optical diagnostics is expected for measuring the plasma characteristics in ITER. Optical elements located inside discharge chambers are exposed to an intense radiation load, sputtering due to collisions with energetic atoms formed in the charge transfer processes, and contamination due to recondensation of materials sputtered from different parts of the construction of the chamber. Removing the films of the sputtered materials from the mirrors with the aid of pulsed laser radiation is an efficient cleaning method enabling recovery of the optical properties of the mirrors. In this work, we studied the efficiency of removal of metal oxide films by pulsed radiation of a fiber laser. Optimization of the laser cleaning conditions was carried out on samples representing metal substrates polished with optical quality with deposition of films on them imitating the chemical composition and conditions expected in ITER. It is shown that, by a proper selection of modes of radiation exposure to the surface with a deposited film, it is feasible to restore the original high reflection characteristics of optical elements.

  4. Production of antihydrogen via double charge exchange

    International Nuclear Information System (INIS)

    Spectroscopy of the 1S-2S transition of antihydrogen confined in a neutral atom trap and comparison with the equivalent spectral line in hydrogen will provide an accurate test of CPT symmetry and the first one in a mixed baryon-lepton system. Also, with neutral antihydrogen atoms, the gravitational interaction between matter and antimatter can be tested unperturbed by the much stronger Coulomb forces. Antihydrogen is regularly produced at CERN's Antiproton Decelerator by three-body-recombination (TBR) of one antiproton and two positrons. The method requires injecting antiprotons into a cloud of positrons, which raises the average temperature of the antihydrogen atoms produced way above the typical 0.5 K trap depths of neutral atom traps. Therefore only very few antihydrogen atoms can be confined at a time. Precision measurements, like laser spectroscopy, will greatly benefit from larger numbers of simultaneously trapped antihydrogen atoms. Therefore, the ATRAP collaboration developed a different production method that has the potential to create much larger numbers of cold, trappable antihydrogen atoms. Positrons and antiprotons are stored and cooled in a Penning trap in close proximity. Laser excited cesium atoms collide with the positrons, forming Rydberg positronium, a bound state of an electron and a positron. The positronium atoms are no longer confined by the electric potentials of the Penning trap and some drift into the neighboring cloud of antiprotons where, in a second charge exchange collision, they form antihydrogen. The antiprotons remain at rest during the entire process, so much larger numbers of trappable antihydrogen atoms can be produced. Laser excitation is necessary to increase the efficiency of the process since the cross sections for charge-exchange collisions scale with the fourth power of the principal quantum number n. This method, named double charge-exchange, was demonstrated by ATRAP in 2004. Since then, ATRAP constructed a new combined

  5. Charge exchange recombination spectroscopy measurements in the extreme ultraviolet region of central carbon concentrations during high power neutral beam heating in TFTR [Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    The carbon concentration in the central region of TFTR discharges with high power neutral beam heating has been measured by charge-extracted recombination spectroscopy (CXRS) of the C+5 n = 3--4 transition in the extreme ultraviolet region. The carbon concentrations were deduced from absolute measurements of the line brightness using a calculation of the beam attenuation and the appropriate cascade-corrected line excitation rates. As a result of the high ion temperatures in most of the discharges, the contribution of beam halo neutrals to the line brightness was significant and therefore had to be included in the modeling of the data. Carbon concentrations have been measured in discharges with Ip = 1.0-1.6 MA and beam power in the range of 2.6-30 MW, including a number of supershots. The results are in good agreement with carbon concentrations deduced from the visible bremsstrahlung Zeff and metallic impurity concentrations measured by x-ray pulse-height analysis, demonstrating the reliability of the atomic rates used in the beam attenuation and line excitation calculations. Carbon is the dominant impurity species in these discharges; the oxygen concentration measured via CXRS in a high beam power case was 0.0006 of ne, compard to 0.04 for carbon. Trends with Ip and beam power in the carbon concentration and the inferred deuteron concentration are presented. The carbon concentration is independent of Ip and decreases from 0.13 at 2.6 MW beam power to 0.04 at 30 MW, while the deuteron concentration increases from 0.25 to 0.75 over the same range of beam power. These changes are primarily the result of beam particle fueling, as the carbon density did not vary significantly with beam power. The time evolutions of the carbon and deuteron concentrations during two high power beam pulses, one which exhibited a carbon bloom and one which did not, are compared. 30 refs., 12 figs., 2 tabs

  6. Pion double charge exchange and nuclear structure

    International Nuclear Information System (INIS)

    Pion double charge exchange to both the double-analog state and the ground state is studied for medium weight nuclei. The relative cross section of these two transitions and the importance of nuclear structure as a function of pion kinetic energy is examined. 16 figs., 5 tabs

  7. Tailoring Charge Recombination in Photoelectrodes Using Oxide Nanostructures

    DEFF Research Database (Denmark)

    Iandolo, Beniamino; Wickman, Björn; Svensson, Elin;

    2016-01-01

    Optimizing semiconductor devices for solar energy conversion requires an explicit control of the recombination of photogenerated electron−hole pairs. Here we show how the recombination of charge carriers can be controlled in semiconductor thin films by surface patterning with oxide nanodisks. The...

  8. Charge Exchange Effect on Space-Charge-Limited Current Densities in Ion Diode

    Institute of Scientific and Technical Information of China (English)

    石磊

    2002-01-01

    The article theoretically studied the charge-exchange effects on space charge limited electron and ion current densities of non-relativistic one-dimensional slab ion diode, and compared with those of without charge exchange.

  9. Dissociative charge exchange of H2+

    International Nuclear Information System (INIS)

    This thesis is devoted to molecular dissociation, in particular the dissociation of the hydrogen molecule H2 arising from electron capture of its ion H2+ in a collision. Thereby the important practical question how a chemical bond can be broken is implicitly addressed. This thesis opens (chapter I) with an overview of the available experimental approaches in molecular physics. Further the simple Demkov model for NRCE is described. In chapter II a novel experimental technique for measurements on dissociative processes is introduced which combines a high efficiency with a high energy resolution. A detailed description of the techniques applied in the detector, which has a high spatial and timing resolution with 30 μm and 350 psec FWHM respectively for the detection of one particle, is given in chapter III. A semi-classical theory for NRCE in the medium energy range between a diatomic molecular ion and an atom is developed in chapter IV. The experiments on dissociative charge exchange of H2+ with Ar, Mg, Na and Cs targets at keV energies are described in Chapter V. The predissociation of the c3PIsub(u)-state of H2 populated after charge exchange of H2 with several targets at keV energies; is the subject of chapter VI. In chapter VII, orientational oscillations in the cross section for charge exchange of H2+ with alkali targets are discussed. The last chapter deals with predissociation of highly excited states in H2. (Auth.)

  10. Anatomy of charge-exchange straggling

    International Nuclear Information System (INIS)

    We have studied charge-exchange straggling theoretically for swift krypton and silicon ions and five target gases in the MeV/u energy regime. We find a pronounced two-peak structure for all ion-target combinations. The peak at the highest energy appears around the velocity where the bare ion and the one-electron ion are equally abundant in the equilibrium charge distribution. Correspondingly, the low-energy peak appears near the cross-over between the charge fractions of the two- and the three-electron ion. The possibility of further peaks at lower energies is discussed. Our findings are compared with recent experimental results on straggling of krypton beams

  11. Interplays between charge and electric field in perovskite solar cells: charge transport, recombination and hysteresis

    OpenAIRE

    Shi, Jiangjian; Zhang, Huiyin; Xu, Xin; Li, Dongmei; Luo, Yanhong; Meng, Qingbo

    2016-01-01

    Interplays between charge and electric field, which play a critical role in determining the charge transport, recombination, storage and hysteresis in the perovskite solar cell, have been systematically investigated by both electrical transient experiments and theoretical calculations. It is found that the light illumination can increase the carrier concentration in the perovskite absorber, thus enhancing charge recombination and causing the co-existence of high electric field and free carrie...

  12. Conceptual design of the ITER upper port plug for charge exchange diagnostic

    NARCIS (Netherlands)

    Sadakov, S.; Baross, T.; Biel, W.; Borsuk, V.; Hawkes, N.; von Hellermann, M.; Gille, P.; Kiss, G.; Koning, J.; Knaup, M.; Klinkhamer, F.; Krasikov, Y.; Litnovsky, A.; Neubauer, O.; Panin, A.

    2009-01-01

    A plug for the ITER core charge exchange recombination spectroscopy (core CXRS) is located in the upper port 3. It transfers the light emitted by interaction of plasma ions with the diagnostic neutral beam (DNB). The plug consists of a main shell, a shielding cassette and a retractable tube. The tub

  13. Collision and recombination driven instabilities in variable charged dusty plasmas

    Indian Academy of Sciences (India)

    S Bal; M Bose

    2013-04-01

    The dust-acoustic instability driven by recombination of electrons and ions on the surface of charged and variably-charged dust grains as well as by collisions in dusty plasmas with significant pressure of background neutrals have been theoretically investigated. The recombination driven instability is shown to be dominant in the long wavelength regime even in the presence of dust-neutral and ion-neutral collisions, while in the shorter wavelength regime, the dust-neutral collision is found to play a major role. In an earlier research work, the dust-neutral collision was neglected in comparison to the effect due to the recombination for estimating the dust-acoustic instability; later the other report shows that the recombination effect is negligible in the presence of dust-neutral collisions. In line of this present situation our investigation revealed that the recombination is more important than dust-neutral collisions in laboratory plasma and fusion plasma, while the dust-neutral collision frequency is dominant in the interstellar plasmas. The effects of ion and dust densities and ion streaming on the recombination and collision driven mode in parameter regimes relevant for many experimental studies on dusty plasmas have also been calculated.

  14. Multistep processes in charge-exchange reactions

    CERN Document Server

    Demetriou, P; Marianski, B

    2002-01-01

    Cross sections for the charge-exchange sup 6 sup 5 Cu(p, n) sup 6 sup 5 Zn reaction at the incident energy of 27 MeV and the sup 1 sup 0 sup 0 Mo(p, n) sup 1 sup 0 sup 0 Tc reaction at the incident energy of 26 MeV have been calculated using the multistep direct reaction theory of Feshbach, Kerman and Koonin. The theory was modified to include the non-DWBA matrix elements and the isovector collective vibrations according to the prescription of Marcinkowski and Marianski. The results show enhanced contributions from two-, three- and four-step direct reactions in agreement with experiment.

  15. Systematics of pion double charge exchange

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, R.A.

    1985-10-01

    Differential cross sections have been measured for pion-induced double-charge-exchange (DCX) reactions leading to double-isobaric-analog states (DIAS) and low-lying nonanalog states in the residual nuclei. A description of the experimental details and data analysis is presented. The experimentally observed systematics of reactions leading to DIAS, to nonanalog ground states, and to low-lying 2 states are described. Lowest-order optical-model calculations of DIAS DCX are compared to the data. Efforts to understand the anomalies by invoking additional reaction-mechanism amplitudes and a higher-order optical potential are described. Calculations of nonanalog DCX reactions leading to J/sup / = 0 states were performed within a distorted-wave impulse-approximation framework. The sensitivities of these calculations to input parameters are discussed. 58 refs., 41 figs., 16 tabs.

  16. Charge carrier dissociation and recombination in polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Deibel, Carsten [Experimental Physics VI, Julius-Maximilians-University of Wuerzburg, 97074 Wuerzburg (Germany)

    2009-12-15

    In polymer:fullerene solar cells, the origin of the losses in the field-dependent photocurrent is still controversially debated. We contribute to the ongoing discussion by performing photo-induced charge extraction measurements on poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C{sub 61} butyric acid methyl ester solar cells in order to investigate the processes ruling charge carrier decay. Calculating the drift length of photogenerated charges, we find that polaron recombination is not limiting the photocurrent for annealed devices. Additionally, we applied Monte Carlo simulations on blends of conjugated polymer chain donors with acceptor molecules in order to gain insight into the polaron pair dissociation. The dissociation yield turns out to be rather high, with only a weak field dependence. With this complementary view on dissociation and recombination, we stress the importance of accounting for polaron pair dissociation, polaron recombination as well as charge extraction when considering the loss mechanisms in organic solar cells. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  17. Dipole-mediated rectification of intramolecular photoinduced charge separation and charge recombination.

    Science.gov (United States)

    Bao, Duoduo; Upadhyayula, Srigokul; Larsen, Jillian M; Xia, Bing; Georgieva, Boriana; Nuñez, Vicente; Espinoza, Eli M; Hartman, Joshua D; Wurch, Michelle; Chang, Andy; Lin, Chung-Kuang; Larkin, Jason; Vasquez, Krystal; Beran, Gregory J O; Vullev, Valentine I

    2014-09-17

    Controlling charge transfer at a molecular scale is critical for efficient light harvesting, energy conversion, and nanoelectronics. Dipole-polarization electrets, the electrostatic analogue of magnets, provide a means for "steering" electron transduction via the local electric fields generated by their permanent electric dipoles. Here, we describe the first demonstration of the utility of anthranilamides, moieties with ordered dipoles, for controlling intramolecular charge transfer. Donor-acceptor dyads, each containing a single anthranilamide moiety, distinctly rectify both the forward photoinduced electron transfer and the subsequent charge recombination. Changes in the observed charge-transfer kinetics as a function of media polarity were consistent with the anticipated effects of the anthranilamide molecular dipoles on the rectification. The regioselectivity of electron transfer and the molecular dynamics of the dyads further modulated the observed kinetics, particularly for charge recombination. These findings reveal the underlying complexity of dipole-induced effects on electron transfer and demonstrate unexplored paradigms for molecular rectifiers. PMID:25162490

  18. Charge recombination in CuPc/PTCDA thin films.

    Science.gov (United States)

    Heutz, S; Nogueira, A F; Durrant, J R; Jones, T S

    2005-06-16

    The recombination kinetics of photogenerated charge carriers in perylene-3, 4, 9, 10-tetracarboxylic dianhydride (PTCDA) and copper phthalocyanine (CuPc) thin films grown by organic molecular beam deposition have been studied using transient absorption spectroscopy. Optical excitation is observed to generate long-lived polaron states, which exhibit power law recombination dynamics on time scales from microseconds to milliseconds. Studies as a function of excitation density and temperature, and comparison between heterostructures and PTCDA single layers, all indicate that this power law behavior results from trapping of PTCDA- polarons in localized states, with an estimated trap state density of approximately 6 x 10(17) polarons cm(-3). This recombination behavior is found to be remarkably similar to that previously observed for polymer/fullerene blends, suggesting that it may be generic to a range of semiconducting materials.

  19. Suzaku Observations of Charge Exchange Emission from Solar System Objects

    Science.gov (United States)

    Ezoe, Y.; Fujimoto, R.; Yamasaki, N. Y.; Mitsuda, K.; Ohashi, T.; Ishikawa, K.; Oishi, S.; Miyoshi, Y; Terada, N.; Futaana, Y.; Porter, F. S.; Brown, G. V.

    2012-01-01

    Recent results of charge exchange emission from solar system objects observed with the Japanese Suzaku satellite are reviewed. Suzaku is of great importance to investigate diffuse X-ray emission like the charge exchange from planetary exospheres and comets. The Suzaku studies of Earth's exosphere, Martian exosphere, Jupiter's aurorae, and comets are overviewed.

  20. Unresolved puzzles in the x-ray emission produced by charge exchange measured on electron beam ion traps

    International Nuclear Information System (INIS)

    Charge exchange recombination, the transfer of one or more electrons from an atomic or molecular system to a positive ion, is a common phenomenon affecting laboratory and astrophysical plasmas. Controlled studies of this process in electron beam ion traps during the past one and a half decades have produced multiple observations that are difficult to explain with available spectral models. Some of the most recent observations are so puzzling that they bring in doubt the existence of a coherent predictive capability for line formation by charge exchange, making investigations of charge exchange a fertile ground for continued measurements and theoretical development.

  1. Unresolved puzzles in the x-ray emission produced by charge exchange measured on electron beam ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P.; Brown, G. V.; Clementson, J. [Physics Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550 (United States); Kilbourne, C. A.; Kelley, R. L.; Leutenegger, M. A.; Porter, F. S. [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Schweikhard, L. [Institute of Physics, Ernst-Moritz-Arndt University, D-17487 Greifswald (Germany)

    2013-04-19

    Charge exchange recombination, the transfer of one or more electrons from an atomic or molecular system to a positive ion, is a common phenomenon affecting laboratory and astrophysical plasmas. Controlled studies of this process in electron beam ion traps during the past one and a half decades have produced multiple observations that are difficult to explain with available spectral models. Some of the most recent observations are so puzzling that they bring in doubt the existence of a coherent predictive capability for line formation by charge exchange, making investigations of charge exchange a fertile ground for continued measurements and theoretical development.

  2. Double charge exchange at high impact energies

    Science.gov (United States)

    Belkić, Dževad

    1994-03-01

    In fast ion-atom collisions, double ionization always dominates the two-electron transfer. For this reason, an adequate description of double charge exchange requires proper inclusion of intermediate ionization channels. This is even more important in two- than in one-electron transitions. First-order Born-type perturbation theories ignore throughout these electronic continuum intermediate states and hence provide utterly unreliable high energy cross sections for two-electron capture processes. Therefore, it is essential to use second- and higher-order theories, which include the intermediate ionization continua of the two electrons in an approximate manner. In the present paper, a new second-order theory called the Born distorted wave (BDW) approximation is introduced and implemented in the case of symmetric resonant double electron capture from the ground state of helium by fast alpha particles. A genuine four-body formalism is adopted, in contrast to the conventional independent particle model of atomic scattering theory. The obtained results for the total cross sections are compared with the available experimental data, and satisfactory agreement is recorded. As the incident energy increases, a dramatic improvement is obtained in going from the CB1 to the BDW approximation, since the latter closely follows the measurement, whereas the former overestimates the observed total cross sections by two orders of magnitude. This strongly indicates that the role of continuum intermediate states is decisive, even at those incident energies for which the Thomas double scattering effects are not important. This is in sharp contrast to the case of one-electron transfer atomic reactions.

  3. Proceedings of the LAMPF workshop on pion double charge exchange

    International Nuclear Information System (INIS)

    Experimental and theoretical aspects of double-analog, nonanalog, and continuum pion double charge exchange in the 50- to 310-MeV energy range are covered. Separate abstracts were prepared for 22 papers in these proceedings

  4. Charge exchange between singly ionized helium ions

    International Nuclear Information System (INIS)

    The plane-wave Born approximation was used to evaluate the charge transfer cross sections for the reaction He+ + He+ → He++ + He. The charge transfer cross section is graphed as a function of incident energy and compared with experimental measurements

  5. Meson exchange currents in pion double charge exchange at high energies

    CERN Document Server

    Alvarez-Ruso, L

    1995-01-01

    In this letter we study the high energy behavior of the forward differential cross section for the O(18)(pi+,pi-)Ne(18) double charge exchange reaction. We have evaluated the sequential and the meson exchange current mechanisms. The meson exchange current contribution shows a very weak energy dependence and becomes dominant at incident pion kinetic energies above 600 MeV.

  6. Charge exchange emission from solar wind helium ions

    NARCIS (Netherlands)

    Bodewits, D; Hoekstra, R; Seredyuk, B; McCullough, RW; Jones, GH; Tielens, AGGM

    2006-01-01

    Charge exchange X-ray and far-ultraviolet (FUV) aurorae can provide detailed insight into the interaction between solar system plasmas. Using the two complementary experimental techniques of photon emission spectroscopy and translation energy spectroscopy, we have studied state-selective charge exch

  7. Impurity charge-exchange processes in Tokamak plasmas

    International Nuclear Information System (INIS)

    Charge-exchange reactions between multiply-charged impurity ions and neutral hydrogen isotopes are considered. Ionization equilibrium and radiative losses are evaluated for oxygen and iron in the presence of either 'thermal' or 'beam' neutrals. The influence of 'thermal' neutrals on recently reported results from ohmically heated TFR discharges is also discussed

  8. 78 FR 28137 - Exchange Visitor Program-Fees and Charges

    Science.gov (United States)

    2013-05-14

    ... fee charged to U.S. corporate entities will increase to $3,982.00 for program designation and... include oversight and compliance with program requirements, as well as the monitoring of programs to... Part 62 RIN 1400-AD28 Exchange Visitor Program--Fees and Charges AGENCY: Department of State....

  9. Probing nuclear correlations with pion-nucleus double charge exchange

    International Nuclear Information System (INIS)

    In this paper we have calculated the lowest order pion double charge reaction mechanism using shell model wavefunctions of medium weight nuclei. We have the sequential reaction mechanism in which the pion undergoes two single-charge exchange scatterings on the valence neutrons. The distortion of the incoming, intermediate, and outgoing pion are included. The closure approximation is made for the intermediate states with an average excitation energy used in the pion propagator. The double-charge exchange is assumed to take place on the valence nucleons which are assumed to be in one spherical shell model orbital. 34 refs., 5 figs., 3 tabs

  10. Characterization of an atomic hydrogen source for charge exchange experiments

    Science.gov (United States)

    Leutenegger, M. A.; Beiersdorfer, P.; Betancourt-Martinez, G. L.; Brown, G. V.; Hell, N.; Kelley, R. L.; Kilbourne, C. A.; Magee, E. W.; Porter, F. S.

    2016-11-01

    We characterized the dissociation fraction of a thermal dissociation atomic hydrogen source by injecting the mixed atomic and molecular output of the source into an electron beam ion trap containing highly charged ions and recording the x-ray spectrum generated by charge exchange using a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchange state-selective capture cross sections are very different for atomic and molecular hydrogen incident on the same ions, enabling a clear spectroscopic diagnostic of the neutral species.

  11. Charge recombination in dye-sensitized nanoporous TiO2 solar cell

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; ZHOU Baoxue; GE Weijie; XIONG Bitao; ZHENG Qing; CAI Weimin

    2005-01-01

    DSSC has been a subject of intense study throughout the world. The efforts to investigate DSSC are mainly focused on how to increase light absorption, speed electron transport in circuit and reduce charge recombination. In this article, the development of charge recombination in DSSC is discussed, and the investigating techniques, main paths, mechanism and main inhibiting methods of charge recombination in DSSC are also described.

  12. Charge exchange of a polar molecule at its cation

    International Nuclear Information System (INIS)

    The Landau-Herring method is used to derive an analytic expression for the one-electron exchange interaction of a polar molecule with its positively charged ion, induced by a σ-electron. Analogously to the classical Van der Pole method, the exchange interaction potential is averaged over the rotational states of colliding particles. The resonant charge-transfer cross section is calculated, and the effect of the dipole moments of the core on the cross section is analyzed. It is shown that allowance for the dependence of the exchange potential on the orientation of the dipole moments relative to the molecular axis may change the dependence of the cross section on the velocity of colliding particles, which is typical of the resonant charge exchange, from the resonance to the quasi-resonance dependence.

  13. Controlled charge exchange between alkaline earth metals and their ions

    Science.gov (United States)

    Gacesa, Marko; Côté, Robin

    2015-05-01

    We theoretically investigate the prospects of realizing controlled charge exchange via magnetic Feshbach resonances in cold and ultracold collisions of atoms and ions. In particular, we focus on near-resonant charge exchange in heteroisotopic combinations of alkaline earth metals, such as 9Be++10 Be9 Be+10Be+ , which exhibit favorable electronic and hyperfine structure. The quantum scattering calculations are performed for a range of initial states and experimentally attainable magnetic fields in standard coupled-channel Feshbach projection formalism, where higher-order corrections such as the mass-polarization term are explicitely included. In addition, we predict a number of magnetic Feshbach resonances for different heteronuclear isotopic combinations of the listed and related alkaline earth elements. Our results imply that near-resonant charge-exchange could be used to realize atom-ion quantum gates, as well as controlled charge transfer in optically trapped cold quantum gases. This work is partially supported by ARO.

  14. Charge exchange X-rays from the heliosheath

    Science.gov (United States)

    Medvedev, M. V.; Robertson, I. P.; Cravens, T. E.; Zank, G. P.; Florinski, V.

    2006-09-01

    X-rays are produced throughout the heliosphere as a consequence of charge transfer collisions between heavy solar wind ions and neutral atoms. After such a collision the solar wind ion is left in a highly excited state and emits extreme ultraviolet and soft X-ray photons. In the outer heliosphere, solar wind charge exchange X-ray emission is mainly due to charge exchange with neutral interstellar hydrogen. We have combined MHD simulations with a comprehensive charge exchange computation code. We trace the full evolution of solar wind ions along stream line in order to produce three-dimensional emissivities and, subsequently, two-dimensional X-ray brightness and spectral maps of the heliosphere as would be observed from the outside. The model treats both the collisionally thin and the collisionally thick regimes. This model can be a diagnostic tool for studying stellar wind properties of nearby Sun-like stars.

  15. Resonance charge exchange mechanism at high and moderate energies

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, A.V.; Gevorkyan, A.S.

    1984-03-01

    Charge exchange mechanisms at high and medium energies are investigated, taking the resonance charge exchange of a proton by an hydrogen atom as an example. It is established that there are two classical charge exchange mechanisms related to direct proton knockout from the bound state and one quantum-mechanical mechanism corresponding to the electron tunnelling from one bound state to another. The classical cross-section diverges for two of these mechanisms, and the quasiclassical scattering amplitude must be calculated on the base of a complex classical trajectory. Physical grounds for the choice of such trajectories are discussed and calculations of the Van Vleck determinant for these mechanisms are presented. Contributions from different mechanisms to the total charge excha nge cross-section are analyzed. A comparison with experimental data and results of other authors is made.

  16. Resonant charge exchange mechanisms at high and moderate energies

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, A.V.; Gevorkyan, A.S.

    1984-03-01

    Charge transfer mechanisms at high and moderate energies are considered for the case of resonant charge exchange of a proton on a hydrogen atom. It is shown that there are two classical charge exchange mechanisms associated with direct ejection of a proton from a bound state, and one quantum mechanical mechanism, in which an electron goes from one bound state into another. The classical cross section diverges for two of these mechanisms, and the semiclassical scattering amplitude must be calculated using the complex classical trajectory. The physical premises for choosing these trajectories are discussed and calculations of the Van Vleck determinant for the mechanisms are presented. The relative contributions of the various mechanisms to the total charge exchange cross section are analyzed, and the results are compared with other experimental data.

  17. Recombinant Nepenthesin II for Hydrogen/Deuterium Exchange Mass Spectrometry.

    Science.gov (United States)

    Yang, Menglin; Hoeppner, Morgan; Rey, Martial; Kadek, Alan; Man, Petr; Schriemer, David C

    2015-07-01

    The pitcher secretions of the Nepenthes genus of carnivorous plants contain a proteolytic activity that is very useful for hydrogen/deuterium exchange mass spectrometry (HX-MS). Our efforts to reconstitute pitcher fluid activity using recombinant nepenthesin I (one of two known aspartic proteases in the fluid) revealed a partial cleavage profile and reduced enzymatic stability in certain HX-MS applications. We produced and characterized recombinant nepenthesin II to determine if it complemented nepenthesin I in HX-MS applications. Nepenthesin II shares many properties with nepenthesin I, such as fast digestion at reduced temperature and pH, and broad cleavage specificity, but in addition, it cleaves C-terminal to tryptophan. Neither enzyme reproduces the C-terminal proline cleavage we observed in the natural extract. Nepenthesin II is considerably more resistant to chemical denaturants and reducing agents than nepenthesin I, and it possesses a stability profile that is similar to that of pepsin. Higher stability combined with the slightly broader cleavage specificity makes nepenthesin II a useful alternative to pepsin and a more complete replacement for pitcher fluid in HX-MS applications. PMID:25993527

  18. Charge-exchange measurements of fully-stripped oxygen and carbon ion radial density profiles in TFR

    International Nuclear Information System (INIS)

    Fully-ionized oxygen and carbon ions have been detected in TFR via charge-exchange recombination spectroscopy using a modulated auxiliary neutral beam, thus allowing their radial density profiles to be obtained. An impurity transport numerical code is then used to deduce the impurity transport parameters

  19. Study of nuclei' excitation in the charge exchange reactions (Draft)

    International Nuclear Information System (INIS)

    Carried out experimental and theoretical studies show, that in the nuclear charge exchange reactions there is an unique ability for study both properties and behavior of the delta-isobar in the excited nuclear environment. However for theoretical analysis of these reactions it is necessary have experimental data on nuclei charge exchange on free nucleons. It is offered the experiment of measurement dependence of inclusive cross section of the tritium nuclei charge exchange in 3He nuclei on hydrogen from transferred energy. This reaction is isotopically dependent on 3He nuclei in tritons charge exchange reaction on neutrons. Aim of proposed experiment is checking of a hypothesis believability about the delta-isobar excitation in flying nucleus, and measurement of the process intensity. Peculiarity of this experiment is application of relativistic tritons beams formed from accelerated fragments of 4He nuclei. Experimental facility presents of combination of two one-arm spectrometers: first one - time-flying spectrometer for measurement tritium nuclei impulse in beam to target with accuracy 0.3 % for 6 GeV/s and identification of tritium nuclei, the second one - magnetic spectrometer for identification and measurement of 3He nuclei impulse forming in the result of the charge exchange reaction

  20. Charge Exchange Spectra of Hydrogenic and He-like Iron

    CERN Document Server

    Wargelin, B J; Neill, P A; Olson, R E; Scofield, J H

    2005-01-01

    We present H-like Fe XXVI and He-like Fe XXV charge-exchange spectra resulting from collisions of highly charged iron with N2 gas at an energy of 10 eV/amu in an electron beam ion trap. Although individual high-n emission lines are not resolved in our measurements, we observe that the most likely level for Fe25+ --> Fe24+ electron capture is n~9, in line with expectations, while the most likely value for Fe26+ --> Fe25+ charge exchange is significantly higher. In the Fe XXV spectrum, the K-alpha emission feature dominates, whether produced via charge exchange or collisional excitation. The K-alpha centroid is lower in energy for the former case than the latter (6666 versus 6685 eV, respectively), as expected because of the strong enhancement of emission from the forbidden and intercombination lines, relative to the resonance line, in charge-exchange spectra. In contrast, the Fe XXVI high-n Lyman lines have a summed intensity greater than that of Ly-alpha, and are substantially stronger than predicted from the...

  1. Measurement of absorption and charge exchange of $\\pi^+$ on carbon

    CERN Document Server

    Ieki, K; Berkman, S; Bhadra, S; Cao, C; de Perio, P; Hayato, Y; Ikeda, M; Kanazawa, Y; Kim, J; Kitching, P; Mahn, K; Nakaya, T; Nicholson, M; Olchanski, K; Rettie, S; Tanaka, H A; Wilking, M J; Tobayama, S; Yamauchi, T; Yen, S; Yokoyama, M

    2015-01-01

    The combined cross section for absorption and charge exchange interactions of positively charged pions with carbon nuclei for the momentum range 200 MeV/c to 300 MeV/c have been measured with the DUET experiment at TRIUMF. The uncertainty is reduced by nearly half compared to previous experiments. This result will be a valuable input to existing models to constrain pion interactions with nuclei.

  2. Charge exchange cooling in the tandem mirror plasma confinement apparatus

    International Nuclear Information System (INIS)

    A method and apparatus are described for cooling a plasma confined in the center mirror cell of the tandem mirror apparatus by injecting cold neutral species of the plasma into at least one mirroring region of the center mirror cell. The cooling is due to the loss of warm charged species through charge exchange with the cold neutral species with resulting diffusion of the warm neutral species out of the plasma

  3. Charge exchange between hydrogen atoms and fully stripped heavy ions

    International Nuclear Information System (INIS)

    Charge exchange between multicharged ions and background atomic and molecular gases represents one of the limitations to the attainment of high charge states in heavy ion sources, particularly containment sources. An attempt is made to study systematically a particularly simple but in many respects representative class of such reactions, namely charge transfer between atomic hydrogen and fully stripped heavy ions. Approximate cross sections for these processes in the low keV range of collision energies were obtained using a multistate Landau--Zener method. The energy and Z dependences of the cross sections are discussed

  4. Conditions for charge transport without recombination in low mobility organic solar cells and photodiodes (Presentation Recording)

    Science.gov (United States)

    Stolterfoht, Martin; Armin, Ardalan; Philippa, Bronson; White, Ronald D.; Burn, Paul L.; Meredith, Paul; Juška, Gytis; Pivrikas, Almantas

    2015-10-01

    Organic semiconductors typically possess low charge carrier mobilities and Langevin-type recombination dynamics, which both negatively impact the performance of organic solar cells and photodetectors. Charge transport in organic solar cells is usually characterized by the mobility-lifetime product. Using newly developed transient and steady state photocurrent measurement techniques we show that the onset of efficiency limiting photocarrier recombination is determined by the charge that can be stored on the electrodes of the device. It is shown that significant photocarrier recombination can be avoided when the total charge inside the device, defined by the trapped, doping-induced and mobile charge carriers, is less than the electrode charge. Based upon this physics we propose the mobility-recombination coefficient product as an alternative and more convenient figure of merit to minimize the recombination losses. We validate the results in 3 different organic semiconductor-based light harvesting systems with very different charge transport properties. The findings allow the determination of the charge collection efficiency in fully operational devices. In turn, knowing the conditions under which non-geminate recombination is eliminated enables one to quantify the generation efficiency of free charge carriers. The results are relevant to a wide range of light harvesting systems, particularly those based upon disordered semiconductors, and require a rethink of the critical parameters for charge transport.

  5. Charge exchange spectroscopy as a fast ion diagnostic on TEXTOR

    NARCIS (Netherlands)

    Delabie, E.; Jaspers, R. J. E.; von Hellermann, M. G.; Nielsen, S.K.; Marchuk, O.

    2008-01-01

    An upgraded charge exchange spectroscopy diagnostic has been taken into operation at the TEXTOR tokamak. The angles of the viewing lines with the toroidal magnetic field are close to the pitch angles at birth of fast ions injected by one of the neutral beam injectors. Using another neutral beam for

  6. Charge exchange spectroscopy as a fast ion diagnostic on TEXTOR

    DEFF Research Database (Denmark)

    Delabie, E.; Jaspers, R.J.E.; von Hellermann, M.G.;

    2008-01-01

    An upgraded charge exchange spectroscopy diagnostic has been taken into operation at the TEXTOR tokamak. The angles of the viewing lines with the toroidal magnetic field are close to the pitch angles at birth of fast ions injected by one of the neutral beam injectors. Using another neutral beam...

  7. Charge exchange and chemical reactions with trapped Th3+

    International Nuclear Information System (INIS)

    We have measured the reaction rates of trapped, buffer gas cooled Th3+ and various gases and have analyzed the reaction products using trapped ion mass spectrometry techniques. Ion trap lifetimes are usually limited by reactions with background molecules, and the high electron affinity of multiply charged ions such as Th3+ make them more prone to loss. Our results show that reactions of Th3+ with carbon dioxide, methane, and oxygen all occur near the classical Langevin rate, while reaction rates with argon, hydrogen, and nitrogen are orders of magnitude lower. Reactions of Th3+ with oxygen and methane proceed primarily via charge exchange, while simultaneous charge exchange and chemical reaction occurs between Th3+ and carbon dioxide. Loss rates of Th3+ in helium are consistent with reaction with impurities in the gas. Reaction rates of Th3+ with nitrogen and argon depend on the internal electronic configuration of the Th3+.

  8. Charge Exchange and Chemical Reactions with Trapped Th$^{3+}$

    CERN Document Server

    Churchill, L R; Chapman, M S

    2010-01-01

    We have measured the reaction rates of trapped, buffer gas cooled Th$^{3+}$ and various gases and have analyzed the reaction products using trapped ion mass spectrometry techniques. Ion trap lifetimes are usually limited by reactions with background molecules, and the high electron affinity of multiply charged ions such as Th$^{3+}$ make them more prone to loss. Our results show that reactions of Th$^{3+}$ with carbon dioxide, methane, and oxygen all occur near the classical Langevin rate, while reaction rates with argon, hydrogen, and nitrogen are orders of magnitude lower. Reactions of Th$^{3+}$ with oxygen and methane proceed primarily via charge exchange, while simultaneous charge exchange and chemical reaction occurs between Th$^{3+}$ and carbon dioxide. Loss rates of Th$^{3+}$ in helium are consistent with reaction with impurities in the gas. Reaction rates of Th$^{3+}$ with nitrogen and argon depend on the internal electronic configuration of the Th$^{3+}$.

  9. A time-resolved study on the interaction of oppositely charged bicelles--implications on the charged lipid exchange kinetics.

    Science.gov (United States)

    Yang, Po-Wei; Lin, Tsang-Lang; Hu, Yuan; Jeng, U-Ser

    2015-03-21

    Time-resolved small-angle X-ray scattering was applied to study charged lipid exchange between oppositely charged disc-shaped bicelles. The exchange of charged lipids gradually reduces the surface charge density and weakens the electrostatic attraction between the oppositely charged bicelles which form alternately stacked aggregates upon mixing. Initially, at a high surface charge density with almost no free water layer between the stacked bicelles, fast exchange kinetics dominate the exchange process. At a later stage with a lower surface charge density and a larger water gap between the stacked bicelles, slow exchange kinetics take over. The fast exchange kinetics are correlated with the close contact of the bicelles when there is almost no free water layer between the tightly bound bicelles with a charged lipid exchange time constant as short as 20-40 min. When the water gap becomes large enough to have a free water layer between the stacked bicelles, the fast lipid exchange kinetics are taken over by slow lipid exchange kinetics with time constants around 200-300 min, which are comparable to the typical time constant of lipid exchange between vesicles in aqueous solution. These two kinds of exchange mode fit well with the lipid exchange models of transient hemifusion for the fast mode and monomer exchange for the slow mode.

  10. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal

    Science.gov (United States)

    Grierson, B. A.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Haskey, S. R.; Kaplan, D. H.

    2016-11-01

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  11. Pion charge-exchange reactions: The analog state transitions

    International Nuclear Information System (INIS)

    The general features of pion charge-exchange reactions leading to nuclear-isobaric-analog states (IAS) and double-isobaric-analog states (DIAS), as they have emerged from studies over the past ten years, are reviewed. The energy range investigated is 20 to 550 MeV for IAS transitions and 20 to 300 MeV for DIAS transitions. These data are seen to play an important role in characterizing the pion optical potential, in determining the Δ-N interaction in nuclei, and in the study of nucleon correlations in nuclei. Recent progress achieved in understanding the role of such correlations in double-charge-exchange reactions is reviewed. 55 refs., 43 figs., 3 tabs

  12. Systematics of heavy-ion charge-exchange straggling

    Science.gov (United States)

    Sigmund, P.; Schinner, A.

    2016-10-01

    The dependence of heavy-ion charge-exchange straggling on the beam energy has been studied theoretically for several ion-target combinations. Our previous work addressed ions up to krypton, while the present study focuses on heavier ions, especially uranium. Particular attention has been paid to a multiple-peak structure which has been predicted theoretically in our previous work. For high-Z1 and high-Z2 systems, exemplified by U in Au, we identify three maxima in the energy dependence of charge-exchange straggling, while the overall magnitude is comparable with that of collisional straggling. Conversely, for U in C, charge-exchange straggling dominates, but only two peaks lie in the energy range where we presently are able to produce credible predictions. For U-Al we find good agreement with experiment in the energy range around the high-energy maximum. The position of the high-energy peak - which is related to processes in the projectile K shell - is found to scale as Z12 , in contrast to the semi-empirical Z13/2 dependence proposed by Yang et al. Measurements for heavy ions in heavy targets are suggested in order to reconcile a major discrepancy between the present calculations and the frequently-used formula by Yang et al.

  13. Photogeneration and recombination of charge carrier pairs and free charge carriers in polymer/fullerene bulk heterojunction films

    Energy Technology Data Exchange (ETDEWEB)

    Sliauzys, Gytis; Gulbinas, Vidmantas [Center for Physical Sciences and Technology, Savanoriu av. 231, 02300 Vilnius (Lithuania); Arlauskas, Kestutis [Department of Solid State Electronics, Vilnius University, Sauletekio al. 9, Build. 3, 10222 Vilnius (Lithuania)

    2012-07-15

    Photo-generation and recombination of free charge carriers in poly-3 (hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) blend films has been studied at different PCBM concentrations by means of fluorescence spectroscopy and transient photocurrent methods. We show that more than 80% of excitons form charge transfer (CT) states at PCBM concentrations above 4%. Efficiency of the CT state dissociation into free charge carries strongly depends on the PCBM concentration; the dissociation efficiency increases more than 30 times when PCBM concentration increases from 1 to 32%. We attribute the strong concentration dependence to formation of PCBM clusters facilitating electron migration and/or delocalization. Reduced charge carrier recombination coefficient has also been observed at high PCBM concentrations. We suggest that this may be partly caused by the reduced stability of reformed Coulombicaly bound charge pairs. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Charge exchange in fluid description of partially ionized plasmas

    CERN Document Server

    Vranjes, J; Luna, M

    2015-01-01

    The effects of charge exchange on waves propagating in weakly ionized plasmas are discussed. It is shown that for low-frequency processes, ions and neutrals should be treated as a single fluid with some effective charge on all of them. We have derived a new momentum equation which should be used in such an environment. As a result, the low-frequency magnetic waves can propagate even if particles are not magnetized, which is entirely due to the charge exchange and the fact that it is not possible to separate particles into two different populations as charged and neutral species. So there can be no friction force between ions and neutrals in the usual sense. The mean force per particle is proportional to the ionization ratio $n_i/(n_i+ n_n)$. Regarding the application of the theory to the Alfven wave propagation in the lower solar atmosphere, the results predict that the plane of displacement of the fluid must change by 90 degrees when an Alfven wave propagates from the area where particles are un-magnetized (...

  15. Interdefect charge exchange in silicon particle detectors at cryogenic temperatures

    CERN Document Server

    MacEvoy, B; Hall, G; Moscatelli, F; Passeri, D; Santocchia, A

    2002-01-01

    Silicon particle detectors in the next generation of experiments at the CERN Large Hadron Collider will be exposed to a very challenging radiation environment. The principal obstacle to long-term operation arises from changes in detector doping concentration (N/sub eff/), which lead to an increase in the bias required to deplete the detector and hence achieve efficient charge collection. We have previously presented a model of interdefect charge exchange between closely spaced centers in the dense terminal clusters formed by hadron irradiation. This manifestly non-Shockley-Read-Hall (SRH) mechanism leads to a marked increase in carrier generation rate and negative space charge over the SRH prediction. There is currently much interest in the subject of cryogenic detector operation as a means of improving radiation hardness. Our motivation, however, is primarily to investigate our model further by testing its predictions over a range of temperatures. We present measurements of spectra from /sup 241/Am alpha par...

  16. Consecutive reversible ionization-recombination reactions and ionic charge state distribution of Au plasma

    Institute of Scientific and Technical Information of China (English)

    ZHU; Zhiyan; ZHU; Zhenghe; TANG; Changhuan; TANG; Yongjia

    2005-01-01

    The present work proposes kinetics of ionization-recombination to study the charge state distribution of Au plasma. The first step is to calculate the average lifetime, energy level structure, degeneracy and partition function of Au48+―Au52+ by relativistic quantum mechanics, and next to compute the equilibrium constant and the second-order recombination rate constant by statistical thermodynamics. Based on these data, the differential equations of consecutive reversible ionization-recombination reactions are solved from which the charge state distribution and its average charge are derived. Finally, the influence of electron temperature and density on average charge is given in this paper. It is called the first-principle theory, for no experimental data are needed.

  17. Laser-Assisted H- Charge Exchange Injection in Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Gorlov, Timofey V [ORNL; Danilov, Viatcheslav V [ORNL; Shishlo, Andrei P [ORNL

    2010-01-01

    The use of stripping foils for charge exchange injection can cause a number of operational problems in high intensity hadron accelerators. A recently proposed three-step method of laser-assisted injection is capable of overcoming these problems. This paper presents advances in the physical model of laser-assisted charge exchange injection of H- beams and covers a wide field of atomic physics. The model allows the calculation of the evolution of an H0 beam taking into account spontaneous emission, field ionization and external electromagnetic fields. Some new data on the hydrogen atom related to the problem are calculated. The numerical calculations in the model use realistic descriptions of laser field and injection beam. Generally, the model can be used for design and optimization of a laser-assisted injection cell within an accelerator lattice. Example calculations of laser-assisted injection for an intermediate experiment at SNS in Oak Ridge and for the PS2 accelerator at CERN are presented. Two different schemes, distinctively characterized by various magnetic fields at the excitation point, are discussed. It was shown that the emittance growth of an injected beam can be drastically decreased by moving excitation point into a strong magnetic field.

  18. Laser-assisted H- charge exchange injection in magnetic fields

    Science.gov (United States)

    Gorlov, T.; Danilov, V.; Shishlo, A.

    2010-05-01

    The use of stripping foils for charge exchange injection can cause a number of operational problems in high intensity hadron accelerators. A recently proposed three-step method of laser-assisted injection is capable of overcoming these problems. This paper presents advances in the physical model of laser-assisted charge exchange injection of H- beams and covers a wide field of atomic physics. The model allows the calculation of the evolution of an H0 beam taking into account spontaneous emission, field ionization, and external electromagnetic fields. Some new data on the hydrogen atom related to the problem are calculated. The numerical calculations in the model use realistic descriptions of laser field and injection beam. Generally, the model can be used for design and optimization of a laser-assisted injection cell within an accelerator lattice. Example calculations of laser-assisted injection for an intermediate experiment at SNS in Oak Ridge and for the PS2 accelerator at CERN are presented. Two different schemes, distinctively characterized by various magnetic fields at the excitation point, are discussed. It was shown that the emittance growth of an injected beam can be drastically decreased by moving the excitation point into a strong magnetic field.

  19. RECOMBINATION AT DISLOCATION LEVELS LOCATED IN THE SPACE CHARGE REGION. EBIC CONTRAST EXPERIMENTS AND THEORY

    OpenAIRE

    Farvacque, J.; Sieber, B.

    1989-01-01

    Recombination at dislocations located in the space charge region (SCR) of a Schottky diode has been previously evidenced by EBIC contrats experiments [1] in the case of non intentionally n type CdTe. A depth-dependent recombination probability was, then, phenomenologically ascribed to the dislocation, in order to fit theoretical EBIC curves as a function of the beam accelerating voltage Eo obtained for dislocations perpendicular to the surface, with experimental ones. A variable radius ε(z) w...

  20. Spin-dependent charge carrier recombination in PCBM

    Science.gov (United States)

    Morishita, Hiroki; Baker, William; Waters, David; Baarda, Rachel; Lupton, John; Boehme, Christoph; Utah Spin Electronics Group Collaboration; Lupton Group Collaboration

    2013-03-01

    We present room temperature pulsed electrically detected magnetic resonance (pEDMR) measurements on [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) (electron acceptor) thin film unipolar and bipolar devices. Our study aimed at identifying the dominating spin-dependent transport and recombination processes therein. Experimentally, the devices were operated under a constant positive bias, and the resultant transient current response was then monitored after the application of a short resonant microwave pulse excitation. The measurements did not reveal any observable signal for unipolar electron devices which suggests that spin-dependent transport mechanisms are not dominant in PCBM. However, under bipolar injection, at least two pronounced spin-dependent signals were detected whose magnitudes increased as the devices degraded upon exposure to air. Electrical detection of spin-Rabi beat oscillation revealed that one of these two signals is due to weakly coupled pairs of spins with s =1/2. We therefore attribute this signal to electron-hole recombination. This observation shows that while PCBM is a poor hole conductor, hole injection can be significant.

  1. Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT:PCBM photovoltaic blends.

    Science.gov (United States)

    Etzold, Fabian; Howard, Ian A; Mauer, Ralf; Meister, Michael; Kim, Tae-Dong; Lee, Kwang-Sup; Baek, Nam Seob; Laquai, Frédéric

    2011-06-22

    The precise mechanism and dynamics of charge generation and recombination in bulk heterojunction polymer:fullerene blend films typically used in organic photovoltaic devices have been intensively studied by many research groups, but nonetheless remain debated. In particular the role of interfacial charge-transfer (CT) states in the generation of free charge carriers, an important step for the understanding of device function, is still under active discussion. In this article we present direct optical probes of the exciton dynamics in pristine films of a prototypic polycarbazole-based photovoltaic donor polymer, namely poly[N-11''-henicosanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT), as well as the charge generation and recombination dynamics in as-cast and annealed photovoltaic blend films using methanofullerene (PC(61)BM) as electron acceptor. In contrast to earlier studies we use broadband (500-1100 nm) transient absorption spectroscopy including the previously unobserved but very important time range between 2 ns and 1 ms, which allows us not only to observe the entire charge carrier recombination dynamics but also to quantify the existing decay channels. We determine that ultrafast exciton dissociation occurs in blends and leads to two separate pools of products, namely Coulombically bound charge-transfer (CT) states and unbound (free) charge carriers. The recombination dynamics are analyzed within the framework of a previously reported model for poly(3-hexylthiophene):PCBM (Howard, I. A. J. Am. Chem. Soc. 2010, 132, 14866) based on concomitant geminate recombination of CT states and nongeminate recombination of free charge carriers. The results reveal that only ~11% of the initial photoexcitations generate interfacial CT states that recombine exclusively by fast nanosecond geminate recombination and thus do not contribute to the photocurrent, whereas ~89% of excitons create free charge carriers on an ultrafast time scale

  2. Charge exchange measurements of ion behavior in the ISX tokamak

    International Nuclear Information System (INIS)

    Analysis of charge exchange neutrals is the standard method for measuring ion behavior in tokamak plasmas. Limitations of this technique, which arise in dense and neutral-beam-heated plasmas, are discussed. Two refinements that address these limitations are described: a neutral particle analyzer, which incorporates both mass and energy resolution to distinguish different ion components such as the fast and thermal ions in beam-heated plasmas, and an improved data analysis procedure, which accounts for the effects of profiles and neutral attenuation in dense plasmas. A simple two-dimensional Monte Carlo neutral transport code was developed and used to investigate the effects of toroidally asymmetric neutral density profiles. Applications of these methods to experiments in the Impurity Study Experiment (ISX) are discussed; they include energy confinement studies on ISX-A, natural beam heating and high beta studies on ISX-B, and pellet fueling studies on ISX-B

  3. Deuteron-proton charge exchange reaction at small transfer momentum

    CERN Document Server

    Ladygina, N B

    2004-01-01

    The charge-exchange reaction pd -> npp at 1 GeV projectile proton energy is studied. This reaction is considered in a special kinematics, when the transfer momentum from the beam proton to fast outgoing neutron is close to zero. Our approach is based on the Alt-Grassberger-Sandhas formulation of the multiple-scattering theory for the three-nucleon system. The matrix inversion method has been applied to take account of the final state interaction (FSI) contributions. The differential cross section, tensor analyzing power $C_{0,yy}$, vector-vector $C_{y,y}$ and vector-tensor $C_{y,xz}$ spin correlation parameters of the initial particles are presented. It is shown, that the FSI effects play a very important role under such kinematical conditions. The high sensitivity of the considered observables to the elementary nucleon-nucleon amplitudes has been obtained.

  4. Delta excitation in nuclei: the lesson of charge exchange reactions

    International Nuclear Information System (INIS)

    We present an attempt of theoretical interpretation of charge exchange reactions on nuclei in the region of the delta resonance. Special care is taken to insure consistency with the constraints from pion and photon excitation channels. Good agreement with measured spectra can be obtained for all types of targets and incident ions except for polarized deuterons data which appear hardly reconcilable with the others within our interpretation. Despite the peripheral character of these reactions, a sizeable part of the observed downward shift of the resonance is possibly ascribable to a yet undetected collective mode of the nucleus at high excitation, the pionic branch. Our limited commitment is due to uncomplete knowledge of the NN → N Δ interaction and the transition form factors of the probing ions which has been palliated by some phenomenology

  5. Charge Exchange Losses and Stochastic Acceleration in the Solar Wind

    CERN Document Server

    Kenny, Ciaran

    2016-01-01

    Stochastic acceleration of particles under a pressure balance condition can accommodate the universal $p^{-5}$ spectra observed under many different conditions in the inner heliosphere. In this model, in order to avoid an infinite build up of particle pressure, a relationship between the momentum diffusion of particles and the adiabatic deceleration in the solar wind must exist. This constrains both the spatial and momentum diffusion coefficients and results in the $p^{-5}$ spectrum in the presence of adiabatic losses in the solar wind. However, this theory cannot explain the presence of such spectra beyond the termination shock, where adiabatic deceleration is negligible. To explain this apparent discrepancy, we include the effect of charge exchange losses, resulting in new forms of both the spatial and momentum diffusion coefficients that have not previously been considered. Assuming that the turbulence is of a large-scale compressible nature, we find that a balance between momentum diffusion and losses can...

  6. Charge Separation and Recombination at Polymer-Fullerene Heterojunctions: Delocalization and Hybridization Effects.

    Science.gov (United States)

    D'Avino, Gabriele; Muccioli, Luca; Olivier, Yoann; Beljonne, David

    2016-02-01

    We address charge separation and recombination in polymer/fullerene solar cells with a multiscale modeling built from accurate atomistic inputs and accounting for disorder, interface electrostatics and genuine quantum effects on equal footings. Our results show that bound localized charge transfer states at the interface coexist with a large majority of thermally accessible delocalized space-separated states that can be also reached by direct photoexcitation, thanks to their strong hybridization with singlet polymer excitons. These findings reconcile the recent experimental reports of ultrafast exciton separation ("hot" process) with the evidence that high quantum yields do not require excess electronic or vibrational energy ("cold" process), and show that delocalization, by shifting the density of charge transfer states toward larger effective electron-hole radii, may reduce energy losses through charge recombination. PMID:26785294

  7. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies.

    Science.gov (United States)

    Johnston, Michael B; Herz, Laura M

    2016-01-19

    Photovoltaic (PV) devices that harvest the energy provided by the sun have great potential as renewable energy sources, yet uptake has been hampered by the increased cost of solar electricity compared with fossil fuels. Hybrid metal halide perovskites have recently emerged as low-cost active materials in PV cells with power conversion efficiencies now exceeding 20%. Rapid progress has been achieved over only a few years through improvements in materials processing and device design. In addition, hybrid perovskites appear to be good light emitters under certain conditions, raising the prospect of applications in low-cost light-emitting diodes and lasers. Further optimization of such hybrid perovskite devices now needs to be supported by a better understanding of how light is converted into electrical currents and vice versa. This Account provides an overview of charge-carrier recombination and mobility mechanisms encountered in such materials. Optical-pump-terahertz-probe (OPTP) photoconductivity spectroscopy is an ideal tool here, because it allows the dynamics of mobile charge carriers inside the perovskite to be monitored following excitation with a short laser pulse whose photon energy falls into the range of the solar spectrum. We first review our insights gained from transient OPTP and photoluminescence spectroscopy on the mechanisms dominating charge-carrier recombination in these materials. We discuss that mono-molecular charge-recombination predominantly originates from trapping of charges, with trap depths being relatively shallow (tens of millielectronvolts) for hybrid lead iodide perovskites. Bimolecular recombination arises from direct band-to-band electron-hole recombination and is found to be in significant violation of the simple Langevin model. Auger recombination exhibits links with electronic band structure, in accordance with its requirement for energy and momentum conservation for all charges involved. We further discuss charge-carrier mobility

  8. Charge Exchange Cross Sections Measured at Low Energies in Q-Machines

    DEFF Research Database (Denmark)

    Andersen, S. A.; Jensen, Vagn Orla; Michelsen, Poul

    1972-01-01

    A new technique for measurements of charge exchange cross sections at low energies is described. The measurements are performed in a single‐ended Q machine. The resonance charge exchange cross section for Cs at 2 eV was found to be 0.6×10−13 cm2±20%.......A new technique for measurements of charge exchange cross sections at low energies is described. The measurements are performed in a single‐ended Q machine. The resonance charge exchange cross section for Cs at 2 eV was found to be 0.6×10−13 cm2±20%....

  9. Method to obtain absolute impurity density profiles combining charge exchange and beam emission spectroscopy without absolute intensity calibrationa)

    Science.gov (United States)

    Kappatou, A.; Jaspers, R. J. E.; Delabie, E.; Marchuk, O.; Biel, W.; Jakobs, M. A.

    2012-10-01

    Investigation of impurity transport properties in tokamak plasmas is essential and a diagnostic that can provide information on the impurity content is required. Combining charge exchange recombination spectroscopy (CXRS) and beam emission spectroscopy (BES), absolute radial profiles of impurity densities can be obtained from the CXRS and BES intensities, electron density and CXRS and BES emission rates, without requiring any absolute calibration of the spectra. The technique is demonstrated here with absolute impurity density radial profiles obtained in TEXTOR plasmas, using a high efficiency charge exchange spectrometer with high etendue, that measures the CXRS and BES spectra along the same lines-of-sight, offering an additional advantage for the determination of absolute impurity densities.

  10. Method to obtain absolute impurity density profiles combining charge exchange and beam emission spectroscopy without absolute intensity calibration

    Energy Technology Data Exchange (ETDEWEB)

    Kappatou, A.; Delabie, E. [FOM Institute DIFFER - Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, 3430 BE Nieuwegein (Netherlands); Jaspers, R. J. E.; Jakobs, M. A. [Science and Technology of Nuclear Fusion, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Marchuk, O.; Biel, W. [Institute for Energy and Climate Research, Forschungszentrum Julich GmbH, Trilateral Euregio Cluster, 52425 Julich (Germany)

    2012-10-15

    Investigation of impurity transport properties in tokamak plasmas is essential and a diagnostic that can provide information on the impurity content is required. Combining charge exchange recombination spectroscopy (CXRS) and beam emission spectroscopy (BES), absolute radial profiles of impurity densities can be obtained from the CXRS and BES intensities, electron density and CXRS and BES emission rates, without requiring any absolute calibration of the spectra. The technique is demonstrated here with absolute impurity density radial profiles obtained in TEXTOR plasmas, using a high efficiency charge exchange spectrometer with high etendue, that measures the CXRS and BES spectra along the same lines-of-sight, offering an additional advantage for the determination of absolute impurity densities.

  11. Solar Wind Charge Exchange Studies Of Highly Charged Ions On Atomic Hydrogen

    International Nuclear Information System (INIS)

    Accurate studies of low-energy charge exchange (CX) are critical to understanding underlying soft X-ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H-like, and He-like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H-like ions of C, N, O and fully-stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV/u-20 keV/u) and compared to previous H-oven measurements. The present measurements are performed using a merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV/u-3.3 keV/u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H-oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  12. Solar Wind Charge Exchange Studies Of Highly Charged Ions On Atomic Hydrogen

    Science.gov (United States)

    Draganić, I. N.; Seely, D. G.; McCammon, D.; Havener, C. C.

    2011-06-01

    Accurate studies of low-energy charge exchange (CX) are critical to understanding underlying soft X-ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H-like, and He-like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H-like ions of C, N, O and fully-stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV/u-20 keV/u) and compared to previous H-oven measurements. The present measurements are performed using a merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV/u-3.3 keV/u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H-oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  13. Charge transport and recombination in P3HT:PbS solar cells

    International Nuclear Information System (INIS)

    The charge carrier transport in thin film hybrid solar cells is analyzed and correlated with device performance and the mechanisms responsible for recombination loss. The hybrid bulk heterojunction consisted of a blend of poly(3-hexylthiophene) (P3HT) and small size (2.4 nm) PbS quantum dots (QDs). The charge transport in the P3HT:PbS blends was determined by measuring the space-charge limited current in hole-only and electron-only devices. When the loading of PbS QDs exceeds the percolation threshold, a significant increase of the electron mobility is observed in the blend with PbS QDs. The hole mobility, on the other hand, only slightly decreased upon increasing the loading of PbS QDs. We also showed that the photocurrent is limited by the low shunt resistance rather than by space-charge effects. The significant reduction of the fill factor at high light intensity suggests that under these conditions the non-geminate recombination dominates. However, at open-circuit conditions, the trap-assisted recombination dominates over non-geminate recombination

  14. Polarization measurement of dielectronic recombination transitions in highly charged krypton ions

    CERN Document Server

    Shah, Chintan; Bernitt, Sven; Dobrodey, Stepan; Steinbrügge, René; Beilmann, Christian; Amaro, Pedro; Hu, Zhimin; Weber, Sebastian; Fritzsche, Stephan; Surzhykov, Andrey; López-Urrutia, José R Crespo; Tashenov, Stanislav

    2016-01-01

    We report linear polarization measurements of x rays emitted due to dielectronic recombination into highly charged krypton ions. The ions in the He-like through O-like charge states were populated in an electron beam ion trap with the electron beam energy adjusted to recombination resonances in order to produce $K\\alpha$ x rays. The x rays were detected with a newly developed Compton polarimeter using a beryllium scattering target and 12 silicon x-ray detector diodes sampling the azimuthal distribution of the scattered x rays. The extracted degrees of linear polarization of several dielectronic recombination transitions agree with results of relativistic distorted--wave calculations. We also demonstrate a high sensitivity of the polarization to the Breit interaction, which is remarkable for a medium-$Z$ element like krypton. The experimental results can be used for polarization diagnostics of hot astrophysical and laboratory fusion plasmas.

  15. Charge exchange and ionisation in N$^{7+}$, N$^{6+}$, C$^{6+}$ - H($n=1, 2$) collisions studied systematically by theoretical approaches

    CERN Document Server

    Igenbergs, Katharin; Veiter, Alexander; Perneczky, Lukas; Frühwirth, Edwin; Wallerberger, Markus; Olson, Ronald E; Aumayr, Friedrich

    2011-01-01

    The introduction of gases like nitrogen or neon for cooling the edge region of magnetically confined fusion plasmas has triggered a renewed interest in state selective cross sections necessary for plasma diagnostics by means of charge exchange recombination spectroscopy. To improve the quality of spectroscopic data analysis, charge exchange and ionisation cross sections for N$^{7+}$ + H($n=1,2$) have been calculated using two different theoretical approaches, namely the atomic-orbital close-coupling method and the classical trajectory Monte Carlo method. Total and state resolved charge exchange cross sections are analysed in detail. In the second part, we compare two collision systems involving equally charged ions, C$^{6+}$ and N$^{6+}$ on atomic hydrogen. The analysis of the data lead to the conclusion that deviations between these two impurity ions are practically negligible. This finding is very helpful when calculating cross sections for collision systems with heavier not completely stripped impurity ion...

  16. Recombination-cascade X-ray spectra of highly charged helium-like ions

    Science.gov (United States)

    Pradhan, A. K.

    1985-01-01

    It is shown that the relative intensity distribution among the X-ray spectral lines of helium-like ions from the n = 2 states produced through recombination processes such as radiative and charge transfer recombination may be given by considering in detail the radiative cascades following recombination. Model calculations are presented with predicted line ratios for Ar XVII and Fe XXV in recombination-dominated noncoronal plasmas. In particular, compared to coronal intensities, the singlet resonance line (w) should be much weaker relative to the triplet intercombination (x, y) and forbidden (z) lines, yielding large values for the ratio G = (x + y + z)/w. Accurate configuration interaction type wave functions are employed to calculate the eigenenergies, transition probabilities, and cascade coefficients. Certain relevant tokamak and astrophysical observations are discussed.

  17. Plasma code for astrophysical charge exchange emission at X-ray wavelengths

    CERN Document Server

    Gu, Liyi; Raassen, A J J

    2016-01-01

    Charge exchange X-ray emission provides unique insights into the interactions between cold and hot astrophysical plasmas. Besides its own profound science, this emission is also technically crucial to all observations in the X-ray band, since charge exchange with the solar wind often contributes a significant foreground component that contaminates the signal of interest. By approximating the cross sections resolved to $n$ and $l$ atomic subshells, and carrying out complete radiative cascade calculation, we create a new spectral code to evaluate the charge exchange emission in the X-ray band. Comparing to collisional thermal emission, charge exchange radiation exhibits enhanced lines from large-$n$ shells to the ground, as well as large forbidden-to-resonance ratios of triplet transitions. Our new model successfully reproduces an observed high-quality spectrum of comet C/2000 WM1 (LINEAR), which emits purely by charge exchange between solar wind ions and cometary neutrals. It demonstrates that a proper charge ...

  18. Charge-exchange reaction by Reggeon exchange and W{sup +}W{sup −}-fusion

    Energy Technology Data Exchange (ETDEWEB)

    Schicker, R. [Phys. Inst., University Heidelberg (Germany)

    2015-04-10

    Charge-exchange reactions at high energies are examined. The existing cross section data on the Reggeon induced reaction pp → n + Δ{sup ++} taken at the ZGS and ISR accelerators are extrapolated to the energies of the RHIC and LHC colliders. The interest in the charge-exchange reaction induced by W{sup ±}-fusion is presented, and the corresponding QCD-background is examined.

  19. The role of spin exchange in charge transfer in low-bandgap polymer: Fullerene bulk heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Krinichnyi, V. I., E-mail: kivirus@gmail.com; Yudanova, E. I.; Denisov, N. N. [Kinetics and Catalysis, Institute of Problems of Chemical Physics, Chernogolovka 142432 (Russian Federation)

    2014-07-28

    Formation, relaxation and dynamics of polarons and methanofullerene anion radicals photoinitiated in poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′, 3′-benzothiadiazole)]:-[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCDTBT:PC{sub 61}BM) bulk heterojunctions were studied mainly by light-induced EPR (LEPR) spectroscopy in wide photon energy and temperature ranges. Some polarons are pinned by spin traps whose number and depth are governed by the composite morphology and photon energy. The proximity of the photon energy and the polymer bandgap reduces the number of such traps, inhibits recombination of mobile charge carriers, and facilitates their mobility in polymer network. Spin relaxation and charge carrier dynamics were studied by the steady-state saturation method at wide range of temperature and photon energy. These processes were shown to be governed by spin exchange as well as by the photon energy. Charge transfer in the composite is governed by the polaron scattering on the lattice phonons of crystalline domains embedded into amorphous polymer matrix and its activation hopping between polymer layers. The energy barrier required for polaron interchain hopping exceeds that of its intrachain diffusion. Anisotropy of polaron dynamics in the PCDTBT:PC61BM composite is less than that of poly(3-alkylthiophenes)-based systems that evidences for better ordering of the former. Lorentzian shape of LEPR lines of both charge carriers, lower concentration of spin traps as well as behaviours of the main magnetic resonance parameters were explained by layer ordered morphology of polymer matrix.

  20. Charge Exchange, from the Laboratory to Galaxy Clusters

    Science.gov (United States)

    Betancourt-Martinez, Gabriele; Beiersdorfer, Peter; Brown, Gregory; Hell, Natalie; Leutenegger, Maurice A.; Porter, Frederick S.; Reynolds, Christopher S.

    2016-04-01

    X-ray emission due to charge exchange (CX) between solar wind ions and neutrals in comets and planetary atmospheres is ubiquitous in the solar system, and is also a significant foreground in all observations from low-Earth orbit. It is also possible that CX is common astrophysically, in any environment where hot plasma and cold gas interact. A current challenge is that theoretical models of CX spectra do not always accurately describe observations, and require further experimental verification. This is especially important to focus on now, as the recent launch of Astro-H is providing us with the first high-resolution spectra of extended x-ray sources. In order to improve our understanding and modeling of CX spectra, we take advantage of the laboratory astrophysics program at the Lawrence Livermore National Laboratory and use an Electron Beam Ion Trap (EBIT) to perform CX experiments, using the EBIT Calorimeter Spectrometer. We present experimental benchmarks that can be used to develop a more comprehensive and accurate CX theory. On the observational side, we also investigate the possibility of CX occurring in the filaments around the central galaxy of the Perseus cluster, NGC 1275. We use Chandra ACIS data, combined with what we know about laboratory CX spectra, to investigate the possibility of CX being a significant contributor to the x-ray emission.

  1. The Solar Wind Charge-Exchange Production Factor for Hydrogen

    CERN Document Server

    Kuntz, K D; Collier, M R; Connor, H K; Cravens, T E; Koutroumpa, D; Porter, F S; Robertson, I P; Sibeck, D G; Snowden, S L; Thomas, N E; Wash, B M

    2015-01-01

    The production factor, or broad band averaged cross-section, for solar wind charge-exchange with hydrogen producing emission in the ROSAT 1/4 keV (R12) band is $3.8\\pm0.2\\times10^{-20}$ count degree$^{-2}$ cm$^4$. This value is derived from a comparison of the Long-Term (background) Enhancements in the ROSAT All-Sky Survey with magnetohysdrodynamic simulations of the magnetosheath. This value is 1.8 to 4.5 times higher than values derived from limited atomic data, suggesting that those values may be missing a large number of faint lines. This production factor is important for deriving the exact amount of 1/4 keV band flux that is due to the Local Hot Bubble, for planning future observations in the 1/4 keV band, and for evaluating proposals for remote sensing of the magnetosheath. The same method cannot be applied to the 3/4 keV band as that band, being composed primarily of the oxygen lines, is far more sensitive to the detailed abundances and ionization balance in the solar wind. We also show, incidentally,...

  2. Charge exchange spectroscopy as a fast ion diagnostic on TEXTORa)

    Science.gov (United States)

    Delabie, E.; Jaspers, R. J. E.; von Hellermann, M. G.; Nielsen, S. K.; Marchuk, O.

    2008-10-01

    An upgraded charge exchange spectroscopy diagnostic has been taken into operation at the TEXTOR tokamak. The angles of the viewing lines with the toroidal magnetic field are close to the pitch angles at birth of fast ions injected by one of the neutral beam injectors. Using another neutral beam for active spectroscopy, injected counter the direction in which fast ions injected by the first beam are circulating, we can simultaneously measure a fast ion tail on the blue wing of the Dα spectrum while the beam emission spectrum is Doppler shifted to the red wing. An analysis combining the two parts of the spectrum offers possibilities to improve the accuracy of the absolute (fast) ion density profiles. Fast beam modulation or passive viewing lines cannot be used for background subtraction on this diagnostic setup and therefore the background has to be modeled and fitted to the data together with a spectral model for the slowing down feature. The analysis of the fast ion Dα spectrum obtained with the new diagnostic is discussed.

  3. Small-signal ac response of an electrolytic cell with recombining space charge

    International Nuclear Information System (INIS)

    A simple model to evaluate the impedance of a cell in the presence of the generation and recombination of charges is proposed. The analysis is performed by considering a typical asymmetric cell having one electrode perfectly blocking and the other electrode perfectly transparent. The dependence of the impedance of the cell, in the shape of a slab, on the recombination coefficient is investigated. We obtain approximated expressions for the impedance of the cell valid in the low and high frequency regions. The frequencies defining the regions where approximated expressions hold are deduced by means of the asymptotic expansions for the real and imaginary parts of the electrical impedance of the cell.

  4. Evidence for reduced charge recombination in carbon nanotube/perovskite-based active layers

    Science.gov (United States)

    Bag, Monojit; Renna, Lawrence A.; Jeong, Seung Pyo; Han, Xu; Cutting, Christie L.; Maroudas, Dimitrios; Venkataraman, D.

    2016-10-01

    Using impedance spectroscopy and computation, we show that incorporation of multi-walled carbon nanotubes (MWCNTs) in the bulk of the active layer of perovskite-based solar cells reduces charge recombination and increases the open circuit voltage. An ∼87% reduction in recombination was achieved when MWCNTs were introduced in the planar-heterostructure perovskite solar cell containing mixed counterions. The open circuit voltage (Voc) of perovskite/MWCNTs devices was increased by 70 mV, while the short circuit current density (Jsc) and fill factor (FF) remained unchanged.

  5. Electronic structure of cuprate superconductors in a full charge-spin recombination scheme

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shiping, E-mail: spfeng@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China); Kuang, Lülin [Department of Physics, Beijing Normal University, Beijing 100875 (China); Zhao, Huaisong [College of Physics, Qingdao University, Qingdao 266071 (China)

    2015-10-15

    Highlights: • We develope a full charge-spin recombination scheme in cuprate superconductors. • Electron self-energy from spin excitations is a key to electronic structure. • Underlying electron Fermi surface fulfills Luttinger’s theorem. • Low-energy excitation in superconducting-state is Bogoliubov quasiparticle. - Abstract: A long-standing unsolved problem is how a microscopic theory of superconductivity in cuprate superconductors based on the charge-spin separation can produce a large electron Fermi surface. Within the framework of the kinetic-energy driven superconducting mechanism, a full charge-spin recombination scheme is developed to fully recombine a charge carrier and a localized spin into a electron, and then is employed to study the electronic structure of cuprate superconductors in the superconducting-state. In particular, it is shown that the underlying electron Fermi surface fulfills Luttinger’s theorem, while the superconducting coherence of the low-energy quasiparticle excitations is qualitatively described by the standard d-wave Bardeen–Cooper–Schrieffer formalism. The theory also shows that the observed peak-dip-hump structure in the electron spectrum and Fermi arc behavior in the underdoped regime are mainly caused by the strong energy and momentum dependence of the electron self-energy.

  6. The influence of morphology on charge transport/recombination dynamics in planar perovskite solar cells

    Science.gov (United States)

    Yu, Man; Wang, Yi; Wang, Hao-Yi; Han, Jun; Qin, Yujun; Zhang, Jian-Ping; Ai, Xi-Cheng

    2016-10-01

    The photovoltaic performance of planar perovskite solar cell is significantly influenced by the morphology of perovskite film. In this work, five kinds of devices with different perovskite film morphologies were prepared by varying the concentration of CH3NH3Cl in precursor solutions. We found that best morphology of perovskite film results in the excellent photovoltaic performance with an average efficiency of 15.52% and a champion efficiency of 16.38%. Transient photovoltage and photocurrent measurements are performed to elucidate the mechanism of photoelectric conversion processes, which shows that the charge recombination is effectively suppressed and the charge transport is obviously promoted by optimized morphology.

  7. Status of Charge Exchange Cross Section Measurements for Highly Charged Ions on Atomic Hydrogen

    Science.gov (United States)

    Draganic, I. N.; Havener, C. C.; Schultz, D. R.; Seely, D. G.; Schultz, P. C.

    2011-05-01

    Total cross sections of charge exchange (CX) for C5+, N6+, and O7+ ions on ground state atomic hydrogen are measured in an extended collision energy range of 1 - 20,000 eV/u. Absolute CX measurements are performed using an improved merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source mounted on a high voltage platform. In order to improve the problematic H+ signal collection for these exoergic CX collisions at low relative energies, a new double focusing electrostatic analyzer was installed. Experimental CX data are in good agreement with all previous H-oven relative measurements at higher collision energies. We compare our results with the most recent molecular orbital close-coupling (MOCC) and atomic orbital close-coupling (AOCC) theoretical calculations. Work supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, and the Office of Basic Energy Sciences of the U.S. DoE.

  8. Auger Recombination in Self-Assembled Quantum Dots: Quenching and Broadening of the Charged Exciton Transition.

    Science.gov (United States)

    Kurzmann, Annika; Ludwig, Arne; Wieck, Andreas D; Lorke, Axel; Geller, Martin

    2016-05-11

    In quantum dots (QDs), the Auger recombination is a nonradiative process in which the electron-hole recombination energy is transferred to an additional carrier. It has been studied mostly in colloidal QDs, where the Auger recombination time is in the picosecond range and efficiently quenches the light emission. In self-assembled QDs, on the other hand, the influence of Auger recombination on the optical properties is in general neglected, assuming that it is masked by other processes such as spin and charge fluctuations. Here, we use time-resolved resonance fluorescence to analyze the Auger recombination and its influence on the optical properties of a single self-assembled QD. From excitation-power-dependent measurements, we find a long Auger recombination time of about 500 ns and a quenching of the trion transition by about 80%. Furthermore, we observe a broadening of the trion transition line width by up to a factor of 2. With a model based on rate equations, we are able to identify the interplay between tunneling and Auger rate as the underlying mechanism for the reduced intensity and the broadening of the line width. This demonstrates that self-assembled QDs can serve as an ideal model system to study how the charge recapture process, given by the band-structure surrounding the confined carriers, influences the Auger process. Our findings are not only relevant for improving the emission properties of colloidal QD-based emitters and dyes, which have recently entered the consumer market, but also of interest for more visionary applications, such as quantum information technologies, based on self-assembled quantum dots. PMID:27087053

  9. Auger Recombination in Self-Assembled Quantum Dots: Quenching and Broadening of the Charged Exciton Transition.

    Science.gov (United States)

    Kurzmann, Annika; Ludwig, Arne; Wieck, Andreas D; Lorke, Axel; Geller, Martin

    2016-05-11

    In quantum dots (QDs), the Auger recombination is a nonradiative process in which the electron-hole recombination energy is transferred to an additional carrier. It has been studied mostly in colloidal QDs, where the Auger recombination time is in the picosecond range and efficiently quenches the light emission. In self-assembled QDs, on the other hand, the influence of Auger recombination on the optical properties is in general neglected, assuming that it is masked by other processes such as spin and charge fluctuations. Here, we use time-resolved resonance fluorescence to analyze the Auger recombination and its influence on the optical properties of a single self-assembled QD. From excitation-power-dependent measurements, we find a long Auger recombination time of about 500 ns and a quenching of the trion transition by about 80%. Furthermore, we observe a broadening of the trion transition line width by up to a factor of 2. With a model based on rate equations, we are able to identify the interplay between tunneling and Auger rate as the underlying mechanism for the reduced intensity and the broadening of the line width. This demonstrates that self-assembled QDs can serve as an ideal model system to study how the charge recapture process, given by the band-structure surrounding the confined carriers, influences the Auger process. Our findings are not only relevant for improving the emission properties of colloidal QD-based emitters and dyes, which have recently entered the consumer market, but also of interest for more visionary applications, such as quantum information technologies, based on self-assembled quantum dots.

  10. Neutrino and antineutrino charge-exchange reactions on 12C

    International Nuclear Information System (INIS)

    We extend the formalism of weak interaction processes, obtaining new expressions for the transition rates, which greatly facilitate numerical calculations, for both neutrino-nucleus reactions and muon capture. Explicit violation of the conserved vector current hypothesis by the Coulomb field, as well as development of a sum-rule approach for inclusive cross sections, has been worked out. We have done a thorough study of exclusive (ground-state) properties of 12B and 12N within the projected quasiparticle random phase approximation (PQRPA). Good agreement with experimental data achieved in this way put into evidence the limitations of the standard RPA and QRPA models, which come from the inability of the RPA to open the p3/2 shell and from the nonconservation of the number of particles in the QRPA. The inclusive neutrino/antineutrino (ν/ν-tilde) reactions 12C(ν,e-)12N and 12C(ν-tilde,e+)12B are calculated within both the PQRPA and the relativistic QRPA. It is found that (i) the magnitudes of the resulting cross sections are close to the sum-rule limit at low energy, but significantly smaller than this limit at high energies, for both ν and ν-tilde; (ii) they increase steadily when the size of the configuration space is augmented, particularly for ν/ν-tilde energies >200 MeV; and (iii) they converge for sufficiently large configuration space and final-state spin. The quasi-elastic 12C(ν,μ-)12N cross section recently measured in the MiniBooNE experiment is briefly discussed. We study the decomposition of the inclusive cross section based on the degree of forbiddenness of different multipoles. A few words are dedicated to the ν/ν-tilde-12C charge-exchange reactions related to astrophysical applications.

  11. Charge carrier recombination in the ITO/PEDOT:PSS/MEH-PPV/Al photodetector

    Directory of Open Access Journals (Sweden)

    Petrović Jovana P.

    2009-01-01

    Full Text Available In this paper we investigate charge carrier recombination processes in polymer based photodetector ITO/PEDOT:PSS/MEH-PPV/Al. The major carriers are the hole polarons created by the photoexcitation in the active MEH-PPV film. The model used in this paper is based on the continuity equation and drift-diffusion equation for hole polarons. We assume the Poole-Frenkel expression for field dependence of the hole polaron mobility. The internal quantum efficiency dependence on incident photon flux density, incident light wavelength and applied electric field is included in the model. The simulated photocurrent density spectra for two different, assumed, recombination mechanisms, linear (monomolecular and square (bimolecular is compared with our experimental results. The bimolecular recombination mechanism applied in our model is assumed to be of Langevin type. The agreement between the measured and the calculated data unambiguously indicate that the hole polaron recombination mechanism in the MEH-PPV film is bimolecular with bimolecular rate constant depending on the external electric field. For the established recombination mechanism the theoretical prediction of the photocurrent density spectra shows excellent agreement with the measured spectra in wide range of inverse bias voltages (from 0 to -8 V.

  12. Origin and impact of recombination via charge transfer excitons in polymer/fullerene solar cells

    Science.gov (United States)

    Hallermann, Markus; da Como, Enrico; Feldmann, Jochen

    2010-03-01

    To further advance the performances of organic photovoltaic cells a thorough understanding of loss mechanisms in polymer/fullerene blends is mandatory. Recombination via charge transfer excitons (CTEs) appears to be a fundamental loss, potentially impacting the open circuit voltage (VOC) and the short circuit current (ISC) of cells. We unravel the origin of CTEs forming in polymer/fullerene blends and discuss their importance in recombination processes considering binding energy [1], polymer conformation [2], and energetic position. CTE photoluminescence (PL) is observed in material combinations such as P3HT and PPV blended with fullerene acceptors. By combining electron microscopy and PL spectroscopy, we show that CTE recombination is only slightly influenced by the mesoscopic morphology, whereas strongly by the polymer chain conformation [2]. By shifting the orbital energies of the fullerene, we tune the CTE PL characteristics. High energy CTE emission results in cells with a beneficial increase in VOC. On the other hand, high energy CTE emission leads to a more efficient recombination impacting directly the ISC. The results highlight a fundamental limit in the efficiency of organic solar cells with CTE recombination. [1] Hallermann et al. APL 2008 [2] Hallermann et al. AFM 2009

  13. Charge Exchange Collisions between Ultracold Fermionic Lithium Atoms and Calcium Ions

    CERN Document Server

    Haze, Shinsuke; Saito, Ryoichi; Mukaiyama, Takashi

    2014-01-01

    An observation of charge exchange collisions between ultracold fermionic 6Li atoms and 40Ca+ ions is reported. The reaction product of the charge exchange collision is dentified via mass spectrometry where the motion of the ions is excited parametrically. We measure the cross section of the charge exchange collisions between the 6Li atoms in the ground state and the 40Ca+ ions in the ground and metastable excited states. Investigation of the inelastic collision characteristics in the atom-ion mixture is an important step toward ultracold chemistry based on ultracold atoms and ions.

  14. Plasma code for astrophysical charge exchange emission at X-ray wavelengths

    Science.gov (United States)

    Gu, Liyi; Kaastra, Jelle; Raassen, A. J. J.

    2016-04-01

    Charge exchange X-ray emission provides unique insight into the interactions between cold and hot astrophysical plasmas. Besides its own profound science, this emission is also technically crucial to all observations in the X-ray band, since charge exchange with the solar wind often contributes a significant foreground component that contaminates the signal of interest. By approximating the cross sections resolved to n and l atomic subshells and carrying out complete radiative cascade calculation, we have created a new spectral code to evaluate the charge exchange emission in the X-ray band. Compared to collisional thermal emission, charge exchange radiation exhibits enhanced lines from large-n shells to the ground, as well as large forbidden-to-resonance ratios of triplet transitions. Our new model successfully reproduces an observed high-quality spectrum of comet C/2000 WM1 (LINEAR), which emits purely by charge exchange between solar wind ions and cometary neutrals. It demonstrates that a proper charge exchange model will allow us to probe the ion properties remotely, including charge state, dynamics, and composition, at the interface between the cold and hot plasmas.

  15. Study of variations of the carrier recombination and charge transport parameters during proton irradiation of silicon pin diode structures

    Directory of Open Access Journals (Sweden)

    E. Gaubas

    2011-06-01

    Full Text Available Techniques for the remote and in situ control of carrier recombination and drift parameters during proton irradiation are presented. The measurement and evaluation of the carrier recombination and drift-diffusion characteristics are based on simultaneous analysis of microwave probed photoconductivity transients and of the induced charge collection current transients in diodes with applied electric field during the proton exposure.

  16. Feasibility of non-thermal helium measurements with charge exchange spectroscopy on ITER

    Science.gov (United States)

    Kappatou, A.; Delabie, E.; Jaspers, R. J. E.; von Hellermann, M. G.

    2012-04-01

    The use of active charge exchange recombination spectroscopy (CXRS) as a diagnostic for fusion-produced alpha particles on ITER is constrained by the signal-to-noise ratio, which is determined by the intensity of the line of interest, the optical throughput of the diagnostic, the neutral beam penetration, and the intensity of bremsstrahlung radiation. The CX spectral line for fast ions has been modelled together with the expected background emission and we present the signal-to-noise ratios calculated as a function of the diagnostic design parameters. Combining the CXRS data from both the heating and the diagnostic neutral beams on ITER, information on fast ions with energies up to 1 MeV can be obtained for the parameters of the ITER core CXRS diagnostic design. To achieve this, energy binning of the signal is used (100 keV bins or larger), in order to improve the signal-to-noise ratio, with a time resolution of 2 s. The time resolution of the measurement can be improved using a higher throughput spectrometer, but this is ultimately limited by the amount of light from the neutral beam that can be collected. Despite the challenges and the fact that the results are not as optimistic as previously assumed, it is concluded that useful information on fast helium density profiles can be obtained using CXRS on ITER.

  17. Charge transport and recombination dynamics in organic bulk heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Andreas

    2011-08-02

    The charge transport in disordered organic bulk heterojunction (BHJ) solar cells is a crucial process affecting the power conversion efficiency (PCE) of the solar cell. With the need of synthesizing new materials for improving the power conversion efficiency of those cells it is important to study not only the photophysical but also the electrical properties of the new material classes. Thereby, the experimental techniques need to be applicable to operating solar cells. In this work, the conventional methods of transient photoconductivity (also known as ''Time-of-Flight'' (TOF)), as well as the transient charge extraction technique of ''Charge Carrier Extraction by Linearly Increasing Voltage'' (CELIV) are performed on different organic blend compositions. Especially with the latter it is feasible to study the dynamics - i.e. charge transport and charge carrier recombination - in bulk heterojunction (BHJ) solar cells with active layer thicknesses of 100-200 nm. For a well performing organic BHJ solar cells the morphology is the most crucial parameter finding a trade-off between an efficient photogeneration of charge carriers and the transport of the latter to the electrodes. Besides the morphology, the nature of energetic disorder of the active material blend and its influence on the dynamics are discussed extensively in this work. Thereby, the material system of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C{sub 61}butyric acid methyl ester (PC{sub 61}BM) serves mainly as a reference material system. New promising donor or acceptor materials and their potential for application in organic photovoltaics are studied in view of charge dynamics and compared with the reference system. With the need for commercialization of organic solar cells the question of the impact of environmental conditions on the PCE of the solar cells raises. In this work, organic BHJ solar cells exposed to synthetic air for finite duration are

  18. Ultrafast dynamics of charge carrier photogeneration and geminate recombination in conjugated polymer:fullerene solar cells

    Science.gov (United States)

    Müller, J. G.; Lupton, J. M.; Feldmann, J.; Lemmer, U.; Scharber, M. C.; Sariciftci, N. S.; Brabec, C. J.; Scherf, U.

    2005-11-01

    We investigate the nature of ultrafast exciton dissociation and carrier generation in acceptor-doped conjugated polymers. Using a combination of two-pulse femtosecond spectroscopy with photocurrent detection, we compare the exciton dissociation and geminate charge recombination dynamics in blends of two conjugated polymers, MeLPPP [methyl-substituted ladder-type poly( p -phenylene)] and MDMO-PPV [poly(2-methoxy,5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene], with the electron accepting fullerene derivative PCBM [1-(3-methoxycarbonyl)-propyl-1-phenyl- (6,6)C61 ]. This technique allows us to distinguish between free charge carriers and Coulombically bound polaron pairs. Our results highlight the importance of geminate pair recombination in photovoltaic devices, which limits the device performance. The comparison of different materials allows us to address the dependence of geminate recombination on the film morphology directly at the polymer:fullerene interface. We find that in the MeLPPP:PCBM blend exciton dissociation generates Coulombically bound geminate polaron pairs with a high probability for recombination, which explains the low photocurrent yield found in these samples. In contrast, in the highly efficient MDMO-PPV:PCBM blend the electron transfer leads to the formation of free carriers. The anisotropy dynamics of electronic transitions from neutral and charged states indicate that polarons in MDMO-PPV relax to delocalized states in ordered domains within 500fs . The results suggest that this relaxation enlarges the distance of carrier separation within the geminate pair, lowering its binding energy and favoring full dissociation. The difference in geminate pair recombination concurs with distinct dissociation dynamics. The electron transfer is preceded by exciton migration towards the PCBM sites. In MeLPPP:PCBM the exciton migration time decays smoothly with increasing PCBM concentration, indicating a trap-free exciton hopping. In MDMO-PPV:PCBM, however

  19. Charge Formation, Recombination, and Sweep-Out Dynamics in Organic Solar Cells

    OpenAIRE

    Cowan, Sarah R.; Banerji, Natalie; Leong, Wei Lin; Heeger, Alan J.

    2012-01-01

    This article presents a critical discussion of the various physical processes occurring in organic bulk heterojunction (BHJ) solar cells based on recent experimental results. The investigations span from photoexcitation to charge separation, recombination, and sweep-out to the electrodes. Exciton formation and relaxation in poly[N-9?-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole) (PCDTBT) and poly-3(hexylthiophene) (P3HT) are discussed based on a fluorescen...

  20. Significance of anion exchange in pentachlorophenol sorption by variable-charge soils.

    Science.gov (United States)

    Hyun, Seunghun; Lee, Linda S; Rao, P Suresh C

    2003-01-01

    Sorption data and subsequent predictive models for evaluating acidic pesticide behavior on variable-charge soils are needed to improve pesticide management and environmental stewardship. Previous work demonstrated that sorption of pentachlorophenol (PCP), a model organic acid, was adequately modeled by accounting for pH-and pKa-dependent chemical speciation and using two organic carbon-normalized sorption coefficients; one each for the neutral and anionic species. Such models do not account for organic anion interaction to positively charged surface sites, which can be significant for variable-charge minerals present in weathered soils typical of tropical and subtropical regions. The role of anion exchange in sorption of ionizable chemicals by variable-charge soils was assessed by measuring sorption of PCP by several variable-charge soils from aqueous solutions of CaCl2, CaSO4, Ca(H2PO4)2 as a function of pH. Differences in sorption from phosphate and chloride electrolyte solutions were attributed to pentachlorophenolate interactions with anion exchange sites. Suppression of PCP sorption by phosphate ranged from negligible in a soil with essentially no positively charge sites, as measured by negligible anion exchange capacity, to as much as 69% for variable-charge soils. Pentachlorophenolate exchange correlated well with the ratio of pH-dependent anion exchange capacity to net surface charge. Sorption reversibility of PCP by both CaCl2 and Ca(H2PO4)2 solutions was also demonstrated. Results for PCP clearly demonstrate that sorption to anion exchange sites in variable-charge soils should be considered in assessing pesticide mobility and that phosphate fertilizer application may increase the mobility of acidic pesticides.

  1. Significance of anion exchange in pentachlorophenol sorption by variable-charge soils.

    Science.gov (United States)

    Hyun, Seunghun; Lee, Linda S; Rao, P Suresh C

    2003-01-01

    Sorption data and subsequent predictive models for evaluating acidic pesticide behavior on variable-charge soils are needed to improve pesticide management and environmental stewardship. Previous work demonstrated that sorption of pentachlorophenol (PCP), a model organic acid, was adequately modeled by accounting for pH-and pKa-dependent chemical speciation and using two organic carbon-normalized sorption coefficients; one each for the neutral and anionic species. Such models do not account for organic anion interaction to positively charged surface sites, which can be significant for variable-charge minerals present in weathered soils typical of tropical and subtropical regions. The role of anion exchange in sorption of ionizable chemicals by variable-charge soils was assessed by measuring sorption of PCP by several variable-charge soils from aqueous solutions of CaCl2, CaSO4, Ca(H2PO4)2 as a function of pH. Differences in sorption from phosphate and chloride electrolyte solutions were attributed to pentachlorophenolate interactions with anion exchange sites. Suppression of PCP sorption by phosphate ranged from negligible in a soil with essentially no positively charge sites, as measured by negligible anion exchange capacity, to as much as 69% for variable-charge soils. Pentachlorophenolate exchange correlated well with the ratio of pH-dependent anion exchange capacity to net surface charge. Sorption reversibility of PCP by both CaCl2 and Ca(H2PO4)2 solutions was also demonstrated. Results for PCP clearly demonstrate that sorption to anion exchange sites in variable-charge soils should be considered in assessing pesticide mobility and that phosphate fertilizer application may increase the mobility of acidic pesticides. PMID:12809297

  2. N(+)-N long-range interaction energies and resonance charge exchange

    Science.gov (United States)

    Stallcop, J. R.; Partridge, H.

    1985-01-01

    The aerothermodynamic studies of proposed space missions require atmospheric charge-transfer data. N2(+) eigenstate energies are calculated with use of the complete-active-space self-consistent-field method with an extended Gaussian basis set. The N(+)-N charge-exchange cross section, determined from these energies, agrees with merged-beam measurements. This contradicts the previous theoretical conclusion. A simple physical description of the long-range interaction is presented and should expedite future charge-transfer studies.

  3. Site-specific recombination in the chicken genome using Flipase recombinase-mediated cassette exchange.

    Science.gov (United States)

    Lee, Hong Jo; Lee, Hyung Chul; Kim, Young Min; Hwang, Young Sun; Park, Young Hyun; Park, Tae Sub; Han, Jae Yong

    2016-02-01

    Targeted genome recombination has been applied in diverse research fields and has a wide range of possible applications. In particular, the discovery of specific loci in the genome that support robust and ubiquitous expression of integrated genes and the development of genome-editing technology have facilitated rapid advances in various scientific areas. In this study, we produced transgenic (TG) chickens that can induce recombinase-mediated gene cassette exchange (RMCE), one of the site-specific recombination technologies, and confirmed RMCE in TG chicken-derived cells. As a result, we established TG chicken lines that have, Flipase (Flp) recognition target (FRT) pairs in the chicken genome, mediated by piggyBac transposition. The transgene integration patterns were diverse in each TG chicken line, and the integration diversity resulted in diverse levels of expression of exogenous genes in each tissue of the TG chickens. In addition, the replaced gene cassette was expressed successfully and maintained by RMCE in the FRT predominant loci of TG chicken-derived cells. These results indicate that targeted genome recombination technology with RMCE could be adaptable to TG chicken models and that the technology would be applicable to specific gene regulation by cis-element insertion and customized expression of functional proteins at predicted levels without epigenetic influence.

  4. Laboratory simulation of charge exchange-produced X-ray emission from comets.

    Science.gov (United States)

    Beiersdorfer, P; Boyce, K R; Brown, G V; Chen, H; Kahn, S M; Kelley, R L; May, M; Olson, R E; Porter, F S; Stahle, C K; Tillotson, W A

    2003-06-01

    In laboratory experiments using the engineering spare microcalorimeter detector from the ASTRO-E satellite mission, we recorded the x-ray emission of highly charged ions of carbon, nitrogen, and oxygen, which simulates charge exchange reactions between heavy ions in the solar wind and neutral gases in cometary comae. The spectra are complex and do not readily match predictions. We developed a charge exchange emission model that successfully reproduces the soft x-ray spectrum of comet Linear C/1999 S4, observed with the Chandra X-ray Observatory.

  5. Laboratory simulation of charge exchange-produced X-ray emission from comets.

    Science.gov (United States)

    Beiersdorfer, P; Boyce, K R; Brown, G V; Chen, H; Kahn, S M; Kelley, R L; May, M; Olson, R E; Porter, F S; Stahle, C K; Tillotson, W A

    2003-06-01

    In laboratory experiments using the engineering spare microcalorimeter detector from the ASTRO-E satellite mission, we recorded the x-ray emission of highly charged ions of carbon, nitrogen, and oxygen, which simulates charge exchange reactions between heavy ions in the solar wind and neutral gases in cometary comae. The spectra are complex and do not readily match predictions. We developed a charge exchange emission model that successfully reproduces the soft x-ray spectrum of comet Linear C/1999 S4, observed with the Chandra X-ray Observatory. PMID:12791989

  6. Charge separation in organic solar cells: Effects of Coulomb interaction, recombination and hole propagation

    Science.gov (United States)

    Nemati Aram, Tahereh; Asgari, Asghar; Mayou, Didier

    2016-07-01

    Bulk heterojunction (BHJ) organic photovoltaic cells are analysed within a simple efficient model that includes the important physical properties of such photovoltaic systems. In this model, in contrast with most of the previous studies, we take into account the motion of both the electron and the hole in the separation process at the donor-acceptor interface. We theoretically examine the exciton dissociation yield under the influences of charge Coulomb interaction and non-radiative recombination. We find that the electron-hole local Coulomb attraction and charge carriers' coupling parameters play an important role in the system performance and in the optimal energy conversion efficiency of the BHJ photocell. We show that the fixed-hole models tend to underestimate the yield.

  7. Recombination of charge carriers on radiation-induced defects in silicon doped by transition metals impurities

    CERN Document Server

    Kazakevich, L A

    2003-01-01

    It has been studied the peculiarities of recombination of nonequilibrium charge carriers on radiation-induced defects in received according to Czochralski method p-silicon (p approx 3 - 20 Ohm centre dot cm), doped by one of the impurities of transition metals of the IV-th group of periodic table (titanium, zirconium, hafnium). Experimental results are obtained out of the analysis of temperature and injection dependence of the life time of charge carriers. The results are explained taking into consideration the influences of elastic stress fields created by the aggregates of transition metals atoms on space distribution over the crystal of oxygen and carbon background impurities as well as on the migration of movable radiation-induced defects during irradiation. (authors).

  8. The Contribution of Reggeon in Charge Exchange Processes

    CERN Document Server

    Yu Feng Zhou; Lian Shou Liu; Yufeng, Zhou; Hongan, Peng; Lianshou, Liu

    1998-01-01

    We discuss in this paper The experimental results on maximum psedo-rapidity Collaboration at HERA. We calculate the contributions of \\regg ($\\rho$-Reggeon associated with $\\rho$ meson) from regge phenomenology and $\\pi^{+}$-exchange from pion cloud model. The results show that neither the \\regg-exchange nor the pion cloud model alone can explain the experimental data well, but after considering both these two processes together, by using Monte Carlo simulation, a good agreement between theoretical results and experimental data is found. This means that in discussing the large rapidity gap phenomena in deep inelastic scattering, both of the two processes play substantial role.

  9. Pion induced double-charge exchange above the resonance

    International Nuclear Information System (INIS)

    The zero degree excitation function for (π+, π-) is calculated for pion energies of 300 to 1400 MeV assuming a sequential mechanism. The cross section around 1225 MeV is 104 smaller than at 800 MeV. Experiments at this energy should be ideal for searches for effects due to exchange currents, and other non-conventional mechanisms. 15 refs

  10. 75 FR 60674 - Exchange Visitor Program-Fees and Charges

    Science.gov (United States)

    2010-10-01

    ... current fee for program designation and redesignation applications was calculated on a unit cost basis... became Final on April 14, 2000, 65 FR 20083. In 2006, the Department examined its current Exchange... statements. The generally accepted government accounting practices for managerial cost accounting,...

  11. Ultrafast and slow charge recombination dynamics of diketopyrrolopyrrole-NiO dye sensitized solar cells.

    Science.gov (United States)

    Zhang, Lei; Favereau, Ludovic; Farré, Yoann; Mijangos, Edgar; Pellegrin, Yann; Blart, Errol; Odobel, Fabrice; Hammarström, Leif

    2016-07-21

    In a photophysical study, two diketopyrrolopyrrole (DPP)-based sensitizers functionalized with 4-thiophenecarboxylic acid as an anchoring group and a bromo (DPPBr) or dicyanovinyl (DPPCN2) group, and a dyad consisting of a DPP unit linked to a naphthalenediimide group (DPP-NDI), were investigated both in solution and grafted on mesoporous NiO films. Femtosecond transient absorption measurements indicate that ultrafast hole injection occurred predominantly on a timescale of ∼200 fs, whereas the subsequent charge recombination occurred on a surprisingly wide range of timescales, from tens of ps to tens of μs; this kinetic heterogeneity is much greater than is typically observed for dye-sensitized TiO2 or ZnO. Also, in contrast to what is typically observed for dye-sensitized TiO2, there was no significant dependence on the excitation power of the recombination kinetics, which can be explained by the hole density being comparatively higher near the valence band of NiO before excitation. The additional acceptor group in DPP-NDI provided a rapid electron shift and stabilized charge separation up to the μs timescale. This enabled efficient (∼95%) regeneration of NDI by a Co(III)(dtb)3 electrolyte (dtb = 4,4'-di-tert-butyl-2,2'-bipyridine), according to transient absorption measurements. The regeneration of DPPBr and DPPCN2 by Co(III)(dtb)3 was instead inefficient, as most recombination for these dyes occurred on the sub-ns timescale. The transient spectroscopy data thus corroborated the trend of the published photovoltaic properties of dye-sensitized solar cells (DSSCs) based on these dyes on mesoporous NiO, and show the potential of a design strategy with a secondary acceptor bound to the dye. The study identifies rapid initial recombination between the dye and NiO as the main obstacle to obtaining high efficiencies in NiO-based DSSCs; these recombination components may be overlooked when studies are conducted using only methods with ns resolution or slower. PMID

  12. Location of DNA damage by charge exchanging repair enzymes: effects of cooperativity on location time

    Directory of Open Access Journals (Sweden)

    Eriksen Kasper

    2005-04-01

    Full Text Available Abstract Background How DNA repair enzymes find the relatively rare sites of damage is not known in great detail. Recent experiments and molecular data suggest that individual repair enzymes do not work independently of each other, but interact with each other through charges exchanged along the DNA. A damaged site in the DNA hinders this exchange. The hypothesis is that the charge exchange quickly liberates the repair enzymes from error-free stretches of DNA. In this way, the sites of damage are located more quickly; but how much more quickly is not known, nor is it known whether the charge exchange mechanism has other observable consequences. Results Here the size of the speed-up gained from this charge exchange mechanism is calculated and the characteristic length and time scales are identified. In particular, for Escherichia coli, I estimate the speed-up is 50000/N, where N is the number of repair enzymes participating in the charge exchange mechanism. Even though N is not exactly known, a speed-up of order 10 is not entirely unreasonable. Furthermore, upon over expression of all the repair enzymes, the location time only varies as N-1/2 and not as 1/N. Conclusion The revolutionary hypothesis that DNA repair enzymes use charge exchange along DNA to locate damaged sites more efficiently is actually sound from a purely theoretical point of view. Furthermore, the predicted collective behavior of the location time is important in assessing the impact of stress-ful and radioactive environments on individual cell mutation rates.

  13. Charge carrier concentration dependence of encounter-limited bimolecular recombination in phase-separated organic semiconductor blends

    Science.gov (United States)

    Heiber, Michael C.; Nguyen, Thuc-Quyen; Deibel, Carsten

    2016-05-01

    Understanding how the complex intermolecular configurations and nanostructure present in organic semiconductor donor-acceptor blends impacts charge carrier motion, interactions, and recombination behavior is a critical fundamental issue with a particularly major impact on organic photovoltaic applications. In this study, kinetic Monte Carlo (KMC) simulations are used to numerically quantify the complex bimolecular charge carrier recombination behavior in idealized phase-separated blends. Recent KMC simulations have identified how the encounter-limited bimolecular recombination rate in these blends deviates from the often used Langevin model and have been used to construct the new power mean mobility model. Here, we make a challenging but crucial expansion to this work by determining the charge carrier concentration dependence of the encounter-limited bimolecular recombination coefficient. In doing so, we find that an accurate treatment of the long-range electrostatic interactions between charge carriers is critical, and we further argue that many previous KMC simulation studies have used a Coulomb cutoff radius that is too small, which causes a significant overestimation of the recombination rate. To shed more light on this issue, we determine the minimum cutoff radius required to reach an accuracy of less than ±10 % as a function of the domain size and the charge carrier concentration and then use this knowledge to accurately quantify the charge carrier concentration dependence of the recombination rate. Using these rigorous methods, we finally show that the parameters of the power mean mobility model are determined by a newly identified dimensionless ratio of the domain size to the average charge carrier separation distance.

  14. Ultra-Rapid Absorption of Recombinant Human Insulin Induced by Zinc Chelation and Surface Charge Masking

    Science.gov (United States)

    Pohl, Roderike; Hauser, Robert; Li, Ming; De Souza, Errol; Feldstein, Robert; Seibert, Richard; Ozhan, Koray; Kashyap, Nandini; Steiner, Solomon

    2012-01-01

    Background In order to enhance the absorption of insulin following subcutaneous injection, excipients were selected to hasten the dissociation rate of insulin hexamers and reduce their tendency to reassociate postinjection. A novel formulation of recombinant human insulin containing citrate and disodium ethylenediaminetetraacetic acid (EDTA) has been tested in clinic and has a very rapid onset of action in patients with diabetes. In order to understand the basis for the rapid insulin absorption, in vitro experiments using analytical ultracentrifugation, protein charge assessment, and light scattering have been performed with this novel human insulin formulation and compared with a commercially available insulin formulation [regular human insulin (RHI)]. Method Analytical ultracentrifugation and dynamic light scattering were used to infer the relative distributions of insulin monomers, dimers, and hexamers in the formulations. Electrical resistance of the insulin solutions characterized the overall net surface charge on the insulin complexes in solution. Results The results of these experiments demonstrate that the zinc chelating (disodium EDTA) and charge-masking (citrate) excipients used in the formulation changed the properties of RHI in solution, making it dissociate more rapidly into smaller, charge-masked monomer/dimer units, which are twice as rapidly absorbed following subcutaneous injection than RHI (Tmax 60 ± 43 versus 120 ± 70 min). Conclusions The combination of rapid dissociation of insulin hexamers upon dilution due to the zinc chelating effects of disodium EDTA followed by the inhibition of insulin monomer/dimer reassociation due to the charge-masking effects of citrate provides the basis for the ultra-rapid absorption of this novel insulin formulation. PMID:22920799

  15. Removal of charged micropollutants from water by ion-exchange polymers -- effects of competing electrolytes.

    Science.gov (United States)

    Bäuerlein, Patrick S; Ter Laak, Thomas L; Hofman-Caris, Roberta C H M; de Voogt, Pim; Droge, Steven T J

    2012-10-15

    A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-). PMID:22818952

  16. Theoretical study of charge exchange dynamics in He$^+$ + NO collisions

    CERN Document Server

    Bene, E

    2014-01-01

    We investigate the charge transfer mechanism in the collisions of helium ions on nitric oxide using a molecular description framework with consideration of the orientation of the projectile toward the target. The anisotropy of the collision process has been analysed in detail in connection with the non-adiabatic interactions around avoided crossings. Potential energy curves, radial and rotational coupling matrix elements have been determined by means of ab initio quantum chemical methods. The collision dynamics is performed in the [1.-25.] keV collision energy range using a semiclassical approach, and the total electron transfer cross sections are analysed with regard to available experimental data.

  17. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  18. Charge exchange momentum transfer due to ion beam injection in partially ionized plasmas

    International Nuclear Information System (INIS)

    Time responses of a helium plasma to helium gas puffing without and with helium beam injection in a linear plasma device are experimentally investigated. Increase in the neutral density due to gas puffing is suppressed by ion beam injection. The experimental results show that a momentum transport from the ion beam to the puffed neutral particles occurs due to the charge exchange interaction, suggesting that charge exchange momentum transport is one of the processes responsible for the spatial redistribution of neutral atoms in partially ionized plasmas. (author)

  19. Efficient Charge Extraction and Slow Recombination in Organic-Inorganic Perovskites Capped with Semiconducting Single-Walled Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ihly, Rachelle; Dowgiallo, Anne-Marie; Yang, Mengjin; Schulz, Philip; Stanton, Noah J.; Reid, Obadiah G.; Ferguson, Andrew J.; Zhu, Kai; Berry, Joseph J.; Blackburn, Jeffrey L.

    2016-04-01

    Metal-halide based perovskite solar cells have rapidly emerged as a promising alternative to traditional inorganic and thin-film photovoltaics. Although charge transport layers are used on either side of perovskite absorber layers to extract photogenerated electrons and holes, the time scales for charge extraction and recombination are poorly understood. Ideal charge transport layers should facilitate large discrepancies between charge extraction and recombination rates. Here, we demonstrate that highly enriched semiconducting single-walled carbon nanotube (SWCNT) films enable rapid (sub-picosecond) hole extraction from a prototypical perovskite absorber layer and extremely slow back-transfer and recombination (hundreds of microseconds). The energetically narrow and distinct spectroscopic signatures for charges within these SWCNT thin films enables the unambiguous temporal tracking of each charge carrier with time-resolved spectroscopies covering many decades of time. The efficient hole extraction by the SWCNT layer also improves electron extraction by the compact titanium dioxide electron transport layer, which should reduce charge accumulation at each critical interface. Finally, we demonstrate that the use of thin interface layers of semiconducting single-walled carbon nanotubes between the perovskite absorber layer and a prototypical hole transport layer improves device efficiency and stability, and reduces hysteresis.

  20. Ion slowing down and charge exchange at small impact parameters selected by channeling: superdensity effects

    OpenAIRE

    L'Hoir, A.; Adoui, A.; Barrué, F.; Billebaud, A.; Bosch, F.; Bräuning-Demian, A.; Bräuning, H.; Cassimi, A.; Chevallier, M.; C. Cohen; Dauvergne, D; Demonchy, C.E.; Giot, L.; Kirsch, R.; Gumberidze, A

    2005-01-01

    In two experiments performed with 20-30 MeV/u highly charged heavy ions (Pb56+, U91+) channeled through thin silicon crystals, we observed the original features of superdensity, associated to the glancing collisions with atomic rows undergone by part of the incident projectiles. In particular the very high collision rate yields a quite specific charge exchange regime, that leads to a higher ionization probability than in random conditions. X-ray measurements show that electrons captured in ou...

  1. Solar wind charge exchange X-ray emission from Mars Model and data comparison

    OpenAIRE

    Koutroumpa, Dimitra; Modolo, Ronan; Chanteur, Gerard; Chaufray, Jean-Yves; Kharchenko, Vasili; Lallement, Rosine

    2012-01-01

    Aims. We study the soft X-ray emission induced by charge exchange (CX) collisions between solar-wind, highly charged ions and neutral atoms of the Martian exosphere. Methods. A 3D multi species hybrid simulation model with improved spatial resolution (130 km) is used to describe the interaction between the solar wind and the Martian neutrals. We calculated velocity and density distributions of the solar wind plasma in the Martian environment with realistic planetary ions description, using sp...

  2. Evidence of chemical exchange in recombinant Major Urinary Protein and quenching thereof upon pheromone binding

    Energy Technology Data Exchange (ETDEWEB)

    Perazzolo, Chiara, E-mail: Chiara.Perazzolo@epfl.ch; Verde, Mariachiara [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland); Homans, Steve W. [University of Leeds, Institute of Molecular and Cellular Biology (United Kingdom); Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland)

    2007-05-15

    The internal dynamics of recombinant Major Urinary Protein (rMUP) have been investigated by monitoring transverse nitrogen-15 relaxation using multiple-echo Carr-Purcell-Meiboom-Gill (CPMG) experiments. While the ligand-free protein (APO-rMUP) features extensive evidence of motions on the milliseconds time scale, the complex with 2-methoxy-3-isobutylpyrazine (HOLO-rMUP) appears to be much less mobile on this time scale. At 308 K, exchange rates k{sub ex} = 500-2000 s{sup -1} were typically observed in APO-rMUP for residues located adjacent to a {beta}-turn comprising residues 83-87. These residues occlude an entry to the binding pocket and have been proposed to be a portal for ligand entry in other members of the lipocalin family, such as the retinol binding protein and the human fatty-acid binding protein. Exchange rates and populations are largely uncorrelated, suggesting local 'breathing' motions rather than a concerted global conformational change.

  3. Total cross sections for pion charge exchange on the proton

    Energy Technology Data Exchange (ETDEWEB)

    Breitschopf, J.

    2006-04-28

    This work describes the measurement of total SCX cross sections employing a new 4{pi} scintillation counter to perform transmission measurements in the incident pion energy range from about 38 to 250 MeV. A small 4{pi} detector box consisting of thin plastic scintillators has been constructed. The transmission technique, which was used, relates the number of transmitted charged pions to that of incident beam pions and this way effectively counts events with neutral products. The incoming negative pions were counted by three beam defining counters before they hit a target of very well known size and chemical composition. The target was placed in the box detector which was not sensitive to the neutral particles resulting from the SCX. The total cross section for emerging neutral particles was derived from the comparison of the numbers of the incoming and transmitted charged particles. The total SCX cross section on hydrogen was derived from the transmissions of a CH{sub 2} target, a carbon target and an empty target. For a detailed offline analysis all TDC, QDC and FADC information was recorded in an event by event mode for each triggered beam event. Various corrections had to be applied to the data, such as random correction, the detection of neutrals in the detector, Dalitz decay, pion decay and the radiative pion capture. This measurement covers, as the only experiment, the whole {delta}-resonance and the sp-interference region in one single experimental setup and improves the available data base for the SCX reaction. It is shown that the description of the SCX cross sections is improved if the s-wave amplitudes, that have been fixed essentially by elastic pion-nucleon scattering data, is reduced by (4{+-}1.5)%. The exact value depends on the SCX literature data included and on the parameters of the {delta}{sup 0} Breit-Wigner resonance describing the p{sub 33}-waves. This shows that p-wave as well as s-wave effects should be considered in studies of isospin

  4. The role of electron capture and energy exchange of positively charged particles passing through matter

    OpenAIRE

    Ulmer, W.

    2011-01-01

    The conventional treatment of the Bethe-Bloch equation for protons accounts for electron capture at the end of the projectile track by the small Barkas correction. This is only a possible way for protons, whereas for light and heavier charged nuclei the exchange of energy and charge along the track has to be accounted for by regarding the projectile charge q as a function of the residual energy. This leads to a significant modification of the Bethe-Bloch equation, otherwise the range in a med...

  5. Electron Impact Excitation and Dielectronic Recombination of Highly Charged Tungsten Ions

    Directory of Open Access Journals (Sweden)

    Zhongwen Wu

    2015-11-01

    Full Text Available Electron impact excitation (EIE and dielectronic recombination (DR of tungsten ions are basic atomic processes in nuclear fusion plasmas of the International Thermonuclear Experimental Reactor (ITER tokamak. Detailed investigation of such processes is essential for modeling and diagnosing future fusion experiments performed on the ITER. In the present work, we studied total and partial electron-impact excitation (EIE and DR cross-sections of highly charged tungsten ions by using the multiconfiguration Dirac–Fock method. The degrees of linear polarization of the subsequent X-ray emissions from unequally-populated magnetic sub-levels of these ions were estimated. It is found that the degrees of linear polarization of the same transition lines, but populated respectively by the EIE and DR processes, are very different, which makes diagnosis of the formation mechanism of X-ray emissions possible. In addition, with the help of the flexible atomic code on the basis of the relativistic configuration interaction method, DR rate coefficients of highly charged W37+ to W46+ ions are also studied, because of the importance in the ionization equilibrium of tungsten plasmas under running conditions of the ITER.

  6. Subnanosecond Charge Recombination Dynamics in P3HT/PC61BM Films

    Directory of Open Access Journals (Sweden)

    Jian-Ping Zhang

    2012-11-01

    Full Text Available Ultrafast near-infrared absorption spectroscopy was used to investigate the influence of film morphology and excitation photon energy on the charge recombination (CR dynamics in the initial nanosecond timescale in the P3HT/PC61BM blend films. With reference to the CS2-cast films, the solvent vapor annealed (SVA ones show 2–3-fold improvement in hole mobility and more than 5-fold reduction in the polymer-localized trap states of holes. At Dt = 70 ps, the hole mobility (mh and the bimolecular CR rate (gbi of the SVA films are mh = 8.7 × 10−4 cm2×s−1×V−1 and gbi = 4.5 × 10−10 cm3×s−1, whereas at Dt = 1 ns they drop to 8.7 × 10−5 cm2×s−1×V−1 and 4.6 × 10−11 cm3×s−1, respectively. In addition, upon increasing the hole concentration, the hole mobility increases substantially faster under the above-gap photoexcitation than it does under the band-gap photoexcitation, irrespective of the film morphologies. The results point to the importance of utilizing the photogenerated free charges in the early timescales.

  7. How disorder controls the kinetics of triplet charge recombination in semiconducting organic polymer photovoltaics.

    Science.gov (United States)

    Bittner, Eric R; Lankevich, Vladimir; Gélinas, Simon; Rao, Akshay; Ginger, David A; Friend, Richard H

    2014-10-14

    Recent experiments by Rao et al. (Nature, 2013, 500, 435-439) indicate that recombination of triplet charge-separated states is suppressed in organic polymer-fullerene based bulk-heterojunction (BHJ) photovoltaic cells exhibiting a high degree of crystallinity in the fullerene phase relative to systems with more disorder. In this paper, we use a series of Frenkel-exciton lattice models to rationalize these results in terms of wave-function localization, interface geometry, and density of states. In one-dimensional co-linear and co-facial models of the interface, increasing local energetic disorder in one phase localizes the interfacial triplet charge-transfer ((3)CT) states and increases the rate at which these states relax to form lower-energy triplet excitons. In two dimensional BHJ models, energetic disorder within the fullerene phase plays little role in further localizing states pinned to the interface. However, inhomogeneous broadening introduces strong coupling between the interfacial (3)CT and nearby fullerene triplet excitons and can enhance the decay of these states in systems with higher degrees of energetic disorder.

  8. How disorder controls the kinetics of triplet charge recombination in semiconducting organic polymer photovoltaics.

    Science.gov (United States)

    Bittner, Eric R; Lankevich, Vladimir; Gélinas, Simon; Rao, Akshay; Ginger, David A; Friend, Richard H

    2014-10-14

    Recent experiments by Rao et al. (Nature, 2013, 500, 435-439) indicate that recombination of triplet charge-separated states is suppressed in organic polymer-fullerene based bulk-heterojunction (BHJ) photovoltaic cells exhibiting a high degree of crystallinity in the fullerene phase relative to systems with more disorder. In this paper, we use a series of Frenkel-exciton lattice models to rationalize these results in terms of wave-function localization, interface geometry, and density of states. In one-dimensional co-linear and co-facial models of the interface, increasing local energetic disorder in one phase localizes the interfacial triplet charge-transfer ((3)CT) states and increases the rate at which these states relax to form lower-energy triplet excitons. In two dimensional BHJ models, energetic disorder within the fullerene phase plays little role in further localizing states pinned to the interface. However, inhomogeneous broadening introduces strong coupling between the interfacial (3)CT and nearby fullerene triplet excitons and can enhance the decay of these states in systems with higher degrees of energetic disorder. PMID:24922118

  9. Development of the charge exchange type beam scraper system at the J-PARC

    Science.gov (United States)

    Okabe, K.; Yamamoto, K.; Kinsho, M.

    2016-03-01

    Improvement in injection beam quality at the Japan Proton Accelerator Research Complex 3-GeV rapid cycle synchrotron is to mitigate beam loss at the injection section. We developed a charge-exchange type scraper system with a thin carbon foil to collimate the beam halo in the injection beam line of the synchrotron. The key issue to realize the scraper is a reduction of the beam loss induced by the multiple-scattering effect of charge-exchange foil placed at the scraper head. In order to determine the adequate foil thickness, a charge-exchange efficiency of a carbon foil and particle-tracking simulation study of the collimated beam have been performed assuming a realistic halo at the scraper section. Using the results of this study, we chose the thickness of a 520 μg /cm2 as the scraper foils to mitigate radiation dose around the L3BT scraper section. A charge-exchange scraper system that prevents the emission of radioactive fragments of the carbon foil was build. The system was put into operation to prove its effectiveness in eliminating the beam halo. From the result of a preliminary beam experiments, we confirmed that the installed scrapers eliminate a transverse beam tail or halo. After two days of operation with beam collimation, the radiation dose level around the scraper section was a tolerable one for the hands-on maintenance.

  10. Antiproton small momentum transfer charge exchange scattering on protons at 30 GeV/c

    International Nuclear Information System (INIS)

    Antiproton charge exchange scattering on protons anti pp→anti nn is investigated with 30 GeV/c antiprotons at the IHEP accelerator. The experiment confirms the existence of a structure at small angles in the angular distribution of this reaction at high energies, observed earlier

  11. Charge state distributions and charge exchange cross sections of carbon in helium at 30-258 keV

    Science.gov (United States)

    Maxeiner, Sascha; Seiler, Martin; Suter, Martin; Synal, Hans-Arno

    2015-10-01

    With the introduction of helium stripping in radiocarbon (14C) accelerator mass spectrometry (AMS), higher +1 charge state yields in the 200 keV region and fewer beam losses are observed compared to nitrogen or argon stripping. To investigate the feasibility of even lower beam energies for 14C analyses the stripping characteristics of carbon in helium need to be further studied. Using two different AMS systems at ETH Zurich (myCADAS and MICADAS), ion beam transmissions of carbon ions for the charge states -1, +1, +2 and +3 were measured in the range of 258 keV down to 30 keV. The correction for beam losses and the extraction of charge state yields and charge exchange cross sections will be presented. An increase in population of the +1 charge state towards the lowest measured energies up to 75% was found as well as agreement with previous data from literature. The findings suggest that more compact radiocarbon AMS systems are possible and could provide even higher efficiency than current systems operating in the 200 keV range.

  12. Charge Recombination, Transport Dynamics, and Interfacial Effects in Organic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Heeger, Alan; Bazan, Guillermo; Nguyen, Thuc-Quyen; Wudl, Fred

    2015-02-27

    The need for renewable sources of energy is well known. Conversion of sunlight to electricity using solar cells is one of the most important opportunities for creating renewable energy sources. The research carried out under DE-FG02-08ER46535 focused on the science and technology of “Plastic” solar cells comprised of organic (i.e. carbon based) semiconductors. The Bulk Heterojunction concept involves a phase separated blend of two organic semiconductors each with dimensions in the nano-meter length scale --- one a material that functions as a donor for electrons and the other a material that functions as an acceptor for electrons. The nano-scale inter-penetrating network concept for “Plastic” solar cells was created at UC Santa Barbara. A simple measure of the impact of this concept can be obtained from a Google search which gives 244,000 “hits” for the Bulk Heterojunction solar cell. Research funded through this program focused on four major areas: 1. Interfacial effects in organic photovoltaics, 2. Charge transfer and photogeneration of mobile charge carriers in organic photovoltaics, 3. Transport and recombination of the photogenerated charge carriers in organic photovoltaics, 4. Synthesis of novel organic semiconducting polymers and semiconducting small molecules, including conjugated polyelectrolytes. Following the discovery of ultrafast charge transfer at UC Santa Barbara in 1992, the nano-organic (Bulk Heterojunction) concept was formulated. The need for a morphology comprising two interpenetrating bicontinuous networks was clear: one network to carry the photogenerated electrons (negative charge) to the cathode and one network to carry the photo-generated holes (positive charge) to the anode. This remarkable self-assembled network morphology has now been established using Transmission electron Microscopy (TEM) either in the Phase Contrast mode or via TEM-Tomography. The steps involved in delivering power from a solar cell to an external circuit

  13. Charge exchange and energy loss of slowed down heavy ions channeled in silicon crystals

    International Nuclear Information System (INIS)

    This work is devoted to the study of charge exchange processes and of the energy loss of highly charged heavy ions channeled in thin silicon crystals. The two first chapters present the techniques of heavy ion channeling in a crystal, the ion-electron processes and the principle of our simulations (charge exchange and trajectory of channeled ions). The next chapters describe the two experiments performed at the GSI facility in Darmstadt, the main results of which follow: the probability per target atom of the mechanical capture (MEC) of 20 MeV/u U91+ ions as a function of the impact parameter (with the help of our simulations), the observation of the strong polarization of the target electron gas by the study of the radiative capture and the slowing down of Pb81+ ions from 13 to 8,5 MeV/u in channeling conditions for which electron capture is strongly reduced. (author)

  14. Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective

    International Nuclear Information System (INIS)

    In the currently popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and high open circuit voltages, but the underlying recombination mechanism remains unclear. In this work, we investigate the bimolecular recombination (BR) and the trap-assisted monomolecular recombination (MR) in meso-structured perovskite solar cells under steady state working condition, and try to reveal their roles on determining the device performance. Some interfacial effects such as the injection barriers at the selective contacts are examined as well. Based on the macroscopic device modeling, the recombination resistance-voltage (Rrec−V) and the current density-voltage (J–V) curves are calculated to characterize the recombination mechanism and describe the device performance, respectively. Through comparison with the impedance spectroscopy extracted Rrec data, it is found that under the typical BR reduction factor and deep trap densities observed in experiments, the MR dominates the charge recombination in the low voltage regime, while the BR dominates in the high voltage regime. The short circuit current and the fill factor could be reduced by the significant MR but the open circuit voltage is generally determined by the BR. The different electron injection barriers at the contact can change the BR rate and induce different patterns for the Rrec–V characteristics. For the perovskites of increased band gaps, the Rrec's are significantly enhanced, corresponding to the high open circuit voltages. Finally, it is revealed that the reduced effective charge mobility due to the transport in electron and hole transporting material makes the Rrec decrease slowly with the increasing voltage, which leads to increased open circuit voltage

  15. Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective

    Science.gov (United States)

    Yang, Wenchao; Yao, Yao; Wu, Chang-Qin

    2015-04-01

    In the currently popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and high open circuit voltages, but the underlying recombination mechanism remains unclear. In this work, we investigate the bimolecular recombination (BR) and the trap-assisted monomolecular recombination (MR) in meso-structured perovskite solar cells under steady state working condition, and try to reveal their roles on determining the device performance. Some interfacial effects such as the injection barriers at the selective contacts are examined as well. Based on the macroscopic device modeling, the recombination resistance-voltage (Rrec-V) and the current density-voltage (J-V) curves are calculated to characterize the recombination mechanism and describe the device performance, respectively. Through comparison with the impedance spectroscopy extracted Rrec data, it is found that under the typical BR reduction factor and deep trap densities observed in experiments, the MR dominates the charge recombination in the low voltage regime, while the BR dominates in the high voltage regime. The short circuit current and the fill factor could be reduced by the significant MR but the open circuit voltage is generally determined by the BR. The different electron injection barriers at the contact can change the BR rate and induce different patterns for the Rrec-V characteristics. For the perovskites of increased band gaps, the Rrec's are significantly enhanced, corresponding to the high open circuit voltages. Finally, it is revealed that the reduced effective charge mobility due to the transport in electron and hole transporting material makes the Rrec decrease slowly with the increasing voltage, which leads to increased open circuit voltage.

  16. Achievement of the charge exchange work diminishing of an internal combustion engine in part load

    Directory of Open Access Journals (Sweden)

    Stefan POSTRZEDNIK

    2012-01-01

    Full Text Available Internal combustion engines, used for driving of different cars, occurs not only at full load, but mostly at the part load. The relative load exchange work at the full (nominal engine load is significantly low. At the part load of the IC engine its energy efficiency ηe is significantly lower than in the optimal (nominal field range of the performance parameters. One of the numerous reasons of this effect is regular growing of the relative load exchange work of the IC engine. It is directly connected with the quantitative regulation method commonly used in the IC engines. From the thermodynamic point of view - the main reason of this effect is the throttling process (causing exergy losses occurring in the inlet and outlet channels. The known proposals for solving of this problem are based on applying of the fully electronic control of the motion of inlet, outlet valves and new reference cycles.The idea presented in the paper leads to diminishing the charge exchange work of the IC engines. The problem can be solved using presented in the paper a new concept of the reference cycle (called as eco-cycle of IC engine. The work of the engine basing on the eco-cycle occurs in two 3-stroke stages; the fresh air is delivered only once for both stages, but in range of each stage a new portion of fuel is burned. Normally the charge exchange occurs once during each engine cycle realized. Elaborated proposition bases on the elimination of chosen charge exchange processes and through this the dropping of the charge exchange work can be achieved.

  17. Measuring one-dimensional and two-dimensional impurity density profiles on TEXTOR using combined charge exchange-beam emission spectroscopy and ultrasoft x-ray tomography

    Science.gov (United States)

    De Bock, M.; Jakubowska, K.; Hellermann, M. von; Jaspers, R.; Donné, A. J. H.; Shmaenok, L.

    2004-10-01

    Two techniques are presented that allow us to measure impurity density profiles in the TEXTOR tokamak plasma. The one-dimensional profiles are gathered by charge exchange recombination spectroscopy (CXRS) in combination with beam emission spectroscopy (BES). Combining CXRS and BES eliminate the need for absolute calibration. For two-dimensional profiles an ultrasoft x-ray tomography system has been developed. The system is spectrally resolved and produces local emissivity profiles of several ionization stages of impurities. Both systems are presently being commissioned. They are complementary and give an insight into the impurity distribution and transport in plasmas.

  18. Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kuechler, Erich R. [BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8087 (United States); Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Giese, Timothy J.; York, Darrin M. [BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8087 (United States)

    2015-12-21

    Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom’s local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the S{sub N}2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM

  19. Purification of a recombinant baculovirus of Autographa californica M nucleopolyhedrovirus by ion exchange membrane chromatography.

    Science.gov (United States)

    Grein, Tanja A; Michalsky, Ronald; Vega López, Maria; Czermak, Peter

    2012-08-01

    Significant progress in the application of viral vectors for gene delivery into mammalian cells and the use of viruses as biopesticides requires downstream processing that can satisfy application-specific demands on performance. In the present work the stability and ion exchange membrane chromatography of a recombinant of Autographa californica M nucleopolyhedrovirus is studied. To adjust the degree of purification the effect of ionic conductivity or pH on the viral infectivity was assessed (0.77-78.00mS/cm, pH 3-8). Infectivity decreased rapidly by several orders of magnitude at below 5mS/cm (i.e., 0.49MPa osmotic pressure change) or at below pH 5.5 (rationalized with particle aggregation). The virus was concentrated and purified via adsorption (0.2-1.1×10(16)pfu/m(3) chromatographic bed volume, 0.6-1.1×10(12)pfu/m(2) membrane area facing the incident fluid flow) and elution at pH 6.1 and 6.35mS/cm from three strong anion exchange membranes. Virus recovery and concentration in accord with the volume reduction were obtained using a polyether sulfone-based membrane with quaternary ammonium ligands. The level of host cell protein (down to below the detection limit) and suspended DNA (below 93pg DNA per 10(6)pfu) are reported for each membrane employed, for the purpose of comparability, under equal adsorption or elution conditions respectively.

  20. Study of proton polarization in charge exchange process on optically oriented sodium atoms

    International Nuclear Information System (INIS)

    Using high-power adjustable dye lasers for electron spin orientation in a charge-exchange target enables to significantly increase the proton polarization efficiency. A device is described that permits to avoid growth of the polarized proton beam emittance in a charge-exchange process in a strong magnetic field. The devise main feature is the use of an intensive source of neutral hydrogen atoms and the presence of a helium additional charge-exchange target which actualy is a proton ''source''. The helium charge-exchange cell is placed in the same magnetic field of a solenoid where a cell with oriented sodium is placed, a polarized electron being captured by a proton in the latter cell. In this case the beam at the solenoid inlet and outlet is in a neutral state; emittance growth related to the effect of end magnetic fields is not observed. The device after all prouduces polarized protons, their polarization degree is measured and the effect of various factors on polarization degree is studied. The description of the laser source and laser system is given. Measurement results have shown the beam intensity of neutral 7 keV atoms which passed through a polarizer to be 2 mA. The proton current doesn't depend. On the beeld fin the region of chrge exchange for the 8 kGs magnetic field. The degree of sodium polarization was 80% and polarized proton current approximately 70 μA at a temperature of the polarized sodium cell corresponding to the density of sodium vapar approximately 3x1013 at/cm2

  1. Charge transport dependent high open circuit voltage tandem organic photovoltaic cells with low temperature deposited HATCN-based charge recombination layers.

    Science.gov (United States)

    Wei, Huai-Xin; Zu, Feng-Shuo; Li, Yan-Qing; Chen, Wen-Cheng; Yuan, Yi; Tang, Jian-Xin; Fung, Man-Keung; Lee, Chun-Sing; Noh, Yong-Young

    2016-02-01

    Mechanisms of charge transport between the interconnector and its neighboring layers in tandem organic photovoltaic cells have been systematically investigated by studying electronic properties of the involving interfaces with photoelectron spectroscopies and performance of the corresponding devices. The results show that charge recombination occurs at HATCN and its neighboring hole transport layers which can be deposited at low temperature. The hole transport layer plays an equal role to the interconnector itself. These insights provide guidance for the identification of new materials and the device architecture for high performance devices.

  2. Initial recombination in the track of heavy charged particles: Numerical solution for air filled ionization chambers

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki;

    2012-01-01

    Introduction Modern particle therapy facilities enable sub-millimeter precision in dose deposition. Here, also ionization chambers (ICs) are used, which requires knowledge of the recombination effects. Up to now, recombination is corrected using phenomenological approaches for practical reasons. ...

  3. Controlling charge separation and recombination by chemical design in donor-acceptor dyads.

    Science.gov (United States)

    Liu, Li; Eisenbrandt, Pierre; Roland, Thomas; Polkehn, Matthias; Schwartz, Pierre-Olivier; Bruchlos, Kirsten; Omiecienski, Beatrice; Ludwigs, Sabine; Leclerc, Nicolas; Zaborova, Elena; Léonard, Jérémie; Méry, Stéphane; Burghardt, Irene; Haacke, Stefan

    2016-07-21

    Conjugated donor-acceptor block co-oligomers that self-organize into D-A mesomorphic arrays have raised increasing interest due to their potential applications in organic solar cells. We report here a combined experimental and computational study of charge transfer (CT) state formation and recombination in isolated donor-spacer-acceptor oligomers based on bisthiophene-fluorene (D) and perylene diimide (A), which have recently shown to self-organize to give a mesomorphic lamellar structure at room temperature. Using femtosecond transient absorption spectroscopy and Time-Dependent Density Functional Theory in combination with the Marcus-Jortner formalism, the observed increase of the CT lifetimes is rationalized in terms of a reduced electronic coupling between D and A brought about by the chemical design of the donor moiety. A marked dependence of the CT lifetime on solvent polarity is observed, underscoring the importance of electrostatic effects and those of the environment at large. The present investigation therefore calls for a more comprehensive design approach including the effects of molecular packing. PMID:27341086

  4. ({sup 18}O,{sup 18}Ne) double charge-exchange with MAGNEX

    Energy Technology Data Exchange (ETDEWEB)

    Bondí, M.; Cappuzzello, F.; Nicolosi, D.; Tropea, S. [Dipartimento di Fisica e Astrofisica, Universitá degli studi di Catania, Catania, 95100, Italy and Istituto di Fisica Nucleare - Laboratori Nazionali del Sud, Catania, 95100 (Italy); Agodi, C.; Carbone, D.; Cavallaro, M.; Cunsolo, A. [Istituto di Fisica Nucleare - Laboratori Nazionali del Sud, Catania, 95100 (Italy); De Napoli, M.; Foti, A. [Istituto di Fisica Nucleare - Sezione di Catania, Catania, 95100 (Italy)

    2014-05-09

    An experimental study concerning Double Gamow-Teller (DGT) modes in ({sup 18}O,{sup 18}Ne) Double Charge-Exchange reactions has been very recently performed at INFN-LNS laboratory in Catania. The experiment was performed using a {sup 40}Ca solid target and a {sup 18}O Cyclotron beam at 270 MeV incident energy. Charged ejectiles produced in the reaction were momentum analyzed and identified by MAGNEX spectrometer at very forward angles. Preliminary results are presented in the present paper.

  5. Low-energy pion double charge exchange and nucleon-nucleon correlations in nuclei

    International Nuclear Information System (INIS)

    Recent measurements of pion double-charge exchange (DCX) at energies 20 to 70 MeV are providing a new means for studying nucleon-nucleon correlations in nuclei. At these energies the nucleus is relatively transparent, allowing simpler theoretical models to be used in interpreting the data and leading to a clearer picture. Also the contribution to DCX of sequential charge-exchange scattering through the intermediate analog state is suppressed near 50 MeV and transitions through non-analog intermediate states become very important. Recent theoretical studies by several groups have shown that while transitions through the analog route involve relatively long nucleon-nucleon distances, those through non-analog intermediate states obtain nearly half their strength from nucleon pairs with less than 1 fermi separation. Thus DCX near 50 MeV is an excellent way to study short-range nucleon-nucleon correlations. 31 refs., 29 figs., 4 tabs

  6. ROSAT Observations of Solar Wind Charge Exchange with the Lunar Exosphere

    Science.gov (United States)

    Collier, Michael R.; Snowden, S. L.; Benna, M.; Carter, J. A.; Cravens, T. E.; Hills, H. Kent; Hodges, R. R.; Kuntz, K. D.; Porter, F. Scott; Read, A.; Robertson, I. P.; Sembay, S. F.; Sibeck, D. G.; Stubbs, Timothy J.; Travnicek, P.

    2012-01-01

    We analyze the ROSAT PSPC soft X-ray image of the Moon taken on 29 June 1990 by examining the radial profile of the count rate in three wedges, two wedges (one north and one south) 13-32 degrees off (19 degrees wide) the terminator towards the dark side and one wedge 38 degrees wide centered on the anti-solar direction. The radial profiles of both the north and the south wedges show substantial limb brightening that is absent in the 38 degree wide antisolar wedge. An analysis of the count rate increase associated with the limb brightening shows that its magnitude is consistent with that expected due to solar wind charge exchange (SWCX) with the tenuous lunar atmosphere. Along with Mars, Venus, and Earth, the Moon represents another solar system body at which solar wind charge exchange has been observed. This technique can be used to explore the solar wind-lunar interaction.

  7. Electron capture rates in stars studied with heavy ion charge exchange reactions

    CERN Document Server

    Bertulani, C A

    2015-01-01

    Indirect methods using nucleus-nucleus reactions at high energies (here, high energies mean $\\sim$ 50 MeV/nucleon and higher) are now routinely used to extract information of interest for nuclear astrophysics. This is of extreme relevance as many of the nuclei involved in stellar evolution are short-lived. Therefore, indirect methods became the focus of recent studies carried out in major nuclear physics facilities. Among such methods, heavy ion charge exchange is thought to be a useful tool to infer Gamow-Teller matrix elements needed to describe electron capture rates in stars and also double beta-decay experiments. In this short review, I provide a theoretical guidance based on a simple reaction model for charge exchange reactions.

  8. Charge-Exchange Neutral Particle Analyzer Diagnostic of TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Fontdecaba, J. M.; Balbin, R.; Petrov, S.; TJ-II team

    2003-07-01

    A description of the Charge Exchange Neutral Particle Analyzers in operation in the heliac flexible TJ-II is reported. A description of the detectors, as well as the operation characteristics, hardware and software used in the control and analysis of the data obtained with the diagnostic is detailed. Two NPAs are in operation in TJ-II. One of them is a 5-channel analyzer and another one is an Acord-12. The 5-channel analyzer provides measurements of charge exchange neutral fluxes at five energy channels, whereas the Acord-12 can measure simultaneously two different hydrogen isotopes (H and D) at six energy channels. Their lines of sight can be varied poloidally in order to observe the different sections of the plasma. (Author) 10 refs.

  9. Charge exchange processes in He+/Cu scattering at low energy

    Science.gov (United States)

    Khalal-Kouache, K.; Bruckner, B.; Roth, D.; Goebl, D.; Bauer, P.

    2016-09-01

    In this paper we present results on charge exchange of He+ ions at a polycrystalline Cu surface. Monte Carlo simulations were used to calculate the trajectories of projectiles scattered by an angle Θ = 136 ° . By including Auger neutralization and charge exchange in close collisions, energy spectra of the scattered ions as well as ion fraction values were calculated for primary energies in the range 0.5-5 keV and compared to experimental results. In the simulations, the Auger neutralization rate Γ and the probabilities of resonant neutralization (PRN) and reionization (PRI) are treated as free parameters. Using well accepted values from literature for these quantities very good agreement between simulations and experimental data was achieved.

  10. Nuclear charge-exchange excitations in localized covariant density functional theory

    CERN Document Server

    Liang, H Z; Nakatsukasa, T; Niu, Z M; Ring, P; Roca-Maza, X; Van Giai, N; Zhao, P W

    2014-01-01

    The recent progress in the studies of nuclear charge-exchange excitations with localized covariant density functional theory is briefly presented, by taking the fine structure of spin-dipole excitations in 16O as an example. It is shown that the constraints introduced by the Fock terms of the relativistic Hartree-Fock scheme into the particle-hole residual interactions are straightforward and robust.

  11. Using Kappa Functions to Characterize Outer Heliosphere Proton Distributions in the Presence of Charge-exchange

    Science.gov (United States)

    Zirnstein, E. J.; McComas, D. J.

    2015-12-01

    Kappa functions have long been used in the analysis and modeling of suprathermal particles in various space plasmas. In situ observations of the supersonic solar wind show its distribution contains a cold ion core and power-law tail, which is well-represented by a kappa function. In situ plasma observations by Voyager, as well as observations of energetic neutral atom (ENA) spectra by the Interstellar Boundary Explorer (IBEX), showed that the compressed and heated inner heliosheath (IHS) plasma beyond the termination shock can also be represented by a kappa function. IBEX exposes the IHS plasma properties through the detection of ENAs generated by charge-exchange in the IHS. However, charge-exchange modifies the plasma as it flows through the IHS, and makes it difficult to ascertain the parent proton distribution. In this paper we investigate the evolution of proton distributions, initially represented by a kappa function, that experience losses due to charge-exchange in the IHS. In the absence of other processes, it is no longer representable by a single kappa function due to the energy-dependent, charge-exchange process. While one can still fit a kappa function to the evolving proton distribution over limited energy ranges, this yields fitting parameters (pseudo-density, pseudo-temperature, pseudo-kappa index) that depend on the energy range of the fit. We discuss the effects of fitting a kappa function to the IHS proton distribution over limited energy ranges, its dependence on the initial proton distribution properties at the termination shock, and implications for understanding the observations.

  12. Measurement of pion double charge exchange on carbon-13, carbon-14, magnesium-26, and iron-56

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, P.A.

    1985-02-01

    Cross sections for the /sup 13,14/C,/sup 26/Mg,/sup 56/Fe(..pi../sup +/,..pi../sup -/)/sup 13,14/O,/sup 26/Si,/sup 56/Ni reactions were measured with the Energetic Pion Channel and Spectrometer at the Clinton P. Anderson Meson Physics Facility for 120 less than or equal to T/sub ..pi../ less than or equal to 292 MeV and 0 less than or equal to theta less than or equal to 50. The double isobaric analog states (DIAS) are of primary interest. In addition, cross sections for transitions to /sup 14/O(0/sup +/, 5.92 MeV), /sup 14/O(2/sup +/, 7.77 MeV), /sup 56/Ni(gs), /sup 13/O(gs), and /sup 13/O(4.21 MeV) are presented. The /sup 13/O(4.21 MeV) state is postulated to have J/sup ..pi../ = 1/2/sup -/. The data are compared to previously measured double-charge-exchange cross sections on other nuclei, and the systematics of double charge exchange on T greater than or equal to 1 target nuclei leading to the DIAS are studied. Near the ..delta../sub 33/ resonance, cross sections for the DIAS transitions are in disagreement with calculations in which the reaction is treated as sequential charge exchange through the free pion-nucleon amplitude, while for T/sub ..pi../ > 200 MeV the anomalous features of the 164 MeV data are not apparent. This is evidence for significant higher order contributions to the double-charge-exchange amplitude near the reasonable energy. Two theoretical approaches that include two nucleon processes are applied to the DIAS data. 64 references.

  13. Charge-exchange excitations with finite range interactions including tensor terms

    CERN Document Server

    De Donno, V; Anguiano, M; Lallena, A M

    2014-01-01

    We study charge-exchange excitations in doubly magic-nuclei by using a self-consistent Hartree-Fock plus Random Phase Approximation model. We use four Gogny-like finite-range interactions, two of them containing tensor forces. We investigate the effects of the various parts of the tensor forces in the two computational steps of our model, and we find that their presence is not negligible and improves the agreement with the experimental data.

  14. Nuclear charge-exchange excitations in localized covariant density functional theory

    International Nuclear Information System (INIS)

    The recent progress in the studies of nuclear charge-exchange excitations with localized covariant density functional theory is briefly presented, by taking the fine structure of spin-dipole excitations in 16O as an example. It is shown that the constraints introduced by the Fock terms of the relativistic Hartree-Fock scheme into the particle-hole residual interactions are straightforward and robust. (authors)

  15. Charge-exchange scattering in K- p interactions below 300 MeV/c

    International Nuclear Information System (INIS)

    Cross sections for K-p charge exchange, based on new data equal in statistics to the sum of those of all previous determinations below 300 MeV/c, are presented. The results confirm an earlier observation by this collaboration that the previous measurements of these cross sections at low momentum were significantly underestimated. Evidence for the presence of P wave scattering is presented. (author)

  16. Coherent control of charge exchange in strong-field dissociation of LiF

    Science.gov (United States)

    Armstrong, Greg; Esry, Brett

    2016-05-01

    The alkali-metal-halides family of molecules are useful prototypes in the study of laser-assisted charge exchange. Typically these molecules possess a field-free crossing between the ionic and covalent diabatic Born-Oppenheimer potential curves, leading to Li+ + F- and Li + F in LiF. These channels are energetically well-separated from higher-lying potentials, and may be easily distinguished experimentally. Moreover, charge exchange involves non-adiabatic transitions between the ionic and covalent channels, thereby allowing the investigation of physics beyond the Born-Oppenheimer approximation. The focus of this work is to control the preference between ionic and covalent dissociative products. We solve the time-dependent Schrödinger equation for the nuclear motion in full dimensionality, and investigate a pump-probe scheme for charge-exchange control. The degree of control is investigated by calculating the kinetic-energy release spectrum as a function of pump-probe delay for the ionic and covalent fragments. This work is supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  17. Modeling the Hydrogen-Proton Charge-Exchange Process in Global Heliospheric Simulations

    Science.gov (United States)

    DeStefano, A.; Heerikhuisen, J.

    2015-12-01

    The environment surrounding our Solar System has a vast and dynamic structure. As the Sun rounds the Milky Way galaxy, interstellar dust and gas interact with the Sun's outflow of solar wind. A bubble of hot plasma forms around the Sun due to this interaction, called the heliosphere. In order to understand the structure of the heliosphere, observations and simulations must work in tandem. Within the past decade or so, 3D models of the heliosphere have been developed exhibiting non- symmmetric as well as predicting structures such as the hydrogen wall and the IBEX ribbon. In this poster we explore new ways to compute charge-exchange source terms. The charge-exchange process is the coupling mechanism between the MHD and kinetic theories. The understanding of this process is crucial in order to make valuable predictions. Energy dependant cross section terms will aid in settling non-linear affects coupling the intestellar and solar particles. Through these new ways of computing source terms, resolving fine structures in the plasma in the heliopause may be possible. In addition, other non-trivial situations, such as charge-exchange mediated shocks, may be addressed.

  18. Measurement of charge exchange cross sections for highly charged xenon and thorium ions with molecular hydrogen in a Penning Ion Trap

    Energy Technology Data Exchange (ETDEWEB)

    Weinberg, G.M.

    1995-12-01

    Highly charged xenon (35+ to 46+) and thorium (72+ to 79+) ions were produced in an Electron Beam Ion Trap (EBIT). The ions were extracted from EBIT in a short pulse. Ions of one charge state were selected using an electromagnet. The ions were recaptured at low energy in a cryogenic Penning trap (RETRAP). As the ions captured electrons from molecular hydrogen, populations of the various charge states were obtained by measuring the image currents induced by the ions on the electrodes of the trap. Data on the number of ions in each charge state vs. time were compared to theoretical rate equations in order to determine the average charge exchange rates. These rates were compared to charge exchange rates of an ion with a known charge exchange cross section (Ar{sup 11+}) measured in a similar manner in order to determine the average charge exchange cross sections for the highly charged ions. The energy of interaction between the highly charged ions and hydrogen was estimated to be 4 eV in the center of mass frame. The mean charge exchange cross sections were 9 {times} 10{sup {minus}14} cm{sup 2} for Xe{sup 43+} to Xe{sup 46+} and 2 {times} 10{sup {minus}13} cm{sup 2} for Th{sup 73+} to Th{sup 79+}. Double capture was approximately 20--25% of the total for both xenon and thorium. A fit indicated that the cross sections were approximately proportional to q. This is consistent with a linear dependence of cross section on q within the measurement uncertainties.

  19. Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge

    Energy Technology Data Exchange (ETDEWEB)

    Agostinelli, G.; Delabie, A.; Dekkers, H.F.W.; De Wolf, S.; Beaucarne, G. [IMEC vzw, Kapeldreef 75, Leuven (Belgium); Vitanov, P.; Alexieva, Z. [CL SENES, Sofia (Bulgaria)

    2006-11-23

    Surface recombination velocities as low as 10cm/s have been obtained by treated atomic layer deposition (ALD) of Al{sub 2}O{sub 3} layers on p-type CZ silicon wafers. Low surface recombination is achieved by means of field induced surface passivation due to a high density of negative charges stored at the interface. In comparison to a diffused back surface field, an external field source allows for higher band bending, that is, a better performance. While this process yields state of the art results, it is not suited for large-scale production. Preliminary results on an industrially viable, alternative process based on a pseudo-binary system containing Al{sub 2}O{sub 3} are presented, too. With this process, surface recombination velocities of 500-1000cm/s have been attained on mc-Si wafers. (author)

  20. The role of electron capture and energy exchange of positively charged particles passing through matter

    CERN Document Server

    Ulmer, W

    2011-01-01

    The conventional treatment of the Bethe-Bloch equation for protons accounts for electron capture at the end of the projectile track by the small Barkas correction. This is only a possible way for protons, whereas for light and heavier charged nuclei the exchange of energy and charge along the track has to be accounted for by regarding the projectile charge q as a function of the residual energy. This leads to a significant modification of the Bethe-Bloch equation, otherwise the range in a medium is incorrectly determined. The LET in the Bragg peak domain and distal end is significantly influenced by the electron capture. A rather significant result is that in the domain of the Bragg peak the superiority of carbon ions is reduced compared to protons.

  1. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  2. Calculation of photon angular distribution and polarization for radiative recombination for high-charged hydrogen-like ions

    Institute of Scientific and Technical Information of China (English)

    Shen Tian-Ming; Chen Chong-Yang; Wang Yan-Sen

    2007-01-01

    In this paper a systematic study is carried out on the angular distribution and polarization of photons emitted following radiative recombination of H-like ions by a non-relativistic dipole approximation. In order to incorporate the screening effect due to inner-shell electrons, a distorted wave approach is used. The dependences of the calculated angular distribution and polarization on the reduced energy and nuclear charge are fitted by the corresponding empirical formulas respectively.

  3. 36-MeV-triton-induced charge exchange: Mass measurements and energy levels of neutron-rich nuclei and the charge exchange reaction mechanism

    International Nuclear Information System (INIS)

    Energy spectra and differential cross sections have been obtained for the charge exchange reaction (3H,3He) on targets of /sup 30,28/Si and /sup 26/Mg at an incident energy of 36 MeV. Previously unobserved energy levels of /sup 30/Al and /sup 26/Na are reported and compared to shell model predictions. Microscopic form factors based on the M3Y effective nucleon-nucleon interaction are used in distorted-wave Born approximation codes to fit the data. The sensitivity of the model to input parameters is discussed and some spin assignments made. Coupled channels calculations are performed to fit the two-step contributions to the data via sequential one-nucleon transfers

  4. Observed Limits on Charge Exchange Contributions to the Diffuse X-Ray Background

    Science.gov (United States)

    Crowder, S. G.; Barger, K. A.; Brandl, D. E.; Eckart, M. E.; Galeazzi, M.; Kelley, R. L.; Kilbourne, C. A.; McCammon, D.; Pfendner, C. G.; Porter, F. S.; Rocks, L.; Szymkowiak, A. E.; Teplin, I. M.

    2012-01-01

    We present a high-resolution spectrum of the diffuse X-ray background from 0.1 to 1 keV for an approximately 1 sr region of the sky centered at l = 90 degrees b = +60 degrees using a 36 pixel array of microcalorimeters flown on a sounding rocket. With an energy resolution of 11 eV FWHM below 1 keV, the spectrum s observed line ratios help separate charge exchange contributions originating within the heliosphere from thermal emission of hot gas in the interstellar medium. The X-ray sensitivity below 1 keV was reduced by about a factor of four from contamination that occurred early in the flight, limiting the significance of the results. The observed centroid of helium-like O VII is 568 (sup +2 (sub -3) eV at 90% confidence. Since the centroid expected for thermal emission is 568.4 eV and for charge exchange is 564.2 eV, thermal emission appears to dominate for this line complex. The dominance of thermal emission is consistent with much of the high-latitude O VII emission originating in 2-3 x 10(exp 6) K gas in the Galactic halo. On the other hand, the observed ratio of C VI Lygamma to Lyalpha is 0.3 plus or minus 0.2. The expected ratios are 0.04 for thermal emission and 0.24 for charge exchange, indicating that charge exchange must contribute strongly to this line and therefore potentially to the rest of the ROSAT R12 band usually associated with 10(sup 6) K emission from the Local Hot Bubble. The limited statistics of this experiment and systematic uncertainties due to the contamination require only greater than 32% thermal emission for O VII and greater than 20% from charge exchange for C VI at the 90% confidence level. An experimental gold coating on the silicon substrate of the array greatly reduced extraneous signals induced on nearby pixels from cosmic rays passing through the substrate, reducing the triggered event rate by a factor of 15 from a previous flight of the instrument.

  5. Genetic control of mammalian meiotic recombination. I. Variation in exchange frequencies among males from inbred mouse strains.

    Science.gov (United States)

    Koehler, Kara E; Cherry, Jonathan P; Lynn, Audrey; Hunt, Patricia A; Hassold, Terry J

    2002-09-01

    Genetic background effects on the frequency of meiotic recombination have long been suspected in mice but never demonstrated in a systematic manner, especially in inbred strains. We used a recently described immunostaining technique to assess meiotic exchange patterns in male mice. We found that among four different inbred strains--CAST/Ei, A/J, C57BL/6, and SPRET/Ei--the mean number of meiotic exchanges per cell and, thus, the recombination rates in these genetic backgrounds were significantly different. These frequencies ranged from a low of 21.5 exchanges in CAST/Ei to a high of 24.9 in SPRET/Ei. We also found that, as expected, these crossover events were nonrandomly distributed and displayed positive interference. However, we found no evidence for significant differences in the patterns of crossover positioning between strains with different exchange frequencies. From our observations of >10,000 autosomal synaptonemal complexes, we conclude that achiasmate bivalents arise in the male mouse at a frequency of 0.1%. Thus, special mechanisms that segregate achiasmate chromosomes are unlikely to be an important component of mammalian male meiosis.

  6. Charge-carrier relaxation dynamics in highly ordered poly( p -phenylene vinylene): Effects of carrier bimolecular recombination and trapping

    Science.gov (United States)

    Soci, Cesare; Moses, Daniel; Xu, Qing-Hua; Heeger, Alan J.

    2005-12-01

    We have studied the charge-carrier relaxation dynamics in highly ordered poly( p -phenylene vinylene) over a broad time range using fast (t>100ps) transient photoconductivity measurements. The carrier density was also monitored (t>100fs) by means of photoinduced absorption probed at the infrared active vibrational modes. We find that promptly upon charge-carrier photogeneration, the initial polaron dynamics is governed by bimolecular recombination, while later in the subnanosecond time regime carrier trapping gives rise to an exponential decay of the photocurrent. The more sensitive transient photocurrent measurements indicate that in the low excitation regime, when the density of photocarriers is comparable to that of the trapping states (˜1016cm-3) , carrier hopping between traps along with transport via extended states determines the carrier relaxation, a mechanism that is manifested by a long-lived photocurrent “tail.” This photocurrent tail is reduced by lowering the temperature and/or by increasing the excitation density. Based on these data, we develop a comprehensive kinetic model that takes into account the bipolar charge transport, the free-carrier bimolecular recombination, the carrier trapping, and the carrier recombination involving free and trapped carriers.

  7. Polarization studies on the two-step radiative recombination of highly-charged, heavy ions

    OpenAIRE

    Maiorova, A. V.; Surzhykov, A.; Tashenov, S; Shabaev, V. M.; Fritzsche, S.; Plunien, G.; Stoehlker, Th.

    2009-01-01

    The radiative recombination of a free electron into an excited state of a bare, high-Z ion is studied, together with its subsequent decay, within the framework of the density matrix theory and Dirac's relativistic equation. Special attention is paid to the polarization and angular correlations between the recombination and the decay photons. In order to perform a systematic analysis of these correlations the general expression for the double-differential recombination cross section is obtaine...

  8. A comparative theoretical study of exciton-dissociation and charge-recombination processes in oligothiophene/fullerene and oligothiophene/perylenediimide complexes for organic solar cells

    KAUST Repository

    Yi, Yuanping

    2011-01-01

    The exciton-dissociation and charge-recombination processes in donor-acceptor complexes found in α-sexithienyl/C60 and α-sexithienyl/perylenetetracarboxydiimide (PDI) solar cells are investigated by means of quantum-chemical methods. The electronic couplings and exciton-dissociation and charge-recombination rates have been evaluated for various configurations of the complexes. The results suggest that the decay of the lowest charge-transfer state to the ground state in the PDI-based devices: (i) is faster than that in the fullerene-based devices and (ii) in most cases, can compete with the dissociation of the charge-transfer state into mobile charge carriers. This faster charge-recombination process is consistent with the lower performance observed experimentally for the devices using PDI derivatives as the acceptor. © 2011 The Royal Society of Chemistry.

  9. The charge-exchange induced coupling between plasma-gas counterflows in the heliosheath

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    Full Text Available Many hydrodynamic models have been presented which give similar views of the interaction of the solar wind plasma bubble with the counterstreaming partially ionized interstellar medium. In the more recent of these models it is taken into account that the solar and interstellar hydrodynamic flows of neutral atoms and protons are coupled by mass-, momentum-, and energy-exchange terms due to charge exchange processes. We shall reinvestigate the theoretical basis of this coupling here by use of a simplified description of the heliospheric interface and describe the main physics of the H-atom penetration through the more or less standing well-known plasma wall ahead of the heliopause. Thereby we can show that the type of charge exchange coupling terms used in up-to-now hydrodynamic treatments unavoidably leads to an O-type critical point at the sonic point of the H-atom flow, thus not allowing for a continuation of the integration of the hydrodynamic set of differential equations. The remedy for this problem is given by a more accurate formulation of the momentum exchange term for quasi-and sub-sonic H-atom flows. With a refined momentum exchange term derived from basic kinetic Boltzmann principles, we instead arrive at a characteristic equation with an X-type critical point, allowing for a continuous solution from supersonic to subsonic flow conditions. This necessitates that the often treated problem of the propagation of inter-stellar H-atoms through the heliosheath has to be solved using these newly derived, differently effective plasma – gas friction forces. Substantially different results are to be expected from this context for the filtration efficiency of the heliospheric interface.

    Key words. Interplanetary physics (heliopause and solar wind termination; interstellar gas – Ionosphere (plasma temperature and density

  10. Fragmentation of CO2 molecules in slow charge exchange collisions with Ar8+

    International Nuclear Information System (INIS)

    Charge exchange collisions between multiply charged ions and CO2 have been studied at low collision velocities (E=400 eV/amu). The stability of the ion, produced in different charge states, is analyzed by means of a time-of-flight spectrometer. Recoil ions and fragments are measured in coincidence with projectile ions, which are selected with respect to their charge state and the scattering angle. For large impact parameters the production of singly and doubly charged CO2 ions turns out to be the major process. The opening of one out of two molecular bindings is found to be more likely than the total fragmentation of the molecule. The formation of O+ and CO+ fragments with very small kinetic energies is explained by single electron capture forming CO2+ in the excited (C 2Σg+) state. Collisions with smaller impact parameters and multi-electron capture processes always lead to a total fragmentation of the molecule characterized by a symmetric Coulomb explosion

  11. Performance of the CERN PSB at 160 MeV with $H^{-}$ charge exchange injection

    CERN Document Server

    AUTHOR|(CDS)2084247; Santoni, Claudio

    As part of the LHC Injectors Upgrade Project, the CERN PS Booster (PSB) will be upgraded with a H- charge exchange injection system and its injection energy will be raised from 50 MeV to 160 MeV to obtain the beam brightness required for the LHC High-Luminosity Upgrade. Space charge effects like beam losses and transverse emittance blow-up at injection are expected to be the main limitations towards the achievement of the required high brightness. Studies of beam dynamics in presence of space charge in order to evaluate the performances of the PSB after the Upgrade have been performed. The first part of the work consists of measurements in the present machine, to study the effects of space charge and its interplay with resonances and to have a good set of data for code benchmarking. The code chosen for the beam tracking in presence of space charge is PTC-Orbit (and PyOrbit). Necessary numerical convergence studies are presented together with a benchmark with the PSB measurements. Once assessed the code and it...

  12. Overview on R and D and design activities for the ITER core charge exchange spectroscopy diagnostic system

    Energy Technology Data Exchange (ETDEWEB)

    Biel, W., E-mail: w.biel@fz-juelich.de [Institut fuer Energieforschung - Plasmaphysik, Forschungszentrum Juelich Gmbh, Association EURATOM-FZJ, member of Trilateral Euregio Cluster, 52425 Juelich (Germany); Baross, T. [KFKI RMKI, EURATOM Association, PO Box 49, H-1521 Budapest (Hungary); Bourauel, P. [Institut fuer Energieforschung - Plasmaphysik, Forschungszentrum Juelich Gmbh, Association EURATOM-FZJ, member of Trilateral Euregio Cluster, 52425 Juelich (Germany); Dunai, D. [KFKI RMKI, EURATOM Association, PO Box 49, H-1521 Budapest (Hungary); Durkut, M. [TNO Science and Industry, Partner in ITER-NL, P.O. Box 155, 2600 AD Delft (Netherlands); Erdei, G. [BME, EURATOM Association, PO Box 91, H-1521 Budapest (Hungary); Hawkes, N. [Association EURATOM/CCFE, OX14 3DB Abingdon (United Kingdom); Hellermann, M. von [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster and ITER-NL, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Hogenbirk, A. [Nuclear Research and Consultancy Group V.o.F., Petten (Netherlands); Jaspers, R. [Department of Applied Physics, Eindhoven University of Technology (Netherlands); Kiss, G. [Institut fuer Energieforschung - Plasmaphysik, Forschungszentrum Juelich Gmbh, Association EURATOM-FZJ, member of Trilateral Euregio Cluster, 52425 Juelich (Germany); Klinkhamer, F. [TNO Science and Industry, Partner in ITER-NL, P.O. Box 155, 2600 AD Delft (Netherlands); Koning, J.F. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster and ITER-NL, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Kotov, V.; Krasikov, Y.; Krimmer, A. [Institut fuer Energieforschung - Plasmaphysik, Forschungszentrum Juelich Gmbh, Association EURATOM-FZJ, member of Trilateral Euregio Cluster, 52425 Juelich (Germany)

    2011-10-15

    The ITER core charge exchange recombination spectroscopy (core CXRS) diagnostic system is designed to provide experimental access to various measurement quantities in the ITER core plasma such as ion densities, temperatures and velocities. The implementation of the approved CXRS diagnostic principle on ITER faces significant challenges: First, a comparatively low CXRS signal intensity is expected, together with a high noise level due to bremsstrahlung, while the requested measurement accuracy and stability for the core CXRS system go far beyond the level commonly achieved in present-day fusion experiments. Second, the lifetime of the first mirror surface is limited due to either erosion by fast particle bombardment or deposition of impurities. Finally, the hostile technical environment on ITER imposes challenging boundary conditions for the diagnostic integration and operation, including high neutron loads, electro-magnetic loads, seismic events and a limited access for maintenance. A brief overview on the R and D and design activities for the core CXRS system is presented here, while the details are described in parallel papers.

  13. Investigation of field-dependent charge carrier generation and recombination in polymer based solar cells by transient extraction currents

    Energy Technology Data Exchange (ETDEWEB)

    Kniepert, Juliane; Blakesley, James; Neher, Dieter [University of Potsdam (Germany)

    2011-07-01

    There is an ongoing discussion as to whether photoinduced charge transfer in P3HT:PCBM solar cells leads to fully separated electrons and holes, independent of an electric field, or Coulombically bound interfacial charge pairs. While recent studies by R.A. Marsh et al. with transient absorption spectroscopy gave clear evidence for the formation and field-induced dissociation of bound polaron pairs, measurements by I.A. Howard et al. were in favour of hot exciton dissociation. Here, we present the results of bias-dependent Time Delayed Collection Field (TDCF) measurements to access directly the density of free charge carriers in P3HT:PCBM blends coated from dichlorobenzene. Solvent annealing was applied to yield a phase-separated morphology and the corresponding solar cells exhibit high values for the external quantum efficiency and fill factor. Our setup allowed us to follow the generation and recombination of photogenerated charges with a so far unattained time resolution of 40 ns. Our experiments show that the number of collected carriers is independent of the applied bias during pulsed illumination implying that extractable carriers in P3HT:PCBM blends are not generated by the field-assisted separation of bound polaron pairs. In addition, our experiments support the view that bimolecular recombination of free carriers is strongly suppressed in phase-separated P3HT:PBCM blends.

  14. Purification of recombinant aprotinin produced in transgenic corn seed: separation from CTI utilizing ion-exchange chromatography

    Directory of Open Access Journals (Sweden)

    A. R. Azzoni

    2005-09-01

    Full Text Available Protein expression in transgenic plants is considered one of the most promising approaches for producing pharmaceutical proteins. As has happened with other recombinant protein production schemes, the downstream processing (dsp of these proteins produced in plants is key to the technical and economic success of large-scale applications. Since dsp of proteins produced transgenically in plants has not been extensively studied, it is necessary to broaden the investigation in this field in order to more precisely evaluate the commercial feasibility of this route of expression. In this work, we studied the substitution of an IMAC chromatographic step, described in previous work (Azzoni et al., 2002, with ion-exchange chromatography on SP Sepharose Fast Flow resin as the second step in the purification of recombinant aprotinin from transgenic maize seed. The main goal of this second purification step is to separate the recombinant aprotinin from the native corn trypsin inhibitor. Analysis of the adsorption isotherms determined at 25°C under different conditions allowed selection of 0.020 M Tris pH 8.5 as the adsorption buffer. The cation-exchange chromatographic process produced a high-purity aprotinin that was more than ten times more concentrated than that generated using an IMAC step.

  15. On the generation of charge-carrier recombination centers in the sapphire substrates of silicon-on-sapphire structures

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, P. A., E-mail: Aleksandrov-PA@nrcki.ru; Belova, N. E.; Demakov, K. D.; Shemardov, S. G. [Russian Research Centre “Kurchatov Institute” (Russian Federation)

    2015-08-15

    A method for the production of high-quality radiation-resistant silicon-on-sapphire structures through the fabrication of a layer of nanopores in sapphire by helium ion implantation, i.e., by creating charge-carrier recombination centers, is proposed. In this case, the quality of the silicon layer is simultaneously improved. The problem of the thermal stability of the pores is discussed with the aim of analyzing the possibility of producing a microcircuit on the resultant modified silicon-on-sapphire sample. The layer of pores possesses a large total surface area and, hence, decreases the lifetime of charge carriers generated during irradiation of the operating microcircuit. This effect reduces the charge at the silicon-sapphire interface and improves radiation resistance.

  16. Simulation of bipolar charge transport with trapping and recombination in polymeric insulators using Runge-Kutta discontinuous Galerkin method

    International Nuclear Information System (INIS)

    The widely used QUICKEST method with ULTIMATE flux limiter is not capable of solving the charge transport problems with a very steep wavefront accurately, due to the wide stencil adopted. Furthermore, the splitting process of separating the convection and the reaction terms in the method introduces additional errors. To solve such problems accurately, a novel numerical method based on the Runge-Kutta discontinuous Galerkin (RKDG) method is introduced in this paper, which has high-order resolution and weak correlation between cells. The bipolar charge transport under dc voltage in solid dielectrics with trapping and recombination is simulated using this new method. The results of charge profiles provided by the method are obviously different from the simulation results in the existing literature. The method was verified by problems with analytical solution and experimental observations.

  17. Charge recombination mechanism to explain the negative capacitance in dye-sensitized solar cells

    Science.gov (United States)

    Lie-Feng, Feng; Kun, Zhao; Hai-Tao, Dai; Shu-Guo, Wang; Xiao-Wei, Sun

    2016-03-01

    Negative capacitance (NC) in dye-sensitized solar cells (DSCs) has been confirmed experimentally. In this work, the recombination behavior of carriers in DSC with semiconductor interface as a carrier’s transport layer is explored theoretically in detail. Analytical results indicate that the recombination behavior of carriers could contribute to the NC of DSCs under small signal perturbation. Using this recombination capacitance we propose a novel equivalent circuit to completely explain the negative terminal capacitance. Further analysis based on the recombination complex impedance show that the NC is inversely proportional to frequency. In addition, analytical recombination resistance is composed by the alternating current (AC) recombination resistance (Rrac) and the direct current (DC) recombination resistance (Rrdc), which are caused by small-signal perturbation and the DC bias voltage, respectively. Both of two parts will decrease with increasing bias voltage. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204209 and 60876035) and the Natural Science Foundation of Tianjin City, China (Grant No. 13JCZDJC32800).

  18. Evidence for strong Breit interaction in dielectronic recombination of highly charged heavy ions.

    Science.gov (United States)

    Nakamura, Nobuyuki; Kavanagh, Anthony P; Watanabe, Hirofumi; Sakaue, Hiroyuki A; Li, Yueming; Kato, Daiji; Currell, Fred J; Ohtani, Shunsuke

    2008-02-22

    Resonant strengths have been measured for dielectronic recombination of Li-like iodine, holmium, and bismuth using an electron beam ion trap. By observing the atomic number dependence of the state-resolved resonant strength, clear experimental evidence has been obtained that the importance of the generalized Breit interaction (GBI) effect on dielectronic recombination increases as the atomic number increases. In particular, it has been shown that the GBI effect is exceptionally strong for the recombination through the resonant state [1s2s(2)2p(1/2)](1).

  19. Evidence for strong Breit interaction in dielectronic recombination of highly charged heavy ions.

    Science.gov (United States)

    Nakamura, Nobuyuki; Kavanagh, Anthony P; Watanabe, Hirofumi; Sakaue, Hiroyuki A; Li, Yueming; Kato, Daiji; Currell, Fred J; Ohtani, Shunsuke

    2008-02-22

    Resonant strengths have been measured for dielectronic recombination of Li-like iodine, holmium, and bismuth using an electron beam ion trap. By observing the atomic number dependence of the state-resolved resonant strength, clear experimental evidence has been obtained that the importance of the generalized Breit interaction (GBI) effect on dielectronic recombination increases as the atomic number increases. In particular, it has been shown that the GBI effect is exceptionally strong for the recombination through the resonant state [1s2s(2)2p(1/2)](1). PMID:18352549

  20. Possible Charge-Exchange X-Ray Emission in the Cygnus Loop Detected with Suzaku

    Science.gov (United States)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Kosugi, Hiroko; Kimura, Masashi; Nakajima, Hiroshi; Takakura, Satoru; Petre, Robert; Hewitt. John W.; Yamaguchi, Hiroya

    2011-01-01

    X-ray spectroscopic measurements of the Cygnus Loop supernova remnant indicate that metal abundances throughout most of the remnant s rim are depleted to approx.0.2 times the solar value. However, recent X-ray studies have revealed in some narrow regions along the outermost rim anomalously "enhanced" abundances (up to approx. 1 solar). The reason for these anomalous abundances is not understood. Here, we examine X-ray spectra in annular sectors covering nearly the entire rim of the Cygnus Loop using Suzaku (21 pointings) and XMM-Newton (1 pointing). We find that spectra in the "enhanced" abundance regions commonly show a strong emission feature at approx.0.7 keV. This feature is likely a complex of He-like O K(gamma + delta + epsilon), although other possibilities cannot be fully excluded. The intensity of this emission relative to He-like O K(alpha) appears to be too high to be explained as thermal emission. This fact, as well as the spatial concentration of the anomalous abundances in the outermost rim, leads us to propose an origin from charge-exchange processes between neutrals and H-like O. We show that the presence of charge-exchange emission could lead to the inference of apparently "enhanced" metal abundances using pure thermal emission models. Accounting for charge-exchange emission, the actual abundances could be uniformly low throughout the rim. The overall abundance depletion remains an open question. Subject headings: ISM: abundances ISM: individual objects (Cygnus Loop) ISM: supernova remnants X-rays: ISM atomic processes

  1. Exciton Recombination, Energy-, and Charge Transfer in Single- and Multilayer Quantum-Dot Films on Silver Plasmonic Resonators

    Science.gov (United States)

    Shin, Taeho; Cho, Kyung-Sang; Yun, Dong-Jin; Kim, Jinwoo; Li, Xiang-Shu; Moon, Eui-Seong; Baik, Chan-Wook; Il Kim, Sun; Kim, Miyoung; Choi, Jun Hee; Park, Gyeong-Su; Shin, Jai-Kwang; Hwang, Sungwoo; Jung, Tae-Sung

    2016-05-01

    We examine exciton recombination, energy-, and charge transfer in multilayer CdS/ZnS quantum dots (QDs) on silver plasmonic resonators using photoluminescence (PL) and excitation spectroscopy along with kinetic modeling and simulations. The exciton dynamics including all the processes are strongly affected by the separation distance between QDs and silver resonators, excitation wavelength, and QD film thickness. For a direct contact or very small distance, interfacial charge transfer and tunneling dominate over intrinsic radiative recombination and exciton energy transfer to surface plasmons (SPs), resulting in PL suppression. With increasing distance, however, tunneling diminishes dramatically, while long-range exciton-SP coupling takes place much faster (>6.5 ns) than intrinsic recombination (~200 ns) causing considerable PL enhancement. The exciton-SP coupling strength shows a strong dependence on excitation wavelengths, suggesting the state-specific dynamics of excitons and the down-conversion of surface plasmons involved. The overlayers as well as the bottom monolayer of QD multilayers exhibit significant PL enhancement mainly through long-range exciton-SP coupling. The overall emission behaviors from single- and multilayer QD films on silver resonators are described quantitatively by a photophysical kinetic model and simulations. The present experimental and simulation results provide important and useful design rules for QD-based light harvesting applications using the exciton-surface plasmon coupling.

  2. Exciton Recombination, Energy-, and Charge Transfer in Single- and Multilayer Quantum-Dot Films on Silver Plasmonic Resonators.

    Science.gov (United States)

    Shin, Taeho; Cho, Kyung-Sang; Yun, Dong-Jin; Kim, Jinwoo; Li, Xiang-Shu; Moon, Eui-Seong; Baik, Chan-Wook; Il Kim, Sun; Kim, Miyoung; Choi, Jun Hee; Park, Gyeong-Su; Shin, Jai-Kwang; Hwang, Sungwoo; Jung, Tae-Sung

    2016-01-01

    We examine exciton recombination, energy-, and charge transfer in multilayer CdS/ZnS quantum dots (QDs) on silver plasmonic resonators using photoluminescence (PL) and excitation spectroscopy along with kinetic modeling and simulations. The exciton dynamics including all the processes are strongly affected by the separation distance between QDs and silver resonators, excitation wavelength, and QD film thickness. For a direct contact or very small distance, interfacial charge transfer and tunneling dominate over intrinsic radiative recombination and exciton energy transfer to surface plasmons (SPs), resulting in PL suppression. With increasing distance, however, tunneling diminishes dramatically, while long-range exciton-SP coupling takes place much faster (>6.5 ns) than intrinsic recombination (~200 ns) causing considerable PL enhancement. The exciton-SP coupling strength shows a strong dependence on excitation wavelengths, suggesting the state-specific dynamics of excitons and the down-conversion of surface plasmons involved. The overlayers as well as the bottom monolayer of QD multilayers exhibit significant PL enhancement mainly through long-range exciton-SP coupling. The overall emission behaviors from single- and multilayer QD films on silver resonators are described quantitatively by a photophysical kinetic model and simulations. The present experimental and simulation results provide important and useful design rules for QD-based light harvesting applications using the exciton-surface plasmon coupling. PMID:27184469

  3. Correlation between charge transfer and exchange coupling in carbon-based magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Anh Tuan, E-mail: tuanna@hus.edu.vn [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Science and Technology Department, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Japan Advanced Institute of Science and Technology, 1-1, Asahidai, Nomi, Ishikawa, 923-1292 Japan (Japan); Nguyen, Van Thanh; Nguyen, Huy Sinh [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Pham, Thi Tuan Anh [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Faculty of Science, College of Hai Duong, Nguyen Thi Due, Hai Duong (Viet Nam); Do, Viet Thang [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Faculty of Science, Haiphong University, 171 Phan Dang Luu, Kien An, Hai Phong (Viet Nam); Dam, Hieu Chi [Japan Advanced Institute of Science and Technology, 1-1, Asahidai, Nomi, Ishikawa, 923-1292 Japan (Japan)

    2015-10-15

    Several forms of carbon-based magnetic materials, i.e. single radicals, radical dimers, and alternating stacks of radicals and diamagnetic molecules, have been investigated using density-functional theory with dispersion correction and full geometry optimization. Our calculated results demonstrate that the C{sub 31}H{sub 15} (R{sub 4}) radical has a spin of ½. However, in its [R{sub 4}]{sub 2} dimer structure, the net spin becomes zero due to antiferromagnetic spin-exchange between radicals. To avoid antiferromagnetic spin-exchange of identical face-to-face radicals, eight alternating stacks, R{sub 4}/D{sub 2m}/R{sub 4} (with m = 3-10), were designed. Our calculated results show that charge transfer (Δn) between R{sub 4} radicals and the diamagnetic molecule D{sub 2m} occurs with a mechanism of spin exchange (J) in stacks. The more electrons that transfer from R{sub 4} to D{sub 2m}, the stronger the ferromagnetic spin-exchange in stacks. In addition, our calculated results show that Δn can be tailored by adjusting the electron affinity (E{sub a}) of D{sub 2m}. The correlation between Δn, E{sub a}, m, and J is discussed. These results give some hints for the design of new ferromagnetic carbon-based materials.

  4. Correlation between charge transfer and exchange coupling in carbon-based magnetic materials

    Directory of Open Access Journals (Sweden)

    Anh Tuan Nguyen

    2015-10-01

    Full Text Available Several forms of carbon-based magnetic materials, i.e. single radicals, radical dimers, and alternating stacks of radicals and diamagnetic molecules, have been investigated using density-functional theory with dispersion correction and full geometry optimization. Our calculated results demonstrate that the C31H15 (R4 radical has a spin of ½. However, in its [R4]2 dimer structure, the net spin becomes zero due to antiferromagnetic spin-exchange between radicals. To avoid antiferromagnetic spin-exchange of identical face-to-face radicals, eight alternating stacks, R4/D2m/R4 (with m = 3-10, were designed. Our calculated results show that charge transfer (Δn between R4 radicals and the diamagnetic molecule D2m occurs with a mechanism of spin exchange (J in stacks. The more electrons that transfer from R4 to D2m, the stronger the ferromagnetic spin-exchange in stacks. In addition, our calculated results show that Δn can be tailored by adjusting the electron affinity (Ea of D2m. The correlation between Δn, Ea, m, and J is discussed. These results give some hints for the design of new ferromagnetic carbon-based materials.

  5. Observation of Large Enhancement of Charge Exchange Cross Sections with Neutron-Rich Carbon Isotopes

    CERN Document Server

    Tanihata, I; Kanungo, R; Ameil, F; Atkinson, J; Ayyad, Y; Cortina-Gil, D; Dillmann, I; Estradé, A; Evdokimov, A; Farinon, F; Geissel, H; Guastalla, G; Janik, R; Knoebel, R; Kurcewicz, J; Litvinov, Yu A; Marta, M; Mostazo, M; Mukha, I; Nociforo, C; Ong, H J; Pietri, S; Prochazka, A; Scheidenberger, C; Sitar, B; Strmen, P; Takechi, M; Tanaka, J; Toki, H; Vargas, J; Winfield, J S; Weick, H

    2015-01-01

    Production cross sections of nitrogen isotopes from high-energy carbon isotopes on hydrogen and carbon targets have been measured for the first time for a wide range of isotopes. The fragment separator FRS at GSI was used to deliver C isotope beams. The cross sections of the production of N isotopes were determined by charge measurements of forward going fragments. The cross sections show a rapid increase with the number of neutrons in the projectile. Since the production of nitrogen is mostly due to charge exchange reactions below the proton separation energies, the present data suggests a concentration of Gamow-Teller and Fermi transition strength at low excitation energies for neutron-rich isotopes. It was also observed that the cross sections were enhanced much more strongly for neutron rich isotopes in the C-target data.

  6. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    Science.gov (United States)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  7. Search for Tetraneutron by Pion Double Charge Exchange Reaction at J-PARC

    CERN Document Server

    Fujioka, Hiroyuki; Harada, Toru; Hiyama, Emiko; Itahashi, Kenta; Kanatsuki, Shunsuke; Nagae, Tomofumi; Nanamura, Takuya; Nishi, Takahiro

    2016-01-01

    Tetraneutron ($^4n$) has come back in the limelight, because of recent observation of a candidate resonant state at RIBF. We propose to investigate the pion double charge exchange (DCX) reaction, i.e. $^4\\mathrm{He}({\\pi}^- , {\\pi}^+)$, as an alternative way to populate tetraneutron. An intense ${\\pi}^-$ beam with the kinetic energy of ~850 MeV, much higher than that in past experiments at LAMPF and TRIUMF, will open up a possibility to improve the experimental sensitivity of the formation cross section, which will be much smaller than hitherto known DCX cross sections such as $^9\\mathrm{Be}({\\pi}^-, {\\pi}^+)^9\\mathrm{He}\\ (g.s.)$.

  8. Charge-exchange-driven X-ray emission from highly ionized plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Rosmej, F.B. [Universite de Provence et CNRS UMR 6633, Centre de St Jerome, 13 - Marseille (France); Lisitsa, V.S. [Russian Research Center Kurchatov, Moscow (Russian Federation); Schott, R.; Dalimier, E. [Paris-6 Univ., 75 - Paris (France); Schott, R.; Dalimier, E. [Ecole Polytechnique, LULI, 91 - Palaiseau (France); Riley, D.; Delserieys, A. [Queens Univ., Belfast (United Kingdom); Renner, O.; Krousky, E. [Institute of Physics, Prague (Czech Republic)

    2006-12-15

    The interaction of highly ionized laser-produced plasma jets with gases has been studied with X-ray microscopic methods. Simultaneous high spectral and 2-dimensional spatial resolution provided a detailed topological structure of the counter-propagating plasma and discovered a gas pressure-dependent X-ray emission structure inside the jets of H-like and He-like aluminum ions. At larger distances from the target, anomalous high (3 orders of magnitude) intensities of Li-like intercombination transitions from double excited states have been identified. Charge-exchange-driven cascading in autoionizing states is proposed to explain the experimental findings. (authors)

  9. Spatially resolved charge exchange flux calculations on the Toroidal Pumped Limiter of Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Marandet, Y., E-mail: yannick.marandet@piim.up.univ-mrs.f [PIIM, CNRS/Universite de Provence, Marseille (France); Tsitrone, E. [Association Euratom-CEA, CEA/DSM/DRFC CEA Cadarache (France); Boerner, P.; Reiter, D. [IEF-4 Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, TEC (Germany); Beaute, A.; Delchambre, E. [Association Euratom-CEA, CEA/DSM/DRFC CEA Cadarache (France); Escarguel, A. [PIIM, CNRS/Universite de Provence, Marseille (France); Brezinsek, S. [IEF-4 Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, TEC (Germany); Genesio, P. [PIIM, CNRS/Universite de Provence, Marseille (France); Gunn, J.; Monier-Garbet, P.; Mitteau, R.; Pegourie, B. [Association Euratom-CEA, CEA/DSM/DRFC CEA Cadarache (France)

    2009-06-15

    A spatially resolved calculation of the charge exchange particle and energy fluxes on the Toroidal Pumped Limiter (TPL) of Tore Supra is presented, as a first step towards a better understanding and modelling of carbon erosion, migration, as well as deuterium codeposition and bulk diffusion of deuterium in Tore Supra. The results are obtained with the EIRENE code run in a 3D geometry. Physical and chemical erosion maps on the TPL are calculated, and the contribution of neutrals to erosion, especially in the self-shadowed area, is calculated.

  10. High resolution probe of coherence in low-energy charge exchange collisions with oriented targets

    OpenAIRE

    Leredde, A.; Fléchard, X.; Cassimi, A.; Hennecart, D.; Pons, B.

    2013-01-01

    The trapping lasers of a magneto-optical trap (MOT) are used to bring Rb atoms into well defined oriented states. Coupled to recoil-ion momentum spectroscopy (RIMS), this yields a unique MOTRIMS setup which is able to probe scattering dynamics, including their coherence features, with unprecedented resolution. This technique is applied to the low-energy charge exchange processes Na$^+$+Rb($5p_{\\pm 1}$) $\\rightarrow$ Na($3p,4s$)+Rb$^+$. The measurements reveal detailed features of the collisio...

  11. High resolution probe of coherence in low-energy charge exchange collisions with oriented targets

    CERN Document Server

    Leredde, A; Cassimi, A; Hennecart, D; Pons, B

    2013-01-01

    The trapping lasers of a magneto-optical trap (MOT) are used to bring Rb atoms into well defined oriented states. Coupled to recoil-ion momentum spectroscopy (RIMS), this yields a unique MOTRIMS setup which is able to probe scattering dynamics, including their coherence features, with unprecedented resolution. This technique is applied to the low-energy charge exchange processes Na$^+$+Rb($5p_{\\pm 1}$) $\\rightarrow$ Na($3p,4s$)+Rb$^+$. The measurements reveal detailed features of the collisional interaction which are employed to improve the theoretical description. All of this enables to gauge the reliability of intuitive pictures predicting the most likely capture transitions.

  12. A photodiode-based neutral particle bolometer for characterizing charge-exchanged fast-ion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Clary, R.; Smirnov, A.; Dettrick, S.; Knapp, K.; Korepanov, S.; Ruskov, E. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Heidbrink, W. W.; Zhu, Y. [University of California-Irvine, Irvine, California 92697 (United States)

    2012-10-15

    A neutral particle bolometer (NPB) has been designed and implemented on Tri Alpha Energy's C-2 device in order to spatially and temporally resolve the charge-exchange losses of fast-ion populations originating from neutral beam injection into field-reversed configuration plasmas. This instrument employs a silicon photodiode as the detection device with an integrated tungsten filter coating to reduce sensitivity to light radiation. Here we discuss the technical aspects and calibration of the NPB, and report typical NPB measurement results of wall recycling effects on fast-ion losses.

  13. A photodiode-based neutral particle bolometer for characterizing charge-exchanged fast-ion behavior.

    Science.gov (United States)

    Clary, R; Smirnov, A; Dettrick, S; Knapp, K; Korepanov, S; Ruskov, E; Heidbrink, W W; Zhu, Y

    2012-10-01

    A neutral particle bolometer (NPB) has been designed and implemented on Tri Alpha Energy's C-2 device in order to spatially and temporally resolve the charge-exchange losses of fast-ion populations originating from neutral beam injection into field-reversed configuration plasmas. This instrument employs a silicon photodiode as the detection device with an integrated tungsten filter coating to reduce sensitivity to light radiation. Here we discuss the technical aspects and calibration of the NPB, and report typical NPB measurement results of wall recycling effects on fast-ion losses. PMID:23126887

  14. Simulations of Ion Velocity Distribution Functions Taken into Account Both Elastic and Charge Exchange Collisions

    CERN Document Server

    Wang, Huihui; Kaganovich, Igor D; Mustafaev, Alexander S

    2016-01-01

    Based on accurate representation of the He+-He differential angular scattering cross sections consisting of both elastic and charge exchange collisions, we performed detailed numerical simulations of the ion velocity distribution functions (IVDF) by Monte Carlo collision method (MCC). The results of simulations are validated by comparison with the experimental data of the mobility and the transverse diffusion. The IVDF simulation study shows that due to significant effect of scattering in elastic collisions IVDF cannot be separated into product of two independent IVDFs in the transverse and parallel to the electric field directions.

  15. The first test experiment of H- charge-exchange injection in the KEK booster

    International Nuclear Information System (INIS)

    The H- charge-exchange injection method was applied to the 500 MeV booster of the 12 GeV proton synchrotron at KEK, as an alternative to the multi-turn injection method using direct injection of protons. The first test experiment of such injection was carried out during three weeks beginning in late September 1983. Experimental results showed that, in spite of the low injection energy used for our booster, such an injection method is promising for increasing the beam intensity of the booster. And also, some further improvements are proposed. (author)

  16. The observation of charge exchange of pions captured in several nuclei

    Science.gov (United States)

    Bassalleck, B.; Corriveau, F.; Hasinoff, M. D.; Marks, T.; Measday, D. F.; Poutissou, J.-M.; Salomon, M.

    1981-06-01

    We have measured for the first time the branching ratios of the charge exchange of stopped negative pions in targets of 6Li, Al, Ti, Cu, Nb and Pb. These branching ratios are of the order of 10 -6, about an order of magnitude smaller than the upper limit previously established. Using the branching ratio for radiative pion capture in 6Li to the ground state of 6He we obtain the Panofsky ratio in 6Li, P6 = (8.7 ± 2.3) × 10 -4.

  17. Spin dipole nuclear matrix elements for double beta decay nuclei by charge-exchange reactions

    CERN Document Server

    Ejiri, H

    2016-01-01

    Spin dipole (SD) strengths for double beta-decay (DBD) nuclei were studied experimentally for the first time by using measured cross sections of (3He,t) charge exchange reactions (CERs). Then SD nuclear matrix elements (NMEs) for low-lying 2- states were derived from the experimental SD strengths by referring to the experimental GT (Gamow-Teller) and F (Fermi) strengths. They are consistent with the empirical SD NMEs based on the quasi-particle model with the empirical effective SD coupling constant. The CERs are used to evaluate the SD NME, which is associated with one of the major components of the neutrino-less DBD NME.

  18. Evidence for Strong Breit Interaction in Dielectronic Recombination of Highly Charged Heavy Ions

    OpenAIRE

    Nakamura, Nobuyuki; Kavanagh, Anthony P.; Watanabe, Hirofumi; SAKAUE, Hiroyuki A.; Li, Yueming; Kato, Daiji; Currell, Fred J.; Ohtani, Shunsuke

    2008-01-01

    Resonant strengths have been measured for dielectronic recombination of Li-like iodine, holmium, and bismuth using an electron beam ion trap. By observing the atomic number dependence of the state-resolved resonant strength, clear experimental evidence has been obtained that the importance of the generalized Breit interaction (GBI) effect on dielectronic recombination increases as the atomic number increases. In particular, it has been shown that the GBI effect is exceptionally strong for the...

  19. Refolding with Simultaneous Purification of Recombinant Human Granulocyte Colony-stimulating Factor from Escherichia coli Using Strong Anion Exchange Chromatography

    Institute of Scientific and Technical Information of China (English)

    Chao Zhan WANG; Jiang Feng LIU; Xin Du GENG

    2005-01-01

    The urea denatured recombinant human granulocyte colony-stimulating factor (rhGCSF) which was expressed in Escheriachia coli (E. coli) was refolded with simultaneous purification by strong anion exchange chromatography (SAX) in the presence of low concentration of urea. The effect of urea concentration on this refolding process was investigated. The obtained refolded rhG-CSF has a high specific activity of 2.3×108 U/mg, demonstrating that the proteins were completely refolded during the chromatographic process. With only one step by SAX in 40 min, purity and mass recovery of the refolded and purified rhG-CSF were 97% and43%, respectively.

  20. Unusual charge transport and reduced bimolecular recombination in PDTSiTzTz:PC71BM bulk heterojunction blend

    International Nuclear Information System (INIS)

    Solar cells with bulk heterojunction active layers containing donor-acceptor copolymer PDTSiTzTz exhibit persistent high fill factors with thicknesses up to 400 nm. Transport and recombination in a blend of PDTSiTzTz and fullerene derivative PC71BM is studied using lateral organic photovoltaic structures. This material system is characterized by carrier-concentration-dependent charge carrier mobilities, a strongly reduced bimolecular recombination factor, and a negative Poole–Frenkel coefficient. The analysis provides an explanation for the relatively thickness-independent fill factor behaviour seen in solar cells using the copolymer PDTSiTzTz. Cumulative insights from this copolymer can be employed for future organic photovoltaic material development, study of existing high performance bulk heterojunciton blends, and improved solar cell design. (paper)

  1. Observed Limits on Charge Exchange Contributions to the Diffuse X-ray Background

    CERN Document Server

    Crowder, S G; Brandl, D E; Eckart, M E; Galeazzi, M; Kelley, R L; Kilbourne, C A; McCammon, D; Pfendner, C G; Porter, F S; Rocks, L; Szymkowiak, A E; Teplin, I M

    2012-01-01

    We present a high resolution spectrum of the diffuse X-ray background from 0.1 to 1 keV for a ~1 region of the sky centered at l=90, b=+60 using a 36-pixel array of microcalorimeters flown on a sounding rocket. With an energy resolution of 11 eV FWHM below 1 keV, the spectrum's observed line ratios help separate charge exchange contributions originating within the heliosphere from thermal emission of hot gas in the interstellar medium. The X-ray sensitivity below 1 keV was reduced by about a factor of four from contamination that occurred early in the flight, limiting the significance of the results. The observed centroid of helium-like O VII is 568+2-3 eV at 90% confidence. Since the centroid expected for thermal emission is 568.4 eV while for charge exchange is 564.2 eV, thermal emission appears to dominate for this line complex, consistent with much of the high-latitude O VII emission originating in 2-3 x 10^6 K gas in the Galactic halo. On the other hand, the observed ratio of C VI Ly gamma to Ly alpha is...

  2. Observations of solar wind ion charge exchange in the Comet Halley coma

    Science.gov (United States)

    Fuselier, S. A.; Shelley, E. G.; Goldstein, B. E.; Goldstein, R.; Neugebauer, M.; Ip, W.-H.; Balsiger, H.; Reme, H.

    1991-01-01

    Giotto Ion Mass Spectrometer/High Energy Range Spectrometer (IMS/HERS) observations of solar wind ions show charge exchange effects and solar wind compositional changes in the coma of Comet Halley. As the comet was approached, the He(2+) to proton density ratio increased from 2.5 percent in the solar wind to about 4 percent about 1 hr before closest approach after which time it decreased to about 1 percent. Abrupt increases in this ratio from 2.5 to 4.5 percent were also observed in the beginning and near the end of the so-called Mystery Region. These abrupt increases in the density ratio were well correlated with enhanced fluxes of keV electrons as measured by the Giotto plasma electron spectrometer. The general increase and then decrease of the He(2+) to proton density ratio is quantitatively consistent with a combination of the addition of protons of Cometary origin to the plasma and loss of plasma through charge exchange of protons and He(2+).

  3. Ne X X-ray Emission due to Charge Exchange in M82

    CERN Document Server

    Cumbee, R S; Lyons, D; Schultz, D R; Stancil, P C; Wang, J G; Ali, R

    2016-01-01

    Recent X-ray observations of star-forming galaxies such as M82 have shown the Ly beta/Ly alpha line ratio of Ne X to be in excess of predictions for thermal electron impact excitation. Here we demonstrate that the observed line ratio may be due to charge exchange and can be used to constrain the ion kinetic energy to be <500 eV/u. This is accomplished by computing spectra and line ratios via a range of theoretical methods and comparing these to experiments with He over astrophysically relevant collision energies. The charge exchange emission spectra calculations were performed for Ne[10+] +H and Ne[10+] +He using widely applied approaches including the atomic orbital close coupling, classical trajectory Monte Carlo, and multichannel Landau- Zener (MCLZ) methods. A comparison of the results from these methods indicates that for the considered energy range and neutrals (H, He) the so-called "low-energy l-distribution" MCLZ method provides the most likely reliable predictions.

  4. Cold neutral atoms via charge exchange from excited state positronium: a proposal

    CERN Document Server

    Bertsche, W A; Eriksson, S

    2016-01-01

    We present a method for generating cold neutral atoms via charge exchange reactions between trapped ions and Rydberg positronium. The high charge exchange reaction cross section leads to efficient neutralisation of the ions and since the positronium-ion mass ratio is small, the neutrals do not gain appreciable kinetic energy in the process. When the original ions are cold the reaction produces neutrals that can be trapped or further manipulated with electromagnetic fields. Because a wide range of species can be targeted we envisage that our scheme may enable experiments at low temperature that have been hitherto intractable due to a lack of cooling methods. We present an estimate for achievable temperatures, neutral number and density in an experiment where the neutrals are formed at a milli-Kelvin temperature from either directly or sympathetically cooled ions confined on an ion chip. The neutrals may then be confined by their magnetic moment in a co-located magnetic minimum well also formed on the chip. We ...

  5. The Production of Negative Lithium Beams by Charge Exchange in Cesium Vapours

    CERN Document Server

    Re, Maurizio; Chines, Francesco; Cuttone, Giacomo; Menna, Mariano; Messina, Esteban; Stracener, Dan

    2005-01-01

    These measurements were carried out at the Holifield Radioactive Ion Beam Facility of the Oak Ridge National Laboratory (ORNL-HRIBF) by researchers from the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), Catania, Italy and local staff. The Charge Exchange Cell (CEC) consisted of a vacuum chamber containing cesium vapours at a variable temperature, T, in which positive ions accelerated from an ion source were transformed into negative ones by collisions with the Cs atoms. The main goal of this test was to measure the production efficiency for 7Li- ions at different operating conditions, such as 7Li+ beam energy (5 to 55 keV) and Cs temperature (190 to 300 °C). Moreover, the efficiency measurements performed with a 6Li+ projectile beam gave clear indications about the isotopic shift effect. These results are useful to estimate the charge exchange efficiency for 8, 9Li, which will be the first radioactive beams to be produced at the EXCYT facility (EXotics with CYclotro...

  6. Wide-view charge exchange recombination spectroscopy diagnostic for Alcator C-Moda)

    Science.gov (United States)

    Rowan, W. L.; Bespamyatnov, I. O.; Granetz, R. S.

    2008-10-01

    This diagnostic measures temperature, density, and rotation for the fully stripped boron ion between the pedestal top and the plasma core with resolution consistent with the profile gradients. The diagnostic neutral beam used for the measurements generates a 50 keV, 6 A hydrogen beam. The optical systems provide views in both poloidal and toroidal directions. The imaging spectrometer is optimized to simultaneously accept 45 views as input with minimum cross-talk. In situ calibration techniques are applied for spatial location, spectral intensity, and wavelength. In the analysis, measured spectra are fitted to a model constructed from a detailed description of the emission physics. Methods for removal of interfering spectra are included. Applications include impurity and thermal transport.

  7. Wall reflection modeling for charge exchange recombination spectroscopy (CXRS) measurements on Textor and ITER

    NARCIS (Netherlands)

    Banerjee, S.; Vasu, P.; von Hellermann, M.; Jaspers, R. J. E.

    2010-01-01

    Contamination of optical signals by reflections from the tokamak vessel wall is a matter of great concern. For machines such as ITER and future reactors, where the vessel wall will be predominantly metallic, this is potentially a risk factor for quantitative optical emission spectroscopy. This is, i

  8. Recombinant immobilized rhizopuspepsin as a new tool for protein digestion in hydrogen/deuterium exchange mass spectrometry.

    Science.gov (United States)

    Rey, Martial; Man, Petr; Brandolin, Gérard; Forest, Eric; Pelosi, Ludovic

    2009-11-01

    Hydrogen/deuterium (H/D) exchange coupled to mass spectrometry is nowadays routinely used to probe protein interactions or conformational changes. The method has many advantages, e.g. very low sample consumption, but offers limited spatial resolution. One way to higher resolution leads through the use of different proteases or their combinations. In the present work we describe recombinant production, purification and use of aspartic protease zymogen from Rhizopus chimensis, protease type XVIII (EC 3.4.23.6), commonly referred to as rhizopuspepsinogen (Rpg). The enzyme was expressed in Escherichia coli, refolded and purified to homogeneity. A typical yield was approximately 100 mg of pure enzyme per 1 L of original bacterial culture. The kinetics of protease activation, i.e. removal of the propeptide achieved by autolysis in an acidic environment, was followed by mass spectrometry. The digestion efficiency was tested for the protease in solution as well as for the immobilized enzyme. Apomyoglobin was successfully digested under all conditions tested and the protease displayed very low or no autodigestion. The results outperformed those obtained with commercial protease where the digestion of apomyoglobin was incomplete and accompanied by many contaminating peptides. Taken together, the recombinant protease type XVIII can be considered as a new and highly efficient tool for H/D exchange followed by mass spectrometry. PMID:19827048

  9. Recent Advances in Computational Studies of Charge Exchange X-ray Emission

    Science.gov (United States)

    Cumbee, Renata

    2016-06-01

    Interest in astrophysical sources of charge exchange (CX) has grown since X-ray emission from comet Hyakutake was first observed, the origin of which is primarily due to CX processes between neutral species in the comet’s atmosphere and highly charged ions from the solar wind. More recent observations have shown that CX may have a significant contribution to the X-ray emission spectra of a wide variety of environments within our solar system including solar wind charge exchange (SWCX) with neutral gases in the heliosphere and in planetary atmospheres, as well as beyond the solar system in galaxy clusters, supernova remnants, and star forming galaxies.While the basic process of CX has been studied for many decades, the reliability of the existing data is not uniform, and the coverage of the astrophysically important projectile and target combinations and collisional velocities is insufficient. The need for reliable and robust CX X-ray emission models will only be amplified with the with the high resolution X-ray spectra expected from the soft X-ray imaging calorimeter spectrometer (SXS) onboard the Hitomi X-ray observatory. In this talk, I will discuss recent advances in theoretical CX cross sections and X-ray modeling with a focus on CX diagnostics. The need for experimental X-ray spectra and cross sections for benchmarking current theory will also be highlighted. This work was performed in collaboration with David Lyons, Patrick Mullen, David Schultz, Phillip Stancil, and Robin Shelton. Work at UGA was partially supported by NASA grant NNX09AC46G.

  10. Solar wind charge exchange emission in the Chandra deep field north

    International Nuclear Information System (INIS)

    The diffuse soft X-ray background comes from distant galaxies, from hot Galactic gas, and from within the solar system. The latter emission arises from charge exchange between highly charged solar wind ions and neutral gas. This so-called solar wind charge exchange (SWCX) emission is spatially and temporally variable and interferes with our measurements of more distant cosmic emission while also providing important information on the nature of the solar wind-interstellar medium interaction. We present the results of our analysis of eight Chandra observations of the Chandra Deep Field North (CDFN) with the goal of measuring the cosmic and SWCX contributions to the X-ray background. Our modeling of both geocoronal and heliospheric SWCX emission is the most detailed for any observation to date. After allowing for ∼30% uncertainty in the SWCX emission and subtracting it from the observational data, we estimate that the flux of cosmic background for the CDFN in the O VII Kα, Kβ, and O VIII Lyα lines totals 5.8 ± 1.1 photons s–1 cm–2 sr–1 (or LU). Heliospheric SWCX emission varied for each observation due to differences in solar wind conditions and the line of sight through the solar system, but was typically about half as strong as the cosmic background (i.e., one-third of the total) in those lines. The modeled geocoronal emission was 0.82 LU in one observation but averaged only 0.15 LU in the others. Our measurement of the cosmic background is lower than but marginally consistent with previous estimates based on XMM-Newton data.

  11. Influence of the charge carrier tunneling processes on the recombination dynamics in single lateral quantum dot molecules

    Science.gov (United States)

    Hermannstädter, C.; Beirne, G. J.; Witzany, M.; Heldmaier, M.; Peng, J.; Bester, G.; Wang, L.; Rastelli, A.; Schmidt, O. G.; Michler, P.

    2010-08-01

    We report on the charge carrier dynamics in single lateral quantum dot molecules and the effect of an applied electric field on the molecular states. Controllable electron tunneling manifests itself in a deviation from the typical excitonic decay behavior in dot molecules. It results in a faster population decay and can be strongly influenced by the tuning electric field and intermolecular Coulomb energies. A rate equation model is developed and compared to the experimental data to gain more insight into the charge transfer and tunneling mechanisms. Nonresonant (phonon-mediated) electron tunneling which changes the molecular exciton character from direct to indirect, and vice versa, is found to be the dominant tunable decay mechanism of excitons besides radiative recombination.

  12. Negative-continuum dielectronic recombination into excited states of highly-charged ions

    OpenAIRE

    Artemyev, A. N.; Shabaev, V. M.; Stöhlker, Th; Surzhykov, A. S.

    2009-01-01

    The recombination of a free electron into a bound state of bare, heavy nucleus under simultaneous production of bound-electron--free-positron pair is studied within the framework of relativistic first--order perturbation theory. This process, denoted as "negative-continuum dielectronic recombination" leads to a formation of not only the ground but also the singly- and doubly-excited states of the residual helium-like ion. The contributions from such an excited--state capture to the total as w...

  13. Charge transport and recombination in polyspirobifluorene blue light-emitting diodes

    NARCIS (Netherlands)

    Nicolai, H.T.; Hof, A.; Oosthoek, J.L.M.; Blom, P.W.M.

    2011-01-01

    The charge transport in blue light-emitting polyspirobifluorene is investigated by both steady-state current-voltage measurements and transient electroluminescence. Both measurement techniques yield consistent results and show that the hole transport is space-charge limited. The electron current is

  14. Kinetic Evidence of Two Pathways for Charge Recombination in NiO-Based Dye-Sensitized Solar Cells.

    Science.gov (United States)

    D'Amario, Luca; Antila, Liisa J; Pettersson Rimgard, Belinda; Boschloo, Gerrit; Hammarström, Leif

    2015-03-01

    Mesoporous nickel oxide has been used as electrode material for p-type dye-sensitized solar cells (DSCs) for many years but no high efficiency cells have yet been obtained. One of the main issues that lowers the efficiency is the poor fill factor, for which a clear reason is still missing. In this paper we present the first evidence for a relation between applied potential and the charge recombination rate of the NiO electrode. In particular, we find biphasic recombination kinetics: a fast (15 ns) pathway attributed to the reaction with the holes in the valence band and a slow (1 ms) pathway assigned to the holes in the trap states. The fast component is the most relevant at positive potentials, while the slow component becomes more important at negative potentials. This means that at the working condition of the cell, the fast recombination is the most important. This could explain the low fill factor of NiO-based DSCs.

  15. Charge carrier photogeneration and recombination in ladder-type poly(para-phenylene): Interplay between impurities and external electric field

    Science.gov (United States)

    Gulbinas, V.; Hertel, D.; Yartsev, A.; Sundström, V.

    2007-12-01

    Charge carrier generation and decay in m -LPPP polymer films were examined by means of femtosecond transient absorption spectroscopy in the time window of 100fs-15ns . Two modes of polaron formation with distinct behavior were identified, impurity induced in the absence of an external electric field and electric field induced in pristine film. While field induced charge generation is relatively slow, occurring throughout the excited state lifetime, the rate of impurity induced charge generation is much faster and depends on excitation wavelength; it occurs on the several hundred femtosecond time scale under excitation within the main absorption band, but excitation into the red wing of the absorption band results in charge generation within less than 100fs . Polaron decay through geminate electron-hole recombination occurs with widely distributed lifetimes, from ˜0.8ns to microseconds; the polarons characterized by the shortest decay time have a redshifted absorption spectrum (as compared to more long-lived polarons) and are attributed to tightly bound polaron pairs.

  16. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films

    Directory of Open Access Journals (Sweden)

    Christian Wehrenfennig

    2014-08-01

    Full Text Available The optoelectronic properties of the mixed hybrid lead halide perovskite CH3NH3PbI3−xClx have been subject to numerous recent studies related to its extraordinary capabilities as an absorber material in thin film solar cells. While the greatest part of the current research concentrates on the behavior of the perovskite at room temperature, the observed influence of phonon-coupling and excitonic effects on charge carrier dynamics suggests that low-temperature phenomena can give valuable additional insights into the underlying physics. Here, we present a temperature-dependent study of optical absorption and photoluminescence (PL emission of vapor-deposited CH3NH3PbI3−xClx exploring the nature of recombination channels in the room- and the low-temperature phase of the material. On cooling, we identify an up-shift of the absorption onset by about 0.1 eV at about 100 K, which is likely to correspond to the known tetragonal-to-orthorhombic transition of the pure halide CH3NH3PbI3. With further decreasing temperature, a second PL emission peak emerges in addition to the peak from the room-temperature phase. The transition on heating is found to occur at about 140 K, i.e., revealing significant hysteresis in the system. While PL decay lifetimes are found to be independent of temperature above the transition, significantly accelerated recombination is observed in the low-temperature phase. Our data suggest that small inclusions of domains adopting the room-temperature phase are responsible for this behavior rather than a spontaneous increase in the intrinsic rate constants. These observations show that even sparse lower-energy sites can have a strong impact on material performance, acting as charge recombination centres that may detrimentally affect photovoltaic performance but that may also prove useful for optoelectronic applications such as lasing by enhancing population inversion.

  17. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films

    Science.gov (United States)

    Wehrenfennig, Christian; Liu, Mingzhen; Snaith, Henry J.; Johnston, Michael B.; Herz, Laura M.

    2014-08-01

    The optoelectronic properties of the mixed hybrid lead halide perovskite CH3NH3PbI3-xClx have been subject to numerous recent studies related to its extraordinary capabilities as an absorber material in thin film solar cells. While the greatest part of the current research concentrates on the behavior of the perovskite at room temperature, the observed influence of phonon-coupling and excitonic effects on charge carrier dynamics suggests that low-temperature phenomena can give valuable additional insights into the underlying physics. Here, we present a temperature-dependent study of optical absorption and photoluminescence (PL) emission of vapor-deposited CH3NH3PbI3-xClx exploring the nature of recombination channels in the room- and the low-temperature phase of the material. On cooling, we identify an up-shift of the absorption onset by about 0.1 eV at about 100 K, which is likely to correspond to the known tetragonal-to-orthorhombic transition of the pure halide CH3NH3PbI3. With further decreasing temperature, a second PL emission peak emerges in addition to the peak from the room-temperature phase. The transition on heating is found to occur at about 140 K, i.e., revealing significant hysteresis in the system. While PL decay lifetimes are found to be independent of temperature above the transition, significantly accelerated recombination is observed in the low-temperature phase. Our data suggest that small inclusions of domains adopting the room-temperature phase are responsible for this behavior rather than a spontaneous increase in the intrinsic rate constants. These observations show that even sparse lower-energy sites can have a strong impact on material performance, acting as charge recombination centres that may detrimentally affect photovoltaic performance but that may also prove useful for optoelectronic applications such as lasing by enhancing population inversion.

  18. Characterization of charge-exchange collisions between ultracold $\\rm{^6Li}$ atoms and $\\rm{^{40}Ca^+}$ ions

    CERN Document Server

    Saito, R; Sasakawa, M; Nakai, R; Raoult, M; Silva, H Da; Dulieu, O; Mukaiyama, T

    2016-01-01

    We investigate the energy dependence and the internal-state dependence of the charge-exchange collision cross sections in a mixture of $^6$Li atoms and $^{40}$Ca$^+$ ions in the collision energy range from 0.2 mK to 1 K. Deliberately excited ion micromotion is used to control the collision energy of atoms and ions. The energy dependence of the charge-exchange collision cross section obeys the Langevin model in the temperature range of the current experiment, and the measured magnitude of the cross section is correlated to the internal state of the $^{40}$Ca$^+$ ions. Revealing the relationship between the charge-exchange collision cross sections and the interaction potentials is an important step toward the realization of the full quantum control of the chemical reactions at an ultralow temperature regime.

  19. Charge-exchange, ionization and excitation in low-energy Li$^{+}-$ Ar, K$^{+}-$ Ar, and Na$^{+}-$He collisions

    CERN Document Server

    Lomsadze, Ramaz A; Kezerashvili, RomanYa; Schulz, Michael

    2016-01-01

    Absolute cross sections are measured for charge-exchange, ionization, and excitation within the same experimental setup for the Li$^{+}-$Ar, K$^{+}-$ Ar, and Na$^{+}-$ He collisions in the ion energy range $0.5-10$ keV. Results of our measurements along with existing experimental data and the schematic correlation diagrams are used to analyze and determine the mechanisms for these processes. The experimental results show that the charge-exchange processes are realized with high probabilities and electrons are predominately captured in ground states. The cross section ratio for charge exchange, ionization and excitation processes roughly attains the value $10:2:1$, respectively. The contributions of various partial inelastic channels to the total ionization cross sections are estimated and a primary mechanism for the process is defined. The energy-loss spectrum, in addition, is applied to estimate the relative contribution of different inelastic channels and to determine the mechanisms for the ionization and f...

  20. Relating Charge Transport, Contact Properties, and Recombination to Open-Circuit Voltage in Sandwich-Type Thin-Film Solar Cells

    Science.gov (United States)

    Sandberg, Oskar J.; Sundqvist, Anton; Nyman, Mathias; Österbacka, Ronald

    2016-04-01

    To avoid surface recombination at the contacts and ensure efficient charge collection and high open-circuit voltages (VOC) in organic bulk heterojunction and perovskite solar cells, selective contacts with optimized energy levels are needed. However, a detailed theoretical understanding of how the device performance is affected by surface recombination at the contacts is still lacking. In this work, the influence of surface recombination on the open-circuit voltage in sandwich-type solar cells, with optically thin active layers, is clarified using numerical simulations. Furthermore, analytical expressions are derived, directly relating VOC to relevant device parameters, such as surface recombination velocity (Sp), mobility, and active layer thickness. At large Sp, the surface recombination is determined by diffusion-limited transport in the bulk. By reducing Sp, thus increasing the charge selectivity of the electrode, the surface recombination is eventually reduced as the transport becomes limited by interface kinetics at the contact. Depending on the interplay between surface recombination and bulk recombination, and the properties of the contacts, different operating regimes are identified featuring different light ideality factors and thickness dependences.

  1. Search for AN Eta-Nuclear Bound State in the Double Charge Exchange Reaction OXYGEN-18

    Science.gov (United States)

    Johnson, John Doeppers

    1992-01-01

    Recent calculations have predicted that a bound state between an eta and a nucleus may occur as an intermediate state in pion double charge exchange (DCX). The existence of such a mesic nucleus would lead to a resonance-like structure in the DCX excitation function at fixed momentum transfer. LAMPF Experiment 1140 searched for an eta-nucleus bound state in the DCX reaction ^{18}O(pi ^{+}, pi^ {-})^{18}Ne(DIAS). An excitation function for this reaction was measured for energies ranging from 350 to 440 MeV and for momentum transfers of q = 0, 105 and 210 MeV/c. The calculated cross sections agree favorably with previously published data. Theoretical calculations predict that a resonance structure will be evidenced by an enhanced cross section at the eta production threshold for this reaction. The measured excitation function has found some evidence of structure in this region.

  2. Atmospheric Lithosphere-Ionosphere Charge Exchange (ALICE) for coupling between earthquake regions, clouds and the ionosphere

    Science.gov (United States)

    Harrison, Giles; Aplin, Karen; Rycroft, Michael

    2014-05-01

    Atmospheric Lithosphere-Ionosphere Charge Exchange (ALICE) has been proposed as a mechanism to link seismic activity and ionospheric changes detected overhead, which has been observed in data obtained by the DEMETER spacecraft. The ALICE mechanism can explain changes in the natural extremely low frequency (ELF) radio noise observed by DEMETER nocturnally before major earthquakes. ALICE operates through the vertical fair weather current density of global atmospheric electricity, through the modification of surface layer ionisation rates and the associated current flow to the ionosphere. These ideas are extended here to include possible effects on layer clouds through which the current density passes. Specifically, we estimate possible layer cloud changes for changes in surface layer ionisation known in some earthquakes.

  3. Collectivity Embedded in Complex Spectra Example of Nuclear Double-Charge Exchange Modes

    CERN Document Server

    Drozdz, S; Speth, J; Wójcik, M

    1997-01-01

    The mechanism of collectivity coexisting with chaos is investigated on the quantum level. The complex spectra are represented in the basis of two-particle two-hole states describing the nuclear double-charge exchange modes in $^{48}$Ca. An example of $J^{\\pi}=0^-$ excitations shows that the residual interaction, which generically implies chaotic behavior, under certain specific and well identified conditions may create transitions stronger than those corresponding to the pure mean-field picture. Therefore, for this type of excitations such an effect is not generic and in most cases the strength of transitions is likely to take much lower values, even close to the Porter-Thomas distributed.

  4. Localized description of surface energy gap effects in the resonant charge exchange between atoms and surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias-Garcia, A; Garcia, Evelina A; Goldberg, E C, E-mail: aiglesiasg@santafe-conicet.gov.ar [Instituto de Desarrollo Tecnologico para la Industria Quimica (INTEC-CONICET-UNL), Gueemes 3450, CC91, (S3000GLN) Santa Fe (Argentina)

    2011-02-02

    The resonant charge exchange between atoms and surfaces is described by considering a localized atomistic view of the solid within the Anderson model. The presence of a surface energy gap is treated within a simplified tight-binding model of the solid, and a proper calculation of the Hamiltonian terms based on a LCAO expansion of the solid eigenstates is performed. It is found that interference terms jointly with a surface projected gap maximum at the {Gamma} point and the Fermi level inside it, lead to hybridization widths negligible around the Fermi level. This result can explain experimental observations related to long-lived adsorbate states and anomalous neutral fractions of low energy ions in alkali/Cu(111) systems.

  5. Models of Heliospheric solar wind charge exchange X-ray emission

    Science.gov (United States)

    Koutroumpa, Dimitra

    2016-04-01

    The first models of the solar wind charge exchange (SWCX) X-ray production in the heliosphere were developed shortly after the discovery of SWCX emission at the end of 1990s. Since then, continuous monitoring of the global solar wind evolution through the solar cycle has allowed better constraints on its interaction with the interstellar neutrals. We have a fairly accurate description of the interstellar neutral density distributions in interplanetary space. However, the solar wind heavy ion fluxes, and especially their short term variability and propagation through interplanetary space, have remained relatively elusive due to the sparseness or lack of in situ data, especially towards high ecliptic latitudes. In this talk, I will present a summary the heliospheric SWCX modeling efforts, and an overview of the global solar cycle variability of heliospheric SWCX emission, while commenting on the difficulties of modeling the real-time variability of the heliospheric X-ray signal.

  6. Correlation of Resonance Charge Exchange Cross-Section Data in the Low-Energy Range

    Science.gov (United States)

    Sheldon, John W.

    1962-01-01

    During the course of a literature survey concerning resonance charge exchange, an unusual degree of agreement was noted between an extrapolation of the data reported by Kushnir, Palyukh, and Sena and the data reported by Ziegler. The data of Kushnir et al. are for ion-atom relative energies from 10 to 1000 ev, while the data of Ziegler are for a relative energy of about 1 ev. Extrapolation of the data of Kushnir et al. was made in accordance with Holstein's theory, 3 which is a combination of time-dependent perturbation methods and classical orbit theory. The results of this theory may be discussed in terms of a critical impact parameter b(sub c).

  7. Pion nucleus single charge exchange reactions above the Δ(1232) resonance

    International Nuclear Information System (INIS)

    Forward-angle differential cross sections for the (π+, π0) reaction leading to the Isobaric Analog State in the residual nuclei at 300, 425, 500 and 550 MeV have been measured. Targets ranged in mass from 7Li to 208Pb. A description of the experimental setup and the analysis is presented. The 00 cross sections are found to rise markedly between 300 and 425 MeV, contrary to the extrapolation from the lower energy data and to the behavior of the free pion-nucleon single charge exchange process. The angular distributions are sharply forward peaked. Systematics of the data indicate increased volume penetration with increasing pion beam energy. The cross sections are compared with the results of Glauber model calculations indicating the significance of higher order processes even at these energies. 67 refs., 40 figs., 22 tabs

  8. Creation of recognition sites for organophosphate esters based on charge transfer and ligand exchange imprinting methods.

    Science.gov (United States)

    Say, Ridvan

    2006-10-01

    This manuscript describes a method for the selective binding behavior of paraoxan and parathion compounds on surface imprinted polymers which were prepared using both charge transfer (CT) (methacryloyl-antipyrine, MAAP) and ligand-exchange (LE) (methacryloyl-antipyrine-gadalonium, MAAP-Gd) monomers. These polymers were prepared in the presence of azobisisobutyronitrile (AIBN) as an initiator and crosslinking EDMA and were imprinted with organophosphate esters. Influence of CT and LE imprinting on the creation of recognition sites toward paraoxan and parathion was determined applying adsorption isotherms. The effect of initial concentration of paraoxan and parathion, adsorption time and imprinting efficiency on adsorption selectivity for MIP-CT and MIP-LE was investigated. Association constant (K(ass)), number of accessible sites (Q(max)), relative selectivity coefficient (k') and binding ability were also evaluated.

  9. A kinetic control of the heliospheric interface hydrodynamics of charge-exchanging fluids

    CERN Document Server

    Fahr, H J

    2004-01-01

    It is well known that the Solar System is presently moving through a partially ionized local interstellar medium. This gives rise to a counter-flow situation requiring a consistent description of behaviour of the two fluids -- ions and neutral atoms -- which are dynamically coupled by mutual charge exchange processes. Solutions to this problem have been offered in the literature, all relying on the assumption that the proton fluid, even under evidently nonequilibrium conditions, can be expected to stay in a highly-relaxated distribution function given by mono-Maxwellians shifted by the local proton bulk velocity. Here we check the validity of this assumption, calculating on the basis of a Boltzmann-kinetic approach the actually occurring deviations. As we show, especially for low degrees of ionization, $\\xi \\le 0.3$, both the H-atoms and protons involved do generate in the heliospheric interface clearly pronounced deviations from shifted Maxwellians with asymmetrically shaped distribution functions giving ris...

  10. Charge-exchange-induced perturbations of ion and atom distribution functions in the heliospheric interface

    CERN Document Server

    Fahr, H J

    2004-01-01

    Various hydrodynamic models of the heliospheric interface have been presented meanwhile, numerically simulating the interaction of the solar wind plasma bubble with the counterstreaming partially ionized interstellar medium. In these model approaches the resulting interface flows are found by the use of hydrodynamic simulation codes trying to consistently describe the dynamic and thermodynamic coupling of the different interacting fluids of protons, H-atoms and pick-up ions. Within such approaches, the fluids are generally expected to be correctly described by the three lowest velocity moments, i.e., by shifted Maxwellians. We shall show that in these approaches the charge-exchange-induced momentum coupling is treated in an unsatisfactory representation valid only at supersonic differential flow speeds. Though this flaw can be removed by an improved coupling term, we shall further demonstrate that the assumption of shifted Maxwellians in some regions of the interface is insufficiently well fulfilled both for ...

  11. Pion induced double charge exchange reactions in the Delta resonance region

    CERN Document Server

    Buss, O; Larionov, A B; Mosel, U

    2006-01-01

    We have applied the Giessen BUU (GiBUU) transport model to the description of the double charge exchange (DCX) reaction of pions with different nuclear targets at incident kinetic energies of 120-180 MeV . The DCX process is highly sensitive to details of the interactions of pions with the nuclear medium and, therefore, represents a major benchmark for any model of pion scattering off nuclei at low and intermediate energies. The impact of surface effects, such as the neutron skins of heavy nuclei, is investigated. The dependence of the total cross section on the nuclear mass number is also discussed. We achieve a good quantitative agreement with the extensive data set obtained at LAMPF. Furthermore, we compare the solutions of the transport equations obtained in the test-particle ansatz using two different schemes - the full and the parallel ensemble method.

  12. Kinetic theory and atomic physics corrections for determination of ion velocities from charge-exchange spectroscopy

    Science.gov (United States)

    Muñoz Burgos, J. M.; Burrell, K. H.; Solomon, W. M.; Grierson, B. A.; Loch, S. D.; Ballance, C. P.; Chrystal, C.

    2013-09-01

    Charge-exchange spectroscopy is a powerful diagnostic tool for determining ion temperatures, densities and rotational velocities in tokamak plasmas. This technique depends on detailed understanding of the atomic physics processes that affect the measured apparent velocities with respect to the true ion rotational velocities. These atomic effects are mainly due to energy dependence of the charge-exchange cross-sections, and in the case of poloidal velocities, due to gyro-motion of the ion during the finite lifetime of the excited states. Accurate lifetimes are necessary for correct interpretation of measured poloidal velocities, specially for high density plasma regimes on machines such as ITER, where l-mixing effects must be taken into account. In this work, a full nl-resolved atomic collisional radiative model coupled with a full kinetic calculation that includes the effects of electric and magnetic fields on the ion gyro-motion is presented for the first time. The model directly calculates from atomic physics first principles the excited state lifetimes that are necessary to evaluate the gyro-orbit effects. It is shown that even for low density plasmas where l-mixing effects are unimportant and coronal conditions can be assumed, the nl-resolved model is necessary for an accurate description of the gyro-motion effects to determine poloidal velocities. This solution shows good agreement when compared to three QH-mode shots on DIII-D, which contain a wide range of toroidal velocities and high ion temperatures where greater atomic corrections are needed. The velocities obtained from the model are compared to experimental velocities determined from co- and counter-injection of neutral beams on DIII-D.

  13. Correlating emissive non-geminate charge recombination with photocurrent generation efficiency in polymer/perylene diimide organic photovoltaic blend films

    Energy Technology Data Exchange (ETDEWEB)

    Keivanidis, Panagiotis E.; Bradley, Donal D.C.; Nelson, Jenny [Department of Physics, Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2BZ (United Kingdom); Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2BZ (United Kingdom); Kamm, Valentin; Laquai, Frederic [Max Planck Institute for Polymer Research, Max Planck Research Group for Organic Optoelectronics, Ackermannweg 10, 55128, Mainz (Germany); Zhang, Weimin; McCulloch, Iain [Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2BZ (United Kingdom); Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2BW (United Kingdom); Floudas, George [Department of Physics, University of Ioannina, 451 10 Ioannina, Greece, Foundation for Research and Technology-Hellas (FORTH-BRI) (Greece)

    2012-06-06

    Evidence for a correlation between the dynamics of emissive non-geminate charge recombination within organic photovoltaic (OPV) blend films and the photocurrent generation efficiency of the corresponding blend-based solar cells is presented. Two model OPV systems that consist of binary blends of electron acceptor N'-bis(1-ethylpropyl)-3,4,9,10-perylene tetracarboxy diimide (PDI) with either poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) or poly(9,9-dioctylindenofluorene-co-benzothiadiazole) (PIF8BT) as electron donor are studied. For the F8BT:PDI and PIF8BT:PDI devices photocurrent generation efficiency is shown to be related to the PDI crystallinity. In contrast to the F8BT:PDI system, thermal annealing of the PIF8BT:PDI layer at 90 C has a positive impact on the photocurrent generation efficiency and yields a corresponding increase in PL quenching. The devices of both blends have a strongly reduced photocurrent on higher temperature annealing at 120 C. Delayed luminescence spectroscopy suggests that the improved efficiency of photocurrent generation for the 90 C annealed PIF8BT:PDI layer is a result of optimized transport of the photogenerated charge-carriers as well as of enhanced PL quenching due to the maintenance of optimized polymer/PDI interfaces. The studies propose that charge transport in the blend films can be indirectly monitored from the recombination dynamics of free carriers that cause the delayed luminescence. For the F8BT:PDI and PIF8BT:PDI blend films these dynamics are best described by a power-law decay function and are found to be temperature dependent. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Charge Exchange Induced X-ray Emission of Fe XXV and Fe XXVI via a Streamlined Model

    CERN Document Server

    Mullen, P D; Lyons, D; Stancil, P C

    2016-01-01

    Charge exchange is an important process for the modeling of X-ray spectra obtained by the Chandra, XMM-Newton, and Suzaku X-ray observatories, as well as the anticipated Astro-H mission. The understanding of the observed X-ray spectra produced by many astrophysical environments is hindered by the current incompleteness of available atomic and molecular data -- especially for charge exchange. Here, we implement a streamlined program set that applies quantum defect methods and the Landau-Zener theory to generate total, n-resolved, and nlS-resolved cross sections for any given projectile ion/ target charge exchange collision. Using this data in a cascade model for X-ray emission, theoretical spectra for such systems can be predicted. With these techniques, Fe25+ and Fe26+ charge exchange collisions with H, He, H2, N2, H2O, and CO are studied for single electron capture. These systems have been selected as they illustrate computational difficulties for high projectile charges. Further, Fe XXV and Fe XXVI emission...

  15. Solar wind charge exchange X-ray emission from Mars Model and data comparison

    CERN Document Server

    Koutroumpa, Dimitra; Chanteur, Gerard; Chaufray, Jean-Yves; Kharchenko, Vasili; Lallement, Rosine

    2012-01-01

    Aims. We study the soft X-ray emission induced by charge exchange (CX) collisions between solar-wind, highly charged ions and neutral atoms of the Martian exosphere. Methods. A 3D multi species hybrid simulation model with improved spatial resolution (130 km) is used to describe the interaction between the solar wind and the Martian neutrals. We calculated velocity and density distributions of the solar wind plasma in the Martian environment with realistic planetary ions description, using spherically symmetric exospheric H and O profiles. Following that, a 3D test-particle model was developed to compute the X-ray emission produced by CX collisions between neutrals and solar wind minor ions. The model results are compared to XMM-Newton observations of Mars. Results. We calculate projected X-ray emission maps for the XMM-Newton observing conditions and demonstrate how the X-ray emission reflects the Martian electromagnetic structure in accordance with the observed X-ray images. Our maps confirm that X-ray imag...

  16. Chandra Observations and Modeling of Geocoronal Charge Exchange X-Ray Emission During Solar Wind Gusts

    Science.gov (United States)

    Kornbleuth, Marc; Wargelin, Bradford J.; Juda, Michael

    2014-06-01

    Solar wind charge exchange (SWCX) X-rays are emitted when highly charged solar wind ions such as O7+ collide with neutral gas. The best known examples of this occur around comets, but SWCX emission also arises in the Earth's tenuous outer atmosphere and throughout the heliosphere as neutral H and He from the interstellar medium flows into the solar system. This geocoronal and heliospheric emission comprises much of the soft X-ray background and is seen in every X-ray observation. Geocoronal emission, although usually weaker than heliospheric emission, arises within a few tens of Earth radii and therefore responds much more quickly (on time scales of less than an hour) to changes in solar wind intensity than the widely distributed heliospheric emission.We have studied a dozen Chandra observations when the flux of solar wind protons and O7+ ions was at its highest. These gusts of wind cause correspondingly abrupt changes in geocoronal SWCX X-ray emission,which may or may not be apparent in Chandra data depending on a given observation's line of sight through the magnetosphere. We compare observed changes in the X-ray background with predictions from a fully 3D analysis of SWCX emission based on magnetospheric simulations using the BATS-R-US model.

  17. Influence of Types and Charges of Exchangeable Cations on Ciprofloxacin Sorption by Montmorillonite

    Institute of Scientific and Technical Information of China (English)

    WU Qingfeng; LI Zhaohui; HONG Hanlie

    2012-01-01

    As one of the most important soil components,montmorillonite plays a vital role in transport and retention of organic pollutants in soils.Ciprofloxacin (CIP),an antibiotic of fluoroquiolones,has been frequently detected in water and soil environments due to its wide use in human and veterinary medicine.In this study,the adsorption of CIP onto different homoionic montmorillonite such as Na-,Ca- and Al-MMT was investigated,and the influence of types and charges of exchangeable cations in the interlayer of montmorillonite on CIP adsorption was evaluated.The results showed that different homoionic montmorillonite exhibited different sorption capacity of CIP.At pH 3,the sorption capacity of CIP decreased in the order Na-MMT > Ca-MMT > Al-MMT,following the lyotropic series.When solution pH increased to 11,the sorption capacity of CIP followed the order Ca-MMT > Al-MMT > Na-MMT.Accompanying CIP adsorption on Ca-MMT,a certain amount of Ca2+ was released into solution.Compared to pH 3,the lower Ca concentration in solution at pH 11 indicated that the adsorption of CIP on Ca-MMT at strong alkaline pH was no longer via cation exchange,and surface complexation or cation bridging might contribute to CIP adsorption.The adsorption of CIP on Na-and Ca-MMT at pH 3 and 11 resulted in the expansion of d-spacing,indicative of intercalation of CIP into the interlayer space of the montmorillonite.However,a decrease of d-spacing was observed when CIP adsorbed on Al-MMT at pH 11,which might be attributed to the dissolution of Al-CIP complex formed between CIP and Al3+ in the interlayer of montmorillonite.The results suggest that the types and charges of exchangeable cations in the interlayer of montmorillonite play an important role in CIP adsorption on montmorillonite.

  18. Effect of dielectronic recombination on the charge-state distribution and soft X-ray line intensity of laser-produced carbon plasma

    Indian Academy of Sciences (India)

    A Chowdhury; G P Gupta; P A Naik; P D Gupta

    2005-01-01

    The effect of dielectronic recombination in determining charge-state distribution and radiative emission from a laser-produced carbon plasma has been investigated in the collisional radiative ionization equilibrium. It is observed that the relative abundances of different ions in the plasma, and soft X-ray emission intensity get significantly altered when dielectronic recombination is included. Theoretical estimates of the relative population of CVI to CV ions and ratio of line intensity emitted from them for two representative formulations of dielectronic recombination are presented.

  19. Conformational regulation of charge recombination reactions in a photosynthetic bacterial reaction center

    DEFF Research Database (Denmark)

    Katona, Gergely; Snijder, Arjan; Gourdon, Pontus Emanuel;

    2005-01-01

    In bright light the photosynthetic reaction center (RC) of Rhodobacter sphaeroides stabilizes the P(+)(870).Q(-)(A) charge-separated state and thereby minimizes the potentially harmful effects of light saturation. Using X-ray diffraction we report a conformational change that occurs within the cy...

  20. CHARGE-EXCHANGE SCATTERING OF NEGATIVE PIONS BY HYDROGEN AT 230,260, 290, 317 AND 371 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Caris, John C

    1960-03-18

    The differential cross section for charge-exchange scattering of negative pions by hydrogen has been observed at 230, 260, 290, 317, and 371 Mev. The reaction was observed by detecting one gamma ray from the {pi}{sup 0} decay with a scintillation-counter telescope.

  1. Impact of exact exchange in the description of the electronic structure of organic charge-transfer molecular crystals

    KAUST Repository

    Fonari, Alexandr

    2014-10-21

    We evaluate the impact that the amount of nonlocal Hartree-Fock (%HF) exchange included in a hybrid density functional has on the microscopic parameters (transfer integrals, band gaps, bandwidths, and effective masses) describing charge transport in high-mobility organic crystals. We consider both crystals based on a single molecule, such as pentacene, and crystals based on mixed-stack charge-transfer systems, such as dibenzo-TTF–TCNQ. In the pentacene crystal, the band gap decreases and the effective masses increase linearly with an increase in the amount of %HF exchange. In contrast, in the charge-transfer crystals, while the band gap increases linearly, the effective masses vary only slightly with an increase in %HF exchange. We show that the superexchange nature of the electronic couplings in charge-transfer systems is responsible for this peculiar evolution of the effective masses. We compare the density functional theory results with results obtained within the G0W0 approximation as a way of benchmarking the optimal amount of %HF exchange needed in a given functional.

  2. Strong sensitivity of x-ray emission lines following charge exchange between highly charged ions and H (1 s ) in weakly screened media

    Science.gov (United States)

    Cariatore, N. D.; Otranto, S.

    2015-11-01

    We use the classical trajectory Monte Carlo method to analyze charge exchange processes between fully stripped projectiles with H (1 s ) in a screened environment at impact energies in the range 18 eV/amu to 10 keV/amu. For Fe+26 projectiles, (n ,l )-state selective charge exchange and line emission cross sections are presented for Debye screening lengths from 15 a.u. up to the unscreened case limit. At low-impact energies, a strong dependence of the hardness ratio on the Debye screening length is found. We show that such strong dependence also evidences itself for Ne+10,P+15,Ar+18, and Kr+36 projectiles. Clear indications of this dependence are noticeable in the photonic spectra even for large screening lengths (˜100 a.u.).

  3. Exchange-bias field induced by surface inhomogeneities in ferromagnetic/charge-ordered bilayer structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiou, E-mail: wanghaiou@hdu.edu.cn [Institute of Materials Physics, Hangzhou Dianzi University, Hangzhou, 310018 (China); Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, 210094 (China); Yang, Weifeng; Su, Kunpeng [Institute of Materials Physics, Hangzhou Dianzi University, Hangzhou, 310018 (China); Huo, Dexuan, E-mail: dxhuo@hdu.edu.cn [Institute of Materials Physics, Hangzhou Dianzi University, Hangzhou, 310018 (China); Tan, Weishi [Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, 210094 (China)

    2015-11-05

    Epitaxial bilayer structure consisting of ferromagnetic metallic Pr{sub 0.7}Sr{sub 0.3}MnO{sub 3} (PSMO) and charge-ordered insulator La{sub 0.5}Ca{sub 0.5}MnO{sub 3} (LCMO) was fabricated on (001) SrTiO{sub 3} substrate by pulsed laser deposition. High-resolution synchrotron X-ray diffraction showed high quality of epitaxial layer. However, besides diffraction peaks from PSMO layer, LCMO layer and SrTiO{sub 3} substrate, we observed an additional shoulder peak, which might stem from the inhomogeneities of composition in PSMO/LCMO. Further the atomic force microscopy measurement showed the presence of non-stoichiometric large particulates at surface, imparting an overall inhomogeneous composition to the film. This implied that the variation of crystalline structure of PSMO/LCMO occurred due to inhomogeneous composition. Moreover, studies on magnetic properties showed that surface inhomogeneities and ferromagnetic clusters at the PSMO/LCMO interface probably influenced the ferromagnetism of the bilayer film together, tuning exchange bias effect. - Highlights: • We report the epitaxial growth of Pr{sub 0.7}Sr{sub 0.3}MnO{sub 3}/La{sub 0.5}Ca{sub 0.5}MnO{sub 3} bilayer on SrTiO{sub 3}. • The non-stoichiometric particulates at surface impart inhomogeneous composition. • Inhomogeneities in the film lead to the variation of crystalline structure. • Surface inhomogeneities reduce ferromagnetism and enhance exchange bias effect.

  4. Quadrimolecular recombination kinetics of photogenerated charge carriers in the composites of regioregular polythiophene derivatives and soluble fullerene

    Science.gov (United States)

    Tanaka, Hisaaki; Yokoi, Yuki; Hasegawa, Naoki; Kuroda, Shin-ichi; Iijima, Takayuki; Sato, Takao; Yamamoto, Takakazu

    2010-04-01

    Light-induced electron spin resonance (LESR) measurements have been performed on the composites of regioregular polythiophene derivatives and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in order to study the recombination kinetics of photogenerated charge carriers. We adopt two regioregular polymers with different side chains; head-to-tail poly(3-hexylthiophene) (RR-P3HT) and head-to-head poly(3-dodecynylthiophene-2,5-diyl) [HH-P3(C≡CDec)Th]. In both systems, two LESR signals due to positive polarons on the polymer (g ˜2.002) and fullerene radical anions (g ˜2.000) have been observed. Quadrimolecular recombination (QR) kinetics, previously reported for RR-P3HT/C60 composites, where two positive polarons and two radical anions recombine simultaneously, has been confirmed in both systems by the observation of Iex0.25 dependence of the LESR intensity on the excitation light intensity (Iex) and the decay curve of the LESR intensity. This process implies the formation of doubly-charged states such as bipolarons or polaron pairs on the polymer to attract two radical anions. Temperature dependence of the QR rate constant, γ, in both systems has exhibited a crossover of the transport mechanism from low temperature tunneling to high temperature hopping process, as in the case of RR-P3HT/C60 composites. In the RR-P3HT/PCBM composites, γ has exhibited marked dependencies on the PCBM concentration or annealing, which may be related to the change of the crystallinity of the phase-separated polymer and fullerene domains as well as their interface structures, affecting the carrier mobilities or the trap states at the interface. Associated change of the molecular orientation of RR-P3HT crystalline domains with the lamellar structure has been further confirmed from the anisotropic LESR signals of the cast films on the substrates, exhibiting a qualitative agreement with the reported x-ray or optical analyses. In the HH-P3(C≡CDec)Th/PCBM composite, γ has been smaller

  5. Charge recombination in distributed heterostructures of semiconductor discotic and polymeric materials.

    Science.gov (United States)

    Clark, Jenny; Archer, Robert; Redding, Tim; Foden, Clare; Tant, Julien; Geerts, Yves; Friend, Richard H.; Silva, Carlos

    2008-06-01

    Control of microstructure and energetics at heterojunctions in organic semiconductors is central to achieve high light-emitting or photovoltaic device efficiency. We report the observation of an emissive exciplex formed between an electron-accepting discotic material (hexaazatrinaphthylene or HATNA-SC12) and a hole accepting conjugated polymer {poly[9,9- dioctylfluorene-co-N-(4-butylphenyl)diphenylamine] or TFB}. In contrast to polymer-polymer systems, we find here that the exciplex is strongly localized at the interface, acting as an energy bottleneck with inefficient transfer to bulk exciton states and with low yield of charge separation.

  6. Mechanistic modeling of ion-exchange process chromatography of charge variants of monoclonal antibody products.

    Science.gov (United States)

    Kumar, Vijesh; Leweke, Samuel; von Lieres, Eric; Rathore, Anurag S

    2015-12-24

    Ion-exchange chromatography (IEX) is universally accepted as the optimal method for achieving process scale separation of charge variants of a monoclonal antibody (mAb) therapeutic. These variants are closely related to the product and a baseline separation is rarely achieved. The general practice is to fractionate the eluate from the IEX column, analyze the fractions and then pool the desired fractions to obtain the targeted composition of variants. This is, however, a very cumbersome and time consuming exercise. A mechanistic model that is capable of simulating the peak profile will be a much more elegant and effective way to make a decision on the pooling strategy. This paper proposes a mechanistic model, based on the general rate model, to predict elution peak profile for separation of the main product from its variants. The proposed approach uses inverse fit of process scale chromatogram for estimation of model parameters using the initial values that are obtained from theoretical correlations. The packed bed column has been modeled along with the chromatographic system consisting of the mixer, tubing and detectors as a series of dispersed plug flow and continuous stirred tank reactors. The model uses loading ranges starting at 25% to a maximum of 70% of the loading capacity and hence is applicable to process scale separations. Langmuir model has been extended to include the effects of salt concentration and temperature on the model parameters. The extended Langmuir model that has been proposed uses one less parameter than the SMA model and this results in a significant ease of estimating the model parameters from inverse fitting. The proposed model has been validated with experimental data and has been shown to successfully predict peak profile for a range of load capacities (15-28mg/mL), gradient lengths (10-30CV), bed heights (6-20cm), and for three different resins with good accuracy (as measured by estimation of residuals). The model has been also

  7. Suzaku and XMM-Newton Observations of the North Polar Spur: Charge Exchange or ISM Absorption?

    CERN Document Server

    Gu, Liyi; Costantini, Elisa; Kaastra, Jelle

    2016-01-01

    By revisiting the Suzaku and XMM-Newton data of the North Polar Spur, we discovered that the spectra are inconsistent with the traditional model consisting of pure thermal emission and neutral absorption. The most prominent discrepancies are the enhanced O VII and Ne IX forbidden-to-resonance ratios, and a high O VIII Ly$\\beta$ line relative to other Lyman series. A collisionally ionized absorption model can naturally explain both features, while a charge exchange component can only account for the former. By including the additional ionized absorption, the plasma in the North Polar Spur can be described by a single-phase CIE component with temperature of 0.25 keV, and nitrogen, oxygen, neon, magnesium, and iron abundances of $0.4-0.8$ solar. The abundance pattern of the North Polar Spur is well in line with those of the Galactic halo stars. The high nitrogen-to-oxygen ratio reported in previous studies can be migrated to the large transmission of the O VIII Ly$\\alpha$ line. The ionized absorber is characteri...

  8. Charge-exchange Induced Modulation of the Heliosheath Ion Distribution Downstream of the Termination Shock

    Science.gov (United States)

    Fahr, H. J.; Fichtner, H.; Scherer, K.

    2015-12-01

    We consider the evolution of the solar wind ion distribution function alongthe plasma flow downstream from the termination shock induced by chargeexchange processes with cold interstellar H-atoms. We start from a kineticphase space transport equation valid in the bulk frame of the plasma flowthat takes into account convective changes, cooling processes, energydiffusion and ion injection, and describes solar wind and pick-up ionsas a co-moving, isotropic, joint ion population. From this kinetic transportequation one can ascend to an equation for the pressure moment of the iondistribution function, a so-called pressure transport equation, describingthe evolution of the ion pressure in the comoving rest frame. Assuming thatthe local ion distribution can be represented by an adequate kappa functionwith a kappa parameter that varies with the streamline coordinate, weobtain an ordinary differential equation for kappa as function of thestreamline coordinate s. With this result then we gain the heliosheath iondistribution function downstream of the termination shock. The latter thencan be used to predict the Voyager-2 measured moments of the distributionfunction like ion density and ion temperature, and it can also be used topredict spectral fluxes of ENA`s originating from these ions and registeredby IBEX-Hi and IBEX-Lo.We especially analyse the solar wind ion temperature decreasemeasured by Voyager-2 between the years 2008 to 2011 and try to explain itas a charge-exchange induced cooling of the ion distribution function duringthe associated ion convection period.

  9. The neutron-proton charge-exchange amplitudes measured in the dp -> ppn reaction

    CERN Document Server

    Mchedlishvili, D; Carbonell, J; Chiladze, D; Dymov, S; Dzyuba, A; Engels, R; Gebel, R; Glagolev, V; Grigoryev, K; Goslawski, P; Hartmann, M; Kacharava, A; Kamerdzhiev, V; Keshelashvili, I; Khoukaz, A; Komarov, V; Kulessa, P; Kulikov, A; Lehrach, A; Lomidze, N; Lorentz, B; Macharashvili, G; Maier, R; Merzliakov, S; Mielke, M; Mikirtychyants, M; Mikirtychyants, S; Nioradze, M; Ohm, H; Papenbrock, M; Prasuhn, D; Rathmann, F; Serdyuk, V; Seyfarth, H; Stein, H J; Steffens, E; Stockhorst, H; Stroeher, H; Tabidze, M; Trusov, S; Uzikov, Yu; Valdau, Yu; Wilkin, C

    2012-01-01

    The unpolarised differential cross section and the two deuteron tensor analysing powers A_{xx} and A_{yy} of the pol{d}p -> (pp)n charge-exchange reaction have been measured with the ANKE spectrometer at the COSY storage ring. Using deuteron beams with energies 1.2, 1.6, 1.8, and 2.27 GeV, data were obtained for small momentum transfers to a (pp) system with low excitation energy. The results at the three lower energies are consistent with impulse approximation predictions based upon the current knowledge of the neutron-proton amplitudes. However, at 2.27GeV, where these amplitudes are far more uncertain, agreement requires a reduction in the overall double-spin-flip contribution, with an especially significant effect in the longitudinal direction. These conclusions are supported by measurements of the deuteron-proton spin-correlation parameters C_{x,x} and C_{y,y} that were carried out in the pol{d}pol{p} -> (pp)n reaction at 1.2 and 2.27GeV. The values obtained for the proton analysing power also suggest th...

  10. Analysis of the low-energy $\\pi^- p$ charge-exchange data

    CERN Document Server

    Matsinos, Evangelos

    2012-01-01

    We analyse the charge-exchange (CX) measurements $\\pi^- p\\rightarrow \\pi^0 n$ below pion laboratory kinetic energy of 100 MeV. After the removal of five degrees of freedom from the initial database, we combined it with the truncated $\\pi^+ p$ database of our recent PSA and fitted to the data using the ETH model. The set of model-parameter values, as well as the predictions (which are derived on their basis) for the phase shifts and for the low-energy $\\pi N$ constants, are significantly different from the results we obtained in the analysis of the truncated $\\pi^\\pm p$ elastic-scattering databases. Concerning the phase shifts, the main difference occurs in $\\tilde{\\delta}_{0+}^{1/2}$; smaller differences have been found in two p-wave phase shifts. We discuss the implications of these findings in terms of the violation of the isospin invariance in the hadronic part of the $\\pi N$ interaction. The effect observed is at the level of $7-8%$ in the CX scattering amplitude below about 70 MeV. The results and conclu...

  11. Suzaku and XMM-Newton observations of the North Polar Spur: Charge exchange or ISM absorption?

    Science.gov (United States)

    Gu, Liyi; Mao, Junjie; Costantini, Elisa; Kaastra, Jelle

    2016-10-01

    By revisiting the Suzaku and XMM-Newton data of the North Polar Spur, we discovered that the spectra are inconsistent with the traditional model consisting of pure thermal emission and neutral absorption. The most prominent discrepancies are the enhanced O vii and Ne ix forbidden-to-resonance ratios, and a high O viii Lyβ line relative to other Lyman series. A collisionally ionized absorption model can naturally explain both features, while a charge exchange component can only account for the former. By including the additional ionized absorption, the plasma in the North Polar Spur can be described by a single-phase collisional ionization equilibrium (CIE) component with a temperature of 0.25 keV, and nitrogen, oxygen, neon, magnesium, and iron abundances of 0.4-0.8 solar. The abundance pattern of the North Polar Spur is well in line with those of the Galactic halo stars. The high nitrogen-to-oxygen ratio reported in previous studies can be migrated to the large transmission of the O viii Lyα line. The ionized absorber is characterized by a balance temperature of 0.17-0.20 keV and a column density of 3-5 × 1019 cm-2. Based on the derived abundances and absorption, we speculate that the North Polar Spur is a structure in the Galactic halo, so that the emission is mostly absorbed by the Galactic interstellar medium in the line of sight.

  12. Charge-exchange reactions from the standpoint of the parton model

    Energy Technology Data Exchange (ETDEWEB)

    Nekrasov, M.L. [SRC Institute for High Energy Physics of NRC ' ' Kurchatov Institute' ' , Protvino (Russian Federation)

    2015-11-15

    Using simple arguments, we show that charge-exchange reactions at high energies go through the hard scattering of fast quarks. On this basis we describe π{sup -}p → M{sup 0}n and K{sup -}p → M{sup 0}Λ, M{sup 0} = π{sup 0},η,η', in a combined approach which defines hard contributions in the parton model and soft ones in Regge phenomenology. The disappearance of a dip according to recent GAMS-4π data in the differential cross-section K{sup -}p → ηΛ at vertical stroke t vertical stroke ∼ 0.4-0.5 (GeV/c){sup 2} at transition to relatively high momenta, is explained as a manifestation of a mode change of summation of hard contributions from coherent to incoherent. Other manifestations of the mentioned mode change are discussed. Constraints on the η - η' mixing and gluonium admixture in η' are obtained. (orig.)

  13. Spectral Modeling of the Charge-Exchange X-ray Emission from M82

    CERN Document Server

    Zhang, Shuinai; Ji, Li; Smith, Randall K; Foster, Adam R; Zhou, Xin

    2014-01-01

    It has been proposed that the charge exchange (CX) process at the interface between hot and cool interstellar gases could contribute significantly to the observed soft X-ray emission in star forming galaxies. We analyze the XMM-Newton/RGS spectrum of M82, using a newly developed CX model combined with a single-temperature thermal plasma to characterize the volume-filling hot gas. The CX process is largely responsible for not only the strongly enhanced forbidden lines of the K$\\alpha$ triplets of various He-like ions, but also good fractions of the Ly$\\alpha$ transitions of C VI (~87%), O VIII and N VII ($\\gtrsim$50%) as well. In total about a quarter of the X-ray flux in the RGS 6-30 \\AA\\ band originates in the CX. We infer an ion incident rate of $3\\times10^{51}\\,\\rm{s^{-1}}$ undergoing CX at the hot and cool gas interface, and an effective area of the interface as $\\sim2\\times10^{45}\\,{\\rm cm^2}$ that is one order of magnitude larger than the cross section of the global biconic outflow. With the CX contribu...

  14. Solar Wind Charge Exchange contribution to the ROSAT All Sky Survey Maps

    CERN Document Server

    Uprety, Y; Collier, M R; Cravens, T; Galeazzi, M; Koutroumpa, D; Kuntz, K D; Lallement, R; Lepri, S T; Liu, W; McCammon, D; Morgan, K; Porter, F S; Prasai, K; Snowden, S L; Thomas, N E; Ursino, E; Walsh, B M

    2016-01-01

    DXL (Diffuse X-ray emission from the Local Galaxy) is a sounding rocket mission designed to quantify and characterize the contribution of Solar Wind Charge eXchange (SWCX) to the Diffuse X-ray Background (DXB) and study the properties of the Local Hot Bubble (LHB). The detectors are large-area thin-window proportional counters with a spectral response similar to that of the PSPC used in the ROSAT All Sky Survey (RASS). A direct comparison of DXL and RASS data for the same part of the sky allowed us to quantify the SWCX contribution to all 6 RASS bands (R1-R7). We find that the SWCX contribution at l=140 deg, b=0 deg, where the DXL path crosses the Galactic plane is 32%+-12% (statistical)+-5%(systematic) for R1, 45%+-8%+-5% for R2, 22%+-11%+-4% for R4, 14%+-12%+-4% for R5, and negligible for R6 and R7 bands. We can also estimate the contribution to the whole sky. We find that the average SWCX contribution in the whole sky is 25%+-10%+-7% for R1, 30%+-6%+-6% for R2, 9%+-5%+-2% for R4, 7%+-5%+-1% for R5, and neg...

  15. Photogeneration and recombination processes of neutral and charged excitations in films of a ladder-type poly(para-phenylene)

    Science.gov (United States)

    Wohlgenannt, M.; Graupner, W.; Leising, G.; Vardeny, Z. V.

    1999-08-01

    We introduce a version of the cw photomodulation technique, measured far from the steady state, for obtaining the quantum efficiency, η, of long-lived photoexcitations in π-conjugated polymers. We apply this technique to films of a ladder-type poly(para-phenylene) [mLPPP] for studying the photogeneration action spectra, η(E), and recombination kinetics of photogenerated neutral and charged excitations such as singlet and triplet excitons and charged polarons. Whereas the η(E) spectrum for singlet excitons shows a step function increase at a photon energy, E, close to the optical gap (~=2.6 eV), both triplet and polaron η(E) spectra show, in addition, a monotonous rise at higher E. The rise for triplets is explained by singlet exciton fission into triplet pairs, and from a model fit we get the triplet exciton energy (~=1.6 eV). For polarons this rise is modeled by an electron intersegment tunneling process. The electroabsorption spectrum is also measured and analyzed in terms of Stark shift of the lowest lying exciton, 1Bu, and enhanced oscillator strength of the important mAg exciton. A consistent picture for the lowest excited state energy levels and optical transitions in the neutral (singlet and triplet) and charged manifolds is presented. From both the exciton binding energy of ~=0.6 eV and the singlet-triplet energy splitting of ~=1 eV, we conclude that the e-e interaction in mLPPP is relatively strong. Our results are in good agreement with recent ab initio band structure calculations for several π-conjugated polymers.

  16. Laboratory measurements of the x-ray emission following dielectronic recombination onto highly charged argon ions

    Science.gov (United States)

    Brown, Gregory V.; Beiersdorfer, Peter; Bulbul, Esra; Hell, Natalie; Foster, Adam; Betancourt-Martinez, Gabriele; Porter, Frederick Scott; Smith, Randall K.

    2016-06-01

    We have used the LLNL EBIT-I electron beam ion trap to measure the X-ray emission following resonant dielectronic recombination (DR) onto helium-like and lithium-like argon as a function of electron energy. These measurements were completed by sweeping the energy of EBIT-I's near mono-energetic electron beam from below threshold for DR resonance to above threshold for direct excitation of K-shell transitions in helium-like argon. The X-ray emission was recorded as a function of electron beam energy using the EBIT Calorimeter Spectrometer, whose energy resolution is ~ 5 eV, and also a relatively low resolution, solid-state X-ray detector. These results will be useful when analyzing and interpreting high resolution spectra from celestial sources measured with the Soft X-ray Spectrometer (SXS) calorimeter instrument recently launched on the Hitomi X-ray Observatory (formerly known as Astro-H), as well as data measured using instruments on the Chandra and XMM-Newton X-ray Observatories. Specifically, these data will help determine if the feature detected at ~ 3.56 keV (Bulbul et al. 2014, Boyarsky et al. 2014) in clusters is the result of the decay of a sterile neutrino, a long sought after dark matter particle candidate. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and Chandra Grant AR5-16012A.

  17. Exciton-Dissociation and Charge-Recombination Processes in Pentacene/C 60 Solar Cells: Theoretical Insight into the Impact of Interface Geometry

    KAUST Repository

    Yi, Yuanping

    2009-11-04

    The exciton-dissociation and charge-recombination processes in organic solar cells based on pentacene/C60 heterojunctions are investigated by means of quantum-mechanical calculations. The electronic couplings and the rates of exciton dissociation and charge recombination have been evaluated for several geometrical configurations of the pentacene/C60 complex, which are relevant to bilayer and bulk heterojunctions. The results suggest that, irrespective of the actual pentacene-fullerene orientation, both pentacene-based and C60-based excitons are able to dissociate efficiently. Also, in the case of parallel configurations of the molecules at the pentacene/C60 interface, the decay of the lowest charge-transfer state to the ground state is calculated to be very fast; as a result, it can compete with the dissociation process into mobile charge carriers. Since parallel configurations are expected to be found more frequently in bulk heterojunctions than in bilayer heterojunctions, the performance of pentacene/C60 bulk-heterojunction solar cells is likely to be more affected by charge recombination than that of bilayer devices. © 2009 American Chemical Society.

  18. Charge exchange and X-ray emission in 70 MeV/u Bi-Au collisions

    Energy Technology Data Exchange (ETDEWEB)

    Verma, P. [GSI, D-64291 Darmstadt (Germany) and Vaish College, Rohtak 124 001 (India) and J. Liebig University, D-35392 Giessen (Germany)]. E-mail: P.Verma@gsi.de; Mokler, P.H. [GSI, D-64291 Darmstadt (Germany); JMI University, New Delhi 110 025 (India); Braeuning-Demian, A. [GSI, D-64291 Darmstadt (Germany); Braeuning, H. [JMI University, New Delhi 110 025 (India); Berdermann, E. [GSI, D-64291 Darmstadt (Germany); Chatterjee, S. [GSI, D-64291 Darmstadt (Germany); Gumberidze, A. [GSI, D-64291 Darmstadt (Germany); Hagmann, S. [J.W. Goethe University, D-60486 Frankfurt (Germany); Kozhuharov, C. [GSI, D-64291 Darmstadt (Germany); Orsic-Muthig, A. [GSI, D-64291 Darmstadt (Germany); Reuschl, R. [J.W. Goethe University, D-60486 Frankfurt (Germany); Schoeffler, M. [J.W. Goethe University, D-60486 Frankfurt (Germany); Spillmann, U. [GSI, D-64291 Darmstadt (Germany); Stoehlker, Th. [GSI, D-64291 Darmstadt (Germany); Stachura, Z. [Institute for Nuclear Physics, PL-31-342 Cracow (Poland); Tashenov, S. [GSI, D-64291 Darmstadt (Germany); Wahab, M.A. [Vaish College, Rohtak 124 001 (India)

    2005-07-01

    Charge exchange and X-ray emission for 70 MeV/u highly charged ions of Bi {sup q+} [77 q 82] colliding with thin Au targets [21 t in {mu}g/cm{sup 2} 225] were measured at the heavy ion synchrotron SIS at GSI. For the innermost shells this beam energy implies a quasiadiabatic collision regime. The charge state distribution of the emerging ions was measured by a position sensitive CVD-diamond detector after being analyzed by a magnet spectrometer. Charge exchange cross sections have been deduced from the target thickness dependence of the charge state distribution. Electron capture at distant collision dominates completely over ionization at close collision. The X-ray emission from the collision partners were measured by solid state detectors, Ge(i). The K X-ray emission for closed and open incoming projectile K vacancies gives access to vacancy transfer in the superheavy quasi-molecule transiently formed during collision for the innermost shells.

  19. Protein adsorption on ion exchange resins and monoclonal antibody charge variant modulation.

    Science.gov (United States)

    Guélat, Bertrand; Khalaf, Rushd; Lattuada, Marco; Costioli, Matteo; Morbidelli, Massimo

    2016-05-20

    A novel multicomponent adsorption equilibrium model for proteins on ion-exchange resins is developed on a statistical thermodynamic basis including surface coverage effects and protein-resin and protein-protein interactions. The resulting model exhibits a general competitive Langmuirian behavior and was applied to the study and optimization of the separation of monoclonal antibody charge variants on two strong cation exchangers. The model accounts explicitly for the effect of both pH and salt concentration, and its parameters can be determined in diluted conditions, that is, through physically sound assumptions, all model parameters can be obtained using solely experiments in diluted conditions, and be used to make predictions in overloaded conditions. The parameterization of the model and optimization of the separation is based on a two-step approach. First, gradient experiments in diluted conditions are undertaken in order to determine the model parameters. Based on these experiments and on information about the proteins of interest and the stationary phase used, all the model parameters can be estimated. Second, using the parameterized model, an initial Pareto optimization is undertaken where overloaded operating conditions are investigated. Experiments from this Pareto set are then used to refine the estimation of the model parameters. A second Pareto optimization can then be undertaken, this time with the refined parameters. This can be repeated until a satisfactory set of model parameters is found. This iterative approach is shown to be extremely efficient and to provide large amounts of knowledge based on only a few experiments. It is shown that due to the strong physical foundation of the model and the very low number of adjustable parameters, the number of iterations is expected to be at most two or three. Furthermore, the model based tool is improved as more experimental knowledge is provided, allowing for better estimations of the chromatographic

  20. Protein adsorption on ion exchange resins and monoclonal antibody charge variant modulation.

    Science.gov (United States)

    Guélat, Bertrand; Khalaf, Rushd; Lattuada, Marco; Costioli, Matteo; Morbidelli, Massimo

    2016-05-20

    A novel multicomponent adsorption equilibrium model for proteins on ion-exchange resins is developed on a statistical thermodynamic basis including surface coverage effects and protein-resin and protein-protein interactions. The resulting model exhibits a general competitive Langmuirian behavior and was applied to the study and optimization of the separation of monoclonal antibody charge variants on two strong cation exchangers. The model accounts explicitly for the effect of both pH and salt concentration, and its parameters can be determined in diluted conditions, that is, through physically sound assumptions, all model parameters can be obtained using solely experiments in diluted conditions, and be used to make predictions in overloaded conditions. The parameterization of the model and optimization of the separation is based on a two-step approach. First, gradient experiments in diluted conditions are undertaken in order to determine the model parameters. Based on these experiments and on information about the proteins of interest and the stationary phase used, all the model parameters can be estimated. Second, using the parameterized model, an initial Pareto optimization is undertaken where overloaded operating conditions are investigated. Experiments from this Pareto set are then used to refine the estimation of the model parameters. A second Pareto optimization can then be undertaken, this time with the refined parameters. This can be repeated until a satisfactory set of model parameters is found. This iterative approach is shown to be extremely efficient and to provide large amounts of knowledge based on only a few experiments. It is shown that due to the strong physical foundation of the model and the very low number of adjustable parameters, the number of iterations is expected to be at most two or three. Furthermore, the model based tool is improved as more experimental knowledge is provided, allowing for better estimations of the chromatographic

  1. Charge exchange processes of foil dissociation fragments of fast H+2 ions and H+n clusters

    International Nuclear Information System (INIS)

    We have measured angular and charge state distributions of atomic fragments resulting from the foil dissociation of 30-120 KeV/p H+n clusters. The fragment neutralization probability has been investigated for beam velocities above and around the Bohr velocity. At a given velocity the width of the angular distribution of neutral atoms and their yield are observed to increase with n up to n > 5 and n > 7, respectively. Moreover we have used the simpler H+2 case to propose new ideas to explain the vicinity effects observed on the charge exchange processes

  2. Organization of DNA partners and strand exchange mechanisms during Flp site-specific recombination analyzed by difference topology, single molecule FRET and single molecule TPM.

    Science.gov (United States)

    Ma, Chien-Hui; Liu, Yen-Ting; Savva, Christos G; Rowley, Paul A; Cannon, Brian; Fan, Hsiu-Fang; Russell, Rick; Holzenburg, Andreas; Jayaram, Makkuni

    2014-02-20

    Flp site-specific recombination between two target sites (FRTs) harboring non-homology within the strand exchange region does not yield stable recombinant products. In negatively supercoiled plasmids containing head-to-tail sites, the reaction produces a series of knots with odd-numbered crossings. When the sites are in head-to-head orientation, the knot products contain even-numbered crossings. Both types of knots retain parental DNA configuration. By carrying out Flp recombination after first assembling the topologically well defined Tn3 resolvase synapse, it is possible to determine whether these knots arise by a processive or a dissociative mechanism. The nearly exclusive products from head-to-head and head-to-tail oriented "non-homologous" FRT partners are a 4-noded knot and a 5-noded knot, respectively. The corresponding products from a pair of native (homologous) FRT sites are a 3-noded knot and a 4-noded catenane, respectively. These results are consistent with non-homology-induced two rounds of dissociative recombination by Flp, the first to generate reciprocal recombinants containing non-complementary base pairs and the second to produce parental molecules with restored base pairing. Single molecule fluorescence resonance energy transfer (smFRET) analysis of geometrically restricted FRTs, together with single molecule tethered particle motion (smTPM) assays of unconstrained FRTs, suggests that the sites are preferentially synapsed in an anti-parallel fashion. This selectivity in synapse geometry occurs prior to the chemical steps of recombination, signifying early commitment to a productive reaction path. The cumulative topological, smFRET and smTPM results have implications for the relative orientation of DNA partners and the directionality of strand exchange during recombination mediated by tyrosine site-specific recombinases.

  3. Intermediate ionization continua for double charge exchange at high impact energies

    Science.gov (United States)

    Belkić, D.ževad

    1993-05-01

    We investigate the problem of two-electron capture from heliumlike atomic systems by bare nuclei ZP+(ZTe1,e2)i-->(ZPe1,e2)f+ZT at high incident energies, using the four-body formalism of the first- and second-order theories. Our goal is to establish the relative importance of the intermediate ionization continua of the two electrons in comparison with the usual direct path of the double electron transfer. For this purpose we presently introduce the boundary-corrected continuum-intermediate-state (BCIS) approximation, which preserves all the features of two-electron capture as a genuine four-body problem. The proposed second-order theory provides a fully adequate description of the fact that, in an intermediate stage of collision, both electrons move in the field of the two Coulomb centers. The previously devised boundary-corrected first Born (CB1) approximation can be obtained as a further simplification of the BCIS model if the invoked two-electron Coulomb waves are replaced by their long-range logarithmic phase factors defined in terms of the corresponding interaggregate separation R. The BCIS method is implemented on the symmetric resonant double charge exchange in collisions between α particles and He(1s2) at impact energies E>=900 keV. The obtained results for the differential and total cross sections are compared with the available experimental data and satisfactory agreement is recorded. As the incident energy increases, a dramatic improvement is obtained in going from the CB1 to the BCIS approximation, since the latter closely follows the measurement, whereas the former overestimates the observed total cross sections by two orders of magnitude.

  4. Quasi-particle random phase approximation to the charge exchange resonances

    Energy Technology Data Exchange (ETDEWEB)

    Conti, Claudio de [Universidade Estadual Paulista (UNESP), Itapeva, SP (Brazil). Campus Experimental de Itapeva; Carlson, Brett Vern [Centro Tecnico Aeroespacial (CTA/ITA), Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica. Dept. de Fisica

    2009-07-01

    Full text: The Random Phase Approximation (RPA) is the simplest theory of excited states of a nucleus which admits the possibility that the ground state is not of a purely independent particle character but may contain correlations. It successfully describes many of the low-energy collective excitations of the nucleus. When it is based on the Hartree-Fock-Bogoliubov Approximation or BCS Approximation to the single-particle motion, rather than the Hartree-Fock or BCS one, the RPA becomes the Quasi-Particle RPA (QRPA). Here we have derived and solved the QRPA equations to obtain the Charge-Exchange Resonances, namely, Isobaric Analog State and Gamow-Teller Resonance, to the target nuclei, {sup 48}Ca, {sup 90}Zr, {sup 108}Sn, {sup 110}Sn, {sup 1}'1'2Sn, {sup 1}'1'4Sn, {sup 11}'6Sn, {sup 1}'1'8Sn, {sup 120}Sn, {sup 122}Sn, {sup 124}Sn, {sup 1}'2'6Sn, {sup 1}'2'8Sn, {sup 130}Sn, {sup 130}Sn and {sup 208}Pb. We use the motion equation techniques to develop the QRPA, based on the relativistic BCS approximation to the single-particle motion. When solving the equations of the relativistic QRPA we completely eliminate the negative energy states and the continuous states. As here we are interested in the J{sup {pi}} = 0{sup +} and 1{sup +} excitations, this point was not crucial. However, if we desired a treatment more rigorous of the sum rules would be better to include such contributions, much even so, in the calculations that we made the sum rules had been satisfied above of 90% to both IAS and GTR. We show that IAS and GTR for {sup 48}Ca, {sup 90}Zr, {sup 1}'0{sup 8-130}Sn and {sup 20}'8Pb is well reproduced in the calculations that we carry through. (author)

  5. Spectral modeling of the charge-exchange X-ray emission from M82

    International Nuclear Information System (INIS)

    It has been proposed that the charge-exchange (CX) process at the interface between hot and cool interstellar gases could contribute significantly to the observed soft X-ray emission in star-forming galaxies. We analyze the XMM-Newton/reflection grating spectrometer (RGS) spectrum of M82 using a newly developed CX model combined with a single-temperature thermal plasma to characterize the volume-filling hot gas. The CX process is largely responsible for not only the strongly enhanced forbidden lines of the Kα triplets of various He-like ions but also good fractions of the Lyα transitions of C VI (∼87%), O VIII, and N VII (≳50%) as well. In total about a quarter of the X-ray flux in the RGS 6-30 Å band originates in the CX. We infer an ion incident rate of 3 × 1051 s–1 undergoing CX at the hot and cool gas interface and an effective area of the interface of ∼2 × 1045 cm2 that is one order of magnitude larger than the cross section of the global biconic outflow. With the CX contribution accounted for, the best-fit temperature of the hot gas is 0.6 keV, and the metal abundances are approximately solar. We further show that the same CX/thermal plasma model also gives an excellent description of the EPIC-pn spectrum of the outflow Cap, projected at 11.6 kpc away from the galactic disk of M82. This analysis demonstrates that the CX is potentially an important contributor to the X-ray emission from starburst galaxies and also an invaluable tool to probe the interface astrophysics.

  6. Solar Wind Charge Exchange Contribution to the ROSAT All Sky Survey Maps

    Science.gov (United States)

    Uprety, Y.; Chiao, M.; Collier, M. R.; Cravens, T.; Galeazzi, M.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Lepri, S. T.; Liu, W.; McCammon, D.; Morgan, K.; Porter, F. S.; Prasai, K.; Snowden, S. L.; Thomas, N. E.; Ursino, E.; Walsh, B. M.

    2016-10-01

    DXL (Diffuse X-ray emission from the Local Galaxy) is a sounding rocket mission designed to estimate the contribution of solar wind charge eXchange (SWCX) to the diffuse X-ray background and to help determine the properties of the Local Hot Bubble. The detectors are large area thin-window proportional counters with a spectral response that is similar to that of the PSPC used in the ROSAT All Sky Survey (RASS). A direct comparison of DXL and RASS data for the same part of the sky viewed from quite different vantage points in the solar system, and the assumption of approximate isotropy for the solar wind, allowed us to quantify the SWCX contribution to all six RASS bands (R1-R7, excluding R3). We find that the SWCX contribution at l=140^\\circ ,b=0^\\circ , where the DXL path crosses the Galactic plane, is 33 % +/- 6 % ({statistical})+/- 12 % ({systematic}) for R1, 44 % +/- 6 % +/- 5 % for R2, 18 % +/- 12 % +/- 11 % for R4, 14 % +/- 11 % +/- 9 % for R5, and negligible for the R6 and R7 bands. Reliable models for the distribution of neutral H and He in the solar system permit estimation of the contribution of interplanetary SWCX emission over the the whole sky and correction of the RASS maps. We find that the average SWCX contribution in the whole sky is 26 % +/- 6 % +/- 13 % for R1, 30 % +/- 4 % +/- 4 % for R2, 8 % +/- 5 % +/- 5 % for R4, 6 % +/- 4 % +/- 4 % for R5, and negligible for R6 and R7.

  7. Heavy-ion double charge exchange reactions: A tool toward 0 νββ nuclear matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Cappuzzello, F.; Bondi, M. [Universita di Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); INFN, Laboratori Nazionali del Sud, Catania (Italy); Cavallaro, M.; Agodi, C.; Carbone, D.; Cunsolo, A. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Foti, A. [Universita di Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); INFN, Sezione di Catania, Catania (Italy)

    2015-11-15

    The knowledge of the nuclear matrix elements for the neutrinoless double beta decay is fundamental for neutrino physics. In this paper, an innovative technique to extract information on the nuclear matrix elements by measuring the cross section of a double charge exchange nuclear reaction is proposed. The basic point is that the initial- and final-state wave functions in the two processes are the same and the transition operators are similar. The double charge exchange cross sections can be factorized in a nuclear structure term containing the matrix elements and a nuclear reaction factor. First pioneering experimental results for the {sup 40}Ca({sup 18}O,{sup 18}Ne){sup 40}Ar reaction at 270 MeV incident energy show that such cross section factorization reasonably holds for the crucial 0{sup +} → 0{sup +} transition to {sup 40}Ar{sub gs}, at least at very forward angles. (orig.)

  8. Heavy-ion double charge exchange reactions: a tool towards 0v\\b{eta}\\b{eta} nuclear matrix elements

    CERN Document Server

    Cappuzzello, F; Agodi, C; Bond`ı, M; Carbone, D; Cunsolo, A; Foti, A

    2015-01-01

    The knowledge of the nuclear matrix elements for the neutrinoless double beta decay is fundamental for neutrino physics. In this paper, an innovative technique to extract information on the nuclear matrix elements by measuring the cross section of a double charge exchange nuclear reaction is proposed. The basic point is that the initial and final state wave functions in the two processes are the same and the transition operators are similar. The double charge exchange cross sections can be factorized in a nuclear structure term containing the matrix elements and a nuclear reaction factor. First pioneering experimental results for the 40Ca(18O,18Ne)40Ar reaction at 270 MeV incident energy show that such cross section factorization reasonably holds for the crucial 0+ --> 0+ transition to 40Args, at least at very forward angles.

  9. The TFTR E Parallel B Spectrometer for Mass and Energy Resolved Multi-Ion Charge Exchange Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    A.L. Roquemore; S.S. Medley

    1998-01-01

    The Charge Exchange Neutral Analyzer diagnostic for the Tokamak Fusion Test Reactor was designed to measure the energy distributions of both the thermal ions and the supra thermal populations arising from neutral-beam injection and ion cyclotron radio-frequency heating. These measurements yield the plasma ion temperature, as well as several other plasma parameters necessary to provide an understanding of the plasma condition and the performance of the auxiliary heating methods. For this application, a novel charge-exchange spectrometer using a dee-shaped region of parallel electric and magnetic fields was developed at the Princeton Plasma Physics Laboratory. The design and performance of this spectrometer is described in detail, including the effects of exposure of the microchannel plate detector to magnetic fields, neutrons, and tritium.

  10. Relation of isospin-symmetry breaking correction for superallowed beta decay to energy of charge-exchange giant monopole resonance

    CERN Document Server

    Rodin, Vadim

    2012-01-01

    Having applied an analytical transformation, a new exact representation for the nuclear isospin-symmetry breaking correction $\\delta_C$ to superallowed beta decay is obtained. The correction is shown to be essentially reciprocal to the square of an energy parameter $\\Omega_M$ which characterizes charge-exchange monopole strength distribution. The proportionality coefficient in this relation is determined by basic properties of the ground state of the even-even mother nucleus, and should be reliably calculated in any realistic nuclear model. Therefore, the single parameter $\\Omega_M$ contains all the information about the properties of excited $0^+$ states needed to describe $\\delta_C$. This parameter can possibly be determined experimentally by charge-exchange reactions. Basic quantities of interest are calculated within the isospin-consistent continuum random phase approximation, and the values of $\\delta_C$ are compared with the corresponding results by other approaches.

  11. Inclusive pion double charge exchange on {sup 16}O at 0.6-1.1 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, B.M.; Borodin, Yu.A.; Bulychjov, S.A.; Dukhovskoy, I.A.; Kaidalov, A.B.; Krutenkova, A.P.; Kulikov, V.V.; Matsyuk, M.A.; Radkevich, I.A.; Turdakina, E.N.; Alvarez-Ruso, L. E-mail: luis.alvarez-ruso@theo.physik.uni-giessen.de; Vicente Vacas, M.J

    2003-08-11

    The inclusive pion double charge exchange (DCX) on oxygen nuclei has been measured in the region where additional pion production is kinematically forbidden. The experiment was performed at the ITEP PS at incident {pi}{sup -} kinetic energies T{sub 0}=0.59, 0.75 and 1.1 GeV. The integrated forward differential cross section was found to decrease with energy slowly. At 1.1 GeV it exceeds the theoretical prediction within the conventional sequential single charge exchange mechanism with a neutral pion in the intermediate state (Glauber elastic rescattering) by about a factor of five. The sequential mechanism with two pions in the intermediate state (Glauber inelastic rescatterings), which was proposed recently, seems to be able to explain the observed energy dependence and allows to predict the DCX cross section at higher energies.

  12. Inclusive pion double charge exchange on Oxygen(16) at 0.6-1.1 GeV

    CERN Document Server

    Abramov, B M; Bulychjov, S A; Dukhovskoy, I A; Kaidalov, A B; Krutenkova, A P; Kulikov, V V; Matsyuk, M A; Radkevich, I A; Turdakina, E N; Alvarez-Ruso, L; Vacas, M J V; Borodin, Yu.A.

    2003-01-01

    The inclusive pion double charge exchange (DCX) on oxygen nuclei has been measured in the region where additional pion production is kinematically forbidden. The experiment was performed at ITEP PS at incident pi- kinetic energies T_0= 0.59, 0.75 and 1.1 GeV. The integrated forward differential cross section was found to decrease with energy slowly. At 1.1 GeV it exceeds the theoretical prediction within the conventional sequential single charge exchange mechanism with a neutral pion in the intermediate state (Glauber elastic rescattering) by about half an order of magnitude. The sequential mechanism with two pions in the intermediate state (Glauber inelastic rescatterings), which was proposed recently, seems to be able to explain the observed slow energy dependence and allows to predict the DCX cross section for higher energies.

  13. Cyclic voltammetry on sputter-deposited films of electrochromic Ni oxide : Power-law decay of the charge density exchange

    OpenAIRE

    Wen, Rui-Tao; Granqvist, Claes G.; Niklasson, Gunnar A.

    2014-01-01

    Ni-oxide-based thin films were produced by reactive direct-current magnetron sputtering and were characterized by X-ray diffraction and Rutherford backscattering spectroscopy. Intercalation of Li+ ions was accomplished by cyclic voltammetry (CV) in an electrolyte of LiClO4 in propylene carbonate, and electrochromism was documented by spectrophotometry. The charge density exchange, and hence the optical modulation span, decayed gradually upon repeated cycling. This phenomenon was accurately de...

  14. Light-assisted ion-neutral reactive processes in the cold regime: radiative molecule formation vs. charge exchange

    OpenAIRE

    Hall, Felix H. J.; Aymar, Mireille; Bouloufa-Maafa, Nadia; Dulieu, Olivier; Willitsch, Stefan

    2011-01-01

    We present a combined experimental and theoretical study of cold reactive collisions between laser-cooled Ca+ ions and Rb atoms in an ion-atom hybrid trap. We observe rich chemical dynamics which are interpreted in terms of non-adiabatic and radiative charge exchange as well as radiative molecule formation using high-level electronic structure calculations. We study the role of light-assisted processes and show that the efficiency of the dominant chemical pathways is considerably enhanced in ...

  15. Charge-exchange Coupling between Pickup Ions across the Heliopause and its Effect on Energetic Neutral Hydrogen Flux

    Science.gov (United States)

    Zirnstein, E. J.; Heerikhuisen, J.; Zank, G. P.; Pogorelov, N. V.; McComas, D. J.; Desai, M. I.

    2014-03-01

    Pickup ions (PUIs) appear to play an integral role in the multi-component nature of the plasma in the interaction between the solar wind (SW) and local interstellar medium (LISM). Three-dimensional (3D) MHD simulations with a kinetic treatment for neutrals and PUIs are currently still not viable. In light of recent energetic neutral atom (ENA) observations by the Interstellar Boundary EXplorer, the purpose of this paper is to illustrate the complex coupling between PUIs across the heliopause (HP) as facilitated by ENAs using estimates of PUI properties extracted from a 3D MHD simulation of the SW-LISM interaction with kinetic neutrals. First, we improve upon the multi-component treatment of the inner heliosheath (IHS) plasma from Zank et al. by including the extinction of PUIs through charge-exchange. We find a significant amount of energy is transferred away from hot, termination shock-processed PUIs into a colder, "freshly injected" PUI population. Second, we extend the multi-component approach to estimate ENA flux from the outer heliosheath (OHS), formed from charge-exchange between interstellar hydrogen atoms and energetic PUIs. These PUIs are formed from ENAs in the IHS that crossed the HP and experienced charge-exchange. Our estimates, based on plasma-neutral simulations of the SW-LISM interaction and a post-processing analysis of ENAs and PUIs, suggest the majority of flux visible at 1 AU from the front of the heliosphere, between ~0.02 and 10 keV, originates from OHS PUIs, indicating strong coupling between the IHS and OHS plasmas through charge-exchange.

  16. Charge-Exchange Excitation of the Isobaric Analog State and Implication for the Nuclear Symmetry Energy and Neutron Skin

    Science.gov (United States)

    Khoa, Dao T.; Loc, Bui Minh; Zegers, R. G. T.

    The charge-exchange (p, n) or (3He,t) reaction can be considered as elastic scattering of proton or 3He by the isovector term of the optical potential that flips the projectile isospin. Therefore, the accurately measured charge-exchange scattering cross section for the isobaric analog states can be a good probe of the isospin dependence of the optical potential, which is determined exclusively within the folding model by the difference between the neutron and proton densities and isospin dependence of the nucleon-nucleon interaction. On the other hand, the same isospin- and density-dependent nucleon-nucleon interaction can also be used in a Hartree-Fock calculation of asymmetric nuclear matter, to estimate the nuclear matter energy and its asymmetry part. As a result, the fine-tuning of the isospin dependence of the effective nucleon-nucleon interaction against the measured (p, n) or (3He,t) cross sections should allow us to make some realistic prediction of the nuclear symmetry energy and its density dependence. Moreover, given the neutron skin of the target related directly to the neutron-proton difference of the ground-state density, it can be well probed in the analysis of the charge-exchange (3He,t) reactions at medium energies when the two-step processes can be neglected and the t-matrix interaction can be used in the folding calculation.

  17. Study of the pd→→n{pp}s charge-exchange reaction using a polarised deuterium target

    Directory of Open Access Journals (Sweden)

    B. Gou

    2015-02-01

    Full Text Available The vector and tensor analysing powers, Ay and Ayy, of the pd→→n{pp}s charge-exchange reaction have been measured at a beam energy of 600 MeV at the COSY-ANKE facility by using an unpolarised proton beam incident on an internal storage cell target filled with polarised deuterium gas. The low energy recoiling protons were measured in a pair of silicon tracking telescopes placed on either side of the target. Putting a cut of 3 MeV on the diproton excitation energy ensured that the two protons were dominantly in the S01 state, here denoted by {pp}s. The polarisation of the deuterium gas was established through measurements in parallel of proton–deuteron elastic scattering. By analysing events where both protons entered the same telescope, the charge-exchange reaction was measured for momentum transfers q≥160 MeV/c. These data provide a good continuation of the earlier results at q≤140 MeV/c obtained with a polarised deuteron beam. They are also consistent with impulse approximation predictions with little sign evident for any modifications due to multiple scatterings. These successful results confirm that the ANKE deuteron charge-exchange programme can be extended to much higher energies with a polarised deuterium target than can be achieved with a polarised deuteron beam.

  18. Charge-exchange scattering to the isobaric analog state at medium energies as a probe of the neutron skin

    CERN Document Server

    Loc, Bui Minh; Zegers, R G T

    2014-01-01

    The charge-exchange (3He,t) scattering to the isobaric analog state (IAS) of the target can be considered as "elastic" scattering of 3He by the isovector term of the optical potential (OP) that flips the projectile isospin. Therefore, the accurately measured charge-exchange scattering cross- section for the IAS can be a good probe of the isospin dependence of the OP, which is determined exclusively within the folding model by the difference between the neutron and proton densities and isospin dependence of the nucleon-nucleon interaction. Given the neutron skin of the target is related directly to the same density difference, it can be well probed in the analysis of the charge- exchange (3He,t) reactions at medium energies when the two-step processes can be neglected and the t-matrix interaction can be used in the folding calculation. For this purpose, the data of the (3He,t) scattering to the IAS of 90Zr and 208Pb targets at Elab = 420 MeV have been analyzed in the distorted wave Born approximation using the...

  19. Ultrafast photoinduced intramolecular charge separation and recombination processes in the oligothiophene-substituted benzene dyads with an amide spacer.

    Science.gov (United States)

    Oseki, Yosuke; Fujitsuka, Mamoru; Cho, Dae Won; Sugimoto, Akira; Tojo, Sachiko; Majima, Tetsuro

    2005-10-20

    Photoinduced intramolecular charge separation (CS) and recombination (CR) processes of the tetrathiophene-substituted benzene dyads with an amide spacer (4T-PhR, R = 4-H (1), 4-CN (2), 3,4-(CN)2 (3), 4-NO2 (4), 3,5-(NO2)2 (5)) in solvents of different polarities were investigated using various fast spectroscopies. It was revealed that the CS rates depend on the ability of the acceptor and solvent polarity. Ultrafast CS with the rate of 5 x 10(12) s(-1) was revealed for 5 in PhCN and MeCN. The ultrafast CS can be attributed to the large electronic coupling matrix element between the donor and the acceptor despite the relative long donor-acceptor distance. The existence of the state with large electron density on the spacer between 14T*-PhR and LUMO should facilitate the CS process in the present dyad system. It was also revealed that the CR rates in these dyads were rather fast because of the enhanced superexchange interaction through the amide spacer.

  20. Measurement and study of the differential cross section variations corresponding to the n+p→p+n charge exchange reaction between 1 and 2GeV/c

    International Nuclear Information System (INIS)

    Twenty one differential cross section measurements for the np→pn charge exchange reaction have been carried out at the synchrotron Saturne (Saclay) for incident neutron momenta between 1 and 2GeV/c by step of 50MeV/c and in the squared four momentum transfer range 02. The results show that the mechanism of π exchange in the t-channel is clearly present at all the incident momenta; that is confirmed by the agreement with the ''poor man's absorption'' model, based on π exchange, in the range 02. The s dependence of the charge exchange peak shows weak structures which can be associated with the opening of the inelastic channel NΔ(1236) and NN*(1400). The results of an analysis of a set of np→pn amplitudes constructed from NN helicity amplitudes confirm that the π exchange in the t-channel is dominant in the charge exchange reaction

  1. Charge exchange produced K-shell x-ray emission from Ar16+ in a tokamak plasma with neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P; Bitter, M; Marion, M; Olson, R E

    2004-12-27

    High-resolution spectroscopy of hot tokamak plasma seeded with argon ions and interacting with an energetic, short-pulse neutral hydrogen beam was used to obtain the first high-resolution K-shell x-ray spectrum formed solely by charge exchange. The observed K-shell emission of Ar{sup 16+} is dominated by the intercombination and forbidden lines, providing clear signatures of charge exchange. Results from an ab initio atomic cascade model provide excellent agreement, validating a semiclassical approach for calculating charge exchange cross sections.

  2. Low doses of alpha particles do not induce sister chromatid exchanges in bystander Chinese hamster cells defective in homologous recombination

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, H; Wilson, P F; Chen, D J; Thompson, L H; Bedford, J S; Little, J B

    2007-10-26

    We reported previously that the homologous recombinational repair (HRR)-deficient Chinese hamster mutant cell line irs3 (deficient in the Rad51 paralog Rad51C) showed only a 50% spontaneous frequency of sister chromatid exchange (SCE) as compared to parental wild-type V79 cells. Furthermore, when irradiated with very low doses of alpha particles, SCEs were not induced in irs3 cells, as compared to a prominent bystander effect observed in V79 cells (Nagasawa et al., Radiat. Res. 164, 141-147, 2005). In the present study, we examined additional Chinese hamster cell lines deficient in the Rad51 paralogs Rad51C, Rad51D, Xrcc2, and Xrcc3 as well as another essential HRR protein, Brca2. Spontaneous SCE frequencies in non-irradiated wild-type cell lines CHO, AA8 and V79 were 0.33 SCE/chromosome, whereas two Rad51C-deficient cell lines showed only 0.16 SCE/chromosome. Spontaneous SCE frequencies in cell lines defective in Rad51D, Xrcc2, Xrcc3, and Brca2 ranged from 0.23-0.33 SCE/chromosome, 0-30% lower than wild-type cells. SCEs were induced significantly 20-50% above spontaneous levels in wild-type cells exposed to a mean dose of 1.3 mGy of alpha particles (<1% of nuclei traversed by an alpha particle). However, induction of SCEs above spontaneous levels was minimal or absent after {alpha}-particle irradiation in all of the HRR-deficient cell lines. These data suggest that Brca2 and the Rad51 paralogs contribute to DNA damage repair processes induced in bystander cells (presumably oxidative damage repair in S-phase cells) following irradiation with very low doses of alpha particles.

  3. Significance of Ligand Exchange Relating to Sulfate in Retarding Acidification of Variable Charge Soils Caused by Acid Rain

    Institute of Scientific and Technical Information of China (English)

    WANGJINGHUA; YUTIANREN

    1996-01-01

    For the purpose of evaluating the role of ligand exchange of sulfate ions in retarding the rate of acidification of variable charge soils,the changes in pH after the addition of different amounts of HNO3 or H2SO4 to representative soils of China were measured .A difference between pH changes caused by the two kinds of acids was observed only for variable charge soils and kaolinite,but not for constant charge soils and bentonite,The larger the proportion of H2SO4 in the HNO3-H2SO4 mixture,the lower the calculated H+ ion activities remained in the suspension.The difference in H+ ion activities between H2SO4 systems and HNO3 systems was larger for soils with a low base-saturation(BS) percentage than those with a high BS percentage.The removal of free iron oxides from the soil led to a decrease in the difference,while the coating of Fe2O3 on a bentonite resulted in a remarkable appearance of the difference.The effect of ligand exchange on the acidity status of the soil varied with the soil type.Surface soils with a high organic matter content showed a less pronounced effect of ligand exchange than subsoils did.It was estimated that when acid rain chiefly containing H2SO4 was deposited on variable charge soils the acidification rate might be slower by 20%-40% than that when the acid rain chiefly contained HNO3 for soils with a high organic matter content,and that the rate might be half of that caused by HNO3 for soils with a low organic matter content,especially for latosols.

  4. State-Selective Quantum Interference Observed in the Recombination of Highly Charged Hg75+···78+ Mercury Ions in an Electron Beam Ion Trap

    International Nuclear Information System (INIS)

    We present experimental data on the state-selective quantum interference between different pathways of photorecombination, namely, radiative and dielectronic recombination, in the KLL resonances of highly charged mercury ions. The interference, observed for well resolved electronic states in the Heidelberg electron beam ion trap, manifests itself in the asymmetry of line shapes, characterized by ''Fano factors,'' which have been determined with unprecedented precision, as well as their excitation energies, for several strong dielectronic resonances

  5. Hard X-ray polarimetry with position sensitve germanium detectors. Studies of the recombination transitions into highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Tashenov, Stanislav

    2005-07-01

    In this work a first study of the photon polarization for the process of radiative recombination has been performed. This was done at the ESR storage ring at GSI for uranium ions colliding with N2 at various collision energies. For this measurement a high purity Ge Pixel Detector with a 4 x 4 segmentation matrix was applied. The investigation was performed at the Gas-jet target of the ESR. The detector was placed at 60 and 90 observation angles. The sensitivity of the Compton scattering effect to the linear polarization of the X-Ray radiation was employed for the polarization measurement. Detailed investigations of the scattering and geometrical effects inside the detector were performed in order to develop a method to interpret the experimental data and extract the degree of the linear polarization in the hard X-Ray regime with a high precision. A special emphasis was given to the geometry of the detector and it's influence on the measured pixel-to-pixel Compton scattering intensities. The developed method enabled to achieve a precision of the order of 10% with the Pixel Detector which is dominated by the statistical uncertainties. The obtained results show a good agreement with the theoretical values derived from the exact relativistic calculations. For the case of the linear polarization of the K-REC photons, the measured data con rm the theoretical prediction that strong depolarization effects occur for high projectile charges in the forward hemisphere. The latter is in disagreement with the nonrelativistic theory which predicts a 100 % polarization regardless of the emission angle. (orig.)

  6. Cometary Solar Wind Charge Exchange Line Ratios: Source of X-rays in Comet C/2000 WM1 (linear)

    Science.gov (United States)

    Mullen, Patrick Dean; Cumbee, Renata; Lyons, David; Gu, Liyi; Kaastra, Jelle S.; Shelton, Robin L.; Stancil, Phillip C.

    2016-06-01

    Cometary solar wind charge exchange (C-SWCX) occurs when highly charged projectile ions present in solar wind capture an electron from a target neutral species present in the cometary atmosphere. The availability of atomic and molecular data necessary for the X-ray emission modeling due to C-SWCX is limited; therefore, we apply multi-channel Landau-Zener (MCLZ) theory (Mullen et al. 2016) to generate cross section data and theoretical X-ray line ratios for a variety of bare and non-bare ion single electron capture (SEC) collisions. Namely, we consider collisions between the solar wind constituent H-like and He-like ions of C, N, O, Ne, Na, Al, and Si and the cometary neutrals H, H2O, CO, CO2, OH, and O. To exemplify the application of this data, we model the X-ray emission of comet C/2000 WM1 (linear) using the charge exchange package in SPEX (Gu et al. 2015) and find excellent agreement with observations made with the XMM-RGS detector. Our analyses show that the X-ray intensity is dominated by C-SWCX with H.Work at UGA was partially funded by NASA grant NNX13AF31G.References:Gu et al. 2016, A&A, accepted 22 January 2016Mullen et al. 2016, ApJS, in press

  7. An ion-exchange nanomembrane sensor for detection of nucleic acids using a surface charge inversion phenomenon.

    Science.gov (United States)

    Senapati, Satyajyoti; Slouka, Zdenek; Shah, Sunny S; Behura, Susanta K; Shi, Zonggao; Stack, M Sharon; Severson, David W; Chang, Hsueh-Chia

    2014-10-15

    We present a novel low-cost biosensor for rapid, sensitive and selective detection of nucleic acids based on an ionic diode feature of an anion exchange nanoporous membrane under DC bias. The ionic diode feature is associated with external surface charge inversion on the positively charged anion exchange nanomembrane upon hybridization of negatively charged nucleic acid molecules to single-stranded oligoprobes functionalized on the membrane surface resulting in the formation of a cation selective monolayer. The resulting bipolar membrane causes a transition from electroconvection-controlled to water-splitting controlled ion conductance, with a large ion current signature that can be used to accurately quantify the hybridized nucleic acids. The platform is capable of distinguishing two base-pair mismatches in a 22-base pairing segment of microRNAs associated with oral cancer, as well as serotype-specific detection of dengue virus. We also show the sensor' capability to selectively capture target nucleic acids from a heterogeneous mixture. The limit of detection is 1 pM for short 27 base target molecules in a 15-min assay. Similar hybridization results are shown for short DNA molecules as well as RNAs from Brucella and Escherichia coli. The versatility and simplicity of this low-cost biosensor should enable point-of-care diagnostics in food, medical and environmental safety markets.

  8. Meson-exchange currents and quasielastic predictions for charged-current neutrino-12C scattering in the superscaling approach

    CERN Document Server

    Megias, G D; Moreno, O; Williamson, C F; Caballero, J A; Gonzalez-Jimenez, R; De Pace, A; Barbaro, M B; Alberico, W M; Nardi, M; Amaro, J E

    2014-01-01

    We evaluate and discuss the impact of meson-exchange currents (MEC) on charged-current quasielastic (QE) neutrino cross sections. We consider the nuclear transverse response arising from 2p-2h states excited by the action of electromagnetic, purely isovector meson-exchange currents in a fully relativistic framework, based on the work by the Torino collaboration [1]. An accurate parametrization of this MEC response as a function of the momentum and energy transfers involved is presented. Results of neutrino-nucleus cross sections using this MEC parametrization together with a recent scaling approach for the 1p-1h contributions (SuSAv2) are compared with experimental data (MiniBooNE, MINERvA, NOMAD and T2K Collaborations).

  9. Storage-ring ionization and recombination experiments with multiply charged ions relevant to astrophysical and fusion plasmas

    CERN Document Server

    Schippers, Stefan

    2011-01-01

    Past and ongoing research activities at the Heidelberg heavy-ion storage-ring TSR are reviewed which aim at providing accurate absolute rate coefficients and cross sections of atomic collision processes for applications in astrophysics and magnetically confined fusion. In particular, dielectronic recombination and electron impact ionization of iron ions are discussed as well as dielectronic recombination of tungsten ions.

  10. Charge exchange cross sections for the reaction Xe+8 + Xe+8 → Xe+9 + Xe+7

    International Nuclear Information System (INIS)

    The charge changing cross sections for self collisions of Xe+8 ions with 0 to 150 keV relative translational kinetic energy are estimated on the basis of the Fano-Lichten electron promotion model. It is concluded that for Xe+8 + Xe+8, charge changing collisions occur only infrequently compared to excitation and with cross sections much smaller than 10-18 cm2

  11. The role of multiple electron capture in the x-ray emission process following charge exchange collisions with neutral targets

    International Nuclear Information System (INIS)

    In this work we theoretically study photonic spectra that follow charge exchange processes between highly charged ions and neutral argon and CO targets. The range of collision energies studied is 5 eV/amu-10 keV/amu, covering typical EBIT-traps and Solar Wind energies. Our studies are based on multiple electrons schemes within the classical trajectory Monte Carlo method. Electrons are sorted with the sequential binding energies for the target under consideration. The role played by the multiple electron capture process for the different collision systems under consideration is explicitly analyzed and its contribution separated as arising from double radiative decay and autoionizing multiple capture. Present studies are stimulated by the upcoming launch of the Astro-H mission in 2015, which will provide high resolution spectra in the 0.3 keV-12keV band

  12. Charge exchange between H(1s) and fully stripped heavy ions at low-keV impact energies

    International Nuclear Information System (INIS)

    Approximate cross sections for charge transfer between ground-state atomic hydrogen and completely stripped ions of C, N, O, Ne, Si, and Ar have been obtained in the velocity range 6 x 106--7 x 107 cm/sec. In these collisions, electron capture occurs predominantly into high-lying orbitals of the product heavy ion. The calculations are made using the Landau-Zener theory modified for application to a multistate system. The peak cross sections are found to increase by about a factor of 5 in going from C+6 ( approx. = 21 A2) to Ar+18 ( approx. = 110 A2) and the cross-section curves tend to ''flatten out'' for the heavier ions where three or four crossings contribute to the charge exchange. At the higher energies, the cross sections become roughly equal to 1.4 x 10-16Z3/2 cm2

  13. Local vs. non-local energy loss of low energy ions: Influence of charge exchange processes in close collisions

    Energy Technology Data Exchange (ETDEWEB)

    Primetzhofer, D., E-mail: daniel.primetzhofer@physics.uu.se [Ion Physics, Department of Physics and Astronomy, Ångström Laboratory, Uppsala University, Box 516, S-751 20 Uppsala (Sweden); Goebl, D.; Bauer, P. [Institut für Experimentalphysik, Johannes Kepler Universität Linz, A-4040 Linz (Austria)

    2013-12-15

    We investigate the contribution of charge exchange processes in close collisions between projectile and target atoms to the electronic energy loss of low energy ions. We measure the energy loss of slow hydrogen and He ions in ultrathin Al films through which the ions are transmitted before and after backscattering by the atoms of a Ta substrate. The individual contributions to the energy loss are analyzed. The roles of thresholds for reionization and of scattering kinematics as key parameters for the coupling between elastic and inelastic losses are discussed. The implications of the obtained results for different experimental approaches to deduce stopping cross sections are outlined.

  14. NUMEN Project @ LNS : Heavy ions double charge exchange reactions towards the 0νββ nuclear matrix element determination

    Energy Technology Data Exchange (ETDEWEB)

    Agodi, C., E-mail: agodi@lns.infn.it; Calabretta, L.; Calanna, A.; Carbone, D.; Cavallaro, M.; Colonna, M.; Cuttone, G.; Finocchiaro, P.; Pandola, L.; Rifuggiato, D.; Tudisco, S. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Cappuzzello, F.; Greco, V. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Bonanno, D. L.; Bongiovanni, D. G.; Longhitano, F. [INFN - Sezione di Catania, Catania (Italy); Branchina, V. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Foti, A.; Lo Presti, D. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); INFN - Sezione di Catania, Catania (Italy); Lanzalone, G. [Università di Enna, Enna (Italy); and others

    2015-10-28

    In the NUMEN Project it is proposed an innovative technique to access the nuclear matrix elements entering in the expression of the life-time of the neutrinoless double beta decay, using relevant cross sections of double charge exchange reactions. A key aspect is the use of MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the INFN Laboratori Nazionali del Sud (LNS) K800 Superconducting Cyclotron (CS), for the acceleration of the required high resolution and low emittance heavy-ion beams.

  15. Fast charge exchange spectroscopy using a Fabry-Perot spectrometer in the JIPP TII-U tokamak

    International Nuclear Information System (INIS)

    A new charge exchange spectroscopic technique using a Fabry-Perot spectrometer has been developed to increase the photon flux at the detector and improve the time resolution of ion temperature and plasma rotation velocity measurements. The spectral resolution is obtained by arranging two dimensional fiber optics and a two dimensional detector at the focal plane of a coupled lens located on both sides of a Fabry-Perot spectrometer. The effective finesse of the Fabry-Perot interferometer in this system is 14. The time evolution of the ion temperature is obtained with a time resolution of 125 μs and with the spatial resolution of 3 cm (8 channels). (author)

  16. Prospects of real-time ion temperature and rotation profiles based on neural-network charge exchange analysis

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, R.W.T.; Von Hellermann, M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Svensson, J. [Royal Inst. of Tech., Stockholm (Sweden)

    1994-07-01

    A back-propagation neural network technique is used at JET to extract plasma parameters like ion temperature, rotation velocities or spectral line intensities from charge exchange (CX) spectra. It is shown that in the case of the C VI CX spectra, neural networks can give a good estimation (better than +-20% accuracy) for the main plasma parameters (Ti, V{sub rot}). Since the neural network approach involves no iterations or initial guesses the speed with which a spectrum is processed is so high (0.2 ms/spectrum) that real time analysis will be achieved in the near future. 4 refs., 8 figs.

  17. Effect of dense plasmas on exchange-energy shifts in highly charged ions: An alternative approach for arbitrary perturbation potentials

    Energy Technology Data Exchange (ETDEWEB)

    Rosmej, F. [Sorbonne Universites, Pierre et Marie Curie, UMR 7605, case 128, 4 place Jussieu, F-75252 Paris (France); Ecole Polytechnique, Laboratoire pour l' Utilisation des Lasers Intenses LULI, Physique Atomique dans les Plasmas Denses PAPD, F-91228 Palaiseau (France); Bennadji, K. [Sorbonne Universites, Pierre et Marie Curie, UMR 7605, case 128, 4 place Jussieu, F-75252 Paris (France); ExtreMe Matter Institute EMMI, GSI Helmholtz Centre of Heavy Ion Research, Planckstrasse 1, D-64291 Darmstadt (Germany); Lisitsa, V. S. [Russian Research Center Kurchatov, Laboratory of Radiation Theory, Kurchatov Square 1, 123182 Moscow (Russian Federation)

    2011-09-15

    An alternative method of calculation of dense plasma effects on exchange-energy shifts {Delta}E{sub x} of highly charged ions is proposed which results in closed expressions for any plasma or perturbation potential. The method is based on a perturbation theory expansion for the inner atomic potential produced by charged plasma particles employing the Coulomb Green function method. This approach allows us to obtain analytic expressions and scaling laws with respect to the electron temperature T, density n{sub e}, and nuclear charge Z. To demonstrate the power of the present method, two specific models were considered in detail: the ion sphere model (ISM) and the Debye screening model (DSM). We demonstrate that analytical expressions can be obtained even for the finite temperature ISM. Calculations have been carried out for the singlet 1s2p{sup 1} P{sub 1} and triplet 1s2p{sup 3} P{sub 1} configurations of He-like ions with charge Z that can be observed in dense plasmas via the He-like resonance and intercombination lines. Finally we discuss recently available purely numerical calculations and experimental data.

  18. Nonradiative recombination of excitons in semimagnetic quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Chernenko, A. V., E-mail: chernen@issp.ac.ru [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation)

    2015-12-15

    The mechanisms of the nonradiative recombination of excitons in neutral and charged quantum dots based on II–VI semimagnetic semiconductors are investigated. It is shown that, along with the dipole–dipole and direct-exchange mechanisms, there is one more mechanism referred to as the indirect-exchange mechanism and related to sp–d mixing. The selection rules for nonradiative recombination by exchange mechanisms are subsequently derived. The dependence of the efficiency of all recombination mechanisms on the quantum-dot size is studied. The experimentally observed growth in the intracenter photoluminescence intensity with decreasing size of dots and nanocrystals is accounted for. Methods for experimental determination of the contributions of different mechanisms to nonradiative recombination are discussed.

  19. STRUCTURE OF THE INTERSTELLAR BOUNDARY EXPLORER RIBBON FROM SECONDARY CHARGE-EXCHANGE AT THE SOLAR–INTERSTELLAR INTERFACE

    Energy Technology Data Exchange (ETDEWEB)

    Zirnstein, E. J.; McComas, D. J. [Southwest Research Institute, San Antonio, TX 78228 (United States); Heerikhuisen, J., E-mail: ezirnstein@swri.edu, E-mail: dmccomas@swri.edu, E-mail: jacob.heerikhuisen@uah.edu [Department of Space Science and Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2015-05-01

    In 2009, the Interstellar Boundary Explorer discovered a bright “ribbon” of energetic neutral atom (ENA) flux in the energy range ≤0.4–6 keV, encircling a large portion of the sky. This observation was not previously predicted by any models or theories, and since its discovery, it has been the subject of numerous studies of its origin and properties. One of the most studied mechanisms for its creation is the “secondary ENA” process. Here, solar wind ions, neutralized by charge-exchange with interstellar atoms, propagate outside the heliopause; experience two charge-exchange events in the dense outer heliosheath; and then propagate back inside the heliosphere, preferentially in the direction perpendicular to the local interstellar magnetic field. This process has been extensively analyzed using state-of-the-art modeling and simulation techniques, but it has been difficult to visualize. In this Letter, we show the three-dimensional structure of the source of the ribbon, providing a physical picture of the spatial and energy scales over which the secondary ENA process occurs. These results help us understand how the ribbon is generated and further supports a secondary ENA process as the leading ribbon source mechanism.

  20. Exchange bias effect in Au-Fe3O4 dumbbell nanoparticles induced by the charge transfer from gold

    Energy Technology Data Exchange (ETDEWEB)

    Feygenson, Mikhail; Bauer, John C.; Gai, Zheng; Marques, Carlos; Aronson, Meigan C.; Teng, Xiaowei; Su, Dong; Stanic, Vesna; Urban, Volker S.; Beyer, Kevin A.; Dai, Sheng

    2015-08-10

    We have studied the origin of the exchange bias effect in the Au-Fe3O4 dumbbell nanoparticles in two samples with different sizes of the Au seed nanoparticles (4.1 and 2.7 nm) and same size of Fe3O4 nanoparticles (9.8 nm). The magnetization, small-angle neutron-scattering, synchrotron x-ray diffraction, and scanning transmission electron microscope measurements determined the antiferromagnetic FeO wustite phase within Fe3O4 nanoparticles, originating at the interface with the Au nanoparticles. The interface between antiferromagnetic FeO and ferrimagnetic Fe3O4 is giving rise to the exchange bias effect. The strength of the exchange bias fields depends on the interfacial area and lattice mismatch between both phases. We propose that the charge transfer from the Au nanoparticles is responsible for a partial reduction of the Fe3O4 into the FeO phase at the interface with Au nanoparticles. The Au-O bonds are formed, presumably across the interface to accommodate an excess of oxygen released during the reduction of magnetite

  1. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 2. Assessing Charge Site Location and Isotope Scrambling

    Science.gov (United States)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H]2- ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H]3- ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H]2- ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H]3- ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented.

  2. The role of meson exchange currents in charged current (anti)neutrino-nucleus scattering

    CERN Document Server

    Barbaro, M B; Caballero, J A; De Pace, A; Donnelly, T W; Megias, G D; Simo, I Ruiz

    2016-01-01

    We present our recent progress in the description of neutrino-nucleus interaction in the GeV region, of interest for ongoing and future oscillation experiments. In particular, we discuss the weak excitation of two-particle-two-hole states induced by meson exchange currents in a fully relativistic framework. We compare the results of our model with recent measurements of neutrino scattering cross sections, showing the crucial role played by two-nucleon knockout in the interpretation of the data.

  3. Shape of the Hα emission line in non resonant charge exchange in hydrogen plasmas

    International Nuclear Information System (INIS)

    The Hα line shape emitted from a maxwellian hydrogen plasma and produced by non resonant change exchange has been calculated. Its explicit shape depends on the ion temperature, on background neutral energy and on the relative shape of the collision cross section. A comparison between theoretical and experimental shapes of the Hα line is carried out to check the model and to deduce the ion plasma temperature. (author)

  4. I. Charge exchange collisions of highly stripped ions with atomic hydrogen. II. Development of a three-stage double tandem accelerator-decelerator system for low energy, highly stripped ions. Final report, March 1, 1977-May 30, 1981

    International Nuclear Information System (INIS)

    The first measurements of charge exchange (electron transfer) in kiloelectron-volt-energy highly stripped boron, carbon, nitrogen and oxygen ion collisions with atoms have been extended to additional collision energies and charge values for the ions. A first accelerator-decelerator source of very highly stripped ions has been developed, and its usefulness in charge exchange studies established

  5. Atomic data for neutron-capture elements I. Photoionization and recombination properties of low-charge selenium ions

    CERN Document Server

    Sterling, N C

    2011-01-01

    We present multi-configuration Breit-Pauli AUTOSTRUCTURE calculations of distorted-wave photoionization (PI) cross sections, and total and partial final-state resolved radiative recombination (RR) and dielectronic recombination (DR) rate coefficients for the first six ions of the trans-iron element Se. These calculations were motivated by the recent detection of Se emission lines in a large number of planetary nebulae. Se is a potentially useful tracer of neutron-capture nucleosynthesis, but accurate determinations of its abundance in photoionized nebulae have been hindered by the lack of atomic data governing its ionization balance. Our calculations were carried out in intermediate coupling with semi-relativistic radial wavefunctions. PI and recombination data were determined for levels within the ground configuration of each ion, and experimental PI cross-section measurements were used to benchmark our results. For DR, we allowed dn=0 core excitations, which are important at photoionized plasma temperatures...

  6. Relevance of Two Boson Exchange Effect in Quasi-Elastic Charged Current Neutrino-Nucleon Interaction

    OpenAIRE

    Graczyk, Krzysztof M.

    2013-01-01

    Two-boson exchange (TBE) correction in νn→l−p and ν¯p→l+n reactions is estimated. The TBE contribution is given by Wγ box diagrams. The calculations are performed for 1 GeV neutrinos and for the MiniBooNE and the T2K energy spectra. The TBE correction to the total cross section is of the order of 2–4% (with respect to the Born contribution) in the case of νe and ν¯e and 1–2% in the case of νμ and ν¯μ .

  7. A novel scenario for the possible X-ray line feature at ~3.5 keV: Charge exchange with bare sulfur ions

    CERN Document Server

    Gu, L; Raassen, A J J; Mullen, P D; Cumbee, R S; Lyons, D; Stancil, P C

    2015-01-01

    Motivated by recent claims of a compelling ~3.5 keV emission line from nearby galaxies and galaxy clusters, we investigate a novel plasma model incorporating a charge exchange component obtained from theoretical scattering calculations. Fitting this kind of component with a standard thermal model yields positive residuals around 3.5 keV, produced mostly by S XVI transitions from principal quantum numbers n > 8 to the ground. Such high-n states can only be populated by the charge exchange process. In this scenario, the observed 3.5 keV line flux in clusters can be naturally explained by an interaction in an effective volume of ~1 kpc^3 between a ~3 keV temperature plasma and cold dense clouds moving at a few hundred km/s. The S XVI lines at ~3.5 keV also provide a unique diagnostic of the charge exchange phenomenon in hot cosmic plasmas.

  8. Charged-current inclusive neutrino cross sections in the superscaling model including quasielastic, pion production and meson-exchange contributions

    Science.gov (United States)

    Ivanov, M. V.; Megias, G. D.; González-Jiménez, R.; Moreno, O.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.

    2016-08-01

    Charged current inclusive neutrino-nucleus cross sections are evaluated using the superscaling model for quasielastic scattering and its extension to the pion production region. The contribution of two-particle-two-hole vector meson-exchange current excitations is also considered within a fully relativistic model tested against electron scattering data. The results are compared with the inclusive neutrino-nucleus data from the T2K and SciBooNE experiments. For experiments where ∼ 0.8 {{GeV}}, the three mechanisms considered in this work provide good agreement with the data. However, when the neutrino energy is larger, effects from beyond the Δ also appear to be playing a role. The results show that processes induced by vector two-body currents play a minor role in the inclusive cross sections at the kinematics considered.

  9. Charge exchange in H{sup +} grazing scattering off clean and AlF{sub 3} covered Al(111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lugo, J.O.; Sanchez, E.A.; Grizzi, O. [Centro Atomico Bariloche - CNEA, CONICET, Instituto Balseiro - UNC, 8400 S.C. de Bariloche, Rio Negro (Argentina); Goldberg, E.C. [INTEC (CONICET-UNL), Gueemes 3450, cc 912, 3000 Santa Fe (Argentina); Facultad de Ingenieria Quimica, Univ. Nacional del Litoral, Santiago del Estero 2829, 3000 Santa Fe (Argentina)

    2004-08-01

    Ion Scattering Spectroscopy with Time-of-Flight analysis is used to characterize the deposition of thin insulating films (AlF{sub 3}) on Al(111) samples, and to measure the ion fractions for 20 keV H{sup +} projectiles scattered off clean and AlF{sub 3} covered Al(111) surfaces. The ion fraction measured for the clean surface is {proportional_to}12%, composed mainly of negative ions. For {proportional_to}2 ML of AlF{sub 3}, the ion fraction increases, being in this case mainly composed of positive ions ({gamma}{sup +}= 33%, {gamma}{sup -}= 3%). A calculation of the dynamical evolution of the collision and the resonant charge exchange processes describes the experimental trends. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Localization of the large-angle foil-scattering beam loss caused by the multiturn charge-exchange injection

    Science.gov (United States)

    Kato, Shinichi; Yamamoto, Kazami; Yoshimoto, Masahiro; Harada, Hiroyuki; Kinsho, Michikazu

    2013-07-01

    In the 3 GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex, significant losses were observed at the branching of the H0 dump line and the beam position monitor that was inserted downstream of the H0 dump branch duct. These losses were caused by the large-angle scattering of the injection and circulating beams at the charge-exchange foil. To realize high-power operation, these losses must be mitigated. Therefore, a new collimation system was developed and installed in October 2011. To efficiently optimize this system, the behavior of particles scattered by the foil and produced by the absorber were simulated, and the optimal position and angle of the absorber were investigated. During this process, an angle regulation method for the absorber was devised. An outline of this system, the angle regulation method for the absorber, and the performance of this new collimation system are described.

  11. Self-consistent continuum random-phase approximation with finite-range interactions for charge-exchange excitations

    CERN Document Server

    De Donno, V; Anguiano, M; Lallena, A M

    2016-01-01

    The formalism of the continuum random-phase approximation theory which treats, without ap- proximations, the continuum part of the single-particle spectrum, is extended to describe charge- exchange excitations. Our approach is self-consistent, meaning that we use a unique, finite-range, interaction in the Hartree-Fock calculations which generate the single-particle basis and in the con- tinuum random-phase approximation which describes the excitation. We study excitations induced by the Fermi, Gamow-Teller and spin-dipole operators in doubly magic nuclei by using four Gogny- like finite-range interactions, two of them containing tensor forces. We focus our attention on the importance of the correct treatment of the continuum configuration space and on the effects of the tensor terms of the force.1

  12. Cyclic voltammetry on sputter-deposited films of electrochromic Ni oxide: Power-law decay of the charge density exchange

    International Nuclear Information System (INIS)

    Ni-oxide-based thin films were produced by reactive direct-current magnetron sputtering and were characterized by X-ray diffraction and Rutherford backscattering spectroscopy. Intercalation of Li+ ions was accomplished by cyclic voltammetry (CV) in an electrolyte of LiClO4 in propylene carbonate, and electrochromism was documented by spectrophotometry. The charge density exchange, and hence the optical modulation span, decayed gradually upon repeated cycling. This phenomenon was accurately described by an empirical power law, which was valid for at least 104 cycles when the applied voltage was limited to 4.1 V vs Li/Li+. Our results allow lifetime assessments for one of the essential components in an electrochromic device such as a “smart window” for energy-efficient buildings.

  13. Cyclic voltammetry on sputter-deposited films of electrochromic Ni oxide: Power-law decay of the charge density exchange

    Science.gov (United States)

    Wen, Rui-Tao; Granqvist, Claes G.; Niklasson, Gunnar A.

    2014-10-01

    Ni-oxide-based thin films were produced by reactive direct-current magnetron sputtering and were characterized by X-ray diffraction and Rutherford backscattering spectroscopy. Intercalation of Li+ ions was accomplished by cyclic voltammetry (CV) in an electrolyte of LiClO4 in propylene carbonate, and electrochromism was documented by spectrophotometry. The charge density exchange, and hence the optical modulation span, decayed gradually upon repeated cycling. This phenomenon was accurately described by an empirical power law, which was valid for at least 104 cycles when the applied voltage was limited to 4.1 V vs Li/Li+. Our results allow lifetime assessments for one of the essential components in an electrochromic device such as a "smart window" for energy-efficient buildings.

  14. Cyclic voltammetry on sputter-deposited films of electrochromic Ni oxide: Power-law decay of the charge density exchange

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Rui-Tao, E-mail: Ruitao.Wen@angstrom.uu.se; Granqvist, Claes G.; Niklasson, Gunnar A. [Department of Engineering Sciences, The A°ngström Laboratory, Uppsala University, P. O. Box 534, SE-75121 Uppsala (Sweden)

    2014-10-20

    Ni-oxide-based thin films were produced by reactive direct-current magnetron sputtering and were characterized by X-ray diffraction and Rutherford backscattering spectroscopy. Intercalation of Li{sup +} ions was accomplished by cyclic voltammetry (CV) in an electrolyte of LiClO{sub 4} in propylene carbonate, and electrochromism was documented by spectrophotometry. The charge density exchange, and hence the optical modulation span, decayed gradually upon repeated cycling. This phenomenon was accurately described by an empirical power law, which was valid for at least 10{sup 4} cycles when the applied voltage was limited to 4.1 V vs Li/Li{sup +}. Our results allow lifetime assessments for one of the essential components in an electrochromic device such as a “smart window” for energy-efficient buildings.

  15. Charge Exchange in Low-Energy H, D + C4+ Collisions with Full Account of Electron Translation

    Directory of Open Access Journals (Sweden)

    N. Vaeck

    2002-03-01

    Full Text Available We report the application of the quantum approach, which takes full account of electron translation at low collisional energies, to the charge exchange process H, D + C4+ → H+, D+ + C3+(3s; 3p; 3d. The partial and the total integral cross sections of the process are calculated in the energy range from 1 till 60 eV/amu. It is shown that the present results are independent from the upper integration limit for numerical solution of the coupled channel equations although nonadiabatic couplings remain nonzero up to infinity. The calculated partial and total cross sections are in agreement with the previous low-energy calculations and the available experimental data. It is shown that for low collisional energies the isotopic effect takes place. The observed effect is explained in terms of the nonadiabatic dynamics.

  16. Measurement of the $\\bar{p}p \\rightarrow \\bar{n}n$ Charge-Exchange Differential Cross-Section

    CERN Multimedia

    2002-01-01

    The aim of this proposal is a measurement of the differential cross-section of the $\\bar{p}$p $\\rightarrow$ $\\bar{n}$n charge-exchange reaction with a point-to-point precision of 1\\% in the forward direction, and an absolute normalization error of 3\\%. The high precision of the data should allow, inter alia, a determination of the $\\pi$NN coupling constant to better than 2\\%.\\\\ \\\\ The measurement will be done using the existing neutron and antineutron detectors built for experiment PS199 and liquid hydrogen target. In one week of running time, with a $\\bar{p}$ beam intensity of 3 $ 10 ^{5} $ $\\bar{p}$/sec, the reaction will be measured at a few $\\bar{p}$ momenta, in the range 500 to 900~MeV/c.

  17. A microscopic approach based on particle-vibration coupling: application to charge-exchange transitions and multiplets in odd nuclei

    Directory of Open Access Journals (Sweden)

    Colò Gianluca

    2016-01-01

    Full Text Available In this contribution, we shall describe a formalism that goes beyond the simple time-dependent mean field and is based on particle-vibration coupling (PVC. Such a formalism has been developed with the idea of being self-consistent. It makes use of Skyrme effective forces, and has been used for several applications. We will focus on charge-exchange transitions, namely we will show that our model describes well both the Gamow-Teller giant resonance width, and the low-lying transitions associated with β-decay. In this latter case, including PVC produces a significant improvement of the half-lives obtained at mean-field level, and leads to a good agreement with experimental data. We will end by discussing particle-phonon multiplets in odd nuclei.

  18. Influence of charge exchange in acidic aqueous and alcoholic titania dispersions on viscosity.

    Science.gov (United States)

    Rosenholm, Jarl B; Dahlsten, Per

    2015-12-01

    Charging effects resulting from adsorption of acid, acid anions, and protons on titania (anatase) surfaces in anhydrous or mixed alcohol-water dispersions is summarized. The suddenly enhanced conductivity as compared to titania-free solutions has previously been modeled and explained as surface-induced electrolytic dissociation (SIED) of weak acids. This model and recently published results identifying concurrent surface-induced liquid (solvent) dissociation (SILD) are evaluated with experimentally determined conductivity and pH of solutions, zeta-potential of particles, and viscosity of dispersions. Titania (0-25wt%)-alcohol (methanol, ethanol, and propanol) dispersions mixed with (0-100wt%) water were acidified with oxalic, phosphoric, and sulfuric acids. It was found that the experimental results could in many cases be condensed to master curves representing extensive experimental results. These curves reveal that major properties of the systems appear within three concentration regions were different mechanisms (SILD, surface-induced liquid dissociation; SIAD, surface-induced acid dissociation) and charge rearrangement were found to be simultaneously active. In particular, zeta-potential - pH and viscosity - pH curves are in acidified non-polar solvents mirror images to those dependencies observed in aqueous dispersions to which hydroxyl is added. The results suggest that multiple dispersion and adsorption equilibria should be considered in order to characterize the presented exceptionally extensive and complex experimental results. PMID:26520241

  19. Charge recombination processes in minerals studied using optically stimulated luminescence and time-resolved exo-electrons

    DEFF Research Database (Denmark)

    Tsukamoto, Sumiko; Murray, Andrew; Ankjærgaard, Christina;

    2010-01-01

    on the probability of (1) escape of electrons into the detector gas from the conduction band by overcoming the work function of the material and (2) thermalization of electrons in the conduction band, and subsequent re-trapping/recombination. Thus, we expect the exo-electron signal to reflect the instantaneous...

  20. Effect of Molecular Coupling on Ultrafast Electron-Transfer and Charge-Recombination Dynamics in a Wide-Gap ZnS Nanoaggregate Sensitized by Triphenyl Methane Dyes.

    Science.gov (United States)

    Debnath, Tushar; Maity, Partha; Dana, Jayanta; Ghosh, Hirendra N

    2016-03-01

    Wide-band-gap ZnS nanocrystals (NCs) were synthesized, and after sensitizing the NCs with series of triphenyl methane (TPM) dyes, ultrafast charge-transfer dynamics was demonstrated. HRTEM images of ZnS NCs show the formation of aggregate crystals with a flower-like structure. Exciton absorption and lumimescence, due to quantum confinement of the ZnS NCs, appear at approximately 310 and 340 nm, respectively. Interestingly, all the TPM dyes (pyrogallol red, bromopyrogallol red, and aurin tricarboxylic acid) form charge-transfer complexes with the ZnS NCs, with the appearance of a red-shifted band. Electron injection from the photoexcited TPM dyes into the conduction band of the ZnS NCs is shown to be a thermodynamically viable process, as confirmed by steady-state and time-resolved emission studies. To unravel charge-transfer (both electron injection and charge recombination) dynamics and the effect of molecular coupling, femtosecond transient absorption studies were carried out in TPM-sensitized ZnS NCs. The electron-injection dynamics is pulse-width-limited in all the ZnS/TPM dye systems, however, the back electron transfer differs, depending on the molecular coupling of the sensitizers (TPM dyes). The detailed mechanisms for the above-mentioned processes are discussed. PMID:26548569

  1. Charge exchange transition probability for collisions between unlike ions and atoms within the adiabatic approximation

    Science.gov (United States)

    Xu, Y. J.; Khandelwal, G. S.; Wilson, John W.

    1989-01-01

    A simple formula for the transition probability for electron exchange between unlike ions and atoms is established within the adiabatic approximation by employing the Linear Combination of Atomic Orbitals (LCAO) method. The formula also involves an adiabatic parameter, introduced by Massey, and thus the difficulties arising from the internal energy defect and the adiabatic approximation are avoided. Specific reactions Li(+++) + H to Li(++) + H(+) and Be(4+) + H to Be(3+) + H(+) are considered as examples. The calculated capture cross section results of the present work are compared with the experimental data and with the calculation of other authors over the velocity range of 10(7) cm/sec to 10(8) cm/sec.

  2. Recombination kinetics in a silicon solar cell at low concentration: electro-analytical characterization of space-charge and quasi-neutral regions.

    Science.gov (United States)

    Yadav, Pankaj; Tripathi, Brijesh; Pandey, Kavita; Kumar, Manoj

    2014-08-01

    The present work reports a detailed electro-analytical framework for studying commercially available mono-crystalline silicon solar cells under varying illumination conditions to explore their application in the up-and-coming field of low concentration photovoltaics (LCPVs). The effect of low concentration illumination (>1-12 suns) on performance indicating parameters, i.e., short circuit current, open circuit voltage, fill factor, efficiency and ideality factor, was investigated using DC characterization. The same framework can be used for AC characterization in order to explore diffusion capacitance, transition capacitance, diffusion resistance and recombination kinetics under varying illumination. Recent developments in the impedance spectroscopy technique have broadened its horizon and have allowed its use in addressing unexplored material and performance aspects of mono-crystalline Si solar cells under non-equilibrium conditions. The obtained DC and AC experimental results are coupled with theoretical treatment to demonstrate the characteristic features of charge recombination in the space-charge region and the quasi-neutral region.

  3. Light-Induced ESR Studies of Quadrimolecular Recombination Kinetics of Photogenerated Charge Carriers in Regioregular Poly(3-alkylthiophene)/C60 Composites: Alkyl Chain Dependence

    Science.gov (United States)

    Tanaka, Hisaaki; Hasegawa, Naoki; Sakamoto, Tomotaka; Marumoto, Kazuhiro; Kuroda, Shin-ichi

    2007-08-01

    Light-induced ESR (LESR) measurements have been performed on the composites of regioregular poly(3-alkylthiophene) (RR-P3AT) and C60 by using polymers having different alkyl chains (CmH2m+1 with m=6, 8, 10, 12). The quadrimolecular recombination (QR) kinetics of photogenerated charge carriers, previously reported, have been confirmed for all the composites from the excitation power (Iex) dependence of the LESR intensity showing an ˜Iex0.25 dependence. The time decay of LESR intensity is also consistent with the QR model. Considering that only bimolecular recombination is observed in regiorandom polymer composites, the occurrence of QR strongly suggests the formation of doubly charged states, either bipolarons or polaron pairs on the regioregular polymer chains. On the other hand, the QR rate constant γ has been found to exhibit weak alkyl chain dependence, contrary to the case of the field-effect mobility of pure regioregular polymers with systematic alkyl chain dependence. This implies the significant contribution of the polymer and fullerene interface in determining γ.

  4. Beam emittance growth in a proton storage ring employing charge exchange injection

    International Nuclear Information System (INIS)

    Recently, it has been shown that very large currents can be accumulated in medium energy proton storage rings by multiturn injection of an H- beam through a charge stripping medium. Since the particles are injected continuously into the same phase space, it is possible to increase the circulating beam brightness with respect to that of the incoming beam by a large factor. The stored protons pass repeatedly through the stripper, however, so that this phase space is gradually enlarged by scattering. The dependence of the circulating beam phase space (emittance) growth rate on the nature of the scattering process and on where it occurs in the storage ring matrix is considered. Since the motivation for this work arose in connection with the design of the proposed high-current storage ring at LAMPF, the results are focused on the specific parameters of that device. (U.S.)

  5. Quantum-mechanical interference in charge exchange between hydrogen and graphene-like surfaces

    International Nuclear Information System (INIS)

    The neutral to negative charge fluctuation of a hydrogen atom in front of a graphene surface is calculated by using the Anderson model within an infinite intra atomic Coulomb repulsion approximation. We perform an ab initio calculation of the Anderson hybridization function that allows investigation of the effect of quantum-mechanical interference related to the Berry phase inherent to the graphene band structure. We find that consideration of the interaction of hydrogen on top of many C atoms leads to a marked asymmetry of the imaginary part of the hybridization function with respect to the Fermi level. Consequently, Fano factors larger than one and strongly dependent on the energy around the Fermi level are predicted. Moreover, the suppression of the hybridization for energies above the Fermi level can explain the unexpected large negative ion formation measured in the scattering of protons by graphite-like surfaces. (paper)

  6. Discrimination between spin-dependent charge transport and spin-dependent recombination in π-conjugated polymers by correlated current and electroluminescence-detected magnetic resonance

    Science.gov (United States)

    Kavand, Marzieh; Baird, Douglas; van Schooten, Kipp; Malissa, Hans; Lupton, John M.; Boehme, Christoph

    2016-08-01

    Spin-dependent processes play a crucial role in organic electronic devices. Spin coherence can give rise to spin mixing due to a number of processes such as hyperfine coupling, and leads to a range of magnetic field effects. However, it is not straightforward to differentiate between pure single-carrier spin-dependent transport processes which control the current and therefore the electroluminescence, and spin-dependent electron-hole recombination which determines the electroluminescence yield and in turn modulates the current. We therefore investigate the correlation between the dynamics of spin-dependent electric current and spin-dependent electroluminescence in two derivatives of the conjugated polymer poly(phenylene-vinylene) using simultaneously measured pulsed electrically detected (pEDMR) and optically detected (pODMR) magnetic resonance spectroscopy. This experimental approach requires careful analysis of the transient response functions under optical and electrical detection. At room temperature and under bipolar charge-carrier injection conditions, a correlation of the pEDMR and the pODMR signals is observed, consistent with the hypothesis that the recombination currents involve spin-dependent electronic transitions. This observation is inconsistent with the hypothesis that these signals are caused by spin-dependent charge-carrier transport. These results therefore provide no evidence that supports earlier claims that spin-dependent transport plays a role for room-temperature magnetoresistance effects. At low temperatures, however, the correlation between pEDMR and pODMR is weakened, demonstrating that more than one spin-dependent process influences the optoelectronic materials' properties. This conclusion is consistent with prior studies of half-field resonances that were attributed to spin-dependent triplet exciton recombination, which becomes significant at low temperatures when the triplet lifetime increases.

  7. Charge-exchange-induced two-electron satellite transitions from autoionizing levels in dense plasmas.

    Science.gov (United States)

    Rosmej, F B; Griem, H R; Elton, R C; Jacobs, V L; Cobble, J A; Faenov, A Ya; Pikuz, T A; Geissel, M; Hoffmann, D H H; Süss, W; Uskov, D B; Shevelko, V P; Mancini, R C

    2002-11-01

    Order-of-magnitude anomalously high intensities for two-electron (dielectronic) satellite transitions, originating from the He-like 2s(2) 1S0 and Li-like 1s2s(2) (2)S(1/2) autoionizing states of silicon, have been observed in dense laser-produced plasmas at different laboratories. Spatially resolved, high-resolution spectra and plasma images show that these effects are correlated with an intense emission of the He-like 1s3p 1P-1s(2) 1S lines, as well as the K(alpha) lines. A time-dependent, collisional-radiative model, allowing for non-Maxwellian electron-energy distributions, has been developed for the determination of the relevant nonequilibrium level populations of the silicon ions, and a detailed analysis of the experimental data has been carried out. Taking into account electron density and temperature variations, plasma optical-depth effects, and hot-electron distributions, the spectral simulations are found to be not in agreement with the observations. We propose that highly stripped target ions (e.g., bare nuclei or H-like 1s ground-state ions) are transported into the dense, cold plasma (predominantly consisting of L- and M-shell ions) near the target surface and undergo single- and double-electron charge-transfer processes. The spectral simulations indicate that, in dense and optically thick plasmas, these charge-transfer processes may lead to an enhancement of the intensities of the two-electron transitions by up to a factor of 10 relative to those of the other emission lines, in agreement with the spectral observations. PMID:12513602

  8. Modeling the magnetospheric X-ray emission from solar wind charge exchange with verification from XMM-Newton observations

    Science.gov (United States)

    Whittaker, Ian C.; Sembay, Steve; Carter, Jennifer A.; Read, Andrew M.; Milan, Steve E.; Palmroth, Minna

    2016-05-01

    An MHD-based model of terrestrial solar wind charge exchange (SWCX) is created and compared to 19 case study observations in the 0.5-0.7 keV emission band taken from the European Photon Imaging Cameras on board XMM-Newton. This model incorporates the Global Unified Magnetosphere-Ionosphere Coupling Simulation-4 MHD code and produces an X-ray emission datacube from O7+ and O8+ emission lines around the Earth using in situ solar wind parameters as the model input. This study details the modeling process and shows that fixing the oxygen abundances to a constant value reduces the variance when comparing to the observations, at the cost of a small accuracy decrease in some cases. Using the ACE oxygen data returns a wide ranging accuracy, providing excellent correlation in a few cases and poor/anticorrelation in others. The sources of error for any user wishing to simulate terrestrial SWCX using an MHD model are described here and include mask position, hydrogen to oxygen ratio in the solar wind, and charge state abundances. A dawn-dusk asymmetry is also found, similar to the results of empirical modeling. Using constant oxygen parameters, magnitudes approximately double that of the observed count rates are returned. A high accuracy is determined between the model and observations when comparing the count rate difference between enhanced SWCX and quiescent periods.

  9. Atomic Data for Neutron-capture Elements I. Photoionization and Recombination Properties of Low-charge Selenium Ions

    Science.gov (United States)

    Sterling, N. C.; Witthoeft, Michael

    2011-01-01

    We present multi-configuration Breit-Pauli AUTOSTRUCTURE calculations of distorted-wave photoionization (PI) cross sections. and total and partial final-state resolved radiative recombination (RR) and dielectronic recombination (DR) rate coefficients for the first six ions of the trans-iron element Se. These calculations were motivated by the recent detection of Se emission lines in a large number of planetary nebulae. Se is a potentially useful tracer of neutron-capture nucleosynthesis. but accurate determinations of its abundance in photoionized nebulae have been hindered by the lack of atomic data governing its ionization balance. Our calculations were carried out in intermediate coupling with semi re1ativistic radial wavefunctions. PI and recombination data were determined for levels within the ground configuration of each ion, and experimental PI cross-section measurements were used to benchmark our results. For DR, we allowed (Delta)n = 0 core excitations, which are important at photoionized plasma temperatures. We find that DR is the dominant recombination process for each of these Se ions at temperatures representative of photoionized nebulae (approx.10(exp 4) K). In order to estimate the uncertainties of these data, we compared results from three different configuration-interaction expansions for each ion, and also tested the sensitivity of the results to the radial scaling factors in the structure calculations. We find that the internal uncertainties are typically 30-50% for the direct PI cross sections and approx.10% for the computed RR rate coefficients, while those for low-temperature DR can be considerably larger (from 15-30% up to two orders of magnitude) due to the unknown energies of near-threshold autoionization resonances. These data are available at the CDS, and fitting coefficients to the total RR and DR rate coefficients are presented. The results are suitable for incorporation into photoionization codes used to numerically simulate

  10. First observation of correlated photons emitted by heavy highly charged ions in the process of radiative recombination

    International Nuclear Information System (INIS)

    Dynamics of the electron spin in the Photoelectric Effect was studied in time-reversal via the process of Radiative Recombination. For this the photorecombination into an excited state of an ion and its subsequent radiative decay was observed. Pairs of correlated photons were detected in coincidence. Such an observation is the first of its kind for the initial ion as heavy as bare uranium.

  11. Chandra observations of comet 2P/Encke 2003 : First detection of a collisionally thin, fast solar wind charge exchange system

    NARCIS (Netherlands)

    Lisse, CM; Christian, DJ; Dennerl, K; Wolk, SJ; Bodewits, D; Hoekstra, R; Combi, MR; Makinen, T; Dryer, M; Fry, CD; Weaver, H

    2005-01-01

    We report the results of 15 hr of Chandra observations of comet 2P/Encke 2003 on November 24. X-ray emission from comet Encke was resolved on scales of 500-40,000 km, with unusual morphology due to the presence of a low-density, collisionally thin (to charge exchange) coma. A light curve with peak-t

  12. Charge exchange and energy loss of slowed down heavy ions channeled in silicon crystals; Echanges de charge et perte d'energie d'ions lourds ralentis, canalises dans des cristaux de silicium

    Energy Technology Data Exchange (ETDEWEB)

    Testa, E

    2005-10-15

    This work is devoted to the study of charge exchange processes and of the energy loss of highly charged heavy ions channeled in thin silicon crystals. The two first chapters present the techniques of heavy ion channeling in a crystal, the ion-electron processes and the principle of our simulations (charge exchange and trajectory of channeled ions). The next chapters describe the two experiments performed at the GSI facility in Darmstadt, the main results of which follow: the probability per target atom of the mechanical capture (MEC) of 20 MeV/u U{sup 91+} ions as a function of the impact parameter (with the help of our simulations), the observation of the strong polarization of the target electron gas by the study of the radiative capture and the slowing down of Pb{sup 81+} ions from 13 to 8,5 MeV/u in channeling conditions for which electron capture is strongly reduced. (author)

  13. Charge recombination kinetics and protein dynamics in wild type and carotenoid-less bacterial reaction centers: studies in trehalose glasses.

    Science.gov (United States)

    Francia, Francesco; Malferrari, Marco; Sacquin-Mora, Sophie; Venturoli, Giovanni

    2009-07-30

    The coupling between electron transfer and protein dynamics has been investigated in reaction centers (RCs) from the wild type (wt) and the carotenoid-less strain R26 of the photosynthetic bacterium Rhodobacter sphaeroides. Recombination kinetics between the primary photoreduced quinone acceptor (QA-) and photoxidized donor (P+) have been analyzed at room temperature in RCs incorporated into glassy trehalose matrices of different water/sugar ratios. As previously found in R26 RCs, also in the wt RC, upon matrix dehydration, P+QA- recombination accelerates and becomes broadly distributed, reflecting the inhibition of protein relaxation from the dark-adapted to the light-adapted conformation and the hindrance of interconversion between conformational substates. While in wet trehalose matrices (down to approximately one water per trehalose molecule) P+QA- recombination kinetics are essentially coincident in wt and R26 RCs, more extensive dehydration leads to two-times faster and more distributed kinetics in the carotenoid-containing RC, indicating a stronger inhibition of the internal protein dynamics in the wt RC. Coarse-grained Brownian dynamics simulations performed on the two RC structures reveal a markedly larger flexibility of the R26 RC, showing that a rigid core of residues, close to the quinone acceptors, is specifically softened in the absence of the carotenoid. These experimental and computational results concur to indicate that removal of the carotenoid molecule has long-range effects on protein dynamics and that the structural/dynamical coupling between the protein and the glassy matrix depends strongly upon the local mechanical properties of the protein interior. The data also suggest that the conformational change stabilizing P+QA- is localized around the QA binding pocket.

  14. Deep recombination centers in C u2ZnSnS e4 revealed by screened-exchange hybrid density functional theory

    Science.gov (United States)

    Yee, Ye Sheng; Magyari-Köpe, Blanka; Nishi, Yoshio; Bent, Stacey F.; Clemens, Bruce M.

    2015-11-01

    We present a comprehensive study of the thermodynamic and electronic properties of intrinsic point defects in the solar energy conversion materials C u2ZnSnS e4 and CuInS e2 based on the screened-exchange hybrid density functional theory. A comparison between the defect transition levels for C u2ZnSnS e4 and CuInS e2 reveals that in C u2ZnSnS e4 , the S nCu and S nZn antisite defects can be recombination centers with defect states close to midgap, while the I nCu antisite defect has a shallow defect level in CuInS e2 . The resultant higher Shockley-Read-Hall recombination rate in C u2ZnSnS e4 reduces the steady-state concentration of minority carriers and quasi-Fermi level separation under illumination. This may explain the origin of the low open-circuit voltage values for C u2ZnSnS e4 solar cells compared to CuInS e2 solar cells.

  15. Charge Exchange-induced X-Ray Emission of Fe xxv and Fe xxvI via a Streamlined Model

    Science.gov (United States)

    Mullen, P. D.; Cumbee, R. S.; Lyons, D.; Stancil, P. C.

    2016-06-01

    Charge exchange (CX) is an important process for the modeling of X-ray spectra obtained by the Chandra, XMM-Newton, and Suzaku X-ray observatories, as well as the anticipated Astro-H mission. The understanding of the observed X-ray spectra produced by many astrophysical environments is hindered by the current incompleteness of available atomic and molecular data—especially for CX. Here, we implement a streamlined program set that applies quantum defect methods and the Landau–Zener theory to generate total, n-resolved, and n{\\ell }S-resolved cross sections for any given projectile ion/target CX collision. By using these data in a cascade model for X-ray emission, theoretical spectra for such systems can be predicted. With these techniques, Fe25+ and Fe26+ CX collisions with H, He, H2, N2, H2O, and CO are studied for single-electron capture (SEC). These systems have been selected because they illustrate computational difficulties for high projectile charges. Furthermore, Fe xxv and Fe xxvi emission lines have been detected in the Galactic center and Galactic ridge. Theoretical X-ray spectra for these collision systems are compared to experimental data generated by an electron-beam ion trap study. Several ℓ-distribution models have been tested for Fe25+ and Fe26+ SEC. Such analyses suggests that commonly used ℓ-distribution models struggle to accurately reflect the true distribution of electron capture as understood by more advanced theoretical methods.

  16. A combined desorption ionization by charge exchange (DICE) and desorption electrospray ionization (DESI) source for mass spectrometry.

    Science.gov (United States)

    Chan, Chang-Ching; Bolgar, Mark S; Miller, Scott A; Attygalle, Athula B

    2011-01-01

    A source that couples the desorption ionization by charge exchange (DICE) and desorption electrospray ionization (DESI) techniques together was demonstrated to broaden the range of compounds that can be analyzed in a single mass spectrometric experiment under ambient conditions. A tee union was used to mix the spray reagents into a partially immiscible blend before this mixture was passed through a conventional electrospray (ES) probe capillary. Using this technique, compounds that are ionized more efficiently by the DICE method and those that are ionized better with the DESI procedure could be analyzed simultaneously. For example, hydroquinone, which is not detected when subjected to DESI-MS in the positive-ion generation mode, or the sodium adduct of guaifenesin, which is not detected when examined by DICE-MS, could both be detected in one experiment when the two techniques were combined. The combined technique was able to generate the molecular ion, proton and metal adduct from the same compound. When coupled to a tandem mass spectrometer, the combined source enabled the generation of product ion spectra from the molecular ion and the [M + H](+) or [M + metal](+) ions of the same compound without the need to physically change the source from DICE to DESI. The ability to record CID spectra of both the molecular ion and adduct ions in a single mass spectrometric experiment adds a new dimension to the array of mass spectrometric methods available for structural studies. PMID:21472555

  17. A Combined Desorption Ionization by Charge Exchange (DICE) and Desorption Electrospray Ionization (DESI) Source for Mass Spectrometry

    Science.gov (United States)

    Chan, Chang-Ching; Bolgar, Mark S.; Miller, Scott A.; Attygalle, Athula B.

    2011-01-01

    A source that couples the desorption ionization by charge exchange (DICE) and desorption electrospray ionization (DESI) techniques together was demonstrated to broaden the range of compounds that can be analyzed in a single mass spectrometric experiment under ambient conditions. A tee union was used to mix the spray reagents into a partially immiscible blend before this mixture was passed through a conventional electrospray (ES) probe capillary. Using this technique, compounds that are ionized more efficiently by the DICE method and those that are ionized better with the DESI procedure could be analyzed simultaneously. For example, hydroquinone, which is not detected when subjected to DESI-MS in the positive-ion generation mode, or the sodium adduct of guaifenesin, which is not detected when examined by DICE-MS, could both be detected in one experiment when the two techniques were combined. The combined technique was able to generate the molecular ion, proton and metal adduct from the same compound. When coupled to a tandem mass spectrometer, the combined source enabled the generation of product ion spectra from the molecular ion and the [M + H]+ or [M + metal]+ ions of the same compound without the need to physically change the source from DICE to DESI. The ability to record CID spectra of both the molecular ion and adduct ions in a single mass spectrometric experiment adds a new dimension to the array of mass spectrometric methods available for structural studies.

  18. Fluorescence Quenching by Reversible Charge Separation Followed by Ions Recombination and Their Separation Suppressed by Coulomb Attraction

    Directory of Open Access Journals (Sweden)

    A. I. Burshtein

    2012-01-01

    Full Text Available The Stern-Volmer constant is specified for the luminescence quenched by reversible ionization of excited molecules. The exergonic branch of the Rehm-Weller free energy dependence of this constant is known to be a plateau determined by irreversible ionization being under diffusion control. In the endergonic region the ionization is reversible and competes with the irreversible in-cage recombination of ions and their escape from the cage. At strong Coulomb attraction the latter phenomenon is shown to be negligible compared to the former that determines the shape and location of the descending branch of the Rehm-Weller curve. At weaker Coulomb attraction (at higher solvent polarity, this curve turns down at larger endergonicity. The experimental data obtained in solvents of different polarities are put in order and in full accordance with present theory.

  19. Role of recombination, dissociation, and competition between exciton-charge reactions in magnetoconductance of polymeric semiconductor device

    International Nuclear Information System (INIS)

    Magnetoelectrical measurements were performed on a diode structure, based on an anthracene-containing poly(arylene-ethynylylene)-alt-poly(arylene-vinylene) denoted AnE-PVstat, to clarify the role of the recombination and dissociation of electron-hole (e-h) pairs in the magnetoconductance (MC). We report the observed MC under a weak magnetic field (<1 T) at room and low temperatures. Positive MC is observed and reaches up to 2% at a magnetic field of 450 mT at room temperature. It is found that with the increase of the voltage, the MC effect decreases. We also report the difference in MC between perpendicular (θ = 90°) and parallel (θ = 0°) alignment of magnetic field with respect to the current direction. The experimental data were analyzed in the context of the e-h pair model, based on the Stochastic Liouville Equation. To interpret the experimental results on magnetoconductance measurements, anisotropic hyperfine interaction has been introduced through an anisotropic hyperfine field. The dissociation rates qS and qT of the singlet and triplet e-h pairs were determined from the best fit with experimental curves and are about 105 s−1, while the recombination rates of the singlet and triplet e-h pairs are kS ∼ 109 s−1 and kT ∼ 105 s−1, respectively. At low temperatures (T < 60 K), an unexpected “sign-reversal phenomenon” of the magnetoconductance is observed

  20. Complete Monitoring of Coherent and Incoherent Spin Flip Domains in the Recombination of Charge-Separated States of Donor-Iridium Complex-Acceptor Triads.

    Science.gov (United States)

    Klein, Johannes H; Schmidt, David; Steiner, Ulrich E; Lambert, Christoph

    2015-09-01

    The spin chemistry of photoinduced charge-separated (CS) states of three triads comprising one or two triarylamine donors, a cyclometalated iridium complex sensitizer and a naphthalene diimide (NDI) acceptor, was investigated by transient absorption spectroscopy in the ns-μs time regime. Strong magnetic-field effects (MFE) were observed for two triads with a phenylene bridge between iridium complex sensitizer and NDI acceptor. For these triads, the lifetimes of the CS states increased from 0.6 μs at zero field to 40 μs at about 2 T. Substituting the phenylene by a biphenyl bridge causes the lifetime of the CS state at zero field to increase by more than 2 orders of magnitude (τ = 79 μs) and the MFE to disappear almost completely. The kinetic MFE was analyzed in the framework of a generalized Hayashi-Nagakura scheme describing coherent (S, T0 ↔ T±) as well as incoherent (S, T0 ⇌ T±) processes by a single rate constant k±. The magnetic-field dependence of k± of the triads with phenylene bridge spans 2 orders of magnitude and exhibits a biphasic behavior characterized by a superposition of two Lorentzians. This biphasic MFE is observed for the first time and is clearly attributable to the coherent (B accounts for the reduction of the MFE on reducing the rate constant of charge recombination in the triad with the biphenyl bridge. PMID:26091082

  1. Direct femtosecond observation of charge carrier recombination in ternary semiconductor nanocrystals: The effect of composition and shelling

    KAUST Repository

    Bose, Riya

    2015-02-12

    Heavy-metal free ternary semiconductor nanocrystals are emerging as key materials in photoactive applications. However, the relative abundance of intra-bandgap defect states and lack of understanding of their origins within this class of nanocrystals are major factors limiting their applicability. To remove these undesirable defect states which considerably shorten the lifetimes of photogenerated excited carriers, a detailed understanding about their origin and nature is required. In this report, we monitor the ultrafast charge carrier dynamics of CuInS2 (CIS), CuInSSe (CISSe), and CuInSe2 (CISe) nanocrystals, before and after ZnS shelling, using state-of-the-art time-resolved laser spectroscopy with broadband capabilities. The experimental results demonstrate the presence of both electron and hole trapping intra-bandgap states in the nanocrystals which can be removed significantly by ZnS shelling, and the carrier dynamics is slowed down. Another important observation remains the reduction of carrier lifetime in the presence of Se, and the shelling strategy is observed to be less effective at suppressing trap states. This study provides quantitative physical insights into the role of anion composition and shelling on the charge carrier dynamics in ternary CIS, CISSe, and CISe nanocrystals which are essential to improve their applicability for photovoltaics and optoelectronics.

  2. Comment on "Classical description of H (1 s ) and H*(n =2 ) for cross-section calculations relevant to charge-exchange diagnostics"

    Science.gov (United States)

    Jorge, A.; Errea, L. F.; Illescas, Clara; Méndez, L.

    2016-06-01

    Cariatore et al. [Phys. Rev. A 91, 042709 (2015), 10.1103/PhysRevA.91.042709] have introduced a modification of the classical trajectory Monte Carlo (CTMC) method, specially conceived to provide an accurate representation of charge-exchange processes between highly charged ions and H (1 s ) , H*(n =2 ) . We point out that this new CTMC treatment is based on nonstable initial distributions for H*(n =2 ) targets and an improper description of the H (1 s ) target.

  3. Interference effects in inclusive charge-exchange p+p→n+X and n+p→p+X reactions at intermediate energies

    International Nuclear Information System (INIS)

    The formalism of Feynman diagrams to describe charge-exchange reactions p+p→n+X and n+p→p+X on a free proton target taking into account spectator and decay modes in the π+ρ+g'-model have used. It is shown that the interference between these modes depends on the set of vertex function parameters used. It is also shown that the constructive interference of the Δ+ and Δ0-isobars is important. 22 refs.; 10 figs

  4. $\\beta$- decay of $^{58}$Zn. A critical test for the charge-exchange reaction as a probe for the $\\beta$- decay strength distribution

    CERN Multimedia

    2002-01-01

    % IS353 \\\\ \\\\ Due to its importance in fundamental physics and astrophysics, a great effort both theoretically and experimentally is devoted to study Gamow Teller (GT)-strength. The GT-strength and its distribution play a key role in late stellar evolution. During the pre-supernova core-collapse of massive stars, the electron capture and nuclear $\\beta$ -decay determine the electron-to-baryon ratio, which influences the infall dynamics and the mass of the final core. The cross-section of the charge-exchange reaction at forward angles with energies above 100~MeV is expected to be proportional to the squares of Fermi and GT matrix elements. This proportionality should provide a Q-value free method to probe the weak interaction strength and renormalization effects in nuclei. Thus charge-exchange reactions are often used to determine the experimental GT-strength. However, the connection between the GT-strength and the cross-section of the charge-exchange reaction is partially model-dependent and the question aris...

  5. Comparison between complete electric vehicle charging mode with centralized charging+electric exchanging mode%电动汽车整车充电模式与集中充电+换电模式的比较

    Institute of Scientific and Technical Information of China (English)

    戴嘉昶

    2014-01-01

    Charging mode is compared between complete electric vehicle charging mode and centralized charging+electric exchanging mode in the development period of domestic electric vehicle. It respectively analyzes seven aspects from the users to use, battery maintenance, vehicle operation, power grid influence, business operation, site construction, puts forward centralized charging + electric exchanging mode is preferred in electric vehi-cle power supply ways under the condition of existing.%对国内电动汽车发展期内整车充电模式与集中充电+换电模式进行比较,分别从用户使用、电池维护、车辆运行、电网影响、商业运营、站点建设7个角度进行研究分析,提出在现有条件下,电动汽车的电能供应方式宜以集中充电+换电模式为佳。

  6. A comparative study on charge carrier recombination across the junction region of Cu2ZnSn(S,Se4 and Cu(In,GaSe2 thin film solar cells

    Directory of Open Access Journals (Sweden)

    Mohammad Abdul Halim

    2016-03-01

    Full Text Available A comparative study with focusing on carrier recombination properties in Cu2ZnSn(S,Se4 (CZTSSe and the CuInGaSe2 (CIGS solar cells has been carried out. For this purpose, electroluminescence (EL and also bias-dependent time resolved photoluminescence (TRPL using femtosecond (fs laser source were performed. For the similar forward current density, the EL-intensity of the CZTSSe sample was obtained significantly lower than that of the CIGS sample. Primarily, it can be attributed to the existence of excess amount of non-radiative recombination center in the CZTSSe, and/or CZTSSe/CdS interface comparing to that of CIGS sample. In case of CIGS sample, TRPL decay time was found to increase with the application of forward-bias. This can be attributed to the reduced charge separation rate resulting from the reduced electric-field at the junction. However, in CZTSSe sample, TRPL decay time has been found almost independent under the forward and reverse-bias conditions. This phenomenon indicates that the charge recombination rate strongly dominates over the charge separation rate across the junction of the CZTSSe sample. Finally, temperature dependent VOC suggests that interface related recombination in the CZTSSe solar cell structure might be one of the major factors that affect EL-intensity and also, TRPL decay curves.

  7. Optoelectronic Studies of Methylammonium Lead Iodide Perovskite Solar Cells with Mesoporous TiO₂: Separation of Electronic and Chemical Charge Storage, Understanding Two Recombination Lifetimes, and the Evolution of Band Offsets during J-V Hysteresis.

    Science.gov (United States)

    O'Regan, Brian C; Barnes, Piers R F; Li, Xiaoe; Law, Chunhung; Palomares, Emilio; Marin-Beloqui, Jose M

    2015-04-22

    Methylammonium lead iodide (MAPI) cells of the design FTO/sTiO2/mpTiO2/MAPI/Spiro-OMeTAD/Au, where FTO is fluorine-doped tin oxide, sTiO2 indicates solid-TiO2, and mpTiO2 is mesoporous TiO2, are studied using transient photovoltage (TPV), differential capacitance, charge extraction, current interrupt, and chronophotoamperometry. We show that in mpTiO2/MAPI cells there are two kinds of extractable charge stored under operation: a capacitive electronic charge (∼0.2 μC/cm(2)) and another, larger charge (40 μC/cm(2)), possibly related to mobile ions. Transient photovoltage decays are strongly double exponential with two time constants that differ by a factor of ∼5, independent of bias light intensity. The fast decay (∼1 μs at 1 sun) is assigned to the predominant charge recombination pathway in the cell. We examine and reject the possibility that the fast decay is due to ferroelectric relaxation or to the bulk photovoltaic effect. Like many MAPI solar cells, the studied cells show significant J-V hysteresis. Capacitance vs open circuit voltage (V(oc)) data indicate that the hysteresis involves a change in internal potential gradients, likely a shift in band offset at the TiO2/MAPI interface. The TPV results show that the V(oc) hysteresis is not due to a change in recombination rate constant. Calculation of recombination flux at V(oc) suggests that the hysteresis is also not due to an increase in charge separation efficiency and that charge generation is not a function of applied bias. We also show that the J-V hysteresis is not a light driven effect but is caused by exposure to electrical bias, light or dark.

  8. Suppression of charge recombination by application of Cu2ZnSnS4-graphene counter electrode to thin dye-sensitized solar cells

    Institute of Scientific and Technical Information of China (English)

    Yan Li; Huafei Guo; Xiuqin Wang; Ningyi Yuan; Jianning Ding

    2016-01-01

    This paper proposes a new mechanism to explain the performance of thin dye-sensitized solar cells (DSSC).Near-stoichiometric flower-like Cu2ZnSnS4 (CZTS) microspheres with a high specific surface area was fabricated for use as the photocathode in a DSSC.To improve the extraction and transfer of electrons,graphene was added to the CZTS.A DSSC with a 10-μm TiO2 photoanode layer exhibited a slightly degraded efficiency with a CZTS-graphene photocathode,relative to a Pt counter electrode (CE).Nevertheless,when the thickness of the TiO2 photoanode was reduced to 2 μm,the efficiency of a DSSC with a CZTS-graphene photocathode was greater than that of a Pt-DSSC.It is speculated that,unlike the Pt CE,a CZTS-graphene photocathode not only collects electrons from an external circuit and catalyzes the reduction of the triiodide ions in the electrolyte,but also utilizes unabsorbed photons to produce photo-excited electrons and suppresses charge recombination,thus enhancing the performance of the cell.The use of narrow band gap p-type semiconductors as photocathodes offers a new means of fabricating thin dye-sensitized solar cells and effectively improving the cell performance.

  9. Modulation on charge recombination and light harvesting toward high-performance benzothiadiazole-based sensitizers in dye-sensitized solar cells: A theoretical investigation

    Science.gov (United States)

    Zhang, Jian-Zhao; Zhang, Ji; Li, Hai-Bin; Wu, Yong; Xu, Hong-Liang; Zhang, Min; Geng, Yun; Su, Zhong-Min

    2014-12-01

    Factors associated with short circuit current density (Jsc) and open circuit photovoltage (Voc) of dye sensitized solar cells (DSSCs) have been analyzed through DFT and TDDFT calculations to explore the origin of the significant performance differences with only tiny structure difference (1.24% for 1 and 8.21% for 2) (Advanced Functional Materials 2012, 22, 1291-1302). Our results reveal that the insertion of phenyl ring in 2 enlarges the distance between the dye cation hole and the semiconductor surface and makes the benzothiadiazole (BTDA) unit, which has strong interaction with the electrolyte, far away from the semiconductor, resulting in a decreased charge recombination rate compared with that of 1. However, the insertion of phenyl ring also results in a distortion of the molecular structure, leading to a decreased light harvesting ability. Hence, two dyes (6 and 7) derived from 2 with better conjugation degree, farther position of BTDA unit and longer molecular length have been designed to keep the advantages and overcome the disadvantages of 2 simultaneously. The results demonstrate that we get the desired properties of dyes through reasonable molecular design, and these two dyes could be promising candidates in DSSC field and further improve the performance of the cell.

  10. Excitation of the Delta(1232) isobar in deuteron charge exchange on hydrogen at 1.6, 1.8, and 2.3 GeV

    CERN Document Server

    Mchedlishvili, D; Carbonell, J; Chiladze, D; Dymov, S; Dzyuba, A; Engels, R; Gebel, R; Glagolev, V; Grigoryev, K; Goslawski, P; Hartmann, M; Imambekov, O; Kacharava, A; Kamerdzhiev, V; Keshelashvili, I; Khoukaz, A; Komarov, V; Kulessa, P; Kulikov, A; Lehrach, A; Lomidze, N; Lorentz, B; Macharashvili, G; Maier, R; Merzliakov, S; Mielke, M; Mikirtychyants, M; Mikirtychyants, S; Nioradze, M; Ohm, H; Papenbrock, M; Prasuhn, D; Rathmann, F; Serdyuk, V; Seyfarth, H; Stein, H J; Steffens, E; Stockhorst, H; Ströher, H; Tabidze, M; Trusov, S; Uzikov, Yu; Valdau, Yu; Wilkin, C

    2013-01-01

    The charge-exchange break-up of polarised deuterons pol{d}p -> {pp}n, where the final {pp} diproton system has a very low excitation energy and hence is mainly in the 1S0 state, is a powerful tool to probe the spin-flip terms in the proton-neutron charge-exchange scattering. Recent measurements with the ANKE spectrometer at the COSY storage ring at 1.6, 1.8, and 2.27 GeV have extended these studies into the pion-production regime in order to investigate the mechanism for the excitation of the Delta(1232) isobar in the pol{d}p -> {pp}X reaction. Values of the differential cross section and two deuteron tensor analysing powers, A_{xx} and A_{yy}, have been extracted in terms of the momentum transfer to the diproton or the invariant mass Mx of the unobserved system X. The unpolarised cross section in the high Mx region is well described in a model that includes only direct excitation of the Delta isobar through undistorted one pion exchange. However, the cross section is grossly underestimated for low Mx, even w...

  11. Folding model study of the charge-exchange scattering to the isobaric analog state and implication for the nuclear symmetry energy

    CERN Document Server

    Khoa, Dao T; Thang, Dang Ngoc

    2013-01-01

    The Fermi transition (\\Delta L=\\Delta S=0 and \\Delta T=1) between the nuclear isobaric analog states (IAS), induced by the charge-exchange (p,n) or (3He,t) reaction, can be considered as "elastic" scattering of proton or 3He by the isovector term of the optical potential (OP) that flips the projectile isospin. The accurately measured (p,n) or (3He,t) scattering cross-section to the IAS can be used, therefore, to probe the isospin dependence of the proton or 3He optical potential. Within the folding model, the isovector part of the OP is determined exclusively by the neutron-proton difference in the nuclear densities and the isospin dependence of the effective nucleon-nucleon (NN) interaction. Because the isovector coupling explicitly links the isovector part of the proton or 3He optical potential to the cross section of the charge-exchange (p,n) or (3He,t) scattering to the IAS, the isospin dependence of the effective (in-medium) NN interaction can be well tested in the folding model analysis of these charge-...

  12. Measurement of the left-right asymmetry in pion-proton radiative exchange and charge exchange scattering from 301 to 625 MeV/c on a transversely polarized target

    International Nuclear Information System (INIS)

    The left-right asymmetry A/sub N/ in π/sup /minus//p → γn has been measured at p/sub π = 301, 316, 427, 471, 547, 586, and 625 MeV/c using a transversely polarized target. The final-state neutron and gamma were detected in coincidence by two states of matching neutron and gamma detectors at gamma angles centered around 90/degree and 110/degree/ c.m. A gamma detector consisted of an array of 15 counters, each was 15/times/15/times/25 cm3 block of lead-glass. A neutron detector consisted of 15 counters also, each one was a cylindrical plastic scintillator 7.6 cm in diameter and 45.7 cm long. The A/sub N/ results are compared with the predictions from the most recent single-pion photoproduction partial-wave analysis by Arai and Fujii. The agreement is poor, casting doubt on the correctness of the value for the radiative-decay amplitude of the neutral Roper resonance now in use. A comparison is made with the 90/degree/recoil proton polarization data of the inverse reaction derived from γd scattering, there are substantial discrepencies. Charge exchange (π/sup /minus/p/ → γ/degree/n) events were the major yield in this experiment. Very precise values of the charge exchange analyzing power were obtained with an error of typically 3%. The charge exchange results are compared with the predictions from recent γn partial wave analyses. At the lower incident energies little difference is seen between the VPI, Karlsruhe-Helsinki, and CMU-LBL analyses, and there is excellent agreement with our experiment. From the onset of the Roper resonance the VPI solution is strongly favored

  13. Effect of ligand exchange of Cu2ZnSnS4 nanocrystals on the charge transport and photovoltaic performance of nanostructured depleted bulk heterojunction solar cell

    International Nuclear Information System (INIS)

    Cu2ZnSnS4 (CZTS) nanocrystals combining the advantage of feasible solution-phase synthesis and processing are perceived as promising materials for application in efficient, low-cost photovoltaic technology. Herein, we have got surfactant-free CZTS nanocrystals by a novel ligand exchange method, and the obtained CZTS nanocrystals were deposited onto ZnO nanorod arrays to construct depleted bulk heterojunction solar cell. The all-inorganic CZTS nanocrystal solar cells demonstrated a remarkable improvement in Jsc (from 8.14 to 13.97 mA/cm2) and power conversion efficiency (from 1.83 to 3.34 %) compared with surfactant-capped CZTS nanocrystals. Using surface photovoltage spectrum, the influence of ligand exchange of CZTS nanocrystals on the charge transport and photovoltaic performance of the nanostructured CZTS solar cells was discussed

  14. Folding model study of the charge-exchange scattering to the isobaric analog state and implication for the nuclear symmetry energy

    Energy Technology Data Exchange (ETDEWEB)

    Khoa, Dao T.; Thang, Dang Ngoc [VINATOM, Institute for Nuclear Science and Technique, Hanoi (Viet Nam); Loc, Bui Minh [VINATOM, Institute for Nuclear Science and Technique, Hanoi (Viet Nam); University of Pedagogy, Ho Chi Minh City (Viet Nam)

    2014-02-15

    The Fermi transition (ΔL = ΔS = 0 and ΔT = 1) between the nuclear isobaric analog states (IAS), induced by the charge-exchange (p, n) or ({sup 3}He, t) reaction, can be considered as ''elastic'' scattering of proton or {sup 3}He by the isovector term of the optical potential (OP) that flips the projectile isospin. The accurately measured (p, n) or ({sup 3}He, t) scattering cross section to the IAS can be used, therefore, to probe the isospin dependence of the proton or {sup 3}He optical potential. Within the folding model, the isovector part of the OP is determined exclusively by the neutron-proton difference in the nuclear densities and the isospin dependence of the effective nucleon-nucleon (NN) interaction. Because the isovector coupling explicitly links the isovector part of the proton or {sup 3}He optical potential to the cross section of the charge-exchange (p, n) or ({sup 3}He, t) scattering to the IAS, the isospin dependence of the effective (in-medium) NN interaction can be well tested in the folding model analysis of these charge-exchange reactions. On the other hand, the same isospin- and density-dependent NN interaction can also be used in a Hartree-Fock calculation of asymmetric nuclear matter, to estimate the nuclear matter energy and its asymmetry part (the nuclear symmetry energy). As a result, the fine-tuning of the isospin dependence of the effective NN interaction against the measured (p, n) or ({sup 3}He, t) cross sections should allow us to make some realistic prediction of the nuclear symmetry energy and its density dependence. (orig.)

  15. A comparison of empirical and experimental O7+, O8+, and O/H values, with applications to terrestrial solar wind charge exchange

    Science.gov (United States)

    Whittaker, Ian C.; Sembay, Steve

    2016-07-01

    Solar wind charge exchange occurs at Earth between the neutral planetary exosphere and highly charged ions of the solar wind. The main challenge in predicting the resultant photon flux in the X-ray energy bands is due to the interaction efficiency, known as the α value. This study produces experimental α values at the Earth, for oxygen emission in the range of 0.5-0.7 keV. Thirteen years of data from the Advanced Composition Explorer are examined, comparing O7+ and O8+ abundances, as well as O/H to other solar wind parameters allowing all parameters in the αO7,8+ calculation to be estimated based on solar wind velocity. Finally, a table is produced for a range of solar wind speeds giving average O7+ and O8+ abundances, O/H, and αO7,8+ values.

  16. Solar Wind Charge Exchange X-ray emission from Mercury’s exosphere: Detectability with Bepi Colombo’s MIXS spectrometer

    Science.gov (United States)

    Koutroumpa, Dimitra; Dennerl, Konrad; Leblanc, François; Modolo, Ronan

    2015-11-01

    We have conducted preliminary hybrid simulations to calculate the Solar Wind Charge Exchange (SWCX) X-ray emission in Mercury’s exosphere. Our results imply that the OVII triplet emission intensity for standard slow solar wind conditions is of the same order as the one predicted by simulations for Mars and measured by Chandra in past observations of Mars. Using an oversimplified detector and observation geometry we explore the detectability of Mercury's SWCX emission by the MIXS spectrometer on board Bepi Colombo’s planetary orbiter (MPO).

  17. Heterodimers formed through a partial anionic exchange process: scanning tunneling spectroscopy to monitor bands across the junction vis-à-vis photoinduced charge separation

    Science.gov (United States)

    Bera, Abhijit; Saha, Sudip K.; Pal, Amlan J.

    2015-10-01

    We report controlled formation of heterodimers and their charge separation properties. CdS|CdTe heterodimers were formed through an anionic exchange process of CdS nanostructures. With control over the duration of the anionic exchange process, bulk|dot, bulk|bulk, and then dot|bulk phases of the semiconductors could be observed to have formed. A mapping of density of states as derived from scanning tunneling spectroscopy (STS) brought out conduction and valence band-edges along the nanostructures and heterodimers. The CdS|CdTe heterodimers evidenced a type-II band-alignment between the semiconductors along with the formation of a depletion region at the interface. The width (of the depletion region) and the energy-offset at the interface depended on the size of the semiconductors. We report that the width that is instrumental for photoinduced charge separation in the heterodimers has a direct correlation with the performance of hybrid bulk-heterojunction solar cells based on the nanostructures in a polymer matrix.We report controlled formation of heterodimers and their charge separation properties. CdS|CdTe heterodimers were formed through an anionic exchange process of CdS nanostructures. With control over the duration of the anionic exchange process, bulk|dot, bulk|bulk, and then dot|bulk phases of the semiconductors could be observed to have formed. A mapping of density of states as derived from scanning tunneling spectroscopy (STS) brought out conduction and valence band-edges along the nanostructures and heterodimers. The CdS|CdTe heterodimers evidenced a type-II band-alignment between the semiconductors along with the formation of a depletion region at the interface. The width (of the depletion region) and the energy-offset at the interface depended on the size of the semiconductors. We report that the width that is instrumental for photoinduced charge separation in the heterodimers has a direct correlation with the performance of hybrid bulk

  18. DXL: A Sounding Rocket Mission for the Study of Solar Wind Charge Exchange and Local Hot Bubble X-Ray Emission

    Science.gov (United States)

    Galeazzi, M.; Prasai, K.; Uprety, Y.; Chiao, M.; Collier, M. R.; Koutroumpa, D.; Porter, F. S.; Snowden, S.; Cravens, T.; Robertson, I.; Kuntz, K. D.; Lepri, S.; McCammon, D.

    2011-01-01

    The Diffuse X-rays from the Local galaxy (DXL) mission is an approved sounding rocket project with a first launch scheduled around December 2012. Its goal is to identify and separate the X-ray emission generated by solar wind charge exchange from that of the local hot bubble to improve our understanding of both. With 1,000 square centimeters proportional counters and grasp of about 10 square centimeters sr both in the 1/4 and 3/4 keV bands, DXL will achieve in a 5-minute flight what cannot be achieved by current and future X-ray satellites.

  19. Measurement of Anomalously Strong Emission from the 1s-9p Transition in the Spectrum of H-like Phosphorus Following Charge Exchange with Molecular Hydrogen

    Science.gov (United States)

    Leutenegger, M. A.; Beiersdorfer, P.; Brown, G. V.; Kelley, R. L.; Porter, F. S.

    2010-01-01

    We have measured K-shell x-ray spectra of highly ionized argon and phosphorus following charge exchange with molecular hydrogen at low collision energy in an electron beam ion trap using an x-ray calorimeter array with approx.6 eV resolution. We find that the emission at the high-end of the Lyman series is greater by a factor of two for phosphorus than for argon, even though the measurement was performed concurrently and the atomic numbers are similar. This does not agree with current theoretical models and deviates from the trend observed in previous measurements.

  20. DXL: a sounding rocket mission for the study of solar wind charge exchange and local hot bubble X-ray emission

    CERN Document Server

    Galeazzi, M; Collier, M R; Cravens, T; Koutroumpa, D; Kuntz, K D; Lepri, S; McCammon, D; Porter, F S; Prasai, K; Robertson, I; Snowden, S; Uprety, Y

    2011-01-01

    The Diffuse X-rays from the Local galaxy (DXL) mission is an approved sounding rocket project with a first launch scheduled around December 2012. Its goal is to identify and separate the X-ray emission generated by solar wind charge exchange from that of the local hot bubble to improve our understanding of both. With 1,000 cm2 proportional counters and grasp of about 10 cm2 sr both in the 1/4 and 3/4 keV bands, DXL will achieve in a 5-minute flight what cannot be achieved by current and future X-ray satellites.

  1. Laboratory measurements compellingly support charge-exchange mechanism for the 'dark matter' $\\sim$3.5 keV X-ray line

    OpenAIRE

    Shah, Chintan; Dobrodey, Stepan; Bernitt, Sven; Steinbrügge, René; López-Urrutia, José R. Crespo; Gu, Liyi; Kaastra, Jelle

    2016-01-01

    The reported observations of an unidentified X-ray line feature at $\\sim$3.5 keV have driven a lively discussion about its possible dark matter origin. Motivated by this, we have measured the \\emph{K}-shell X-ray spectra of highly ionized bare sulfur ions following charge exchange with gaseous molecules in an electron beam ion trap, as a source of or a contributor to this X-ray line. We produce $\\mathrm{S}^{16+}$ and $\\mathrm{S}^{15+}$ ions and let them capture electrons in collision with tho...

  2. Study of the $\\vec{p}d \\to n\\{pp\\}_{s}$ charge-exchange reaction using a polarised deuterium target

    CERN Document Server

    Gou, B; Bagdasarian, Z; Barsov, S; Chiladze, D; Dymov, S; Engels, R; Gaisser, M; Gebel, R; Grigoryev, K; Hartmann, M; Kacharava, A; Khoukaz, A; Kulessa, P; Kulikov, A; Lehrach, A; Li, Z; Lomidze, N; Lorentz, B; Macharashvili, G; Merzliakov, S; Mielke, M; Mikirtychyants, M; Mikirtychyants, S; Nioradze, M; Ohm, H; Prasuhn, D; Rathmann, F; Serdyuk, V; Seyfarth, H; Shmakova, V; Ströher, H; Tabidze, M; Trusov, S; Tsirkov, D; Uzikov, Yu; Valdau, Yu; Wang, T; Weidemann, C; Wilkin, C; Yuan, X

    2014-01-01

    The vector and tensor analysing powers, $A_y$ and $A_{yy}$, of the $\\vec{p}d \\to n\\{pp\\}_{s}$ charge-exchange reaction have been measured at a beam energy of 600 MeV at the COSY-ANKE facility by using an unpolarised proton beam incident on an internal storage cell target filled with polarised deuterium gas. The low energy recoiling protons were measured in a pair of silicon tracking telescopes placed on either side of the target. Putting a cut of 3 MeV on the diproton excitation energy ensured that the two protons were dominantly in the $^{1}S_{0}$ state, here denoted by $\\{pp\\}_{s}$. The polarisation of the deuterium gas was established through measurements in parallel of proton-deuteron elastic scattering. By analysing events where both protons entered the same telescope, the charge-exchange reaction was measured for momentum transfers $q\\geq 160$ MeV/$c$. These data provide a good continuation of the earlier results at $q\\leq 140$ MeV/$c$ obtained with a polarised deuteron beam. They are also consistent wi...

  3. The origin of the 'local' 1/4 keV X-ray flux in both charge exchange and a hot bubble

    CERN Document Server

    Galeazzi, M; Collier, M R; Cravens, T; Koutroumpa, D; Kuntz, K D; Lallement, R; Lepri, S T; McCammon, D; Morgan, K; Porter, F S; Robertson, I P; Snowden, S L; Thomas, N E; Uprety, Y; Ursino, E; Walsh, B M

    2014-01-01

    The Solar neighborhood is the closest and most easily studied sample of the Galactic interstellar medium, an understanding of which is essential for models of star formation and galaxy evolution. Observations of an unexpectedly intense diffuse flux of easily-absorbed 1/4 keV X rays, coupled with the discovery that interstellar space within ~100 pc of the Sun is almost completely devoid of cool absorbing gas led to a picture of a "local cavity" filled with X-ray emitting hot gas dubbed the local hot bubble. This model was recently upset by suggestions that the emission could instead be produced readily within the solar system by heavy solar wind ions charge exchanging with neutral H and He in interplanetary space, potentially removing the major piece of evidence for the existence of million-degree gas within the Galactic disk. Here we report results showing that the total solar wind charge exchange contribution is 40% +/- 5% (stat) +/- 5% (sys) of the 1/4 keV flux in the Galactic plane. The fact that the measu...

  4. Laboratory measurements compellingly support charge-exchange mechanism for the 'dark matter' $\\sim$3.5 keV X-ray line

    CERN Document Server

    Shah, Chintan; Bernitt, Sven; Steinbrügge, René; López-Urrutia, José R Crespo; Gu, Liyi; Kaastra, Jelle

    2016-01-01

    The reported observations of an unidentified X-ray line feature at $\\sim$3.5 keV have driven a lively discussion about its possible dark matter origin. Motivated by this, we have measured the \\emph{K}-shell X-ray spectra of highly ionized bare sulfur ions following charge exchange with gaseous molecules in an electron beam ion trap, as a source of or a contributor to this X-ray line. We produce $\\mathrm{S}^{16+}$ and $\\mathrm{S}^{15+}$ ions and let them capture electrons in collision with those molecules with the electron beam turned off while recording X-ray spectra. We observed a charge-exchanged-induced X-ray feature at the Lyman series limit (3.47 $\\pm$ 0.06 keV). The inferred X-ray energy is in full agreement with the reported astrophysical observations and supports the novel scenario proposed by Gu and Kaastra (A \\& A \\textbf{584}, {L11} (2015)).

  5. Analysis of charge transfer and recombination for the poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester organic solar cells with iron oxide nanoparticles in various layers

    Science.gov (United States)

    Park, Eung-Kyu; Kim, Ji-Hwan; Cho, Hyeong Jun; Lee, Dong-Hoon; Kim, Yong-Sang

    2015-10-01

    An improved organic solar cell's performance was obtained by focusing on the effects of iron oxide (Fe2O3) nanoparticles (NPs) within the different layers of P3HT:PCBM solar cells. We investigated the recombination mechanism in organic solar cells using the current density-voltage (J-V) characteristics at various light intensities and also analyzed the electrochemical impedance. Shockley-Read-Hall (SRH) recombination, which is dependent on the trap states, surface roughness, resistance and charge transport, controls the cell efficiency. The device performance was compared by adding iron oxide nanoparticles in the active layer and Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer, respectively. Also the iron oxide nanoparticle layer was inserted as an interface layer between active and PEDOT:PSS layers. The solar cell without NPs showed a 2.68% power conversion efficiency while that with Fe2O3 NPs as an interface layer showed a higher power conversion efficiency of 3.83% under air mass (AM) 1.5G illumination. The device with NPs as an interface layer showed a smooth surface roughness (1.16 nm), lower charge recombination (1.06(kT/e)), and lower parasitic resistance (254 Ω cm2).

  6. Charge Exchange in Low-Energy H, D + C4+ Collisions with Full Account of Electron Translation

    Directory of Open Access Journals (Sweden)

    A. Riera

    2002-03-01

    Full Text Available The effect of the anisotropy of the interaction potential on ion-diatom non-adiabatic collisions is analized by considering the influence of the anisotropy on orientation averaged total cross sections for charge transfer in H++H2(X1Σ+g collisions. We discuss the possibility of employing simpli ed methods such as an isotropic approximation, where only the electronic energies and interactions of a single orientation are necessary. The use of several isotropic calculations to evaluate the orientation averaged cross section is analized.

  7. Exchange Reaction Between Selenite and Hydroxyl Ion of Variable Charge Soil Surfaces: Ⅱ. Kinetics of Hydroxyl Release

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shi-Wei; ZHANG Gang-Ya; ZHANG Xiao-Nian

    2003-01-01

    A self-made constant pH automated titration instrument was used to study the kinetics of hydroxyl release during selenite reacting with variable charge soils. The rate of hydroxyl release was very rapid at the first several minutes, then gradually slowed down, and at last did not change any more. The experimental data was well fitted by the Langmuir kinetic equation, and with increasing selenite concentration or decreasing solution pH, the reaction lasted longer, the maximum of hydroxyl release (xm) increased, and the binding constant (k) decreased. The time of hydroxyl release with Xuwen latosol was much longer than that with Jinxian red soil.

  8. Bimolecular recombination in organic photovoltaics.

    Science.gov (United States)

    Lakhwani, Girish; Rao, Akshay; Friend, Richard H

    2014-01-01

    The recombination of electrons and holes is a major loss mechanism in photovoltaic devices that controls their performance. We review scientific literature on bimolecular recombination (BR) in bulk heterojunction organic photovoltaic devices to bring forward existing ideas on the origin and nature of BR and highlight both experimental and theoretical work done to quantify its extent. For these systems, Langevin theory fails to explain BR, and recombination dynamics turns out to be dependent on mobility, temperature, electric field, charge carrier concentration, and trapped charges. Relationships among the photocurrent, open-circuit voltage, fill factor, and morphology are discussed. Finally, we highlight the recent emergence of a molecular-level picture of recombination, taking into account the spin and delocalization of charges. Together with the macroscopic picture of recombination, these new insights allow for a comprehensive understanding of BR and provide design principles for future materials and devices.

  9. Gamow-Teller strength in deformed nuclei within the self-consistent charge-exchange quasi-particle random-phase approximation with the Gogny force

    CERN Document Server

    Martini, M; Goriely, S

    2014-01-01

    The charge-exchange excitations in nuclei are studied within the fully self-consistent proton-neutron quasiparticle random-phase approximation using the finite-range Gogny interaction. No additional parameters beyond those included in the effective nuclear force are included. Axially symmetric deformations are consistently taken into account, both in the description of the ground states and spin-isospin excitations. We focus on the isobaric analog and Gamow-Teller resonances. A comparison of the predicted strength distributions to the existing experimental data is presented and the role of nuclear deformation analyzed. The Gamow-Teller strength is used to estimate the beta-decay half-life of nuclei for which experimental data exist. A satisfactory agreement with experimental half-lives is found and justifies the additional study of the exotic neutron-rich N=82, 126 and 184 isotonic chains of relevance for the r-process nucleosynthesis.

  10. Positive-pion double-charge-exchange reaction: experiments on the isotopic pairs oxygen-16,18 and magnesium-24,26

    International Nuclear Information System (INIS)

    The (π+,π-) double-charge-exchange (DCX) reaction has been performed on targets of T = 0,1 isospin (and isotopic) pairs 1618O and 2426Mg. Energy excitation functions of d sigma/d Ω, across the (3,3) π-N resonance, are presented for transitions to double-isobaric analog state (DIAS) and non-DIAS ground-state residual nuclei. Angular distributions in the region of 50 to 330 are presented for the DIAS from the T = 1 nuclei. The similarities and differences of DIAS and non-DIAS distributions are discussed in relation to reaction-mechanism and nuclear-structure effects. Also, a simple, two-amplitude model for the 18O excitation function, consistent with the data, is presented. The utility of DCX in nuclear mass measurements is discussed, with some examples

  11. Positive-pion double-charge-exchange reaction: experiments on the isotopic pairs oxygen-16,18 and magnesium-24,26

    Energy Technology Data Exchange (ETDEWEB)

    Greene, S.J.

    1981-06-01

    The (..pi../sup +/,..pi../sup -/) double-charge-exchange (DCX) reaction has been performed on targets of T = 0,1 isospin (and isotopic) pairs /sup 16/ /sup 18/O and /sup 24/ /sup 26/Mg. Energy excitation functions of d sigma/d ..cap omega.., across the (3,3) ..pi..-N resonance, are presented for transitions to double-isobaric analog state (DIAS) and non-DIAS ground-state residual nuclei. Angular distributions in the region of 5/sup 0/ to 33/sup 0/ are presented for the DIAS from the T = 1 nuclei. The similarities and differences of DIAS and non-DIAS distributions are discussed in relation to reaction-mechanism and nuclear-structure effects. Also, a simple, two-amplitude model for the /sup 18/O excitation function, consistent with the data, is presented. The utility of DCX in nuclear mass measurements is discussed, with some examples.

  12. NUMEN Project @ LNS : Heavy Ions Double Charge Exchange as a tool towards the 0νββ Nuclear Matrix Element

    Science.gov (United States)

    Agodi, C.; Cappuzzello, F.; Bonanno, D. L.; Bongiovanni, D. G.; Branchina, V.; Calabrese, S.; Calabretta, L.; Calanna, A.; Carbone, D.; Cavallaro, M.; Colonna, M.; Foti, A.; Finocchiaro, P.; Greco, V.; Lanzalone, G.; Lo Presti, D.; Longhitano, F.; Muoio, A.; Pandola, L.; Rifuggiato, D.; Tudisco, S.

    2016-06-01

    The NUMEN Project, proposed at INFN Laboratori Nazionali del Sud (LNS) in Catania, has the aim to access the nuclear matrix elements, entering the expression of the life time of double beta decay, by relevant cross sections of double charge exchange reactions. The basic point, on which it is based this innovative technique, is the coincidence of the initial and final state wave-functions in the two classes of processes and the similarity of the transition operators. A key aspect of the Project is the use of MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the INFN LNS K800 Superconducting Cyclotron (CS), for the acceleration of the required high resolution and low emittance heavy-ion beams.

  13. Expressions for Form Factors for Inelastic Scattering and Charge Exchange in Plane-Wave, Distorted-Wave, and Coupled-Channels Reaction Formalisms

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, F S

    2006-09-25

    This document is intended to facilitate calculation of inelastic scattering and charge-exchange cross sections in a variety of reaction models, including the plane-wave and distorted-wave approximations and the full coupled-channels treatments. Expressions are given for the coupling potentials between the relevant channels in both coordinate and momentum space. In particular, it is expected that the plane-wave calculations should be useful as a check on the correctness of coupled-channels calculations. The Fourier transform methods used to calculate the plane-wave approximation cross sections are also intended to be used to generate the transition potentials for coupled-channels codes, using a folding model with local effective interactions. Specific expressions are given for calculating transition densities for the folding model in the random phase approximation (RPA).

  14. The charge exchange process between C6+ and He+ ions: computation of cross sections and comparison with some data from fusion plasmas

    International Nuclear Information System (INIS)

    The total and partial cross sections for the capture process C6++He+→C5++He2+ are computed at impact energy in the range 0.1-40 keV amu-1 using the classical trajectory Monte Carlo (CTMC) method. Rate coefficients, which are used in practical applications, are estimated by assuming Maxwellian energy distributions for both incident and target ions, and are used to compute the intensity of the hydrogen-like carbon Lyman series lines in a fusion plasma. A comparison with the line ratios measured in a reversed field pinch device is made. It is shown that this charge exchange process is not likely to sensitively alter line ratios in helium fusion plasmas. (author)

  15. Parity Nonconservation in Dielectronic Recombination of Multiply Charged Ions%多电荷离子双电子复合中的宇称不守恒效应

    Institute of Scientific and Technical Information of China (English)

    M G Kozlov; G F Gribakin; F J Currell

    2007-01-01

    A parity nonconserving (PNC) asymmetry in the cross section for dielectronic recombination of polarized electrons on multiply charged ions with Z≥40 is discussed. This effect is strongly enhanced for close doubly-excited states of opposite parity in the intermediate compound ion. Such states are known for He-like ions.However, these levels have large energy and large radiative widths which hampers observation of the PNC asymmetry. We argue that accidentally degenerate states of more complex ions may be more suitable for the corresponding experiment.

  16. Inclusive measurement of (p,πsup(-)xn) double charge exchange reactions on bismuth from threshold to 800 MeV

    International Nuclear Information System (INIS)

    The energy dependence of the total angle-integrated cross section for the production of astatine isotopes from (p,πsup(-)xn) double charge exchange reactions on bismuth (sup(209)Bi) was measured from 120 to 800 MeV using activation and radiochemical techniques. Chemical yields were estimated by direct radioassaying of sup(211)At activity in thin (approximately 1 mg/cmsup(2)), irradiated bismuth targets. Calculations of the contributions of secondary (2-step) reactions to these measured astatine yields were performed, based partially upon the observed sup(211)At activity although even at the highest energies, the contribution to products lighter than sup(207)At was negligible. These data for products with as many as 7 neutrons removed from the doubly coherent product (sup(210)At) display nearby gaussian shapes for the mass distributions of the astatine residues with the maximum occurring for about sup(204)At. The most probable momentum transfer deduced from these distributions for the initial πsup(-) production step was 335 MeV/c. The observed excitation functions display a behaviour similar to that observed for the yield of sup(210)Po from a (p,πsup(O)) reaction on sup(209)Bi, but radically different from that observed for inclusive πsup(-) reactions on a heavy nucleus. These data are discussed in terms of recent theoretical approaches to negative pion production from bismuth. In addition, a simple, schematic model is developed to treat the rapidly decreasing percentage of the total inclusive πsup(-) emission which is observed for this double charge exchange reaction. This model reflects the capacity of a nucleus to a source of internal energetic protons

  17. Surface chemistry and interfacial charge-transfer mechanisms in photoinduced oxygen exchange at O2-TiO2 interfaces.

    Science.gov (United States)

    Montoya, Juan Felipe; Peral, José; Salvador, Pedro

    2011-04-01

    Experimental results obtained over the last three decades on photoinduced oxygen isotopic exchange (POIE) of TiO₂ oxygen atoms with those of adsorbed water molecules and gaseous O₂ are analyzed in the light of recent information from the literature on the interaction of water and O₂ species with the TiO₂ surface (obtained by application of surface spectroscopy techniques in combination with high-resolution scanning tunnelling microscopy). The analysis emphasizes the singular role that bridging oxygen ions and bridging oxygen vacancies play in TiO₂ surface chemistry and interfacial electron transfer at the gas phase-TiO₂ interface in the absence and presence of water. The observed competition between POIE and the photo-oxidation (PO) of organic compounds is analyzed in terms of the recently developed direct-indirect (D-I) kinetic model for heterogeneous photocatalysis (D. Monllor-Satoca et al., Catal. Today, 2007, 129, 247, and references therein). PMID:21442702

  18. Grazing incidence collisions of ions and atoms with surfaces: from charge exchange to atomic diffraction; Collisions rasantes d'ions ou d'atomes sur les surfaces: de l'echange de charge a la diffraction atomique

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P

    2006-09-15

    This thesis reports two studies about the interaction with insulating surfaces of keV ions or atoms under grazing incidence. The first part presents a study of charge exchange processes occurring during the interaction of singly charged ions with the surface of NaCl. In particular, by measuring the scattered charge fraction and the energy loss in coincidence with electron emission, the neutralization mechanism is determined for S{sup +}, C{sup +}, Xe{sup +}, H{sup +}, O{sup +}, Kr{sup +}, N{sup +}, Ar{sup +}, F{sup +}, Ne{sup +} and He{sup +}. These results show the importance of the double electron capture as neutralization process for ions having too much potential energy for resonant capture and not enough for Auger neutralization. We have also studied the ionisation of the projectile and of the surface, and the different Auger-like neutralization processes resulting in electron emission, population of conduction band or excited state. For oxygen scattering, we have measured an higher electron yield in coincidence with scattered negative ion than with scattered atom suggesting the transient formation above the surface of the oxygen doubly negative ion. The second study deals with the fast atom diffraction, a new phenomenon observed for the first time during this work. Due to the large parallel velocity, the surface appears as a corrugated wall where rows interfere. Similarly to the Thermal Atom Scattering the diffraction pattern corresponds to the surface potential and is sensitive to vibrations. We have study the H-NaCl and He-LiF atom-surface potentials in the 20 meV - 1 eV range. This new method offers interesting perspectives for surface characterisation. (author)

  19. Effect of resin charged functional group, porosity, and chemical matrix on the long-term pharmaceutical removal mechanism by conventional ion exchange resins.

    Science.gov (United States)

    Wang, Wei; Li, Xiaofeng; Yuan, Shengliu; Sun, Jian; Zheng, Shaokui

    2016-10-01

    This study attempted to clarify the long-term pharmaceutical removal mechanism from sewage treatment plant effluent during the cyclical adsorption-regeneration operation of 5 commercial resin-based fixed-bed reactors with the simultaneous occurrence of electrostatic interactions and complex non-electrostatic interactions. It examined 12 pharmaceuticals belonging to 10 therapeutic classes with different predominant existing forms and hydrophobicities. Furthermore, the effect of the resin charged functional group (strong-base vs. strong-acid vs. non-ionic), porosity (macroporous vs. gel), and chemical matrix (polystyrenic vs. polyacrylic) on the mechanism was investigated to optimize resin properties and achieve higher pharmaceutical removal. The results reported herein indicate the importance of non-electrostatic interactions between pharmaceuticals and the resin backbone during short-term cyclical operation (i.e., the 1st adsorption-regeneration cycle). With the development of cyclical operation, however, non-electrostatic interaction-induced pharmaceutical removal generally decreased and even disappeared when equilibrium was achieved between the influent and the resin. Despite pharmaceutical therapeutic class or hydrophilicity, anion (or cation) exchange resin preferentially removed those pharmaceuticals that were predominantly present as organic anions (or cations) by ion exchange process during long-term cyclical operation (i.e., ≥6 adsorption-regeneration cycles). Besides pharmaceuticals predominantly present as undissociated molecules, some amphoteric pharmaceuticals containing large amounts of zwitterions were also difficult to remove by ion exchange resin. Additionally, neither resin porosity nor chemical matrix had any significant effect on the long-term pharmaceutical removal mechanism.

  20. Effect of resin charged functional group, porosity, and chemical matrix on the long-term pharmaceutical removal mechanism by conventional ion exchange resins.

    Science.gov (United States)

    Wang, Wei; Li, Xiaofeng; Yuan, Shengliu; Sun, Jian; Zheng, Shaokui

    2016-10-01

    This study attempted to clarify the long-term pharmaceutical removal mechanism from sewage treatment plant effluent during the cyclical adsorption-regeneration operation of 5 commercial resin-based fixed-bed reactors with the simultaneous occurrence of electrostatic interactions and complex non-electrostatic interactions. It examined 12 pharmaceuticals belonging to 10 therapeutic classes with different predominant existing forms and hydrophobicities. Furthermore, the effect of the resin charged functional group (strong-base vs. strong-acid vs. non-ionic), porosity (macroporous vs. gel), and chemical matrix (polystyrenic vs. polyacrylic) on the mechanism was investigated to optimize resin properties and achieve higher pharmaceutical removal. The results reported herein indicate the importance of non-electrostatic interactions between pharmaceuticals and the resin backbone during short-term cyclical operation (i.e., the 1st adsorption-regeneration cycle). With the development of cyclical operation, however, non-electrostatic interaction-induced pharmaceutical removal generally decreased and even disappeared when equilibrium was achieved between the influent and the resin. Despite pharmaceutical therapeutic class or hydrophilicity, anion (or cation) exchange resin preferentially removed those pharmaceuticals that were predominantly present as organic anions (or cations) by ion exchange process during long-term cyclical operation (i.e., ≥6 adsorption-regeneration cycles). Besides pharmaceuticals predominantly present as undissociated molecules, some amphoteric pharmaceuticals containing large amounts of zwitterions were also difficult to remove by ion exchange resin. Additionally, neither resin porosity nor chemical matrix had any significant effect on the long-term pharmaceutical removal mechanism. PMID:27367175

  1. Enhanced performance of dye-sensitized solar cells with dual-function coadsorbent: reducing the surface concentration of dye-iodine complexes concomitant with attenuated charge recombination.

    Science.gov (United States)

    Mazloum-Ardakani, Mohammad; Khoshroo, Alireza

    2015-09-21

    In this paper, we have investigated the effects of oleic acid as a dual-function coadsorbent on recombination and iodine binding in dye-sensitized solar cells. Oleic acid as a dual-function coadsorbent effectively shields the back electron transfer from TiO2 to I3(-) ions and also reduces the surface concentration of dye-I2 complexes via iodine binding to the unsaturated double bond on oleic acid. It was found that interaction between iodine and the double bond of oleic acid keeps the iodine molecules away from the surface and reduces the recombination rate between injected electrons in a semiconductor and iodine molecules and also increases open-circuit voltage. Furthermore, the interaction between iodine molecules and unexcited dyes affects the UV-Vis spectrum of them and prevents an unfavorable blue shift. Overall, the results point to an improved performance for DSC operation and development.

  2. Calculation of activation energies for transport and recombination in mesoporous TiO2/dye/electrolyte films--taking into account surface charge shifts with temperature.

    Science.gov (United States)

    O'Regan, Brian C; Durrant, James R

    2006-05-01

    Transient photovoltage and photocurrent measurements have been employed to determine the recombination and transport kinetics in operating dye-sensitized photovoltaic cells as a function of potential and temperature. Photocurrent transients have been taken at the open circuit potential, as opposed to the standard measurement at short circuit. Kinetic results have been used to calculate the activation energy as function of the Fermi level position in the TiO(2). In the calculation of activation energies, we have explicitly taken into account the temperature dependence of the offset between the electrolyte redox potential and the conduction band edge. This new method gives activation energies that decrease linearly as the Fermi level position moves toward the conduction band edge, as expected, but not found in previous studies. The results are consistent with the presence of a distribution of traps below the TiO(2) conduction band, the detrapping from which limits both the transport and the recombination of electrons. PMID:16640403

  3. On Lunar Exospheric Column Densities and Solar Wind Access Beyond the Terminator from ROSAT Soft X-Ray Observations of Solar Wind Charge Exchange

    Science.gov (United States)

    Collier, Michael R.; Snowden, S. L.; Sarantos, M.; Benna, M.; Carter, J. A.; Cravens, T. E.; Farrell, W. M.; Fatemi, S.; Hills, H. Kent; Hodges, R. R.; Holmstrom, M.; Kuntz, K. D.; Porter, F. Scott; Read, A.; Robertson, I. P.; Sembay, S. F.; Sibeck, D. G.; Stubbs, T. J.; Travnicek, P.; Walsh, B. M.

    2014-01-01

    We analyze the Rontgen satellite (ROSAT) position sensitive proportional counter soft X-ray image of the Moon taken on 29 June 1990 by examining the radial profile of the surface brightness in three wedges: two 19 deg wedges (one north and one south) 13-32 deg off the terminator toward the dark side and one wedge 38 deg wide centered on the antisolar direction. The radial profiles of both the north and the south wedges show significant limb brightening that is absent in the 38 deg wide antisolar wedge. An analysis of the soft X-ray intensity increase associated with the limb brightening shows that its magnitude is consistent with that expected due to solar wind charge exchange (SWCX) with the tenuous lunar atmosphere based on lunar exospheric models and hybrid simulation results of solar wind access beyond the terminator. Soft X-ray imaging thus can independently infer the total lunar limb column density including all species, a property that before now has not been measured, and provide a large-scale picture of the solar wind-lunar interaction. Because the SWCX signal appears to be dominated by exospheric species arising from solar wind implantation, this technique can also determine how the exosphere varies with solar wind conditions. Now, along with Mars, Venus, and Earth, the Moon represents another solar system body at which SWCX has been observed.

  4. Dissociation dynamics of highly excited molecules produced by charge exchange: Two-body dynamics of CH5 and three-body dynamics of sym-triazine

    International Nuclear Information System (INIS)

    Translational spectroscopy and coincidence detection of the neutral photofragments have been used to observe the dissociation dynamics of highly excited neutrals produced by charge exchange between keV cation beams with Cs, and the results from two novel systems are presented. CH5 is formed slightly above the 3s Rydberg level and dissociates into two possible fragmentation channels, H loss and H2 loss. The kinetic energy release distributions of the two products are presented and the branching ratio between the two is found to be 11.4 ± 1.5 : 1 with the H loss being the dominant channel. Production of the highly symmetric azabenzene sym-triazine in its 3s Rydberg state has been shown to induce dissociation to 3 HCN(Σ+). Examination of momentum correlation in the dissociation products shows that this dissociation occurs by two distinct mechanisms. Evidence from Monte Carlo simulations suggest a sequential mechanism occurs creating products accompanied by a kinetic energy release of ∼1.5-5 eV. A symmetric concerted mechanism is also observed and is associated with products receiving a 2-4 eV kinetic energy release.

  5. Recombination instability

    DEFF Research Database (Denmark)

    D'Angelo, N.

    1967-01-01

    A recombination instability is considered which may arise in a plasma if the temperature dependence of the volume recombination coefficient, alpha, is sufficiently strong. Two cases are analyzed: (a) a steady-state plasma produced in a neutral gas by X-rays or high energy electrons; and (b...

  6. Heavy Coronal Ions in the Heliosphere: I. Global Distribution of Charge-states of C, N, O, Mg, Si and S

    OpenAIRE

    Grzedzielski, S.; Wachowicz, M. E.; Bzowski, M.; Izmodenov, V.

    2008-01-01

    Aims: Investigate/Study de-charging of solar wind C, N, O, Mg, Si and S ions and assess fluxes of resulting ENA in the heliosphere. Methods: The model treats the heavy ions as test particles convected by (and in a particular case also diffusing through) a hydrodynamically calculated background plasma flow, from 1 AU to the termination shock (TS), to heliosheath (HS) and finally to heliospheric tail (HT). The ions undergo radiative and dielectronic recombinations, charge exchanges, photo- and ...

  7. Measurement and calculation of absolute single- and double-charge-exchange cross sections for O6 + ions at 1.17 and 2.33 keV/u impacting He and H2

    Science.gov (United States)

    Machacek, J. R.; Mahapatra, D. P.; Schultz, D. R.; Ralchenko, Yu.; Chutjian, A.; Simcic, J.; Mawhorter, R. J.

    2014-11-01

    Absolute single- and double-charge-exchange cross sections for the astrophysically prominent O6 + ion with the atomic and molecular targets He and H2 are reported. These collisions give rise to x-ray emissions in the interplanetary medium, planetary atmospheres, and comets as they approach the sun. Measurements have been carried out using the Caltech Jet Propulsion Laboratory electron cyclotron resonance ion source with O6 + at energies of 1.17 and 2.33 keV/u characteristic of the slow and fast components of the solar wind. Absolute charge-exchange (CE) data are derived from knowledge of the target gas pressure, target path length, incident ion current, and charge-exchanged ion currents. These data are compared with results obtained using the n -electron classical trajectory Monte Carlo method. The radiative and Auger evolution of ion populations following one- and two-electron transfers is calculated with the time-dependent collisional-radiative code nomad using atomic data from the flexible atomic code. Calculated CE emission spectra for 100 Å <λ <1400 Å are reported as well and compared with experimental sublevel spectra and cross sections.

  8. Electron beam induced and microemulsion templated synthesis of CdSe quantum dots: tunable broadband emission and charge carrier recombination dynamics

    Science.gov (United States)

    Guleria, Apurav; Singh, Ajay K.; Rath, Madhab C.; Adhikari, Soumyakanti

    2015-04-01

    CdSe quantum dots (QDs) were synthesized by a rapid and one step templated approach inside the water pool of AOT (sodium bis(2-ethylhexyl) sulfosuccinate) based water-in-oil microemulsions (MEs) via electron beam (EB) irradiation technique with high dose rate, which favours high nucleation rate. The interplay of different experimental parameters such as precursor concentration, absorbed dose and {{W}0} values (aqueous phase to surfactant molar ratio) of MEs were found to have interesting consequences on the morphology, photoluminescence (PL), surface composition and carrier recombination dynamics of as-grown QDs. For instance, highly stable ultrasmall (∼1.7 nm) bluish-white light emitting QDs were obtained with quantum efficiency (η) of ∼9%. Furthermore, QDs were found to exhibit tunable broadband light emission extending from 450 to 750 nm (maximum FWHM ∼180 nm). This could be realized from the CIE (Commission Internationale d’Eclairage) chromaticity co-ordinates, which varied across the blue region to the orange region thereby, conferring their potential application in white light emitting diodes. Additionally, the average PL lifetime ≤ft( ≤ft \\right) values could be varied from 18 ns to as high as 74 ns, which reflect the role of surface states in terms of their density and distribution. Another interesting revelation was the self-assembling of the initially formed QDs into nanorods with high aspect ratios ranging from 7 to 20, in correspondence with the {{W}0} values. Besides, the fundamental roles of the chemical nature of water pool and the interfacial fluidity of AOT MEs in influencing the photophysical properties of QDs were investigated by carrying out a similar study in CTAB (cetyltrimethylammonium bromide; cationic surfactant) based MEs. Surprisingly, very profound and contrasting results were observed wherein ≤ft and η of the QDs in case of CTAB MEs were found to be at least three times lower as compared to that in AOT MEs.

  9. Regulation of Meiotic Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  10. A phenomenological study of the {pi}{sup -} p {yields} {pi}{sup 0} n charge exchange reaction at high energy; Etude phenomenologique de la reaction d`echange de charge {pi}{sup -} p {yields} {pi}{sup 0} n a haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Michaud, Y.

    1995-09-21

    The aim of the study was to examine the behaviour of the proton-proton elastic scattering, for mass center energies around 10 GeV, and more especially to study the charge exchange reaction {pi}{sup -} p {yields} {pi}{sup 0} n for mass center energies between 3 and 20 GeV. A formalism based on the Glauber model has been used, and a Regge trajectory exchange term was introduced in the model in order to enable the description of the lower energy domain (inferior to 10 GeV) that is characterized by a large contribution of meson exchanges at the scattering amplitude. The Glauber model is then applied to the charge exchange reaction and the differential cross section is analyzed for a center mass energy comprised between 3 and 20 GeV, together with the polarization at 40 GeV/c. The approach is then validated through the study of the {pi}{sup -} p {yields} {eta} n reaction. The size of the kernel of proton and pion components implied in the {pi}{sup -} p {yields} {pi}{sup 0} n reaction, is also investigated. 90 refs., 48 figs., 4 tabs., 5 appends.

  11. High-resolution study of the Gamow-Teller strength distribution in the light nuclei 9B and 13N using the (3He,t) charge-exchange reaction at 420 MeV beam energy

    International Nuclear Information System (INIS)

    Excited states in the light nuclei 9B and 13C were studied using the (3He,t) charge-exchange reaction on 9Be and 13C targets. The measurements were performed at the research center for nuclear physics (RCNP) in Osaka, Japan, using the magnetic spectrometer Grand Raiden and the dispersive WS course. The 3He beam with an energy of 420 MeV was accelerated by the RCNP Ring Cyclotron. The Grand Raiden spectrometer and the WS course allow to study the (3He,t) charge-exchange reaction with an energy resolution of around 30 keV, which is one order of magnitude better than measurements with the (p,n) charge-exchange reaction. The high resolution allows to better separate individual states and to determine weak excitation strengths because of low background in the spectra. A total of 19 states in 13N were studied, and a total of 20 states were observed in 9B. Of these, 9 states in 13C and 10 states in 9B were identified as being excited by a Gamow-Teller transition. Charge-exchange reactions are related to beta-decay, and at zero momentum transfer a simple proportionality exists between the cross-section of the charge-exchange experiment and the Fermi (F) or Gamow-Teller (GT) beta-decay strength. While the Fermi strength B(F) is concentrated in the transition to the isobaric analog state, the Gamow-Teller strength B(GT) is scattered among the excited states. The main aim of the present study is to determine the B(GT) strengths in the nuclei 9B and 13N. The only charge-exchange study of 9B was made 30 years ago with the (p,n) reaction and a resolution of around 300-400 keV. Many states, especially at high excitation energy, could not be resolved by that study. The present work was able to separate many weakly excited states with small decay width at high excitation energies (12-19 MeV) in 9B and determine the B(GT) strength distribution by using recent high-precision beta-decay data. The results point to a strong difference in spatial structure between the low-lying levels of

  12. Comparison of recombination models in organic bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Recombination in bulk-heterojunction (BHJ) organic solar cells is the key loss mechanism, and it directly affects characteristic parameters such as power conversion efficiency, short-circuit current, open-circuit voltage, and fill factor. However, which recombination mechanism dominates the loss in organic materials is unclear at present. In this work, we simulate state-of-art BHJ solar cells using five recombination models, including direct recombination, Langevin recombination, charge transfer state recombination, trap-assisted recombination, and recombination via tail. All processes are strongly dependent on charge carrier mobility and exhibit a similar recombination distribution in active layer. For high mobilities, all models present a similar behavior along with the increased mobilities, whereas, there are slight differences in open-circuit voltage between trap/tail model and other ones at lower mobilities, resulting from the interaction between photo-carriers and dark-carriers

  13. Effect of ligand exchange of Cu{sub 2}ZnSnS{sub 4} nanocrystals on the charge transport and photovoltaic performance of nanostructured depleted bulk heterojunction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuo-Xi; Zhou, Zheng-Ji, E-mail: zzj@henu.edu.cn; Bai, Bing; Liu, Ming-Hua; Zhou, Wen-Hui; Kou, Dong-Xing; Wu, Si-Xin, E-mail: wusixin@henu.edu.cn [Henan University, Key Laboratory for Special Functional Materials of Ministry of Education (China)

    2015-12-15

    Cu{sub 2}ZnSnS{sub 4} (CZTS) nanocrystals combining the advantage of feasible solution-phase synthesis and processing are perceived as promising materials for application in efficient, low-cost photovoltaic technology. Herein, we have got surfactant-free CZTS nanocrystals by a novel ligand exchange method, and the obtained CZTS nanocrystals were deposited onto ZnO nanorod arrays to construct depleted bulk heterojunction solar cell. The all-inorganic CZTS nanocrystal solar cells demonstrated a remarkable improvement in J{sub sc} (from 8.14 to 13.97 mA/cm{sup 2}) and power conversion efficiency (from 1.83 to 3.34 %) compared with surfactant-capped CZTS nanocrystals. Using surface photovoltage spectrum, the influence of ligand exchange of CZTS nanocrystals on the charge transport and photovoltaic performance of the nanostructured CZTS solar cells was discussed.

  14. Analysis of interchromosomal mitotic recombination.

    Science.gov (United States)

    McGill, C B; Shafer, B K; Higgins, D R; Strathern, J N

    1990-07-01

    A novel synthetic locus is described that provides a simple assay system for characterizing mitotic recombinants. The locus consists of the TRP1 and HIS3 genes inserted into chromosome III of S. cerevisiae between the CRY1 and MAT loci. Defined trp1 and his3 alleles have been generated that allow the selection of interchromosomal recombinants in this interval. Trp+ or His+ recombinants can be divided into several classes based on coupling of the other alleles in the interval. The tight linkage of the CRY1 and MAT loci, combined with the drug resistance and cell type phenotypes that they respectively control, facilitates the classification of the recombinants without resorting to tetrad dissection. We present the distribution of spontaneous recombinants among the classes defined by this analysis. The data suggest that the recombination intermediate can have regions of symmetric strand exchange and that co-conversion tracts can extend over 1-3 kb. Continuous conversion tracts are favored over discontinuous tracts. The distribution among the classes defined by this analysis is altered in recombinants induced by UV irradiation.

  15. Experimental study on the influence of charge exchange on the stopping power in the interaction of chlorine with a gas and a deuterium plasma; Etude experimentale de l`influence des echanges de charges sur le pouvoir d`arret dans l`interaction d`ions chlore avec un gaz et un plasma de deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Nectoux, Marie [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1998-01-06

    This thesis is placed in the context of the physics of energy deposition of a multicharged heavy ion beam in matter at intermediate energies. The experiment gave measurements of energy loss as a function of final charge state for chlorine ions at 1.7 MeV/u in deuterium gas or plasma. In this way, we explore the influence of charge state evolution, depending on experimentally measured capture and ionization cross sections and the electron density of the target, on energy loss. The target is cylindrical and enclosed by two fast valves. The plasma is created in the gas by a discharge, which induces a magnetic perturbation of the beam (lens effect). This effect induces a divergent and misaligned outgoing beam. A simulation including charge state and velocity evolution of the projectile in flight in the magnetic field has been made in order to optimize beam analysis, to reach a precision better than 10{sup -3} in energy measurement. This study led to removal of the target to the `Split Pole`, a refocusing magnetic spectrometer. The first results obtained clearly show the dependence of energy loss on exit charge and especially on its evolution in the target. This is explained in terms of the lengths covered by the projectile in its successive charge states in the target, which depends on target electron density and the medium considered. In plasma, we observed an energy distribution with exit charge twice that observed in gas, because of a strong decrease of charge exchange. A comparison of data obtained in gas with stopping power calculated from Bethe-Bloch-Barkas theory leads to the necessity of including spatial extension of the projectile charge in the theory. (author) 81 refs., 62 figs., 5tabs.

  16. Charge Recombination in Dye-sensitized Solar Cells with Low Adsorbed Concentration of Dye%染料敏化太阳能电池中低染料吸附浓度下的界面电荷复合效应

    Institute of Scientific and Technical Information of China (English)

    唐笑; 汪禹汛

    2013-01-01

    在保持染料吸附量不变的条件下,通过增加TiO2薄膜厚度来降低染料在TiO2薄膜表面的吸附浓度.研究了染料吸附浓度与染料敏化太阳能电池(DSC)中界面电荷复合效应的关系.研究发现,在低染料吸附浓度下,DSCs中界面电荷复合效应明显降低,并由此使得DSC在薄膜厚度增加时,仍能保持0.72~0.80的高填充因子;在TiO2光电极有效面积由0.25 cm2增大到1 cm2时,总光电转换效率(η)损失由34.7%减少到19.6%.%Photovoltaic conversion performances of dye-sensitized solar cells (DSCs) are significantly influenced by the interface charge recombination in DSCs. Lots of factors affecting the charge recombination, such as surface states of TiC>2 and components of electrolytes, have been studied and dyes have been always ignored for the charge recombination in DSCs. Although the charge recombination occurring between the injection electrons and triiodide in electrolyte is calculated to take priority kinetically to the one between the injection electrons and oxidized dye molecules, dyes are not independent from the electrolyte related electron recombination. Instead by dye molecules themselves, the chance of injection electrons recaptured by triiodide in electrolyte could rise due to the increase of the adsorbed concentration of dye, which leads to the local concentration of triiodide increasing. In this paper, an effect of low charge recombination in DSCs with low adsorbed concentration of dye is observed. The adsorbed concentration of dye is defined as the adsorbed amount of dye in unit specific surface area of TiO2 films and adjusted by adsorbing similar amount of dye on the surface of TiO2 films with different film thickness. The influence of the adsorbed concentration of dye on the charge recombination in DSC is investigated by the electrochemical impedance spectroscopy (EIS) technology. It turns out that with the adsorbed concentration of dye decreasing, the electron lift time

  17. Radiative Recombination and Photoionization Data for Tungsten Ions. Electron Structure of Ions in Plasmas

    Directory of Open Access Journals (Sweden)

    Malvina B. Trzhaskovskaya

    2015-05-01

    Full Text Available Theoretical studies of tungsten ions in plasmas are presented. New calculations of the radiative recombination and photoionization cross-sections, as well as radiative recombination and radiated power loss rate coefficients have been performed for 54 tungsten ions for the range W6+–W71+. The data are of importance for fusion investigations at the reactor ITER, as well as devices ASDEX Upgrade and EBIT. Calculations are fully relativistic. Electron wave functions are found by the Dirac–Fock method with proper consideration of the electron exchange. All significant multipoles of the radiative field are taken into account. The radiative recombination rates and the radiated power loss rates are determined provided the continuum electron velocity is described by the relativistic Maxwell–Jüttner distribution. The impact of the core electron polarization on the radiative recombination cross-section is estimated for the Ne-like iron ion and for highly-charged tungsten ions within an analytical approximation using the Dirac–Fock electron wave functions. The effect is shown to enhance the radiative recombination cross-sections by ≲20%. The enhancement depends on the photon energy, the principal quantum number of polarized shells and the ion charge. The influence of plasma temperature and density on the electron structure of ions in local thermodynamic equilibrium plasmas is investigated. Results for the iron and uranium ions in dense plasmas are in good agreement with previous calculations. New calculations were performed for the tungsten ion in dense plasmas on the basis of the average-atom model, as well as for the impurity tungsten ion in fusion plasmas using the non-linear self-consistent field screening model. The temperature and density dependence of the ion charge, level energies and populations are considered.

  18. 电动公交车换电站--电池充电站优化规划%Optimal Planning of Battery Charging and Exchange Stations for Electric Vehicles

    Institute of Scientific and Technical Information of China (English)

    钱斌; 石东源; 谢平平; 朱林

    2014-01-01

    充电设施的规划与建设是解决电动汽车发展瓶颈的重要问题。电动汽车在公共交通领域发展迅速,并广泛采用换电模式。文中充分考虑了电动公交汽车换电电量需求和充换电行为,提出了一种换电站-电池充电站建设模式,并给出了相应的优化规划方法。该方法首先使用近邻传播聚类算法对换电需求点进行空间聚类,以确定电池充电站的站址和规模,并利用化石燃料与电能的热值关系,将当前柴油公交车日消耗能量折算成电能以确定换电电量需求。然后,利用排队论方法对电池充电站内的工作情形进行建模,提出以拒绝服务率为主要约束,以综合建设成本最小为目标的优化模型。最后,以某城市实际统计数据为例给出了该市公交汽车换电站、电池充电站以及其充电设备、换电设备、电池的规划方案,为电动公交车充、换电站的实际规划提供参考。%The planning and deployment of electric vehicle battery charging devices is an important problem in tackling the bottleneck of electric vehicles.Although the charging mode is widely preferred,the exchange mode is still popular with public transport.A battery charging-exchange station construction mode is proposed along with the corresponding optimal planning strategy by taking the electric bus demand into consideration.The affinity propagation clustering algorithm is used to determine the sizing and siting of the battery charging stations.In order to identify the bus electricity demand,daily fuel consumption is converted into equivalent electricity usage.The queuing theory is put forward to model the daily management of battery charging stations.After that,a minimum construction cost optimization model is built with the service denying rate as the major constraint.Finally,actual statistics of a city are taken as an example to determine the quantity of charge/exchange devices and

  19. Mass-charge-heat coupled transfers in a single cell of a proton exchange membrane fuel cell; Transferts couples masse-charge-chaleur dans une cellule de pile a combustible a membrane polymere

    Energy Technology Data Exchange (ETDEWEB)

    Ramousse, J.

    2005-11-15

    Understanding and modelling of coupled mass, charges and heat transfers phenomena are fundamental to analyze the electrical behaviour of the system. The aim of the present model is to describe electrical performances of a PEFMC according to the fluidic and thermal operating conditions. The water content of the membrane and the water distribution in the single cell are estimated according to the coupled simulations of mass transport in the thickness of the single cell and in the feeding channels of the bipolar plates. A microscopic model of a Gas Diffusion Electrode is built up to describe charges transfer phenomena occurring at the electrodes. Completed by a study of heat transfer in the Membrane Electrode Assembly, conditions and preferential sites of water vapor condensation can be highlighted. A set of measurements of the effective thermal conductivity of carbon felts used in fuel cells as porous backing layers have also been performed. Although the value of this parameter is essential for the study of heat transfer, it is still under investigation because of the strong thermal anisotropy of the medium. (author)

  20. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  1. 47 CFR 69.124 - Interconnection charge.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Interconnection charge. 69.124 Section 69.124... Computation of Charges § 69.124 Interconnection charge. (a) Until December 31, 2001, local exchange carriers not subject to price cap regulation shall assess an interconnection charge expressed in dollars...

  2. Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations and $\\beta$-decay half-lives

    CERN Document Server

    Niu, Z M; Liang, H Z; Long, W H; Meng, J

    2016-01-01

    The self-consistent quasiparticle random-phase approximation (QRPA) approach is formulated in the canonical single-nucleon basis of the relativistic Hatree-Fock-Bogoliubov (RHFB) theory. This approach is applied to study the isobaric analog states (IAS) and Gamov-Teller resonances (GTR) by taking Sn isotopes as examples. It is found that self-consistent treatment of the particle-particle residual interaction is essential to concentrate the IAS in a single peak for open-shell nuclei and the Coulomb exchange term is very important to predict the IAS energies. For the GTR, the isovector pairing can increase the calculated GTR energy, while the isoscalar pairing has an important influence on the low-lying tail of the GT transition. Furthermore, the QRPA approach is employed to predict nuclear $\\beta$-decay half-lives. With an isospin-dependent pairing interaction in the isoscalar channel, the RHFB+QRPA approach almost completely reproduces the experimental $\\beta$-decay half-lives for nuclei up to the Sn isotopes...

  3. Exchange Reaction Between Selenite and Hydroxyl Ion of Variable Charge Soil Surfaces:I.Electrolyte Species and pH Effects

    Institute of Scientific and Technical Information of China (English)

    ZHOU SHIWEI; ZHANG GANGYA; ZHANG XIAONIAN

    2003-01-01

    Hydroxyl release of red soil and latosol surfaces was quantitatively measured using a self-made constantpH automated titration instrument, to study the changes of hydroxyl release with different added seleniteamounts and pH levels, and to study the effects of electrolytes on hydroxyl release. Hydroxyl release increasedwith the selenite concentration, with a rapid increase at a low selenite concentration while slowing down ata high concentration. The pH where maximum of hydroxyl release appeared was not constant, shifting toa lower valus with increasing selenite concentration. Hydroxyl release decreased with increasing electrolyteconcentration, and the decrease was very rapid at a low electrolyte concentration but slow at a high electrolyteconcentration. For NaC1O4, NaC1 and Na2SO4, hydroxyl release was in the order of NaClO4 > NaCl >Na2SO4, and the difference was very significant. But for NaCl, KCl and CaCl2, the order of hydroxyl releasewas NaCl > KCl > CaCl2, and the difference was smaller. The amount of hydroxyl release from Xuwenlatosol was greater than that from Jinxian red soil. Hydroxyl release existed in a wider range of pH withXuwen latosol than with Jinxian red soil, due to their difference in soil properties. However, both soils hadsimilar curves of hydroxyl release, indicating the common characteristics of variable charge soils.

  4. Recombination every day: abundant recombination in a virus during a single multi-cellular host infection.

    Directory of Open Access Journals (Sweden)

    Remy Froissart

    2005-03-01

    Full Text Available Viral recombination can dramatically impact evolution and epidemiology. In viruses, the recombination rate depends on the frequency of genetic exchange between different viral genomes within an infected host cell and on the frequency at which such co-infections occur. While the recombination rate has been recently evaluated in experimentally co-infected cell cultures for several viruses, direct quantification at the most biologically significant level, that of a host infection, is still lacking. This study fills this gap using the cauliflower mosaic virus as a model. We distributed four neutral markers along the viral genome, and co-inoculated host plants with marker-containing and wild-type viruses. The frequency of recombinant genomes was evaluated 21 d post-inoculation. On average, over 50% of viral genomes recovered after a single host infection were recombinants, clearly indicating that recombination is very frequent in this virus. Estimates of the recombination rate show that all regions of the genome are equally affected by this process. Assuming that ten viral replication cycles occurred during our experiment-based on data on the timing of coat protein detection-the per base and replication cycle recombination rate was on the order of 2 x 10(-5 to 4 x 10(-5. This first determination of a virus recombination rate during a single multi-cellular host infection indicates that recombination is very frequent in the everyday life of this virus.

  5. Recombination analysis of Soybean mosaic virus sequences reveals evidence of RNA recombination between distinct pathotypes

    Directory of Open Access Journals (Sweden)

    Babu Mohan

    2008-11-01

    Full Text Available Abstract RNA recombination is one of the two major factors that create RNA genome variability. Assessing its incidence in plant RNA viruses helps understand the formation of new isolates and evaluate the effectiveness of crop protection strategies. To search for recombination in Soybean mosaic virus (SMV, the causal agent of a worldwide seed-borne, aphid-transmitted viral soybean disease, we obtained all full-length genome sequences of SMV as well as partial sequences encoding the N-terminal most (P1 protease and the C-terminal most (capsid protein; CP viral protein. The sequences were analyzed for possible recombination events using a variety of automatic and manual recombination detection and verification approaches. Automatic scanning identified 3, 10, and 17 recombination sites in the P1, CP, and full-length sequences, respectively. Manual analyses confirmed 10 recombination sites in three full-length SMV sequences. To our knowledge, this is the first report of recombination between distinct SMV pathotypes. These data imply that different SMV pathotypes can simultaneously infect a host cell and exchange genetic materials through recombination. The high incidence of SMV recombination suggests that recombination plays an important role in SMV evolution. Obtaining additional full-length sequences will help elucidate this role.

  6. Recombination every day: abundant recombination in a virus during a single multi-cellular host infection.

    Science.gov (United States)

    Froissart, Remy; Roze, Denis; Uzest, Marilyne; Galibert, Lionel; Blanc, Stephane; Michalakis, Yannis

    2005-03-01

    Viral recombination can dramatically impact evolution and epidemiology. In viruses, the recombination rate depends on the frequency of genetic exchange between different viral genomes within an infected host cell and on the frequency at which such co-infections occur. While the recombination rate has been recently evaluated in experimentally co-infected cell cultures for several viruses, direct quantification at the most biologically significant level, that of a host infection, is still lacking. This study fills this gap using the cauliflower mosaic virus as a model. We distributed four neutral markers along the viral genome, and co-inoculated host plants with marker-containing and wild-type viruses. The frequency of recombinant genomes was evaluated 21 d post-inoculation. On average, over 50% of viral genomes recovered after a single host infection were recombinants, clearly indicating that recombination is very frequent in this virus. Estimates of the recombination rate show that all regions of the genome are equally affected by this process. Assuming that ten viral replication cycles occurred during our experiment-based on data on the timing of coat protein detection-the per base and replication cycle recombination rate was on the order of 2 x 10(-5) to 4 x 10(-5). This first determination of a virus recombination rate during a single multi-cellular host infection indicates that recombination is very frequent in the everyday life of this virus. PMID:15737066

  7. Around the laboratories: Dubna: Physics results and progress on bubble chamber techniques; Stanford (SLAC): Operation of a very rapid cycling bubble chamber; Daresbury: Photographs of visitors to the Laboratory; Argonne: Charge exchange injection tests into the ZGS in preparation for a proposed Booster

    CERN Multimedia

    1969-01-01

    Around the laboratories: Dubna: Physics results and progress on bubble chamber techniques; Stanford (SLAC): Operation of a very rapid cycling bubble chamber; Daresbury: Photographs of visitors to the Laboratory; Argonne: Charge exchange injection tests into the ZGS in preparation for a proposed Booster

  8. Recombinant Technology and Probiotics

    Directory of Open Access Journals (Sweden)

    Icy D’Silva

    2011-09-01

    Full Text Available Recombinant technology has led the way to monumental advances in the development of useful molecules, including the development of safe probiotics. The development of novel approaches using recombinant technology and probiotics that allow accurate targeting of therapeutics to the mucosa is an interesting area of research. The creation and use of recombinant probiotics expressing recombinantovalbumin, recombinant ovalbumin mutants and yet-to-be-designed recombinant hypo/non-allergenic molecules offer the opportunity to further investigate their effects for food, nutrition, environment andhealth. This review highlights advances in native probiotics and recombinant probiotics expressing native and recombinant molecules for food, nutrition, environment and health.

  9. Study of the elastic scattering and of the (p,n) charge exchange reaction with neutron-rich light exotic beams; Etude de la diffusion elastique et de la reaction d`echange de charge (p,n) avec des faisceaux exotiques legers riches en neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Cortina Gil, D.

    1996-07-05

    We have measured at GANIL, with the high resolution spectrometer SPEG, the elastic scattering of several neutron rich secondary beams ({sup 6}He, {sup 10}Be and {sup 11}Be) on a polypropylene target and the charge exchange reaction p({sup 6}He, {sup 6}Li)n. These exotic beams were produced by nuclear fragmentation and re-focalized with the SISSI device (superconducting solenoids). The signature of a halo structure in these nuclei has been analysed. Special attention has been paid to several aspects of the associated calculations namely, the proton and neutron density distributions and the small binding energy for the last nucleons in these exotic nuclei. Break-up mechanisms are seen to play an important role in these nuclei. 100 refs.

  10. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  11. Electron-ion recombination at low energy

    International Nuclear Information System (INIS)

    The work is based on results obtained with a merged-beams experiment. A beam of electronics with a well characterized density and energy distribution was merged with a fast, monoenergetic ion beam. Results have been obtained for radiative recombination and dielectronic recombination at low relative energies (0 to ∼70eV). The obtained energy resolution was improved by about a factor of 30. High vacuum technology was used to suppress interactions with electrons from the environments. The velocity distribution of the electron beam was determined. State-selective dielectronic-recombination measurements were performable. Recombination processes were studied. The theoretical background for radiative recombination and Kramers' theory are reviewed. The quantum mechanical result and its relation to the semiclassical theory is discussed. Radiative recombination was also measured with several different non-bare ions, and the applicability of the semiclassical theory to non-bare ions was investigated. The use of an effective charge is discussed. For dielectronic recombination, the standard theoretical approach in the isolated resonance and independent-processes approximation is debated. The applicability of this method was tested. The theory was able to reproduce most of the experimental data except when the recombination process was sensitive to couplings between different electronic configurations. The influence of external perturbing electrostatic fields is discussed. (AB) (31 refs.)

  12. A general algorithm for calculation of recombination losses in ionization chambers exposed to ion beams

    CERN Document Server

    Christensen, Jeppe brage; Bassler, Niels

    2016-01-01

    Dosimetry with ionization chambers in clinical ion beams for radiation therapy requires correction for recombination effects. However, common radiation protocols discriminate between initial and general recombination and provide no universal correction method for the presence of both recombination types in ion beams of charged particles heavier than protons. Here, we present the open source code IonTracks, where the combined initial and general recombination effects in principle can be predicted for any ion beam with arbitrary particle-energy spectrum and temporal structure. IonTracks uses track structure theory to distribute the charge carriers in ion tracks. The charge carrier movements are governed by a pair of coupled differential equations, based on fundamental physical properties as charge carrier drift, diffusion, and recombination, which are solved numerically while the initial and general charge carrier recombination is computed. The algorithm is numerically stable and in accordance with experimental...

  13. Experimental approaches to the measurement of dielectronic recombination

    International Nuclear Information System (INIS)

    In dielectronic recombination, the first step involves a continuum electron which excites a previously bound electron and, in so doing, loses just enough energy to be captured in a bound state (nl). This results in a doubly excited ion of a lower charge state which may either autoionize or emit a photon resulting in a stabilized recombination. The complete signature of the event is an ion of reduced charge and an emitted photon. Methods of measuring this event are discussed

  14. Highly charged ions in magnetic fusion plasmas: research opportunities and diagnostic necessities

    Science.gov (United States)

    Beiersdorfer, P.

    2015-07-01

    Highly charged ions play a crucial role in magnetic fusion plasmas. These plasmas are excellent sources for producing highly charged ions and copious amounts of radiation for studying their atomic properties. These studies include calibration of density diagnostics, x-ray production by charge exchange, line identifications and accurate wavelength measurements, and benchmark data for ionization balance calculations. Studies of magnetic fusion plasmas also consume a large amount of atomic data, especially in order to develop new spectral diagnostics. Examples we give are the need for highly accurate wavelengths as references for measurements of bulk plasma motion, the need for accurate line excitation rates that encompass both electron-impact excitation and indirect line formation processes, for accurate position and resonance strength information of dielectronic recombination satellite lines that may broaden or shift diagnostic lines or that may provide electron temperature information, and the need for accurate ionization balance calculations. We show that the highly charged ions of several elements are of special current interest to magnetic fusion, notably highly charged ions of argon, iron, krypton, xenon, and foremost of tungsten. The electron temperatures thought to be achievable in the near future may produce W70+ ions and possibly ions with even higher charge states. This means that all but a few of the most highly charged ions are of potential interest as plasma diagnostics or are available for basic research.

  15. Recombinant DNA in Medicine

    OpenAIRE

    Cederbaum, Stephen D.; Fareed, George C.; Lovett, Michael A.; Shapiro, Larry J.

    1984-01-01

    Studies in bacteria and bacterial viruses have led to methods to manipulate and recombine DNA in unique and reproducible ways and to amplify these recombined molecules millions of times. Once properly identified, the recombinant DNA molecules can be used in various ways useful in medicine and human biology. There are many applications for recombinant DNA technology. Cloned complementary DNA has been used to produce various human proteins in microorganisms. Insulin and growth hormone have been...

  16. Improving baculovirus recombination

    OpenAIRE

    Zhao, Yuguang; Chapman, David A. G.; Jones, Ian M.

    2003-01-01

    Recombinant baculoviruses have established themselves as a favoured technology for the high-level expression of recombinant proteins. The construction of recombinant viruses, however, is a time consuming step that restricts consideration of the technology for high throughput developments. Here we use a targeted gene knockout technology to inactivate an essential viral gene that lies adjacent to the locus used for recombination. Viral DNA prepared from the knockout fails to initiate an infecti...

  17. Hydration shells exchange charge with their protein

    DEFF Research Database (Denmark)

    Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert;

    2010-01-01

    Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells....... In our experiments, the amplitude of an ultrasonic pressure wave is gradually increased (0–20 atm) while we simultaneously measure the Raman spectra from the hydrated protein (β-lactoglobulin and lysozyme). We detected two types of spectral changes: first, up to 70% increase in the intensity...... of the fluorescence background of the Raman spectrum with a typical relaxation time of 30–45 min. Second, we detect changes in the vibrational Raman spectra. To clarify these results we conducted similar experiments with aqueous solutions of amino acids and ethanol. These experiments led us to conclude that, without...

  18. Electronic device for measuring the polarization parameter in the {pi}{sup -}p {yields} {pi}{sup 0}n charge exchange reaction on a polarized proton target; Un appareillage electronique destine a la mesure du parametre de polarisation dans la reaction d'echange de charge {pi}{sup -}p {yields} {pi}{sup 0}n sur cible de protons polarises

    Energy Technology Data Exchange (ETDEWEB)

    Brehin, S. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-12-15

    An electronic apparatus has been constructed to measure the polarization parameter P{sub 0}(t) in {pi}{sup -}p {yields} {pi}{sup 0}n charge exchange scattering at 5.9 GeV/c and 11,2 GeV/c on polarized proton target. This device insures triggering of a heavy plate spark chamber, allowing visualisation of {gamma} rays from the {pi}{sup 0} decays when the associated neutron offers suitable characteristics in direction and energy. The neutron is detected by an array of 32 counters and his energy is measured by a time of flight method. Electronic circuits of this apparatus are described as test and calibration methods used. (author) [French] Un appareillage electronique a ete realise pour mesurer le parametre de polarisation P{sub 0}(t) dans la reaction d'echange de charge {pi}{sup -}p {yields} {pi}{sup 0}n a 5,9 GeV/c et 11,2 GeV/c sur une cible de protons polarises. Ce dispositif assure le declenchement d'une chambre a etincelles a plaques lourdes, permettant de visualiser les {gamma} de desitegration du {pi}{sup 0}, lorsque le neutron associe presente les caracteristiques convenables en direction et en energie. Le neutron est detecte par un ensemble de 32 compteurs et son energie est mesuree par une methode de temps de vol. Les circuits composant cet appareillage sont decrits ainsi que les methodes d'etalonnage et de verification utilisees. (auteur)

  19. SIR epidemics in monogamous populations with recombination

    CERN Document Server

    Zanette, Damián H

    2011-01-01

    We study the propagation of an SIR (susceptible-infectious-recovered) disease over an agent population which, at any instant, is fully divided into couples of agents. Couples are occasionally allowed to exchange their members. This process of couple recombination can compensate the instantaneous disconnection of the interaction pattern and thus allow for the propagation of the infection. We study the incidence of the disease as a function of its infectivity and of the recombination rate of couples, thus characterizing the interplay between the epidemic dynamics and the evolution of the population's interaction pattern.

  20. High-charge-state ion sources

    International Nuclear Information System (INIS)

    Sources of high charge state positive ions have uses in a variety of research fields. For heavy ion particle accelerators higher charge state particles give greater acceleration per gap and greater bending strength in a magnet. Thus higher energies can be obtained from circular accelerators of a given size, and linear accelerators can be designed with higher energy gain per length using higher charge state ions. In atomic physics the many atomic transitions in highly charged ions supplies a wealth of spectroscopy data. High charge state ion beams are also used for charge exchange and crossed beam experiments. High charge state ion sources are reviewed

  1. Photoionization and Recombination

    Science.gov (United States)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  2. Recombineering Homologous Recombination Constructs in Drosophila

    OpenAIRE

    Carreira-Rosario, Arnaldo; Scoggin, Shane; Shalaby, Nevine A.; Williams, Nathan David; Hiesinger, P. Robin; Buszczak, Michael

    2013-01-01

    The continued development of techniques for fast, large-scale manipulation of endogenous gene loci will broaden the use of Drosophila melanogaster as a genetic model organism for human-disease related research. Recent years have seen technical advancements like homologous recombination and recombineering. However, generating unequivocal null mutations or tagging endogenous proteins remains a substantial effort for most genes. Here, we describe and demonstrate techniques for using recombineeri...

  3. Distance distributions of photogenerated charge pairs in organic photovoltaic cells.

    Science.gov (United States)

    Barker, Alex J; Chen, Kai; Hodgkiss, Justin M

    2014-08-27

    Strong Coulomb interactions in organic photovoltaic cells dictate that charges must separate over relatively long distances in order to circumvent geminate recombination and produce photocurrent. In this article, we measure the distance distributions of thermalized charge pairs by accessing a regime at low temperature where charge pairs are frozen out following the primary charge separation step and recombine monomolecularly via tunneling. The exponential attenuation of tunneling rate with distance provides a sensitive probe of the distance distribution of primary charge pairs, reminiscent of electron transfer studies in proteins. By fitting recombination dynamics to distributions of recombination rates, we identified populations of charge-transfer states and well-separated charge pairs. For the wide range of materials we studied, the yield of separated charges in the tunneling regime is strongly correlated with the yield of free charges measured via their intensity-dependent bimolecular recombination dynamics at room temperature. We therefore conclude that populations of free charges are established via long-range charge separation within the thermalization time scale, thus invoking early branching between free and bound charges across an energetic barrier. Subject to assumed values of the electron tunneling attenuation constant, we estimate critical charge separation distances of ∼3-4 nm in all materials. In some blends, large fullerene crystals can enhance charge separation yields; however, the important role of the polymers is also highlighted in blends that achieved significant charge separation with minimal fullerene concentration. We expect that our approach of isolating the intrinsic properties of primary charge pairs will be of considerable value in guiding new material development and testing the validity of proposed mechanisms for long-range charge separation.

  4. EUV spectra of highly-charged ions W$^{54+}$-W$^{63+}$ relevant to ITER diagnostics

    CERN Document Server

    Ralchenko, Yu; Tan, J N; Gillaspy, J D; Pomeroy, J M; Reader, J; Feldman, U; Holland, G E

    2008-01-01

    We report the first measurements and detailed analysis of extreme ultraviolet (EUV) spectra (4 nm to 20 nm) of highly-charged tungsten ions W$^{54+}$ to W$^{63+}$ obtained with an electron beam ion trap (EBIT). Collisional-radiative modelling is used to identify strong electric-dipole and magnetic-dipole transitions in all ionization stages. These lines can be used for impurity transport studies and temperature diagnostics in fusion reactors, such as ITER. Identifications of prominent lines from several W ions were confirmed by measurement of isoelectronic EUV spectra of Hf, Ta, and Au. We also discuss the importance of charge exchange recombination for correct description of ionization balance in the EBIT plasma.

  5. Porous solid ion exchange wafer for immobilizing biomolecules

    Science.gov (United States)

    Arora, Michelle B.; Hestekin, Jamie A.; Lin, YuPo J.; St. Martin, Edward J.; Snyder, Seth W.

    2007-12-11

    A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.

  6. SU(3) colorsingletness, Z(3) symmetry, Polyakov Loop and dynamical recombination

    CERN Document Server

    Islam, Chowdhury Aminul; Mustafa, Munshi G; Ghosh, Sanjay K; Ray, Rajarshi

    2012-01-01

    Based on quantum statistical mechanics we show that the SU(3) colorsinglet ensemble of a quark-gluon gas exhibits a Z(3) symmetry through the normaized character in fundamental representation and also becomes equivalent, within a stationary point approximation, to the ensemble given by Polyakov Loop. The probability of the normalized character in SU(3) is found to be maximum at a particular value exhibiting a long range color correlation. This clearly indicates a transition from a color correlated to uncorrelated phase or vise-versa. A dynamical recombination of ionized Z(3) color charges to a color singlet Z(3) symmetric confined phase is evident along with a lower bound that originates from an exchange of a pair of massive magnetic gluons between two Polyakov Loops.

  7. Smart electric vehicle charging system

    OpenAIRE

    João C. Ferreira; Monteiro, Vítor Duarte Fernandes; João L Afonso; Silva, Alberto R.

    2011-01-01

    In this work is proposed the design of a system to create and handle Electric Vehicles (EV) charging procedures, based on intelligent process. Due to the electrical power distribution network limitation and absence of smart meter devices, Electric Vehicles charging should be performed in a balanced way, taking into account past experience, weather information based on data mining, and simulation approaches. In order to allow information exchange and to help user ...

  8. Rapid purification of recombinant histones.

    Directory of Open Access Journals (Sweden)

    Henrike Klinker

    Full Text Available The development of methods to assemble nucleosomes from recombinant histones decades ago has transformed chromatin research. Nevertheless, nucleosome reconstitution remains time consuming to this day, not least because the four individual histones must be purified first. Here, we present a streamlined purification protocol of recombinant histones from bacteria. We termed this method "rapid histone purification" (RHP as it circumvents isolation of inclusion bodies and thereby cuts out the most time-consuming step of traditional purification protocols. Instead of inclusion body isolation, whole cell extracts are prepared under strongly denaturing conditions that directly solubilize inclusion bodies. By ion exchange chromatography, the histones are purified from the extracts. The protocol has been successfully applied to all four canonical Drosophila and human histones. RHP histones and histones that were purified from isolated inclusion bodies had similar purities. The different purification strategies also did not impact the quality of octamers reconstituted from these histones. We expect that the RHP protocol can be readily applied to the purification of canonical histones from other species as well as the numerous histone variants.

  9. A Global Analog of Cheshire Charge

    OpenAIRE

    McGraw, Patrick

    1994-01-01

    It is shown that a model with a spontaneously broken global symmetry can support defects analogous to Alice strings, and a process analogous to Cheshire charge exchange can take place. A possible realization in superfluid He-3 is pointed out.

  10. Ionization and Dust Charging in Protoplanetary Disks

    CERN Document Server

    Ivlev, A V; Caselli, P

    2016-01-01

    Ionization-recombination balance in dense interstellar and circumstellar environments is a key factor for a variety of important physical processes, such as chemical reactions, dust charging and coagulation, coupling of the gas with magnetic field and the development of magnetorotational instability in protoplanetary disks. We present a self-consistent analytical model which allows us to exactly calculate abundances of charged species in dusty gas, in the regime where the dust-phase recombination dominates over the gas-phase recombination. The model is employed to verify applicability of a conventional approximation of low dust charges in protoplanetary disks, and to discuss the implications for the dust coagulation and the development of the "dead zone" in the disk. Furthermore, the importance of mutually consistent models for the ionization and dust evolution is addressed: These processes are coupled via several mechanisms operating in the disk, and therefore their interplay can be crucial for the ultimate ...

  11. Heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Craig, L.B.; Farma, A.J.

    1987-01-06

    This invention concerns a heat exchanger as used in a space heater, of the type in which hot exhaust gases transfer heat to water or the like flowing through a helical heat exchange coil. A significant improvement to the efficiency of the heat exchange occurring between the air and water is achieved by using a conduit for the water having external helical fluting such that the hot gases circulate along two paths, rather than only one. A preferred embodiment of such a heat exchanger includes a porous combustion element for producing radiant heat from a combustible gas, surrounded by a helical coil for effectively transferring the heat in the exhaust gas, flowing radially from the combustion element, to the water flowing through the coil. 4 figs.

  12. Recombinant methods and materials

    Energy Technology Data Exchange (ETDEWEB)

    Roizman, B.; Post, L.E.

    1988-09-06

    This patent describes a method for stably effecting the insertion or deletion of a selected DNA sequence at a specific site in a viral genome. The method consists of: (1) isolating from the genome a linear DNA fragment comprising both (a) the specific site determined for insertion or deletion of selected DNA sequence and (b) flanking DNA sequences normally preceding and following the site; (2) preparing first and second altered genome fragments from the fragment isolated in step (1). (a) the first altered fragment comprising the fragment comprising a thymidine kinase gene in a position intermediate the ends of the fragment, and (b) the second altered fragment comprising the fragment having the selected DNA sequence inserted therein or deleted therefrom; (3) contacting the genome with the first altered fragment under conditions permitting recombination at sites of DNA sequence homology, selecting for a recombinant genome comprising the thymidine kinase gene, and isolating the recombinant genome; and (4) contacting the recombinant genome isolated in step (3) with the second altered fragment under conditions permitting recombination at sites of DNA sequence homology, selecting for a recombinant genome lacking the thymidine kinase gene, and isolating the recombinant genome product.

  13. Charge independence and charge symmetry

    CERN Document Server

    Miller, G A; Miller, Gerald A; van Oers, Willem T H

    1994-01-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed.

  14. Expression of Recombinant Antibodies

    OpenAIRE

    Frenzel, André; Hust, Michael; Schirrmann, Thomas

    2013-01-01

    Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transg...

  15. Dispersive Non-Geminate Recombination in an Amorphous Polymer:Fullerene Blend

    Science.gov (United States)

    Kurpiers, Jona; Neher, Dieter

    2016-05-01

    Recombination of free charge is a key process limiting the performance of solar cells. For low mobility materials, such as organic semiconductors, the kinetics of non-geminate recombination (NGR) is strongly linked to the motion of charges. As these materials possess significant disorder, thermalization of photogenerated carriers in the inhomogeneously broadened density of state distribution is an unavoidable process. Despite its general importance, knowledge about the kinetics of NGR in complete organic solar cells is rather limited. We employ time delayed collection field (TDCF) experiments to study the recombination of photogenerated charge in the high-performance polymer:fullerene blend PCDTBT:PCBM. NGR in the bulk of this amorphous blend is shown to be highly dispersive, with a continuous reduction of the recombination coefficient throughout the entire time scale, until all charge carriers have either been extracted or recombined. Rapid, contact-mediated recombination is identified as an additional loss channel, which, if not properly taken into account, would erroneously suggest a pronounced field dependence of charge generation. These findings are in stark contrast to the results of TDCF experiments on photovoltaic devices made from ordered blends, such as P3HT:PCBM, where non-dispersive recombination was proven to dominate the charge carrier dynamics under application relevant conditions.

  16. Meiotic Recombination in Somatic Cell Nuclear Transfer Bulls and Their Offspring

    Science.gov (United States)

    In mammals, homologous chromosome pairing and recombination are essential events for meiosis. The generation of reciprocal exchanges of genetic material ensure both genetic diversity and the proper segregation of homologous chromosomes. With the advent of reproductive biotechnologies such as somat...

  17. Charged Leptons

    CERN Document Server

    Albrecht, J; Babu, K; Bernstein, R H; Blum, T; Brown, D N; Casey, B C K; Cheng, C -h; Cirigliano, V; Cohen, A; Deshpande, A; Dukes, E C; Echenard, B; Gaponenko, A; Glenzinski, D; Gonzalez-Alonso, M; Grancagnolo, F; Grossman, Y; Harnik, R; Hitlin, D G; Kiburg, B; Knoepfe, K; Kumar, K; Lim, G; Lu, Z -T; McKeen, D; Miller, J P; Ramsey-Musolf, M; Ray, R; Roberts, B L; Rominsky, M; Semertzidis, Y; Stoeckinger, D; Talman, R; Van De Water, R; Winter, P

    2013-01-01

    This is the report of the Intensity Frontier Charged Lepton Working Group of the 2013 Community Summer Study "Snowmass on the Mississippi", summarizing the current status and future experimental opportunities in muon and tau lepton studies and their sensitivity to new physics. These include searches for charged lepton flavor violation, measurements of magnetic and electric dipole moments, and precision measurements of the decay spectrum and parity-violating asymmetries.

  18. Heat exchanger

    International Nuclear Information System (INIS)

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections

  19. Spin and charge necklaces at commensurate filling

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, K [School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Kiselev, M N, E-mail: konstk@post.tau.ac.i [The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34014 Trieste (Italy)

    2009-03-01

    The charge and spin properties of spin chains decorated with dimers and closed trimers (equilateral triangles) with commensurate partial filling (1/4 and 1/3, respectively) are considered. It is shown that due to the charge separation both systems prefer the ground state with even occupation per elementary cell, where the spin spectrum possesses the Haldane gap for negative spin exchange and magnon-like for positive coupling. The charge spectrum is always gapped.

  20. Radiation-induced charge dynamics in dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Labonte, K.

    1982-12-01

    A general physical model is presented for the analysis of charge dynamics in dielectrics exposed to ionizing radiation. Discrete trap levels, recombination between trapped and free carriers, trapping and detrapping events, and the mobility of positive and negative charge carriers are included in the theory. This model is applied to electron beam irradiated Teflon FEP foils and results for various boundary conditions are compared with experimental data from a split Faraday cup arrangement.

  1. Exchange Options

    NARCIS (Netherlands)

    Jamshidian, Farshid

    2007-01-01

    The contract is described and market examples given. Essential theoretical developments are introduced and cited chronologically. The principles and techniques of hedging and unique pricing are illustrated for the two simplest nontrivial examples: the classical Black-Scholes/Merton/Margrabe exchange

  2. International Exchanges

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>On April 1st,2014,CPAPD Deputy Secretary General Ms.Chen Huaifan met with Mr.Djudjuk Juyoto Suntani,President of the World Peace Committee,Indonesia,who headed the delegation,in the CPAPD office.The two sides exchanged views on issues of common concern including cooperation between the two organizations and the inheritance of Chinese culture.

  3. Charge transfer reactions in nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wiederrecht, G.P. [Argonne National Lab., IL (United States). Chemistry Div.; Wasielewski, M.R. [Argonne National Lab., IL (United States). Chemistry Div.]|[Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Galili, T.; Levanon, H. [Hebrew Univ. of Jerusalem (Israel). Dept. of Physical Chemistry

    1998-07-01

    Ultrafast transient absorption studies of intramolecular photoinduced charge separation and thermal charge recombination were carried out on a molecule consisting of a 4-(N-pyrrolidino)naphthalene-1,8-imide donor (PNI) covalently attached to a pyromellitimide acceptor (PI) dissolved in the liquid crystal 4{prime}-(n-pentyl)-4-cyanobiphenyl (5CB). The temperature dependencies of the charge separation and recombination rates were obtained at temperatures above the nematic-isotropic phase transition of 5CB, where ordered microdomains exist and scattering of visible light by these domains is absent. The authors show that excited state charge separation is dominated by molecular reorientation of 5CB perpendicular to the director within the liquid crystal microdomains. They also show that charge recombination is adiabatic and is controlled by the comparatively slow collective reorientation of the liquid crystal microdomains relative to the orientation of PNI{sup +}-PI{sup {minus}}. They also report the results of time resolved electron paramagnetic resonance (TREPR) studies of photoinduced charge separation in a series of supramolecular compounds dissolved in oriented liquid crystal solvents. These studies permit the determination of the radical pair energy levels as the solvent reorganization energy increases from the low temperature crystalline phase, through the soft glass phase, to the nematic phase of the liquid crystal.

  4. Homologous Recombination as a Replication Fork Escort: Fork-Protection and Recovery

    Directory of Open Access Journals (Sweden)

    Audrey Costes

    2012-12-01

    Full Text Available Homologous recombination is a universal mechanism that allows DNA repair and ensures the efficiency of DNA replication. The substrate initiating the process of homologous recombination is a single-stranded DNA that promotes a strand exchange reaction resulting in a genetic exchange that promotes genetic diversity and DNA repair. The molecular mechanisms by which homologous recombination repairs a double-strand break have been extensively studied and are now well characterized. However, the mechanisms by which homologous recombination contribute to DNA replication in eukaryotes remains poorly understood. Studies in bacteria have identified multiple roles for the machinery of homologous recombination at replication forks. Here, we review our understanding of the molecular pathways involving the homologous recombination machinery to support the robustness of DNA replication. In addition to its role in fork-recovery and in rebuilding a functional replication fork apparatus, homologous recombination may also act as a fork-protection mechanism. We discuss that some of the fork-escort functions of homologous recombination might be achieved by loading of the recombination machinery at inactivated forks without a need for a strand exchange step; as well as the consequence of such a model for the stability of eukaryotic genomes.

  5. Recombination characteristics of therapeutic ion beams on ion chamber dosimetry

    Science.gov (United States)

    Matsufuji, Naruhiro; Matsuyama, Tetsuharu; Sato, Shinji; Kohno, Toshiyuki

    2016-09-01

    In heavy ion radiotherapy, ionization chambers are regarded as a standard for determining the absorbed dose given to patients. In ion dosimetry, it is necessary to correct the radiation quality, which depends on the initial recombination effect. This study reveals for the radiation quality dependence of the initial recombination in air in ion dosimetry. Ionization charge was measured for the beams of protons at 40-160 MeV, carbon at 21-400 MeV/n, and iron at 23.5-500 MeV/n using two identical parallel-plate ionization chambers placed in series along the beam axis. The downstream chamber was used as a monitor operated with a constant applied voltage, while the other chamber was used for recombination measurement by changing the voltage. The ratio of the ionization charge measured by the two ionization chambers showed a linear relationship with the inverse of the voltage in the high-voltage region. The initial recombination factor was estimated by extrapolating the obtained linear relationship to infinite voltage. The extent of the initial recombination was found to increase with decreasing incident energy or increasing atomic number of the beam. This behavior can be explained with an amorphous track structure model: the increase of ionization density in the core region of the track due to decreasing kinetic energy or increasing atomic number leads to denser initial ion production and results in a higher recombination probability. For therapeutic carbon ion beams, the extent of the initial recombination was not constant but changed by 0.6% even in the target region. This tendency was quantitatively well reproduced with the track-structure based on the initial recombination model; however, the transitional change in the track structure is considered to play an important role in further understanding of the characteristics of the initial recombination.

  6. Calculation of ion charge-state distribution in ECR ion sources

    International Nuclear Information System (INIS)

    Starting with the pioneering efforts of Y. Yongen (Louvain-la-Neuve, Belgium) a code has been developed to calculate the equilibrium ion charge-state distribution for electron-cyclotron resonance source (ECR) ion sources. Production of ions is caused by the impact ionization of the charge gas from ECR-heated electrons of a few keV. Loss of an ion of a given charge state is from charge exchange and radiative recombination. Ultimately, the ion flows out of the minimum-B containment region. The ion confinement times are calculated using an ion-trap-potential model which is based upon modeling calculations done at Lawrence Livermore National Laboratory (LLNL) for the Tandem Mirror Machine. Using this model requires the self-consistent determination of the trap potential and thermal electron density in the plasma. Code inputs are gas natural density, hot-electron temperature and density, ion temperature, cold-electron temperature, mirror ratio, physical dimensions, and atomic-physics data. Other than that there are no adjustable parameters. Results of comparison of calculations with the limited available data are reasonable

  7. Genetic recombination in Escherichia coli : II. Calculation of incorporation frequency and relative map distance by recombinant analysis

    NARCIS (Netherlands)

    Haan, P.G. de; Verhoef, C.

    1966-01-01

    In this paper a mathematical analysis based on the physical exchange of genetic material is presented for a four-factor cross. The incorporation frequency of donor markers and the relative map distances may be accurately estimated from the frequencies of the eight recombinant classes. The results ob

  8. Recombinant Helicobacter pylori catalase

    Institute of Scientific and Technical Information of China (English)

    Yang Bai; Ya-Li Zhang; Jian-Feng Jin; Ji-De Wang; Zhao-Shan Zhang

    2003-01-01

    AIM: To construct a recombinant strain which highly expresses catalase of Helicobacter pylori(H.pylori) and assay the activity of H. pylori catalase.METHODS: The catalase DNA was amplified from H. pylori chromosomal DNA with PCR techniques and inserted into the prokaryotie expression vector pET-22b (+), and then was transformed into the BL21 (DE3) E. coli strain which expressed catalase recombinant protein. The activity of H.pylori catalase was assayed by the Beers & Sizers.RESULTS: DNA sequence analysis showed that the sequence of catalase DNA was the same as GenBank's research. The catalase recombinant protein amounted to 24.4 % of the total bacterial protein after induced with IPTG for 3 hours at 37 ℃ and the activity of H. pylori catalase was high in the BL21 (DE3) E. coli strain.CONCLUSION: A clone expressing high activity H. pylori catalase is obtained, laying a good foundation for further studies.

  9. Fundamental Studies of Recombinant Hydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael W

    2014-01-25

    This research addressed the long term goals of understanding the assembly and organization of hydrogenase enzymes, of reducing them in size and complexity, of determining structure/function relationships, including energy conservation via charge separation across membranes, and in screening for novel H2 catalysts. A key overall goal of the proposed research was to define and characterize minimal hydrogenases that are produced in high yields and are oxygen-resistant. Remarkably, in spite of decades of research carried out on hydrogenases, it is not possible to readily manipulate or design the enzyme using molecular biology approaches since a recombinant form produced in a suitable host is not available. Such resources are essential if we are to understand what constitutes a “minimal” hydrogenase and design such catalysts with certain properties, such as resistance to oxygen, extreme stability and specificity for a given electron donor. The model system for our studies is Pyrococcus furiosus, a hyperthermophile that grows optimally at 100°C, which contains three different nickel-iron [NiFe-] containing hydrogenases. Hydrogenases I and II are cytoplasmic while the other, MBH, is an integral membrane protein that functions to both evolve H2 and pump protons. Three important breakthroughs were made during the funding period with P. furiosus soluble hydrogenase I (SHI). First, we produced an active recombinant form of SHI in E. coli by the co-expression of sixteen genes using anaerobically-induced promoters. Second, we genetically-engineered P. furiosus to overexpress SHI by an order of magnitude compared to the wild type strain. Third, we generated the first ‘minimal’ form of SHI, one that contained two rather than four subunits. This dimeric form was stable and active, and directly interacted with a pyruvate-oxidizing enzyme with any intermediate electron carrier. The research resulted in five peer-reviewed publications.

  10. 鹅生长激素基因的克隆、原核表达及其重组蛋白质的离子交换纯化%Cloning and prokaryotic expression of goose growth hormone gene and re-combinant protein anion-exchange purification

    Institute of Scientific and Technical Information of China (English)

    李辉; 陈蓉; 应诗家; 施振旦; 赵伟

    2014-01-01

    Tota1 RNA of goose growth hormone gene extracted from goose pituitary tissue with TRIzo1 reagent were used as temp1ate for reverse transcription of the first strand cDNA and a pair of primers was designed based on the pub1ished goose growth hormone gene sequence fragment (GenBank No. AY149895. 2), in which, two restriction enzyme sites Nhe I and Hind III were introduced into the 5’end of both upstream and downstream primers respective1y. Goose growth hormone gene coding sequence was amp1ified by PCR, and the amp1ified mature peptide sequence was inserted into the Nhe I and Hind III sites of the expression vector pRSET-A to generate the recombinant expression p1asmid pRSET-gGH which was transformed into Escherichia coli BL21(DE3) afterwards. The transformed bacterium was induced with IPTG to express the recombinant protein with a mo1ecu1ar mass of 2. 93×104. The high purity recombinant goose growth hormone was achieved using DEAE-650M weak anion exchange resin.%为了克隆鹅生长激素基因并表达其重组蛋白质,采集生长期鹅垂体组织,并利用TRIzo1快速提取的总RNA为模板,反转录为cDNA.根据鹅生长激素基因编码的成熟肽序列(GenBank号:AY149895.2)设计1对引物,分别在上、下游引物的5忆端引入Nhe I和Hind III酶切位点.经反转录扩增获得鹅生长激素基因的编码的成熟肽全序列.通过双酶切和连接将鹅生长激素编码区插入原核表达载体pRSET-A的Nhe I和Hind III位点之间,构建重组表达质粒pRSET-gGH并转化大肠杆菌表达菌株BL21(DE3).转化的菌株经IPTG诱导后表达重组鹅生长激素蛋白质,分子量约为2.93×104.经过DEAE-650M弱阴离子交换树脂纯化获得较高纯度的重组鹅生长激素蛋白质.

  11. Recombination in ionized gases

    International Nuclear Information System (INIS)

    In this paper it is shown how capture-stabilized methodology (both macroscopic and microscopic) can provide a generic basis for a unified treatment of all of the above recombination mechanisms. A new semiclassical theory of dissociative recombination is also presented in an effort to gain further insight into the physics not included in the first-order treatment and difficult to extract from numerical quantal treatments based on configuration mixing and on multichannel quantum defect theory. A simple analytical expression more accurate than the standard first-order result is obtained for the cross section σ and rate coefficient α. (author)

  12. Purification of recombinant ovalbumin from inclusion bodies of Escherichia coli.

    Science.gov (United States)

    Upadhyay, Vaibhav; Singh, Anupam; Panda, Amulya K

    2016-01-01

    Recombinant ovalbumin expressed in bacterial host is essentially free from post-translational modifications and can be useful in understanding the structure-function relationship of the protein. In this study, ovalbumin was expressed in Escherichia coli in the form of inclusion bodies. Ovalbumin inclusion bodies were solubilized using urea and refolded by decreasing the urea concentration by dilution. Refolded protein was purified by anion exchange chromatography. Overall recovery of purified recombinant ovalbumin from inclusion bodies was about 30% with 98% purity. Purified recombinant ovalbumin was characterized by mass spectrometry, circular dichroism and fluorescence spectroscopy. Recombinant ovalbumin was shown to be resistant to trypsin using protease resistance assay. This indicated proper refolding of ovalbumin from inclusion bodies of E. coli. This method provides a simple way of producing ovalbumin free of post-translational modifications.

  13. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  14. Rate coefficients for N2(+)(v) dissociative recombination

    Science.gov (United States)

    Bates, D. R.; Mitchell, J. B. A.

    1991-09-01

    The data of Zipf (1980) on N2(+)(v) dissociative recombination are analyzed taking into account the fact that there is coupling due to reversible symmetrical resonance charge transfer, N2(+)(v) + N2(0) yields N2(+)(0) + N2(v). The vibrational deactivation in N2(+)(v)-Ne collisions is also considered. A reported experimental value of the vibrational deactivation coefficient is found to be much higher than can be reconciled with the results of Zipf and it is therefore rejected. The analysis shows that the recombination coefficient for N2(+)(0) is about 2.6 x 10 exp-7 cu cm/s at 300 K and that recombination coefficients for N2(+)(1) and N2(+)(2) are substantially smaller. It is concluded that these coefficients conflict with the dissociative recombination cross section vs energy curve obtained by the merged beam method.

  15. Recombinant DNA for Teachers.

    Science.gov (United States)

    Duvall, James G., III

    1992-01-01

    A science teacher describes his experience at a workshop to learn to teach the Cold Spring Harbor DNA Science Laboratory Protocols. These protocols lead students through processes for taking E. coli cells and transforming them into a new antibiotic resistant strain. The workshop featured discussions of the role of DNA recombinant technology in…

  16. Recombineering Pseudomonas syringae

    Science.gov (United States)

    Here we report the identification of functions that promote genomic recombination of linear DNA introduced into Pseudomonas cells by electroporation. The genes encoding these functions were identified in Pseudomonas syringae pv. syringae B728a based on similarity to the lambda Red Exo/Beta and RecE...

  17. Assembly and dynamics of the bacteriophage T4 homologous recombination machinery

    Directory of Open Access Journals (Sweden)

    Morrical Scott W

    2010-12-01

    Full Text Available Abstract Homologous recombination (HR, a process involving the physical exchange of strands between homologous or nearly homologous DNA molecules, is critical for maintaining the genetic diversity and genome stability of species. Bacteriophage T4 is one of the classic systems for studies of homologous recombination. T4 uses HR for high-frequency genetic exchanges, for homology-directed DNA repair (HDR processes including DNA double-strand break repair, and for the initiation of DNA replication (RDR. T4 recombination proteins are expressed at high levels during T4 infection in E. coli, and share strong sequence, structural, and/or functional conservation with their counterparts in cellular organisms. Biochemical studies of T4 recombination have provided key insights on DNA strand exchange mechanisms, on the structure and function of recombination proteins, and on the coordination of recombination and DNA synthesis activities during RDR and HDR. Recent years have seen the development of detailed biochemical models for the assembly and dynamics of presynaptic filaments in the T4 recombination system, for the atomic structure of T4 UvsX recombinase, and for the roles of DNA helicases in T4 recombination. The goal of this chapter is to review these recent advances and their implications for HR and HDR mechanisms in all organisms.

  18. Novel Heterotypic Rox Sites for Combinatorial Dre Recombination Strategies

    Directory of Open Access Journals (Sweden)

    Katherine Chuang

    2016-03-01

    Full Text Available Site-specific recombinases (SSRs such as Cre are widely used in gene targeting and genetic approaches for cell labeling and manipulation. They mediate DNA strand exchange between two DNA molecules at dedicated recognition sites. Precise understanding of the Cre recombination mechanism, including the role of individual base pairs in its loxP target site, guided the generation of mutant lox sites that specifically recombine with themselves but not with the wild type loxP. This has led to the development of a variety of combinatorial Cre-dependent genetic strategies, such as multicolor reporters, irreversible inversions, or recombination-mediated cassette exchange. Dre, a Cre-related phage integrase that recognizes roxP sites, does not cross-react with the Cre-loxP system, but has similar recombination efficiency. We have previously described intersectional genetic strategies combining Dre and Cre. We now report a mutagenesis screen aimed at identifying roxP base pairs critical for self-recognition. We describe several rox variant sites that are incompatible with roxP, but are able to efficiently recombine with themselves in either purified systems or bacterial and eukaryotic tissue culture systems. These newly identified rox sites are not recognized by Cre, thus enabling potential combinatorial strategies involving Cre, Dre, and target loci including multiple loxP and roxP variants.

  19. Charge Transport in LDPE Nanocomposites Part II—Computational Approach

    Directory of Open Access Journals (Sweden)

    Anh T. Hoang

    2016-03-01

    Full Text Available A bipolar charge transport model is employed to investigate the remarkable reduction in dc conductivity of low-density polyethylene (LDPE based material filled with uncoated nanofillers (reported in the first part of this work. The effect of temperature on charge transport is considered and the model outcomes are compared with measured conduction currents. The simulations reveal that the contribution of charge carrier recombination to the total transport process becomes more significant at elevated temperatures. Among the effects caused by the presence of nanoparticles, a reduced charge injection at electrodes has been found as the most essential one. Possible mechanisms for charge injection at different temperatures are therefore discussed.

  20. AECL passive autocatalytic recombiners

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, L.B.; Marcinkowska, K. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-03-15

    Atomic Energy of Canada Limited's (AECL) Passive Autocatalytic Recombiner (PAR) is a passive device used for hydrogen mitigation under post-accident conditions in nuclear reactor containment. The PAR employs a proprietary AECL catalyst which promotes the exothermal reaction between hydrogen and oxygen to form water vapour. The heat of reaction combined with the PAR geometry establishes a convective flow through the recombiner, where ambient hydrogen-rich gas enters the PAR inlet and hot, humid, hydrogen-depleted gas exits the outlet. AECL's PAR has been extensively qualified for CANDU and light water reactors (LWRs), and has been supplied to France, Finland, Ukraine, South Korea and is currently being deployed in Canadian nuclear power plants. (author)

  1. AECL passive autocatalytic recombiners

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, L.B.; Marcinkowska, K. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2011-07-01

    Atomic Energy of Canada Limited's (AECL) Passive Autocatalytic Recombiner (PAR) is a passive device used for hydrogen mitigation under post-accident conditions in nuclear reactor containment. The PAR employs a proprietary AECL catalyst which promotes the exothermal reaction between hydrogen and oxygen to form water vapour. The heat of reaction combined with the PAR geometry establishes a convective flow through the recombiner, where ambient hydrogen-rich gas enters the PAR inlet and hot, humid, hydrogen-depleted gas exits the outlet. AECL's PAR has been extensively qualified for CANDU and light water reactors (LWRs), and has been supplied to France, Finland, Ukraine, South Korea and is currently being deployed in Canadian nuclear power plants. (author)

  2. Charge separation in contact systems with CdSe quantum dot layers

    International Nuclear Information System (INIS)

    Quantum dot (QD) solar cells are a fast developing area in the field of solution processed photovoltaics. Central aspects for the application of QDs in solar cells are separation and transport of charge carriers in the QD layers and the formation of charge selective contacts. Even though efficiencies of up to 7% were reached in QD solar cells, these processes are not yet fully understood. In this thesis the mechanisms of charge separation, transport and recombination in CdSe QD layers and layer systems were studied. Charge separation was measured via surface photovoltage (SPV) at CdSe QD layers with thicknesses in the range of monolayers. To determine the influence of interparticle distance of QDs and trap states on the surface of QDs on charge separation, QDs with four different surfactant layers were studied. Layers of CdSe QDs were prepared on ITO, Si, SiO2 and CdS by dip coating under inert atmosphere. The layers were characterized by Rutherford backscattering spectrometry, UV-vis spectroscopy, step profilometry and scanning electron microscopy to determine the areal density, the absorption and thickness of CdSe QD monolayers. SPV measurements show that initial charge separation from the CdSe QDs on ITO only happened from the fi rst monolayer of QDs. Electrons, photo-excited in the fi rst monolayer of CdSe QDs, were trapped on the ITO surface. The remaining free holes were trapped in surface states and/or diffused into the neighboring QD layers. The thick surfactant layer (∼ 1.6 nm) of pristine QDs had to be reduced by washing and/or ligand exchange for separation of photo-excited charge carriers. Both, interparticle distance and trap density, influenced the processes of charge separation and recombination. SPV transients of CdSe monolayers could be described by a single QD approximation model, based on Miller-Abrahams hopping of holes between the delocalized excitonic state, traps on the surface of the QD and the filled trap on the ITO surface (recombination

  3. Charge separation in contact systems with CdSe quantum dot layers

    Energy Technology Data Exchange (ETDEWEB)

    Zillner, Elisabeth Franziska

    2013-03-06

    Quantum dot (QD) solar cells are a fast developing area in the field of solution processed photovoltaics. Central aspects for the application of QDs in solar cells are separation and transport of charge carriers in the QD layers and the formation of charge selective contacts. Even though efficiencies of up to 7% were reached in QD solar cells, these processes are not yet fully understood. In this thesis the mechanisms of charge separation, transport and recombination in CdSe QD layers and layer systems were studied. Charge separation was measured via surface photovoltage (SPV) at CdSe QD layers with thicknesses in the range of monolayers. To determine the influence of interparticle distance of QDs and trap states on the surface of QDs on charge separation, QDs with four different surfactant layers were studied. Layers of CdSe QDs were prepared on ITO, Si, SiO{sub 2} and CdS by dip coating under inert atmosphere. The layers were characterized by Rutherford backscattering spectrometry, UV-vis spectroscopy, step profilometry and scanning electron microscopy to determine the areal density, the absorption and thickness of CdSe QD monolayers. SPV measurements show that initial charge separation from the CdSe QDs on ITO only happened from the fi rst monolayer of QDs. Electrons, photo-excited in the fi rst monolayer of CdSe QDs, were trapped on the ITO surface. The remaining free holes were trapped in surface states and/or diffused into the neighboring QD layers. The thick surfactant layer ({approx} 1.6 nm) of pristine QDs had to be reduced by washing and/or ligand exchange for separation of photo-excited charge carriers. Both, interparticle distance and trap density, influenced the processes of charge separation and recombination. SPV transients of CdSe monolayers could be described by a single QD approximation model, based on Miller-Abrahams hopping of holes between the delocalized excitonic state, traps on the surface of the QD and the filled trap on the ITO surface

  4. The field-dependent interface recombination velocity for organic-inorganic heterojunction

    Science.gov (United States)

    Szmytkowski, Jędrzej

    2016-10-01

    We have derived an analytical formula which describes the field-dependent interface recombination velocity for the boundary of two materials characterized by different permittivities. The interface recombination of charge carriers has been considered in the presence of image force Schottky barrier. We suggest that this effect may play an important role in the loss of current for organic-inorganic hybrid heterojunctions. It has been proved that the presented method is a generalization of the Scott-Malliaras model of surface recombination at the organic/metal interface. We also discuss that this model is intuitively similar but not analogous to the Langevin mechanism of bulk recombination.

  5. RECOMBINANT INFLUENZA VACCINES

    OpenAIRE

    Sedova, E.; Shcherbinin, D.; Migunov, A.; Smirnov, Iu; Logunov, D.; Shmarov, M.; Tsybalova, L.; Naroditskiĭ, B.; O. Kiselev; Gintsburg, A.

    2012-01-01

    This review covers the problems encountered in the construction and production of new recombinant influenza vaccines. New approaches to the development of influenza vaccines are investigated; they include reverse genetics methods, production of virus-like particles, and DNA- and viral vector-based vaccines. Such approaches as the delivery of foreign genes by DNA- and viral vector-based vaccines can preserve the native structure of antigens. Adenoviral vectors are a promising gene-delivery pla...

  6. Soluble recombinant influenza vaccines.

    OpenAIRE

    Fiers, W; Neirynck, S; Deroo, T; Saelens, X; Jou, W M

    2001-01-01

    Soluble, recombinant forms of influenza A virus haemagglutinin and neuraminidase have been produced in cells of lower eukaryotes, and shown in a mouse model to induce complete protective immunity against a lethal virus challenge. Soluble neuraminidase, produced in a baculovirus system, consisted of tetramers, dimers and monomers. Only the tetramers were enzymatically active. The immunogenicity decreased very considerably in the order tetra > di > mono. Therefore, we fused the head part of the...

  7. A Quasi-Solid State DSSC with 10.1% Efficiency through Molecular Design of the Charge-Separation and -Transport

    Science.gov (United States)

    Suzuka, Michio; Hayashi, Naoki; Sekiguchi, Takashi; Sumioka, Kouichi; Takata, Masakazu; Hayo, Noriko; Ikeda, Hiroki; Oyaizu, Kenichi; Nishide, Hiroyuki

    2016-06-01

    Organic-based solar cells potentially offer a photovoltaic module with low production costs and low hazard risk of the components. We report organic dye-sensitized solar cells, fabricated with molecular designed indoline dyes in conjunction with highly reactive but robust nitroxide radical molecules as redox mediator in a quasi-solid gel form of the electrolyte. The cells achieve conversion efficiencies of 10.1% at 1 sun, and maintain the output performance even under interior lighting. The indoline dyes, customized by introducing long alkyl chains, specifically interact with the radical mediator to suppress a charge-recombination process at the dye interface. The radical mediator also facilitates the charge-transport with remarkably high electron self-exchange rate even in the quasi-solid state electrolyte to lead to a high fill factor.

  8. Anomalous charge storage exponents of organic bulk heterojunction solar cells.

    Science.gov (United States)

    Nair, Pradeep; Dwivedi, Raaz; Kumar, Goutam; Dept of Electrical Engineering, IIT Bombay Team

    2013-03-01

    Organic bulk heterojunction (BHJ) devices are increasingly being researched for low cost solar energy conversion. The efficiency of such solar cells is dictated by various recombination processes involved. While it is well known that the ideality factor and hence the charge storage exponents of conventional PN junction diodes are influenced by the recombination processes, the same aspects are not so well understood for organic solar cells. While dark currents of such devices typically show an ideality factor of 1 (after correcting for shunt resistance effects, if any), surprisingly, a wide range of charge storage exponents for such devices are reported in literature alluding to apparent concentration dependence for bi-molecular recombination rates. In this manuscript we critically analyze the role of bi-molecular recombination processes on charge storage exponents of organic solar cells. Our results indicate that the charge storage exponents are fundamentally influenced by the electrostatics and recombination processes and can be correlated to the dark current ideality factors. We believe that our findings are novel, and advance the state-of the art understanding on various recombination processes that dictate the performance limits of organic solar cells. The authors would like to thank the Centre of Excellence in Nanoelectronics (CEN) and the National Centre for Photovoltaic Research and Education (NCPRE), IIT Bombay for computational and financial support

  9. Segmented heat exchanger

    Science.gov (United States)

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  10. Charge-state-dependent energy loss of slow ions. I. Experimental results on the transmission of highly charged ions

    Science.gov (United States)

    Wilhelm, Richard A.; Gruber, Elisabeth; Smejkal, Valerie; Facsko, Stefan; Aumayr, Friedrich

    2016-05-01

    We report on energy loss measurements of slow (v ≪v0 ), highly charged (Q >10 ) ions upon transmission through a 1-nm-thick carbon nanomembrane. We emphasize here the scaling of the energy loss with the velocity and charge exchange or loss. We show that a weak linear velocity dependence exists, whereas charge exchange dominates the kinetic energy loss, especially in the case of a large charge capture. A universal scaling of the energy loss with the charge exchange and velocity is found and discussed in this paper. A model for charge-state-dependent energy loss for slow ions is presented in paper II in this series [R. A. Wilhelm and W. Möller, Phys. Rev. A 93, 052709 (2016), 10.1103/PhysRevA.93.052709].

  11. Refrigerant charge management in a heat pump water heater

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jie; Hampton, Justin W.

    2016-07-05

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.

  12. Gated rotation mechanism of site-specific recombination by ϕC31 integrase.

    Science.gov (United States)

    Olorunniji, Femi J; Buck, Dorothy E; Colloms, Sean D; McEwan, Andrew R; Smith, Margaret C M; Stark, W Marshall; Rosser, Susan J

    2012-11-27

    Integrases, such as that of the Streptomyces temperate bacteriophage ϕC31, promote site-specific recombination between DNA sequences in the bacteriophage and bacterial genomes to integrate or excise the phage DNA. ϕC31 integrase belongs to the serine recombinase family, a large group of structurally related enzymes with diverse biological functions. It has been proposed that serine integrases use a "subunit rotation" mechanism to exchange DNA strands after double-strand DNA cleavage at the two recombining att sites, and that many rounds of subunit rotation can occur before the strands are religated. We have analyzed the mechanism of ϕC31 integrase-mediated recombination in a topologically constrained experimental system using hybrid "phes" recombination sites, each of which comprises a ϕC31 att site positioned adjacent to a regulatory sequence recognized by Tn3 resolvase. The topologies of reaction products from circular substrates containing two phes sites support a right-handed subunit rotation mechanism for catalysis of both integrative and excisive recombination. Strand exchange usually terminates after a single round of 180° rotation. However, multiple processive "360° rotation" rounds of strand exchange can be observed, if the recombining sites have nonidentical base pairs at their centers. We propose that a regulatory "gating" mechanism normally blocks multiple rounds of strand exchange and triggers product release after a single round.

  13. A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, Fuyuki; Hattori, Shinnosuke [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan); Kalia, Rajiv K.; Mou, Weiwei; Nakano, Aiichiro; Nomura, Ken-ichi; Rajak, Pankaj; Vashishta, Priya [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Kunaseth, Manaschai [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); National Nanotechnology Center, Pathumthani 12120 (Thailand); Ohmura, Satoshi [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan); Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Shimamura, Kohei [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan); Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka 819-0395 (Japan)

    2014-05-14

    We introduce an extension of the divide-and-conquer (DC) algorithmic paradigm called divide-conquer-recombine (DCR) to perform large quantum molecular dynamics (QMD) simulations on massively parallel supercomputers, in which interatomic forces are computed quantum mechanically in the framework of density functional theory (DFT). In DCR, the DC phase constructs globally informed, overlapping local-domain solutions, which in the recombine phase are synthesized into a global solution encompassing large spatiotemporal scales. For the DC phase, we design a lean divide-and-conquer (LDC) DFT algorithm, which significantly reduces the prefactor of the O(N) computational cost for N electrons by applying a density-adaptive boundary condition at the peripheries of the DC domains. Our globally scalable and locally efficient solver is based on a hybrid real-reciprocal space approach that combines: (1) a highly scalable real-space multigrid to represent the global charge density; and (2) a numerically efficient plane-wave basis for local electronic wave functions and charge density within each domain. Hybrid space-band decomposition is used to implement the LDC-DFT algorithm on parallel computers. A benchmark test on an IBM Blue Gene/Q computer exhibits an isogranular parallel efficiency of 0.984 on 786 432 cores for a 50.3 × 10{sup 6}-atom SiC system. As a test of production runs, LDC-DFT-based QMD simulation involving 16 661 atoms is performed on the Blue Gene/Q to study on-demand production of hydrogen gas from water using LiAl alloy particles. As an example of the recombine phase, LDC-DFT electronic structures are used as a basis set to describe global photoexcitation dynamics with nonadiabatic QMD (NAQMD) and kinetic Monte Carlo (KMC) methods. The NAQMD simulations are based on the linear response time-dependent density functional theory to describe electronic excited states and a surface-hopping approach to describe transitions between the excited states. A series of

  14. A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations

    Science.gov (United States)

    Shimojo, Fuyuki; Hattori, Shinnosuke; Kalia, Rajiv K.; Kunaseth, Manaschai; Mou, Weiwei; Nakano, Aiichiro; Nomura, Ken-ichi; Ohmura, Satoshi; Rajak, Pankaj; Shimamura, Kohei; Vashishta, Priya

    2014-05-01

    We introduce an extension of the divide-and-conquer (DC) algorithmic paradigm called divide-conquer-recombine (DCR) to perform large quantum molecular dynamics (QMD) simulations on massively parallel supercomputers, in which interatomic forces are computed quantum mechanically in the framework of density functional theory (DFT). In DCR, the DC phase constructs globally informed, overlapping local-domain solutions, which in the recombine phase are synthesized into a global solution encompassing large spatiotemporal scales. For the DC phase, we design a lean divide-and-conquer (LDC) DFT algorithm, which significantly reduces the prefactor of the O(N) computational cost for N electrons by applying a density-adaptive boundary condition at the peripheries of the DC domains. Our globally scalable and locally efficient solver is based on a hybrid real-reciprocal space approach that combines: (1) a highly scalable real-space multigrid to represent the global charge density; and (2) a numerically efficient plane-wave basis for local electronic wave functions and charge density within each domain. Hybrid space-band decomposition is used to implement the LDC-DFT algorithm on parallel computers. A benchmark test on an IBM Blue Gene/Q computer exhibits an isogranular parallel efficiency of 0.984 on 786 432 cores for a 50.3 × 106-atom SiC system. As a test of production runs, LDC-DFT-based QMD simulation involving 16 661 atoms is performed on the Blue Gene/Q to study on-demand production of hydrogen gas from water using LiAl alloy particles. As an example of the recombine phase, LDC-DFT electronic structures are used as a basis set to describe global photoexcitation dynamics with nonadiabatic QMD (NAQMD) and kinetic Monte Carlo (KMC) methods. The NAQMD simulations are based on the linear response time-dependent density functional theory to describe electronic excited states and a surface-hopping approach to describe transitions between the excited states. A series of techniques

  15. p53 Represses Class Switch Recombination to IgG2a through its Antioxidant Function1

    OpenAIRE

    Guikema, Jeroen E. J.; Schrader, Carol E.; Brodsky, Michael H.; Linehan, Erin K.; Richards, Adam; El Falaky, Nahla; Li, Daniel H.; Sluss, Hayla K.; Szomolanyi-Tsuda, Eva; Stavnezer, Janet

    2010-01-01

    Immunoglobulin class switch recombination (CSR) occurs in activated mature B cells, and causes an exchange of the IgM isotype for IgG, IgE or IgA isotypes, which increases the effectiveness of the humoral immune response. DNA double-stranded breaks (DSBs) in recombining switch (S) regions, where CSR occurs, are required for recombination. Activation-induced cytidine deaminase (AID) initiates DSB formation by deamination of cytosines in S regions. This reaction requires reactive oxygen species...

  16. The use of detectors based on ionisation recombination in radiation protection

    International Nuclear Information System (INIS)

    Intitial recombination of ionisation in a gas depends on the ionisation density and hence on the linear energy transfer along the tracks of charged particles. This effect can be used as a basis for instruments that respond to different types of ionising radiation approximately in the way required by the quality factor-linear energy transfer relation recommended by the ICRP for use in radiation protection. Empirical instruments based on ionisation recombination that have been used for radiation protection measurements are reviewed, and relations are derived from recombination theory that show that the response of such detectors can be readily predicted. The usefulness of recombination instruments in radiation protection is discussed and their advantages and limitations assessed. It is shown that their main application will be as reference instruments against which other detectors can be calibrated. As an extension to using recombination detectors as reference instruments, the feasibility of specifying radiation quality in terms of ionisation recombination is investigated. (author)

  17. Recombinant Collagenlike Proteins

    Science.gov (United States)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  18. Primordial magnetogenesis before recombination

    CERN Document Server

    Fabre, Ophélia

    2015-01-01

    The origin of large magnetic fields in the Universe remains currently unknown. We investigate here a mechanism before recombination based on known physics. The source of the vorticity is due to the changes in the photon distribution function caused by the fluctuations in the background photons. We show that the magnetic field generated in the MHD limit, due to the Coulomb scattering, is of the order $10^{-49}$ G. We explicitly show that the magnetic fields generated from this process are sustainable and are not erased by resistive diffusion. We compare the results with current observations and discuss the implications.

  19. [Enzymatic control of homologous recombination in Escherichia coli cells and hyper-recombination].

    Science.gov (United States)

    Bakhlanova, I V; Dudkina, A V; Baĭtin, D M

    2013-01-01

    The RecA protein is a major enzyme of homologous recombination in bacterial cell. Forming a right-handed helical filament on ssDNA, it provides a homology search between two DNA molecules and homologous strand exchange. The RecA protein not only defends the cell from exposure to ionizing radiation and UV-irradiation, but also ensures the recombination process in the course of normal cell growth. A number of wild-type or mutant RecA proteins demonstrate increased recombinogenic properties in vitro and in vivo as compared with the wild-type RecA protein from Escherichia coli, which leads to hyper-recombination. The hyper-rec activity of RecA proteins during the recombination process in many depends on the filamentation dynamics on ssDNA and DNA-transferase properties. Changes in filamentation and DNA-transferase abilities of RecA protein may be the result of not only specific amino-acid substitutions, but also the functioning of the cell enzymatic apparatus, including such proteins as RecO, RecR, RecF, RecX, DinI, SSB, PsiB. To date, the function of each of these proteins is identified at the molecular level. However, the role of some of them in the cell metabolism remains to be seen. Increase in recombination in vivo is not always useful for a cell and faces various limitations. Moreover, in the bacterial cell some mechanisms are activated, that cause genomic reorganization, directed to suppress the expression of hyper-active RecA protein. The ways of hyper-active RecA protein regulation are very interesting, and they are studied in different model systems. PMID:23808153

  20. 47 CFR 69.155 - Per-minute residual interconnection charge.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Per-minute residual interconnection charge. 69... Per-minute residual interconnection charge. (a) Local exchange carriers may recover a per-minute residual interconnection charge on originating access. The maximum such charge shall be the lower of:...