WorldWideScience

Sample records for charge effects controlling

  1. Study of the Charge Density Control Method Including the Space Charge Effect in the Proton Synchrotron

    Science.gov (United States)

    Kato, Shinichi; Harada, Hiroyuki; Hotchi, Hideaki; Okabe, Kota; Yamamoto, Kazami; Kinsho, Michikazu

    For high intensity proton accelerators, one of the beam loss sources is the incoherent tune spread caused by the space charge force. In the 3 GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex, beams are injected sequentially and shifted slightly from the central orbit in order to increase the beam size intentionally and suppress the charge density and incoherent tune spread. This injection method has been adopted and suppressed the beam loss. However, simulations clarified that beams did not spread as much as expected because of the space charge effect in the high current case. As simulation results of the optimized beam shift pattern when the space charge effect is considered, it was obtained that the incoherent tune spread could be suppressed to an extent that has not been achieved previously.

  2. Fouling control mechanisms of demineralized water backwash: Reduction of charge screening and calcium bridging effects

    KAUST Repository

    Li, Sheng

    2011-12-01

    This paper investigates the impact of the ionic environment on the charge of colloidal natural organic matter (NOM) and ultrafiltration (UF) membranes (charge screening effect) and the calcium adsorption/bridging on new and fouled membranes (calcium bridging effect) by measuring the zeta potentials of membranes and colloidal NOM. Fouling experiments were conducted with natural water to determine whether the reduction of the charge screening effect and/or calcium bridging effect by backwashing with demineralized water can explain the observed reduction in fouling. Results show that the charge of both membranes and NOM, as measured by the zeta potential, became more negative at a lower pH and a lower concentration of electrolytes, in particular, divalent electrolytes. In addition, calcium also adsorbed onto the membranes, and consequently bridged colloidal NOM and membranes via binding with functional groups. The charge screening effect could be eliminated by flushing NOM and membranes with demineralized water, since a cation-free environment was established. However, only a limited amount of the calcium bridging connection was removed with demineralized water backwashes, so the calcium bridging effect mostly could not be eliminated. As demineralized water backwash was found to be effective in fouling control, it can be concluded that the reduction of the charge screening is the dominant mechanism for this. © 2011 Elsevier Ltd.

  3. Electric vehicle battery charging controller

    DEFF Research Database (Denmark)

    2016-01-01

    to a battery management system in the electric vehicle to charge a battery therein, a first communication unit for receiving a charging message via a communication network, and a control unit for controlling a charging current provided from the charge source to the electric vehicle, the controlling at least...

  4. Modular Battery Charge Controller

    Science.gov (United States)

    Button, Robert; Gonzalez, Marcelo

    2009-01-01

    A new approach to masterless, distributed, digital-charge control for batteries requiring charge control has been developed and implemented. This approach is required in battery chemistries that need cell-level charge control for safety and is characterized by the use of one controller per cell, resulting in redundant sensors for critical components, such as voltage, temperature, and current. The charge controllers in a given battery interact in a masterless fashion for the purpose of cell balancing, charge control, and state-of-charge estimation. This makes the battery system invariably fault-tolerant. The solution to the single-fault failure, due to the use of a single charge controller (CC), was solved by implementing one CC per cell and linking them via an isolated communication bus [e.g., controller area network (CAN)] in a masterless fashion so that the failure of one or more CCs will not impact the remaining functional CCs. Each micro-controller-based CC digitizes the cell voltage (V(sub cell)), two cell temperatures, and the voltage across the switch (V); the latter variable is used in conjunction with V(sub cell) to estimate the bypass current for a given bypass resistor. Furthermore, CC1 digitizes the battery current (I1) and battery voltage (V(sub batt) and CC5 digitizes a second battery current (I2). As a result, redundant readings are taken for temperature, battery current, and battery voltage through the summation of the individual cell voltages given that each CC knows the voltage of the other cells. For the purpose of cell balancing, each CC periodically and independently transmits its cell voltage and stores the received cell voltage of the other cells in an array. The position in the array depends on the identifier (ID) of the transmitting CC. After eight cell voltage receptions, the array is checked to see if one or more cells did not transmit. If one or more transmissions are missing, the missing cell(s) is (are) eliminated from cell

  5. Control of the spin to charge conversion using the inverse Rashba-Edelstein effect

    Energy Technology Data Exchange (ETDEWEB)

    Sangiao, S. [Service de Physique de l' Etat Condensé, CEA Saclay, DSM/IRAMIS/SPEC, bat 772, CNRS UMR 3680, F-91191 Gif-sur-Yvette (France); Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza (Spain); Fundación ARAID, 50018 Zaragoza (Spain); De Teresa, J. M. [Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, Facultad de Ciencias, 50009 Zaragoza (Spain); Morellon, L.; Martinez-Velarte, M. C. [Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza (Spain); Lucas, I. [Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza (Spain); Fundación ARAID, 50018 Zaragoza (Spain); Viret, M., E-mail: michel.viret@cea.fr [Service de Physique de l' Etat Condensé, CEA Saclay, DSM/IRAMIS/SPEC, bat 772, CNRS UMR 3680, F-91191 Gif-sur-Yvette (France)

    2015-04-27

    We show here that using spin orbit coupling interactions at a metallic interface it is possible to control the sign of the spin to charge conversion in a spin pumping experiment. Using the intrinsic symmetry of the “Inverse Rashba Edelstein Effect” (IREE) in a Bi/Ag interface, the charge current changes sign when reversing the order of the Ag and Bi stacking. This confirms the IREE nature of the conversion of spin into charge in these interfaces and opens the way to tailoring the spin sensing voltage by an appropriate trilayer sequence.

  6. A Physics-Based Charge-Control Model for InP DHBT Including Current-Blocking Effect

    Institute of Scientific and Technical Information of China (English)

    GE Ji; JIN Zhi; SU Yong-Bo; CHENG Wei; WANG Xian-Wai; CHEN Gao-Peng; LIU Xin-Yu

    2009-01-01

    We develop a physics-based charge-control InP double heterojunction bipolar transistor model including three important effects: current blocking, mobile-charge modulation of the base-collector capacitance and velocity-field modulation in the transit time. The bias-dependent base-collector depletion charge is obtained analytically, which takes into account the mobile-charge modulation. Then, a measurement based voltage-dependent transit time formulation is implemented. As a result, over a wide range of biases, the developed model shows good agreement between the modeled and measured S-parameters and cutoff frequency. Also, the model considering current blocking effect demonstrates more accurate prediction of the output characteristics than conventional vertical bipolar inter company results.

  7. Space-Charge Effect

    CERN Document Server

    Chauvin, N

    2013-01-01

    First, this chapter introduces the expressions for the electric and magnetic space-charge internal fields and forces induced by high-intensity beams. Then, the root-mean-square equation with space charge is derived and discussed. In the third section, the one-dimensional Child-Langmuir law, which gives the maximum current density that can be extracted from an ion source, is exposed. Space-charge compensation can occur in the low-energy beam transport lines (located after the ion source). This phenomenon, which counteracts the spacecharge defocusing effect, is explained and its main parameters are presented. The fifth section presents an overview of the principal methods to perform beam dynamics numerical simulations. An example of a particles-in-cells code, SolMaxP, which takes into account space-charge compensation, is given. Finally, beam dynamics simulation results obtained with this code in the case of the IFMIF injector are presented.

  8. Temperature and Magnetic Field Effects on the Transport Controlled Charge State of a Single Quantum Dot

    Directory of Open Access Journals (Sweden)

    Moskalenko ES

    2010-01-01

    Full Text Available Abstract Individual InAs/GaAs quantum dots are studied by micro-photoluminescence. By varying the strength of an applied external magnetic field and/or the temperature, it is demonstrated that the charge state of a single quantum dot can be tuned. This tuning effect is shown to be related to the in-plane electron and hole transport, prior to capture into the quantum dot, since the photo-excited carriers are primarily generated in the barrier.

  9. An improved charge pump with suppressed charge sharing effect

    Directory of Open Access Journals (Sweden)

    Na Bai

    2013-09-01

    Full Text Available A differential charge pump with reduced charge sharing effect is presented. The current-steering topology is adopted for fast switching. A replica charge pump is added to provide a current path for the complementary branch of the master charge pump in the current switching. Through the replica charge pump, the voltage at the complementary node of the master charge pump keeps stable during switching, and the dynamic charge sharing effect is avoided. Apply the charge pump to a 4.8 GHz band integer-N PLL, the measured reference spur is -49.7dBc with a 4-MHz reference frequency.

  10. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    Science.gov (United States)

    Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  11. Controlling charge injection properties in polymer field-effect transistors by incorporation of solution processed molybdenum trioxide.

    Science.gov (United States)

    Long, Dang Xuan; Xu, Yong; Wei, Huai-xin; Liu, Chuan; Noh, Yong-Young

    2015-08-21

    A simply and facilely synthesized MoO3 solution was developed to fabricate charge injection layers for improving the charge-injection properties in p-type organic field-effect transistors (OFETs). By dissolving MoO3 powder in ammonium (NH3) solvent under an air atmosphere, an intermediate ammonium molybdate ((NH4)2MoO4) precursor is made stable, transparent and spin-coated to form the MoO3 interfacial layers, the thickness and morphology of which can be well-controlled. When the MoO3 layer was applied to OFETs with a cost-effective molybdenum (Mo) electrode, the field-effect mobility (μFET) was significantly improved to 0.17 or 1.85 cm(2) V(-1)s(-1) for polymer semiconductors, regioregular poly(3-hexylthiophene) (P3HT) or 3,6-bis-(5bromo-thiophen-2-yl)-N,N'-bis(2-octyl-1-dodecyl)-1,4-dioxo-pyrrolo[3,4-c]pyrrole (DPPT-TT), respectively. Device analysis indicates that the MoO3-deposited Mo contact exhibits a contact resistance RC of 1.2 MΩ cm comparable to that in a device with the noble Au electrode. Kelvin-probe measurements show that the work function of the Mo electrode did not exhibit a dependence on the thickness of MoO3 film. Instead, ultraviolet photoemission spectroscopy results show that a doping effect is probably induced by casting the MoO3 layer on the P3HT semiconductor, which leads to the improved hole injection.

  12. Screening Effect in Charge Qubit

    Institute of Scientific and Technical Information of China (English)

    HUA Ming; XIAO Xiao; GAO Yi-Bo

    2011-01-01

    We study the influence of screening effect on quantum decoherence for charge qubit and the process of quantum information storage. When the flux produced by the circulating current in SQUID loop is considered, screening effect is formally characterized by a LC resonator. Using large-detuning condition and Fr(o)hlich transformation in the qubit-cavity-resonator system, we calculate the decoherence factor for charge qubit and the effective qubit-cavity Hamiltonian. The decoherence factor owns a factorized structure, it shows that screening effect is a resource of decoherence for charge qubit. The effective Hamiltonian shows that the screening effect results in a frequency shift for charge qubit and a modified qubit-cavity coupling constant induced by a LC resonator.

  13. Control Algorithms Charge Batteries Faster

    Science.gov (United States)

    2012-01-01

    On March 29, 2011, NASA s Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft beamed a milestone image to Earth: the first photo of Mercury taken from orbit around the solar system s innermost planet. (MESSENGER is also the first spacecraft to orbit Mercury.) Like most of NASA s deep space probes, MESSENGER is enabled by a complex power system that allows its science instruments and communications to function continuously as it travels millions of miles from Earth. "Typically, there isn't one particular power source that can support the entire mission," says Linda Taylor, electrical engineer in Glenn Research Center s Power Systems Analysis Branch. "If you have solar arrays and you are in orbit, at some point you re going to be in eclipse." Because of this, Taylor explains, spacecraft like MESSENGER feature hybrid power systems. MESSENGER is powered by a two-panel solar array coupled with a nickel hydrogen battery. The solar arrays provide energy to the probe and charge the battery; when the spacecraft s orbit carries it behind Mercury and out of the Sun s light, the spacecraft switches to battery power to continue operations. Typically, hybrid systems with multiple power inputs and a battery acting alternately as storage and a power source require multiple converters to handle the power flow between the devices, Taylor says. (Power converters change the qualities of electrical energy, such as from alternating current to direct current, or between different levels of voltage or frequency.) This contributes to a pair of major concerns for spacecraft design. "Weight and size are big drivers for any space application," Taylor says, noting that every pound added to a space vehicle incurs significant costs. For an innovative solution to managing power flows in a lightweight, cost-effective manner, NASA turned to a private industry partner.

  14. The effects of nanoparticles and organic additives with controlled dispersion on dielectric properties of polymers: Charge trapping and impact excitation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S. [Department of Material Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Wu, Ke; Ratcliff, Tyree; Lanzillo, Nicholas A.; Breneman, Curt [Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Bell, Michael; Oakes, Andrew; Benicewicz, Brian C. [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208 (United States)

    2016-08-07

    This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO{sub 2} and ZrO{sub 2} nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (∼10{sup 17} cm{sup −3}). The charge trapping is found to have the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO{sub 2} filled composites and is likely caused by impact excitation due to the low excitation energy of TiO{sub 2} compared to ZrO{sub 2}. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO{sub 2} may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO{sub 2} composites.

  15. The effects of nanoparticles and organic additives with controlled dispersion on dielectric properties of polymers: Charge trapping and impact excitation

    Science.gov (United States)

    Huang, Yanhui; Wu, Ke; Bell, Michael; Oakes, Andrew; Ratcliff, Tyree; Lanzillo, Nicholas A.; Breneman, Curt; Benicewicz, Brian C.; Schadler, Linda S.

    2016-08-01

    This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO2 and ZrO2 nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (˜1017 cm-3). The charge trapping is found to have the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO2 filled composites and is likely caused by impact excitation due to the low excitation energy of TiO2 compared to ZrO2. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO2 may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO2 composites.

  16. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    Science.gov (United States)

    Saxena, Samveg

    Homogeneous Charge Compression Ignition (HCCI) engines are one of the most promising engine technologies for the future of energy conversion from clean, efficient combustion. HCCI engines allow high efficiency and lower CO2 emission through the use of high compression ratios and the removal of intake throttle valves (like Diesel), and allow very low levels of urban pollutants like nitric oxide and soot (like Otto). These engines, however, are not without their challenges, such as low power density compared with other engine technologies, and a difficulty in controlling combustion timing. This dissertation first addresses the power output limits. The particular strategies for enabling high power output investigated in this dissertation focus on avoiding five critical limits that either damage an engine, drastically reduce efficiency, or drastically increase emissions: (1) ringing limits, (2) peak in-cylinder pressure limits, (3) misfire limits, (4) low intake temperature limits, and (5) excessive emissions limits. The research shows that the key factors that enable high power output, sufficient for passenger vehicles, while simultaneously avoiding the five limits defined above are the use of: (1) high intake air pressures allowing improved power output, (2) highly delayed combustion timing to avoid ringing limits, and (3) using the highest possible equivalence ratio before encountering ringing limits. These results are revealed by conducting extensive experiments spanning a wide range of operating conditions on a multi-cylinder HCCI engine. Second, this dissertation discusses strategies for effectively sensing combustion characteristics on a HCCI engine. For effective feedback control of HCCI combustion timing, a sensor is required to quantify when combustion occurs. Many laboratory engines use in-cylinder pressure sensors but these sensors are currently prohibitively expensive for wide-scale commercialization. Instead, ion sensors made from inexpensive sparkplugs

  17. Controlled Delivery of Vancomycin via Charged Hydrogels.

    Science.gov (United States)

    Gustafson, Carl T; Boakye-Agyeman, Felix; Brinkman, Cassandra L; Reid, Joel M; Patel, Robin; Bajzer, Zeljko; Dadsetan, Mahrokh; Yaszemski, Michael J

    2016-01-01

    Surgical site infection (SSI) remains a significant risk for any clean orthopedic surgical procedure. Complications resulting from an SSI often require a second surgery and lengthen patient recovery time. The efficacy of antimicrobial agents delivered to combat SSI is diminished by systemic toxicity, bacterial resistance, and patient compliance to dosing schedules. We submit that development of localized, controlled release formulations for antimicrobial compounds would improve the effectiveness of prophylactic surgical wound antibiotic treatment while decreasing systemic side effects. Our research group developed and characterized oligo(poly(ethylene glycol)fumarate)/sodium methacrylate (OPF/SMA) charged copolymers as biocompatible hydrogel matrices. Here, we report the engineering of this copolymer for use as an antibiotic delivery vehicle in surgical applications. We demonstrate that these hydrogels can be efficiently loaded with vancomycin (over 500 μg drug per mg hydrogel) and this loading mechanism is both time- and charge-dependent. Vancomycin release kinetics are shown to be dependent on copolymer negative charge. In the first 6 hours, we achieved as low as 33.7% release. In the first 24 hours, under 80% of total loaded drug was released. Further, vancomycin release from this system can be extended past four days. Finally, we show that the antimicrobial activity of released vancomycin is equivalent to stock vancomycin in inhibiting the growth of colonies of a clinically derived strain of methicillin-resistant Staphylococcus aureus. In summary, our work demonstrates that OPF/SMA hydrogels are appropriate candidates to deliver local antibiotic therapy for prophylaxis of surgical site infection.

  18. Controlled Delivery of Vancomycin via Charged Hydrogels.

    Directory of Open Access Journals (Sweden)

    Carl T Gustafson

    Full Text Available Surgical site infection (SSI remains a significant risk for any clean orthopedic surgical procedure. Complications resulting from an SSI often require a second surgery and lengthen patient recovery time. The efficacy of antimicrobial agents delivered to combat SSI is diminished by systemic toxicity, bacterial resistance, and patient compliance to dosing schedules. We submit that development of localized, controlled release formulations for antimicrobial compounds would improve the effectiveness of prophylactic surgical wound antibiotic treatment while decreasing systemic side effects. Our research group developed and characterized oligo(poly(ethylene glycolfumarate/sodium methacrylate (OPF/SMA charged copolymers as biocompatible hydrogel matrices. Here, we report the engineering of this copolymer for use as an antibiotic delivery vehicle in surgical applications. We demonstrate that these hydrogels can be efficiently loaded with vancomycin (over 500 μg drug per mg hydrogel and this loading mechanism is both time- and charge-dependent. Vancomycin release kinetics are shown to be dependent on copolymer negative charge. In the first 6 hours, we achieved as low as 33.7% release. In the first 24 hours, under 80% of total loaded drug was released. Further, vancomycin release from this system can be extended past four days. Finally, we show that the antimicrobial activity of released vancomycin is equivalent to stock vancomycin in inhibiting the growth of colonies of a clinically derived strain of methicillin-resistant Staphylococcus aureus. In summary, our work demonstrates that OPF/SMA hydrogels are appropriate candidates to deliver local antibiotic therapy for prophylaxis of surgical site infection.

  19. Controlling charge quantization with quantum fluctuations

    Science.gov (United States)

    Jezouin, S.; Iftikhar, Z.; Anthore, A.; Parmentier, F. D.; Gennser, U.; Cavanna, A.; Ouerghi, A.; Levkivskyi, I. P.; Idrisov, E.; Sukhorukov, E. V.; Glazman, L. I.; Pierre, F.

    2016-08-01

    In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.

  20. Improving Charging-Breeding Simulations with Space-Charge Effects

    Science.gov (United States)

    Bilek, Ryan; Kwiatkowski, Ania; Steinbrügge, René

    2016-09-01

    Rare-isotope-beam facilities use Highly Charged Ions (HCI) for accelerators accelerating heavy ions and to improve measurement precision and resolving power of certain experiments. An Electron Beam Ion Trap (EBIT) is able to create HCI through successive electron impact, charge breeding trapped ions into higher charge states. CBSIM was created to calculate successive charge breeding with an EBIT. It was augmented by transferring it into an object-oriented programming language, including additional elements, improving ion-ion collision factors, and exploring the overlap of the electron beam with the ions. The calculation is enhanced with the effects of residual background gas by computing the space charge due to charge breeding. The program assimilates background species, ionizes and charge breeds them alongside the element being studied, and allows them to interact with the desired species through charge exchange, giving fairer overview of realistic charge breeding. Calculations of charge breeding will be shown for realistic experimental conditions. We reexamined the implementation of ionization energies, cross sections, and ion-ion interactions when charge breeding.

  1. Fractional Effective Charges and Misner-Wheeler Charge without Charge Effect in Metamaterials

    Directory of Open Access Journals (Sweden)

    Igor Smolyaninov

    2016-07-01

    Full Text Available Transformation optics enables engineering of the effective topology and dimensionality of the optical space in metamaterials. Nonlinear optics of such metamaterials may mimic Kaluza-Klein theories having one or more kinds of effective charges. As a result, novel photon blockade devices may be realized. Here we demonstrate that an electromagnetic wormhole may be designed, which connects two points of such an optical space and changes its effective topological connectivity. Electromagnetic field configurations, which exhibit fractional effective charges, appear as a result of such topology change. Moreover, such effects as Misner-Wheeler “charge without charge” may be replicated.

  2. Charge and Strain Control of Interface Magnetism

    Science.gov (United States)

    Fitzsimmons, M. R.; Dumesnil, K.; Jaouen, N.; Maroutian, T.; Agnus, G.; Tonnerre, J.-M.; Kirby, B.; Fohtung, E.; Holladay, B.; Fullerton, E. E.; Shpyrko, O.; Sinha, S. K.; Wang, Q.; Chen, A.; Jia, Q. X.

    2015-03-01

    We studied the influence of an electric field applied to an La0.67Sr0.33MnO3 (LSMO) layer in a LSMO/Pb(Zr0.2Ti0.8) O3 (PZT)/Nb-doped SrTiO3 (STO) heterostructure by measuring its magnetization depth profile using resonant x-ray magnetic reflectivity. The saturation magnetization of the ferromagnetically-ordered LSMO was not affected by the direction of the polarization of the PZT. However, the ferromagnetic thickness and magnetization of the LSMO film at remanence were reduced for hole-charge accumulation at the LSMO/PZT interface. To understand the independent roles of strain and hole-doping, we performed neutron scattering experiments of La0.8Sr0.2MnO3 films grown on Nb-doped STO in which bending strain (via 4-point bending jig) or electric field (via parallel plate capacitor) was applied to the films. We observed that bending strain affects the saturation magnetization of the LSMO film, whereas electric field affects the remanent magnetization of the film. These observations suggest strain may be a more effective means to control magnetism than charge. This work has benefited from use of CINT(LANL), NIST Center for Neutron Research and the Synchrotron SOLEIL and funding from LANL/LDRD program, DOE-BES (UCSD) and DOD (NMSU).

  3. Electrostatic charging and control of droplets in microfluidic devices.

    Science.gov (United States)

    Zhou, Hongbo; Yao, Shuhuai

    2013-03-07

    Precharged droplets can facilitate manipulation and control of low-volume liquids in droplet-based microfluidics. In this paper, we demonstrate non-contact electrostatic charging of droplets by polarizing a neutral droplet and splitting it into two oppositely charged daughter droplets in a T-junction microchannel. We performed numerical simulation to analyze the non-contact charging process and proposed a new design with a notch at the T-junction in aid of droplet splitting for more efficient charging. We experimentally characterized the induced charge in droplets in microfabricated devices. The experimental results agreed well with the simulation. Finally, we demonstrated highly effective droplet manipulation in a path selection unit appending to the droplet charging. We expect our work could enable precision manipulation of droplets for more complex liquid handling in microfluidics and promote electric-force based manipulation in 'lab-on-a-chip' systems.

  4. Congestion control in charging of electric vehicles

    CERN Document Server

    Carvalho, Rui; Gibbens, Richard; Kelly, Frank

    2015-01-01

    The increasing penetration of electric vehicles over the coming decades, taken together with the high cost to upgrade local distribution networks, and consumer demand for home charging, suggest that managing congestion on low voltage networks will be a crucial component of the electric vehicle revolution and the move away from fossil fuels in transportation. Here, we model the max-flow and proportional fairness protocols for the control of congestion caused by a fleet of vehicles charging on distribution networks. We analyse the inequality in the charging times as the vehicle arrival rate increases, and show that charging times are considerably more uneven in max-flow than in proportional fairness. We also analyse the onset of instability, and find that the critical arrival rate is indistinguishable between the two protocols.

  5. Long Duration Balloon Charge Controller Stack Integration

    Science.gov (United States)

    Clifford, Kyle

    NASA and the Columbia Scientific Balloon Facility are interested in updating the design of the charge controller on their long duration balloon (LDB) in order to enable the charge controllers to be directly interfaced via RS232 serial communication by a ground testing computers and the balloon's flight computer without the need to have an external electronics stack. The design involves creating a board that will interface with the existing boards in the charge controller in order to receive telemetry from and send commands to those boards, and interface with a computer through serial communication. The inputs to the board are digital status inputs indicating things like whether the photovoltaic panels are connected or disconnected; and analog inputs with information such as the battery voltage and temperature. The outputs of the board are 100ms duration command pulses that will switch relays that do things like connect the photovoltaic panels. The main component of this design is a PIC microcontroller which translates the outputs of the existing charge controller into serial data when interrogated by a ground testing or flight computer. Other components involved in the design are an AD7888 12-bit analog to digital converter, a MAX3232 serial transceiver, various other ICs, capacitors, resistors, and connectors.

  6. Automatic charge control system for satellites

    Science.gov (United States)

    Shuman, B. M.; Cohen, H. A.

    1985-01-01

    The SCATHA and the ATS-5 and 6 spacecraft provided insights to the problem of spacecraft charging at geosychronous altitudes. Reduction of the levels of both absolute and differential charging was indicated, by the emission of low energy neutral plasma. It is appropriate to complete the transition from experimental results to the development of a system that will sense the state-of-charge of a spacecraft, and, when a predetermined threshold is reached, will respond automatically to reduce it. A development program was initiated utilizing sensors comparable to the proton electrostatic analyzer, the surface potential monitor, and the transient pulse monitor that flew in SCATHA, and combine these outputs through a microprocessor controller to operate a rapid-start, low energy plasma source.

  7. Analyzing Affect of Image Charge in Space Charge Effect

    Institute of Scientific and Technical Information of China (English)

    ZhangXueying; XuHushan; JiaFei; LiWenfei

    2003-01-01

    There is an increasing requirement of high injection current and highly charged ion beams for accelerators at many laboratories, such as CERN, GSI, GANIL and IMP, with the development of super-conducting ECR source in recent.years. In this case, the space charge effect becomes a major concern when the beam current is as high as tens of mA. In fact, the faradic field induced by the image charges will be come into the metallic surfaces while the beams are transported in a vacuum tube or in between two plates. In order to ensure studying the space charge effect in reason, it is necessary to investigate the effect from such a field.

  8. Microscale vortex laser with controlled topological charge

    Science.gov (United States)

    Wang, Xing-Yuan; Chen, Hua-Zhou; Li, Ying; Li, Bo; Ma, Ren-Min

    2016-12-01

    A microscale vortex laser is a new type of coherent light source with small footprint that can directly generate vector vortex beams. However, a microscale laser with controlled topological charge, which is crucial for virtually any of its application, is still unrevealed. Here we present a microscale vortex laser with controlled topological charge. The vortex laser eigenmode was synthesized in a metamaterial engineered non-Hermitian micro-ring cavity system at exceptional point. We also show that the vortex laser cavity can operate at exceptional point stably to lase under optical pumping. The microscale vortex laser with controlled topological charge can serve as a unique and general building block for next-generation photonic integrated circuits and coherent vortex beam sources. The method we used here can be employed to generate lasing eigenmode with other complex functionalities. Project supported by the “Youth 1000 Talent Plan” Fund, Ministry of Education of China (Grant No. 201421) and the National Natural Science Foundation of China (Grant Nos. 11574012 and 61521004).

  9. Effective Charge Carrier Utilization in Photocatalytic Conversions.

    Science.gov (United States)

    Zhang, Peng; Wang, Tuo; Chang, Xiaoxia; Gong, Jinlong

    2016-05-17

    Continuous efforts have been devoted to searching for sustainable energy resources to alleviate the upcoming energy crises. Among various types of new energy resources, solar energy has been considered as one of the most promising choices, since it is clean, sustainable, and safe. Moreover, solar energy is the most abundant renewable energy, with a total power of 173 000 terawatts striking Earth continuously. Conversion of solar energy into chemical energy, which could potentially provide continuous and flexible energy supplies, has been investigated extensively. However, the conversion efficiency is still relatively low since complicated physical, electrical, and chemical processes are involved. Therefore, carefully designed photocatalysts with a wide absorption range of solar illumination, a high conductivity for charge carriers, a small number of recombination centers, and fast surface reaction kinetics are required to achieve a high activity. This Account describes our recent efforts to enhance the utilization of charge carriers for semiconductor photocatalysts toward efficient solar-to-chemical energy conversion. During photocatalytic reactions, photogenerated electrons and holes are involved in complex processes to convert solar energy into chemical energy. The initial step is the generation of charge carriers in semiconductor photocatalysts, which could be enhanced by extending the light absorption range. Integration of plasmonic materials and introduction of self-dopants have been proved to be effective methods to improve the light absorption ability of photocatalysts to produce larger amounts of photogenerated charge carriers. Subsequently, the photogenerated electrons and holes migrate to the surface. Therefore, acceleration of the transport process can result in enhanced solar energy conversion efficiency. Different strategies such as morphology control and conductivity improvement have been demonstrated to achieve this goal. Fine-tuning of the

  10. Effect of Zn Adsorption on Charge of Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    SUNHAN-YUAN

    1993-01-01

    The variation in appa rent carge of two typical variable charge soils resulting from Zn adsorption were studied by KCl saturation and NH4NO3 replacement methods.Results showed that zinc were adsorbed specifically to those sites with negative charge.As in different pH ranges,the percantages of specific and electrostatic adsorptions of zine and the mechanisms of specific adsorption were different,the effects of Zn adsorption on apparent charge were varied and could be characterized as:when 1 mmol Zn2+ was adsorbed,a change about 1 mmol in the apparent charge was observed in the low pH range(1),1.4 to 1.5mmol in the moderate pH range(II) and 0.55 to 0.6mmol in the high pH range (III).These experimental data,in terms of soil charge,proved once more author's conclusion in the preceding paper(Sun,1993) that in accordance with the behaviors of Zn adsorption by the variable charge soils in relation to pH,three pH ranges with different adsorption mechanisms were delineated;that is,in Range I,specific adsorption was the predominant mechanism,in Ranges II and III,specific and electrostatic adsorptions co-existed,but their specific adsorption mechanisms were not identical.

  11. Charge effects controlling the current hysteresis and negative differential resistance in periodical nanosize Si/CaF sub 2 structures

    CERN Document Server

    Berashevich, Y A; Kholod, A N; Borisenko, V E

    2002-01-01

    A kinetic model of charge carrier transport in nanosize periodical Si/CaF sub 2 structures via localized states in dielectric is proposed. Computer simulation of the current-voltage characteristics of such structures has shown that the built-in field arises in a dielectric due to polarization of the trapped charge by localized centers. This results in current hysteresis and negative differential resistance region at the current-voltage characteristics when the bias polarity is changed. At temperature below 250 K, the portion of negative differential resistance vanishes

  12. Phase behavior of charged colloids : many-body effects, charge renormalization and charge regulation

    NARCIS (Netherlands)

    Zoetekouw, Bastiaan

    2006-01-01

    The main topic of this thesis is Poisson–Boltzmann theory for suspensions of charged colloids in two of its approximations: cell-type approximations that explicitly take into account non-linear effects near the colloidal surfaces, such as charge renormalization, at the expense of neglecting any

  13. Charges for plastic bags : Motivational and behavioral effects

    NARCIS (Netherlands)

    Jakovcevic, Adriana; Steg, Linda; Mazzeo, Nadia; Caballero, Romina; Franco, Paul; Putrino, Natalia; Favara, Jesica

    2014-01-01

    Two field studies tested the effects of a charge for single-use plastic bags recently implemented in Buenos Aires City, Argentina. Study 1 showed a greater increase in consumers' own bag use after the charge was introduced in supermarkets where the policy was introduced, in comparison to control sup

  14. Fluctuation charge effects in ionization fronts

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, Manuel; Trueba, Jose L [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain); Baltanas, J P [Departamento de Fisica Aplicada II, Universidad de Sevilla, Av. Reina Mercedes 2, 41012 Sevilla (Spain)

    2008-05-21

    In this paper, we study the effects of charge fluctuations on the propagation of both negative and positive ionization fronts in streamer discharges. We show that fronts accelerate when random charge creation events are present. This effect might play a similar role to photoionization in order to make the front move faster.

  15. Experimental research on charging characteristics of a solar photovoltaic system by the pressure-control method

    Institute of Scientific and Technical Information of China (English)

    Hua ZHU; Zhang-lu XU; Zi-juan CAO

    2011-01-01

    The charging characteristics of the valve-regulated lead acid (VRLA) battery driven by solar energy were experimentally studied through the pressure-control method in this paper. The aims of the research were to increase charging efficiency to make the most of solar energy and to improve charging quality to prolong life of battery. The charging process of a 12 V 12 A.h VRLA battery has been tested under the mode of a stand-alone photovoltaic (PV) system. Results show that the pressure-control method can effectively control PV charging of the VRLA battery and make the best of PV cells through the maximum power point tracking (MPPT). The damage of VRLA battery by excess oxygen accumulation can be avoided through the inner pressure control of VRLA battery. Parameters such as solar radiation intensity, charging power, inner pressure of the battery, and charging current and voltage during the charging process were measured and analyzed.

  16. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mingtian; Li, Baohui, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071 (China); Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2015-05-28

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order

  17. PIC BASED SOLAR CHARGING CONTROLLER FOR BATTERY

    Directory of Open Access Journals (Sweden)

    Mrs Jaya N. Ingole

    2012-02-01

    Full Text Available Solar resource is unlimited the government is trying to implement the use of Solar panels as an energy source in rural and sub urban areas for lighting the street lights, but the battery used to store the power gets affected due to overcharge & discharges. This paper presents the use of PIC16F72 based solar charger controller for controlling the overcharging and discharging of a solar cell. It works by continuously optimizing the interface between the solar array and battery. First, the variable supply is fixed at 12.8V dc—the voltage of a fully charged battery— and linked to the battery point of the circuit. Cut Off of battery from load voltage is 10.8 volt. A PIC16F72 for small size and inbuilt analog inputs is used to determine voltage level of battery and solar panel..It also describes how the disadvantages of analog circuit are overcome by this controller. The flow chart is also provided.

  18. Solvation effects on like-charge attraction.

    Science.gov (United States)

    Ghanbarian, Shahzad; Rottler, Jörg

    2013-02-28

    We present results of molecular dynamics simulations of the electrostatic interaction between two parallel charged rods in the presence of divalent counterions. Such polyelectrolytes have been considered as a simple model for understanding electrostatic interactions in highly charged biomolecules such as DNA. Since there are correlations between the free charge carriers, the phenomenon of like charge attraction appears for specific parameters. We explore the role of solvation effects and the resulting deviations from Coulomb's law on the nanoscale on this peculiar phenomenon. The behavior of the force between the charged rods in a simulation with atomistic representation of water molecules is completely different from a model in which water is modeled as a continuum dielectric. By calculating counterion-rodion pair correlation functions, we find that the presence of water molecules changes the structure of the counterion cloud and results in both qualitative and quantitative changes of the force between highly charged polyelectrolytes.

  19. Effect of Charge Patterning on the Phase Behavior of Polymer Coacervates for Charge Driven Self Assembly

    Science.gov (United States)

    Radhakrishna, Mithun; Sing, Charles E.

    Oppositely charged polymers can undergo associative liquid-liquid phase separation when mixed under suitable conditions of ionic strength, temperature and pH to form what are known as `polymeric complex coacervates'. Polymer coacervates find use in diverse array of applications like microencapsulation, drug delivery, membrane filtration and underwater adhesives. The similarity between complex coacervate environments and those in biological systems has also found relevance in areas of bio-mimicry. Our previous works have demonstrated how local charge correlations and molecular connectivity can drastically affect the phase behavior of coacervates. The precise location of charges along the chain therefore dramatically influences the local charge correlations, which consequently influences the phase behavior of coacervates. We investigate the effect of charge patterning along the polymer chain on the phase behavior of coacervates in the framework of the Restricted Primitive Model using Gibbs Ensemble Monte Carlo simulations. Our results show that charge patterning dramatically changes the phase behavior of polymer coacervates, which contrasts with the predictions of the classical Voorn-Overbeek theory. This provides the basis for designing new materials through charge driven self assembly by controlling the positioning of the charged monomers along the chain.

  20. An investigation of using various diesel-type fuels in homogeneous charge compression ignition engines and their effects on operational and controlling issues

    Energy Technology Data Exchange (ETDEWEB)

    Milovanovic, N.; Chen, R. [Loughborough Univ., Aeronautical and Automotive Dept., Loughborough (United Kingdom); Dowden, R. [Swansea Inst. of Higher Education, School of Automotive Engineering, Swansea (United Kingdom); Turner, J. [Lotus Engineering, Powertrain Research Dept., Hethel (United Kingdom)

    2004-12-01

    Homogeneous charge compression ignition (HCCI) engines appear to be a future alternative to diesel and spark-ignited engines. The HCCI engine has the potential to deliver high efficiency and very low NO{sub x} and particulate matter emissions. There are, however, problems with the control of ignition and heat release range over the entire load and speed range which limits the practical application of this technology. The aim of this paper is to analyse the use of different types of diesel fuels in an HCCI engine and hence to find the most suitable with respect to operational and control issues. The single-zone combustion model with convective heat transfer loss is used to simulate the HCCI engine environment. n-Heptane, dimethyl ether and bio-diesel (methyl butanoate and methyl formate) fuels are investigated. Methyl butanoate and methyl formate represent surrogates of heavy and light bio-diesel fuel respectively. The effects of different engine parameters such as equivalence ratio and engine speed on the ignition timing are investigated. The use of internal exhaust gas recirculation is investigated as a potential strategy for controlling the ignition timing. The results indicate that the use of bio-diesel fuels will result in lower sensitivity of ignition timing to changes in operational parameters and in a better control of the ignition process when compared with the use of n-heptane and dimethyl ether. (Author)

  1. Charge-regularization effects on polyelectrolytes

    Science.gov (United States)

    Muthukumar, Murugappan

    2012-02-01

    When electrically charged macromolecules are dispersed in polar solvents, their effective net charge is generally different from their chemical charges, due to competition between counterion adsorption and the translational entropy of dissociated counterions. The effective charge changes significantly as the experimental conditions change such as variations in solvent quality, temperature, and the concentration of added small electrolytes. This charge-regularization effect leads to major difficulties in interpreting experimental data on polyelectrolyte solutions and challenges in understanding the various polyelectrolyte phenomena. Even the most fundamental issue of experimental determination of molar mass of charged macromolecules by light scattering method has been difficult so far due to this feature. We will present a theory of charge-regularization of flexible polyelectrolytes in solutions and discuss the consequences of charge-regularization on (a) experimental determination of molar mass of polyelectrolytes using scattering techniques, (b) coil-globule transition, (c) macrophase separation in polyelectrolyte solutions, (c) phase behavior in coacervate formation, and (d) volume phase transitions in polyelectrolyte gels.

  2. Charge Exchange Effect on Space-Charge-Limited Current Densities in Ion Diode

    Institute of Scientific and Technical Information of China (English)

    石磊

    2002-01-01

    The article theoretically studied the charge-exchange effects on space charge limited electron and ion current densities of non-relativistic one-dimensional slab ion diode, and compared with those of without charge exchange.

  3. A Charge Controller Design For Solar Power System

    Directory of Open Access Journals (Sweden)

    Nandar Oo

    2015-08-01

    Full Text Available This paper presents the solar charge controller circuit for controlling the overcharging and discharging from solar panel. This circuit regulates the charging of the battery in a solar system by monitoring battery voltage and switching the solar or other power source off when the battery reaches a preset voltage. This circuit is low voltages disconnect circuit. A charge controller circuit can increase battery life by preventing over-charging which can cause loss of electrolyte. The flow chart is also provided.

  4. Supramolecular control of the spin-dependent dynamics of long-lived charge-separated states at the micellar interface as studied by magnetic field effect.

    Science.gov (United States)

    Miura, Tomoaki

    2013-05-30

    Spin selectivity in long-lived charge separation at the micellar interface is studied using the magnetic field effect (MFE). An amphiphilic viologen is complexed with a nonionic surfactant to form a supramolecular acceptor cage, of which the size is controlled by the acceptor concentration, as confirmed by dynamic light scattering measurement. Photoinduced electron transfer (ET) from a guest polyaromatic molecule to the viologen moiety is observed spin-dependently with time-resolved fluorescence (trFL) and transient absorption (TA). A negative MFE on the radical yield is successfully observed, which indicates generation of singlet-born long-lived radical pair that is realized by supramolecular control of the donor-acceptor (D-A) distances. The dominance of the singlet-precursor MFE is sensitive to the acceptor concentration, which presumably affects the D-A distance as well as the cage size. However, theoretical analysis of the MFE gives large recombination rates of ca. 10(8) s(-1), which indicate the contribution of spin-allowed recombination of the pseudocontact radical pair generated by still active in-cage diffusion. Dependence of the viologen concentration and alkyl chain length on the recombination and escape dynamics is discussed in terms of precursor spin states and the microenvironments in the cage.

  5. Charging effects in thick insulating samples

    Energy Technology Data Exchange (ETDEWEB)

    Dias, J.F. E-mail: jfdias@if.ufrgs.br; Bulla, A.; Yoneama, M.-L

    2002-04-01

    In this paper we analyse the effects observed in X-ray spectra when thick insulating targets are irradiated with beams of light charged particles. Preliminary results show that the background yield due to charge buildup on mylar is larger for protons than for lithium ions, suggesting that particles with low energy loss tend to generate more background. Residual activity has been observed in several thick samples like resin, quartz and mylar. Two methods for suppressing the background due to charging effects have been studied. The first one was based on the use of a transverse magnetic field. The second one made use of a simple electric lamp of 6 V with its glass bulb removed. While the first method proved to be inefficient, the second one eliminated most of the background due to charge buildup in the sample.

  6. Space Charge Effect in the Sheet and Solid Electron Beam

    Science.gov (United States)

    Song, Ho Young; Kim, Hyoung Suk; Ahn, Saeyoung

    1998-11-01

    We analyze the space charge effect of two different types of electron beam ; sheet and solid electron beam. Electron gun simulations are carried out using shadow and control grids for high and low perveance. Rectangular and cylindrical geometries are used for sheet and solid electron beam in planar and disk type cathode. The E-gun code is used to study the limiting current and space charge loading in each geometries.

  7. Controlling charge injection by self-assembled monolayers in bottom-gate and top-gate organic field-effect transistors

    NARCIS (Netherlands)

    Gholamrezaie, F.; Asadi, K.; Kicken, R.A.H.J.; Langeveld-Voss, B.M.W.; Leeuw, D.M. de; Blom, P.W.M.

    2011-01-01

    We investigate the modulation of the charge injection in organic field-effect transistors with self-assembled monolayers (SAMs) using both a bottom-gate and a top-gate geometry. The current modulation by using SAMs is more pronounced in the top-gate geometry due to the better defined upper surface o

  8. PI controller scheme for charge balance in implantable electrical stimulators

    Indian Academy of Sciences (India)

    C Rathna

    2016-01-01

    Electrical stimulation has been used in a wide variety of medical implant applications. In all of these applications, due to safety concerns, maintaining charge balance becomes a critically important issue that needs to be addressed at the design stage. It is important that charge balancing schemes be robust to circuit (process) and load impedance variations, and at the same time must also lend themselves to miniaturization. In this communication, simulation studies on the effectiveness of using Proportional Integral (P-I) control schemes for managing charge balance in electrical stimulation are presented. The adaptation of the P-I control scheme to implant circuits leads to two possible circuit realizations in the analog domain. The governing equations for these realizations are approximated to simple linear equations. Considering typical circuit and tissue parameter values and their expected uncertainties, Matlab as well as circuit simulations have been carried out. Simulation results presented indicate that the tissue voltages settle to well below 20% of the safe levels and within about 20 stimulations cycles, thus confirming the validity and robustness of the proposed schemes.

  9. Charge multiplication effect in thin diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Skukan, N., E-mail: nskukan@irb.hr; Grilj, V.; Sudić, I.; Jakšić, M. [Division of Experimental Physics, Ruđer Bošković Institute, 10000 Zagreb (Croatia); Pomorski, M. [CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette F-91191 (France); Kada, W.; Kambayashi, Y.; Andoh, Y. [Division of Electronics and Informatics, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Makino, T.; Onoda, S.; Sato, S.; Ohshima, T.; Kamiya, T. [National Institutes for Quantum and Radiological Science and Technology, Takasaki, Gunma 370-1292 (Japan)

    2016-07-25

    Herein, we report on the enhanced sensitivity for the detection of charged particles in single crystal chemical vapour deposition (scCVD) diamond radiation detectors. The experimental results demonstrate charge multiplication in thin planar diamond membrane detectors, upon impact of 18 MeV O ions, under high electric field conditions. Avalanche multiplication is widely exploited in devices such as avalanche photo diodes, but has never before been reproducibly observed in intrinsic CVD diamond. Because enhanced sensitivity for charged particle detection is obtained for short charge drift lengths without dark counts, this effect could be further exploited in the development of sensors based on avalanche multiplication and radiation detectors with extreme radiation hardness.

  10. Lithium-Ion Cell Charge-Control Unit Developed

    Science.gov (United States)

    Reid, Concha M.; Manzo, Michelle A.; Buton, Robert M.; Gemeiner, Russel

    2005-01-01

    A lithium-ion (Li-ion) cell charge-control unit was developed as part of a Li-ion cell verification program. This unit manages the complex charging scheme that is required when Li-ion cells are charged in series. It enables researchers to test cells together as a pack, while allowing each cell to charge individually. This allows the inherent cell-to-cell variations to be addressed on a series string of cells and reduces test costs substantially in comparison to individual cell testing.

  11. Optimal charging control of electric vehicles in smart grids

    CERN Document Server

    Tang, Wanrong

    2017-01-01

    This book introduces the optimal online charging control of electric vehicles (EVs) and battery energy storage systems (BESSs) in smart grids. The ultimate goal is to minimize the total energy cost as well as reduce the fluctuation of the total power flow caused by the integration of the EVs and renewable energy generators. Using both theoretic analysis and data-driven numerical results, the authors reveal the effectiveness and efficiency of the proposed control techniques. A major benefit of these control techniques is their practicality, since they do not rely on any non-causal knowledge of future information. Researchers, operators of power grids, and EV users will find this to be an exceptional resource. It is also suitable for advanced-level students of computer science interested in networks, electric vehicles, and energy systems.

  12. Screening effect on nanostructure of charged gel

    DEFF Research Database (Denmark)

    Sugiyama, M; Annaka, M; Hino, M

    2004-01-01

    Charge screening effects on nanostructures of N-isopropylacrylamide-sodium acrylate (NIPA-SA) and -acrylic acid (NIPA-AAc) gels are investigated with small-angle neutron scattering. The NIPA-SA and NIPA-AAc gels with low water content exhibit microphase separations with different dimensions....... The dehydrated NIPA-SA gel also makes the microphase separation but the dehydrated NIPA-AAc gel does not. These results indicate that ionic circumstance around charged bases strongly affects the nanostructures both of the dehydrated gel and the gel with low water content. (C) 2004 Elsevier B. V. All rights...

  13. Capacitive Control of Spontaneously Induced Electrical Charge of Droplet by Electric Field-Assisted Pipetting

    Institute of Scientific and Technical Information of China (English)

    Horim Lee; Dongwhi Choi; Dong Sung Kim; Geunbae Lim

    2015-01-01

    The spontaneously generated electrical charge of a droplet dispensed from conventional pipetting is undesirable and unpredictable for most experiments that use pipetting. Hence, a method for controlling and removing the electrical charge needs to be developed. In this study, by using the electrode-deposited pipet tip (E-pipet tip), the charge-controlling system is newly developed and the electrical charge of a droplet is precisely controlled. The effect of electrolyte concentration and volume of the transferred solution to the electrical charge of a dispensed droplet is theoretically and experimentally investigated by using the equivalent capacitor model. Furthermore, a proof-of-concept example of the self-alignment and self-assembly of sequentially dispensed multiple droplets is demonstrated as one of the potential applications. Given that the electrical charge of the various aqueous droplets can be precisely and simply controlled, the fabricated E-pipet tip can be broadly utilized not only as a general charge-controlling platform of aqueous droplets but also as a powerful tool to explore fundamental scientific research regarding electrical charge of a droplet, such as the surface oscillation and evaporation of charged droplets.

  14. Adaptive coordinated control of engine speed and battery charging voltage

    Institute of Scientific and Technical Information of China (English)

    Jiangyan ZHANG; Xiaohong JIAO

    2008-01-01

    In this paper, the control problem of auxiliary power unit (APU) for hybrid electric vehicles is investigated. An adaptive controller is provided to achieve the coordinated control between the engine speed and the battery charging voltage. The proposed adaptive coordinated control laws for the throttle angle of the engine and the voltage of the power-converter can guarantee not only the asymptotic tracking performance of the engine speed and the regulation of the battery charging voltage, but also the robust stability of the closed loop system under external load changes. Simulation results are given to verify the performance of the proposed adaptive controller.

  15. Residuals Charges for Pollution Control: A Policy Evaluation

    Science.gov (United States)

    Freeman, A. Myrick, III; Haveman, Robert H.

    1972-01-01

    Contrasts the effects of a policy of regulation of pollutant discharge by enforcement of a permit system with the likely consequences of a policy of charging for effluents, thus increasing the cost of discharge. The charge for residuals is favored, and it is suggested that trials of the system be conducted, perhaps with a federal tax on emission…

  16. The Application Research about Modified Genetic Algorithm in the Flywheel Charging-Control System

    Directory of Open Access Journals (Sweden)

    Jiaqi Zhong

    2013-05-01

    Full Text Available In the flywheel charging-control system, there exists the flywheel motor’s nonlinearity, variable elements etc, which leads to the problem of parameter tuning of PID controller of its charging-control system’s revolving speed loop. In this study, I will introduce an optimizing way based on modified genetic algorithm for the flywheel charging-control system PID controller, which by means of simulation and performance index quantization to observe its optimizing performance and convergence characteristic, so that we can check the feasibility and effectiveness in the flywheel charging-control system. It turns out that tuning PID controller parameters based on modified genetic algorithm has a better rapidity and stability, which proves the feasibility of the modified genetic algorithm.

  17. Ion specific effects on charged interfaces

    OpenAIRE

    Medda, Luca

    2013-01-01

    The physico-chemical phenomena occurring at charged interfaces are specifically affected by the type and the concentration of electrolytes. This has implications both in living and in inorganic systems. The discovery of the ‘ion specific effects’ dates back to Hofmeister (1888), who observed the specific effect of salts in promoting egg white proteins precipitation. Nowadays we are aware that ion specific effects are ubiquitous in all fields of science and technology where electrolytes play a...

  18. What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends.

    Science.gov (United States)

    Jakowetz, Andreas C; Böhm, Marcus L; Zhang, Jiangbin; Sadhanala, Aditya; Huettner, Sven; Bakulin, Artem A; Rao, Akshay; Friend, Richard H

    2016-09-14

    In solar energy harvesting devices based on molecular semiconductors, such as organic photovoltaics (OPVs) and artificial photosynthetic systems, Frenkel excitons must be dissociated via charge transfer at heterojunctions to yield free charges. What controls the rate and efficiency of charge transfer and charge separation is an important question, as it determines the overall power conversion efficiency (PCE) of these systems. In bulk heterojunctions between polymer donor and fullerene acceptors, which provide a model system to understand the fundamental dynamics of electron transfer in molecular systems, it has been established that the first step of photoinduced electron transfer can be fast, of order 100 fs. But here we report the first study which correlates differences in the electron transfer rate with electronic structure and morphology, achieved with sub-20 fs time resolution pump-probe spectroscopy. We vary both the fullerene substitution and donor/fullerene ratio which allow us to control both aggregate size and the energetic driving force for charge transfer. We observe a range of electron transfer times from polymer to fullerene, from 240 fs to as short as 37 fs. Using ultrafast electro-optical pump-push-photocurrent spectroscopy, we find the yield of free versus bound charges to be weakly dependent on the energetic driving force, but to be very strongly dependent on fullerene aggregate size and packing. Our results point toward the importance of state accessibility and charge delocalization and suggest that energetic offsets between donor and acceptor levels are not an important criterion for efficient charge generation. This provides design rules for next-generation materials to minimize losses related to driving energy and boost PCE.

  19. Effect of charge on the mechanical properties of surfactant bilayers.

    Science.gov (United States)

    Bradbury, Robert; Nagao, Michihiro

    2016-11-23

    Charge effects on the mechanical properties of surfactant bilayers have been measured, for a system with a low ionic strength, using small-angle neutron scattering and neutron spin echo spectroscopy. We report that, not only does increasing the surface charge density lead to greater structural ordering and a stiffening of the membrane, which is consistent with classical theory of charge effects on membranes, but also that the relaxation rate of the membrane thickness fluctuations decreases without affecting the fluctuation amplitude. From the relaxation rate we demonstrate, using recent theory, that the viscosity of the surfactant membrane is increased with surface charge density, which suggests that the amount of charge controls the diffusion behavior of inclusions inside the membrane. The present results confirm that the thickness fluctuation relaxation rate and amplitude are tuned independently since the membrane viscosity is only influencing the relaxation rate. This work demonstrates that charge stabilization of lamellar bilayers is not merely affected by intermembrane interactions and structural ordering but that intramembrane dynamics also have a significant contribution.

  20. Model Predictive Control-Based Fast Charging for Vehicular Batteries

    Directory of Open Access Journals (Sweden)

    Zhibin Song

    2011-08-01

    Full Text Available Battery fast charging is one of the most significant and difficult techniques affecting the commercialization of electric vehicles (EVs. In this paper, we propose a fast charge framework based on model predictive control, with the aim of simultaneously reducing the charge duration, which represents the out-of-service time of vehicles, and the increase in temperature, which represents safety and energy efficiency during the charge process. The RC model is employed to predict the future State of Charge (SOC. A single mode lumped-parameter thermal model and a neural network trained by real experimental data are also applied to predict the future temperature in simulations and experiments respectively. A genetic algorithm is then applied to find the best charge sequence under a specified fitness function, which consists of two objectives: minimizing the charging duration and minimizing the increase in temperature. Both simulation and experiment demonstrate that the Pareto front of the proposed method dominates that of the most popular constant current constant voltage (CCCV charge method.

  1. Controlled charge exchange between alkaline earth metals and their ions

    Science.gov (United States)

    Gacesa, Marko; Côté, Robin

    2015-05-01

    We theoretically investigate the prospects of realizing controlled charge exchange via magnetic Feshbach resonances in cold and ultracold collisions of atoms and ions. In particular, we focus on near-resonant charge exchange in heteroisotopic combinations of alkaline earth metals, such as 9Be++10 Be9 Be+10Be+ , which exhibit favorable electronic and hyperfine structure. The quantum scattering calculations are performed for a range of initial states and experimentally attainable magnetic fields in standard coupled-channel Feshbach projection formalism, where higher-order corrections such as the mass-polarization term are explicitely included. In addition, we predict a number of magnetic Feshbach resonances for different heteronuclear isotopic combinations of the listed and related alkaline earth elements. Our results imply that near-resonant charge-exchange could be used to realize atom-ion quantum gates, as well as controlled charge transfer in optically trapped cold quantum gases. This work is partially supported by ARO.

  2. Effective dynamics of a classical point charges

    CERN Document Server

    Polonyi, Janos

    2013-01-01

    The effective Lagrangian of a point charge is derived by eliminating the electromagnetic field within the framework of the classical closed time path formalism. The short distance singularity of the electromagnetic field is regulated by an UV cutoff. The Abraham-Lorentz force is recovered and its similarity to anomalies is underlined. The full cutoff-dependent linearized equation of motion is obtained, no runaway trajectories are found but the effective dynamics shows acausality if the cutoff is beyond the classical charge radius. The strength of the radiation reaction force displays a pole in its cutoff-dependence in a manner reminiscent of the Landau-pole of perturbative QED. Similarity between the dynamical breakdown of the time reversal invariance and dynamical symmetry breaking is pointed out.

  3. Robust Broadcast-Communication Control of Electric Vehicle Charging

    CERN Document Server

    Turitsyn, Konstantin; Backhaus, Scott; Chertkov, Misha

    2010-01-01

    The anticipated increase in the number of plug-in electric vehicles (EV) will put additional strain on electrical distribution circuits. Many control schemes have been proposed to control EV charging. Here, we develop control algorithms based on randomized EV charging start times and simple one-way broadcast communication allowing for a time delay between communication events. Using arguments from queuing theory and statistical analysis, we seek to maximize the utilization of excess distribution circuit capacity while keeping the probability of a circuit overload negligible.

  4. Robust broadcast-communication control of electric vehicle charging

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

    2010-01-01

    The anticipated increase in the number of plug-in electric vehicles (EV) will put additional strain on electrical distribution circuits. Many control schemes have been proposed to control EV charging. Here, we develop control algorithms based on randomized EV charging start times and simple one-way broadcast communication allowing for a time delay between communication events. Using arguments from queuing theory and statistical analysis, we seek to maximize the utilization of excess distribution circuit capacity while keeping the probability of a circuit overload negligible.

  5. Formation of charged ferroelectric domain walls with controlled periodicity.

    Science.gov (United States)

    Bednyakov, Petr S; Sluka, Tomas; Tagantsev, Alexander K; Damjanovic, Dragan; Setter, Nava

    2015-10-30

    Charged domain walls in proper ferroelectrics were shown recently to possess metallic-like conductivity. Unlike conventional heterointerfaces, these walls can be displaced inside a dielectric by an electric field, which is of interest for future electronic circuitry. In addition, theory predicts that charged domain walls may influence the electromechanical response of ferroelectrics, with strong enhancement upon increased charged domain wall density. The existence of charged domain walls in proper ferroelectrics is disfavoured by their high formation energy and methods of their preparation in predefined patterns are unknown. Here we develop the theoretical background for the formation of charged domain walls in proper ferroelectrics using energy considerations and outline favourable conditions for their engineering. We experimentally demonstrate, in BaTiO3 single crystals the controlled build-up of high density charged domain wall patterns, down to a spacing of 7 μm with a predominant mixed electronic and ionic screening scenario, hinting to a possible exploitation of charged domain walls in agile electronics and sensing devices.

  6. The role of effective charges in the electrophoresis of highly charged colloids.

    Science.gov (United States)

    Chatterji, Apratim; Horbach, Jürgen

    2010-12-15

    We study the variation of electrophoretic mobility μ of highly charged spherical colloidal macroions for varying surface charge density σ on the colloid using computer simulations of the primitive model for charged colloids. Hydrodynamic interactions between ions are incorporated by coupling the primitive model of charged colloids to the lattice Boltzmann model (LB) of the fluid. In the highly charged regime, the mobility μ of the colloid is known to decrease with the increase of bare charge Q of the colloid; the aim of this paper is to investigate the cause of this. We have identified that the two main factors contributing to the decrease of μ are counterion charge condensation on the highly charged colloid and an increase in effective friction of the macroion-counterion complex due to the condensed counterions. Thus the established O'Brien and White theory, which identified the dipolar force originating from distortion of the electric double layer as the cause of decreasing μ, seems to break down for the case of highly charged colloids with σ in the range of 30-400 µC cm (- 2). To arrive at our conclusions, we counted the number of counterions q0 moving along with the spherical macroion. We observe in our simulations that q0 increases with the increase of bare charge Q, such that the effective charge Qeff = Q - q0 remains approximately constant. Interestingly for our nanometer-sized charged colloid, we observe that, if surface charge density σ of the colloid is increased by decreasing the radius RM of the colloid but fixed bare charge Q, the effective charge Q - q0 decreases with the increase of σ. This behavior is qualitatively different when σ is increased by increasing Q keeping RM fixed. Our observations address a controversy about the effective charge of a strongly charged macroion: some studies claim that effective charge is independent of the bare charge (Alexander et al 1984 J. Chem. Phys. 80 5776; Trizac et al 2003 Langmuir 19 4027) whereas

  7. Constrained generalized predictive control of battery charging process based on a coupled thermoelectric model

    Science.gov (United States)

    Liu, Kailong; Li, Kang; Zhang, Cheng

    2017-04-01

    Battery temperature is a primary factor affecting the battery performance, and suitable battery temperature control in particular internal temperature control can not only guarantee battery safety but also improve its efficiency. This is however challenging as current controller designs for battery charging have no mechanisms to incorporate such information. This paper proposes a novel battery charging control strategy which applies the constrained generalized predictive control (GPC) to charge a LiFePO4 battery based on a newly developed coupled thermoelectric model. The control target primarily aims to maintain the battery cell internal temperature within a desirable range while delivering fast charging. To achieve this, the coupled thermoelectric model is firstly introduced to capture the battery behaviours in particular SOC and internal temperature which are not directly measurable in practice. Then a controlled auto-regressive integrated moving average (CARIMA) model whose parameters are identified by the recursive least squares (RLS) algorithm is developed as an online self-tuning predictive model for a GPC controller. Then the constrained generalized predictive controller is developed to control the charging current. Experiment results confirm the effectiveness of the proposed control strategy. Further, the best region of heat dissipation rate and proper internal temperature set-points are also investigated and analysed.

  8. Dynamic control of a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P.; Mehresh, Parag; Schuh, David; Kieser, Andrew J.; Hergart, Carl-Anders; Hardy, William L.; Rodman, Anthony; Liechty, Michael P.

    2008-06-03

    A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

  9. Effect of charge memory in organic composites

    Science.gov (United States)

    Belogorokhov, I. A.; Kotova, M. S.; Donskov, A. A.; Dronov, M. A.; Belogorokhova, L. I.

    2016-07-01

    The effect of charge memory in composites based on polymer molecules has been investigated. Resistive switchings in sandwich samples prepared by lamination from commercially available polymers (polystyrene and poly(2,3-dihydrothieno-1,4-dioxine)-poly(styrene sulphonate) are analyzed. It is shown that the characteristic switching times in the composite samples reach several nanoseconds and the number of switchings exceeds 106. Switchings are observed in electric fields much below the breakdown threshold, which indicates the absence of destructive processes in the polymer.

  10. Introduction to Space Charge Effects in Semiconductors

    CERN Document Server

    Böer, Karl W

    2010-01-01

    This book is the most comprehensive one to describe the basics of space-charge effects in semiconductors, starting from basic principles to advanced application in semiconducting devices. It uses detailed analyses of the transport, Poisson, and continuity equations to demonstrate the behavior of the solution curves of the complete set of field and current distributions, along with quantitative descriptions of the relevant band models of typical pn-junction and Schottky barrier devices. It emphasizes the relevance to actual devices and sets these results apart from more simple models of networks of diodes and resistors. The book is especially important for people interested in detail analysis of solar cells and their efficiencies.

  11. Universal Charge Diffusion and the Butterfly Effect

    CERN Document Server

    Blake, Mike

    2016-01-01

    We study charge diffusion in holographic scaling theories with a particle-hole symmetry. We show that these theories have a universal regime in which the diffusion constant is given by $D_c = C v_B^2/ (2 \\pi T)$ where $v_B$ is the velocity of the butterfly effect. The constant of proportionality, $C$, depends only on the scaling exponents of the infra-red theory. Our results suggest an unexpected connection between transport at strong coupling and quantum chaos.

  12. Effect of charge distribution on the electrostatic adsorption of Janus nanoparticles onto charged surface

    Science.gov (United States)

    Hu, D. M.; Cao, Q. Q.; Zuo, C. C.

    2017-03-01

    We carried out coarse-grained molecular dynamics simulations to study the electrostatic adsorption of Janus nanoparticles which consist of oppositely charged hemispheres onto charged surfaces. Films with different conformations were formed by Janus nanoparticles. The effects of charge distributions of Janus nanoparticles and the surface on the film structures and dynamic adsorption behavior were investigated in detail. When the surface is highly charged, Janus nanoparticles tend to form single particles or small clusters. In these cases, the surface charge distribution plays an important role in regulating the process of electrostatic adsorption. When the amount of surface charges is reduced, the effect of charge distribution of Janus nanoparticles becomes significant. The repulsive interactions between Janus nanoparticles determine the aggregation behavior of Janus nanoparticles as well as the shape of adsorption structures, which tends to separate Janus nanoparticles and results in a thin adsorption layer and small clusters. When the number of positive charges on the surface of Janus nanoparticle approaches that of negative charges, Janus nanoparticles aggregate into large clusters close to charged surface. The charge distribution of Janus nanoparticles becomes pronounced in the process of electrostatic adsorption.

  13. Effect of charge distribution on the electrostatic adsorption of Janus nanoparticles onto charged surface

    Directory of Open Access Journals (Sweden)

    D. M. Hu

    2017-03-01

    Full Text Available We carried out coarse-grained molecular dynamics simulations to study the electrostatic adsorption of Janus nanoparticles which consist of oppositely charged hemispheres onto charged surfaces. Films with different conformations were formed by Janus nanoparticles. The effects of charge distributions of Janus nanoparticles and the surface on the film structures and dynamic adsorption behavior were investigated in detail. When the surface is highly charged, Janus nanoparticles tend to form single particles or small clusters. In these cases, the surface charge distribution plays an important role in regulating the process of electrostatic adsorption. When the amount of surface charges is reduced, the effect of charge distribution of Janus nanoparticles becomes significant. The repulsive interactions between Janus nanoparticles determine the aggregation behavior of Janus nanoparticles as well as the shape of adsorption structures, which tends to separate Janus nanoparticles and results in a thin adsorption layer and small clusters. When the number of positive charges on the surface of Janus nanoparticle approaches that of negative charges, Janus nanoparticles aggregate into large clusters close to charged surface. The charge distribution of Janus nanoparticles becomes pronounced in the process of electrostatic adsorption.

  14. Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport

    Energy Technology Data Exchange (ETDEWEB)

    Rozhkov, A.V., E-mail: arozhkov@gmail.co [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412, Moscow (Russian Federation); Giavaras, G. [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Bliokh, Yury P. [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Freilikher, Valentin [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, Bar-Ilan University, Ramat-Gan 52900 (Israel); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2011-06-15

    This brief review discusses electronic properties of mesoscopic graphene-based structures. These allow controlling the confinement and transport of charge and spin; thus, they are of interest not only for fundamental research, but also for applications. The graphene-related topics covered here are: edges, nanoribbons, quantum dots, pn-junctions, pnp-structures, and quantum barriers and waveguides. This review is partly intended as a short introduction to graphene mesoscopics.

  15. Experimental research on charging characteristics of a pressure-controlled VRLA battery in high-temperature environments

    Institute of Scientific and Technical Information of China (English)

    Hua ZHU; Jin-jun TAN; Zhang-lu XU; Ji-sen XU

    2009-01-01

    Valve-regulated-lead-acid (VRLA) battery charging performed in high-temperature environments is extremely risky under overcharge conditions, and may lead to a subsequent thermal runaway. A new pressure-controlled charging method was adopted and the charging characteristics of the pressure-controlled VRLA battery in high-temperature environments were ex-perimentally studied. The concept was tested in a large temperature gradient to obtain more details about the effects of users' accustomed charging and discharging modes on battery capacity.' The premature capacity loss (PCL) phenomenon under high temperature exposure was analyzed. The results showed that the capacity loss could be recovered by charging using a large current.

  16. Conformational control of benzophenone-sensitized charge transfer in dinucleotides.

    Science.gov (United States)

    Merz, Thomas; Wenninger, Matthias; Weinberger, Michael; Riedle, Eberhard; Wagenknecht, Hans-Achim; Schütz, Martin

    2013-11-14

    Charge transfer in DNA cannot be understood without addressing the complex conformational flexibility, which occurs on a wide range of timescales. In order to reduce this complexity four dinucleotide models 1X consisting of benzophenone linked by a phosphodiester to one of the natural nucleosides X = A, G, T, C were studied in water and methanol. The theoretical work focuses on the dynamics and electronic structure of 1G. Predominant conformations in the two solvents were obtained by molecular dynamics simulations. 1G in MeOH adopts mainly an open geometry with a distance of 12–16 Å between the two aromatic parts. In H2O the two parts of 1G form primarily a stacked conformation yielding a distance of 5–6 Å. The low-lying excited states were investigated by electronic structure theory in a QM/MM environment for representative snapshots of the trajectories. Photo-induced intramolecular charge transfer in the S1 state occurs exclusively in the stacked conformation. Ultrafast transient absorption spectroscopy with 1X reveals fast charge transfer from S1 in both solvents with varying yields. Significant charge transfer from the T1 state is only found for the nucleobases with the lowest oxidation potential: in H2O, charge transfer occurs with 3.2 × 10(9) s(-1) for 1A and 6.0 × 10(9) s(-1) for 1G. The reorganization energy remains nearly unchanged going from MeOH to the more polar H2O. The electronic coupling is rather low even for the stacked conformation with H(AB) = 3 meV and explains the moderate charge transfer rates. The solvent controls the conformational distribution and therefore gates the charge transfer due to differences in distance and stacking.

  17. Charge conservation effects for high order fluctuations

    CERN Document Server

    Begun, Viktor

    2016-01-01

    The exact charge conservation significantly impacts multiplicity fluctuations. The result depends strongly on the part of the system charge carried by the particles of interest. Along with the expected suppression of fluctuations for large systems, charge conservation may lead to negative skewness or kurtosis for small systems.

  18. Discrete solvent effects on the effective interaction between charged colloids

    CERN Document Server

    Allahyarov, E

    2000-01-01

    Using computer simulations of two charged colloidal spheres with their counterions in a hard sphere solvent, we show that the granular nature of the solvent significantly influences the effective colloidal interaction. For divalent counterions, the total effective force can become attractive generated by counterion hydration, while for monovalent counterions the forces are repulsive and well-described by a solvent-induced colloidal charge renormalization. Both effects are not contained in the traditional "primitive" approaches but can be accounted for in a solvent-averaged primitive model.

  19. The Effect of Ketone Defects on the Charge Transport and Charge Recombination in Polyfluorenes

    NARCIS (Netherlands)

    Kuik, Martijn; Wetzelaer, Gert-Jan A. H.; Ladde, Jurre G.; Nicolai, Herman T.; Wildeman, Jurjen; Sweelssen, Jorgen; Blom, Paul W. M.; Sweelssen, Jörgen

    2011-01-01

    The effect of on-chain ketone defects on the charge transport of the polyfluorene derivative poly(9,9-dioctylfluorene) (PFO) is investigated. Using MoO3 as ohmic hole contact, the hole transport in a pristine PFO diode is observed to be limited by space-charge, whereas fluorenone contaminated PFO (P

  20. Physics of new methods of charged particle acceleration collective effects in dense charged particle ensembles

    CERN Document Server

    Bonch-Osmolovsky, A G

    1994-01-01

    This volume discusses the theory of new methods of charged particle acceleration and its physical and mathematical descriptions. It examines some collective effects in dense charged particle ensembles, and traces the history of the development of the field of accelerator physics.

  1. Protecting a Diamond Quantum Memory by Charge State Control.

    Science.gov (United States)

    Pfender, Matthias; Aslam, Nabeel; Simon, Patrick; Antonov, Denis; Thiering, Gergő; Burk, Sina; Fávaro de Oliveira, Felipe; Denisenko, Andrej; Fedder, Helmut; Meijer, Jan; Garrido, Jose A; Gali, Adam; Teraji, Tokuyuki; Isoya, Junichi; Doherty, Marcus William; Alkauskas, Audrius; Gallo, Alejandro; Grüneis, Andreas; Neumann, Philipp; Wrachtrup, Jörg

    2017-09-11

    In recent years, solid-state spin systems have emerged as promising candidates for quantum information processing. Prominent examples are the nitrogen-vacancy (NV) center in diamond, phosphorus dopants in silicon (Si:P), rare-earth ions in solids, and VSi-centers in silicon-carbide. The Si:P system has demonstrated that its nuclear spins can yield exceedingly long spin coherence times by eliminating the electron spin of the dopant. For NV centers, however, a proper charge state for storage of nuclear spin qubit coherence has not been identified yet. Here, we identify and characterize the positively charged NV center as an electron-spin-less and optically inactive state by utilizing the nuclear spin qubit as a probe. We control the electronic charge and spin utilizing nanometer scale gate electrodes. We achieve a lengthening of the nuclear spin coherence times by a factor of 4. Surprisingly, the new charge state allows switching of the optical response of single nodes facilitating full individual addressability.

  2. Hemocompatibility of pseudozwitterionic polymer brushes with a systematic well-defined charge-bias control.

    Science.gov (United States)

    Jhong, Jheng-Fong; Sin, Mei-Chan; Kung, Hsiao-Han; Chinnathambi, Arunachalam; Alharbi, Sulaiman Ali; Chang, Yung

    2014-01-01

    In this study, a pseudozwitterionic surface bearing positively and negatively mixed charged moieties was developed as a potential hemocompatible material for biomedical applications. In this work, hemocompatility of pseudozwitterionic surface prepared from copolymerization of negatively charged 3-sulfopropyl methacrylate (SA) and positively charged [2-(methacryloyloxy)ethyl] trimethylammonium (TMA) was delineated. Mixed charge distribution in the prepared poly(TMA-co-SA)-grafted surface can be controlled by regulating TMA and SA monomer ratios via surface-initiated atom transfer radical polymerization. The effects of grafting composition and charge bias variations on blood compatibility of poly(TMA-co-SA)-grafted surface were reported. The protein adsorption on different poly(TMA-co-SA)-grafted surfaces from human plasma protein (fibrinogen, HSA, and γ-globulin) solutions was evaluated using an enzyme-linked immunosorbent assay. Blood platelet adhesion and time measurements on plasma clotting were conducted to determine the platelet activation on the grafted surface. It was found that the protein resistance and anti-blood cell adhesion of prepared surface can be precisely controlled by controlling the charge balance of TMA/SA compositions. In addition, different charge bias variations on the poly(TMA-co-SA)-grafted surface would induce electrostatic interactions between plasma proteins and prepared surfaces which lead to adsorptions of interfacial protein and blood cells, plasma clotting, and blood cell hemolysis. Results from this study suggest that the hemocompatility of mixed charged poly(TMA-co-SA)-grafted surface depends on the charge bias level. This provides a great potential for designing biomaterial with unique surface chemical structure which could be used in contact with human blood.

  3. Charge-Balanced Minimum-Power Controls for Spiking Neuron Oscillators

    CERN Document Server

    Dasanayake, Isuru

    2011-01-01

    In this paper, we study the optimal control of phase models for spiking neuron oscillators. We focus on the design of minimum-power current stimuli that elicit spikes in neurons at desired times. We furthermore take the charge-balanced constraint into account because in practice undesirable side effects may occur due to the accumulation of electric charge resulting from external stimuli. Charge-balanced minimum-power controls are derived for a general phase model using the maximum principle, where the cases with unbounded and bounded control amplitude are examined. The latter is of practical importance since phase models are more accurate for weak forcing. The developed optimal control strategies are then applied to both mathematically ideal and experimentally observed phase models to demonstrate their applicability, including the phase model for the widely studied Hodgkin-Huxley equations.

  4. Design and Comparative Study of Three Photovoltaic Battery Charge Control Algorithms in MATLAB/SIMULINK Environment

    Directory of Open Access Journals (Sweden)

    Ankur Bhattacharjee

    2012-09-01

    Full Text Available This paper contains the design of a three stage solar battery charge controller and a comparative study of this charge control technique with three conventional solar battery charge control techniques such as 1. Constant Current (CC charging, 2. Two stage constant current constant voltage (CC-CV charging technique. The analysis and the comparative study of the aforesaid charging techniques are done in MATLAB/SIMULINK environment. Here the practical data used to simulate the charge control algorithms are based on a 12Volts 7Ah Sealed lead acid battery.

  5. Controllable transition from positive space charge to negative space charge in an inverted cylindrical magnetron

    Energy Technology Data Exchange (ETDEWEB)

    Rane, R., E-mail: ramu@ipr.res.in; Ranjan, M.; Mukherjee, S. [FCIPT, Institute for Plasma Research, Gandhinagar-382044 (India); Bandyopadhyay, M. [ITER-India, Institute for Plasma Research, Gandhinagar-382044 (India)

    2016-01-15

    The combined effect of magnetic field (B), gas pressure (P), and the corresponding discharge voltage on the discharge properties of argon in inverted cylindrical magnetron has been investigated. In the experiment, anode is biased with continuous 10 ms sinusoidal half wave. It is observed that at a comparatively higher magnetic field (i.e., >200 gauss) and lower operating pressure (i.e., <1 × 10{sup −3} mbar), the discharge extinguishes and demands a high voltage to reignite. Discharge current increases with increase in magnetic field and starts reducing at sufficiently higher magnetic field for a particular discharge voltage due to restricted electron diffusion towards the anode. It is observed that B/P ratio plays an important role in sustaining the discharge and is constant for a discharge voltage. The discharge is transformed to negative space charge regime from positive space charge regime at certain B/P ratio and this ratio varies linearly with the discharge voltage. The space charge reversal is indicated by the radial profile of the floating potential and plasma potential in between two electrodes for different magnetic fields. At a particular higher magnetic field (beyond 100 gauss), the floating potential increases gradually with the radial distance from cathode, whereas it remains almost constant at lower magnetic field.

  6. Economic Value of LFC Substitution by Charge Control for Plug-in Hybrid Electric Vehicles

    Science.gov (United States)

    Takagi, Masaaki; Iwafune, Yumiko; Yamamoto, Hiromi; Yamaji, Kenji; Okano, Kunihiko; Hiwatari, Ryouji; Ikeya, Tomohiko

    There are lots of global warming countermeasures. In the power sector, nuclear power plants play an important role because they do not produce CO2 emissions during production of electricity. However, if the generation share of nuclear is too high at nighttime, it becomes difficult to keep enough capacity of Load Frequency Control (LFC) because nuclear power plants do not change the output (i.e., without load following operation) in Japan. On the other hand, in the transport sector, Plug-in Hybrid Electric Vehicle (PHEV) is being developed as an environmentally friendly vehicle. The electric energy of PHEV is charged mainly during nighttime when the electricity price is low. Therefore, we have proposed a charging power control of PHEVs to compensate LFC capacity in nighttime. In this study, we evaluated the economic value of charging power control by using an optimal generation planning model, and obtained the following results. Charging power control is effective in reduction of CO2 emissions and enhancement of economic efficiency of power system. Particularly, even in the low market share of PHEVs, the charge control has a high economic value because it substitutes nuclear power plant, base-load provider with low fuel cost, for LNG-CC, LEC provider with high fuel cost.

  7. Controlling the flow of spin and charge in nanoscopic topological insulators

    Science.gov (United States)

    Van Dyke, John S.; Morr, Dirk K.

    2016-02-01

    Controlling the flow of spin and charge currents in topological insulators (TIs) is a crucial requirement for applications in quantum computation and spin electronics. We demonstrate that such control can be established in nanoscopic two-dimensional TIs by breaking their time-reversal symmetry via magnetic defects. This allows for the creation of nearly fully spin-polarized charge currents, and the design of highly tunable spin diodes. Similar effects can also be realized in mesoscale hybrid structures in which TIs interface with ferro- or antiferromagnets.

  8. Controllable Quantum State Transfer Between a Josephson Charge Qubit and an Electronic Spin Ensemble

    Science.gov (United States)

    Yan, Run-Ying; Wang, Hong-Ling; Feng, Zhi-Bo

    2016-01-01

    We propose a theoretical scheme to implement controllable quantum state transfer between a superconducting charge qubit and an electronic spin ensemble of nitrogen-vacancy centers. By an electro-mechanical resonator acting as a quantum data bus, an effective interaction between the charge qubit and the spin ensemble can be achieved in the dispersive regime, by which state transfers are switchable due to the adjustable electrical coupling. With the accessible experimental parameters, we further numerically analyze the feasibility and robustness. The present scheme could provide a potential approach for transferring quantum states controllably with the hybrid system.

  9. Controlled surface neutralization: A quantitative approach to study surface charging in photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S. [Surface Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Mukherjee, M. [Surface Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)], E-mail: manabendra.mukherjee@saha.ac.in

    2007-02-15

    Photons when used to probe poorly conducting materials induce emission of secondary electrons that are inadequately compensated from the sample ground giving rise to a phenomenon commonly known as sample charging. In case of photoemission spectroscopy of an insulating material the data obtained from the charged surface are accordingly distorted. Here we have used a controlled neutralization technique to obtain photoemission data from continuously varying equilibrium charging conditions from two dissimilar insulating polymeric systems. A quantitative scheme for data analysis has been developed to demonstrate systematic behavior in the apparently distorted spectra and the charging peak shift has been described by an effective model. It is shown that the neutralization responses are non-linear for both the systems and possess intrinsic similarity. Around a critical electron flux the neutralization of the samples appears to occur through the percolation of homogeneously dispersed surface domains.

  10. Control of surface charges by radicals as a principle of antistatic polymers protecting electronic circuitry.

    Science.gov (United States)

    Baytekin, H Tarik; Baytekin, Bilge; Hermans, Thomas M; Kowalczyk, Bartlomiej; Grzybowski, Bartosz A

    2013-09-20

    Even minute quantities of electric charge accumulating on polymer surfaces can cause shocks, explosions, and multibillion-dollar losses to electronic circuitry. This paper demonstrates that to remove static electricity, it is not at all necessary to "target" the charges themselves. Instead, the way to discharge a polymer is to remove radicals from its surface. These radicals colocalize with and stabilize the charges; when they are scavenged, the surfaces discharge rapidly. This radical-charge interplay allows for controlling static electricity by doping common polymers with small amounts of radical-scavenging molecules, including the familiar vitamin E. The effectiveness of this approach is demonstrated by rendering common polymers dust-mitigating and also by using them as coatings that prevent the failure of electronic circuitry.

  11. Capacitor charging FET switcher with controller to adjust pulse width

    Science.gov (United States)

    Mihalka, A. M.

    1986-04-01

    A switching power supply includes an FET full bridge, a controller to drive the FETs, a programmable controller to dynamically control final output current by adjusting pulse width, and a variety of protective systems, including an overcurrent latch for current control. Power MOSFETS are switched at a variable frequency from 20 to 50 kHz to charge a capacitor load from 0 to 6 kV. A ferrite transformer steps up the dc input. The transformer primary is a full bridge configuration with the FET switches and the secondary is fed into a high voltage full wave rectifier whose output is connected directly to the energy storage capacitor. The peak current is held constant by varying the pulse width using predetermined timing resistors and counting pulses. The pulse width is increased as the capacitor charges to maintain peak current. A digital ripple counter counts pulses, and after the desired number is reached, an up-counter is clocked. The up-counter output is decoded to choose among different resistors used to discharge a timing capacitor, thereby determining the pulse width. A current latch shuts down the supply on overcurrent due to either excessive pulse width causing transformer saturation or a major bridge fault, i.e., FET or transformer failure, or failure of the drive circuitry.

  12. Charging of heated colloidal particles using the electrolyte Seebeck effect.

    Science.gov (United States)

    Majee, Arghya; Würger, Alois

    2012-03-16

    We propose a novel actuation mechanism for colloids, which is based on the Seebeck effect of the electrolyte solution: Laser heating of a nonionic particle accumulates in its vicinity a net charge Q, which is proportional to the excess temperature at the particle surface. The corresponding long-range thermoelectric field E is proportional to 1/r(2) provides a tool for controlled interactions with nearby beads or with additional molecular solutes. An external field E(ext) drags the thermocharged particle at a velocity that depends on its size and absorption properties; the latter point could be particularly relevant for separating carbon nanotubes according to their electronic band structure.

  13. Dynamically controlled charge sensing of a few-electron silicon quantum dot

    Directory of Open Access Journals (Sweden)

    C. H. Yang

    2011-12-01

    Full Text Available We report charge sensing measurements of a silicon metal-oxide-semiconductor quantum dot using a single-electron transistor as a charge sensor with dynamic feedback control. Using digitally-controlled feedback, the sensor exhibits sensitive and robust detection of the charge state of the quantum dot, even in the presence of charge drifts and random charge upset events. The sensor enables the occupancy of the quantum dot to be probed down to the single electron level.

  14. Effective interaction in asymmetric charged binary mixtures: the non-monotonic behaviour with the colloidal charge.

    Science.gov (United States)

    Peláez-Fernández, M; Callejas-Fernández, J; Moncho-Jordá, A

    2012-11-01

    In this work we study the effective force between charged spherical colloids induced by the presence of smaller charged spheres using Monte Carlo simulations. The analysis is performed for two size ratios, q = R(s)/R(b), two screened direct repulsions, κ, and two small particle packing fractions, Ø(s). We specially focus on the effect of the charge of the big colloids (Z(b)), and observe that the repulsion between big particles shows a non-monotonic behaviour: for sufficiently small charge, we find an anomalous regime where the total repulsion weakens by increasing the big colloid charge. For larger charges, the system recovers the usual behaviour and the big-big interaction becomes more repulsive increasing Z(b). This effect is linked to the existence of strong attractive depletion interactions caused by the small-big electrostatic repulsion. We have also calculated the effective force using the Ornstein-Zernike equation with the HNC closure. In general, this theory agrees with the simulation results, and is able to capture this non-monotonic behaviour.

  15. Development of a Microcontroller-based Battery Charge Controller for an Off-grid Photovoltaic System

    Science.gov (United States)

    Rina, Z. S.; Amin, N. A. M.; Hashim, M. S. M.; Majid, M. S. A.; Rojan, M. A.; Zaman, I.

    2017-08-01

    A development of a microcontroller-based charge controller for a 12V battery has been explained in this paper. The system is designed based on a novel algorithm to couple existing solar photovoltaic (PV) charging and main grid supply charging power source. One of the main purposes of the hybrid charge controller is to supply a continuous charging power source to the battery. Furthermore, the hybrid charge controller was developed to shorten the battery charging time taken. The algorithm is programmed in an Arduino Uno R3 microcontroller that monitors the battery voltage and generates appropriate commands for the charging power source selection. The solar energy is utilized whenever the solar irradiation is high. The main grid supply will be only consumed whenever the solar irradiation is low. This system ensures continuous charging power supply and faster charging of the battery.

  16. Understanding the effect of space charge on instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Chao, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Chin, Y. H. [National Lab. for High Energy Physics (KEK), Ibaraki (Japan)

    2015-05-03

    The combined effect of space charge and wall impedance on transverse instabilities is an important consideration in the design and operation of high intensity hadron machines as well as an intrinsic academic interest. This study explores the combined effects of space charge and wall impedance using various simplified models in an attempt to produce a better understanding of their interplay.

  17. Controlling magnetism on metal surfaces with non-magnetic means: electric fields and surface charging.

    Science.gov (United States)

    Brovko, Oleg O; Ruiz-Díaz, Pedro; Dasa, Tamene R; Stepanyuk, Valeri S

    2014-03-01

    We review the state of the art of surface magnetic property control with non-magnetic means, concentrating on metallic surfaces and techniques such as charge-doping or external electric field (EEF) application. Magneto-electric coupling via EEF-based charge manipulation is discussed as a way to tailor single adatom spins, exchange interaction between adsorbates or anisotropies of layered systems. The mechanisms of paramagnetic and spin-dependent electric field screening and the effect thereof on surface magnetism are discussed in the framework of theoretical and experimental studies. The possibility to enhance the effect of EEF by immersing the target system into an electrolyte or ionic liquid is discussed by the example of substitutional impurities and metallic alloy multilayers. A similar physics is pointed out for the case of charge traps, metallic systems decoupled from a bulk electron bath. In that case the charging provides the charge carrier density changes necessary to affect the magnetic moments and anisotropies in the system. Finally, the option of using quasi-free electrons rather than localized atomic spins for surface magnetism control is discussed with the example of Shockley-type metallic surface states confined to magnetic nanoislands.

  18. Characterisation of charge voltage of lead-acid batteries: application to the charge control strategy in photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Vela, N. [CIEMAT-DER, Madrid (Spain). Laboratorio de Energia Solar Fotovoltaica; Aguilera, J. [Universidad de Jaen (Spain). Escuela Politecnica Superior

    2006-12-15

    In stand-alone photovoltaic (PV) systems, charge controllers prevent excessive battery overcharge by interrupting or limiting the current flow from the PV array to the battery when the battery becomes fully charged. Charge regulation is most often accomplished by limiting the battery voltage to a predetermined value or cut-off voltage, higher than the gassing voltage. These regulation voltages are dependent on the temperature and battery charge current. An adequate selection of overcharge cut-off voltage for each battery type and operating conditions would maintain the highest battery state of charge without causing significant overcharge thus improving battery performance and reliability. To perform this work, a sample of nine different lead-acid batteries, typically used in stand-alone PV systems including vented and sealed batteries with 2 V cells and monoblock configurations have been selected. This paper presents simple mathematical expressions fitting two charge characteristic voltages: the gassing voltage (V{sub g}) and the end-of charge voltage (V{sub fc}) as function of charge current and temperature for the tested batteries. With these expressions, we have calculated V{sub g} and V{sub fc} at different current rates. An analysis of the different values obtained is presented here focusing in the implication in control strategies of batteries in stand-alone PV systems. (author)

  19. Effects of charged particles on human tumor cells

    Directory of Open Access Journals (Sweden)

    Kathryn D Held

    2016-02-01

    Full Text Available The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of Relative Biological Effectiveness (RBE for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions and importance of fractionation, including use of hypofractionation, with charged particles.

  20. Ti-doped indium tin oxide thin films for transparent field-effect transistors: control of charge-carrier density and crystalline structure.

    Science.gov (United States)

    Kim, Ji-In; Ji, Kwang Hwan; Jang, Mi; Yang, Hoichang; Choi, Rino; Jeong, Jae Kyeong

    2011-07-01

    Indium tin oxide (ITO) films are representative transparent conducting oxide media for organic light-emitting diodes, liquid crystal displays, and solar cell applications. Extending the utility of ITO films from passive electrodes to active channel layers in transparent field-effect transistors (FETs), however, has been largely limited because of the materials' high carrier density (>1 × 10(20) cm(-3)), wide band gap, and polycrystalline structure. Here, we demonstrate that control over the cation composition in ITO-based oxide films via solid doping of titanium (Ti) can optimize the carrier concentration and suppress film crystallization. On 120 nm thick SiO(2)/Mo (200 nm)/glass substrates, transparent n-type FETs prepared with 4 at % Ti-doped ITO films and fabricated via the cosputtering of ITO and TiO(2) exhibited high electron mobilities of 13.4 cm(2) V(-1) s(-1), a low subthreshold gate swing of 0.25 V decade(-1), and a high I(on/)I(off) ratio of >1 × 10(8).

  1. Local Intermolecular Order Controls Photoinduced Charge Separation at Donor/Acceptor Interfaces in Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Feier, Hilary M.; Reid, Obadiah G.; Pace, Natalie A.; Park, Jaehong; Bergkamp, Jesse J.; Sellinger, Alan; Gust, Devens; Rumbles, Garry

    2016-03-23

    How free charge is generated at organic donor-acceptor interfaces is an important question, as the binding energy of the lowest energy (localized) charge transfer states should be too high for the electron and hole to escape each other. Recently, it has been proposed that delocalization of the electronic states participating in charge transfer is crucial, and aggregated or otherwise locally ordered structures of the donor or the acceptor are the precondition for this electronic characteristic. The effect of intermolecular aggregation of both the polymer donor and fullerene acceptor on charge separation is studied. In the first case, the dilute electron acceptor triethylsilylhydroxy-1,4,8,11,15,18,22,25-octabutoxyphthalocyaninatosilicon(IV) (SiPc) is used to eliminate the influence of acceptor aggregation, and control polymer order through side-chain regioregularity, comparing charge generation in 96% regioregular (RR-) poly(3-hexylthiophene) (P3HT) with its regiorandom (RRa-) counterpart. In the second case, ordered phases in the polymer are eliminated by using RRa-P3HT, and phenyl-C61-butyric acid methyl ester (PC61BM) is used as the acceptor, varying its concentration to control aggregation. Time-resolved microwave conductivity, time-resolved photoluminescence, and transient absorption spectroscopy measurements show that while ultrafast charge transfer occurs in all samples, long-lived charge carriers are only produced in films with intermolecular aggregates of either RR-P3HT or PC61BM, and that polymer aggregates are just as effective in this regard as those of fullerenes.

  2. Steric control of the donor/acceptor interface: Implications in organic photovoltaic charge generation

    KAUST Repository

    Holcombe, Thomas W.

    2011-08-10

    The performance of organic photovoltaic (OPV) devices is currently limited by modest short-circuit current densities. Approaches toward improving this output parameter may provide new avenues to advance OPV technologies and the basic science of charge transfer in organic semiconductors. This work highlights how steric control of the charge separation interface can be effectively tuned in OPV devices. By introducing an octylphenyl substituent onto the investigated polymer backbones, the thermally relaxed charge-transfer state, and potentially excited charge-transfer states, can be raised in energy. This decreases the barrier to charge separation and results in increased photocurrent generation. This finding is of particular significance for nonfullerene OPVs, which have many potential advantages such as tunable energy levels and spectral breadth, but are prone to poor exciton separation efficiencies. Computational, spectroscopic, and synthetic methods were combined to develop a structure-property relationship that correlates polymer substituents with charge-transfer state energies and, ultimately, device efficiencies. © 2011 American Chemical Society.

  3. Optimal control of a charge qubit in a double quantum dot with a Coulomb impurity

    Science.gov (United States)

    Coden, Diego S. Acosta; Romero, Rodolfo H.; Ferrón, Alejandro; Gomez, Sergio S.

    2017-02-01

    We study the efficiency of modulated external electric pulses to produce efficient and fast charge localization transitions in a two-electron double quantum dot. We use a configuration interaction method to calculate the electronic structure of a quantum dot model within the effective mass approximation. The interaction with the electric field is considered within the dipole approximation and optimal control theory is applied to design high-fidelity ultrafast pulses in pristine samples. We assessed the influence of the presence of Coulomb charged impurities on the efficiency and speed of the pulses. A protocol based on a two-step optimization is proposed for preserving both advantages of the original pulse. The processes affecting the charge localization is explained from the dipole transitions of the lowest lying two-electron states, as described by a discrete model with an effective electron-electron interaction.

  4. Effects of electric charges on hydrophobic forces. II.

    Science.gov (United States)

    Bulone, D.; Martorana, V.; San Biagio, P. L.; Palma-Vittorelli, M. B.

    2000-11-01

    We study by molecular-dynamics simulations the effect of electric charges of either sign on hydrophobic interactions and on the dynamics of hydration water, using explicit water and very simplified solutes. Results show that the presence of a charged solute can disrupt the ``hydrophobic contact bond'' between two apolar solutes nearby, by forcing them towards a different configuration. As a consequence of different structural changes of the solvent caused by charges of opposite sign, the effect is markedly charge-sign-dependent. Analogous weaker effects appear to be induced by the presence of one additional apolar element. The dynamics of hydration water around each solute is also seen to be strongly influenced by the presence of other (charged or uncharged) nearby solutes. Comparison between our results on hydration water dynamics around charged solutes and available experimental data allows sorting out the effects of solute charge sign and size. Our results also offer a plain interpretation of the equivalence of the effects on water structure due to solute ions and to high pressures. These results reflect at a basic paradigmatic level the immensely more complex cases of well-known phenomena such as salting-in and salting-out, and of protein conformational changes caused, e.g., by the arrival of a charged or of an apolar group (phosphorilation or methylation). As it will be discussed, they help in the direction of Delbruck's desirable ``progress towards a radical physical explanation'' for this class of phenomena.

  5. Evidence of Space-Charge Effects in Thermal Poling

    DEFF Research Database (Denmark)

    Wu, X.; Arentoft, Jesper; Wong, D.

    1999-01-01

    ionization. Both the shielding electrical field due to charge migration and the ionization electrical field due to charge ionization are able to be frozen-in at room temperature acid lead to the residual linear electrooptic effects, The observations support that the mechanism of the induced electrooptic...

  6. The effect of conformal symmetry on charged wormholes

    CERN Document Server

    Kuhfittig, Peter K F

    2016-01-01

    This paper discusses the effect that conformal symmetry can have on a charged wormhole. The analysis yields a physical interpretation of the conformal factor in terms of the electric charge. The rate of change of the conformal factor determines much of the outcome, which ranges from having no solution to wormholes having either one or two throats.

  7. Method and apparatus for smart battery charging including a plurality of controllers each monitoring input variables

    Science.gov (United States)

    Hammerstrom, Donald J.

    2013-10-15

    A method for managing the charging and discharging of batteries wherein at least one battery is connected to a battery charger, the battery charger is connected to a power supply. A plurality of controllers in communication with one and another are provided, each of the controllers monitoring a subset of input variables. A set of charging constraints may then generated for each controller as a function of the subset of input variables. A set of objectives for each controller may also be generated. A preferred charge rate for each controller is generated as a function of either the set of objectives, the charging constraints, or both, using an algorithm that accounts for each of the preferred charge rates for each of the controllers and/or that does not violate any of the charging constraints. A current flow between the battery and the battery charger is then provided at the actual charge rate.

  8. Coalescence control of elastomer clusters by fixed surface charges.

    Science.gov (United States)

    Gauer, Cornelius; Wu, Hua; Morbidelli, Massimo

    2010-02-04

    We studied the coalescence behavior of a fluorinated elastomer colloid, stabilized by fixed surface charges, with a glass transition temperature of about -20 degrees C, as a function of temperature under diffusion-limited cluster-cluster aggregation (DLCA) conditions. We first measured the aggregation kinetics by in situ dynamic light scattering and then simulated it through the Smoluchowski approach (i.e., population balance equations) using the only unknown parameter, the fractal dimension D(f) of the clusters, as the fit parameter. It was found that the estimated D(f) value increased as the temperature increased, starting from 1.7 at 25 degrees C and reaching the upper limit of 3.0 for T > or = 55 degrees C. These results indicate that the coalescence extent increases as the temperature increases. Such temperature-dependent coalescence behavior cannot be explained by thermodynamic considerations, and it must be related to a certain kinetic resistance. We explain this effect by considering the resistance of the fixed charges to relocation on the particle surface, which decreases as the temperature increases.

  9. On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.

    Science.gov (United States)

    Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo

    2015-12-30

    A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices.

  10. Process for controlling the charging process of a battery. Verfahren zur Steuerung des Ladevorganges eines Akkumulators

    Energy Technology Data Exchange (ETDEWEB)

    Poesch, G.; Rust, G.

    1987-07-02

    In order to determine the switching off point of the charging process of a battery, the parts of the charge given are assessed with a charging efficiency and the values obtained are added until 100% of the battery capacity is reached. In order to correct the charging efficiency, the actual capcity of the battery is obtained on each discharge of the battery, the charging efficiency is slightly changed and the effect of the variation on the capacity is determined.

  11. Charging of meteoroids: effect of thermionic emission

    Science.gov (United States)

    Delzanno, G. L.; Lapenta, G.; Rosenberg, M.

    2003-12-01

    In the present work we focus on the role of thermionic emission in the charging of a meteoroid. It has been shown [1] that the higher mobility of the plasma electrons (that would lead to negatively charged meteoroids) can be overcome by electron emission, thus reversing the meteoroid polarity. Moreover, recent work [2] has shown how electron emission can fundamentally affect the shielding potential around the dust. In particular, depending on the physical parameters of the system the shielding potential can develop an attractive potential well. The aim of the present work is two-fold. First, we will present a parametric study in order to understand the conditions for the formation, as well as the stability of the well. Furthermore, simulations will be presented with physical parameters corresponding to the ionosphere, thus extending our study to the case of meteoroids. [1] G. Sorasio, D. A. Mendis, and M. Rosenberg, "The role of thermionic emission in meteor physics," Planet. Space Sci. 49, 1257, 2001. [2] G.L. Delzanno, G. Lapenta, M. Rosenberg, "Attractive Potential among Thermionically Emitting Microparticles", submitted.

  12. Effect of thermal fluctuations on a charged dilatonic black Saturn

    Energy Technology Data Exchange (ETDEWEB)

    Pourhassan, Behnam, E-mail: b.pourhassan@du.ac.ir [School of Physics, Damghan University, Damghan (Iran, Islamic Republic of); Faizal, Mir, E-mail: f2mir@uwaterloo.ca [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB T1K 3M4 (Canada)

    2016-04-10

    In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  13. Effect of thermal fluctuations on a charged dilatonic black Saturn

    Directory of Open Access Journals (Sweden)

    Behnam Pourhassan

    2016-04-01

    Full Text Available In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  14. Ion charge neutralization effects in scanning electron microscopes.

    Science.gov (United States)

    Crawford, C K

    1980-01-01

    The use of low energy ion charge neutralization to stabilize surface potentials in scanning microscopes leads to the observation of new effects. Among the most important of these, are effects which result from the primary beam being scanned in a raster. A new theory which describes raster charge-up for highly insulating specimens is presented. It is shown that the required neutralizing ion current is a surprisingly strong function of the primary electron current, the raster parameters, specimen parameters, and magnification. Contrary to intuition, the required ion current is not linearly related to the primary electron current. Methods of adjusting parameters to achieve better ion charge neutralization are discussed.

  15. Effect of Thermal Fluctuations on a Charged Dilatonic Black Saturn

    CERN Document Server

    Pourhassan, Behnam

    2016-01-01

    In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  16. Study on space charge effects of the CSNS/RCS

    Institute of Scientific and Technical Information of China (English)

    XU Shou-Yan; WANG Sheng

    2011-01-01

    The Rapid Cycling Synchrotron (RCS) is a key component of the China Spallation Neutron Source (CSNS).The space charge effect is one of the most important issues in the CSNS/RCS,which limits the maximum beam intensity,as well as the maximum beam power.Space charge effects are the main source of emittance growth and beam loss in the RCS.Space charge effects have been studied by simulation for the CSNS/RCS.By optimizing the painting orbit,the optimized painting distribution was obtained.The space charge effects during the acceleration are studied and dangerous resonances,which may induce emittance growth and beam loss,are investigated.The results are an important reference for the design and commissioning of the CSNS/RCS.

  17. Simulation of space charge effects in resistive plate chambers

    CERN Document Server

    Lippmann, Christian

    2003-01-01

    Multigap resistive plate chambers with 0.3-mm gas gaps operated in avalanche mode at atmospheric pressure have reached timing accuracies below 50 ps (standard deviation) with efficiencies above 99% . The avalanches in high homogeneous electric fields of 100 kV/cm are strongly influenced by space charge effects which are the main topic of this paper. We extend a previously discussed Monte Carlo simulation model of avalanches in resistive plate chambers by the dynamic calculation of the electric field in the avalanches. We complete the previously presented results on time resolution and efficiency data with simulated charge spectra. The simulated data shows good agreement with measurements. The detailed simulation of the avalanche saturation due to the space charge fields explains the small observed charges, the shape of the spectra, and the linear increase of average charges with high voltage. (22 refs).

  18. Testing, Performance and Reliability Evaluation of Charge Controllers for Solar Photovoltaic Home Lighting System in India

    Directory of Open Access Journals (Sweden)

    Adarsh Kumar

    2016-01-01

    Full Text Available :Charge controller is the most important part of a Solar Photovoltaic Home LightingSystem (SPVHLS which controls the charging ofbattery from photovoltaic (PV module and discharging of battery through load. This paper analyzes testresults of fourteen charge controllers (CC available in Indiaaccording to the Ministry of New and RenewableEnergy (MNRE specification. The different parameters of charge controllers to be tested arebattery high voltage disconnect (HVD, low voltage disconnect(LVD, load reconnect voltage (LRV, short circuit protection etc. It is found thatseven charge controllers meet the technical specifications ofMNRE. There is also a study of different features and properties of the chargecontrollers. Finally a brief discussion on selection appropriate charge controller for Solar Photovoltaic Home LightingSystem (SPVHLS and further improvement ofcharge controller is presented.

  19. Control of donor charge states with the tip of a scanning tunnelling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Teichmann, K.; Wenderoth, M.; Loth, S.; Ulbrich, R.G. [IV. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany); Garlef, J.K.; Wijnheijmer, A.P.; Koenraad, P.M. [PSN, Eindhoven University of Technology (Netherlands)

    2009-07-01

    The functionality of nanoscale semiconductor devices crucially depends on details of the electrostatic potential landscape on the atomic scale and its microscopic response to external electric fields. We report here an investigation of charge state switching of buried single Si donors in 6.10{sup 18} cm{sup -3} n-doped GaAs with scanning tunnelling microscopy (STM) under UHV conditions at 5 K. The effect of tip induced band bending (TIBB) through the freshly cleaved (110)-surface was used to change the charge state of individual donors from neutral to positively charged and reverse. Scanning tunnelling spectroscopy (STS) revealed a ring like feature around each donor center. The ring radius depends on tip bias voltage. The charge state of each donor in the random arrangement of dopants was in most cases unambiguously fixed by the extension of the tip-induced space charge cloud, which was located under the tip and controlled by the applied voltage. For certain geometric configurations the system showed bi- (or multi-) stable behaviour, this lead to dynamic flickering of the ionization sequence.

  20. Quantum Gravity Effects On Charged Micro Black Holes Thermodynamics

    CERN Document Server

    Abbasvandi, N; Radiman, Shahidan; Abdullah, W A T Wan

    2016-01-01

    The charged black hole thermodynamics is corrected in terms of the quantum gravity effects. Most of the quantum gravity theories support the idea that near the Planck scale, the standard Heisenberg uncertainty principle should be reformulated by the so-called Generalized Uncertainty Principle (GUP) which provides a perturbation framework to perform required modifications of the black hole quantities. In this paper, we consider the effects of the minimal length and maximal momentum as GUP type I and the minimal length, minimal momentum, and maximal momentum as GUP type II on thermodynamics of the charged TeV-scale black holes. We also generalized our study to the universe with the extra dimensions based on the ADD model. In this framework, the effect of the electrical charge on thermodynamics of the black hole and existence of the charged black hole remnants as a potential candidate for the dark matter particles are discussed.

  1. Dimensionality of charge transport in organic field-effect transistors

    Science.gov (United States)

    Sharma, A.; van Oost, F. W. A.; Kemerink, M.; Bobbert, P. A.

    2012-06-01

    Application of a gate bias to an organic field-effect transistor leads to accumulation of charges in the organic semiconductor within a thin region near the gate dielectric. An important question is whether the charge transport in this region can be considered two-dimensional, or whether the possibility of charge motion in the third dimension, perpendicular to the accumulation layer, plays a crucial role. In order to answer this question we have performed Monte Carlo simulations of charge transport in organic field-effect transistor structures with varying thickness of the organic layer, taking into account all effects of energetic disorder and Coulomb interactions. We show that with increasing thickness of the semiconductor layer the source-drain current monotonically increases for weak disorder, whereas for strong disorder the current first increases and then decreases. Similarly, for a fixed layer thickness the mobility may either increase or decrease with increasing gate bias. We explain these results by the enhanced effect of state filling on the current for strong disorder, which competes with the effects of Coulomb interactions and charge motion in the third dimension. Our conclusion is that apart from the situation of a single monolayer, charge transport in an organic semiconductor layer should be considered three-dimensional, even at high gate bias.

  2. Effect of radiative cooling on collapsing charged grains

    Indian Academy of Sciences (India)

    B P Pandey; Vinod Krishan; M Roy

    2001-01-01

    The effect of the radiative cooling of electrons on the gravitational collapse of cold dust grains with fluctuating electric charge is investigated. We find that the radiative cooling as well as the charge fluctuations, both, enhance the growth rate of the Jeans instability. However, the Jeans length, which is zero for cold grains and nonradiative plasma, becomes finite in the presence of radiative cooling of electrons and is further enhanced due to charge fluctuations of grains resulting in an increased threshold of the spatial scale for the Jeans instability.

  3. Effect of Wall Charge on Striation in Plasma Display Cells

    Institute of Scientific and Technical Information of China (English)

    HE Feng; OUYANG Jiting; CAO Jing; FENG Shuo; MIAO Jinsong; WANG Jianqi

    2007-01-01

    Different configurations and driving voltages have been employed to investigate the effect of the wall charge on the striations in macroscopic plasma display panel (PDP) cells.The experimental results show that a discharge channel near the dielectric layer is indispensable to striation occurring in the anode area during a discharge,while the pre-accumulated charge on the dielectric layer and the surface state are not important.The origin of the striation is related only to the physical process in the cell.The dielectric layer acts as a charge collector during a PDP discharge.

  4. Effective Charge on Polymer Colloids Obtained Using a Renormalization Model.

    Science.gov (United States)

    Quesada-Pérez; Callejas-Fernández; Hidalgo-Álvarez

    1998-10-01

    Static light scattering has been used to study the electrostatic interaction between colloidal particles. Experiments were carried out using a latex with a very small diameter, allowing structure determination at high particle concentration. The obtained effective charge characterizing this interaction is found to be smaller than the bare charge determined from titration. A renormalization model connecting both values has been used. The agreement between the renormalized charge and that obtained from scattering data seems to point out that this model operates well. Copyright 1998 Academic Press.

  5. A Neutral Plasma Source for Active Spacecraft Charge Control.

    Science.gov (United States)

    1985-08-01

    potentials are generally negative since electrons have higher mobilities as compared to ions. Overall spacecraft frame charging enhances surface contamination...Cuchanski, M., Kremer, P. C., "Surface Micro-Discharges on Spacecraft Dielectrics", Paper 111-7, Proceedings of the Spacecraft Charging Techonology

  6. The effect of degassing on morphology and space charge

    OpenAIRE

    Chong, Y L; Chen, G; Ho, Y F F

    2004-01-01

    It is believed that space charge buildup in cross-linked polyethylene (XLPE) insulation is the main cause for premature failure of underground power cables. The space charge activities in XLPE depend on many factors such as additives, material treatment, ambient temperature, insulator/electrode interface, etc. Degassing is one of the material treatment process commonly employ in cable manufacturing to improve insulation performance. In this paper, investigation on the effect of degassing peri...

  7. Weak nonlinear surface-charging effects in electrolytic films.

    Science.gov (United States)

    Dean, D S; Horgan, R R

    2003-11-01

    A simple model of soap films with nonionic surfactants stabilized by added electrolyte is studied. The model exhibits charge regularization due to the incorporation of a physical mechanism responsible for the formation of a surface charge. We use a Gaussian field theory in the film but the full nonlinear surface terms which are then treated at a one-loop level by calculating the mean-field Poisson-Boltzmann solution and then the fluctuations about this solution. We carefully analyze the renormalization of the theory and apply it to a triple-layer model for a thin film with Stern layer of thickness h. For this model we give expressions for the surface charge sigma(L) and the disjoining pressure P(d)(L) and show their dependence on the parameters. The influence of image charges naturally arises in the formalism, and we show that predictions depend strongly on h because of their effects. In particular, we show that the surface charge vanishes as the film thickness L-->0. The fluctuation terms in this class of theories contribute a Casimir-like attraction across the film. Although this attraction is well known to be negligible compared with the mean-field component for model electrolytic films with no surface-charge regulation, in the model studied here these fluctuations also affect the surface-charge regulation leading to a fluctuation component in the disjoining pressure which has the same behavior as the mean-field component even for large film thickness.

  8. Effects of kinematic cuts on net-electric charge fluctuations

    CERN Document Server

    Karsch, Frithjof; Redlich, Krzysztof

    2015-01-01

    The effects of kinematic cuts on electric charge fluctuations in a gas of charged particles are discussed. We consider a very transparent example of an ideal pion gas with quantum statistics, which can be viewed as a multi-component gas of Boltzmann particles with different charges and masses. Cumulants of net-electric charge fluctuations $\\chi_n^Q$ are calculated in a static and expanding medium with flow parameters adjusted to the experimental data. We show that the transverse momentum cut, $p_{t_\\text{min}}\\leq p_t\\leq p_{t_\\text{max}}$, weakens the effects of Bose statistics, i.e. contributions of effectively multi-charged states to higher order moments. Consequently, cuts in $p_t$ modify the experimentally measured cumulants and their ratios. We discuss the influence of kinematic cuts on the ratio of mean and variance of electric charge fluctuations in a hadron resonance gas, in the light of recent data of the STAR and PHENIX Collaborations. We find that the different momentum cuts of $p_{t_\\text{min}}=0...

  9. Surface Charging Controlling of the Chinese Space Station with Hollow Cathode Plasma Contactor

    Science.gov (United States)

    Jiang, Kai; Wang, Xianrong; Qin, Xiaogang; Yang, Shengsheng; Yang, Wei; Zhao, Chengxuan; Chen, Yifeng; Shi, Liang; Tang, Daotan; Xie, Kan

    2016-07-01

    A highly charged manned spacecraft threatens the life of an astronaut and extravehicular activity, which can be effectively reduced by controlling the spacecraft surface charging. In this article, the controlling of surface charging on Chinese Space Station (CSS) is investigated, and a method to reduce the negative potential to the CSS is the emission electron with a hollow cathode plasma contactor. The analysis is obtained that the high voltage (HV) solar array of the CSS collecting electron current can reach 4.5 A, which can be eliminated by emitting an adequate electron current on the CSS. The theoretical analysis and experimental results are addressed, when the minimum xenon flow rate of the hollow cathode is 4.0 sccm, the emission electron current can neutralize the collected electron current, which ensures that the potential of the CSS can be controlled in a range of less than 21 V, satisfied with safety voltage. The results can provide a significant reference value to define a flow rate to the potential controlling programme for CSS.

  10. Effects of dielectric charging on the output voltage of a capacitive accelerometer

    Science.gov (United States)

    Qu, Hao; Yu, Huijun; Zhou, Wu; Peng, Bei; Peng, Peng; He, Xiaoping

    2016-11-01

    Output voltage drifting observed in one typical capacitive microelectromechanical system (MEMS) accelerometer is discussed in this paper. Dielectric charging effect is located as one of the major determinants of this phenomenon through a combination of experimental and theoretical studies. A theoretical model for the electromechanical effects of the dielectric surface charges within the electrode gap is established to analyze the dielectric charge effect on the output voltage. Observations of output voltage drift against time are fitted to this model in order to estimate the possible dielectric layer thickness. Meanwhile, Auger electron spectroscopy is carried out to analyze the electrode surface material composition and confirms a mixture layer of dielectric SiO2 and Si with a thickness about 5 nm, which is very close to the model estimation. In addition, observation of time-varing output drift in the variable bias voltage experiment indicates the movement of dielectric charge can be controlled by the applied electric field.

  11. Effective cytoplasmic release of siRNA from liposomal carriers by controlling the electrostatic interaction of siRNA with a charge-invertible peptide, in response to cytoplasmic pH

    Science.gov (United States)

    Itakura, Shoko; Hama, Susumu; Matsui, Ryo; Kogure, Kentaro

    2016-05-01

    Condensing siRNA with cationic polymers is a major strategy used in the development of siRNA carriers that can avoid degradation by nucleases and achieve effective delivery of siRNA into the cytoplasm. However, ineffective release of siRNA from such condensed forms into the cytoplasm is a limiting step for induction of RNAi effects, and can be attributed to tight condensation of siRNA with the cationic polymers, due to potent electrostatic interactions. Here, we report that siRNA condensed with a slightly acidic pH-sensitive peptide (SAPSP), whose total charge is inverted from positive to negative in response to cytoplasmic pH, is effectively released via electrostatic repulsion of siRNA with negatively charged SAPSP at cytoplasmic pH (7.4). The condensed complex of siRNA and positively-charged SAPSP at acidic pH (siRNA/SAPSP) was found to result in almost complete release of siRNA upon charge inversion of SAPSP at pH 7.4, with the resultant negatively-charged SAPSP having no undesirable interactions with endogenous mRNA. Moreover, liposomes encapsulating siRNA/SAPSP demonstrated knockdown efficiencies comparable to those of commercially available siRNA carriers. Taken together, SAPSP may be very useful as a siRNA condenser, as it facilitates effective cytoplasmic release of siRNA, and subsequent induction of specific RNAi effects.Condensing siRNA with cationic polymers is a major strategy used in the development of siRNA carriers that can avoid degradation by nucleases and achieve effective delivery of siRNA into the cytoplasm. However, ineffective release of siRNA from such condensed forms into the cytoplasm is a limiting step for induction of RNAi effects, and can be attributed to tight condensation of siRNA with the cationic polymers, due to potent electrostatic interactions. Here, we report that siRNA condensed with a slightly acidic pH-sensitive peptide (SAPSP), whose total charge is inverted from positive to negative in response to cytoplasmic pH, is

  12. Use of charging control guidelines for geosynchronous satellite design studies

    Science.gov (United States)

    Steves, N. J.

    1980-01-01

    Several of the principle guidelines from the Spacecraft Charging Design Guidelines Handbook are presented with illustrative examples. Use of the geomagnetic substorm specification to qualify satellite designs, the evaluation of satellite designs by using analytical modelling techniques, the use of selected materials and coatings to minimize charging, the tying of all conducting elements to a common ground, and the use of electrical filtering to protect circuits from discharge induced upsets are discussed. Discharge criteria and SCATHA data are excluded.

  13. Charge State of the Globular Histone Core Controls Stability of the Nucleosome

    Science.gov (United States)

    Fenley, Andrew T.; Adams, David A.; Onufriev, Alexey V.

    2010-01-01

    Presented here is a quantitative model of the wrapping and unwrapping of the DNA around the histone core of the nucleosome that suggests a mechanism by which this transition can be controlled: alteration of the charge state of the globular histone core. The mechanism is relevant to several classes of posttranslational modifications such as histone acetylation and phosphorylation; several specific scenarios consistent with recent in vivo experiments are considered. The model integrates a description based on an idealized geometry with one based on the atomistic structure of the nucleosome, and the model consistently accounts for both the electrostatic and nonelectrostatic contributions to the nucleosome free energy. Under physiological conditions, isolated nucleosomes are predicted to be very stable (38 ± 7 kcal/mol). However, a decrease in the charge of the globular histone core by one unit charge, for example due to acetylation of a single lysine residue, can lead to a significant decrease in the strength of association with its DNA. In contrast to the globular histone core, comparable changes in the charge state of the histone tail regions have relatively little effect on the nucleosome's stability. The combination of high stability and sensitivity explains how the nucleosome is able to satisfy the seemingly contradictory requirements for thermodynamic stability while allowing quick access to its DNA informational content when needed by specific cellular processes such as transcription. PMID:20816070

  14. Droop-Control-Based State-of-Charge Balancing Method for Charging and Discharging Process in Autonomous DC Microgrids

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Guerrero, Josep M.

    2014-01-01

    In this paper, a droop control based state-of-charge (SoC) balancing method in autonomous DC microgrids is proposed. Both charging and discharging process have been considered. In particular, in the charging process, the droop coefficient is set to be proportional to SoCn, and in the discharging...... process, the droop coefficient is set to be inversely proportional to SoCn. Since the injected/output power is in inverse-proportion to the droop coefficient, with the proposed method, the energy storage unit (ESU) with higher SoC absorbs less power in the charging process and delivers more power...... in the discharging process. Meanwhile, the ESU with lower SoC absorbs more power in the charging process and delivers less power in the discharging process. Eventually, the SoC and injected/output power in each ESU are equalized. The exponent n for SoC is employed to regulate the balancing speed of the So...

  15. Large Seebeck effect by charge-mobility engineering

    Science.gov (United States)

    Sun, Peijie; Wei, Beipei; Zhang, Jiahao; Tomczak, Jan M.; Strydom, A. M.; Søndergaard, M.; Iversen, Bo B.; Steglich, Frank

    2015-06-01

    The Seebeck effect describes the generation of an electric potential in a conducting solid exposed to a temperature gradient. In most cases, it is dominated by an energy-dependent electronic density of states at the Fermi level, in line with the prevalent efforts towards superior thermoelectrics through the engineering of electronic structure. Here we demonstrate an alternative source for the Seebeck effect based on charge-carrier relaxation: a charge mobility that changes rapidly with temperature can result in a sizeable addition to the Seebeck coefficient. This new Seebeck source is demonstrated explicitly for Ni-doped CoSb3, where a marked mobility change occurs due to the crossover between two different charge-relaxation regimes. Our findings unveil the origin of pronounced features in the Seebeck coefficient of many other elusive materials characterized by a significant mobility mismatch. When utilized appropriately, this effect can also provide a novel route to the design of improved thermoelectric materials.

  16. Laser controlled charge-transfer reaction at low temperatures

    CERN Document Server

    Petrov, Alexander; Kotochigova, Svetlana

    2016-01-01

    We study the low-temperature charge transfer reaction between a neutral atom and an ion under the influence of near-resonant laser light. By setting up a multi-channel model with field-dressed states we demonstrate that the reaction rate coefficient can be enhanced by several orders of magnitude with laser intensities of $10^6$ W/cm$^2$ or larger. In addition, depending on laser frequency one can induce a significant enhancement or suppression of the charge-exchange rate coefficient. For our intensities multi-photon processes are not important.

  17. Screening effects on structure and diffusion in confined charged colloids.

    Science.gov (United States)

    Kittner, Madeleine; Klapp, Sabine H L

    2007-04-21

    Using molecular dynamics computer simulations we investigate structural and dynamic (diffusion) properties of charged colloidal suspension confined to narrow slit pores with structureless, uncharged walls. The system is modeled on an effective level involving only the macroions, which interact via a combination of a soft-sphere and a screened Coulomb potential. The aim of our study is to identify the role of the range of the macroion-macroion interaction controlled by the inverse Debye screening length, kappa. We also compare to bulk properties at the same chemical potential as determined in parallel grand canonical Monte Carlo simulations. Our results reveal a significant influence of the interaction range which competes, however, with the influence of density. At liquidlike densities a decrease of range yields a decreasing mobility (and a corresponding enhancement of local structure) in the bulk system, whereas the reverse effect occurs in narrow slits with thickness of a few particle diameter. These differences can be traced back to the confinement-induced, and kappa-dependent, reduction of overall density compared to the bulk reservoir. We also show that an increase of kappa softens the oscillations in the normal pressure as function of the wall separation, which is consistent with experimental observations concerning the influence of addition of salt.

  18. The design and testing of the Gravity Probe B suspension and charge control systems

    Science.gov (United States)

    Buchman, Saps; Bencze, William; Brumley, Robert; Clarke, Bruce; Keiser, G. M.

    1998-12-01

    The Relativity Mission Gravity Probe B (GP-B), is designed to verify two rotational effects predicted by gravitational theory. The GP-B gyroscopes (which also double as drag free sensors) are suspended electrostatically, their position is determined by capacitative sensing, and their charge is controlled using electrons generated by ultraviolet photoemission. The main suspension system is digitally controlled, with an analog backup system. Its functional range is 10 m/s2 to 10-7 m/s2. The suspension system design is optimized to be compatible with gyroscope Newtonian drift rates of less than 0.1 marcsec/year (3×10-12 deg/hr), as well as being compatible with the functioning of an ultra low noise dc SQUID magnetometer. Testing of the suspension and charge management systems is performed on the ground using flight gyroscopes, as well as a gyroscope simulator designed to verify performance over the entire functional range. We describe the design and performance of the suspension, charge management, and gyroscope simulator systems.

  19. Effect of Electrolytes on Surface Charge Characteristics of Red Soils

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; HEQUN; 等

    1992-01-01

    The zero point of charge (ZPC) and the remaining charge σp at ZPC are two important parameters characterizing surface charge of red soils.Fourteen red soil samples of different soil type and parent material were treated with dithionite-citrate-dicarbonate (DCB) and Na2CO3 respectively.ZPC and σp of the samples in three indifferent electrolytes (NaCl,Na2SO4,and NaH2PO4) were determined.Kaolinite was used as reference.The results showed that ZPC of red soils was affected by the composition of parent materials and clay minerals and in significantly positive correlation with the content of total iron oxide (Fet),free iron oxide (Fed),amorphous iron oxide (Feo),aluminum oxide (Alo) and clay,but it was negatively correlated with the content of total silica (Sit).The σp of red soils was also markedly influenced by mineral components.Organic components were also contributing factor to the value of σp.The surface charges of red soils were evidently affected by the constitution of the electrolytes.Specific adsorption of anions in the electrolytes tended to make the ZPC of red soils shift to a higher pH value and to increase positive surface charges of the soils,thus leading to change of the σp value and decrease of the remaining net negative charges,even to the soils becoming net positive charge carriers.The effect of phosphate anion was greater than that of sulfate ion.

  20. Effect of charge on the ferroelectric field effect in strongly correlated oxides

    Science.gov (United States)

    Chen, Xuegang; Xiao, Zhiyong; Zhang, Xiaozhe; Zhang, Le; Zhao, Weiwei; Xu, Xiaoshan; Hong, Xia

    We present a systematic study of the effect of charge on the ferroelectric field effect modulation of various strongly correlated oxide materials. We have fabricated high quality epitaxial heterostructures composed of a ferroelectric Pb(Zr,Ti)O3 (PZT) gate and a correlated oxide channel, including Sm0.5Nd0.5NiO3 (SNNO), La0.7Sr0.3MnO3 (LSMO), SNNO/LSMO bilayers, and NiCo2O4 (NCO). The Hall effect measurements reveal a carrier density of ~4 holes/u.c. (0.4 cm2V-1s-1) for SNNO to ~2 holes/u.c. (27 cm2V-1s-1) for NCO. We find the magnitude of the field effect is closely related to both the intrinsic carrier density and carrier mobility of the channel material. For devices employing the SNNO/LSMO bilayer channel, we believe the charge transfer between the two correlated oxides play an important role in the observed resistance modulation. The screening capacitor of the channel materials and the interfacial defect states also have significant impact on the retention characteristics of the field effect. Our study reveals the critical role of charge in determining the interfacial coupling between ferroelectric and magnetic oxides, and has important implications in developing ferroelectric-controlled Mott memory devices.

  1. Comparison of effective charges derived in two different boson mappings

    NARCIS (Netherlands)

    Pittel, S.; Scholten, O.

    1988-01-01

    Boson effective charges that arise in a mapping recently proposed by Heyde and Sau are contrasted with those that arise in the Otsuka-Arima-Iachello procedure. We identify the source of the differences and show that they have no observable consequences if the mappings are implemented consistently fo

  2. Electron cloud and space charge effects in the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2007-06-01

    The stable region of the Fermilab Booster beam in the complex coherent-tune-shift plane appears to have been shifted far away from the origin by its intense space charge making Landau damping appear impossible. Simulations reveal a substantial buildup of electron cloud in the whole Booster ramping cycle, both inside the unshielded combined-function magnets and the beam pipes joining the magnets, whenever the secondary-emission yield (SEY) is larger than {approx}1.6. The implication of the electron-cloud effects on the space charge and collective instabilities of the beam is investigated.

  3. Effects of Longitudinal Space Charge Wake at PAL-XFEL

    CERN Document Server

    Kim, E S; Huang, J Y; Park, S J

    2005-01-01

    Longitudinal space charge wake is an important source that can generate microbunching instability at accelerator systems for X-ray free-electron laser. We present investigation to minimize gain of energy modulation due to the longitudinal space charge wakes that are caused at RF photocathode gun, two bunch compressors and linac at the PAL-XFEL, which include optimization of parameters for two bunch compressors and consideration of a laser heater. These studies are performd by using integral equation and numerical simulation methods. Design studies of a system for the laser heater are presented. We also show simulation results on effects of interaction between electron beam and laser.

  4. Adiabatic Charge Control in a Single Donor Atom Transistor

    CERN Document Server

    Prati, Enrico; Cocco, Simone; Petretto, Guido; Fanciulli, Marco

    2010-01-01

    A Silicon quantum device containing a single Arsenic donor and an electrostatic quantum dot in parallel is realized in a nanometric field effect transistor. The different coupling capacitances of the donor and the quantum dot with the control and the back gates determine a relative rigid shift of their energy spectrum as a function of the back gate voltage, causing the crossing of the energy levels. We observe the sequential tunneling through the $D^{2-}$ and the $D^{3-}$ energy levels of the donor at 4.2 K, ordinarily hidden at high temperature as they lie above the conduction band edge of Silicon. The exchange coupling of the localized electrons is controlled in the anticrossing region by moving one electron from the donor to the quantum dot site and \\textit{viceversa}, in order to realize physical qubits for quantum information processing.

  5. Effect of Aperiodicity on the Charge Transfer Through DNA Molecules

    Science.gov (United States)

    Ghosh, Angsula; Chaudhuri, Puspitapallab

    The effect of aperiodicity on the charge transfer process through DNA molecules is investigated using a tight-binding model. Single-stranded aperiodic Fibonacci polyGC and polyAT sequences along with aperiodic Rudin-Shapiro poly(GCAT) sequences are used in the study. Based on the tight-binding model, molecular orbital calculations of the DNA chains are performed and ionization potentials compared, as this might be relevant to understanding the charge transfer process. Charges migrate through the sequences in a multistep hopping process. Results for current conduction through aperiodic sequences are compared with those for the corresponding periodic sequences. We find that dinucleotide aperiodic Fibonacci sequences decrease the current while tetranucleotide aperiodic Rudin-Shapiro sequences increase the current when compared with the corresponding periodic sequences. The conductance in all cases decays exponentially as the sequence length increases.

  6. Relaxation of charge in monolayer graphene: Fast nonlinear diffusion versus Coulomb effects

    Science.gov (United States)

    Kolomeisky, Eugene B.; Straley, Joseph P.

    2017-01-01

    Pristine monolayer graphene exhibits very poor screening because the density of states vanishes at the Dirac point. As a result, charge relaxation is controlled by the effects of zero-point motion (rather than by the Coulomb interaction) over a wide range of parameters. Combined with the fact that graphene possesses finite intrinsic conductivity, this leads to a regime of relaxation described by a nonlinear diffusion equation with a diffusion coefficient that diverges at zero charge density. Some consequences of this fast diffusion are self-similar superdiffusive regimes of relaxation, the development of a charge depleted region at the interface between electron- and hole-rich regions, and finite extinction times for periodic charge profiles.

  7. ISS Charging Hazards and Low Earth Orbit Space Weather Effects

    Science.gov (United States)

    Minow, Joseph; Parker, L.; Coffey, V.; Wright K.; Koontz, S.; Edwards, D.

    2008-01-01

    Current collection by high voltage solar arrays on the International Space Station (ISS) drives the vehicle to negative floating potentials in the low Earth orbit daytime plasma environment. Pre-flight predictions of ISS floating potentials Phi greater than |-100 V| suggested a risk for degradation of dielectric thermal control coatings on surfaces in the U.S. sector due to arcing and an electrical shock hazard to astronauts during extravehicular activity (EVA). However, hazard studies conducted by the ISS program have demonstrated that the thermal control material degradation risk is effectively mitigated during the lifetime of the ISS vehicle by a sufficiently large ion collection area present on the vehicle to balance current collection by the solar arrays. To date, crew risk during EVA has been mitigated by operating one of two plasma contactors during EVA to control the vehicle potential within Phi less than or equal to |-40 V| with a backup process requiring reorientation of the solar arrays into a configuration which places the current collection surfaces into wake. This operation minimizes current collection by the solar arrays should the plasma contactors fail. This paper presents an analysis of F-region electron density and temperature variations at low and midlatitudes generated by space weather events to determine what range of conditions represent charging threats to ISS. We first use historical ionospheric plasma measurements from spacecraft operating at altitudes relevant to the 51.6 degree inclination ISS orbit to provide an extensive database of F-region plasma conditions over a variety of solar cycle conditions. Then, the statistical results from the historical data are compared to more recent in-situ measurements from the Floating Potential Measurement Unit (FPMU) operating on ISS in a campaign mode since its installation in August, 2006.

  8. Specific salt effects on thermophoresis of charged colloids.

    Science.gov (United States)

    Eslahian, Kyriakos A; Majee, Arghya; Maskos, Michael; Würger, Alois

    2014-03-28

    We study the Soret effect of charged polystyrene particles as a function of temperature and electrolyte composition. As a main result we find that the Soret coefficient is determined by charge effects, and that non-ionic contributions are small. In view of the well-known electric-double layer interactions, our thermal field-flow fractionation data lead us to the conclusion that the Soret effect originates to a large extent from diffusiophoresis in the salt gradient and from the electrolyte Seebeck effect, both of which show strong specific-ion effects. Moreover, we find that thermophoresis of polystyrene beads is fundamentally different from proteins and aqueous polymer solutions, which show a strong non-ionic contribution.

  9. Effective dynamics of an electrically charged string with a current

    Science.gov (United States)

    Kazinski, P. O.

    2005-08-01

    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations is found.

  10. Effective dynamics of an electrically charged string with a current

    CERN Document Server

    Kazinski, P O

    2005-01-01

    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations ...

  11. Surface modification for polystyrene colloidal particles with controlled charge densities.

    Science.gov (United States)

    Lee, Jongman; Kwon, Oh-Sun; Shin, Kwanwoo; Song, Ju-Myung; Kim, Joon-Seop; Seo, Young-Soo; Tael, Giyoong; Jon, Sangyong

    2007-11-01

    A significant amount of polystyrene sulfonated acid (PSSA) and poly(styrene-ran-acrylic acid) (PSAA) random copolymer can be adsorbed by dispersion of PS particles via a swelling-quenching process. A THF-water mixed solvent was used in the swelling process and a large amount of pure water was used, to give a low concentration of THF% in quenching process. Our results showed that functional PSSA groups were randomly and tightly adsorbed to the PS particles. When the mol.% of charged segments was increased, the progressive adsorption of PSSA chains to the PS particles leads to an increase in the electrophoretic mobility and zeta-potential of aqueous dispersions. Thus, we were able to obtain well-distributed surface charge density on the PS particles.

  12. Ion Transport through Diffusion Layer Controlled by Charge Mosaic Membrane

    Directory of Open Access Journals (Sweden)

    Akira Yamauchi

    2012-01-01

    Full Text Available The kinetic transport behaviors in near interface of the membranes were studied using commercial anion and cation exchange membrane and charge mosaic membrane. Current-voltage curve gave the limiting current density that indicates the ceiling of conventional flux. From chronopotentiometry above the limiting current density, the transition time was estimated. The thickness of boundary layer was derived with conjunction with the conventional limiting current density and the transition time from steady state flux. On the other hand, the charge mosaic membrane was introduced in order to examine the ion transport on the membrane surface in detail. The concentration profile was discussed by the kinetic transport number with regard to the water dissociation (splitting on the membrane surface.

  13. Conformational control of benzophenone-sensitized charge transfer in dinucleotides

    OpenAIRE

    Merz, Thomas; Wenninger, Matthias; Weinberger, Michael; Riedle, Eberhard; Wagenknecht, Hans-Achim; Schuetz, Martin

    2013-01-01

    Charge transfer in DNA cannot be understood without addressing the complex conformational flexibility, which occurs on a wide range of timescales. In order to reduce this complexity four dinucleotide models 1X consisting of benzophenone linked by a phosphodiester to one of the natural nucleosides X = A, G, T, C were studied in water and methanol. The theoretical work focuses on the dynamics and electronic structure of 1G. Predominant conformations in the two solvents were obtained by molecula...

  14. The charge memory effect in polystyrene-based composite structures

    Science.gov (United States)

    Belogorokhov, I. A.; Belogorokhova, L. I.; Kotova, M. S.; Dronov, M. A.

    2016-09-01

    It is shown that the addition of light-sensitive particles to a polystyrene matrix enables control over processes of resistive voltage switching in the composite material, which involve photoinduced transitions between states with different conductivities. This specific feature of polymeric composite materials based on polystyrene and heterocyclic rings can be accounted for in terms of the model of charge accumulation and that of conducting channels.

  15. Nonlinear effects on electrophoresis of a charged dielectric nanoparticle in a charged hydrogel medium

    Science.gov (United States)

    Bhattacharyya, S.; De, Simanta

    2016-09-01

    The impact of the solid polarization of a charged dielectric particle in gel electrophoresis is studied without imposing a weak-field or a thin Debye length assumption. The electric polarization of a dielectric particle due to an external electric field creates a non-uniform surface charge density, which in turn creates a non-uniform Debye layer at the solid-gel interface. The solid polarization of the particle, the polarization of the double layer, and the electro-osmosis of mobile ions within the hydrogel medium create a nonlinear effect on the electrophoresis. We have incorporated those nonlinear effects by considering the electrokinetics governed by the Stokes-Brinkman-Nernst-Planck-Poisson equations. We have computed the governing nonlinear coupled set of equations numerically by adopting a finite volume based iterative algorithm. Our numerical method is tested for accuracy by comparing with several existing results on free-solution electrophoresis as well as results based on the Debye-Hückel approximation. Our computed result shows that the electrophoretic velocity decreases with the rise of the particle dielectric permittivity constant and attains a saturation limit at large values of permittivity. A significant impact of the solid polarization is found in gel electrophoresis compared to the free-solution electrophoresis.

  16. Effect of trapped charge accumulation on the retention of charge trapping memory

    Energy Technology Data Exchange (ETDEWEB)

    Jin Rui; Liu Xiaoyan; Du Gang; Kang Jinfeng; Han Ruqi, E-mail: xyliu@ime.pku.edu.cn [Institute of Microelectronics, Peking University, Beijing, 100871 (China)

    2010-12-15

    The accumulation process of trapped charges in a TANOS cell during P/E cycling is investigated via numerical simulation. The recombination process between trapped charges is an important issue on the retention of charge trapping memory. Our results show that accumulated trapped holes during P/E cycling can have an influence on retention, and the recombination mechanism between trapped charges should be taken into account when evaluating the retention capability of TANOS. (semiconductor devices)

  17. SEMICONDUCTOR DEVICES Effect of trapped charge accumulation on the retention of charge trapping memory

    Science.gov (United States)

    Rui, Jin; Xiaoyan, Liu; Gang, Du; Jinfeng, Kang; Ruqi, Han

    2010-12-01

    The accumulation process of trapped charges in a TANOS cell during P/E cycling is investigated via numerical simulation. The recombination process between trapped charges is an important issue on the retention of charge trapping memory. Our results show that accumulated trapped holes during P/E cycling can have an influence on retention, and the recombination mechanism between trapped charges should be taken into account when evaluating the retention capability of TANOS.

  18. Peltier effect in multilayered nanopillars under high density charge current

    Science.gov (United States)

    Gravier, L.; Fukushima, A.; Kubota, H.; Yamamoto, A.; Yuasa, S.

    2006-12-01

    From the basic equations of thermoelectricity, we model the thermal regimes that develop in multilayered nanopillar elements experiencing continuous charge currents. The energy conservation principle was applied to all layer-layer and layer-electrode junctions. The obtained set of equations was solved to derive the temperature of each junction. The contribution of the Peltier effect is included in an effective resistance. This model gives satisfactory fits to experimental data obtained on a series of reference nanopillar elements.

  19. Peltier effect in multilayered nanopillars under high density charge current

    Energy Technology Data Exchange (ETDEWEB)

    Gravier, L [Institut de Physique des Nanostructures, Ecole Polytechnique Federale de Lausanne (EPFL), EPFL-SB-IPN station 3, 1015 Lausanne (Switzerland); Fukushima, A [National Institute of Advances Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Kubota, H [National Institute of Advances Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Yamamoto, A [National Institute of Advances Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Yuasa, S [National Institute of Advances Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2006-12-21

    From the basic equations of thermoelectricity, we model the thermal regimes that develop in multilayered nanopillar elements experiencing continuous charge currents. The energy conservation principle was applied to all layer-layer and layer-electrode junctions. The obtained set of equations was solved to derive the temperature of each junction. The contribution of the Peltier effect is included in an effective resistance. This model gives satisfactory fits to experimental data obtained on a series of reference nanopillar elements.

  20. Amplified effect of surface charge on cell adhesion by nanostructures

    Science.gov (United States)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  1. On the use of an Arduino-based controller to control the charging process of a wind turbine

    Science.gov (United States)

    Mahmuddin, Faisal; Yusran, Ahmad Muhtam; Klara, Syerly

    2017-02-01

    In order to avoid an excessive charging voltage which can damage power storage when converting wind energy using a turbine, it is necessary to control the charging voltage of the turbine generator. In the present study, a charging controller which uses an Arduino microcontroller, is designed. 3 (three) indicator lights are installed to indicate the battery charging process, power diversion to dummy load and battery power level. The performance of the designed controller is evaluated by simulating 3 cases. In this simulation, a battery with maximum voltage of 12.4 V is used. Case 1 is performed with input voltage equals the one set in Arduino which is 10 V. In this case, the battery is charged up to 10.8 V. In case 2, the input voltage is 13 V while the maximum voltage set in Arduino is also 13 V. In this case, the battery is charged up to maximum voltage of the battery. Moreover, the dummy load indicator is ON and charging indicator is OFF after the maximum charging voltage is reached because the electricity is flowed to the dummy load. In the final case, the input voltage is set to be 16 V while the maximum voltage set in Arduino is 13 V. In this case, the charging indicator is OFF and dummy load indicator is ON which means that the Arduino has successfully switched the power to be flowed to dummy load. From the 3 (three) cases, it can be concluded that the designed controller works perfectly to control the charging process of the wind turbine. Moreover, the charging time needed in each case can also be determined.

  2. Influence of penetration controlled irradiation with charged particles on tobacco pollen

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Dept. of Radiation Research for Environment and Resources; Tanaka, Atsushi; Tano, Shigemitsu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Advanced Science Research Center; Inoue, Masayoshi [Kyoto Prefectural Univ. (Japan). Faculty of Agriculture

    1997-09-01

    To investigate the effect of local irradiation on biological systems, an apparatus for penetration controlled irradiation with charged particles was set up. By comparison of ranges of 1.5 MeV/u He{sup 2+} between the theoretically calculated ranges and the practical ranges using RCD dosimeter, it was demonstrated that the range of particles could be controlled linearly by changing the distance from the beam window in the atmosphere to a target. In addition, the penetration controlled irradiation of tobacco pollen increased the frequency of `leaky pollen`. The increased frequency of the leaky pollen suggests that a damage in the pollen envelope would be induced at the range-end. (orig.)

  3. Membrane Permeabilization Induced by Sphingosine: Effect of Negatively Charged Lipids

    Science.gov (United States)

    Jiménez-Rojo, Noemi; Sot, Jesús; Viguera, Ana R.; Collado, M. Isabel; Torrecillas, Alejandro; Gómez-Fernández, J.C.; Goñi, Félix M.; Alonso, Alicia

    2014-01-01

    Sphingosine [(2S, 3R, 4E)-2-amino-4-octadecen-1, 3-diol] is the most common sphingoid long chain base in sphingolipids. It is the precursor of important cell signaling molecules, such as ceramides. In the last decade it has been shown to act itself as a potent metabolic signaling molecule, by activating a number of protein kinases. Moreover, sphingosine has been found to permeabilize phospholipid bilayers, giving rise to vesicle leakage. The present contribution intends to analyze the mechanism by which this bioactive lipid induces vesicle contents release, and the effect of negatively charged bilayers in the release process. Fluorescence lifetime measurements and confocal fluorescence microscopy have been applied to observe the mechanism of sphingosine efflux from large and giant unilamellar vesicles; a graded-release efflux has been detected. Additionally, stopped-flow measurements have shown that the rate of vesicle permeabilization increases with sphingosine concentration. Because at the physiological pH sphingosine has a net positive charge, its interaction with negatively charged phospholipids (e.g., bilayers containing phosphatidic acid together with sphingomyelins, phosphatidylethanolamine, and cholesterol) gives rise to a release of vesicular contents, faster than with electrically neutral bilayers. Furthermore, phosphorous 31-NMR and x-ray data show the capacity of sphingosine to facilitate the formation of nonbilayer (cubic phase) intermediates in negatively charged membranes. The data might explain the pathogenesis of Niemann-Pick type C1 disease. PMID:24940775

  4. Spin and charge thermopower effects in the ferromagnetic graphene junction

    Science.gov (United States)

    Vahedi, Javad; Barimani, Fattaneh

    2016-08-01

    Using wave function matching approach and employing the Landauer-Buttiker formula, a ferromagnetic graphene junction with temperature gradient across the system is studied. We calculate the thermally induced charge and spin current as well as the thermoelectric voltage (Seebeck effect) in the linear and nonlinear regimes. Our calculation revealed that due to the electron-hole symmetry, the charge Seebeck coefficient is, for an undoped magnetic graphene, an odd function of chemical potential while the spin Seebeck coefficient is an even function regardless of the temperature gradient and junction length. We have also found with an accurate tuning external parameter, namely, the exchange filed and gate voltage, the temperature gradient across the junction drives a pure spin current without accompanying the charge current. Another important characteristic of thermoelectric transport, thermally induced current in the nonlinear regime, is examined. It would be our main finding that with increasing thermal gradient applied to the junction the spin and charge thermovoltages decrease and even become zero for non zero temperature bias.

  5. Analysis of beam envelope by transverse space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Shin`ichi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-09-01

    It is important for high current accelerators to estimate the contribution of the space charge effect to keep the beam off its beak up. The application of an envelope equation is examined in previous report in which the beam is just coasting beam (non accelerating). The analysis of space charge effect is necessary for the comparison in coming accelerator test in PNC. In order to evaluate the beam behavior in high current, the beam dynamics and beam parameters which are input to the equation for the evaluation are developed and make it ready to estimate the beam transverse dynamics by the space charge. The estimate needs to have enough accuracy for advanced code calculation. After the preparation of the analytic expression of transverse motion, the non-linear differential equation of beam dynamics is solved by a numerical method on a personal computer. The beam envelope from the equation is estimated by means of the beam emittance, current and energy. The result from the analysis shows that the transverse beam broadening is scarecely small around the beam current value of PNC design. The contribution to the beam broadening of PNC linac comes from its beam emittance. The beam broadening in 100 MeV case is almost negligible in the view of transverse space charge effect. Therefore, the electron beam is stable up to 10 A order in PNC linac design. Of course, the problem for RF supply is out of consideration here. It is important to estimate other longitudinal effect such as beam bunch effect which is lasting unevaluated. (author)

  6. Magnitude and Variability of Controllable Charge Capacity Provided by Grid Connected Plug-in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Scoffield, Don R [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smart, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Salisbury, Shawn [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    As market penetration of plug-in electric vehicles (PEV) increases over time, the number of PEVs charging on the electric grid will also increase. As the number of PEVs increases, their ability to collectively impact the grid increases. The idea of a large body of PEVs connected to the grid presents an intriguing possibility. If utilities can control PEV charging, it is possible that PEVs could act as a distributed resource to provide grid services. The technology required to control charging is available for modern PEVs. However, a system for wide-spread implementation of controllable charging, including robust communication between vehicles and utilities, is not currently present. Therefore, the value of controllable charging must be assessed and weighed against the cost of building and operating such as system. In order to grasp the value of PEV charge control to the utility, the following must be understood: 1. The amount of controllable energy and power capacity available to the utility 2. The variability of the controllable capacity from day to day and as the number of PEVs in the market increases.

  7. Plasma effect in Silicon Charge Couple Devices (CCDs)

    CERN Document Server

    Estrada, Juan; Blostein, J

    2011-01-01

    Plasma effect is observed in CCDs exposed to heavy ionizing alpha-particles with energies in the range 0.5 - 5.5 MeV. The results obtained for the size of the charge clusters reconstructed on the CCD pixels agrees with previous measurements in the high energy region (>3.5 MeV). The measurements were extended to lower energies using alpha-particles produced by (n,alpha) reactions of neutrons in a Boron-10 target. The effective linear charge density for the plasma column is measured as a function of energy. The results demonstrate the potential for high position resolution in the reconstruction of alpha particles, which opens an interesting possibility for using these detectors in neutron imaging applications.

  8. Plasma effect in silicon charge coupled devices (CCDs)

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, J., E-mail: estrada@fnal.gov [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Molina, J., E-mail: jmolina@ing.una.py [Facultad de Ingenieria, Universidad Nacional de Asuncion, Laboratorio de Mecanica y Energia, Campus de la UNA, San Lorenzo 2160 (Paraguay); Blostein, J.J., E-mail: jeronimo@cab.cnea.gov.ar [CONICET (Argentina); Centro Atomico Bariloche, Comision Nacional de Energia Atomica, Bariloche (Argentina); Fernandez, G., E-mail: fmoroni.guillermo@gmail.com [Universidad Nacional del Sur, Bahia Blanca (Argentina)

    2011-02-11

    Plasma effect is observed in CCDs exposed to heavy ionizing {alpha}-particles with energies in the range 0.5-5.5 MeV. The results obtained for the size of the charge clusters reconstructed on the CCD pixels agree with previous measurements in the high energy region ({>=}3.5 MeV). The measurements were extended to lower energies using {alpha}-particles produced by (n,{alpha}) reactions of neutrons in a {sup 10}B target. The effective linear charge density for the plasma column is measured as a function of energy. The results demonstrate the potential for high position resolution in the reconstruction of {alpha} particles, which opens an interesting possibility for using these detectors in neutron imaging applications.

  9. Universal Charge Diffusion and the Butterfly Effect in Holographic Theories

    Science.gov (United States)

    Blake, Mike

    2016-08-01

    We study charge diffusion in holographic scaling theories with a particle-hole symmetry. We show that these theories have a universal regime in which the diffusion constant is given by Dc=C vB2/(2 π T ), where vB is the velocity of the butterfly effect. The constant of proportionality C depends only on the scaling exponents of the infrared theory. Our results suggest an unexpected connection between transport at strong coupling and quantum chaos.

  10. Controlling the net charge on a nanoparticle optically levitated in vacuum

    Science.gov (United States)

    Frimmer, Martin; Luszcz, Karol; Ferreiro, Sandra; Jain, Vijay; Hebestreit, Erik; Novotny, Lukas

    2017-06-01

    Optically levitated nanoparticles in vacuum are a promising model system to test physics beyond our current understanding of quantum mechanics. Such experimental tests require extreme control over the dephasing of the levitated particle's motion. If the nanoparticle carries a finite net charge, it experiences a random Coulomb force due to fluctuating electric fields. This dephasing mechanism can be fully excluded by discharging the levitated particle. Here, we present a simple and reliable technique to control the charge on an optically levitated nanoparticle in vacuum. Our method is based on the generation of charges in an electric discharge and does not require additional optics or mechanics close to the optical trap.

  11. Charge-Controlled Colloids on Liquid-Liquid Interfaces

    Science.gov (United States)

    Kunz, Daniel A.; Reck, Bernd; Manoharan, Vinothan N.

    2014-03-01

    The tendency of colloidal particles to stabilize interfaces has been exploited for many years to generate Pickering emulsions with a variety of industrial applications. However, the exact stabilization mechanism and its dependence on the surface properties of the colloidal particles are not yet fully understood. We provide new interfacial studies on the nonequilibrium dynamics of a colloidal system with tunable surface charge density. We push individual sub-micron colloidal particles towards an oil-water interface and track their motion in three-dimensions using holographic microscopy to examine the influence of zeta potential on the dynamics of the system. This project was funded by the BASF Advanced Research Initiative, BASF SE, Germany.

  12. Profit maximization with customer satisfaction control for electric vehicle charging in smart grids

    Directory of Open Access Journals (Sweden)

    Edwin Collado

    2017-05-01

    Full Text Available As the market of electric vehicles is gaining popularity, large-scale commercialized or privately-operated charging stations are expected to play a key role as a technology enabler. In this paper, we study the problem of charging electric vehicles at stations with limited charging machines and power resources. The purpose of this study is to develop a novel profit maximization framework for station operation in both offline and online charging scenarios, under certain customer satisfaction constraints. The main goal is to maximize the profit obtained by the station owner and provide a satisfactory charging service to the customers. The framework includes not only the vehicle scheduling and charging power control, but also the managing of user satisfaction factors, which are defined as the percentages of finished charging targets. The profit maximization problem is proved to be NPcomplete in both scenarios (NP refers to “nondeterministic polynomial time”, for which two-stage charging strategies are proposed to obtain efficient suboptimal solutions. Competitive analysis is also provided to analyze the performance of the proposed online two-stage charging algorithm against the offline counterpart under non-congested and congested charging scenarios. Finally, the simulation results show that the proposed two-stage charging strategies achieve performance close to that with exhaustive search. Also, the proposed algorithms provide remarkable performance gains compared to the other conventional charging strategies with respect to not only the unified profit, but also other practical interests, such as the computational time, the user satisfaction factor, the power consumption, and the competitive ratio.

  13. Coordinated Control of PV Generation and EVs Charging Based on Improved DECell Algorithm

    Directory of Open Access Journals (Sweden)

    Guo Zhao

    2015-01-01

    Full Text Available Recently, the coordination of EVs’ charging and renewable energy has become a hot research all around the globe. Considering the requirements of EV owner and the influence of the PV output fluctuation on the power grid, a three-objective optimization model was established by controlling the EVs charging power during charging process. By integrating the meshing method into differential evolution cellular (DECell genetic algorithm, an improved differential evolution cellular (IDECell genetic algorithm was presented to solve the multiobjective optimization model. Compared to the NSGA-II and DECell, the IDECell algorithm showed better performance in the convergence and uniform distribution. Furthermore, the IDECell algorithm was applied to obtain the Pareto front of nondominated solutions. Followed by the normalized sorting of the nondominated solutions, the optimal solution was chosen to arrive at the optimized coordinated control strategy of PV generation and EVs charging. Compared to typical charging pattern, the optimized charging pattern could reduce the fluctuations of PV generation output power, satisfy the demand of EVs charging quantity, and save the total charging cost.

  14. Program NAJOCSC and space charge effect simulation in C01

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.Y.; Chabert, A.; Baron, E

    1999-03-10

    During the beam tests of the THI project at GANIL, it was found it difficult to increase the beam power above 2 kW at CSS2 extraction. The space charge effect (abbreviated as S.C. effect) in cyclotrons is suspected to play some role in the phenomenon, especially the longitudinal S.C. one and also the coupling between longitudinal and radial motions. The injector cyclotron C01 is studied, and the role played by the S.C. effect in this cyclotron in the THI case is investigated by a simulation method. (K.A.) 12 refs.

  15. The effect of polymer charge density and charge distribution on the formation of multilayers

    CERN Document Server

    Voigt, U; Tauer, K; Hahn, M; Jäger, W; Klitzing, K V

    2003-01-01

    Polyelectrolyte multilayers which are built up by alternating adsorption of polyanions and polycations from aqueous solutions at a solid interface are investigated by reflectometry and ellipsometry. Below a degree of charge of about 70% the adsorption stops after a certain number of dipping cycles and no multilayer formation occurs. This indicates an electrostatically driven adsorption process. Below a charge density of 70% an adsorption can take place if the charged segments are combined as a block of the polymer.

  16. The effect of electrostatic charges on the removal of radioactive aerosols in the atmosphere by raindrops

    Science.gov (United States)

    Sow, M.; Lemaitre, P.

    2015-10-01

    In this article, we report results of self-charged water drop generated by hypodermic needle over charge values comparable to those reported in the literature during stormy rainfall. We also controllably charged aerosols particles by corona discharge and evaluate how it affects their collection efficiency. Electric charges on drops and aerosols are precisely monitored by high resolution electrometers. Our preliminary results tend to accredit the impact of electric charges in collection efficiency.

  17. Charge carrier coherence and Hall effect in organic semiconductors.

    Science.gov (United States)

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  18. Gate-Sensing Coherent Charge Oscillations in a Silicon Field-Effect Transistor.

    Science.gov (United States)

    Gonzalez-Zalba, M Fernando; Shevchenko, Sergey N; Barraud, Sylvain; Johansson, J Robert; Ferguson, Andrew J; Nori, Franco; Betz, Andreas C

    2016-03-09

    Quantum mechanical effects induced by the miniaturization of complementary metal-oxide-semiconductor (CMOS) technology hamper the performance and scalability prospects of field-effect transistors. However, those quantum effects, such as tunneling and coherence, can be harnessed to use existing CMOS technology for quantum information processing. Here, we report the observation of coherent charge oscillations in a double quantum dot formed in a silicon nanowire transistor detected via its dispersive interaction with a radio frequency resonant circuit coupled via the gate. Differential capacitance changes at the interdot charge transitions allow us to monitor the state of the system in the strong-driving regime where we observe the emergence of Landau-Zener-Stückelberg-Majorana interference on the phase response of the resonator. A theoretical analysis of the dispersive signal demonstrates that quantum and tunneling capacitance changes must be included to describe the qubit-resonator interaction. Furthermore, a Fourier analysis of the interference pattern reveals a charge coherence time, T2 ≈ 100 ps. Our results demonstrate charge coherent control and readout in a simple silicon transistor and open up the possibility to implement charge and spin qubits in existing CMOS technology.

  19. Effect of film nanostructure on in-plane charge transport in organic bulk heterojunction materials

    Science.gov (United States)

    Danielson, Eric; Ooi, Zi-En; Dodabalapur, Ananth

    2013-09-01

    Bulk heterojunction (BHJ) organic solar cells are a promising alternative energy technology, but a thorough understanding of charge transport behavior in BHJ materials is necessary in order to design devices with high power conversion efficiencies. Parameters such as carrier mobilities, carrier concentrations, and the recombination coefficient have traditionally been successfully measured using vertical structures similar to organic photovoltaic (OPV) cells. We have developed a lateral BHJ device which complements these vertical techniques by allowing spatially resolved measurement along the transport direction of charge carriers. This is essential for evaluating the effect of nanoscale structure and morphology on these important charge transport parameters. Nanomorphology in organic BHJ films has been controlled using a variety of methods, but the effect of these procedures has been infrequently correlated with the charge transport parameter of the BHJ material. Electron beam lithography has been used to create lateral device structures with many voltage probes at a sub-micron resolution throughout the device channel. By performing in-situ potentiometry, we can calculate both carrier mobilities and determine the effect of solvent choice and annealing procedure on the charge transport in BHJ system. Spin coated P3HT:PCBM films prepared from solutions in chloroform and o-xylene are characterized using this technique.

  20. Charge Transport in Hybrid Halide Perovskite Field-Effect Transistors

    Science.gov (United States)

    Jurchescu, Oana

    Hybrid organic-inorganic trihalide perovskite (HTP) materials exhibit a strong optical absorption, tunable band gap, long carrier lifetimes and fast charge carrier transport. These remarkable properties, coupled with their reduced complexity processing, make the HTPs promising contenders for large scale, low-cost thin film optoelectronic applications. But in spite of the remarkable demonstrations of high performance solar cells, light-emitting diodes and field-effect transistor devices, all of which took place in a very short time period, numerous questions related to the nature and dynamics of the charge carriers and their relation to device performance, stability and reliability still remain. This presentation describes the electrical properties of HTPs evaluated from field-effect transistor measurements. The electrostatic gating of provides an unique platform for the study of intrinsic charge transport in these materials, and, at the same time, expand the use of HTPs towards switching electronic devices, which have not been explored previously. We fabricated FETs on SiO2 and polymer dielectrics from spin coating, thermal evaporation and spray deposition and compare their properties. CH3NH3PbI3-xClx can reach balanced electron and hole mobilities of 10 cm2/Vs upon tuning the thin-film microstructure, injection and the defect density at the semiconductor/dielectric interface. The work was performed in collaboration with Yaochuan Mei (Wake Forest University), Chuang Zhang, and Z. Valy Vardeny (University of Utah). The work is supported by ONR Grant N00014-15-1-2943.

  1. 3D Simulations of Space Charge Effects in Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density ({approx} 10{sup 9} protons/cm{sup 3}) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  2. 3D Simulations of Space Charge Effects in Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density ({approx} 10{sup 9} protons/cm{sup 3}) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  3. Titanium oxide morphology controls charge collection efficiency in quantum dot solar cells.

    Science.gov (United States)

    Kolay, Ankita; Kumar, P Naresh; Kumar, Sarode Krishna; Deepa, Melepurath

    2017-02-08

    Charge transfer at the TiO2/quantum dots (QDs) interface, charge collection at the TiO2/QDs/current collector (FTO or SnO2:F) interface, and back electron transfer at the TiO2/QDs/S(2-) interface are processes controlled by the electron transport layer or TiO2. These key processes control the power conversion efficiencies (PCEs) of quantum dot solar cells (QDSCs). Here, four TiO2 morphologies, porous nanoparticles (PNPs), nanowires (NWs), nanosheets (NSHs) and nanoparticles (NPs), were sensitized with CdS and the photovoltaic performances were compared. The marked differences in the cell parameters on going from one morphology to the other have been explained by correlating the shape, structure and the above-described interfacial properties of a given TiO2 morphology to the said parameters. The average magnitudes of PCEs follow the order: NWs (5.96%) > NPs (4.95%) > PNPs (4.85%) > NSHs (2.5%), with the champion cell based on NWs exhibiting a PCE of 6.29%. For NWs, an optimal balance between the fast photo-excited electron injection to NWs at the NW/CdS interface, the high resistance offered at the TiO2 NW/CdS/S(2-) interfaces to electron recombination with the oxidized electrolyte or with the holes in CdS, the low electron transport resistance in NWs, and low dark currents, yields the highest efficiency due to directional unhindered transport of electrons afforded by the NWs. For NSHs, electron trapping in the two dimensional sheets, and a high electron recombination rate prevent the effective transfer of electrons to FTO, thus reducing short circuit current density significantly, resulting in a poor performance. This study provides a deep understanding of charge transfer, transport and collection processes necessary for the design of efficient QDSCs.

  4. Simple DCM or CRM analog peak current controller for HV capacitor charge-discharge applications

    DEFF Research Database (Denmark)

    Trintis, Ionut; Dimopoulos, Emmanouil; Munk-Nielsen, Stig

    2013-01-01

    This paper presents a simple analog current controller suitable for buck and boost converter topologies. The controller operates in DCM or CRM, depending on the setup. The experimental results are presented to validate the proposed controller functionality for a high voltage capacitor charge...

  5. Cost-effective electric vehicle charging infrastructure siting for Delhi

    Science.gov (United States)

    Sheppard, Colin J. R.; Gopal, Anand R.; Harris, Andrew; Jacobson, Arne

    2016-06-01

    Plug-in electric vehicles (PEVs) represent a substantial opportunity for governments to reduce emissions of both air pollutants and greenhouse gases. The Government of India has set a goal of deploying 6-7 million hybrid and PEVs on Indian roads by the year 2020. The uptake of PEVs will depend on, among other factors like high cost, how effectively range anxiety is mitigated through the deployment of adequate electric vehicle charging stations (EVCS) throughout a region. The Indian Government therefore views EVCS deployment as a central part of their electric mobility mission. The plug-in electric vehicle infrastructure (PEVI) model—an agent-based simulation modeling platform—was used to explore the cost-effective siting of EVCS throughout the National Capital Territory (NCT) of Delhi, India. At 1% penetration in the passenger car fleet, or ˜10 000 battery electric vehicles (BEVs), charging services can be provided to drivers for an investment of 4.4 M (or 440/BEV) by siting 2764 chargers throughout the NCT of Delhi with an emphasis on the more densely populated and frequented regions of the city. The majority of chargers sited by this analysis were low power, Level 1 chargers, which have the added benefit of being simpler to deploy than higher power alternatives. The amount of public infrastructure needed depends on the access that drivers have to EVCS at home, with 83% more charging capacity required to provide the same level of service to a population of drivers without home chargers compared to a scenario with home chargers. Results also depend on the battery capacity of the BEVs adopted, with approximately 60% more charging capacity needed to achieve the same level of service when vehicles are assumed to have 57 km versus 96 km of range.

  6. Bending Two-Dimensional Materials To Control Charge Localization and Fermi-Level Shift.

    Science.gov (United States)

    Yu, Liping; Ruzsinszky, Adrienn; Perdew, John P

    2016-04-13

    High-performance electronics requires the fine control of semiconductor conductivity. In atomically thin two-dimensional (2D) materials, traditional doping technique for controlling carrier concentration and carrier type may cause crystal damage and significant mobility reduction. Contact engineering for tuning carrier injection and extraction and carrier type may suffer from strong Fermi-level pinning. Here, using first-principles calculations, we predict that mechanical bending, as a unique attribute of thin 2D materials, can be used to control conductivity and Fermi-level shift. We find that bending can control the charge localization of top valence bands in both MoS2 and phosphorene nanoribbons. The donor-like in-gap edge-states of armchair MoS2 ribbon and their associated Fermi-level pinning can be removed by bending. A bending-controllable new in-gap state and accompanying direct-indirect gap transition are predicted in armchair phosphorene nanoribbon. We demonstrate that such emergent bending effects are realizable. The bending stiffness as well as the effective thickness of 2D materials are also derived from first principles. Our results are of fundamental and technological relevance and open new routes for designing functional 2D materials for applications in which flexuosity is essential.

  7. Effect of Size Polydispersity on Melting of Charged Colloidal Systems

    Institute of Scientific and Technical Information of China (English)

    陈勇

    2003-01-01

    We introduce simple prescriptions of the Yukawa potential to describe the effect of size polydispersity and macroion shielding effect in charged colloidal systems. The solid-liquid phase boundaries were presented with the Lindemann criterion based on molecular dynamics simulations. Compared with the Robbins-Kremer-Grest simulation results, a deviation of melting line is observed at small λ, which means large macroion screening length. This deviation of phase boundary is qualitatively consistent with the simulation result of the nonlinear Poisson-Boltzmann equation with full many-body interactions. It is found that this deviation of the solid-liquid phase behaviour is sensitive to the screening parameter.

  8. Magnetothermopower and Nernst effect in unconventional charge density waves

    Science.gov (United States)

    Dóra, Balázs; Maki, Kazumi; Ványolos, András; Virosztek, Attila

    2003-12-01

    Recently we have shown that the striking angular dependent magnetoresistance in the low-temperature phase (LTP) of α-(BEDT-TTF)2KHg(SCN)4 is consistently described in terms of unconventional charge density wave (UCDW). Here we investigate theoretically the thermoelectric power and the Nernst effect in unconventional density wave (UDW). The present results account consistently for the recent data of magnetothermopower in α-(BEDT-TTF)2KHg(SCN)4 obtained by Choi et al. [Phys. Rev. B 65, 205119 (2002)]. This confirms further our identification of LTP in this salt as UCDW. We propose also that the Nernst effect provides a clear signature of UDW.

  9. Large tunable image-charge effects in single-molecule junctions.

    Science.gov (United States)

    Perrin, Mickael L; Verzijl, Christopher J O; Martin, Christian A; Shaikh, Ahson J; Eelkema, Rienk; van Esch, Jan H; van Ruitenbeek, Jan M; Thijssen, Joseph M; van der Zant, Herre S J; Dulić, Diana

    2013-04-01

    Metal/organic interfaces critically determine the characteristics of molecular electronic devices, because they influence the arrangement of the orbital levels that participate in charge transport. Studies on self-assembled monolayers show molecule-dependent energy-level shifts as well as transport-gap renormalization, two effects that suggest that electric-field polarization in the metal substrate induced by the formation of image charges plays a key role in the alignment of the molecular energy levels with respect to the metal's Fermi energy. Here, we provide direct experimental evidence for an electrode-induced gap renormalization in single-molecule junctions. We study charge transport through single porphyrin-type molecules using electrically gateable break junctions. In this set-up, the position of the occupied and unoccupied molecular energy levels can be followed in situ under simultaneous mechanical control. When increasing the electrode separation by just a few ångströms, we observe a substantial increase in the transport gap and level shifts as high as several hundreds of meV. Analysis of this large and tunable gap renormalization based on atomic charges obtained from density functional theory confirms and clarifies the dominant role of image-charge effects in single-molecule junctions.

  10. Proximity effects in cold gases of multiply charged atoms (Review)

    Science.gov (United States)

    Chikina, I.; Shikin, V.

    2016-07-01

    Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities nd of multiply charged (Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), nd ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction Eproxi(nd), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction Eproxi is evaluated by comparing it with the properties of the well-known London dispersive attraction ELond(nd) interaction in gases. For the noble gases argon, krypton, and xenon Eproxi>0 and for the alkali and alkaline-earth elements Eproxi neutral complexes into charged fragments. This phenomenon appears consistently in the TF theory through the temperature dependence of the different versions of Eproxi. The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that there are no electron fluxes through the outer boundary R3 ∝ n-1d of a Wigner-Seitz cell. Eproxi corresponds to the definition of the correlation energy in a gas of interacting particles. This review is written so as to enable comparison of the results of the TF formalism with the standard assumptions of the correlation theory for classical plasmas. The classic

  11. Electric vehicle charge planning using Economic Model Predictive Control

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Poulsen, Niels K.; Madsen, Henrik

    2012-01-01

    Economic Model Predictive Control (MPC) is very well suited for controlling smart energy systems since electricity price and demand forecasts are easily integrated in the controller. Electric vehicles (EVs) are expected to play a large role in the future Smart Grid. They are expected to provide g...... should be consumed as soon as it is produced to avoid the need for energy storage as this is expensive, limited and introduces efficiency losses. The Economic MPC for EVs described in this paper may contribute to facilitating transition to a fossil free energy system.......Economic Model Predictive Control (MPC) is very well suited for controlling smart energy systems since electricity price and demand forecasts are easily integrated in the controller. Electric vehicles (EVs) are expected to play a large role in the future Smart Grid. They are expected to provide...... grid services, both for peak reduction and for ancillary services, by absorbing short term variations in the electricity production. In this paper the Economic MPC minimizes the cost of electricity consumption for a single EV. Simulations show savings of 50–60% of the electricity costs compared...

  12. Effect of sample preparation on charged impurities in graphene substrates

    Science.gov (United States)

    Burson, K. M.; Dean, C. R.; Watanabe, K.; Taniguchi, T.; Hone, J.; Kim, P.; Cullen, W. G.; Fuhrer, M. S.

    2013-03-01

    The mobility of graphene as fabricated on SiO2 has been found to vary widely depending on sample preparation conditions. Additionally, graphene mobility on SiO2 appears to be limited to ~20,000 cm2/Vs, likely due to charged impurities in the substrate. Here we present a study of the effect of fabrication procedures on substrate charged impurity density (nimp) utilizing ultrahigh-vacuum Kelvin probe force microscopy. We conclude that even minimal SEM exposure, as from e-beam lithography, induces an increased impurity density, while heating reduces the number of charges for sample substrates which already exhibit a higher impurity density. We measure both SiO2 and h-BN and find that all nimp values observed for SiO2 are higher than those observed for h-BN; this is consistent with the observed improvement in mobility for graphene devices fabricated on h-BN over those fabricated on SiO2 substrates. This work was supported by the US ONR MURI program, and the University of Maryland NSF-MRSEC under Grant No. DMR 05-20471.

  13. Detection and control of charge states in a quintuple quantum dot

    Science.gov (United States)

    Ito, Takumi; Otsuka, Tomohiro; Amaha, Shinichi; Delbecq, Matthieu R.; Nakajima, Takashi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Noiri, Akito; Kawasaki, Kento; Tarucha, Seigo

    2016-12-01

    A semiconductor quintuple quantum dot with two charge sensors and an additional contact to the center dot from an electron reservoir is fabricated to demonstrate the concept of scalable architecture. This design enables formation of the five dots as confirmed by measurements of the charge states of the three nearest dots to the respective charge sensor. The gate performance of the measured stability diagram is well reproduced by a capacitance model. These results provide an important step towards realizing controllable large scale multiple quantum dot systems.

  14. Charging dynamics of a floating gate transistor with site-controlled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Maier, P., E-mail: patrick.maier@physik.uni-wuerzburg.de; Hartmann, F.; Emmerling, M.; Schneider, C.; Höfling, S.; Kamp, M.; Worschech, L. [Technische Physik, Physikalisches Institut, Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany)

    2014-08-04

    A quantum dot memory based on a GaAs/AlGaAs quantum wire with site-controlled InAs quantum dots was realized by means of molecular beam epitaxy and etching techniques. By sampling of different gate voltage sweeps for the determination of charging and discharging thresholds, it was found that discharging takes place at short time scales of μs, whereas several seconds of waiting times within a distinct negative gate voltage range were needed to charge the quantum dots. Such quantum dot structures have thus the potential to implement logic functions comprising charge and time dependent ingredients such as counting of signals or learning rules.

  15. Bending elasticity of charged surfactant layers: the effect of mixing.

    Science.gov (United States)

    Bergström, L Magnus

    2006-08-01

    Expressions have been derived from which the spontaneous curvature (H(0)), bending rigidity (k(c)), and saddle-splay constant (k(c)) of mixed monolayers and bilayers may be calculated from molecular and solution properties as well as experimentally available quantities such as the macroscopic hydrophobic-hydrophilic interfacial tension. Three different cases of binary surfactant mixtures have been treated in detail: (i) mixtures of an ionic and a nonionic surfactant, (ii) mixtures of two oppositely charged surfactants, and (iii) mixtures of two ionic surfactants with identical headgroups but different tail volumes. It is demonstrated that k(c)H(0), k(c), and k(c) for mixtures of surfactants with flexible tails may be subdivided into one contribution that is due to bending properties of an infinitely thin surface as calculated from the Poisson-Boltzmann mean field theory and one contribution appearing as a result of the surfactant film having a finite thickness with the surface of charge located somewhat outside the hydrophobic-hydrophilic interface. As a matter of fact, the picture becomes completely different as finite layer thickness effects are taken into account, and as a result, the spontaneous curvature is extensively lowered whereas the bending rigidity is raised. Furthermore, an additional contribution to k(c) is present for surfactant mixtures but is absent for k(c)H(0) and k(c). This contribution appears as a consequence of the minimization of the free energy with respect to the composition of a surfactant layer that is open in the thermodynamic sense and must always be negative (i.e., k(c) is generally found to be brought down by the process of mixing two or more surfactants). The magnitude of the reduction of k(c) increases with increasing asymmetry between two surfactants with respect to headgroup charge number and tail volume. As a consequence, the bending rigidity assumes the lowest values for layers formed in mixtures of two oppositely charged

  16. Suppression of charge noise using barrier control of a singlet-triplet qubit

    Science.gov (United States)

    Yang, Xu-Chen; Wang, Xin

    2017-07-01

    It has been recently demonstrated that a singlet-triplet spin qubit in semiconductor double quantum dots can be controlled by changing the height of the potential barrier between the two dots ("barrier control"), which has led to a considerable reduction of charge noises as compared with the traditional tilt control method. In this paper we show, through a molecular-orbital-theoretic calculation of double quantum dots influenced by a charged impurity, that the relative charge noise for a system under the barrier control not only is smaller than that for the tilt control but actually decreases as a function of an increasing exchange interaction. This is understood as a combined consequence of the greatly suppressed detuning noise when the two dots are symmetrically operated, as well as an enhancement of the interdot hopping energy of an electron when the barrier is lowered which in turn reduces the relative charge noise at large exchange interaction values. We have also studied the response of the qubit to charged impurities at different locations and found that the improvement of barrier control is least for impurities equidistant from the two dots due to the small detuning noise they cause but is otherwise significant along other directions.

  17. Irradiation of graphene field effect transistors with highly charged ions

    Science.gov (United States)

    Ernst, P.; Kozubek, R.; Madauß, L.; Sonntag, J.; Lorke, A.; Schleberger, M.

    2016-09-01

    In this work, graphene field-effect transistors are used to detect defects due to irradiation with slow, highly charged ions. In order to avoid contamination effects, a dedicated ultra-high vacuum set up has been designed and installed for the in situ cleaning and electrical characterization of graphene field-effect transistors during irradiation. To investigate the electrical and structural modifications of irradiated graphene field-effect transistors, their transfer characteristics as well as the corresponding Raman spectra are analyzed as a function of ion fluence for two different charge states. The irradiation experiments show a decreasing mobility with increasing fluences. The mobility reduction scales with the potential energy of the ions. In comparison to Raman spectroscopy, the transport properties of graphene show an extremely high sensitivity with respect to ion irradiation: a significant drop of the mobility is observed already at fluences below 15 ions/μm2, which is more than one order of magnitude lower than what is required for Raman spectroscopy.

  18. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    Directory of Open Access Journals (Sweden)

    Valeriy Shchavlev

    2012-12-01

    Full Text Available Electron beam welding (EBW shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  19. Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.

    Science.gov (United States)

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-12-14

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  20. The Gravitational Effects of a Celestial Body with Magnetic Charge and Moment

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The gravitational effects (precession of charge-less particles and deflection of light) in the gravitational field of a celestial body with magnetic charge and moment (CM)are investigated. We found that the magnetic charge always weakens the pure Schwarzschild effects, while the magnetic dipole moment deforms the effects in a more complicated way.

  1. Space charge effects for multipactor in coaxial lines

    Energy Technology Data Exchange (ETDEWEB)

    Sorolla, E., E-mail: eden.sorolla@xlim.fr [XLIM, UMR 7252, Université de Limoges/CNRS, 123 Av. Albert Thomas, 87060 Limoges (France); Sounas, A.; Mattes, M. [Laboratoire d' Électromagnétisme et d' Acoustique (LEMA), École Polytechnique Fédérale de Lausanne, Station 11, CH-1015 Lausanne (Switzerland)

    2015-03-15

    Multipactor is a hazardous vacuum discharge produced by secondary electron emission within microwave devices of particle accelerators and telecommunication satellites. This work analyzes the dynamics of the multipactor discharge within a coaxial line for the mono-energetic electron emission model taking into account the space charge effects. The steady-state is predicted by the proposed model and an analytical expression for the maximum number of electrons released by the discharge presented. This could help to link simulations to experiments and define a multipactor onset criterion.

  2. Space-charge effects in high-energy photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Verna, Adriano, E-mail: adriano.verna@uniroma3.it [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Greco, Giorgia [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Lollobrigida, Valerio [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Scuola Dottorale in Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Offi, Francesco; Stefani, Giovanni [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy)

    2016-05-15

    Highlights: • N-body simulations of interacting photoelectrons in hard X-ray experiments. • Secondary electrons have a pivotal role in determining the energy broadening. • Space charge has negligible effects on the photoelectron momentum distribution. • A simple model provides the characteristic time for energy-broadening mechanism. • The feasibility of time-resolved high-energy experiments with FELs is discussed. - Abstract: Pump-and-probe photoelectron spectroscopy (PES) with femtosecond pulsed sources opens new perspectives in the investigation of the ultrafast dynamics of physical and chemical processes at the surfaces and interfaces of solids. Nevertheless, for very intense photon pulses a large number of photoelectrons are simultaneously emitted and their mutual Coulomb repulsion is sufficiently strong to significantly modify their trajectory and kinetic energy. This phenomenon, referred as space-charge effect, determines a broadening and shift in energy for the typical PES structures and a dramatic loss of energy resolution. In this article we examine the effects of space charge in PES with a particular focus on time-resolved hard X-ray (∼10 keV) experiments. The trajectory of the electrons photoemitted from pure Cu in a hard X-ray PES experiment has been reproduced through N-body simulations and the broadening of the photoemission core-level peaks has been monitored as a function of various parameters (photons per pulse, linear dimension of the photon spot, photon energy). The energy broadening results directly proportional to the number N of electrons emitted per pulse (mainly represented by secondary electrons) and inversely proportional to the linear dimension a of the photon spot on the sample surface, in agreement with the literature data about ultraviolet and soft X-ray experiments. The evolution in time of the energy broadening during the flight of the photoelectrons is also studied. Despite its detrimental consequences on the energy

  3. Luminescent tunable polydots: Charge effects in confined geometry

    Science.gov (United States)

    Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora; Grest, Gary S.

    2017-06-01

    Long-lived soft nanoparticles, formed by conjugated polymers, constitute a new class of far-from-equilibrium responsive structures for nano-medicine. Tethering ionizable groups to the polymers enables functionality. However concurrently, the ionic groups perturb the delicate balance of interactions that governs these particles. Using fully atomistic molecular dynamics simulations, this study probed the effects of charged groups tethered to poly para phenylene ethynylene substituted by alkyl groups on the polymer conformation and dynamics in confined geometry. We find that the ionizable groups affect the entire shape of the polydots and impact the conformation and dynamics of the polymer.

  4. Space-charge-controlled field emission model of current conduction through Al2O3 films

    Science.gov (United States)

    Hiraiwa, Atsushi; Matsumura, Daisuke; Kawarada, Hiroshi

    2016-02-01

    This study proposes a model for current conduction in metal-insulator-semiconductor (MIS) capacitors, assuming the presence of two sheets of charge in the insulator, and derives analytical formulae of field emission (FE) currents under both negative and positive bias. Since it is affected by the space charge in the insulator, this particular FE differs from the conventional FE and is accordingly named the space-charge-controlled (SCC) FE. The gate insulator of this study was a stack of atomic-layer-deposition Al2O3 and underlying chemical SiO2 formed on Si substrates. The current-voltage (I-V) characteristics simulated using the SCC-FE formulae quantitatively reproduced the experimental results obtained by measuring Au- and Al-gated Al2O3/SiO2 MIS capacitors under both biases. The two sheets of charge in the Al2O3 films were estimated to be positive and located at a depth of greater than 4 nm from the Al2O3/SiO2 interface and less than 2 nm from the gate. The density of the former is approximately 1 × 1013 cm-2 in units of electronic charge, regardless of the type of capacitor. The latter forms a sheet of dipoles together with image charges in the gate and hence causes potential jumps of 0.4 V and 1.1 V in the Au- and Al-gated capacitors, respectively. Within a margin of error, this sheet of dipoles is ideally located at the gate/Al2O3 interface and effectively reduces the work function of the gate by the magnitude of the potential jumps mentioned above. These facts indicate that the currents in the Al2O3/SiO2 MIS capacitors are enhanced as compared to those in ideal capacitors and that the currents in the Al-gated capacitors under negative bias (electron emission from the gate) are more markedly enhanced than those in the Au-gated capacitors. The larger number of gate-side dipoles in the Al-gated capacitors is possibly caused by the reaction between the Al and Al2O3, and therefore gate materials that do not react with underlying gate insulators should be chosen

  5. Combining Market-Based Control with Distribution Grid Constraints when Coordinating Electric Vehicle Charging

    Directory of Open Access Journals (Sweden)

    Geert Deconinck

    2015-12-01

    Full Text Available The charging of electric vehicles (EVs impacts the distribution grid, and its cost depends on the price of electricity when charging. An aggregator that is responsible for a large fleet of EVs can use a market-based control algorithm to coordinate the charging of these vehicles, in order to minimize the costs. In such an optimization, the operational parameters of the distribution grid, to which the EVs are connected, are not considered. This can lead to violations of the technical constraints of the grid (e.g., under-voltage, phase unbalances; for example, because many vehicles start charging simultaneously when the price is low. An optimization that simultaneously takes the economic and technical aspects into account is complex, because it has to combine time-driven control at the market level with event-driven control at the operational level. Different case studies investigate under which circumstances the market-based control, which coordinates EV charging, conflicts with the operational constraints of the distribution grid. Especially in weak grids, phase unbalance and voltage issues arise with a high share of EVs. A low-level voltage droop controller at the charging point of the EV can be used to avoid many grid constraint violations, by reducing the charge power if the local voltage is too low. While this action implies a deviation from the cost-optimal operating point, it is shown that this has a very limited impact on the business case of an aggregator, and is able to comply with the technical distribution grid constraints, even in weak distribution grids with many EVs.

  6. Alternating current-generated plasma discharges for the controlled direct current charging of ferroelectrets

    Science.gov (United States)

    Cury Basso, Heitor; Monteiro, José Roberto B. de A.; Baladelli Mazulquim, Daniel; Teixeira de Paula, Geyverson; Gonçalves Neto, Luiz; Gerhard, Reimund

    2013-09-01

    The standard charging process for polymer ferroelectrets, e.g., from polypropylene foams or layered film systems involves the application of high DC fields either to metal electrodes or via a corona discharge. In this often-used process, the DC field triggers the internal breakdown and limits the final charge densities inside the ferroelectret cavities and, thus, the final polarization. Here, an AC + DC charging procedure is proposed and demonstrated in which a high-voltage high-frequency (HV-HF) wave train is applied together with a DC poling voltage. Thus, the internal dielectric-barrier discharges in the ferroelectret cavities are induced by the HV-HF wave train, while the final charge and polarization level is controlled separately through the applied DC voltage. In the new process, the frequency and the amplitude of the HV-HF wave train must be kept within critical boundaries that are closely related to the characteristics of the respective ferroelectrets. The charging method has been tested and investigated on a fluoropolymer-film system with a single well-defined cylindrical cavity. It is found that the internal electrical polarization of the cavity can be easily controlled and increases linearly with the applied DC voltage up to the breakdown voltage of the cavity. In the standard charging method, however, the DC voltage would have to be chosen above the respective breakdown voltage. With the new method, control of the HV-HF wave-train duration prevents a plasma-induced deterioration of the polymer surfaces inside the cavities. It is observed that the frequency of the HV-HF wave train during ferroelectret charging and the temperature applied during poling of ferroelectrics serve an analogous purpose. The analogy and the similarities between the proposed ferroelectret charging method and the poling of ferroelectric materials or dipole electrets at elevated temperatures with subsequent cooling under field are discussed.

  7. Mesoscopic capacitor and zero-point energy: Poisson's distribution for virtual charges, pressure, and decoherence control

    Science.gov (United States)

    Flores, J. C.

    2014-08-01

    Mesoscopic capacitor theory, which includes intrinsic inductive effects from quantum tunneling, is applied to conducting spherical shells. The zero-point pressure and the number of virtual charged pairs are determined assuming a Poisson distribution. They are completely defined by a dimensionless mesoscopic parameter (χc) measuring the average number of virtual pairs per solid angle and carrying mesoscopic information. Fluctuations remain finite and well defined. Connections with usual quantum-field-theory limit enables us to evaluate χc 1.007110. Equivalently, for a mesoscopic parallel-plate capacitor, the shot noise distribution becomes operative with χc 0.94705 as well being related to the density of virtual pairs. Temperature decoherence and capacitor control are discussed by considering typical values of quantum dot devices and Coulomb blockade theory.

  8. Optical switching of electric charge transfer pathways in porphyrin: a light-controlled nanoscale current router.

    Science.gov (United States)

    Thanopulos, Ioannis; Paspalakis, Emmanuel; Yannopapas, Vassilios

    2008-11-05

    We introduce a novel molecular junction based on a thiol-functionalized porphyrin derivative with two almost energetically degenerate equilibrium configurations. We show that each equilibrium structure defines a pathway of maximal electric charge transfer through the molecular junction and that these two conduction pathways are spatially orthogonal. We further demonstrate computationally how to switch between the two equilibrium structures of the compound by coherent light. The optical switching mechanism is presented in the relevant configuration subspace of the compound, and the corresponding potential and electric dipole surfaces are obtained by ab initio methods. The laser-induced isomerization takes place in two steps in tandem, while each step is induced by a two-photon process. The effect of metallic electrodes on the electromagnetic irradiation driving the optical switching is also investigated. Our study demonstrates the potential for using thiol-functionalized porphyrin derivatives for the development of a light-controlled nanoscale current router.

  9. An improved switching control law for the optimized synchronous electric charge extraction circuit

    Science.gov (United States)

    Liu, Weiqun; Badel, Adrien; Formosa, Fabien; Liu, Congzhi; Hu, Guangdi

    2015-12-01

    Nonlinear switching interface circuits are considered as an efficient way to improve the performance of vibration energy harvesters. Among the various approaches, OSECE (Optimized Synchronous Electric Charge Extraction) exhibits satisfying properties: simple switching strategy, good performance in low coupling cases and low load dependency. However, the overdamping induced by the voltage inversion at maximal points leads to performance degeneration in high coupling cases. This paper presents an improved switching control law for the OSECE technique. The new OSECE_PT (OSECE with switching Phase Tuning) technique presented here is to let the switches act ahead or after the maximal point with a phase tuning. Theoretical analysis and numerical simulations show that the OSECE_PT technique can improve the power performance effectively and preserves desired load independence properties.

  10. Free charge localization and effective dielectric permittivity in oxides

    Science.gov (United States)

    Maglione, Mario

    2016-06-01

    This review will deal with several types of free charge localization in oxides and their consequences on the effective dielectric spectra of such materials. The first one is the polaronic localization at the unit cell scale on residual impurities in ferroelectric networks. The second one is the collective localization of free charge at macroscopic interfaces like surfaces, electrodes and grain boundaries in ceramics. Polarons have been observed in many oxide perovskites mostly when cations having several stable electronic configurations are present. In manganites, the density of such polarons is so high as to drive a net lattice of interacting polarons. On the other hand, in ferroelectric materials like BaTiO3 and LiNbO3, the density of polarons is usually very small but they can influence strongly the macroscopic conductivity. The contribution of such polarons to the dielectric spectra of ferroelectric materials is described. Even residual impurities as for example Iron can induce well-defined anomalies at very low temperatures. This is mostly resulting from the interaction between localized polarons and the highly polarizable ferroelectric network in which they are embedded. The case of such residual polarons in SrTiO3 will be described in more detail, emphasizing the quantum polaron state at liquid helium temperatures. Recently, several nonferroelectric oxides have been shown to display giant effective dielectric permittivity. It is first shown that the frequency/temperature behavior of such parameters is very similar in very different compounds (donor-doped BaTiO3, CaCu3Ti4O12, LuFe2O4, Li-doped NiO, etc.). This similarity calls for a common origin of the giant dielectric permittivity in these compounds. A space charge localization at macroscopic interfaces can be the key for such extremely high dielectric permittivity.

  11. Chemical Control of Lead Sulfide Quantum Dot Shape, Self-Assembly, and Charge Transport

    Science.gov (United States)

    McPhail, Martin R.

    Lead(II) sulfide quantum dots (PbS QDs) are a promising excitonic material for numerous application that require that control of fluxes of charge and energy at nanoscale interfaces, such as solar energy conversion, photo- and electrocatalysis, light emitting diodes, chemical sensing, single-electron logic elements, field effect transistors, and photovoltaics. PbS QDs are particularly suitable for photonics applications because they exhibit size-tunable band-edge absorption and fluorescence across the entire near-infrared spectrum, undergo efficient multi-exciton generation, exhibit a long radiative lifetime, and possess an eight-fold degenerate ground-state. The effective integration of PbS QDs into these applications requires a thorough understanding of how to control their synthesis, self-assembly, and charge transport phenomena. In this document, I describe a series of experiments to elucidate three levels of chemical control on the emergent properties of PbS QDs: (1) the role of surface chemistry in controlling PbS QD shape during solvothermal synthesis, (2) the role of QD shape and ligand functionalization in self-assembly at a liquid-air interface, and (3) the role of QD packing structure on steady-state conductivity and transient current dynamics. At the synthetic level (1), I show that the final shape and surface chemistry of PbS QDs is highly sensitive to the formation of organosulfur byproducts by commonly used sulfur reagents. The insight into PbS QD growth gained from this work is then developed to controllably tune PbS QD shape from cubic to octahedral to hexapodal while maintaining QD size. At the following level of QD self-assembly (2), I show how QD size and shape dictate packing geometry in extended 2D arrays and how this packing can be controllably interrupted in mixed monolayers. I also study the role of ligand structure on the reorganization of QD arrays at a liquid-air interface and find that the specific packing defects in QD arrays vary

  12. Game-theoretic control of PHEV charging with power flow analysis

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2016-03-01

    Full Text Available Due to an ever-increasing market penetration of plug-in hybrid electric vehicles (PHEVs, the charging demand is expected to become a main determinant of the load in future distribution systems. In this paper, we investigate the problem of controlling in-home charging of PHEVs to accomplish peak load shifting while maximizing the revenue of the distribution service provider (DSP and PHEV owners. A leader-follower game model is proposed to characterize the preference and revenue expectation of PHEV owners and DSP, respectively. The follower (PHEV owner decides when to start charging based on the pricing schedule provided by the leader (DSP. The DSP can incentivize the charging of PHEV owners to avoid system peak load. The costs associated with power distribution, line loss, and voltage regulation are incorporated in the game model via power flow analysis. Based on a linear approximation of the power flow equations, the solution of sub-game perfect Nash equilibrium (SPNE is obtained. A case study is performed based on the IEEE 13-bus test feeder and realistic PHEV charging statistics, and the results demonstrate that our proposed PHEV charging control scheme can significantly improve the power quality in distribution systems by reducing the peak load and voltage fluctuations.

  13. Optimal decentralized charging control algorithm for electrified vehicles connected to smart grid

    Science.gov (United States)

    Ahn, Changsun; Li, Chiao-Ting; Peng, Huei

    Electrified vehicles (EV) and renewable power sources are two important technologies for sustainable ground transportation. If left unmitigated, the additional electric load could over-burden the electric grid. Meanwhile, a challenge for integrating renewable power sources into the grid lies in the fact their intermittency requires more regulation services which makes them expensive to deploy. Fortunately, EVs are controllable loads and the charging process can be interrupted. This flexibility makes it possible to manipulate EV charging to reduce the additional electric load and accommodate the intermittency of renewable power sources. To illustrate this potential, a two-level optimal charging algorithm is designed, which achieves both load shifting and frequency regulation. Load shifting can be realized through coordination of power generation and vehicle charging while reducing power generation cost and carbon dioxide emissions. To ensure practicality, a decentralized charging algorithm for load shifting is formulated by emulating the charging pattern identified through linear programming optimization solutions. The frequency regulation is also designed based on frequency droop that can be implemented in a decentralized way. The two control objectives can be integrated because they are functionally separated by time scale. Simulation results are presented to demonstrate the performance of the proposed decentralized algorithm.

  14. Effects of reliability screens of MOS charge trapping

    Energy Technology Data Exchange (ETDEWEB)

    Shanneyfelt, M.R.; Winokur, P.S.; Fleetwood, D.M.; Schwank, J.R.; Reber, R.A. Jr.

    1995-09-01

    The effects of pre-irradiation elevated-temperature bias stresses on the radiation hardness of field-oxide transistors have been investigated as a function of stress temperature, time, and bias. Both the stress temperature and time are found to have a significant impact on radiation-induced charge buildup in these transistors. Specifically, an increase in either the stress temperature or time causes a much larger negative shift (towards depletion) in the I-V characteristics of the n-channel field-oxide transistors. This increased shift in the transistor I-V characteristics with stress temperature and time suggests that the mechanisms responsible for the stress effects are thermally activated. An activation energy of {approximately}0.38 eV was measured. The stress bias was found to have no impact on radiation-induced charge buildup in these transistors. The observed stress temperature, time, and bias dependencies appears to be consistent with the diffusion of molecular hydrogen during a given stress period. These results have important implications for the development of hardness assurance test methods.

  15. A Control Algorithm for Electric Vehicle Fast Charging Stations Equipped with Flywheel Energy Storage Systems

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Freijedo Fernandez, Francisco Daniel

    2016-01-01

    This paper proposes a control strategy for plugin electric vehicle (PEV) fast charging station (FCS) equipped with a flywheel energy storage system (FESS). The main role of the FESS is not to compromise the predefined charging profile of PEV battery during the provision of a hysteresis-type active...... any digital communication between the grid-tied and FESS converters. Detailed system modeling and dynamics analysis of the controller are carried out for the different operating modes of the FCS system. A lab-scale prototype was built to validate the proposal. The presented experimental results proved...... power ancillary service to the overhead power system. In that sense, when the active power is not being extracted from the grid, FESS provides the power required to sustain the continuous charging process of PEV battery. A key characteristic of the whole control system is that it is able to work without...

  16. Optimal control of an electric vehicle’s charging schedule under electricity markets

    DEFF Research Database (Denmark)

    Lan, Tian; Hu, Junjie; Kang, Qi

    2013-01-01

    As increasing numbers of electric vehicles (EVs) enter into the society, the charging behavior of EVs has got lots of attention due to its economical difference within the electricity market. The charging cost for EVs generally differ from each other in choosing the charging time interval (hourly......), since the hourly electricity prices are different in the market. In this paper, the problem is formulated into an optimal control one and solved by dynamic programming. Optimization aims to find the economically optimal charging solution for each vehicle. In this paper, a nonlinear battery model...... is characterized and presented, and a given future electricity prices is assumed and utilized. Simulation results indicate that daily charing cost is reduced by smart charing....

  17. Generation of optical vortices with the same topological charges and controllable separation distances using diffraction gratings

    Science.gov (United States)

    Ghasempour Ardakani, Abbas; Safarzadeh, Fatemeh

    2016-08-01

    In this paper, we first generate optical vortices with different topological charges, using the method of computer-generated holograms. Then, we separate one of the optical vortices from others with a special topological charge and pass it through a diffraction grating with a specified line spacing. It is observed that the vortex beam, after passing through the grating, converts to several separated vortices with the same topological charge whose value is similar to the topological charge of the input vortex. Finally, we show that the distance between generated vortices can be controlled with the variation of spacing between grating lines. So, the proposed setup in this paper can be exploited as an optical vortex divider which is useful in communication and trapping systems.

  18. High Tc superconductivity mechanism controlled by electric dipole correlation and charge correlation

    OpenAIRE

    2008-01-01

    The model is based on a mirror symmetry breaking second order phase transition leading to a pairing between a free charge carriers and a free mirror charge carriers. This approach gives a unified description of low and high Tc superconductivity with a point of view differing from that of BCS theory.The material's crystal structure symmetry is the key to understand the mechanism of pairing by introducing a mirror plane polarization effect in lattice as it is described below.

  19. Monitoring and control system of charging batteries connected to a photovoltaic panel

    Science.gov (United States)

    Idzkowski, Adam; Leoniuk, Katarzyna; Walendziuk, Wojciech; Budzynski, Lukasz

    2015-09-01

    In this paper the off-grid photovoltaic system consisting of a PV panel, MMPT charge controller and battery is described. The realization of a laboratory stand for charging or discharging batteries is presented. Original monitoring and control system, which is based on LabVIEW software and LabJack DAQ device, has been built. Data acquisition part, arithmetic part and front panel of program created in LabVIEW are described. Some problems with implementation of this system, providing the monitoring of electrical parameters, are mentioned.

  20. Mechanisms controlling retention during ultrafiltration of charged saccharides: Molecular conformation and electrostatic forces

    DEFF Research Database (Denmark)

    Pinelo, Manuel; Møller, Victor; Prado-Rubio, Oscar A.

    2013-01-01

    and between solute molecules and membrane material are amongst the key factors determining the separation efficiency during ultrafiltration of charged saccharides. Our hypothesis is that the manipulation of pH in addition to the classic pressure control should enhance the ultrafiltration performance...... on the molecules at higher pH. The results obtained in this work demonstrate that it is possible to control the observed retention of charged saccharides during ultrafiltration by manipulating pH and transmembrane pressure. Therefore, beyond operational conditions, specific molecular mechanisms must be taken...

  1. Hall effect in quantum critical charge-cluster glass.

    Science.gov (United States)

    Wu, Jie; Bollinger, Anthony T; Sun, Yujie; Božović, Ivan

    2016-04-19

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4(LSCO) samples doped near the quantum critical point atx∼ 0.06. Dramatic fluctuations in the Hall resistance appear belowTCG∼ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps,Δx∼ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.

  2. Non-equilibration of topological charge and its effects

    CERN Document Server

    Bernard, Claude

    2016-01-01

    In QCD simulations at small lattice spacings, the topological charge Q evolves very slowly and, if this quantity is not properly equilibrated, we could get incorrect results for physical quantities, or incorrect estimates of their errors. We use the known relation between the dependence of masses and decay constants on the QCD vacuum angle theta and the squared topological charge Q^2 together with chiral perturbation theory results for the dependence of masses and decay constants on theta to estimate the size of these effects and suggest strategies for dealing with them. For the partially quenched case, we sketch an alternative derivation of the known $\\chi$PT results of Aoki and Fukaya, using the nonperturbatively correct chiral theory worked out by Golterman, Sharpe and Singleton, and by Sharpe and Shoresh. With the MILC collaboration's ensembles of lattices with four flavors of HISQ dynamical quarks, we measure the $Q^2$ dependence of masses and decay constants and compare to the $\\chi$PT forms. The observ...

  3. Charge Transfer and Support Effects in Heterogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hervier, Antoine [Univ. of California, Berkeley, CA (United States)

    2011-12-21

    the band bending at the interface, gives rise to a steady-state flow of hot holes to the surface. This leads to a decrease in turnover on the surface, an effect which is enhanced when a reverse bias is applied to the diode. Similar experiments were carried out for CO oxidation. On Pt/Si diodes, the reaction rate was found to increase when a forward bias was applied. When the diode was exposed to visible light and a reverse bias was applied, the rate was instead decreased. This implies that a flow of negative charges to the surface increases turnover, while positive charges decrease it. Charge flow in an oxide supported metal catalyst can be modified even without designing the catalyst as a solid state electronic device. This was done by doping stoichiometric and nonstoichiometric TiO2 films with F, and using the resulting oxides as supports for Pt films. In the case of stoichiometric TiO2, F was found to act as an n-type dopant, creating a population of filled electronic states just below the conduction band, and dramatically increasing the conductivity of the oxide film. The electrons in those states can transfer to surface O, activating it for reaction with CO, and leading to increased turnover for CO oxidation. This reinforces the hypothesis that CO oxidation is activated by a flow of negative charges to the surface. The same set of catalysts was used for methanol oxidation. The electronic properties of the TiO2 films again correlated with the turnover rates, but also with selectivity. With stoichiometric TiO2 as the support, F-doping caused an increase in selectivity toward the formation of partial oxidation products, formaldehyde and methyl formate, versus the total oxidation product, CO2. With non-stoichiometric TiO2, F-doping had the reverse effect. Ambient Pressure X-Ray Photoelectron Spectroscopy was used to investigate this F-doping effect in reaction conditions. In O2 alone, and in

  4. Charge Stripper Effects on Beam Optics in 180-degree Bending Section of RISP Linac

    CERN Document Server

    Jang, Ji-Ho; Song, Jeong Seog

    2016-01-01

    The RAON, a superconducting linear accelerator for RISP (Rare Isotope Science Project), will use a charge stripper in order to increase the charge states of the heavy ions for effective acceleration in the higher energy part of the linac. The charge stripper affects the beam qualities by scattering when the heavy ions go through the charge stripper. Moreover we have to select and accelerate proper charge states between 77+ and 81+ for uranium beam case in order to satisfy the beam power requirement at an IF (Inflight Fragmentation) target. This work focuses on the beam optics affected by the charge stripper in the 180-dgree bending section.

  5. Optimization and control method for smart charging of EVs facilitated by Fleet operator

    DEFF Research Database (Denmark)

    Hu, Junjie; You, Shi; Si, Chengyong

    2013-01-01

    challenges to the utility system operator; accordingly, smart charging of EVs is needed. This paper presents a review and classification of methods for smart charging of EVs found in the literature. The study is mainly executed from the control theory perspectives. Firstly, service dependent aggrega......Electric vehicles (EV) can become integral parts of a smart grid, since they are capable of providing valuable services to power systems other than just consuming power. As an important solution to balance the intermittent renewable energy re-sources, such as wind power and PVs, EVs can absorb...... and control of smart charging of EVs. Finally, the paper discusses and proposes future research directions in the area....

  6. Charge uncovering effects on flute instabilities in hot electron plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Spong, D.A.

    1985-01-01

    Recent measurements and concurrent theoretical equilibrium models of the ELMO Bumpy Torus (EBT) edge plasma region (as described by E. F. Jaeger et al. in Magnetic Well Depth in EBT and Sensitivity to Hot Electron Ring Geometry, ORNL/TM-9185 (1984)) have indicated that the hot electron ring beta ..beta../sub hot/ at the C-T transition may not always be sufficient to produce the local minimum in the magnetic field thought to be necessary for MHD stability. This has led to the examination of other mechanisms that could account for the observed stability of the T-mode. In this report, an effect known as charge uncovering, which depends not on the value of ..beta../sub hot/ but rather on the ratio n/sub hot//n/sub core/, is studied.

  7. Charge-controlled switchable CO2 capture on boron nitride nanomaterials.

    Science.gov (United States)

    Sun, Qiao; Li, Zhen; Searles, Debra J; Chen, Ying; Lu, Gaoqing Max; Du, Aijun

    2013-06-05

    Increasing concerns about the atmospheric CO2 concentration and its impact on the environment are motivating researchers to discover new materials and technologies for efficient CO2 capture and conversion. Here, we report a study of the adsorption of CO2, CH4, and H2 on boron nitride (BN) nanosheets and nanotubes (NTs) with different charge states. The results show that the process of CO2 capture/release can be simply controlled by switching on/off the charges carried by BN nanomaterials. CO2 molecules form weak interactions with uncharged BN nanomaterials and are weakly adsorbed. When extra electrons are introduced to these nanomaterials (i.e., when they are negatively charged), CO2 molecules become tightly bound and strongly adsorbed. Once the electrons are removed, CO2 molecules spontaneously desorb from BN absorbents. In addition, these negatively charged BN nanosorbents show high selectivity for separating CO2 from its mixtures with CH4 and/or H2. Our study demonstrates that BN nanomaterials are excellent absorbents for controllable, highly selective, and reversible capture and release of CO2. In addition, the charge density applied in this study is of the order of 10(13) cm(-2) of BN nanomaterials and can be easily realized experimentally.

  8. Charge diffusion and the butterfly effect in striped holographic matter

    CERN Document Server

    Lucas, Andrew

    2016-01-01

    Recently, it has been proposed that the butterfly velocity - a speed at which quantum information propagates - may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength "hydrodynamic" disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.

  9. Charge diffusion and the butterfly effect in striped holographic matter

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Andrew [Department of Physics, Harvard University,Cambridge, MA 02138 (United States); Department of Physics, Stanford University,Stanford, CA 94305 (United States); Steinberg, Julia [Department of Physics, Harvard University,Cambridge, MA 02138 (United States)

    2016-10-26

    Recently, it has been proposed that the butterfly velocity — a speed at which quantum information propagates — may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength “hydrodynamic' disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.

  10. Surface charge effects in protein adsorption on nanodiamonds.

    Science.gov (United States)

    Aramesh, M; Shimoni, O; Ostrikov, K; Prawer, S; Cervenka, J

    2015-03-19

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.

  11. Charge Transfer and Support Effects in Heterogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hervier, Antoine [Univ. of California, Berkeley, CA (United States)

    2011-12-21

    the band bending at the interface, gives rise to a steady-state flow of hot holes to the surface. This leads to a decrease in turnover on the surface, an effect which is enhanced when a reverse bias is applied to the diode. Similar experiments were carried out for CO oxidation. On Pt/Si diodes, the reaction rate was found to increase when a forward bias was applied. When the diode was exposed to visible light and a reverse bias was applied, the rate was instead decreased. This implies that a flow of negative charges to the surface increases turnover, while positive charges decrease it. Charge flow in an oxide supported metal catalyst can be modified even without designing the catalyst as a solid state electronic device. This was done by doping stoichiometric and nonstoichiometric TiO2 films with F, and using the resulting oxides as supports for Pt films. In the case of stoichiometric TiO2, F was found to act as an n-type dopant, creating a population of filled electronic states just below the conduction band, and dramatically increasing the conductivity of the oxide film. The electrons in those states can transfer to surface O, activating it for reaction with CO, and leading to increased turnover for CO oxidation. This reinforces the hypothesis that CO oxidation is activated by a flow of negative charges to the surface. The same set of catalysts was used for methanol oxidation. The electronic properties of the TiO2 films again correlated with the turnover rates, but also with selectivity. With stoichiometric TiO2 as the support, F-doping caused an increase in selectivity toward the formation of partial oxidation products, formaldehyde and methyl formate, versus the total oxidation product, CO2. With non-stoichiometric TiO2, F-doping had the reverse effect. Ambient Pressure X-Ray Photoelectron Spectroscopy was

  12. Evaluation of Electric Vehicle Charging Controllability for Provision of Time Critical Grid Services

    DEFF Research Database (Denmark)

    Martinenas, Sergejus; Marinelli, Mattia; Andersen, Peter Bach;

    2016-01-01

    Replacement of conventional generation by more stochastic renewable generation sources leads to reduction of inertia and controllability in the power system. This introduces the need for more dynamic regulation services. These faster services could potentially be provided by the growing number...... of electric vehicles. EVs are a fast responding energy resource with high availability. This work evaluates and experimentally shows the limits of EV charging controllability with the focus on its suitability for providing ancillary grid services. Three different series produced EVs are tested....... The experimental testing is done by using charging current controllability of built-in AC charger to provide a primary frequency regulation service with very dynamic input frequency. The results show that most the controllability of most EVs is more than suitable for providing time critical grid services...

  13. Natural Cutoffs effect on Charged Rotating TeV-Scale Black Hole Thermodynamics

    CERN Document Server

    Soleimani, M J; Gopir, G; Ibrahim, Zainol Abidin; Radiman, Shahidan; Abdullah, W A T Wan

    2015-01-01

    We study the thermodynamics of charged rotating black hole in large extra dimensions scenario where quantum gravity effects are taken into account. We consider the effects of minimal length, minimal momentum, and maximal momentum as natural cutoffs on the thermodynamics of charged rotating TeV-scale black holes. In this framework the effect of the angular momentum and charge on the thermodynamics of the black hole are discussed. We focus also on frame dragging and Sagnac effect of the micro black holes.

  14. The application of charge-coupled device processors in automatic-control systems

    Science.gov (United States)

    Mcvey, E. S.; Parrish, E. A., Jr.

    1977-01-01

    The application of charge-coupled device (CCD) processors to automatic-control systems is suggested. CCD processors are a new form of semiconductor component with the unique ability to process sampled signals on an analog basis. Specific implementations of controllers are suggested for linear time-invariant, time-varying, and nonlinear systems. Typical processing time should be only a few microseconds. This form of technology may become competitive with microprocessors and minicomputers in addition to supplementing them.

  15. The application of charge-coupled device processors in automatic-control systems

    Science.gov (United States)

    Mcvey, E. S.; Parrish, E. A., Jr.

    1977-01-01

    The application of charge-coupled device (CCD) processors to automatic-control systems is suggested. CCD processors are a new form of semiconductor component with the unique ability to process sampled signals on an analog basis. Specific implementations of controllers are suggested for linear time-invariant, time-varying, and nonlinear systems. Typical processing time should be only a few microseconds. This form of technology may become competitive with microprocessors and minicomputers in addition to supplementing them.

  16. Effects of charged sand on electromagnetic wave propagation and its scattering field

    Institute of Scientific and Technical Information of China (English)

    HE; Qinshu; ZHOU; Youhe; ZHENG; Xiaojing

    2006-01-01

    Based on the Rayleigh's scattering theory, the effects of sandstorms on the propagation of electromagnetic wave with different visibilities are presented by solving the scattering field of charged sand particles. Because of the electric charges on the sand surface, the theoretical attenuation will be large enough to match the measured value under certain conditions. And the results show that the effect of sand with electric charges all over its surface on electromagnetic wave attenuation is the same as that of sand without charge, which proves that electric charges distribute on partial surface of the sand in fact.

  17. Master-Slave Control Scheme in Electric Vehicle Smart Charging Infrastructure

    Directory of Open Access Journals (Sweden)

    Ching-Yen Chung

    2014-01-01

    Full Text Available WINSmartEV is a software based plug-in electric vehicle (PEV monitoring, control, and management system. It not only incorporates intelligence at every level so that charge scheduling can avoid grid bottlenecks, but it also multiplies the number of PEVs that can be plugged into a single circuit. This paper proposes, designs, and executes many upgrades to WINSmartEV. These upgrades include new hardware that makes the level 1 and level 2 chargers faster, more robust, and more scalable. It includes algorithms that provide a more optimal charge scheduling for the level 2 (EVSE and an enhanced vehicle monitoring/identification module (VMM system that can automatically identify PEVs and authorize charging.

  18. Master-slave control scheme in electric vehicle smart charging infrastructure.

    Science.gov (United States)

    Chung, Ching-Yen; Chynoweth, Joshua; Chu, Chi-Cheng; Gadh, Rajit

    2014-01-01

    WINSmartEV is a software based plug-in electric vehicle (PEV) monitoring, control, and management system. It not only incorporates intelligence at every level so that charge scheduling can avoid grid bottlenecks, but it also multiplies the number of PEVs that can be plugged into a single circuit. This paper proposes, designs, and executes many upgrades to WINSmartEV. These upgrades include new hardware that makes the level 1 and level 2 chargers faster, more robust, and more scalable. It includes algorithms that provide a more optimal charge scheduling for the level 2 (EVSE) and an enhanced vehicle monitoring/identification module (VMM) system that can automatically identify PEVs and authorize charging.

  19. Hierarchical charge distribution controls self-assembly process of silk in vitro

    Science.gov (United States)

    Zhang, Yi; Zhang, Cencen; Liu, Lijie; Kaplan, David L.; Zhu, Hesun; Lu, Qiang

    2015-12-01

    Silk materials with different nanostructures have been developed without the understanding of the inherent transformation mechanism. Here we attempt to reveal the conversion road of the various nanostructures and determine the critical regulating factors. The regulating conversion processes influenced by a hierarchical charge distribution were investigated, showing different transformations between molecules, nanoparticles and nanofibers. Various repulsion and compressive forces existed among silk fibroin molecules and aggregates due to the exterior and interior distribution of charge, which further controlled their aggregating and deaggregating behaviors and finally formed nanofibers with different sizes. Synergistic action derived from molecular mobility and concentrations could also tune the assembly process and final nanostructures. It is suggested that the complicated silk fibroin assembly processes comply a same rule based on charge distribution, offering a promising way to develop silk-based materials with designed nanostructures.

  20. Rigid, Branched Porphyrin Antennas: Control over Cascades of Unidirectional Energy Funneling and Charge Transfer.

    Science.gov (United States)

    Wolf, Maximilian; Herrmann, Astrid; Hirsch, Andreas; Guldi, Dirk M

    2017-08-30

    Porphyrin arrays consisting of three peripheral Zinc porphyrins (ZnPs) and a central free base porphyrin (H2P)-all rigidly linked to each other-serve as light-harvesting antennas as well as electron donors and are flexibly coupled to an electron-accepting C60 to realize the unidirectional flow of (i) excited-state energy from the ZnPs at the periphery to the H2P, (ii) electrons to C60, and (iii) holes to H2P and, subsequently, to ZnP. Dynamics following photoexcitation are elucidated by time-resolved transient absorption measurements on the femto-, pico-, nano-, and microsecond time scales and are examined by multiwavelength as well as target analyses. Hereby, full control over the charge shift between H2P and ZnP to convert the (ZnP)3-H2P(•+)-C60(•-) charge-separated state into (ZnP)3(•+)-H2P-C60(•-) charge-separated state is enabled by the solvent polarity: It is deactivated/switched-off in apolar toluene, while in polar benzonitrile it is activated/switched-on. Activating/switching impacts the recovery of the ground state via charge recombination rates, which differ by up to 2 orders of magnitude. All charge-separated states lead to the repopulation of the ground state with dynamics that are placed in the inverted region of the Marcus parabola.

  1. Two-Level Control for Fast Electrical Vehicle Charging Stations with Multi Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2015-01-01

    This paper applies a hierarchical control for a fast charging station (FCS) composed of paralleled PWM rectifier and dedicated paralleled multiple flywheel energy storage systems (FESSs), in order to mitigate peak power shock on grid caused by sudden connection of electrical vehicle (EV) chargers....... Distributed DC-bus signaling (DBS) and method resistive virtual impedance are employed in the power coordination of grid and flywheel converters, and a centralized secondary controller generates DC voltage correction term to adjust the local voltage set point. The control system is able to realize the power...... control strategy....

  2. Control Of Screening Of A Charged Particle In Electrolytic Aqueous Paul Trap

    Science.gov (United States)

    Park, Jae Hyun; Krsti, Predrag S.

    2011-01-01

    Individual charged particles could be trapped and confined by the combined radio-frequency and DC quadrupole electric field of an aqueous Paul trap. Viscosity of water improves confinement and extends the range of the trap parameters which characterize the stability of the trap. Electrolyte, if present in aqueous solution, may screen the charged particle and thus partially or fully suppress electrophoretic interaction with the applied filed, possibly reducing it to a generally much weaker dielectrophoretic interaction with an induced dipole. Applying molecular dynamics simulation we show that the quadrupole field has a different effect at the electrolyte ions and at much heavier charged particle, effectively eliminating the screening by electrolyte ions and reinstating the electrophoretic confinement. PMID:24839332

  3. The effect of the charging protocol on the cycle life of a Li-ion battery

    Science.gov (United States)

    Zhang, Sheng Shui

    The effect of the charging protocol on the cycle life of a commercial 18650 Li-ion cell was studied using three methods: (1) constant current (CC) charging, (2) constant power (CP) charging, and (3) multistage constant current (MCC) charging. The MCC-charging consists of two CC steps, which starts with a low current to charge the initial 10% capacity followed by a high current charging until the cell voltage reaches 4.2 V. Using these methods, respectively, the cell was charged to 4.2 V followed by a constant voltage (CV) charging until the current declined to 0.05 C. Results showed that the cycle life of the cell strongly depended on the charging protocol even if the same charging rate was used. Among these three methods, the CC-method was found to be more suitable for slow charging (0.5 C) while the CP-method was better for fast charging (1 C). Impedance analyses indicated that the capacity loss during cycling was mainly attributed to the increase of charge-transfer resistance as a result of the progressive growth of surface layers on the surface of two electrodes. Fast charging resulted in an accelerated capacity fading due to the loss of Li + ions and the related growth of a surface layer, which was associated with metallic lithium plating onto the anode and a high polarization at the electrolyte-electrode interface. Analyses of the cell electrochemistry showed that use of a reduced current to charge the initial 10% capacity and near the end of charge, respectively, was favorable for long cycle life.

  4. Solid-state charge-based device for control of catalytic carbon monoxide oxidation on platinum nanofilms using external bias and light.

    Science.gov (United States)

    Baker, L Robert; Hervier, Antoine; Kennedy, Griffin; Somorjai, Gabor A

    2012-05-09

    Using a Pt/Si catalytic nanodiode, we externally control the rate of CO oxidation on a Pt nanofilm. The catalytic reaction can be turned on and off by alternating between bias states of the device. Additionally, the reaction rate is sensitive to photocurrent induced by visible light. The effects of both bias and light show that negative charge on the Pt increases catalytic activity, while positive charge on the Pt decreases catalytic activity for CO oxidation.

  5. Effect of surface charge on hydrophobicity levels of insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Villa, V.M.; Ponce-Velez, M.A.; Valle-Jaime, E.; Fierro-Chavez, J.L. [Instituto de Investigaciones Electricas, Mor (Mexico). Unidad de Materiales Electricos

    1998-11-01

    A correlation between the hydrophobic characteristics and accumulation of static charge on several insulating surfaces (ceramic and non- ceramic) is studied. Although numerous experimental studies on the loss and recovery of hydrophobicity on insulator surfaces have been carried out, no efforts for establishing a correlation between such hydrophobic properties and the presence of surface charge have yet been made, especially when attention is paid to ceramic surfaces. This experiment consists of simultaneous measurements of surface charge decay and contact angle recovery against time on samples previously exposed to corona impingement; a comparison between charge decay and hydrophobicity recovery trends is then made. From the data obtained, a lowering of the original hydrophobicity level for each material as a consequence of surface charge accumulation is identified. The decay of surface charge and the corresponding recovery of the initial hydrophobic characteristics with time are observed. Loss and recovery of hydrophobicity resulting from surface charging and charge decay, respectively, are identified as mechanisms occurring not only on polymeric surfaces, but also on ceramic ones. From a number of laboratory studies it has been confirmed, and extensively reported by several researchers, that surface charging of insulators due to electrical activity (partial discharging) can be achieved. Based on the above, as well as on the results obtained from this experimental work, surface charging of insulators is a phenomenon which may occur under realistic operational conditions, and is therefore proposed as a factor responsible for the loss of the initial highly hydrophobic characteristics of polymeric insulators and coatings, in addition to other well established mechanisms. (author)

  6. Central charge from adiabatic transport of cusp singularities in the quantum Hall effect

    Science.gov (United States)

    Can, Tankut

    2017-04-01

    We study quantum Hall (QH) states on a punctured Riemann sphere. We compute the Berry curvature under adiabatic motion in the moduli space in the large N limit. The Berry curvature is shown to be finite in the large N limit and controlled by the conformal dimension of the cusp singularity, a local property of the mean density. Utilizing exact sum rules obtained from a Ward identity, we show that for the Laughlin wave function, the dimension of a cusp singularity is given by the central charge, a robust geometric response coefficient in the QHE. Thus, adiabatic transport of curvature singularities can be used to determine the central charge of QH states. We also consider the effects of threaded fluxes and spin-deformed wave functions. Finally, we give a closed expression for all moments of the mean density in the integer QH state on a punctured disk.

  7. Central charge from adiabatic transport of cusp singularities in the quantum Hall effect

    CERN Document Server

    Can, Tankut

    2016-01-01

    We study quantum Hall (QH) states on a punctured Riemann sphere. We compute the Berry curvature under adiabatic motion in the moduli space in the large N limit. The Berry curvature is shown to be finite in the large N limit and controlled by the conformal dimension of the cusp singularity, a local property of the mean density. Utilizing exact sum rules obtained from a Ward identity, we show that for the Laughlin wave function, the dimension of a cusp singularity is given by the central charge, a robust geometric response coefficient in the QHE. Thus, adiabatic transport of curvature singularities can be used to determine the central charge of QH states. We also consider the effects of threaded fluxes and spin-deformed wave functions. Finally, we give a closed expression for all moments of the mean density in the integer QH state on a punctured disk.

  8. Non-Gaussian signatures and collective effects in charge noise affecting a dynamically decoupled qubit

    Science.gov (United States)

    Ramon, Guy

    2015-10-01

    The effects of a collection of classical two-level charge fluctuators on the coherence of a dynamically decoupled qubit are studied. Distinct dynamics is found at different qubit working positions. Exact analytical formulas are derived at pure dephasing and approximate solutions are found at the general working position, for weakly and strongly coupled fluctuators. Analysis of these solutions, combined with numerical simulations of the multiple random telegraph processes, reveal the scaling of the noise with the number of fluctuators and the number of control pulses, as well as dependence on other parameters of the qubit-fluctuators system. These results can be used to determine potential microscopic models for the charge environment by performing noise spectroscopy.

  9. Control of quantum thermodynamic behavior of a charged magneto-oscillator with momentum dissipation.

    Science.gov (United States)

    Rajesh, Asam; Bandyopadhyay, Malay

    2014-06-01

    In this work we expose the role of environment, confinement, and external magnetic field B in determining the low-temperature thermodynamic behavior in the context of cyclotron motion of a charged oscillator with anomalous dissipative coupling involving momentum instead of the much studied coordinate coupling. Explicit expressions for different quantum thermodynamic functions (QTFs) are obtained at low temperatures for different quantum heat baths characterized by the spectral density function μ(ω). The power-law fall of different QTFs is in conformity with the third law of thermodynamics; however, the sensitivity of decay, i.e., the power of the power-law decay, explicitly depends on μ(ω). We also discuss separately the influence of confinement and magnetic field on the low-temperature behavior of different QTFs. In this process we demonstrate how to control the low-temperature behavior of anomalous dissipative quantum systems by varying the confining length a, B, and the temperature T. Momentum dissipation reduces the effective mass of the system and we also discuss its effect on different QTFs at low temperatures.

  10. Surface charge effects in protein adsorption on nanodiamonds

    Science.gov (United States)

    Aramesh, M.; Shimoni, O.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins

  11. Analytical estimation of effective charges at saturation in Poisson-Boltzmann cell models

    CERN Document Server

    Trizac, E; Bocquet, L

    2003-01-01

    We propose a simple approximation scheme for computing the effective charges of highly charged colloids (spherical or cylindrical with infinite length). Within non-linear Poisson-Boltzmann theory, we start from an expression for the effective charge in the infinite-dilution limit which is asymptotically valid for large salt concentrations; this result is then extended to finite colloidal concentration, approximating the salt partitioning effect which relates the salt content in the suspension to that of a dialysing reservoir. This leads to an analytical expression for the effective charge as a function of colloid volume fraction and salt concentration. These results compare favourably with the effective charges at saturation (i.e. in the limit of large bare charge) computed numerically following the standard prescription proposed by Alexander et al within the cell model.

  12. Two rods confined by positive plates: effective forces and charge distribution profiles

    Energy Technology Data Exchange (ETDEWEB)

    Odriozola, G; Jimenez-Angeles, F; Lozada-Cassou, M [Programa de IngenierIa Molecular, Instituto Mexicano del Petroleo, Lazaro Cardenas 152, 07730 Mexico, DF (Mexico)

    2006-09-13

    The effect of confinement on the interaction force between two negatively charged rods is studied through Monte Carlo simulations. Confinement is produced by two parallel, charged or uncharged plates. The system is immersed in a 0.1 M 1-1 restricted primitive model electrolyte. The effect on the rod-rod effective force by the plate charge distribution is analysed. A strong modification of the rod-rod effective force due to confinement is found, as compared to the bulk case. In particular, rod-rod attraction was found for plates having a charge equal to that of fully charged bilipid bilayers. In spite of the simplicity of the model, these results agree with some DNA-phospholipid experimental observations. On the other hand, for a model having the plate charges fixed on a grid, very long range, oscillatory rod-rod effective forces were obtained.

  13. Space Charge Effects and Limitations in the CERN Proton Synchrotron

    CERN Document Server

    Wasef, R; Damerau, H; Gilardoni, S; Hancock, S; Hernalsteens, C; Huschauer, A; Schmidt, F; Franchetti, G

    2013-01-01

    Space charge produces a large incoherent tune-spread which, in presence of betatronic resonances, could lead to beam losses and emittance growth. In the CERN Proton Synchrotron, at the current injection kinetic energy (1.4 GeV) and even at the future kinetic energy (2 GeV), space charge is one of the main limitations for high brightness beams and especially for the future High- Luminosity LHC beams. Several detailed studies and measurements have been carried out to improve the understanding of space charge limitations to determine the maximum acceptable tune spread and identify the most important resonances causing losses and emittance growth.

  14. Performance of Li-Ion Cells Under Battery Voltage Charge Control

    Science.gov (United States)

    Vaidyanathan, Hari; Rao, Gopalakrishna M.

    2002-01-01

    Li-ion cells manufactured by YTP, SAFT, and MSA have completed 6714, 6226, and 3441 cycles, respectively. An increase in the charge voltage limit was required in all cases to maintain the discharge voltage. SAFT and MSA cells were capable of cycling at -10 C and 0 C with an increase in the charge voltage limit, whereas Yardney cells could not be cycled. Reconditioning improved the discharge voltage of SAFT and MSA cells; it is important to note that the effect has been temporary as in Ni-H and Ni-Cd batteries. It was demonstrated that the charge operation with VT clamp at battery rather than at cell level is feasible. Continuation of testing depends on the health of the cells and on the funding situation.

  15. Evidence for charge exchange effects in electronic excitations in Al by slow singly charged He ions

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, P., E-mail: Pierfrancesco.riccardi@fis.unical.it [Dipartimento di Fisica, Università della Calabria and INFN Gruppo collegato di Cosenza, Via P. Bucci cubo 31C, 87036 – Arcavacata di Rende, Cosenza (Italy); Sindona, A. [Dipartimento di Fisica, Università della Calabria and INFN Gruppo collegato di Cosenza, Via P. Bucci cubo 31C, 87036 – Arcavacata di Rende, Cosenza (Italy); Dukes, C.A. [Laboratory for Astrophysics and Surface Physics, Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2016-09-01

    We report on experiments of secondary electron emission in the interaction of helium ions with aluminum surfaces. Comparison between the electron emission induced by the impact of {sup 3}He{sup +} and {sup 4}He{sup +} on Al illustrates similarities and differences between the two projectiles. The intensity of emission shows the same dependence on velocity for the two isotopes, showing that KEE yields for helium ions impact on Al are dominated by direct excitation of valence electrons and not by electron promotion. Electron promotion and charge transfer processes are unambiguously identified by the observation of Auger electron emission from Al, at energies below the excitation threshold of Al–Al collisions, indicating energy losses for the projectiles higher than those commonly considered.

  16. Mechano-chemical effects in weakly charged porous media.

    Science.gov (United States)

    Zholkovskij, Emiliy K; Yaroshchuk, Andriy E; Koval'chuk, Volodymyr I; Bondarenko, Mykola P

    2015-08-01

    The paper is concerned with mechano-chemical effects, namely, osmosis and pressure-driven separation of ions that can be observed when a charged porous medium is placed between two electrolyte solutions. The study is focused on porous systems with low equilibrium interfacial potentials (about 30 mV or lower). At such low potentials, osmosis and pressure-driven separation of ions noticeably manifest themselves provided that the ions in the electrolyte solutions have different diffusion coefficients. The analysis is conducted by combining the irreversible thermodynamic approach and the linearized (in terms of the normalized equilibrium interfacial potential) version of the Standard Electrokinetic Model. Osmosis and the pressure-driven separation of ions are considered for an arbitrary mixed electrolyte solution and various porous space geometries. It is shown that the effects under consideration are proportional to a geometrical factor which, for all the considered geometries of porous space, can be expressed as a function of porosity and the Λ- parameter of porous medium normalized by the Debye length. For all the studied geometries, this function turns out to be weakly dependent on both the porosity and the geometry type. The latter allows for a rough evaluation of the geometrical factor from experimental data on electric conductivity and hydraulic permeability without previous knowledge of the porous space geometry. The obtained results are used to illustrate how the composition of electrolyte solution affects the mechano-chemical effects. For various examples of electrolyte solution compositions, the obtained results are capable of describing positive, negative and anomalous osmosis, positive and negative rejection of binary electrolytes, and pressure-driven separation of binary electrolyte mixtures.

  17. Hall effect in charged conducting ferroelectric domain walls.

    Science.gov (United States)

    Campbell, M P; McConville, J P V; McQuaid, R G P; Prabhakaran, D; Kumar, A; Gregg, J M

    2016-12-12

    Enhanced conductivity at specific domain walls in ferroelectrics is now an established phenomenon. Surprisingly, however, little is known about the most fundamental aspects of conduction. Carrier types, densities and mobilities have not been determined and transport mechanisms are still a matter of guesswork. Here we demonstrate that intermittent-contact atomic force microscopy (AFM) can detect the Hall effect in conducting domain walls. Studying YbMnO3 single crystals, we have confirmed that p-type conduction occurs in tail-to-tail charged domain walls. By calibration of the AFM signal, an upper estimate of ∼1 × 10(16) cm(-3) is calculated for the mobile carrier density in the wall, around four orders of magnitude below that required for complete screening of the polar discontinuity. A carrier mobility of∼50 cm(2)V(-1)s(-1) is calculated, about an order of magnitude below equivalent carrier mobilities in p-type silicon, but sufficiently high to preclude carrier-lattice coupling associated with small polarons.

  18. Intramolecular charge transfer effects on 3-aminobenzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Stalin, T. [Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, Tamil Nadu (India); Rajendiran, N. [Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, Tamil Nadu (India)], E-mail: drrajendiran@rediffmail.com

    2006-03-20

    Effect of solvents, buffer solutions of different pH and {beta}-cyclodextrin on the absorption and fluorescence spectra of 3-aminobenzoic acid (3ABA) have been investigated. The solid inclusion complex of 3ABA with {beta}-CD is discussed by UV-Vis, fluorimetry, semiempirical quantum calculations (AM1), FT-IR, {sup 1}H NMR and Scanning Electron Microscope (SEM). The thermodynamic parameters ({delta}H, {delta}G and {delta}S) of the inclusion process are also determined. The experimental results indicated that the inclusion processes is an exothermic and spontaneous. The large Stokes shift emission in solvents with 3ABA are correlated with different solvent polarity scales suggest that, 3ABA molecule is more polar in the S{sub 1} state. Solvent, {beta}-CD studies and excited state dipole moment values confirms that the presence of intramolecular charge transfer (ICT) in 3ABA. Acidity constants for different prototropic equilibria of 3ABA in the S{sub 0} and S{sub 1} states are calculated. {beta}-Cyclodextrin studies shows that 3ABA forms a 1:1 inclusion complex with {beta}-CD. {beta}-CD studies suggest COOH group present in non-polar part and amino group present in hydrophilic part of the {beta}-CD cavity. A mechanism is proposed to explain the inclusion process.

  19. Hall effect in charged conducting ferroelectric domain walls

    Science.gov (United States)

    Campbell, M. P.; McConville, J. P. V.; McQuaid, R. G. P.; Prabhakaran, D.; Kumar, A.; Gregg, J. M.

    2016-12-01

    Enhanced conductivity at specific domain walls in ferroelectrics is now an established phenomenon. Surprisingly, however, little is known about the most fundamental aspects of conduction. Carrier types, densities and mobilities have not been determined and transport mechanisms are still a matter of guesswork. Here we demonstrate that intermittent-contact atomic force microscopy (AFM) can detect the Hall effect in conducting domain walls. Studying YbMnO3 single crystals, we have confirmed that p-type conduction occurs in tail-to-tail charged domain walls. By calibration of the AFM signal, an upper estimate of ~1 × 1016 cm-3 is calculated for the mobile carrier density in the wall, around four orders of magnitude below that required for complete screening of the polar discontinuity. A carrier mobility of~50 cm2V-1s-1 is calculated, about an order of magnitude below equivalent carrier mobilities in p-type silicon, but sufficiently high to preclude carrier-lattice coupling associated with small polarons.

  20. Particles inside electrolytes with ion-specific interactions, their effective charge distributions, and effective interactions

    Science.gov (United States)

    Ding, Mingnan; Liang, Yihao; Xing, Xiangjun

    2016-10-01

    In this work, we explore the statistical physics of colloidal particles that interact with electrolytes via ion-specific interactions. Firstly we study particles interacting weakly with electrolyte using linear response theory. We find that the mean potential around a particle is linearly determined by the effective charge distribution of the particle, which depends both on the bare charge distribution and on ion-specific interactions. We also discuss the effective interaction between two such particles and show that, in the far field regime, it is bilinear in the effective charge distributions of two particles. We subsequently generalize the above results to the more complicated case where particles interact strongly with the electrolyte. Our results indicate that in order to understand the statistical physics of non-dilute electrolytes, both ion-specific interactions and ionic correlations have to be addressed in a single unified and consistent framework. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174196 and 91130012).

  1. Controlled Electron Injection into Plasma Accelerators and SpaceCharge Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Fubiani, Gwenael G.J. [Univ. of California, Berkeley, CA (United States)

    2005-09-01

    Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures.The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 1018 - 1019 cm-3, the accelerating fields and scale length can hence be on the order of 10-100GV/m and 10-40 μm, respectively. The production of quasimonoenergetic beams was recently obtained in a regime relying on self-trapping of background plasma electrons, using a single laser pulse for wakefield generation. In this dissertation, we study the controlled injection via the beating of two lasers (the pump laser pulse creating the plasma wave and a second beam being propagated in opposite direction) which induce a localized injection of background plasma electrons. The aim of this dissertation is to describe in detail the physics of optical injection using two lasers, the characteristics of the electron beams produced (the micrometer scale plasma wavelength can result in femtosecond and even attosecond bunches) as well as a concise estimate of the effects of space charge on the dynamics of an ultra-dense electron bunch with a large energy spread.

  2. Risk Analyses of Charging Pump Control Improvements for Alternative RCP Seal Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Chan [Korea Hydro and Nuclear Power Co. Ltd. Daejeon (Korea, Republic of)

    2015-10-15

    There are two events that significantly affect the plant risk during a TLOCCW event. One is an event in which the seal assembly of a reactor coolant pump (RCP) fails due to heating stress from the loss of cooling water; the other is an event in which the operators fail to conduct alternative cooling for the RCP seal during the accident. KHNP reviewed the replacement of the RCP seal with a qualified shutdown seal in order to remove the risk due to RCP seal failure during a TLOCCW. As an optional measure, a design improvement in the alternative cooling method for the RCP seal is being considered. This analysis presents the alternative RCP seal cooling improvement and its safety effect. K2 is a nuclear power plant with a Westinghouse design, and it has a relatively high CDF during TLOCCW events because it has a different CCW system design and difficulty in preparing alternative cooling water sources. This analysis confirmed that an operator action providing cold water to the RWST as RCP seal injection water during a TLOCCW event is very important in K2. The control circuit improvement plan for the auxiliary charging pump was established in order to reduce the failure probability of this operator action. This analysis modeled the improvement as a fault tree and evaluated the resulting CDF change. The consequence demonstrated that the RCP seal injection failure probability was reduced by 89%, and the CDF decreased by 28%.

  3. Structure and Morphology Control in Thin Films of Conjugated Polymers for an Improved Charge Transport

    Directory of Open Access Journals (Sweden)

    Haiyang Wang

    2013-11-01

    Full Text Available The morphological and structural features of the conjugated polymer films play an important role in the charge transport and the final performance of organic optoelectronics devices [such as organic thin-film transistor (OTFT and organic photovoltaic cell (OPV, etc.] in terms of crystallinity, packing of polymer chains and connection between crystal domains. This review will discuss how the conjugated polymer solidify into, for instance, thin-film structures, and how to control the molecular arrangement of such functional polymer architectures by controlling the polymer chain rigidity, polymer solution aggregation, suitable processing procedures, etc. These basic elements in intrinsic properties and processing strategy described here would be helpful to understand the correlation between morphology and charge transport properties and guide the preparation of efficient functional conjugated polymer films correspondingly.

  4. RANCANG BANGUN BATERAI CHARGE CONTROL UNTUK SISTEM PENGANGKAT AIR BERBASIS ARDUINO UNO MEMANFAATKAN SUMBER PLTS

    Directory of Open Access Journals (Sweden)

    I Gusti Ngurah Agung Mahardika

    2016-03-01

    Full Text Available Sistem pengangkat air dengan menggunakan sumber pembangkit listrik tenaga surya sudah banyak dilakukan oleh beberapa orang atau kelompok, namun pada malam hari panel surya tidak dapat mensuplai mesin pengangkat air karena tidak mendapatkan sinar matahari. Permasalahan yang terjadi adalah tidak dilengkapi dengan penyimpanan energi untuk sistem pengangkat air tersebut. Solusi untuk masalah ini adalah dengan membuat rancang bangun baterai charge control untuk sistem tersebut. Metode dalam pembuatan sistem ini dibagi menjadi dua bagian yaitu perancangan hardware dan software. Hasil dari sistem charge control ini mampu melakukan pengisian untuk aki GS 12V10Ah dengan arus pengisian mengikuti arus dari PLTS dengan rata-rata arus pengisian sebesar 2,065 ampere dan tegangan pengisian yang diberikan 13V selama 2 jam dan lama pemakaian aki GS 12V10Ah untuk membackup beban pompa 60 Watt selama 1 jam 45 menit.

  5. Lithium-Ion Battery Failure: Effects of State of Charge and Packing Configuration

    Science.gov (United States)

    2016-08-22

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6180--16-9689 Lithium-Ion Battery Failure: Effects of State of Charge and Packing ...PAGES 17. LIMITATION OF ABSTRACT Lithium-Ion Battery Failure: Effects of State of Charge and Packing Configuration Neil S. Spinner,* Katherine M. Hinnant...geometries, abuse scenarios, and analysis techniques. In this report, different states of charge and packing configurations of a commercially available

  6. Structure and Morphology Control in Thin Films of Conjugated Polymers for an Improved Charge Transport

    OpenAIRE

    Haiyang Wang; Yaozhuo Xu; Xinhong Yu; Rubo Xing; Jiangang Liu; Yanchun Han

    2013-01-01

    The morphological and structural features of the conjugated polymer films play an important role in the charge transport and the final performance of organic optoelectronics devices [such as organic thin-film transistor (OTFT) and organic photovoltaic cell (OPV), etc.] in terms of crystallinity, packing of polymer chains and connection between crystal domains. This review will discuss how the conjugated polymer solidify into, for instance, thin-film structures, and how to control the molecula...

  7. Structure and Morphology Control in Thin Films of Conjugated Polymers for an Improved Charge Transport

    OpenAIRE

    Haiyang Wang; Yaozhuo Xu; Xinhong Yu; Rubo Xing; Jiangang Liu; Yanchun Han

    2013-01-01

    The morphological and structural features of the conjugated polymer films play an important role in the charge transport and the final performance of organic optoelectronics devices [such as organic thin-film transistor (OTFT) and organic photovoltaic cell (OPV), etc.] in terms of crystallinity, packing of polymer chains and connection between crystal domains. This review will discuss how the conjugated polymer solidify into, for instance, thin-film structures, and how to control the molecula...

  8. A Uniform Voltage Gain Control for Alignment Robustness in Wireless EV Charging

    Directory of Open Access Journals (Sweden)

    Yabiao Gao

    2015-08-01

    Full Text Available The efficiency of wireless power transfer is sensitive to the horizontal and vertical distances between the transmitter and receiver coils due to the magnetic coupling change. To address the output voltage variation and efficiency drop caused by misalignment, a uniform voltage gain frequency control is implemented to improve the power delivery and efficiency of wireless power transfer under misalignment. The frequency is tuned according to the amplitude and phase-frequency characteristics of coupling variations in order to maintain a uniform output voltage in the receiver coil. Experimental comparison of three control methods, including fixed frequency control, resonant frequency control, and the proposed uniform gain control was conducted and demonstrated that the uniform voltage gain control is the most robust method for managing misalignment in wireless charging applications.

  9. Emissions and Cost Implications of Controlled Electric Vehicle Charging in the U.S. PJM Interconnection.

    Science.gov (United States)

    Weis, Allison; Michalek, Jeremy J; Jaramillo, Paulina; Lueken, Roger

    2015-05-05

    We develop a unit commitment and economic dispatch model to estimate the operation costs and the air emissions externality costs attributable to new electric vehicle electricity demand under controlled vs uncontrolled charging schemes. We focus our analysis on the PJM Interconnection and use scenarios that characterize (1) the most recent power plant fleet for which sufficient data are available, (2) a hypothetical 2018 power plant fleet that reflects upcoming plant retirements, and (3) the 2018 fleet with increased wind capacity. We find that controlled electric vehicle charging can reduce associated generation costs by 23%-34% in part by shifting loads to lower-cost, higher-emitting coal plants. This shift results in increased externality costs of health and environmental damages from increased air pollution. On balance, we find that controlled charging of electric vehicles produces negative net social benefits in the recent PJM grid but could have positive net social benefits in a future grid with sufficient coal retirements and wind penetration.

  10. Coherent control of charge exchange in strong-field dissociation of LiF

    Science.gov (United States)

    Armstrong, Greg; Esry, Brett

    2016-05-01

    The alkali-metal-halides family of molecules are useful prototypes in the study of laser-assisted charge exchange. Typically these molecules possess a field-free crossing between the ionic and covalent diabatic Born-Oppenheimer potential curves, leading to Li+ + F- and Li + F in LiF. These channels are energetically well-separated from higher-lying potentials, and may be easily distinguished experimentally. Moreover, charge exchange involves non-adiabatic transitions between the ionic and covalent channels, thereby allowing the investigation of physics beyond the Born-Oppenheimer approximation. The focus of this work is to control the preference between ionic and covalent dissociative products. We solve the time-dependent Schrödinger equation for the nuclear motion in full dimensionality, and investigate a pump-probe scheme for charge-exchange control. The degree of control is investigated by calculating the kinetic-energy release spectrum as a function of pump-probe delay for the ionic and covalent fragments. This work is supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  11. Galileo IOV Electrical Power Subsystem Relies On Li-Ion Batter Charge Management Controlled By Hardware

    Science.gov (United States)

    Douay, N.

    2011-10-01

    In the frame of GALILEO In-Orbit Validation program which is composed of 4 satellites, Thales Alenia Space France has designed, developed and tested the Electrical Power Subsystem. Besides some classical design choices like: -50V regulated main power bus provided by the PCDU manufactured by Terma (DK), -Solar array, manufactured by Dutch-Space (NL), using Ga-As triple junction technology from Azur Space Power Solar GmbH, -SAFT (FR) Lithium-ion Battery for which cell package balancing function is required, -Solar Array Drive Mechanism, provided by RUAG Space Switzerland, to transfer the power. This subsystem features a fully autonomous, failure tolerant, battery charge management able to operate even after a complete unavailability of the on-board software. The battery charge management is implemented such that priority is always given to satisfy the satellite main bus needs in order to maintain the main bus regulation under MEA control. This battery charge management principle provides very high reliability and operational robustness. So, the paper describes : -the battery charge management concept using a combination of PCDU hardware and relevant battery lines monitoring, -the functional aspect of the single point failure free S4R (Sequential Switching Shunt Switch Regulator) and associated performances, -the failure modes isolated and passivated by this architecture. The paper will address as well the autonomous balancing function characteristics and performances.

  12. Ultrafast charge-transfer in organic photovoltaic interfaces: geometrical and functionalization effects.

    Science.gov (United States)

    Santos, Elton J G; Wang, W L

    2016-09-21

    Understanding the microscopic mechanisms of electronic excitation in organic photovoltaic cells is a challenging problem in the design of efficient devices capable of performing sunlight harvesting. Here we develop and apply an ab initio approach based on time-dependent density functional theory and Ehrenfest dynamics to investigate photoinduced charge transfer in small organic molecules. Our calculations include mixed quantum-classical dynamics with ions moving classically and electrons quantum mechanically, where no experimental external parameter other than the material geometry is required. We show that the behavior of photocarriers in zinc phthalocyanine (ZnPc) and C60 systems, an effective prototype system for organic solar cells, is sensitive to the atomic orientation of the donor and the acceptor units as well as the functionalization of covalent molecules at the interface. In particular, configurations with the ZnPc molecules facing on C60 facilitate charge transfer between substrate and molecules that occurs within 200 fs. In contrast, configurations where ZnPc is tilted above C60 present extremely low carrier injection efficiency even at longer times as an effect of the larger interfacial potential level offset and higher energetic barrier between the donor and acceptor molecules. An enhancement of charge injection into C60 at shorter times is observed as binding groups connect ZnPc and C60 in a dyad system. Our results demonstrate a promising way of designing and controlling photoinduced charge transfer on the atomic level in organic devices that would lead to efficient carrier separation and maximize device performance.

  13. Cost-Effectiveness Comparison of Coupler Designs of Wireless Power Transfer for Electric Vehicle Dynamic Charging

    Directory of Open Access Journals (Sweden)

    Weitong Chen

    2016-11-01

    Full Text Available This paper presents a cost-effectiveness comparison of coupler designs for wireless power transfer (WPT, meant for electric vehicle (EV dynamic charging. The design comparison of three common types of couplers is first based on the raw material cost, output power, transfer efficiency, tolerance of horizontal offset, and flux density. Then, the optimal cost-effectiveness combination is selected for EV dynamic charging. The corresponding performances of the proposed charging system are compared and analyzed by both simulation and experimentation. The results verify the validity of the proposed dynamic charging system for EVs.

  14. Measurements of Charge Sharing Effects in Pixilated CZT/CdTe Detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2007-01-01

    Te pixel detector samples. The results are used for the development of the large area X-ray and Gamma ray detector for the Atmosphere-Space Interactions Monitor (ASIM) planned for the ISS ESA Columbus module. Charge sharing measurements on detector samples with identical size and pixel geometry......In this paper, charge sharing and charge loss effects in pixilated CZT/CdTe detectors are investigated by measurements. We measured charge sharing effects function of the inter-pixel gap (with same pixel pitch), the photon energy and the detector bias voltage for a large numbers of CZT and Cd...

  15. Effect of hydrogen on dynamic charge transport in amorphous oxide thin film transistors

    Science.gov (United States)

    Kim, Taeho; Nam, Yunyong; Hur, Ji-Hyun; Park, Sang-Hee Ko; Jeon, Sanghun

    2016-08-01

    Hydrogen in zinc oxide based semiconductors functions as a donor or a defect de-activator depending on its concentration, greatly affecting the device characteristics of oxide thin-film transistors (TFTs). Thus, controlling the hydrogen concentration in oxide semiconductors is very important for achieving high mobility and minimizing device instability. In this study, we investigated the charge transport dynamics of the amorphous semiconductor InGaZnO at various hydrogen concentrations as a function of the deposition temperature of the gate insulator. To examine the nature of dynamic charge trapping, we employed short-pulse current-voltage and transient current-time measurements. Among various examined oxide devices, that with a high hydrogen concentration exhibits the best performance characteristics, such as high saturation mobility (10.9 cm2 v-1 s-1), low subthreshold slope (0.12 V/dec), and negligible hysteresis, which stem from low defect densities and negligible transient charge trapping. Our finding indicates that hydrogen atoms effectively passivate the defects in subgap states of the bulk semiconductor, minimizing the mobility degradation and threshold voltage instability. This study indicates that hydrogen plays a useful role in TFTs by improving the device performance and stability.

  16. Surface charging of phosphors and its effects on cathodoluminescence at low electron energies

    Energy Technology Data Exchange (ETDEWEB)

    Seager, C.H.; Warren, W.L.; Tallant, D.R.

    1997-05-01

    Measurements of the threshold for secondary electron emission and shifts of the carbon Auger line position have been used to deduce the surface potential of several common phosphors during irradiation by electrons in the 0.5--5.0 keV range. All of the insulating phosphors display similar behavior: the surface potential is within {+-}1 V of zero at low electron energies. However, above 2--3 kV it becomes increasingly negative, reaching hundreds of volts within 1 keV of the turn-on energy. The electron energy at which this charging begins decreases dramatically after Coulomb aging at 17 {micro}A/cm{sup 2} for 30--60 min. Measurements using coincident electron beams at low and high electron energies to control the surface potential were made to investigate the dependence of the cathodoluminescence (CL) process on charging. Initially, the CL from the two beams is identical to the sum of the separate beam responses, but after Coulomb aging large deviations from this additivity are observed. These results indicate that charging has important, detrimental effects on CL efficiency after prolonged e-beam irradiation. Measurements of the electron energy dependence of the CL efficiency before and after Coulomb aging will also be presented, and the implications of these data on the physics of the low-voltage CL process will be discussed.

  17. Distributed Cooperative Control of Multi Flywheel Energy Storage System for Electrical Vehicle Fast Charging Stations

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Quintero, Juan Carlos Vasquez

    2015-01-01

    Plug-in electrical vehicles will play a critical role in future smart grid and sudden connection of electrical vehicles chargers may cause huge power-peaks with high slew-rates on grid. In order to cope with this issue, this paper applies a distributed cooperative control for fast charging station...... consensus based voltage observer by communicating with its neighbors. The control system can realize the power balancing and DC voltage regulation with low reliance on communications. Finally, real-time hardware-in-the-loop results have been reported in order to verify the feasibility of proposed approach....

  18. Process for controlled effect on the properties of cylinder charges of two-stroke Diesel engines, particularly those with particle filters or catalysts. Verfahren zur geregelten Beeinflussung der Beschaffenheit der Zylinderladung von Zweitaktdieselmotoren, insbesondere solcher mit Partikelfilter oder Katalysator

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, B.

    1992-02-27

    In Diesel engines, the automatic free combustion of a particle filter is only guaranteed near full load with sufficiently high exhaust gas temperatures. By the new process, the exhaust gas temperature of two-stroke Diesel engines is to be raised so far in the part load range that the automatic free combustion of a particle filter or the efficiency of a catalyst is guaranteed in all working conditions of the engine. The quantity of flushing air introduced into the cylinder per working cycle is controlled depending on the load by a control device, so that at full load and in the range near full load, the ratio of the volume of flushing air per working cycle to the cylinder swept space is greater than 1, but in the low part load range and at tickover it is appreciably less than 1. In the lower part load range, the flushing air is additionally increasing preheated with decreasing load in an exhaust gas flushing air heat exchanger after the particle filter or the catalyst. Apart from the automatic particle filter cleaning, an effect corresponding to exhaust gas feedback and a seris of other advantages are achieved. Two-stroke Diesel engines with frequent part-load operation, eg: for vehicles and working engines.

  19. Effects of charging and electric field on graphene functionalized with titanium.

    Science.gov (United States)

    Gürel, H Hakan; Ciraci, S

    2013-07-10

    Titanium atoms are adsorbed to graphene with a significant binding energy and render diverse functionalities to it. Carrying out first-principles calculations, we investigated the effects of charging and static electric field on the physical and chemical properties of graphene covered by Ti adatoms. When uniformly Ti covered graphene is charged positively, its antiferromagnetic ground state changes to ferromagnetic metal and attains a permanent magnetic moment. Static electric field applied perpendicularly causes charge transfer between Ti and graphene, and can induce metal-insulator transition. While each Ti adatom adsorbed to graphene atom can hold four hydrogen molecules with a weak binding, these molecules can be released by charging or applying electric field perpendicularly. Hence, it is demonstrated that charging and applied static electric field induce quasi-continuous and side specific modifications in the charge distribution and potential energy of adatoms absorbed to single-layer nanostructures, resulting in fundamentally crucial effects on their physical and chemical properties.

  20. Weak non-linear surface charging effects in electrolytic films

    OpenAIRE

    Dean, D. S.; Horgan, R. R.

    2002-01-01

    A simple model of soap films with nonionic surfactants stabilized by added electrolyte is studied. The model exhibits charge regularization due to the incorporation of a physical mechanism responsible for the formation of a surface charge. We use a Gaussian field theory in the film but the full non-linear surface terms which are then treated at a one-loop level by calculating the mean-field Poisson-Boltzmann solution and then the fluctuations about this solution. We carefully analyze the reno...

  1. Space charge effect measurements for a multi-channel ionization chamber used for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, Amgad

    2012-07-18

    In vivo coronary angiography is one of the techniques used to investigate the heart diseases, by using catheter to inject a contrast medium of a given absorption coefficient into the heart vessels. Taking X-ray images produced by X-ray tube or synchrotron radiation for visualizing the blood in the coronary arteries. As the synchrotron radiation generated by the relativistic charged particle at the bending magnets, which emits high intensity photons in comparison with the X-ray tube. The intensity of the synchrotron radiation is varies with time. However for medical imaging it's necessary to measure the incoming intensity with the integrated time. The thesis work includes building a Multi-channel ionization chamber which can be filled with noble gases N{sub 2}, Ar and Xe with controlled inner pressure up to 30 bar. This affects the better absorption efficiency in measuring the high intensity synchrotron beam fluctuation. The detector is a part of the experimental setup used in the k-edge digital subtraction angiography project, which will be used for correcting the angiography images taken by another detector at the same time. The Multi-channel ionization chamber calibration characteristics are measured using 2 kW X-ray tube with molybdenum anode with characteristic energy of 17.44 keV. According to the fast drift velocity of the electrons relative to the positive ions, the electrons will be collected faster at the anode and will induce current signals, while the positive ions is still drifting towards the cathode. However the accumulation of the slow ions inside the detector disturbs the homogeneous applied electric field and leads to what is known a space charge effect. In this work the space charge effect is measured with very high synchrotron photons intensity from EDR beam line at BESSYII. The strong attenuation in the measured amplitude signal occurs when operating the chamber in the recombination region. A plateau is observed at the amplitude signal when

  2. A Review of Control Strategy of the Large-scale of Electric Vehicles Charging and Discharging Behavior

    Science.gov (United States)

    Kong, Lingyu; Han, Jiming; Xiong, Wenting; Wang, Hao; Shen, Yaqi; Li, Ying

    2017-05-01

    Large scale access of electric vehicles will bring huge challenges to the safe operation of the power grid, and it’s important to control the charging and discharging of the electric vehicle. First of all, from the electric quality and network loss, this paper points out the influence on the grid caused by electric vehicle charging behaviour. Besides, control strategy of electric vehicle charging and discharging has carried on the induction and the summary from the direct and indirect control. Direct control strategy means control the electric charging behaviour by controlling its electric vehicle charging and discharging power while the indirect control strategy by means of controlling the price of charging and discharging. Finally, for the convenience of the reader, this paper also proposed a complete idea of the research methods about how to study the control strategy, taking the adaptability and possibility of failure of electric vehicle control strategy into consideration. Finally, suggestions on the key areas for future research are put up.

  3. Research into the efficacy and cost-effectiveness of brief, free of charge and anonymous sex counselling to improve (mental health in youth: Design of a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Veen Evert

    2009-12-01

    Full Text Available Abstract Background The capacity to form romantic relationships and sexual health of adolescents in the Netherlands are compromised by several factors, including young age of first intercourse and adolescent depression. Several thresholds like own expenses, trust and embarrassment prevent adolescents to seek help for their sexual problems. To overcome these thresholds, brief sex counselling has been developed. It has been used since 2006 within the Rotterdam-Rijnmond Public Health Service, but there is lack of information about the (cost- effectiveness. In the current study we will evaluate the (cost- effectiveness of brief sex counselling for sexual problems in adolescents and young adults between 18 and 25 years of age. Methods In a randomised controlled trial we will compare (1 brief sex counselling with (2 intensive sexological treatment, and (3 delayed treatment (waiting list. Embedded in this RCT will be a trial-based economic evaluation, looking at the cost-effectiveness and cost-utility of brief sex counselling versus the two other interventions. Four hundred fifty adolescents (aged 18-25 with sexual problems will be recruited among the persons who visit the Public Health Service (PHS and through various websites. After a screening procedure, eligible participants will be randomly allocated to one of the three intervention groups. Primary outcome measure of the clinical evaluation is the severity of sexual problems. Other outcomes include psychological distress, especially depression. The economic evaluation will be performed from a societal perspective. Costs will be assessed continuously by a retrospective questionnaire covering the last 3 month. All outcome assessments (including those for the economic evaluation will take place via the internet at baseline, and at 3, 6, 9, and 12 months after baseline. Discussion The proposed research project will be the first study to provide preliminary data about the effect and cost-effectiveness

  4. Electric field confinement effect on charge transport in organic field-effect transistors

    NARCIS (Netherlands)

    Li, X.; Kadashchuk, A.; Fishchuk, I.I.; Smaal, W.T.T.; Gelinck, G.H.; Broer, D.J.; Genoe, J.; Heremans, P.; Bässler, H.

    2012-01-01

    While it is known that the charge-carrier mobility in organic semiconductors is only weakly dependent on the electric field at low fields, the experimental mobility in organic field-effect transistors using silylethynyl-substituted pentacene is found to be surprisingly field dependent at low source-

  5. Charging process of polyurethane based composites under electronic irradiation: Effects of cellulose fiber content

    Energy Technology Data Exchange (ETDEWEB)

    Hadjadj, Aomar; Jbara, Omar; Tara, Ahmed; Gilliot, Mickael [Laboratoire d' Ingénierie et Sciences des Matériaux (LISM EA 4695), Université de Reims Champagne-Ardenne, 51687 Reims cedex 2 (France); Dellis, Jean-Luc [Laboratoire de Physique de la Matière Condensée (LPMC EA 2081), Université de Picardie Jules Vernes, 80009 Amiens cedex 1 (France)

    2013-09-23

    The study deals with the charging effect of polyurethanes-based composites reinforced with cellulose fibers, under electronic beam irradiation in a scanning electron microscope. The results indicate that the leakage current and the trapped charge as well as the kinetics of charging process significantly change beyond a critical concentration of 10% cellulose fibers. These features are correlated with the cellulose concentration-dependence of the electrical properties, specifically resistivity and capacitance, of the composite.

  6. Charging process of polyurethane based composites under electronic irradiation: Effects of cellulose fiber content

    Science.gov (United States)

    Hadjadj, Aomar; Jbara, Omar; Tara, Ahmed; Gilliot, Mickael; Dellis, Jean-Luc

    2013-09-01

    The study deals with the charging effect of polyurethanes-based composites reinforced with cellulose fibers, under electronic beam irradiation in a scanning electron microscope. The results indicate that the leakage current and the trapped charge as well as the kinetics of charging process significantly change beyond a critical concentration of 10% cellulose fibers. These features are correlated with the cellulose concentration-dependence of the electrical properties, specifically resistivity and capacitance, of the composite.

  7. Charge Splitting In Situ Recorder (CSIR) for Real-Time Examination of Plasma Charging Effect in FinFET BEOL Processes.

    Science.gov (United States)

    Tsai, Yi-Pei; Hsieh, Ting-Huan; Lin, Chrong Jung; King, Ya-Chin

    2017-09-18

    A novel device for monitoring plasma-induced damage in the back-end-of-line (BEOL) process with charge splitting capability is first-time proposed and demonstrated. This novel charge splitting in situ recorder (CSIR) can independently trace the amount and polarity of plasma charging effects during the manufacturing process of advanced fin field-effect transistor (FinFET) circuits. Not only does it reveal the real-time and in situ plasma charging levels on the antennas, but it also separates positive and negative charging effect and provides two independent readings. As CMOS technologies push for finer metal lines in the future, the new charge separation scheme provides a powerful tool for BEOL process optimization and further device reliability improvements.

  8. Electrostatic Charge Effects on Pharmaceutical Aerosol Deposition in Human Nasal–Laryngeal Airways

    Directory of Open Access Journals (Sweden)

    Jinxiang Xi

    2014-01-01

    Full Text Available Electrostatic charging occurs in most aerosol generation processes and can significantly influence subsequent particle deposition rates and patterns in the respiratory tract through the image and space forces. The behavior of inhaled aerosols with charge is expected to be most affected in the upper airways, where particles come in close proximity to the narrow turbinate surface, and before charge dissipation occurs as a result of high humidity. The objective of this study was to quantitatively evaluate the deposition of charged aerosols in an MRI-based nasal–laryngeal airway model. Particle sizes of 5 nm–30 µm and charge levels ranging from neutralized to ten times the saturation limit were considered. A well-validated low Reynolds number (LRN k–ω turbulence model and a discrete Lagrangian tracking approach that accounted for electrostatic image force were employed to simulate the nasal airflow and aerosol dynamics. For ultrafine aerosols, electrostatic charge was observed to exert a discernible but insignificant effect. In contrast, remarkably enhanced depositions were observed for micrometer particles with charge, which could be one order of magnitude larger than no-charge depositions. The deposition hot spots shifted towards the anterior part of the upper airway as the charge level increased. Results of this study have important implications for evaluating nasal drug delivery devices and for assessing doses received from pollutants, which often carry a certain level of electric charges.

  9. The effect of dc poling duration on space charge relaxation in virgin XLPE cable peelings

    Energy Technology Data Exchange (ETDEWEB)

    Tzimas, Antonios; Rowland, Simon M [University of Manchester, School of Electrical and Electronic Engineering, Manchester, M60 1QD (United Kingdom); Dissado, Leonard A [University of Leicester, Department of Engineering, Leicester, LE1 7RH (United Kingdom); Fu, Mingli [AREVA T and D UK Limited, St Leonards Avenue, Stafford, ST17 4LX (United Kingdom); Nilsson, Ulf H, E-mail: Antonios.Tzimas@manchester.ac.u [Borealis AB, SE-444 86, Stenungsund (Sweden)

    2010-06-02

    The effect of dc poling time upon the time-dependent decay of space charge in insulation peelings of cross-linked polyethylene (XLPE) cable that had not previously experienced either electrical or thermal stressing is investigated. Two dc poling durations were used, 2 h and 26 h at an electric field of 50 kV mm{sup -1} and at ambient temperature. Space charge was measured in the two samples investigated both during space charge accumulation and throughout its subsequent decay. The results show that the length of dc poling plays an important role in the subsequent decay. Despite the fact that both samples have had the same amount of space charge by the end of both short and long poling durations the time dependence of the space charge decay is different. Most of the charge stored in the sample that had experienced the short time poling decays rapidly after voltage removal. On the other hand, the charge that is stored in the sample with the long dc poling duration decays slowly and its decay occurs in two stages. The data, which are analysed by means of the de-trapping theory of space charge decay, imply that the charge stored in the material has occupied energy states with different trap depth ranges. The two poling durations lead to different relative amounts of charge in each of the two trap depth ranges. Possible reasons for this are discussed.

  10. The effect of dc poling duration on space charge relaxation in virgin XLPE cable peelings

    Science.gov (United States)

    Tzimas, Antonios; Rowland, Simon M.; Dissado, Leonard A.; Fu, Mingli; Nilsson, Ulf H.

    2010-06-01

    The effect of dc poling time upon the time-dependent decay of space charge in insulation peelings of cross-linked polyethylene (XLPE) cable that had not previously experienced either electrical or thermal stressing is investigated. Two dc poling durations were used, 2 h and 26 h at an electric field of 50 kV mm-1 and at ambient temperature. Space charge was measured in the two samples investigated both during space charge accumulation and throughout its subsequent decay. The results show that the length of dc poling plays an important role in the subsequent decay. Despite the fact that both samples have had the same amount of space charge by the end of both short and long poling durations the time dependence of the space charge decay is different. Most of the charge stored in the sample that had experienced the short time poling decays rapidly after voltage removal. On the other hand, the charge that is stored in the sample with the long dc poling duration decays slowly and its decay occurs in two stages. The data, which are analysed by means of the de-trapping theory of space charge decay, imply that the charge stored in the material has occupied energy states with different trap depth ranges. The two poling durations lead to different relative amounts of charge in each of the two trap depth ranges. Possible reasons for this are discussed.

  11. Autonomous Coil Alignment System Using Fuzzy Steering Control for Electric Vehicles with Dynamic Wireless Charging

    Directory of Open Access Journals (Sweden)

    Karam Hwang

    2015-01-01

    Full Text Available An autonomous coil alignment system (ACAS using fuzzy steering control is proposed for vehicles with dynamic wireless charging. The misalignment between the power receiver coil and power transmitter coil is determined based on the voltage difference between two coils installed on the front-left/front-right of the power receiver coil and is corrected through autonomous steering using fuzzy control. The fuzzy control is chosen over other control methods for implementation in ACAS due to the nonlinear characteristic between voltage difference and lateral misalignment distance, as well as the imprecise and constantly varying voltage readings from sensors. The operational validity and feasibility of the ACAS are verified through simulation, where the vehicle equipped with ACAS is able to align with the power transmitter in the road majority of the time during operation, which also implies achieving better wireless power delivery.

  12. System dynamic model and charging control of lead-acid battery for stand-alone solar PV system

    KAUST Repository

    Huang, B.J.

    2010-05-01

    The lead-acid battery which is widely used in stand-alone solar system is easily damaged by a poor charging control which causes overcharging. The battery charging control is thus usually designed to stop charging after the overcharge point. This will reduce the storage energy capacity and reduce the service time in electricity supply. The design of charging control system however requires a good understanding of the system dynamic behaviour of the battery first. In the present study, a first-order system dynamics model of lead-acid battery at different operating points near the overcharge voltage was derived experimentally, from which a charging control system based on PI algorithm was developed using PWM charging technique. The feedback control system for battery charging after the overcharge point (14 V) was designed to compromise between the set-point response and the disturbance rejection. The experimental results show that the control system can suppress the battery voltage overshoot within 0.1 V when the solar irradiation is suddenly changed from 337 to 843 W/m2. A long-term outdoor test for a solar LED lighting system shows that the battery voltage never exceeded 14.1 V for the set point 14 V and the control system can prevent the battery from overcharging. The test result also indicates that the control system is able to increase the charged energy by 78%, as compared to the case that the charging stops after the overcharge point (14 V). © 2010 Elsevier Ltd. All rights reserved.

  13. Particle and substrate charge effects on colloidal self-assembly in a sessile drop.

    Science.gov (United States)

    Yan, Qingfeng; Gao, Li; Sharma, Vyom; Chiang, Yet-Ming; Wong, C C

    2008-10-21

    By direct video monitoring of dynamic colloidal self-assembly during solvent evaporation in a sessile drop, we investigated the effect of surface charge on the ordering of colloidal spheres. The in situ observations revealed that the interaction between charged colloidal spheres and substrates affects the mobility of colloidal spheres during convective self-assembly, playing an important role in the colloidal crystal growth process. Both ordered and disordered growth was observed depending on different chemical conditions mediated by surface charge and surfactant additions to the sessile drop system. These different self-assembly behaviors were explained by the Coulombic and hydrophobic interactions between surface-charged colloidal spheres and substrates.

  14. Direct Simulation Monte Carlo exploration of charge effects on aerosol evolution

    Science.gov (United States)

    Palsmeier, John F.

    Aerosols are potentially generated both during normal operations in a gas cooled Generation IV nuclear reactor and in all nuclear reactors during accident scenarios. These aerosols can become charged due to aerosol generation processes, radioactive decay of associated fission products, and ionizing atmospheres. Thus the role of charge on aerosol evolution, and hence on the nuclear source term, has been an issue of interest. There is a need for both measurements and modeling to quantify this role as these effects are not currently accounted for in nuclear reactor modeling and simulation codes. In this study the role of charge effects on the evolution of a spatially homogenous aerosol was explored via the application of the Direct Simulation Monte Carlo (DSMC) technique. The primary mechanisms explored were those of coagulation and electrostatic dispersion. This technique was first benchmarked by comparing the results obtained from both monodisperse and polydisperse DSMC evolution of charged aerosols with the results obtained by respectively deterministic and sectional techniques. This was followed by simulation of several polydisperse charged aerosols. Additional comparisons were made between the evolutions of charged and uncharged aerosols. The results obtained using DSMC in simple cases were comparable to those obtained from other techniques, without the limitations associated with more complex cases. Multicomponent aerosols of different component densities were also evaluated to determine the charge effects on their evolution. Charge effects can be significant and further explorations are warranted.

  15. Effect of dynamically charged helium on tensile properties of V-4Cr-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L. [Argonne National Lab., IL (United States)

    1995-04-01

    The objective of this work is to determine the effect of displacement damage and dynamically charged helium on tensile properties of V-4Cr-4Ti alloy irradiated to 18-31 dpa at 425-600{degree}C in the Dynamic Helium Charging Experiment (DHCE).

  16. Effect of frequency variation on electromagnetic pulse interaction with charges and plasma

    NARCIS (Netherlands)

    Khachatryan, A.G.; Goor, van F.A.; Verschuur, J.W.J.; Boller, K.-J.

    2005-01-01

    The effect of frequency variation (chirp) in an electromagnetic (EM) pulse on the pulse interaction with a charged particle and plasma is studied. Various types of chirp and pulse envelopes are considered. In vacuum, a charged particle receives a kick in the polarization direction after interaction

  17. Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria

    NARCIS (Netherlands)

    Gottenbos, B; Grijpma, DW; van der Mei, HC; Feijen, J; Busscher, HJ

    The infection of biomaterials is determined by an interplay of adhesion and surface growth of the infecting organisms. In this study, the antimicrobial effects on adhering bacteria of a positively charged poly(methacrylate) surface ( potential +12 mV) were compared with those of negatively charged

  18. Incoherent effect of space charge and electron cloud

    Science.gov (United States)

    Franchetti, G.; Hofmann, I.; Fischer, W.; Zimmermann, F.

    2009-12-01

    Trapping by resonances or scattering off resonances induced by space charge (SC) or electron cloud (EC) in conjunction with synchrotron motion can explain observations of slow beam loss and emittance growth, which are often accompanied by changes in the longitudinal beam profile. In this paper we review the recent progress in understanding and modeling of the underlying mechanisms, highlight the differences and similarities between space charge and electron cloud, and discuss simulation results in the light of experimental observations, e.g., at GSI, CERN, and BNL. In particular, we address the role of the pinched electrons and describe in detail the complexity of the electron pinch formation. We present simulation results within a dipole or in a field-free region of the beam pipe, which reveal the morphology and main features of this phenomenon, explain the physical origin of the complex electron structures like stripe in either field configuration, and discuss the dependence on some key parameters.

  19. Incoherent Effect of Space Charge and Electron Cloud

    CERN Document Server

    Franchetti, G; Fischer, W; Zimmermann, F

    2009-01-01

    Trapping by resonances or scattering off resonances induced by space charge (SC) or electron cloud (EC) in conjunction with synchrotron motion can explain observations of slow beam loss and emittance growth, which are often accompanied by changes in the longitudinal beam profile. In this paper we review the recent progress in understanding and modeling of the underlying mechanisms, highlight the differences and similarities between space charge and electron cloud, and discuss simulation results in the light of experimental observations, e.g., at GSI, CERN, and BNL. In particular, we address the role of the pinched electrons and describe in detail the complexity of the electron pinch formation. We present simulation results within a dipole or in a field-free region of the beam pipe, which reveal the morphology and main features of this phenomenon, explain the physical origin of the complex electron structures like stripe in either field configuration, and discuss the dependence on some key parameters.

  20. A new expression of Ns versus Ef to an accurate control charge model for AlGaAs/GaAs

    Science.gov (United States)

    Bouneb, I.; Kerrour, F.

    2016-03-01

    Semi-conductor components become the privileged support of information and communication, particularly appreciation to the development of the internet. Today, MOS transistors on silicon dominate largely the semi-conductors market, however the diminution of transistors grid length is not enough to enhance the performances and respect Moore law. Particularly, for broadband telecommunications systems, where faster components are required. For this reason, alternative structures proposed like hetero structures IV-IV or III-V [1] have been.The most effective components in this area (High Electron Mobility Transistor: HEMT) on IIIV substrate. This work investigates an approach for contributing to the development of a numerical model based on physical and numerical modelling of the potential at heterostructure in AlGaAs/GaAs interface. We have developed calculation using projective methods allowed the Hamiltonian integration using Green functions in Schrodinger equation, for a rigorous resolution “self coherent” with Poisson equation. A simple analytical approach for charge-control in quantum well region of an AlGaAs/GaAs HEMT structure was presented. A charge-control equation, accounting for a variable average distance of the 2-DEG from the interface was introduced. Our approach which have aim to obtain ns-Vg characteristics is mainly based on: A new linear expression of Fermi-level variation with two-dimensional electron gas density in high electron mobility and also is mainly based on the notion of effective doping and a new expression of AEc

  1. Effect of Coulomb scattering from trapped charges on the mobility in an organic field-effect transistor

    Science.gov (United States)

    Sharma, A.; Janssen, N. M. A.; Mathijssen, S. G. J.; de Leeuw, D. M.; Kemerink, M.; Bobbert, P. A.

    2011-03-01

    We investigate the effect of Coulomb scattering from trapped charges on the mobility in the two-dimensional channel of an organic field-effect transistor. The number of trapped charges can be tuned by applying a prolonged gate bias. Surprisingly, after increasing the number of trapped charges to a level where strong Coulomb scattering is expected, the mobility has decreased only slightly. Simulations show that this can be explained by assuming that the trapped charges are located in the gate dielectric at a significant distance from the channel instead of in or very close to the channel. The effect of Coulomb scattering is then strongly reduced.

  2. Hall-Effect Based Semi-Fast AC On-Board Charging Equipment for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Eva González-Romera

    2011-09-01

    Full Text Available The expected increase in the penetration of electric vehicles (EV and plug-in hybrid electric vehicles (PHEV will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V mode, and also in vehicle-to-grid (V2G mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  3. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.

    Science.gov (United States)

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  4. Charging System of ECRH High-Voltage Power Supply and its Control System

    Institute of Scientific and Technical Information of China (English)

    胡国富; 丁同海; 刘保华; 姜书方

    2003-01-01

    High-voltage power supply (HVPS) of Electron Cyclotron Resonance Heating(ECRH) for HT-7 and HT-7U is presently being constructed. The high voltage (100 kV) en-ergy of HVPS is stored in the capacitor banks, and they can power one or two gyrotrons. All theoperation of the charging system will be done by the control system, where the field signals areinterfaced to programmable logic controller (PLC). The use of PLC not only simplifies the controlsystem, but also enhances the reliability. The software written by using configuration softwareinstalled in the master computer allows for remote and multiple operator control, and the statusand data information is also remotely available.

  5. Prediction Model of Battery State of Charge and Control Parameter Optimization for Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2015-07-01

    Full Text Available This paper presents the construction of a battery state of charge (SOC prediction model and the optimization method of the said model to appropriately control the number of parameters in compliance with the SOC as the battery output objectives. Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences has tested its electric vehicle research prototype on the road, monitoring its voltage, current, temperature, time, vehicle velocity, motor speed, and SOC during the operation. Using this experimental data, the prediction model of battery SOC was built. Stepwise method considering multicollinearity was able to efficiently develops the battery prediction model that describes the multiple control parameters in relation to the characteristic values such as SOC. It was demonstrated that particle swarm optimization (PSO succesfully and efficiently calculated optimal control parameters to optimize evaluation item such as SOC based on the model.

  6. Transverse Space-Charge Effects in Circular Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Sacherer, Frank James

    1968-10-30

    The particles in an accelerator interact with one another by electromagnetic forces and are held together by external focusing forces. Such a many-body system has a large number of transverse modes of oscillation (plasma oscillations) that can be excited at characteristic frequencies by errors in the external guide field. In Part I we examine one mode of oscillation in detail, namely the quadrupole mode that is excited in uniformly charged beams by gradient errors. We derive self-consistent equations of motion for the beam envelope and solve these equations for the case in which the space-charge force is much less than the external focusing force, i.e., for strong-focusing synchrotrons. We find that the resonance intensity is shifted from the value predicted by the usual transverse incoherent space-charge limit; moreover, because the space-charge force depends on the shape and size of the beam, the beam growth in always limited. For gradient errors of the magnitude normally present in strong-focusing synchrotrons, the increase in beam size is small provided the beam parameters are properly chosen; otherwise the growth may be large. Thus gradient errors need not impose a limit on the number of particles that can be accelerated. In Part II we examine the other modes of collective oscillation that are excited by machine imperfections. For simplicity we consider only one-dimensional beams that are confined by harmonic potentials, and only small-amplitude oscillations. The linearized Vlasov and Poisson equations are used to find the twofold infinity of normal modes and eigenfrequencies for the stationary distribution that has uniform charge density in real space. In practice, only the low-order modes (the dipole, quadrupole, sextupole, and one or two additional modes) will be serious, and the resonant conditions for these modes are located on a tune diagram. These results, which are valid for all beam intensities, are compared with the known eigenfrequencies for the

  7. High temperature thermocline TES - effect of system pre-charging on thermal stratification

    Science.gov (United States)

    Zavattoni, Simone A.; Barbato, Maurizio C.; Zanganeh, Giw; Pedretti, Andrea

    2016-05-01

    The purpose of this study is to evaluate, by means of a computational fluid dynamics approach, the effect of performing an initial charging, or pre-charging, on thermal stratification of an industrial-scale thermocline TES unit, based on a packed bed of river pebbles. The 1 GWhth TES unit under investigation is exploited to fulfill the energy requirement of a reference 80 MWe concentrating solar power plant which uses air as heat transfer fluid. Three different scenarios, characterized by 4 h, 6 h and 8 h of pre-charging, were compared with the reference case of TES system operating without pre-charging. For each of these four scenarios, a total of 30 consecutive charge/discharge cycles, of 12 h each, were simulated and the effect of TES pre-charging on thermal stratification was qualitatively evaluated, by means of a stratification efficiency, based on the second-law of thermodynamics. On the basis of the simulations results obtained, the effect of pre-charging, more pronounced during the first cycles, is not only relevant in reducing the time required by the TES to achieve a stable thermal stratification into the packed bed but also to improve the performance at startup when the system is charged for the first time.

  8. Effective potentials for charge-helium and charge-singly-ionized helium interactions in a dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T.S.; Amirov, S.M.; Moldabekov, Zh.A. [Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty (Kazakhstan)

    2016-06-15

    The effective electron (proton)-He and electron (proton)-He{sup +} screened pair interaction potentials arising as a result of partial screening of the helium nucleus field by bound electrons, taking into account both screening by free charged particles and quantum diffraction effect in dense plasmas were derived. The impact of quantum effects on screening was analyzed. It was shown that plasma polarization around the atom leads to the additional repulsion (attraction) between the electron (proton) and the helium atom. The method of constructing the full electron (proton)-He and electron (proton)-He{sup +} screened pair interaction potentials as the sum of the derived potentials with the polarization potential and exchange potential is discussed. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. On Beam Matching and the Space-Charge Effect in protoDUNE-SP

    CERN Document Server

    Mandalia, Jesal Paresh

    2017-01-01

    In this project simulations using LArSoft have been analysed in particular looking at how the space-charge effect will affect the matching of particle tracks from the beam line monitor to the TPC and the TPC's performance measuring $\\frac{dE}{dx}$ in protoDUNE-SP. The analysis here provides some preliminary calibrations for protoDUNE-SP to account for the impact the space charge effect will have. Many areas of pion cross section analysis will be affected by the space charge effect so it is vital for a calibration to be developed.

  10. Schwinger Effect in (A)dS and Charged Black Hole

    CERN Document Server

    Kim, Sang Pyo

    2015-01-01

    In an (Anti-) de Sitter space and a charged black hole the Schwinger effect is either enhanced by the Hawking radiation or suppressed by the negative curvature. We use the contour integral method to calculate the production of charged pairs in the global (A)dS space. The charge emission from near-extremal black hole is found from the AdS geometry near the horizon and interpreted as the Schwinger effect in a Rindler space with the surface gravity for the acceleration as well as the Schwinger effect in AdS space.

  11. The effect of surface transport on water desalination by porous electrodes undergoing capacitive charging

    CERN Document Server

    Shocron, Amit N

    2016-01-01

    Capacitive deionization (CDI) is a technology in which water is desalinated by ion electrosorption into the electric double layers (EDLs) of charging porous electrodes. In recent years significant advances have been made in modeling the charge and salt dynamics in a CDI cell, but the possible effect of surface transport within diffuse EDLs on these dynamics has not been investigated. We here present theory which includes surface transport in describing the dynamics of a charging CDI cell. Through our numerical solution to the presented models, the possible effect of surface transport on the CDI process is elucidated. While at some model conditions surface transport enhances the rate of CDI cell charging, counter-intuitively this additional transport pathway is found to slow down cell charging at other model conditions.

  12. Strategies of charge control in small photovoltaic systems; Estrategias de controle de carga em pequenos sistemas fotovoltaicos

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Luis Guilherme; Zilles, Roberto [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Lab. de Sistemas Fotovoltaicos], e-mail: monteiro@iee.usp.br, e-mail: zilles@iee.usp.br

    2004-07-01

    Considering the necessity to optimize and to draw out the useful life of the rechargeable batteries in photovoltaic systems it is of custom to endow the systems with an equipment that plays this function. Its application, of adjusted form, can represent a significant reduction in the operational costs of these systems. In this paper the different strategies, and its particularities, used for the management of the state of charge are presented in small photovoltaic systems. In general, this management is made through the scan of voltage in the terminals of the accumulator with an electronic device called charge controller. The market offers a diversity of options for the designer of systems, that essentially vary in that refer to the strategy of commutation of the consumption and load circuits (for example, ON/OFF or PWM). The majority of the controllers for small systems does not allow to adjustment of the points of performance of the circuits of load and consumption. In many cases it is observed that the pre-adjusted points allow extreme discharges that make it harmless to one of functions that would have to play, or either, to protect the battery of extreme discharges. In this direction, this article makes an analysis of the different strategies of control and presents one criticizes to the products offered in the market for application in solar home systems. (author)

  13. Measurement of charge with an active integrator in the presence of noise and pileup effects. A choice of parameters in the charge division method

    Energy Technology Data Exchange (ETDEWEB)

    Fanet, H.; Lugol, J.C. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Physique Nucleaire)

    1991-03-01

    In the presence of electronics noise and pileup effects it is possible to measure charge with an active integrator. The subject of this paper is to deal with the choice of measurement parameters. An application of position sensing with the charge division method is studied and results are compared to those obtained with POMME polarimeter electronics. (orig.).

  14. Charge Penetration Effects in Rare-Earth Crystal Fields.

    Science.gov (United States)

    1982-06-01

    Interactions, 3. Three-Parameter Theory of Crystal Fields, Harry Diamond Laboratories HDL-TR-1673 (June 1975). 2R. M. Sternheimer , Phys. Rev., 84 (1951...R. M. Sternheimer , Phys. Rev., 84 (1951), 244. (3) R. E. Watson and A. J. Freeman, Phys. Rev., 135 (1964), A1209. (4) D. Sengupta and J. 0. Artman...A RARE-EARTH ION INTO THE CHARGE DI! THE RESULTS ARE CAST INTO A FORM REMINISCENT OF THE STERNHEIMER SHIELDING FA( A PRIME NM(R TO THE NTH POWER) TO

  15. Dynamical image-charge effect in molecular tunnel junctions

    DEFF Research Database (Denmark)

    Jin, Chengjun; Thygesen, Kristian Sommer

    2014-01-01

    When an electron tunnels between two metal contacts it temporarily induces an image charge (IC) in the electrodes which acts back on the tunneling electron. It is usually assumed that the IC forms instantaneously such that a static model for the image potential applies. Here we investigate how th...... that the dynamical corrections can reduce the conductance by more than a factor of two when compared to static GW or density functional theory where the molecular energy levels have been shifted to match the exact quasiparticle levels....

  16. Flexible Local Load Controller for Fast ElectricVehicle Charging Station Supplemented with Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; SUN, BO; Schaltz, Erik

    2014-01-01

    of dedicated flywheel energy storage system (FESS) within the charging station and compensating some of the adverse effects of high power charging is explored in this paper. Although sharing some similarities with vehicle to grid (V2G) technology, the principal advantage of this strategy is the fact that many...

  17. Optical control and determination of charge in self-assembled quantum dots

    Science.gov (United States)

    Korkusinski, M.; Hawrylak, P.; Babinski, A.; Potemski, M.; Raymond, S.; Lapointe, J.; Wasilewski, Z.

    2007-03-01

    We present a theory and experiment allowing for optical control of charge in a single InAs/GaAs quantum dot (QD) in magnetic fields up to 23 T [1]. The charge is controlled by excitation energy and power and is determined by comparing the experimental PL spectra of the QD to the ones calculated for N electrons and one hole using the parabolic confinement and the CI technique for many-carrier states. The number N is determined from the characteristic features in PL [2]. For N=4 electrons in low fields the degenerate p shell is half-filled and the system is in a triplet state. At larger fields the degeneracy is removed and a triplet-singlet transition occurs. This transition is seen as a discontinuity in the magnetic-field dependence of PL lines. In even higher fields, electrons increase their polarization through spin-flip transitions, which also leads to discontinuities of the PL spectra. Also, as the magnetic moment of electrons increases, the electron-hole exchange leads to the appearance of multiple PL lines. [1] A. Babinski et al, Physica E 26, 190 (2005) [2] A. Wojs and P. Hawrylak, Phys. Rev. B 55, 13066 (1997)

  18. Photovoltaic battery & charge controller market & applications survey. An evaluation of the photovoltaic system market for 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, R.L.; Turpin, J.F.; Corey, G.P. [and others

    1996-12-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Battery Analysis and Evaluation Department and the Photovoltaic System Assistance Center of Sandia National Laboratories (SNL) initiated a U.S. industry-wide PV Energy Storage System Survey. Arizona State University (ASU) was contracted by SNL in June 1995 to conduct the survey. The survey included three separate segments tailored to: (a) PV system integrators, (b) battery manufacturers, and (c) PV charge controller manufacturers. The overall purpose of the survey was to: (a) quantify the market for batteries shipped with (or for) PV systems in 1995, (b) quantify the PV market segments by battery type and application for PV batteries, (c) characterize and quantify the charge controllers used in PV systems, (d) characterize the operating environment for energy storage components in PV systems, and (e) estimate the PV battery market for the year 2000. All three segments of the survey were mailed in January 1996. This report discusses the purpose, methodology, results, and conclusions of the survey.

  19. Space-charge effects in liquid argon ionization chambers

    Science.gov (United States)

    Rutherfoord, J. P.; Walker, R. B.

    2015-03-01

    We have uniformly irradiated liquid argon ionization chambers with betas from high-activity 90Sr sources. The radiation environment is similar to that in the liquid argon calorimeters which are part of the ATLAS detector installed at CERN's Large Hadron Collider (LHC). We measured the resulting ionization current over a wide range of applied potential for two different source activities and for three different chamber gaps. These studies provide operating experience at exceptionally high ionization rates. In particular they indicate a stability at the 0.1% level for these calorimeters over years of operation at the full LHC luminosity when operated in the normal mode at an electric field E = 1.0 kV / mm. We can operate these chambers in the normal mode or in the space-charge limited regime and thereby determine the transition point between the two. This transition point is parameterized by a positive argon ion mobility of μ+ = 0.08 ± 0.02mm2 / V s at a temperature of 88.0±0.5 K and at a pressure of 1.02±0.02 bar. In the space-charge limited regime the ionization currents are degraded and show signs of instability. At the highest electric fields in our study (6.7 kV/mm) the ionization current is still slowly rising with increasing electric field.

  20. System and Battery Charge Control for PV-Powered AC Lighting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kern, G.

    1999-04-01

    This report reviews a number of issues specific to stand-alone AC lighting systems. A review of AC lighting technology is presented, which discusses the advantages and disadvantages of various lamps. The best lamps for small lighting systems are compact fluorescent. The best lamps for intermediate-size systems are high- or low-pressure sodium. Specifications for battery charging and load control are provided with the goal of achieving lamp lifetimes on the order of 16,000 to 24,000 hours and battery lifetimes of 4 to 5 years. A rough estimate of the potential domestic and global markets for stand-alone AC lighting systems is presented. DC current injection tests were performed on high-pressure sodium lamps and the test results are presented. Finally, a prototype system was designed and a prototype system controller (with battery charger and DC/AC inverter) was developed and built.

  1. Modelling the Effects of Parking Charge and Supply Policy Using System Dynamics Method

    National Research Council Canada - National Science Library

    Zhenyu Mei; Qifeng Lou; Wei Zhang; Lihui Zhang; Fei Shi

    2017-01-01

    .... This paper develops an evaluation model for parking policies using system dynamics. A quantitative study is conducted to examine the effects of parking charge and supply policy on traffic speed...

  2. Topological effects of charge transfer in telomere G-quadruplex: Mechanism on telomerase activation and inhibition

    CERN Document Server

    Wang, Xin

    2015-01-01

    We explore charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of charge transport in TG4 DNA. The consecutive TG4(CTG4) is semiconducting with 0.2 ~ 0.3eV energy gap. Charges transfers favorably in the consecutive TG4, but are trapped in the non-consecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly ~ 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.

  3. Topological Effects of Charge Transfer in Telomere G-Quadruplex Mechanism on Telomerase Activation and Inhibition

    Science.gov (United States)

    Wang, Xin; Liang, Shi-Dong

    2013-02-01

    We explore the charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of the charge transport in TG4 DNA. The consecutive TG4 (CTG4) is semiconducting with 0.2 0.3 eV energy gap. Charges transfer favorably in the CTG4, but are trapped in the nonconsecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.

  4. Multi-frequency inversion-charge pumping for charge separation and mobility analysis in high-k/InGaAs metal-oxide-semiconductor field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Djara, V.; Cherkaoui, K.; Negara, M. A.; Hurley, P. K., E-mail: paul.hurley@tyndall.ie [Tyndall National Institute, University College Cork, Dyke Parade, Cork (Ireland)

    2015-11-28

    An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g} measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.

  5. Neural network and fuzzy logic based secondary cells charging algorithm development and the controller architecture for implementation

    Science.gov (United States)

    Ullah, Muhammed Zafar

    Neural Network and Fuzzy Logic are the two key technologies that have recently received growing attention in solving real world, nonlinear, time variant problems. Because of their learning and/or reasoning capabilities, these techniques do not need a mathematical model of the system, which may be difficult, if not impossible, to obtain for complex systems. One of the major problems in portable or electric vehicle world is secondary cell charging, which shows non-linear characteristics. Portable-electronic equipment, such as notebook computers, cordless and cellular telephones and cordless-electric lawn tools use batteries in increasing numbers. These consumers demand fast charging times, increased battery lifetime and fuel gauge capabilities. All of these demands require that the state-of-charge within a battery be known. Charging secondary cells Fast is a problem, which is difficult to solve using conventional techniques. Charge control is important in fast charging, preventing overcharging and improving battery life. This research work provides a quick and reliable approach to charger design using Neural-Fuzzy technology, which learns the exact battery charging characteristics. Neural-Fuzzy technology is an intelligent combination of neural net with fuzzy logic that learns system behavior by using system input-output data rather than mathematical modeling. The primary objective of this research is to improve the secondary cell charging algorithm and to have faster charging time based on neural network and fuzzy logic technique. Also a new architecture of a controller will be developed for implementing the charging algorithm for the secondary battery.

  6. Charge Equalization Controller Algorithm for Series-Connected Lithium-Ion Battery Storage Systems: Modeling and Applications

    Directory of Open Access Journals (Sweden)

    Mahammad A. Hannan

    2017-09-01

    Full Text Available This study aims to develop an accurate model of a charge equalization controller (CEC that manages individual cell monitoring and equalizing by charging and discharging series-connected lithium-ion (Li-ion battery cells. In this concept, an intelligent control algorithm is developed to activate bidirectional cell switches and control direct current (DC–DC converter switches along with pulse width modulation (PWM generation. Individual models of an electric vehicle (EV-sustainable Li-ion battery, optimal power rating, a bidirectional flyback DC–DC converter, and charging and discharging controllers are integrated to develop a small-scale CEC model that can be implemented for 10 series-connected Li-ion battery cells. Results show that the charge equalization controller operates at 91% efficiency and performs well in equalizing both overdischarged and overcharged cells on time. Moreover, the outputs of the CEC model show that the desired balancing level occurs at 2% of state of charge difference and that all cells are operated within a normal range. The configuration, execution, control, power loss, cost, size, and efficiency of the developed CEC model are compared with those of existing controllers. The proposed model is proven suitable for high-tech storage systems toward the advancement of sustainable EV technologies and renewable source of applications.

  7. Charged kaon mass measurement using the Cherenkov effect

    Energy Technology Data Exchange (ETDEWEB)

    Graf, N., E-mail: ngraf@umail.iu.ed [Indiana University, Bloomington, IN 47403 (United States); Lebedev, A. [Harvard University, Cambridge, MA 02138 (United States); Abrams, R.J. [University of Michigan, Ann Arbor, MI 48109 (United States); Akgun, U.; Aydin, G. [University of Iowa, Iowa City, IA 52242 (United States); Baker, W. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Barnes, P.D. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Bergfeld, T. [University of South Carolina, Columbia, SC 29201 (United States); Beverly, L. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Bujak, A. [Purdue University, West Lafayette, IN 47907 (United States); Carey, D. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Dukes, C. [University of Virginia, Charlottesville, VA 22904 (United States); Duru, F. [University of Iowa, Iowa City, IA 52242 (United States); Feldman, G.J. [Harvard University, Cambridge, MA 02138 (United States); Godley, A. [University of South Carolina, Columbia, SC 29201 (United States); Guelmez, E.; Guenaydin, Y.O. [University of Iowa, Iowa City, IA 52242 (United States); Gustafson, H.R. [University of Michigan, Ann Arbor, MI 48109 (United States); Gutay, L. [Purdue University, West Lafayette, IN 47907 (United States); Hartouni, E. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2010-03-21

    The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 to +63GeV/c. The measured value is 491.3+-1.7MeV/c{sup 2}, which is within 1.4sigma of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.

  8. Charged Kaon Mass Measurement using the Cherenkov Effect

    CERN Document Server

    Graf, N; Abrams, R J; Akgun, U; Aydin, G; Baker, W; Barnes, P D; Bergfeld, T; Beverly, L; Bujak, A; Carey, D; Dukes, C; Duru, F; Feldman, G J; Godley, A; Gülmez, E; Günaydın, Y O; Gustafson, H R; Gutay, L; Hartouni, E; Hanlet, P; Hansen, S; Heffner, M; Johnstone, C; Kaplan, D; Kamaev, O; Kilmer, J; Klay, J; Kostin, M; Lange, D; Ling, J; Longo, M J; Lu, L C; Materniak, C; Messier, M D; Meyer, H; Miller, D E; Mishra, S R; Nelson, K; Nigmanov, T; Norman, A; Onel, Y; Paley, J M; Park, H K; Penzo, A; Peterson, R J; Raja, R; Rajaram, D; Ratnikov, D; Rosenfeld, C; Rubin, H; Seun, S; Solomey, N; Soltz, R; Swallow, E; Schmitt, R; Subbarao, P; Torun, Y; Tope, T E; Wilson, K; Wright, D; Wu, K

    2009-01-01

    The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 ppm and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 GeV/c to +63 GeV/c. The measured value is 491.3 +/- 1.7 MeV/c^2, which is within 1.4 sigma of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.

  9. Self-interaction effects on charge-transfer collisions

    CERN Document Server

    Quashie, Edwin E; Andrade, Xavier; Correa, Alfredo A

    2016-01-01

    In this article, we investigate the role of the self-interaction error in the simulation of collisions using time-dependent density functional theory (TDDFT) and Ehrenfest dynamics. We compare many different approximations of the exchange and correlation potential, using as a test system the collision of $\\mathrm{H^+ + CH_4}$ at $30~\\mathrm{eV}$. We find that semi-local approximations, like PBE, and even hybrid functionals, like B3LYP, produce qualitatively incorrect predictions for the scattering of the proton. This discrepancy appears because the self-interaction error allows the electrons to jump too easily to the proton, leading to radically different forces with respect to the non-self-interacting case. From our results, we conclude that using a functional that is self-interaction free is essential to properly describe charge-transfer collisions between ions and molecules in TDDFT.

  10. Antitumor effectiveness of different amounts of electrical charge in Ehrlich and fibrosarcoma Sa-37 tumors

    Directory of Open Access Journals (Sweden)

    González TR

    2004-11-01

    Full Text Available Abstract Background In vivo studies were conducted to quantify the effectiveness of low-level direct electric current for different amounts of electrical charge and the survival rate in fibrosarcoma Sa-37 and Ehrlich tumors, also the effect of direct electric in Ehrlich tumor was evaluate through the measurements of tumor volume and the peritumoral and tumoral findings. Methods BALB/c male mice, 7–8 week old and 20–22 g weight were used. Ehrlich and fibrosarcoma Sa-37 cell lines, growing in BALB/c mice. Solid and subcutaneous Ehrlich and fibrosarcoma Sa-37 tumors, located dorsolaterally in animals, were initiated by the inoculation of 5 × 106 and 1 × 105 viable tumor cells, respectively. For each type of tumor four groups (one control group and three treated groups consisting of 10 mice randomly divided were formed. When the tumors reached approximately 0.5 cm3, four platinum electrodes were inserted into their bases. The electric charge delivered to the tumors was varied in the range of 5.5 to 110 C/cm3 for a constant time of 45 minutes. An additional experiment was performed in BALB/c male mice bearing Ehrlich tumor to examine from a histolological point of view the effects of direct electric current. A control group and a treated group with 77 C/cm3 (27.0 C in 0.35 cm3 and 10 mA for 45 min were formed. In this experiment when the tumor volumes reached 0.35 cm3, two anodes and two cathodes were inserted into the base perpendicular to the tumor long axis. Results Significant tumor growth delay and survival rate were achieved after electrotherapy and both were dependent on direct electric current intensity, being more marked in fibrosarcoma Sa-37 tumor. Complete regressions for fibrosarcoma Sa-37 and Ehrlich tumors were observed for electrical charges of 80 and 92 C/cm3, respectively. Histopathological and peritumoral findings in Ehrlich tumor revealed in the treated group marked tumor necrosis, vascular congestion, peritumoral neutrophil

  11. Calibration function for the Orbitrap FTMS accounting for the space charge effect.

    Science.gov (United States)

    Gorshkov, Mikhail V; Good, David M; Lyutvinskiy, Yaroslav; Yang, Hongqian; Zubarev, Roman A

    2010-11-01

    Ion storage in an electrostatic trap has been implemented with the introduction of the Orbitrap Fourier transform mass spectrometer (FTMS), which demonstrates performance similar to high-field ion cyclotron resonance MS. High mass spectral characteristics resulted in rapid acceptance of the Orbitrap FTMS for Life Sciences applications. The basics of Orbitrap operation are well documented; however, like in any ion trap MS technology, its performance is limited by interactions between the ion clouds. These interactions result in ion cloud couplings, systematic errors in measured masses, interference between ion clouds of different size yet with close m/z ratios, etc. In this work, we have characterized the space-charge effect on the measured frequency for the Orbitrap FTMS, looking for the possibility to achieve sub-ppm levels of mass measurement accuracy (MMA) for peptides in a wide range of total ion population. As a result of this characterization, we proposed an m/z calibration law for the Orbitrap FTMS that accounts for the total ion population present in the trap during a data acquisition event. Using this law, we were able to achieve a zero-space charge MMA limit of 80 ppb for the commercial Orbitrap FTMS system and sub-ppm level of MMA over a wide range of total ion populations with the automatic gain control values varying from 10 to 10(7).

  12. Quantitative evaluation of charge-reduction effect in cluster constituent ions passing through a foil

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, A., E-mail: chiba.atsuya@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292 (Japan); Saitoh, Y.; Narumi, K.; Yamada, K. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292 (Japan); Kaneko, T. [Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, kita-ku, Okayama-shi, Okayama 700-0005 (Japan)

    2013-11-15

    Swift cluster ions, which cause characteristic irradiation effects on a solid surface, have a possibility of establishing a new ion irradiation technique for high-sensitivity surface analysis and innovative surface modification. However, the mechanism of cluster irradiation effects has not been understood completely. We have focused on the charge reduction effect in some physical phenomena and performed a quantitative evaluation of the relationship between the charge state and the interatomic distance of the constituent ions moving in the solid. This technique is based on the refined analysis of the divergence angle of the constituent ions resulting from the foil-induced dissociation of the two-atomic molecular ion. The results derived from this analytical approach clearly showed the correlation between the average charge and the interatomic distance of the constituent ions and implied that the average charge of the constituent ions emerging from the foil varies according to the interatomic distance at the instant of cluster dissociation.

  13. Butterflies with rotation and charge

    Science.gov (United States)

    Reynolds, Alan P.; Ross, Simon F.

    2016-11-01

    We explore the butterfly effect for black holes with rotation or charge. We perturb rotating BTZ and charged black holes in 2 + 1 dimensions by adding a small perturbation on one asymptotic region, described by a shock wave in the spacetime, and explore the effect of this shock wave on the length of geodesics through the wormhole and hence on correlation functions. We find the effect of the perturbation grows exponentially at a rate controlled by the temperature; dependence on the angular momentum or charge does not appear explicitly. We comment on issues affecting the extension to higher-dimensional charged black holes.

  14. Butterflies with rotation and charge

    CERN Document Server

    Reynolds, Alan P

    2016-01-01

    We explore the butterfly effect for black holes with rotation or charge. We perturb rotating BTZ and charged black holes in 2+1 dimensions by adding a small perturbation on one asymptotic region, described by a shock wave in the spacetime, and explore the effect of this shock wave on the length of geodesics through the wormhole and hence on correlation functions. We find the effect of the perturbation grows exponentially at a rate controlled by the temperature; dependence on the angular momentum or charge does not appear explicitly. We comment on issues affecting the extension to higher-dimensional charged black holes.

  15. Control of polythiophene film microstructure and charge carrier dynamics through crystallization temperature

    KAUST Repository

    Marsh, Hilary S.

    2014-03-22

    The microstructure of neat conjugated polymers is crucial in determining the ultimate morphology and photovoltaic performance of polymer/fullerene blends, yet until recently, little work has focused on controlling the former. Here, we demonstrate that both the long-range order along the (100)-direction and the lamellar crystal thickness along the (001)-direction in neat poly(3-hexylthiophene) (P3HT) and poly[(3,3″-didecyl[2,2′:5′, 2″-terthiophene]-5,5″-diyl)] (PTTT-10) thin films can be manipulated by varying crystallization temperature. Changes in crystalline domain size impact the yield and dynamics of photogenerated charge carriers. Time-resolved microwave conductivity measurements show that neat polymer films composed of larger crystalline domains have longer photoconductance lifetimes and charge carrier yield decreases with increasing crystallite size for P3HT. Our results suggest that the classical polymer science description of temperature-dependent crystallization of polymers from solution can be used to understand thin-film formation in neat conjugated polymers, and hence, should be considered when discussing the structural evolution of organic bulk heterojunctions. © 2014 Wiley Periodicals, Inc.

  16. Effect of design parameters on enhancement of hydrogen charging in metal hydride reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Y. [Mechanical Engineering Department, Nigde University, 51100 Nigde (Turkey)

    2009-03-15

    The effects of heat transfer mechanisms on the charging process in metal hydride reactors are studied under various charging pressures. Three different cylindrical reactors with the same base dimensions are designed and manufactured. The first one is a closed cylinder cooled with natural convection, the fins are manufactured around the second reactor and the third reactor is cooled with water circulating around the reactor. The temperatures of the reactor at several locations are measured during charging with a range of pressure of 1-10 bar. The third reactor shows the lowest temperature increase with the fastest charging time under all charging pressures investigated. The effective heat transfer coefficients of the reactors are also calculated according to the experimental results and they are found to be 5.5 {+-} 1 W m{sup -2} K{sup -1}, 35 {+-} 2 W m{sup -2} K{sup -1} and 113 {+-} 1 W m{sup -2} K{sup -1}, respectively. The experimental results showed that the charging of hydride reactors is mainly heat transfer dependent and the reactor with better cooling exhibits the fastest charging characteristics. (author)

  17. ONLINE CHARGE MEASUREMENTS ENABLES PROCESS OPTIMIZATION AND AUTOMATIC CONTROL OF FIXATIVE DOSAGES

    Institute of Scientific and Technical Information of China (English)

    S. GRUBER; R. BERGER

    2004-01-01

    @@ 1. INTRODUCTION For two decades, electric charges have been a vital parameter for quality monitoring of pulp suspensions.Most mill laboratories conduct charge measurements as a daily routine that is considered basic to quality assurance.

  18. ONLINE CHARGE MEASUREMENTS ENABLES PROCESS OPTIMIZATION AND AUTOMATIC CONTROL OF FIXATIVE DOSAGES

    Institute of Scientific and Technical Information of China (English)

    S.GRUBER; R.BERGER

    2004-01-01

    For two decades, electric charges have been a vital parameter for quality monitoring of pulp suspensions. Most mill laboratories conduct charge measurements as a daily routine that is considered basic to quality assurance.

  19. Control of homogeneous charge compression ignition combustion in a two-cylinder gasoline direct injection engine with negative valve overlap

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi; WANG Jianxin; SHUAI Shijin; MA Qingjun; TIAN Guohong

    2007-01-01

    Homogeneous charge compression ignition(HCCI) has challenges in ignition timing control,combustion rate control,and operating range extension.In this paper,HCCI combustion was studied in a two-cylinder gasoline direct injection (GDI) engine with negative valve overlap (NVO).A two-stage gasoline direct injection strategy combined with negative valve overlap was used to control mixture formation and combustion.The gasoline engine could be operated in HCCI combustion mode at a speed range of 800-2 200 r/min and load,indicated mean effective pressure (IMEP) range of 0.1-0.53 MPa.The engine fuel consumption 4× 10-5 without soot emission.The effect of different injection strategies on HCCI combustion was studied.The experimental results indicated that the coefficient of variation of the engine cycle decreased by using NVO with two-stage direct injection;the ignition timing and combustion rate could be controlled;and the operational range of HCCI combustion could be extended.

  20. Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces

    Science.gov (United States)

    Otero, R.; Vázquez de Parga, A. L.; Gallego, J. M.

    2017-07-01

    During the last decade, interest on the growth and self-assembly of organic molecular species on solid surfaces spread over the scientific community, largely motivated by the promise of cheap, flexible and tunable organic electronic and optoelectronic devices. These efforts lead to important advances in our understanding of the nature and strength of the non-bonding intermolecular interactions that control the assembly of the organic building blocks on solid surfaces, which have been recently reviewed in a number of excellent papers. To a large extent, such studies were possible because of a smart choice of model substrate-adsorbate systems where the molecule-substrate interactions were purposefully kept low, so that most of the observed supramolecular structures could be understood simply by considering intermolecular interactions, keeping the role of the surface always relatively small (although not completely negligible). On the other hand, the systems which are more relevant for the development of organic electronic devices include molecular species which are electron donors, acceptors or blends of donors and acceptors. Adsorption of such organic species on solid surfaces is bound to be accompanied by charge-transfer processes between the substrate and the adsorbates, and the physical and chemical properties of the molecules cannot be expected any longer to be the same as in solution phase. In recent years, a number of groups around the world have started tackling the problem of the adsorption, self- assembly and electronic and chemical properties of organic species which interact rather strongly with the surface, and for which charge-transfer must be considered. The picture that is emerging shows that charge transfer can lead to a plethora of new phenomena, from the development of delocalized band-like electron states at molecular overlayers, to the existence of new substrate-mediated intermolecular interactions or the strong modification of the chemical

  1. Effect of topological defects and Coulomb charge on the low energy quantum dynamics of gapped graphene

    CERN Document Server

    Chakraborty, Baishali; Sen, Siddhartha

    2012-01-01

    We study the combined effect of a conical topological defect and a Coulomb charge impurity on the dynamics of Dirac fermions in gapped graphene. Beyond a certain strength of the Coulomb charge, quantum instability sets in, which demarcates the boundary between sub and supercritical values of the charge. In the subcritical regime, for certain values of the system parameters, the allowed boundary conditions in gapped graphene cone can be classified in terms of a single real parameter. We show that the observables such as local density of states, scattering phase shifts and the bound state spectra are sensitive to the value of this real parameter, which is interesting from an empirical point of view. For a supercritical Coulomb charge, we analyze the system with a regularized potential as well as with a zigzag boundary condition and find the effect of the sample topology on the observable features of the system.

  2. Charged Kaon Mass Measurement using the Cherenkov Effect

    Energy Technology Data Exchange (ETDEWEB)

    Graf, N.; /Indiana U.; Lebedev, A.; /Harvard U., Phys. Dept.; Abrams, R.J.; /Michigan U.; Akgun, U.; Aydin, G.; /Iowa U.; Baker, W.; /Fermilab; Barnes, P.D., Jr.; /LLNL, Livermore; Bergfeld, T.; /South Carolina U.; Beverly, L.; /Fermilab; Bujak, A.; /Purdue U.; Carey, D.; /Fermilab /Virginia U. /Iowa U.

    2009-09-01

    The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 ppm and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 GeV/c to +63 GeV/c. The measured value is 491.3 {+-} 1.7 MeV/c{sup 2}, which is within 1.4{sigma} of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.

  3. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    González-Mozuelos, P. [Departamento de Física, Cinvestav del I. P. N., Av. Instituto Politécnico Nacional 2508, Mexico, Distrito Federal, C. P. 07360 (Mexico)

    2016-02-07

    This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact description of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short

  4. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte

    Science.gov (United States)

    González-Mozuelos, P.

    2016-02-01

    This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact description of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short

  5. Explicit continuous charge-based compact model for long channel heavily doped surrounding-gate MOSFETs incorporating interface traps and quantum effects

    Science.gov (United States)

    Hamzah, Afiq; Hamid, Fatimah A.; Ismail, Razali

    2016-12-01

    An explicit solution for long-channel surrounding-gate (SRG) MOSFETs is presented from intrinsic to heavily doped body including the effects of interface traps and fixed oxide charges. The solution is based on the core SRGMOSFETs model of the Unified Charge Control Model (UCCM) for heavily doped conditions. The UCCM model of highly doped SRGMOSFETs is derived to obtain the exact equivalent expression as in the undoped case. Taking advantage of the undoped explicit charge-based expression, the asymptotic limits for below threshold and above threshold have been redefined to include the effect of trap states for heavily doped cases. After solving the asymptotic limits, an explicit mobile charge expression is obtained which includes the trap state effects. The explicit mobile charge model shows very good agreement with respect to numerical simulation over practical terminal voltages, doping concentration, geometry effects, and trap state effects due to the fixed oxide charges and interface traps. Then, the drain current is obtained using the Pao-Sah's dual integral, which is expressed as a function of inversion charge densities at the source/drain ends. The drain current agreed well with the implicit solution and numerical simulation for all regions of operation without employing any empirical parameters. A comparison with previous explicit models has been conducted to verify the competency of the proposed model with the doping concentration of 1× {10}19 {{cm}}-3, as the proposed model has better advantages in terms of its simplicity and accuracy at a higher doping concentration.

  6. Generation of optical vortices with controllable topological charges and polarization patterns

    Science.gov (United States)

    Yang, Ching-Han; Fuh, Andy Ying-Guey

    2017-02-01

    We present a simple and flexible method of generating various vectorial vortex beams (VVBs) based on the scheme of double modulations from a single liquid crystal spatial light modulator (SLM). In this configuration, a half-wave plate (HWP) placed in front of the SLM is first used to control the weights of linear polarization components of incident light. Then, we respectively encode two orbital angular momentum (OAM) eigenstates displayed on each half of the SLM onto each of the linear components of light. This yields the generation of VVB fields spanned by a pair of linearly polarized OAM eigenstates. In order to convert polarization bases from the linear pair into another orthogonal pair, a quarter-wave plate (QWP) placed behind the SLM is used. This enables us to generate VVBs spanned by any pair of orthogonally polarized OAM eigenstates. Generally, the light states of polarization (SOP) can be presented as a geodesic path located on the plane perpendicular to the axis connecting the pair of bases used on the Poincaré sphere. The light property is adjustable depending on both slow axes of HWP and QWP, as well as via computer generated holograms. To validate generated beams, two measurement procedures are subsequently applied. First, Stokes polarimetry is used to measure the light SOP over the transverse plane. Next, a Shack-Hartmann wavefront sensor is used to measure the OAM charge. Both the simulated and experimental results are shown to be in a good qualitative agreement. In addition, both polarization patterns and OAM charges can be controlled independently using the proposed method.

  7. EFFECT OF SPACE CHARGE ON STABILITY OF BEAM DISTRIBUTION IN THE SNS RING.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV, A.V.; WEI, J.; GLUCKSTERN, R.L.

    2001-06-18

    In the Spallation Neutron Source (SNS) ring, multi-turn injection is employed to obtain a large transverse beam size which significantly reduces the space-charge tune shift of the accumulated beam. Careful choice of the painting scheme and bump function is required to obtain the desired beam profile together with low beam loss. In this paper we examine, both analytically and numerically, the effect of the space charge on the beam profile during multi-turn injection painting.

  8. A General Four-Fermion Effective Lagrangian for Dirac and Majorana Neutrino-Charged Matter Interactions

    CERN Document Server

    Mendy, J E B; Mendy, Jean El Bachir; Govaerts, Jan

    2002-01-01

    Given the most general Lorentz invariant four-fermion effective interaction possible for two neutrinos and two charged fermions, whether quarks or leptons, all possible 2-to-2 processes involving two neutrinos, whether Dirac or Majorana ones, and two charged fermions are considered. Explicit and convenient expressions are given for the associated differential cross-sections. Such a parametrization should help assess the sensitivity to physics beyond the Standard Model of neutrino beam experiments which are in the design stage at neutrino factories.

  9. Numerical Investigation of Effective Heat Conductivity of Fluid in Charging Process of Thermal Storage Tank

    OpenAIRE

    Taheri, H.; Schmidt, F. P.; Gabi, M.

    2015-01-01

    This paper presents a numerical case study of heat transfer mechanisms during the charging process of a stratified thermal storage tank applied in a specific adsorption heat pump cycle. The effective thermal conductivity of the heat transfer fluid during the charging process is analyzed through CFD simulations using Unsteady Reynolds-averaged Navier-Stokes equations (URANS). The aim of the study is to provide an equivalent thermal conductivity for a one-dimensional storage tank model to be us...

  10. Hierarchical Control with Virtual Resistance Optimization for Efficiency Enhancement and State-of-Charge Balancing in DC Microgrids

    DEFF Research Database (Denmark)

    Meng, Lexuan; Dragicevic, Tomislav; Quintero, Juan Carlos Vasquez

    2015-01-01

    This paper proposes a hierarchical control scheme which applies optimization method into DC microgrids in order to improve the system overall efficiency while considering the State-of-Charge (SoC) balancing at the same time. Primary droop controller, secondary voltage restoration controller...... and tertiary optimization tool formulate the complete hierarchical control system. Virtual resistances are taken as the decision variables for achieving the objective. simulation results are presented to verify the proposed approach....

  11. A Close Look at Charge Generation in Polymer:Fullerene Blends with Microstructure Control

    KAUST Repository

    Scarongella, Mariateresa

    2015-03-04

    © 2015 American Chemical Society. We reveal some of the key mechanisms during charge generation in polymer:fullerene blends exploiting our well-defined understanding of the microstructures obtained in pBTTT:PCBM systems via processing with fatty acid methyl ester additives. Based on ultrafast transient absorption, electro-absorption, and fluorescence up-conversion spectroscopy, we find that exciton diffusion through relatively phase-pure polymer or fullerene domains limits the rate of electron and hole transfer, while prompt charge separation occurs in regions where the polymer and fullerene are molecularly intermixed (such as the co-crystal phase where fullerenes intercalate between polymer chains in pBTTT:PCBM). We moreover confirm the importance of neat domains, which are essential to prevent geminate recombination of bound electron-hole pairs. Most interestingly, using an electro-absorption (Stark effect) signature, we directly visualize the migration of holes from intermixed to neat regions, which occurs on the subpicosecond time scale. This ultrafast transport is likely sustained by high local mobility (possibly along chains extending from the co-crystal phase to neat regions) and by an energy cascade driving the holes toward the neat domains.

  12. Controlling charge carrier injection in organic electroluminescent devices via ITO substrate modification

    CERN Document Server

    Day, S

    2001-01-01

    and the ITO substrate was found to shift the work function of the electrode, and so modify the barrier to hole injection. Scanning Kelvin probe measurements show that the ITO work function is increased by 0.25 eV with a film of TNAP, while a C sub 6 sub 0 film is found to reduce the work function by a comparable amount. The former has been attributed to a charge-transfer effect resulting in Fermi level alignment between the ITO and the TNAP layer, however the latter is believed to result from both charge transfer and a covalent interaction between C sub 6 sub 0 and ITO. The performance of devices incorporating these modified ITO electrode are rationalised in terms of the work function modification, film thicknesses and the hole transport properties of the two films. Competition between the induced work function change and the increasingly significant tunnelling barrier with thickness means that device performance is not as good as that provided by the SAMs. Direct processing of the ITO substrate has also been...

  13. Charge-Reversal APTES-Modified Mesoporous Silica Nanoparticles with High Drug Loading and Release Controllability.

    Science.gov (United States)

    Wang, Yifeng; Sun, Yi; Wang, Jine; Yang, Yang; Li, Yulin; Yuan, Yuan; Liu, Changsheng

    2016-07-13

    In this study, we demonstrate a facile strategy (DL-SF) for developing MSN-based nanosystems through drug loading (DL, using doxorubicin as a model drug) followed by surface functionalization (SF) of mesoporous silica nanoparticles (MSNs) via aqueous (3-aminopropyl)triethoxysilane (APTES) silylation. For comparison, a reverse functionalization process (i.e., SF-DL) was also studied. The pre-DL process allows for an efficient encapsulation (encapsulation efficiency of ∼75%) of an anticancer drug [doxorubicin (DOX)] inside MSNs, and post-SF allows in situ formation of an APTES outer layer to restrict DOX leakage under physiological conditions. This method makes it possible to tune the DOX release rate by increasing the APTES decoration density through variation of the APTES concentration. However, the SF-DL approach results in a rapid decrease in drug loading capacity with an increase in APTES concentration because of the formation of the APTES outer layer hampers the inner permeability of the DOX drug, resulting in a burst release similar to that of undecorated MSNs. The resulting DOX-loaded DL-SF MSNs present a slightly negatively charged surface under physiological conditions and become positively charged in and extracellular microenvironment of solid tumor due to the protonation effect under acidic conditions. These merits aid their maintenance of long-term stability in blood circulation, high cellular uptake by a kind of skin carcinoma cells, and an enhanced intracellular drug release behavior, showing their potential in the delivery of many drugs beyond anticancer chemotherapeutics.

  14. Effect of Molecular Packing and Charge Delocalization on the Nonradiative Recombination of Charge-Transfer States in Organic Solar Cells

    KAUST Repository

    Chen, Xian Kai

    2016-09-05

    In organic solar cells, a major source of energy loss is attributed to nonradiative recombination from the interfacial charge transfer states to the ground state. By taking pentacene–C60 complexes as model donor–acceptor systems, a comprehensive theoretical understanding of how molecular packing and charge delocalization impact these nonradiative recombination rates at donor–acceptor interfaces is provided.

  15. Process and equipment for indicating the state of discharge and for controlling the charging of a drive battery. Verfahren und Geraet zur Anzeige des Entladezustandes und zur Steuerung der Aufladung eines Antriebsakkumulators

    Energy Technology Data Exchange (ETDEWEB)

    Bothe, F.W.; Rust, G.

    1984-05-03

    The invention finds the state of charge of the battery by adding up the extracted current. The adding up starts on first setting to work and is effective over the whole period of operation of the battery. The equipment concerned is best fitted directly to the battery. The discharge sum added up can be displayed continuously on a remote indicating equipment, for example on the dashboard of a vehicle. When the battery has been discharged to about 80% of rated capacity, this will be seen by the operator at the display equipment, or can be alarmed by an alarm signal. The battery is then recharged. During charging, according to the invention, there is addition of the charging current flowing to the battery. The charge is switched off after a charging current sum is reached, which is higher by a certain amount than the discharge sum determined. Charging is therefore controlled by the previously determined discharge sum.

  16. A pulse-width modulated, high reliability charge controller for small photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Gerken, K. [Morningstar Corp., Olney, MD (United States); Welsh, D. [Morningstar Corp., Encinitas, CA (United States)

    1997-02-01

    This report presents the results of a development effort to design, test and begin production of a new class of small photovoltaic (PV) charge controllers. Sandia National Laboratories provided technical support, test data and financial support through a Balance-of-System Development contract. One of the objectives of the development was to increase user confidence in small PV systems by improving the reliability and operating life of the system controllers. Another equally important objective was to improve the economics of small PV systems by extending the battery lifetimes. Using new technology and advanced manufacturing techniques, these objectives were accomplished. Because small stand-alone PV systems account for over one third of all PV modules shipped, the positive impact of improving the reliability and economics of PV systems in this market segment will be felt throughout the industry. The results of verification testing of the new product are also included in this report. The initial design goals and specifications were very aggressive, but the extensive testing demonstrates that all the goals were achieved. Production of the product started in May at a rate of 2,000 units per month. Over 40 Morningstar distributors (5 US and 35 overseas) have taken delivery in the first 2 months of shipments. Initial customer reactions to the new controller have been very favorable.

  17. Identification procedures for the charge-controlled nonlinear noise model of microwave electron devices

    Science.gov (United States)

    Filicori, Fabio; Traverso, Pier Andrea; Florian, Corrado; Borgarino, Mattia

    2004-05-01

    The basic features of the recently proposed Charge-Controlled Non-linear Noise (CCNN) model for the prediction of low-to-high-frequency noise up-conversion in electron devices under large-signal RF operation are synthetically presented. It is shown that the different noise generation phenomena within the device can be described by four equivalent noise sources, which are connected at the ports of a "noiseless" device model and are non-linearly controlled by the time-varying instantaneous values of the intrinsic device voltages. For the empirical identification of the voltage-controlled equivalent noise sources, different possible characterization procedures, based not only on conventional low-frequency noise data, but also on different types of noise measurements carried out under large-signal RF operating conditions are discussed. As an example of application, the measurement-based identification of the CCNN model for a GaInP heterojunction bipolar microwave transistor is presented. Preliminary validation results show that the proposed model can describe with adequate accuracy not only the low-frequency noise of the HBT, but also its phase-noise performance in a prototype VCO implemented by using the same monolithic GaAs technology.

  18. Electrical charging effects on the sliding friction of a model nano-confined ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Capozza, R.; Vanossi, A. [International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy); Benassi, A. [CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy); Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Tosatti, E. [International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy); International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34014 Trieste (Italy)

    2015-10-14

    Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number of IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture.

  19. Removal of charged micropollutants from water by ion-exchange polymers -- effects of competing electrolytes.

    Science.gov (United States)

    Bäuerlein, Patrick S; Ter Laak, Thomas L; Hofman-Caris, Roberta C H M; de Voogt, Pim; Droge, Steven T J

    2012-10-15

    A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-).

  20. Electrical charging effects on the sliding friction of a model nano-confined ionic liquid

    Science.gov (United States)

    Capozza, R.; Benassi, A.; Vanossi, A.; Tosatti, E.

    2015-10-01

    Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number of IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture.

  1. Effect of hydrogen charging on the mechanical properties of medium strength aluminium alloys 2091 and 2014

    DEFF Research Database (Denmark)

    Bandopadhyay, A.; Ambat, Rajan; Dwarakadasa, E.S.

    1992-01-01

    Cathodic hydrogen charging in 3.5% NaCl solution altered the mechanical properties of 2091-T351 (Al-Cu-Li-Mg-Zr) determined by a slow (10(-3)/s) strain rate tensile testing technique. UTS and YS decreased in the caw of 2091-T351 and 2014-T6(Al-Cu-Mn-Si-Mg) with increase in charging current density....... Elongation showed a decrease with increase in charging current density for both the alloys. However, elongation occurring throughout the gauge length in uncharged specimens changed over to localized deformation, thus increasing the reduction in area in charged specimens. A transition in fracture mode from...... surface (brittle) to the core (ductile) was observed. The presence of hydrogen increased the hardness, mostly indicative of solution strengthening and it decreased with depth confirming the existence of hydrogen concentration gradient. The effects were similar in 2014-T6, but to a slightly smaller extent....

  2. EFFECT OF NaOH CHARGE ON FIBER CHARACTERISTICS OF P-RC APMP PULP

    Institute of Scientific and Technical Information of China (English)

    Fangong Kong; Jiachuan Chen; Guihua Yang; Zhaocheng Li; Huaiyu Zhan

    2004-01-01

    Fiber screen analysis, fiber quality analysis and SEM observation were used to investigate the effects of NaOH charge on fiber characteristics in Triploid Populus Tomentosa P-RC APMP pulping in this paper. The results showed that increasing NaOH charge in P-RC APMP process could reduce energy consumption and fines percent, increase the mean fiber length and long fiber percent and make the curl index and kink index of fiber ascend. The results from SEM observation illustrated that the fiber with high NaOH charge had higher softness degree, better cutting resistant ability and better inter-fiber bonding ability. With increasing of NaOH charge, the surface of handsheets became more and more smooth, and there were less and less gaps and holes on the paper surface.

  3. Importance of polaron effects for charge carrier mobility above and below pseudogap temperature in superconducting cuprates

    Indian Academy of Sciences (India)

    ORIFJON GANIEV

    2017-06-01

    Polaron effects and charge carrier mobility in high-$T_c$ cuprate superconductors (HTSCs) have been investigated theoretically. The appropriate Boltzmann transport equations under relaxation time approximation were used to calculate the mobility of polaronic charge carriers and bosonic Cooper pairs above and below the pseudogap (PG) temperature $T^\\ast$. It is shown that the scattering of polaronic charge carriers and bosonic Cooper pairs at acoustic and optical phonons are responsible for the charge carrier mobility above and below the PG temperature. We show that the energy scales of the binding energies of large polarons and polaronic Cooper pairs can be identified by PG cross-over temperature on the cuprate phase diagram.

  4. The porous membrane with tunable performance for vanadium flow battery: The effect of charge

    Science.gov (United States)

    Zhao, Yuyue; Yuan, Zhizhang; Lu, Wenjing; Li, Xianfeng; Zhang, Huamin

    2017-02-01

    Porous membranes with different charge on the surface and internal pore walls are prepared via the solvent-responsive layer-by-layer (SR-LBL) method. The effect of charge on the transport properties of different ions through the membranes is investigated in detail. The charge property of prepared membranes is tuned by assembling different charged polyelectrolytes (PEs) on the pore walls and the surface of the porous membranes. The results show that in a vanadium flow battery (VFB), the PE layers assembled on the surfaces (including pore walls) are capable to construct excellent ion transport channels to increase proton conductivity and to tune the ion selectivity via Donnan exclusion effect. Compared with the porous membrane with negative charges (7 bilayers), a VFB single cell assembled with a positively charged membrane (7.5 bilayers) yields a higher coulombic efficiency (98%). The water and ion transfer behavior exhibits a similar tendency. In the negative half-cell, the amount of V3+ gradually increases as cycles proceed and the amount of V2+ stays at a low and stable level. In the positive half-cell, the amount of VO2+ decreases; while VO2+ is accumulated. The imbalance of vanadium ions at both sides induces the discharge capacity fade.

  5. Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems

    KAUST Repository

    Sutton, Christopher

    2017-06-13

    Electronic polarization and charge delocalization are important aspects that affect the charge-transport levels in organic materials. Here, using a quantum mechanical/ embedded-charge (QM/EC) approach based on a combination of the long-range corrected omega B97X-D exchange-correlation functional (QM) and charge model 5 (CM5) point-charge model (EC), we evaluate the vertical detachment energies and polarization energies of various sizes of crystalline and amorphous anionic oligoacene clusters. Our results indicate that QM/EC calculations yield vertical detachment energies and polarization energies that compare well with the experimental values obtained from ultraviolet photoemission spectroscopy measurements. In order to understand the effect of charge delocalization on the transport levels, we considered crystalline naphthalene systems with QM regions including one or five-molecules. The results for these systems show that the delocalization and polarization effects are additive; therefore, allowing for electron delocalization by increasing the size of the QM region leads to the additional stabilization of the transport levels. Published by AIP Publishing.

  6. A Procedure to Obtain the Effective Nuclear Charge from the Atomic Spectrum of Sodium

    Science.gov (United States)

    Sala*, O.; Araki, Koiti; Noda, L. K.

    1999-09-01

    The penetration of the valence electron orbitals of the alkali metals into their inner shells and its effect on the energy levels can be considered through two methods that take into account modifications of the hydrogen formula (one-electron system). One of them considers the quantum defect, modifying the quantum number n; the other considers the effective nuclear charge Z* replacing the nuclear charge Z. The method using the quantum defect is widely used because this quantity is practically constant for a given angular momentum quantum number l. However, the method using effective nuclear charge is more realistic because it explains many atomic and molecular properties - but the effective nuclear charge depends on l as well as on the principal quantum number n. This article describes a relatively simple graphical procedure to calculate the effective nuclear charges experienced by the sodium valence electron from its atomic spectrum. A relation of Z* with n for a given l is obtained and the Z* values for all states of the valence electron are found; the energy terms can also be determined. The calculations can be performed by using common spreadsheet software.

  7. Controlling the Charge State and Redox Properties of Supported Polyoxometalates via Soft Landing of Mass Selected Ions

    Energy Technology Data Exchange (ETDEWEB)

    Gunaratne, Kalupathirannehelage Don D.; Johnson, Grant E.; Andersen, Amity; Du, Dan; Zhang, Weiying; Prabhakaran, Venkateshkumar; Lin, Yuehe; Laskin, Julia

    2014-12-04

    We investigate the controlled deposition of Keggin polyoxometalate (POM) anions, PMo12O403- and PMo12O402-, onto different self-assembled monolayer (SAM) surfaces via soft landing of mass-selected ions. Utilizing in situ infrared reflection absorption spectroscopy (IRRAS), ex situ cyclic voltammetry (CV) and electronic structure calculations, we examine the structure and charge retention of supported multiply-charged POM anions and characterize the redox properties of the modified surfaces. SAMs of alkylthiol (HSAM), perfluorinated alkylthiol (FSAM), and alkylthiol terminated with NH3+ functional groups (NH3+SAM) are chosen as model substrates for soft landing to examine the factors which influence the immobilization and charge retention of multiply charged anionic molecules. The distribution of charge states of POMs on different SAM surfaces are determined by comparing the IRRAS spectra with vibrational spectra calculated using density functional theory (DFT). In contrast to the results obtained previously for multiply charged cations, soft landed anions are found to retain charge on all three SAM surfaces. This charge retention is attributed to the substantial electron binding energy of the POM anions. Investigation of redox properties by CV reveals that, while surfaces prepared by soft landing exhibit similar features to those prepared by adsorption of POM from solution, the soft landed POM2- has a pronounced shift in oxidation potential compared to POM3- for one of the redox couples. These results demonstrate that ion soft landing is uniquely suited for precisely controlled preparation of substrates with specific electronic and chemical properties that cannot be achieved using conventional deposition techniques.

  8. Effects of the parametric interaction on the toplogical charge of acoustical vortices.

    Science.gov (United States)

    Marchiano, Régis; Thomas, Jean-Louis

    2008-06-01

    Acoustical vortices are one of the three kinds of phase singularity corresponding to screw dislocations of the wavefront. They are characterized by an helical phase winding up around their axis of propagation along which the phase is singular (undefined). This kind of waves possesses several interesting properties like robustness to wavefront distortion in heterogeneous media or non diffracting propagation due to their relation to Bessel beams. Here we are interested by their potential to transmit information and perform basic arithmetics. We experimentally show that parametric interaction has a double effect on such a beam. First of all, the classical effect of creation of frequencies corresponding to all linear combinations of the primary frequencies is recovered. This classical manifestation of the quadratic nonlinearity in fluids is not new but leads to interesting properties for the spatial information of acoustical vortices as it is possible to do some arithmetics with acoustical vortices. Indeed, it is observed that for a frequency generated by a linear combination of the primary frequencies, the topological charge (number of twists made by the wavefront for one wavelength) is obtained by the same linear combination applied to the topological charges of the primary frequencies. For instance, vortices with negative topological charge appear for a secondary beam at the frequency corresponding to the difference of two primary beams with a positive topological charge when the highest frequency corresponds to the lowest topological charge. This phenomenon is studied for frequencies without and with a common divisor. In the latter case, generated frequencies can be degenerated, i.e two different linear combinations give the same frequency. However there is no reason to have the same common divisor for the topological charge so that two waves at the same frequency but with two different charges are propagating colinearly. In this case, the topological charge can be

  9. Infrared light irradiation diminishes effective charge transfer in slow sodium channel gating system

    Science.gov (United States)

    Plakhova, Vera B.; Bagraev, Nikolai T.; Klyachkin, Leonid E.; Malyarenko, Anna M.; Romanov, Vladimir V.; Krylov, Boris V.

    2001-02-01

    Effects of infrared light irradiation (IR) on cultured dorsal root ganglia cells were studied by the whole-cell patch-clamp technique. The IR field is demonstrated to diminish the effective charge transfer in the activation system from 6.2 +-0.6 to 4.5 +-0.4 in units of electron charge per e-fold change in membrane potential. The effects was blocked with ouabain. Our data is the first indication that sodium pump might be the molecular sensor of infrared irradiation in animal kingdom.

  10. Comparative Analysis and Approximations of Space -Charge Formation in Langmuir Electrodes Including Temperature Effects.

    Science.gov (United States)

    Valdeblànquez, Eder

    2001-10-01

    Eder Valdeblànquez,Universidad del Zulia,Apartado 4011-A 526,Maracaibo,Venezuela. ABSTRACT: In this paper by space charge effect in Langmuir probes are compared for different kind of symmetries; plane, cylindrical and spherical. A detailed analysis is performed here including temperature effects, and therefore kinetic theory is used instead of fluid equations as other authors. The strongly non-linear equations obtained here have been solved first by numerical analysis and later by approximations using Bessel functions. The accuracy of each approximaton is also discussed. Space Charge effects are important in plane geometries than in the case of cylindrical or spherical symmetries.

  11. Control of Ignition and Combustion of Dimethyl Ether in Homogeneous Charge Compression Ignition Engine

    Science.gov (United States)

    Kim, Kyoung-Oh; Azetsu, Akihiko; Oikawa, Chikashi

    A homogeneous charge compression ignition (HCCI) engine is known to have high thermal efficiency and low nitrogen oxide emission. However, the control of ignition timing and its combustion period over a wide range of engine speeds and loads is one of the barriers to the realization of the engine. On the lean side of the equivalence ratio, control of ignition is difficult due to its long delay of ignition, and there is knocklike problem under high load. In both computations and experiments of HCCI engine operated on dimethyl ether, the operable range (the possible range of fuel input from just ignitable to knock-occurring state) shifted to the rich side with decreasing intake temperature and amount of mixing of carbon dioxide. The range of fuel input was reduced at low intake temperatures, because the hot flame onset angle advanced more quickly than it did at high intake temperatures. However, the mixing of CO2 caused the operable range to shift to the rich side while retaining the same range. The results of this study indicated the possibility of high-load operation or extension of the load range by exhaust gas recirculation.

  12. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

    Science.gov (United States)

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    2015-05-07

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to

  13. SEMICONDUCTOR INTEGRATED CIRCUITS Short locking time and low jitter phase-locked loop based on slope charge pump control

    Science.gov (United States)

    Zhongjie, Guo; Youbao, Liu; Longsheng, Wu; Xihu, Wang; Wei, Tang

    2010-10-01

    A novel structure of a phase-locked loop (PLL) characterized by a short locking time and low jitter is presented, which is realized by generating a linear slope charge pump current dependent on monitoring the output of the phase frequency detector (PFD) to implement adaptive bandwidth control. This improved PLL is created by utilizing a fast start-up circuit and a slope current control on a conventional charge pump PLL. First, the fast start-up circuit is enabled to achieve fast pre-charging to the loop filter. Then, when the output pulse of the PFD is larger than a minimum value, the charge pump current is increased linearly by the slope current control to ensure a shorter locking time and a lower jitter. Additionally, temperature variation is attenuated with the temperature compensation in the charge pump current design. The proposed PLL has been fabricated in a kind of DSP chip based on a 0.35 μm CMOS process. Comparing the characteristics with the classical PLL, the proposed PLL shows that it can reduce the locking time by 60% with a low peak-to-peak jitter of 0.3% at a wide operation temperature range.

  14. Controllability of the Coulomb charging energy in close-packed nanoparticle arrays.

    Science.gov (United States)

    Duan, Chao; Wang, Ying; Sun, Jinling; Guan, Changrong; Grunder, Sergio; Mayor, Marcel; Peng, Lianmao; Liao, Jianhui

    2013-11-07

    We studied the electronic transport properties of metal nanoparticle arrays, particularly focused on the Coulomb charging energy. By comparison, we confirmed that it is more reasonable to estimate the Coulomb charging energy using the activation energy from the temperature-dependent zero-voltage conductance. Based on this, we systematically and comprehensively investigated the parameters that could be used to tune the Coulomb charging energy in nanoparticle arrays. We found that four parameters, including the particle core size, the inter-particle distance, the nearest neighboring number, and the dielectric constant of ligand molecules, could significantly tune the Coulomb charging energy.

  15. Gravitational effect of centre mass with electric charge and a large number of magnetic monopoles

    Institute of Scientific and Technical Information of China (English)

    Gong Tian-Xi; Li Ai-Gen; Wang Yong-Jiu

    2005-01-01

    In this paper, using an elegant mathematical method advanced by us, we calculate the orbital effect in the gravitational field of the centre mass with electric charge and a large number of magnetic monopoles. Generalizing the effect in the Schwarzschild field, we obtain interesting results by discussing the parameters of the celestial body that provide a feasible experimental verification of the general relativity.

  16. Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Zaleski, Tania M. [San Jose State Univ., CA (United States)

    2008-10-30

    Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear.

  17. Effect of blood storage on erythrocyte/wall interactions: implications for surface charge and rigidity.

    Science.gov (United States)

    Godin, C; Caprani, A

    1997-01-01

    In this report, we study, under flow conditions, the interactions of stored erythrocytes with an artificial surface: a microelectrode whose charge density ranges from -15 to +27 microC/cm2. Interactions consist of red cells slowly circulating on the microelectrode and exerting a real contact with the electrode. Interaction is detected and measured by transient fluctuations of the electrolyte resistance obtained by impedance measurement of the microelectrode. Effects of aging induced by storage of whole blood at 4 degrees C show that the surface charge of erythrocytes rapidly decreases when blood is stored for more than 6 days under our experimental conditions. In comparison with trypsin-treated erythrocytes, an eight day storage induces a 60% decrease in the surface charge of red cells. After two weeks of storage, red cells are no longer negatively charged, presumably because of removal of sialic acid. Cells rigidity is significant after 6 days of storage and influences the electrical contact. Membrane rigidity increase could arise from the surface charge decrease. Finally the surface charge decrease could be importance in the use of stored blood.

  18. Effect of substrate bias on deposition behaviour of charged silicon nanoparticles in ICP-CVD process

    Science.gov (United States)

    Yoo, Seung-Wan; You, Shin-Jae; Kim, Jung-Hyung; Seong, Dae-Jin; Seo, Byong-Hoon; Hwang, Nong-Moon

    2017-01-01

    The effect of a substrate bias on the deposition behaviour of crystalline silicon films during inductively coupled plasma chemical vapour deposition (ICP-CVD) was analysed by consideration of non-classical crystallization, in which the building block is a nanoparticle rather than an individual atom or molecule. The coexistence of positively and negatively charged nanoparticles in the plasma and their role in Si film deposition are confirmed by applying bias voltages to the substrate, which is sufficiently small as not to affect the plasma potential. The sizes of positively and negatively charged nanoparticles captured on a carbon membrane and imaged using TEM are, respectively, 2.7-5.5 nm and 6-13 nm. The film deposited by positively charged nanoparticles has a typical columnar structure. In contrast, the film deposited by negatively charged nanoparticles has a structure like a powdery compact with the deposition rate about three times higher than that for positively charged nanoparticles. All the films exhibit crystallinity even though the substrate is at room temperature, which is attributed to the deposition of crystalline nanoparticles formed in the plasma. The film deposited by negatively charged nanoparticles has the highest crystalline fraction of 0.84.

  19. Effect of Conductive Inorganic Fillers on Space Charge Accumulation Characteristics in Cross-linked Polyethylene

    Science.gov (United States)

    Harada, Hiroshi; Hayashi, Nobuya; Tanaka, Yasuhiro; Maeno, Takashi; Mizuno, Takehiko; Takahashi, Tohru

    We have observed space charge profiles in cross-linked polyethylene (XLPE) under dc high electric field using the PEA (pulsed electro-acoustic) system to study the relationship between space charge behavior and dielectric breakdown. In our previous research work, we have found that a large amount of, so called, packet-like charge generates in low density polyethylene (LDPE) under high dc electric field of more than 100 kV/mm. The packet-like charge enhances the electric field locally in bulk of the sample, and then finally it leads a breakdown. On the other hand, a new type of XLPE which was made through adding conductive inorganic fillers, shows a good dc dielectric breakdown characteristic and high volume resistivity under dc stress. In this report, we tried to observe the space charge behavior under high dc electric field in this material. From the results, it is found that the charge injection is effectively suppressed by adding only a small amount of conductive inorganic fillers to XLPE.

  20. Charge transport in disordered organic host-guest systems: effects of carrier density and electric field

    Energy Technology Data Exchange (ETDEWEB)

    Yimer, Y Y; Bobbert, P A [Group Polymer Physics, Eindhoven Polymer Laboratories and Dutch Polymer Institute, 5600 MB Eindhoven (Netherlands); Coehoorn, R [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)], E-mail: Y.Y.Yimer@tue.nl

    2008-08-20

    We investigate charge transport in disordered organic host-guest systems with a bimodal Gaussian density of states (DOS). The energy difference between the two Gaussians defines the trap depth. By solving the Pauli master equation for the hopping of charge carriers on a regular lattice with site energies randomly drawn from the DOS, we obtain the dependence of the charge-carrier mobility on the relative guest concentration, the trap depth, the energetic disorder, the charge-carrier density and the electric field. At small and high guest concentrations, our work provides support for recent semi-analytical model results on the dependence of the mobility on the charge-carrier density at zero field. However, at the cross-over between the trap-limited and trap-to-trap hopping regimes, where the mobility attains a minimum, our results can almost be one order of magnitude larger than predicted semi-analytically. Furthermore, it is shown that field-induced detrapping can contribute strongly to the electric-field dependence of the mobility. A simple analytical expression is provided which describes the effect. This result can be used in continuum drift-diffusion models for charge transport in devices such as organic light-emitting diodes.

  1. Charge transport in disordered organic host guest systems: effects of carrier density and electric field

    Science.gov (United States)

    Yimer, Y. Y.; Bobbert, P. A.; Coehoorn, R.

    2008-08-01

    We investigate charge transport in disordered organic host-guest systems with a bimodal Gaussian density of states (DOS). The energy difference between the two Gaussians defines the trap depth. By solving the Pauli master equation for the hopping of charge carriers on a regular lattice with site energies randomly drawn from the DOS, we obtain the dependence of the charge-carrier mobility on the relative guest concentration, the trap depth, the energetic disorder, the charge-carrier density and the electric field. At small and high guest concentrations, our work provides support for recent semi-analytical model results on the dependence of the mobility on the charge-carrier density at zero field. However, at the cross-over between the trap-limited and trap-to-trap hopping regimes, where the mobility attains a minimum, our results can almost be one order of magnitude larger than predicted semi-analytically. Furthermore, it is shown that field-induced detrapping can contribute strongly to the electric-field dependence of the mobility. A simple analytical expression is provided which describes the effect. This result can be used in continuum drift-diffusion models for charge transport in devices such as organic light-emitting diodes.

  2. Stability of Positively Charged Nanoemulsion Formulation Containing Steroidal Drug for Effective Transdermal Application

    Directory of Open Access Journals (Sweden)

    Stephanie Da Costa

    2014-01-01

    Full Text Available This paper emphasizes the formation of a positively charged nanoemulsion system for steroid drugs (hydrocortisone. It is believed that positively charged nanoemulsion provides more effective penetration of the skin. Therefore in our study we focused on the incorporation of phytosphingosine which serves as a positively charged cosurfactant in the nanoemulsion system. Negatively charged nanoemulsions were formulated mainly for comparison. Freshly prepared formulations were formed with particle size less than 300 nm and showed good stability over time. The oil-in-water nanoemulsion also showed good viscosity, conductivity, and pH values. From TEM micrograph, particle size showed consistent results with the measurement using photon correlation spectroscopy. It was concluded that both positively and negatively charged nanoemulsions showed good stability and have great potential in transdermal delivery system. Though, further investigation of the drug release and drug penetration of both positively and negatively charged nanoemulsions will be studied to further prove the efficacy of nanoemulsion with hydrocortisone as a delivery system for dermal application.

  3. Analysing degradation effects in charge-redistribution SAR ADCs

    NARCIS (Netherlands)

    Khan, M.A.; Kerkhoff, Hans G.

    2013-01-01

    Aging-sensitive technology nodes that are resulting in performance degradations in their electronic system implementations require aging simulations in advance for a more dependable design. Simulating time-domain aging effects in these electronic systems, especially in complex analog and mixed-signa

  4. Analysing degradation effects in charge-redistribution SAR ADCs

    NARCIS (Netherlands)

    Khan, Muhammad Aamir; Kerkhoff, Hans G.

    2013-01-01

    Aging-sensitive technology nodes that are resulting in performance degradations in their electronic system implementations require aging simulations in advance for a more dependable design. Simulating time-domain aging effects in these electronic systems, especially in complex analog and mixed-signa

  5. A Method for Remote Control of EV Charging by Modifying IEC61851 Compliant EVSE Based PWM Signal

    DEFF Research Database (Denmark)

    Pedersen, Anders Bro; Martinenas, Sergejus; Andersen, Peter Bach

    2016-01-01

    ). These properties can be used in a number of power and energy services, which can support power system operation while lowering the cost of EV ownership. Such services depend on the support from the communications technologies and standards that connect controllers and logic in the EVs with those in the charging......The Electric Vehicle (EV) has properties that can not only load but can elevate its value as a resource to the power system. An EV represents a high-power, fast-responding flexible demand unit, with an attached energy storage (battery) and the potential for bi-directional capabilities (V2G...... infrastructure- and back-end systems. To date, there is still no widely adopted standard that supports EV grid services, such as smart charging. This work proposes a solution that would allow any combination of charging spot and EV - individually lacking the logic, communication and controllability required...

  6. Effective electrophoretic mobilities and charges of anti-VEGF proteins determined by capillary zone electrophoresis.

    Science.gov (United States)

    Li, S Kevin; Liddell, Mark R; Wen, He

    2011-06-01

    Macromolecules such as therapeutic proteins currently serve an important role in the treatment of eye diseases such as wet age-related macular degeneration and diabetic retinopathy. Particularly, bevacizumab and ranibizumab have been shown to be effective in the treatment of these diseases. Iontophoresis can be employed to enhance ocular delivery of these macromolecules, but the lack of information on the properties of these macromolecules has hindered its development. The objectives of the present study were to determine the effective electrophoretic mobilities and charges of bevacizumab, ranibizumab, and model compound polystyrene sulfonate (PSS) using capillary zone electrophoresis. Salicylate, lidocaine, and bovine serum albumin (BSA), which have known electrophoretic mobilities in the literature, were also studied to validate the present technique. The hydrodynamic radii and diffusion coefficients of BSA, bevacizumab, ranibizumab, and PSS were measured by dynamic light scattering. The effective charges were calculated using the Einstein relation between diffusion coefficient and electrophoretic mobility and the Henry equation. The results show that bevacizumab and ranibizumab have low electrophoretic mobilities and are net negatively charged in phosphate buffered saline (PBS) of pH 7.4 and 0.16M ionic strength. PSS has high negative charge but the electrophoretic mobility in PBS is lower than that expected from the polymer structure. The present study demonstrated that capillary electrophoresis could be used to characterize the mobility and charge properties of drug candidates in the development of iontophoretic drug delivery.

  7. Effect of surface charge on the dark current of InGaAs/InP avalanche photodiodes

    Science.gov (United States)

    Zeng, Q. Y.; Wang, W. J.; Wen, J.; Huang, L.; Liu, X. H.; Li, N.; Lu, W.

    2014-04-01

    The effects of surface charge on the dark current of the separate-absorption-grading-charge-multiplication InGaAs/InP avalanche photodiodes (APDs) are discussed using drift-diffusion simulation. The dark current increases exponentially with the increasing of surface charge density, and gets multiplied, thus influencing the performance of the APDs, especially in Geiger mode. The mechanism of the surface charge leakage current is discussed, and a floating guard ring structure is proposed to suppress the influence of surface charge effectively.

  8. History of the Shaped Charge Effect: The First 100 Years

    Science.gov (United States)

    1990-03-22

    transferred, inasmuch as 10 Part 1 both originators of the effect were in proximiy - southern Gernmany and Switzerland border each other. Dr. Mohaupt’s...Mistel ( Mistletoe ) referred to the parasitic mounting of the top aircraft on the host aircraft. In the tactical version, the bomber’s nose was replaced...16) in the patents (Ref. 32) issued in France in 1940 and in Australia in 1941, wherein the inventors (Mohaupt and his two associates) had claimed the

  9. The dust-acoustic mode in two-temperature electron plasmas with charging effects

    Indian Academy of Sciences (India)

    Zhong Xijuan; Chen Hui; Liu Nianhua; Liu Sanqiu

    2016-04-01

    Dust charging in an unmagnetized collisionless dusty plasma with two-temperature electrons was investigated based on the orbital motion limited theory, where the two-temperature electrons and ions are modelled by the Maxwellian distributions. Then by taking into account the effects of two-temperature electron and the associated charging fluctuations, the dispersion peculiarities of dust-acoustic waves are studied based on dust fluid dynamics. The present results show that the effect will introduce a dissipation on the mode, and the dispersion and the dissipation depend on the temperature ratio and number density ratio of hot and cold electrons.

  10. Mitigation of charged impurity effects in graphene field-effect transistors with polar organic molecules (Presentation Recording)

    Science.gov (United States)

    Worley, Barrett C.; Kim, Seohee; Akinwande, Deji; Rossky, Peter J.; Dodabalapur, Ananth

    2015-09-01

    Recent developments in monolayer graphene production allow its use as the active layer in field-effect transistor technology. Favorable electrical characteristics of monolayer graphene include high mobility, operating frequency, and good stability. These characteristics are governed by such key transport physical phenomena as electron-hole transport symmetry, Dirac point voltage, and charged impurity effects. Doping of graphene occurs during device fabrication, and is largely due to charged impurities located at or near the graphene/substrate interface. These impurities cause scattering of charge carriers, which lowers mobility. Such scattering is detrimental to graphene transistor performance, but our group has shown that coating with fluoropolymer thin films or exposure to polar organic vapors can restore favorable electrical characteristics to monolayer graphene. By partially neutralizing charged impurities and defects, we can improve the mobility by approximately a factor of 2, change the Dirac voltage by fairly large amounts, and reduce the residual carrier density significantly. We hypothesize that this phenomena results from screening of charged impurities by the polar molecules. To better understand such screening interactions, we performed computational chemistry experiments to observe interactions between polar organic molecules and monolayer graphene. The molecules interacted more strongly with defective graphene than with pristine graphene, and the electronic environment of graphene was altered. These computational observations correlate well with our experimental results to support our hypothesis that polar molecules can act to screen charged impurities on or near monolayer graphene. Such screening favorably mitigates charge scattering, improving graphene transistor performance.

  11. Effect of temperature shift on levels of acidic charge variants in IgG monoclonal antibodies in Chinese hamster ovary cell culture.

    Science.gov (United States)

    Kishishita, Shohei; Nishikawa, Tomoko; Shinoda, Yasuharu; Nagashima, Hiroaki; Okamoto, Hiroshi; Takuma, Shinya; Aoyagi, Hideki

    2015-06-01

    During the production of therapeutic monoclonal antibodies (mAbs), not only enhancement of mAb productivity but also control of quality attributes is critical. Charge variants, which are among the most important quality attributes, can substantially affect the in vitro and in vivo properties of mAbs. During process development for the production of mAbs in a Chinese hamster ovary cell line, we have observed that an improvement in mAb titer is accompanied by an increase in the content of acidic charge variants. Here, to help maintain comparability among mAbs, we aimed to identify the process parameters that controlled the content of acidic charge variants. First, we used a Plackett-Burman design to identify the effect of selected process parameters on the acidic charge variant content. Eight process parameters were selected by using a failure modes and effects analysis. Among these, temperature shift was identified from the Plackett-Burman design as the factor most influencing the acidic charge variant content. We then investigated in more detail the effects of shift temperature and temperature shift timing on this content. The content decreased with a shift to a lower temperature and with earlier timing of this temperature shift. Our observations suggest that Plackett-Burman designs are advantageous for preliminary screening of bioprocess parameters. We report here for the first time that temperature downshift is beneficial for effective control of the acidic peak variant content.

  12. Effects of different blasting materials on charge generation and decay on titanium surface after sandblasting.

    Science.gov (United States)

    Guo, Cecilia Yan; Hong Tang, Alexander Tin; Hon Tsoi, James Kit; Matinlinna, Jukka Pekka

    2014-04-01

    It has been reported that sandblasting titanium with alumina (Al2O3) powder could generate a negative electric charge on titanium surface. This has been proven to promote osteoblast activities and possibly osseointegration. The purpose of this pilot study was to investigate the effects of different blasting materials, in terms of the grit sizes and electro-negativity, on the generation of a negative charge on the titanium surface. The aim was also to make use of these results to deduct the underlying mechanism of charge generation by sandblasting. Together 60 c.p. 2 titanium plates were machine-cut and polished for sandblasting, and divided into 6 groups with 10 plates in each. Every plate in the study groups was sandblasted with one of the following 6 powder materials: 110µm Al2O3 grits, 50µm Al2O3 grits, 150-300µm glass beads, 45-75µm glass beads, 250µm Al powder and 44µm Al powder. The static voltage on the surface of every titanium plate was measured immediately after sandblasting. The static voltages of the titanium plates were recorded and processed using statistical analysis. The results suggested that only sandblasting with 45-75µm glass beads generated a positive charge on titanium, while using all other blasting materials lead to a negative charge. Furthermore, blasting grits of the same powder material but of different sizes might lead to different amount and polarity of the charges. This triboelectric effect is likely to be the main mechanism for charge generation through sandblasting.

  13. Thermodynamics of R-charged Black Holes in AdS(5) From Effective Strings

    CERN Document Server

    Gubser, S S; Gubser, Steven S.; Heckman, Jonathan J.

    2004-01-01

    It is well known that the thermodynamics of certain near-extremal black holes in asymptotically flat space can be lifted to an effective string description created from the intersection of D-branes. In this paper we present evidence that the semiclassical thermodynamics of near-extremal R-charged black holes in AdS(5)xS(5) is described in a similar manner by effective strings created from the intersection of giant gravitons on the S(5). We also present a free fermion description of the supersymmetric limit of the one-charge black hole, and we give a crude catalog of the microstates of the two and three-charge black holes in terms of operators in the dual conformal field theory.

  14. Probing inhibitory effects of nanocrystalline cellulose: inhibition versus surface charge

    Science.gov (United States)

    Male, Keith B.; Leung, Alfred C. W.; Montes, Johnny; Kamen, Amine; Luong, John H. T.

    2012-02-01

    NCC derived from different biomass sources was probed for its plausible cytotoxicity by electric cell-substrate impedance sensing (ECIS). Two different cell lines, Spodoptera frugiperda Sf9 insect cells and Chinese hamster lung fibroblast V79, were exposed to NCC and their spreading and viability were monitored and quantified by ECIS. Based on the 50%-inhibition concentration (ECIS50), none of the NCC produced was judged to have any significant cytotoxicity on these two cell lines. However, NCC derived from flax exhibited the most pronounced inhibition on Sf9 compared to hemp and cellulose powder. NCCs from flax and hemp pre-treated with pectate lyase were also less inhibitory than NCCs prepared from untreated flax and hemp. Results also suggested a correlation between the inhibitory effect and the carboxylic acid contents on the NCC.

  15. A charge density analysis on the proximity effect in dicyanoalkanes

    Science.gov (United States)

    López, José Luis; Mandado, Marcos; González Moa, María J.; Mosquera, Ricardo A.

    2006-05-01

    QTAIM atomic and bond properties of 21 linear alkyl dicyanoalkanes of formula NC(CH 2) nCN ( n = 0-20), and three larger molecules: C 32H 66, NC(CH 2) 30CH 3, and NC(CH 2) 30CN, indicate that cyano groups can be considered statistically equivalent to those of a large cyanoalkane when they are separated by at least 14 methylene groups. When n < 19 there is at least one methylene group in the dicyanoalkane that differs significantly from those of NC(CH 2) 30CH 3 or NC(CH 2) 30CN. Every cyano group produces an effect on the methylenes that is nearly independent of the position of the other one, hydrogens being more sensitive than carbons.

  16. Quantum control of electronic fluxes during adiabatic attosecond charge migration in degenerate superposition states of benzene

    Science.gov (United States)

    Jia, Dongming; Manz, Jörn; Paulus, Beate; Pohl, Vincent; Tremblay, Jean Christophe; Yang, Yonggang

    2017-01-01

    We design four linearly x- and y-polarized as well as circularly right (+) and left (-) polarized, resonant π / 2 -laser pulses that prepare the model benzene molecule in four different degenerate superposition states. These consist of equal (0.5) populations of the electronic ground state S0 (1A1g) plus one of four degenerate excited states, all of them accessible by dipole-allowed transitions. Specifically, for the molecule aligned in the xy-plane, these excited states include different complex-valued linear combinations of the 1E1u,x and 1E1u,y degenerate states. As a consequence, the laser pulses induce four different types of periodic adiabatic attosecond (as) charge migrations (AACM) in benzene, all with the same period, 504 as, but with four different types of angular fluxes. One of the characteristic differences of these fluxes are the two angles for zero fluxes, which appear as the instantaneous angular positions of the "source" and "sink" of two equivalent, or nearly equivalent branches of the fluxes which flow in pincer-type patterns from one molecular site (the "source") to the opposite one (the "sink"). These angles of zero fluxes are either fixed at the positions of two opposite carbon nuclei in the yz-symmetry plane, or at the centers of two opposite carbon-carbon bonds in the xz-symmetry plane, or the angles of zero fluxes rotate in angular forward (+) or backward (-) directions, respectively. As a resume, our quantum model simulations demonstrate quantum control of the electronic fluxes during AACM in degenerate superposition states, in the attosecond time domain, with the laser polarization as the key knob for control.

  17. Effective charges in nuclei in the vicinity of $^{100}SN$

    CERN Document Server

    Ekström, Andreas

    The shell structure of atomic nuclei far from the line of beta-stability and the properties of the nucleon-nucleon interaction in exotic isotopes are not well known. The development of radioactive ion beams (RIBs) puts certain unexplored regions of the nuclear chart within reach of detailed experimental investigations. The low-energy nuclear structure of the unstable isotopes 106,108,110Sn, 100,102,104Cd, and 106,108In have been studied using sub-barrier Coulomb excitation of postaccelerated RIBs. The experiments were carried out at the REX-ISOLDE facility at CERN. The deduced transition probabilities - B(E2) values - provide a detailed benchmark of modern models of the nucleon-nucleon interaction. The B(E2) values between the 0+ ground states and the first excited 2+ states in the Sn and Cd isotopes were compared with shell-model calculations. These are based on effective interactions derived from renormalized multi-meson and QCD-based nucleon-nucleon potentials. In order to reproduce the experimental result...

  18. Surface-charge accumulation effects on open-circuit voltage in organic solar cells based on photoinduced impedance analysis.

    Science.gov (United States)

    Zang, Huidong; Hsiao, Yu-Che; Hu, Bin

    2014-03-14

    The accumulation of dissociated charge carriers plays an important role in reducing the loss occurring in organic solar cells. We find from light-assisted capacitance measurements that the charge accumulation inevitably occurred at the electrode and photovoltaic layer interface for bulk-heterojunction ITO/PEDOT:PSS/P3HT:PCBM/Ca/Al solar cells. Our results indicate, for the first time through impedance measurements, that the charge accumulation exists at the anode side of the device, and more importantly, we successfully identify the type of charge accumulated. Further study shows that the charge accumulation can significantly affect open circuit voltage and short circuit current. As a result, our experimental results from light assisted capacitance measurements provide a new understanding of the loss in open-circuit voltage and short-circuit photocurrent based on charge accumulation. Clearly, controlling charge accumulation presents a new mechanism to improve the photovoltaic performance of organic solar cells.

  19. Charge-controlled assembling of bacteriorhodopsin and semiconductor quantum dots for fluorescence resonance energy transfer-based nanophotonic applications

    Science.gov (United States)

    Bouchonville, Nicolas; Molinari, Michael; Sukhanova, Alyona; Artemyev, Mikhail; Oleinikov, Vladimir A.; Troyon, Michel; Nabiev, Igor

    2011-01-01

    The fluorescence resonance energy transfer (FRET) between quantum dots (QDs) and photochromic protein bacteriorhodopsin within its natural purple membrane (PM) is explored to monitor their assembling. It is shown that the efficiency of FRET may be controlled by variation of the surface charge and thickness of QD organic coating. Atomic force microscopy imaging revealed correlation between the surface charge of QDs and degree of their ordering on the surface of PM. The most FRET-efficient QD-PM complexes have the highest level of QDs ordering, and their assembling design may be further optimized to engineer hybrid materials with advanced biophotonic and photovoltaic properties.

  20. A new method for compensation of the effect of charging transformer's leakage inductance on PFN voltage regulation in Klystron pulse modulators

    Science.gov (United States)

    Patel, Akhil; Kale, Umesh; Shrivastava, Purushottam

    2017-04-01

    The Line type modulators have been widely used to generate high voltage rectangular pulses to power the klystron for high power RF generation. In Line type modulator, the Pulse Forming Network (PFN) which is a cascade combination of lumped capacitors and inductors is used to store the electrical energy. The charged PFN is then discharged into a klystron by firing a high voltage Thyratron switch. This discharge generates a high voltage rectangular pulse across the klystron electrodes. The amplitude and phase of Klystron's RF output is governed by the high voltage pulse amplitude. The undesired RF amplitude and phase stability issues arises at the klystron's output due to inter-pulse and during the pulse amplitude variations. To reduce inter-pulse voltage variations, the PFN is required to be charged at the same voltage after every discharge cycle. At present, the combination of widely used resonant charging and deQing method is used to regulate the pulse to pulse PFN voltage variations but the charging transformer's leakage inductance puts an upper bound on the regulation achievable by this method. Here we have developed few insights of the deQing process and devised a new compensation method to compensate this undesired effect of charging transformer's leakage inductance on the pulse to pulse PFN voltage stability. This compensation is accomplished by the controlled partial discharging of the split PFN capacitor using a low voltage MOSFET switch. Theoretically, very high values of pulse to pulse voltage stability may be achieved using this method. This method may be used in deQing based existing modulators or in new modulators, to increase the pulse to pulse voltage stability, without having a very tight bound on charging transformer's leakage inductance. Given a stable charging power supply, this method may be used to further enhance the inter-pulse voltage stability of modulators which employ the direct charging, after replacing the direct charging with the

  1. Metal nanoparticle mediated space charge and its optical control in an organic hole-only device

    Energy Technology Data Exchange (ETDEWEB)

    Ligorio, G.; Nardi, M. V. [Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor Str. 6, 12489 Berlin (Germany); Steyrleuthner, R.; Neher, D. [Institute of Physics and Astronomy, Universität Potsdam, Karl-Liebknecht Str. 24, 14476 Potsdam (Germany); Ihiawakrim, D. [Institut de Physique et de Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg, Cedex2 (France); Crespo-Monteiro, N.; Brinkmann, M. [Institut Charles Sadron CNRS, 23 rue du Loess, 67034 Strasbourg (France); Koch, N., E-mail: norbert.koch@physik.hu-berlin.de [Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor Str. 6, 12489 Berlin (Germany); Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Erneuerbare Energien, Albert-Einstein Str. 15, 12489 Berlin (Germany)

    2016-04-11

    We reveal the role of localized space charges in hole-only devices based on an organic semiconductor with embedded metal nanoparticles (MNPs). MNPs act as deep traps for holes and reduce the current density compared to a device without MNPs by a factor of 10{sup 4} due to the build-up of localized space charge. Dynamic MNPs charged neutrality can be realized during operation by electron transfer from excitons created in the organic matrix, enabling light sensing independent of device bias. In contrast to the previous speculations, electrical bistability in such devices was not observed.

  2. Bilevel linear programming model of charging for effluent based on price control

    Institute of Scientific and Technical Information of China (English)

    LI Yu-hua; LI Lei; HU Yun-quan; SHAO Hai-hong

    2007-01-01

    For the optimum price problem of charging for effluent, this paper analyzes the optimal Pigovian Tax and the serious information asymmetry problem existing in the application process of optimal Pigovian Tax,which is predominant in theory. Then the bilevel system optimizing decision-making theory is applied to give bilevel linear programming decision-making model of charging for effluent, in which the government (environmental protection agency) acts as the upper level decision-making unit and the polluting enterprises act as the lower level decision-making unit. To some extent, the model avoids the serious information asymmetry between the government and the polluting enterprises on charging for effluent.

  3. Isotope effect in charge-transfer collisions of H with He{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Loreau, J.; Dalgarno, A. [Institute for Theoretical Atomic, Molecular and Optical Physics, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States); Ryabchenko, S. [Northern (Arctic) Federal University, 17 Severnaya Dvina Emb., 163002 Arkhangelsk (Russian Federation); Laboratoire de Chimie Quantique et Photophysique, Universite Libre de Bruxelles (ULB), CP160/09, 1050 Bruxelles (Belgium); Vaeck, N. [Laboratoire de Chimie Quantique et Photophysique, Universite Libre de Bruxelles (ULB), CP160/09, 1050 Bruxelles (Belgium)

    2011-11-15

    We present a theoretical study of the isotope effect arising from the replacement of H by T in the charge-transfer collision H(n=2) + He{sup +}(1s) at low energy. Using a quasimolecular approach and a time-dependent wave-packet method, we compute the cross sections for the reaction including the effects of the nonadiabatic radial and rotational couplings. For H(2s) + He{sup +}(1s) collisions, we find a strong isotope effect at energies below 1 eV/amu for both singlet and triplet states. We find a much smaller isotopic dependence of the cross section for H(2p) + He{sup +}(1s) collisions in triplet states, and no isotope effect in singlet states. We explain the isotope effect on the basis of the potential energy curves and the nonadiabatic couplings, and we evaluate the importance of the isotope effect on the charge-transfer rate coefficients.

  4. Effects of surface charges of graphene oxide on neuronal outgrowth and branching.

    Science.gov (United States)

    Tu, Qin; Pang, Long; Chen, Yun; Zhang, Yanrong; Zhang, Rui; Lu, Bingzhang; Wang, Jinyi

    2014-01-07

    Graphene oxides with different surface charges were fabricated from carboxylated graphene oxide by chemical modification with amino- (-NH2), poly-m-aminobenzene sulfonic acid- (-NH2/-SO3H), or methoxyl- (-OCH3) terminated functional groups. The chemically functionalized graphene oxides and the carboxylated graphene oxide were characterized by infrared spectroscopy, X-ray photoelectron spectroscopy, UV-Vis spectrometry, ζ potential measurements, field emission scanning electron microscopy, and contact angle analyses. Subsequently, the resulting graphene oxides were used as substrates for culturing primary rat hippocampal neurons to investigate neurite outgrowth and branching. The morphological features of neurons that directly reflect their potential capability in synaptic transmission were characterized. The results demonstrate that the chemical properties of graphene oxide can be systematically modified by attaching different functional groups that confer known characteristics to the substrate. By manipulating the charge carried by the functionalized graphene oxides, the outgrowth and branching of neuronal processes can be controlled. Compared with neutral, zwitterionic, or negatively charged graphene oxides, positively charged graphene oxide was found to be more beneficial for neurite outgrowth and branching. The ability to chemically modify graphene oxide to control neurite outgrowth could be implemented clinically, especially in cases wherein long-term presence of outgrowth modulation is necessary.

  5. Predicting and rationalizing the effect of surface charge distribution and orientation on nano-wire based FET bio-sensors

    DEFF Research Database (Denmark)

    De Vico, L.; Iversen, L.; Sørensen, Martin Hedegård

    2011-01-01

    A single charge screening model of surface charge sensors in liquids (De Vico et al., Nanoscale, 2011, 3, 706-717) is extended to multiple charges to model the effect of the charge distributions of analyte proteins on FET sensor response. With this model we show that counter-intuitive signal...... changes (e.g. a positive signal change due to a net positive protein binding to a p-type conductor) can occur for certain combinations of charge distributions and Debye lengths. The new method is applied to interpret published experimental data on Streptavidin (Ishikawa et al., ACS Nano, 2009, 3, 3969...

  6. Effects of Confinement on Microstructure and Charge Transport in High Performance Semicrystalline Polymer Semiconductors

    KAUST Repository

    Himmelberger, Scott

    2012-11-23

    The film thickness of one of the most crystalline and highest performing polymer semiconductors, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene) (PBTTT), is varied in order to determine the effects of interfaces and confinement on the microstructure and performance in organic field effect transistors (OFETs). Crystalline texture and overall film crystallinity are found to depend strongly on film thickness and thermal processing. The angular distribution of crystallites narrows upon both a decrease in film thickness and thermal annealing. These changes in the film microstructure are paired with thin-film transistor characterization and shown to be directly correlated with variations in charge carrier mobility. Charge transport is shown to be governed by film crystallinity in films below 20 nm and by crystalline orientation for thicker films. An optimal thickness is found for PBTTT at which the mobility is maximized in unannealed films and where mobility reaches a plateau at its highest value for annealed films. The effects of confinement on the morphology and charge transport properties of poly(2,5-bis(3-tetradecylthiophen-2-yl) thieno[3,2-b]thiophene) (PBTTT) are studied using quantitative X-ray diffraction and field-effect transistor measurements. Polymer crystallinity is found to limit charge transport in the thinnest films while crystalline texture and intergrain connectivity modulate carrier mobility in thicker films. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. EFFECT OF ULTRASOUND ACTIVATION OF SHS-CHARGE ON THE FINAL PRODUCT

    Directory of Open Access Journals (Sweden)

    V. V. Klubovich

    2016-01-01

    Full Text Available The paper describes the effect of ultrasound activation of dolomite, which is used for producing refractory material by the SHS method, on the final product. X-ray investigation has demonstrated that ultrasound activation of the initial charge brings about changes in the phase composition of the synthesized product.

  8. Wide-bandwidth charge sensitivity with a radio-frequency field-effect transistor

    NARCIS (Netherlands)

    Nishiguchi, K.; Yamaguchi, H.; Fujiwara, A.; Van der Zant, H.S.J.; Steele, G.A.

    2013-01-01

    We demonstrate high-speed charge detection at room temperature with single-electron resolution by using a radio-frequency field-effect transistor (RF-FET). The RF-FET combines a nanometer-scale silicon FET with an impedance-matching circuit composed of an inductor and capacitor. Driving the RF-FET w

  9. Sorption of poly(vinyl alcohol) and its cationic derivative on silica oxide: effect of charge

    NARCIS (Netherlands)

    Liesiene, J.; Matulioniene, J.; Aniulyte, J.; Keizer, de A.

    2005-01-01

    Adsorption of poly(vinyl alcohol)-based cationic polyelectrolyte (DEAE-PVA) as well as unmodified poly(vinyl alcohol) (PVA) onto silica oxide surface was studied by means of reflectometry. The study was focused on the effect of charge of polymer segments on their adsorption on silica oxide. The resu

  10. Interplay between the orbital quantization and Pauli effect in a charge-density-wave organic conductor

    Science.gov (United States)

    Kartsovnik, Mark; Andres, Dieter; Grigoriev, Pavel; Biberacher, Werner; Müller, Harald

    2004-04-01

    The interlayer magnetoresistance of the low-dimensional organic metal α-(BEDT-TTF) 2KHg(SCN) 4 under pressure shows features which are likely associated with theoretically predicted field-induced charge-density-wave (FICDW) transitions. At ambient pressure, a magnetic field strongly tilted towards the conducting layers induces a series of hysteretic anomalies. We attribute these anomalies to a novel kind of FICDW originating from a superposition of the orbital quantization of the nesting vector and Pauli effect on the charge-density wave.

  11. Interplay between the orbital quantization and Pauli effect in a charge-density-wave organic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Kartsovnik, Mark; Andres, Dieter; Grigoriev, Pavel; Biberacher, Werner; Mueller, Harald

    2004-04-30

    The interlayer magnetoresistance of the low-dimensional organic metal {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4} under pressure shows features which are likely associated with theoretically predicted field-induced charge-density-wave (FICDW) transitions. At ambient pressure, a magnetic field strongly tilted towards the conducting layers induces a series of hysteretic anomalies. We attribute these anomalies to a novel kind of FICDW originating from a superposition of the orbital quantization of the nesting vector and Pauli effect on the charge-density wave.

  12. An effective lagrangian description of charged Higgs decays H^+ -> Wg, WZ and Wh

    CERN Document Server

    Díaz-Cruz, J L; Toscano, J J

    2001-01-01

    Charged Higgs decays are discussed within an effective lagrangian extension of the two-higgs doublet model, assuming new physics appearing in the Higgs sector of this model. Low energy constrains are used to imposse bounds on certain dimension -six operators that describe the modified charged Higgs interactions. These bounds are used then to study the decays H^+ -> Wg, WZ and Wh, which can have branching ratios of order 10^-5, 10^-1 and O(1), respectively; thse modes are thus sensitive probes of the symmetries of the Higgs sector that could be tested at future colliders.

  13. CrossRef Space-charge effects in Penning ion traps

    CERN Document Server

    Porobić, T; Breitenfeldt, M; Couratin, C; Finlay, P; Knecht, A; Fabian, X; Friedag, P; Fléchard, X; Liénard, E; Ban, G; Zákoucký, D; Soti, G; Van Gorp, S; Weinheimer, Ch; Wursten, E; Severijns, N

    2015-01-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with View the MathML source using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  14. Charge-state distribution and Doppler effect in an expanding photoionized plasma.

    Science.gov (United States)

    Foord, M E; Heeter, R F; van Hoof, P A M; Thoe, R S; Bailey, J E; Cuneo, M E; Chung, H-K; Liedahl, D A; Fournier, K B; Chandler, G A; Jonauskas, V; Kisielius, R; Mix, L P; Ramsbottom, C; Springer, P T; Keenan, F P; Rose, S J; Goldstein, W H

    2004-07-30

    The charge state distributions of Fe, Na, and F are determined in a photoionized laboratory plasma using high resolution x-ray spectroscopy. Independent measurements of the density and radiation flux indicate unprecedented values for the ionization parameter xi=20-25 erg cm s(-1) under near steady-state conditions. Line opacities are well fitted by a curve-of-growth analysis which includes the effects of velocity gradients in a one-dimensional expanding plasma. First comparisons of the measured charge state distributions with x-ray photoionization models show reasonable agreement.

  15. Aberration of a negative ion beam caused by space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Wada, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-02-15

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  16. Effect of Negatively Charged Ions on the Formation of Microarc Oxidation Coating on 2024 Aluminium Alloy

    Institute of Scientific and Technical Information of China (English)

    Wei Yang; Bailing Jiang; Aiying Wang; Huiying Shi

    2012-01-01

    The present study deals with the effect of negatively charged ions on the ceramic coating formation on 2024 aluminium alloy during microarc oxidation (MAO) process. On the basis of the experimental results, two steps (the formation of an incipient film without arc presence and the growth of a ceramic coating with arc discharge) of MAO process have been observed. For comparison, four different negatively charged ions studied. It is proved that negatively charged ions strongly participated in the formation of an incipient film with high impedance value at the first step. The growth of ceramic coating depends on the combination between AI of the substrate and O from the electrolyte, and the negatively charged ions are little consumed. As an anodic oxide coating is prepared on the sample surface instead of the incipient film, the first step occurs easily and the growth of ceramic coating is accelerated. Furthermore, the mechanism of negatively charged ions in the formation of the MAO coating has been proposed.

  17. Bactericidal Effects of Charged Silver Nanoparticles in Methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Romero-Urbina, Dulce; Velazquez-Salazar, J. Jesus; Lara, Humberto H.; Arellano-Jimenez, Josefina; Larios, Eduardo; Yuan, Tony T.; Hwang, Yoon; Desilva, Mauris N.; Jose-Yacaman, Miguel

    2015-03-01

    The increased number of infections due to antibiotic-resistant bacteria is a major concern to society. The objective of this work is to determine the effect of positively charged AgNPs on methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus(MRSA) cell wall using advanced electron microscopy techniques. Positively charged AgNPs suspensions were synthesized via a microwave heating technique. The suspensions were then characterized by Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) showing AgNPs size range from 5 to 30 nm. MSSA and MRSA were treated with positively charged AgNPs concentrations ranging from 0.06 mM to 31 mM. The MIC50 studies showed that viability of MSSA and MRSA could be reduced by 50% at a positively charged AgNPs concentration of 0.12 mM supported by Scanning-TEM (STEM) images demonstrating bacteria cell wall disruption leading to lysis after treatment with AgNPs. The results provide insights into one mechanism in which positively charged AgNPs are able to reduce the viability of MSSA and MRSA. This research is supported by National Institute on Minority Health and Health Disparities (G12MD007591) from NIH, NSF-PREM Grant No. DMR-0934218, The Welch Foundation and NAMRU-SA work number G1009.

  18. Charge of interstellar dust in dense molecular clouds: Effect of cosmic rays

    CERN Document Server

    Ivlev, Alexei; Galli, Daniele; Caselli, Paola

    2015-01-01

    The local cosmic-ray (CR) spectra are calculated for typical characteristic regions of a cold dense molecular cloud, to investigate two so far neglected mechanisms of dust charging: collection of suprathermal CR electrons and protons by grains, and photoelectric emission from grains due to the UV radiation generated by CRs. The two mechanisms add to the conventional charging by ambient plasma, produced in the cloud by CRs. We show that the CR-induced photoemission can dramatically modify the charge distribution function for submicron grains. We demonstrate the importance of the obtained results for dust coagulation: While the charging by ambient plasma alone leads to a strong Coulomb repulsion between grains and inhibits their further coagulation, the combination with the photoemission provides optimum conditions for the growth of large dust aggregates in a certain region of the cloud, corresponding to the densities $n(\\mathrm{H_2})$ between $\\sim10^4$ cm$^{-3}$ and $\\sim10^6$ cm$^{-3}$. The charging effect o...

  19. Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Karabulut, H.; Cinar, C.; Oztuerk, E.; Yuecesu, H.S. [Department of Mechanical Technology, Faculty of Technical Education, Gazi University, 06500 Teknikokullar, Ankara (Turkey)

    2010-01-15

    This study presents test results of a Stirling engine with a lever controlled displacer driving mechanism. Tests were conducted with helium and the working fluid was charged into the engine block. The engine was loaded by means of a prony type micro dynamometer. The heat was supplied by a liquefied petroleum gas (LPG) burner. The engine started to run at 118 C hot end temperature and the systematic tests of the engine were conducted at 180 C, 220 C and 260 C hot end external surface temperatures. During the test, cold end temperature was kept at 27 C by means of water circulation. Variation of the shaft torque and power with respect to the charge pressure and hot end temperature were examined. The maximum torque and power were measured as 3.99 Nm and 183 W at 4 bars charge pressure and 260 C hot end temperature. Maximum power corresponded to 600 rpm speed. (author)

  20. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects

    Science.gov (United States)

    Rojac, Tadej; Bencan, Andreja; Drazic, Goran; Sakamoto, Naonori; Ursic, Hana; Jancar, Bostjan; Tavcar, Gasper; Makarovic, Maja; Walker, Julian; Malic, Barbara; Damjanovic, Dragan

    2016-11-01

    Mobile charged defects, accumulated in the domain-wall region to screen polarization charges, have been proposed as the origin of the electrical conductivity at domain walls in ferroelectric materials. Despite theoretical and experimental efforts, this scenario has not been directly confirmed, leaving a gap in the understanding of the intriguing electrical properties of domain walls. Here, we provide atomic-scale chemical and structural analyses showing the accumulation of charged defects at domain walls in BiFeO3. The defects were identified as Fe4+ cations and bismuth vacancies, revealing p-type hopping conduction at domain walls caused by the presence of electron holes associated with Fe4+. In agreement with the p-type behaviour, we further show that the local domain-wall conductivity can be tailored by controlling the atmosphere during high-temperature annealing. This work has possible implications for engineering local conductivity in ferroelectrics and for devices based on domain walls.

  1. Effects of Rotation and Relativistic Charge Flow on Pulsar Magnetospheric Structure

    CERN Document Server

    Muslimov, A G; Muslimov, Alex G.; Harding, Alice K.

    2005-01-01

    We propose an analytical 3-D model of the open field-line region of a neutron star (NS) magnetosphere. We construct an explicit analytic solution for arbitrary obliquity (angle between the rotation and magnetic axes) incorporating the effects of magnetospheric rotation, relativistic flow of charges (e.g. primary electron beam) along the open field lines, and E X B drift of these charges. Our solution employs the space-charge-limited longitudinal current calculated in the electrodynamic model of Muslimov & Tsygan (1992) and is valid up to very high altitudes nearly approaching the light cylinder. We assume that in the innermost magnetosphere, the NS magnetic field can be well represented by a static magnetic dipole configuration. At high altitudes the open magnetic field lines significantly deviate from those of a static dipole and tend to focus into a cylindrical bundle, swept back in the direction opposite to the rotation, and also bent towards the rotational equator. We briefly discuss some implications...

  2. STM visualisation of counterions and the effect of charges on self-assembled monolayers of macrocycles.

    Science.gov (United States)

    Kudernac, Tibor; Shabelina, Natalia; Mamdouh, Wael; Höger, Sigurd; De Feyter, Steven

    2011-01-01

    Despite their importance in self-assembly processes, the influence of charged counterions on the geometry of self-assembled organic monolayers and their direct localisation within the monolayers has been given little attention. Recently, various examples of self-assembled monolayers composed of charged molecules on surfaces have been reported, but no effort has been made to prove the presence of counterions within the monolayer. Here we show that visualisation and exact localisation of counterions within self-assembled monolayers can be achieved with scanning tunnelling microscopy (STM). The presence of charges on the studied shape-persistent macrocycles is shown to have a profound effect on the self-assembly process at the liquid-solid interface. Furthermore, preferential adsorption was observed for the uncharged analogue of the macrocycle on a surface.

  3. The effects of charge cloud size and digitisation on the SPAN anode

    Science.gov (United States)

    Breeveld, A. A.; Edgar, M. L.; Lapington, J. S.; Smith, Alan

    1992-10-01

    Microchannel plate (MCP) detectors are often used with charge division anode readouts, such as the spiral-anode (SPAN) anode, to provide high position resolution. This paper discusses the effect on image quality, of digitization (causing fixed patterning), electronic noise, pulse height distribution (PHD) and charge cloud size. The discussion is supported by experimental data obtained from a 1D SPAN anode. Results from a computer model of this detector, and from a charge cloud simulation model, are also included. The SPAN anode normally has three sinusoidal electrodes with phase differences of 120 deg. An alternative configuration is to use a phase difference of 90 deg. This paper compares the advantages and disadvantages of these arrangements.

  4. EFFECT OF NaOH CHARGE ON FIBER CHARACTERISTICS OF P-RC APMP PULP

    Institute of Scientific and Technical Information of China (English)

    FangongKong; JiachuanChen; GuihlmYang; EhaochengLi; HuaiyuZha~

    2004-01-01

    Fiber screen analysis, fiber quality analysis and SEMobservation were used to investigate the effects ofNaOH charge on fiber characteristics in TriploidPopulus Tomentosa P-RC APMP pulping in thispaper. The results showed that increasing NaOHcharge in P-RC APMP process could reduce energyconsumption and fines percent, increase the meanfiber length and long fiber percent and make the curlindex and kink index of fiber ascend. The resultsfrom SEM observation illustrated that the fiber withhigh NaOH charge had higher softness degree, bettercutting resistant ability and better inter-fiber bondingability. With increasing of NaOH charge, the surfaceof handsheets became more and more smooth, andthere were less and less gaps and holes on the papersurface.

  5. Two-Dimensional Transition Metal Dichalcogenides and Their Charge Carrier Mobilities in Field-Effect Transistors

    Science.gov (United States)

    Ahmed, Sohail; Yi, Jiabao

    2017-10-01

    Two-dimensional (2D) materials have attracted extensive interest due to their excellent electrical, thermal, mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero band gap has limited its applications in electronic devices. Transition metal dichalcogenide (TMDC), another kind of 2D material, has a nonzero direct band gap (same charge carrier momentum in valence and conduction band) at monolayer state, promising for the efficient switching devices (e.g., field-effect transistors). This review mainly focuses on the recent advances in charge carrier mobility and the challenges to achieve high mobility in the electronic devices based on 2D-TMDC materials and also includes an introduction of 2D materials along with the synthesis techniques. Finally, this review describes the possible methodology and future prospective to enhance the charge carrier mobility for electronic devices.

  6. Space Charge Effects and Advanced Modelling for CERN Low Energy Machines

    CERN Document Server

    AUTHOR|(CDS)2088716; Rumolo, Giovanni

    The strong space charge regime of future operation of CERN’s circular particle accelerators is investigated and mitigation strategies are developed in the framework of the present thesis. The intensity upgrade of the injector chain of Large Hadron Collider (LHC) prepares the particle accelerators to meet the requirements of the High-Luminosity LHC project. Producing the specified characteristics of the future LHC beams imperatively relies on injecting brighter bunches into the Proton Synchrotron Booster (PSB), the downstream Proton Synchrotron (PS) and eventually the Super Proton Synchrotron (SPS). The increased brightness, i.e. bunch intensity per transverse emittance, entails stronger beam self-fields which can lead to harmful interaction with betatron resonances. Possible beam emittance growth and losses as a consequence thereof threaten to degrade the beam brightness. These space charge effects are partly mitigated by the upgrade of the PSB and PS injection energies. Nevertheless, the space charge tune ...

  7. UV LED charge control of an electrically isolated proof mass in a Gravitational Reference Sensor configuration at 255 nm

    Science.gov (United States)

    Balakrishnan, Karthik; Sun, Ke-Xun

    2012-07-01

    Precise control over the potential of an electrically isolated proof mass is necessary for the operation of devices such as a Gravitational Reference Sensor (GRS) and satellite missions such as LISA. We show that AlGaN UV LEDs operating at 255 nm are an effective substitute for Mercury vapor lamps used in previous missions because of their ability to withstand space qualification levels of vibration and thermal cycling. After 27 thermal and thermal vacuum cycles and 9 minutes of 14.07 g RMS vibration, there is less than 3% change in current draw, less than 15% change in optical power, and no change in spectral peak or FWHM (full width at half maximum). We also demonstrate UV LED stimulated photoemission from a wide variety of thin film carbide proof mass coating candidates (SiC, Mo2C, TaC, TiC, ZrC) that were applied using electron beam evaporation on an Aluminum 6061-T6 substrate. All tested carbide films have measured quantum efficiencies of 3.8-6.8*10^-7 and reflectivities of 0.11-0.15, which compare favorably with the properties of previously used gold films. We demonstrate the ability to control proof mass potential on an 89 mm diameter spherical proof mass over a 20 mm gap in a GRS-like configuration. Proof mass potential was measured via a non-contact DC probe, which would allow control without introducing dynamic forcing of the spacecraft. Finally we provide a look ahead to an upcoming technology demonstration mission of UV LEDs and future applications toward charge control of electrically isolated proof masses.

  8. Combined effects of space charge and energetic disorder on photocurrent efficiency loss of field-dependent organic photovoltaic devices

    Science.gov (United States)

    Yoon, Sangcheol; Park, Byoungchoo; Hwang, Inchan

    2015-11-01

    The loss of photocurrent efficiency by space-charge effects in organic solar cells with energetic disorder was investigated to account for how energetic disorder incorporates space-charge effects, utilizing a drift-diffusion model with field-dependent charge-pair dissociation and suppressed bimolecular recombination. Energetic disorder, which induces the Poole-Frenkel behavior of charge carrier mobility, is known to decrease the mobility of charge carriers and thus reduces photovoltaic performance. We found that even if the mobilities are the same in the absence of space-charge effects, the degree of energetic disorder can be an additional parameter affecting photocurrent efficiency when space-charge effects occur. Introducing the field-dependence parameter that reflects the energetic disorder, the behavior of efficiency loss with energetic disorder can differ depending on which charge carrier is subject to energetic disorder. While the energetic disorder that is applied to higher-mobility charge carriers decreases photocurrent efficiency further, the efficiency loss can be suppressed when energetic disorder is applied to lower-mobility charge carriers.

  9. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions

    Science.gov (United States)

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular counterion density profile with an algebraic divergence at the surfaces. This effect drives the system towards a state of lower thermal "disorder", one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which can be quite significant even with a small degree of surface charge disorder relative to the mean surface charge. The strong coupling, disorder-induced attraction is typically far more stronger than the van der Waals interaction between the surfaces, especially within a range of several nanometers for the inter-surface separation.

  10. Controlled Growth of Well-Defined Conjugated Polymers from the Surfaces of Multiwalled Carbon Nanotubes: Photoresponse Enhancement via Charge Separation.

    Science.gov (United States)

    Hou, Wenpeng; Zhao, Ning-Jiu; Meng, Dongli; Tang, Jing; Zeng, Yi; Wu, Yu; Weng, Yangziwan; Cheng, Chungui; Xu, Xiulai; Li, Yi; Zhang, Jian-Ping; Huang, Yong; Bielawski, Christopher W; Geng, Jianxin

    2016-05-24

    The installation of heterojunctions on the surfaces of carbon nanotubes (CNTs) is an effective method for promoting the charge separation processes needed for CNT-based electronics and optoelectronics applications. Conjugated polymers are proven state-of-the-art candidates for modifying the surfaces of CNTs. However, all previous attempts to incorporate conjugated polymers to CNTs resulted in unordered interfaces. Herein we show that well-defined chains of regioregular poly(3-hexylthiophene) (P3HT) were successfully grown from the surfaces of multiwalled CNTs (MWNTs) using surface-initiated Kumada catalyst-transfer polycondensation. The polymerization was found to proceed in a controlled manner as chains of tunable lengths were prepared through variation of the initial monomer-to-initiator ratio. Moreover, it was determined that large-diameter MWNTs afforded highly ordered P3HT aggregates, which exhibited a markedly bathochromically shifted optical absorption due to a high grafting density induced planarization of the polymer chains. Using ultrafast spectroscopy, the heterojunctions formed between the MWNTs and P3HT were shown to effectively overcome the binding energy of excitons, leading to photoinduced electron transfer from P3HT to MWNTs. Finally, when used as prototype devices, the individual MWNT-g-P3HT core-shell structures exhibited excellent photoresponses under a low illumination density.

  11. Oxaliplatin neurotoxicity – no general ion channel surface-charge effect

    Directory of Open Access Journals (Sweden)

    Ehrsson Hans

    2009-01-01

    Full Text Available Abstract Background Oxaliplatin is a platinum-based chemotherapeutic drug. Neurotoxicity is the dose-limiting side effect. Previous investigations have reported that acute neurotoxicity could be mediated via voltage-gated ion channels. A possible mechanism for some of the effects is a modification of surface charges around the ion channel, either because of chelation of extracellular Ca2+, or because of binding of a charged biotransformation product of oxaliplatin to the channel. To elucidate the molecular mechanism, we investigated the effects of oxaliplatin and its chloride complex [Pt(dachoxCl]- on the voltage-gated Shaker K channel expressed in Xenopus oocytes. The recordings were made with the two-electrode and the cut-open oocyte voltage clamp techniques. Conclusion To our surprise, we did not see any effects on the current amplitudes, on the current time courses, or on the voltage dependence of the Shaker wild-type channel. Oxaliplatin is expected to bind to cysteines. Therefore, we explored if there could be a specific effect on single (E418C and double-cysteine (R362C/F416C mutated Shaker channels previously shown to be sensitive to cysteine-specific reagents. Neither of these channels were affected by oxaliplatin. The clear lack of effect on the Shaker K channel suggests that oxaliplatin or its monochloro complex has no general surface-charge effect on the channels, as has been suggested before, but rather a specific effect to the channels previously shown to be affected.

  12. Investigation of External Charges Effects on Piezoelectric ZnO Nanogenerator

    Directory of Open Access Journals (Sweden)

    Samira Fathi

    2016-06-01

    Full Text Available Piezopotential generation in semiconductive ZnO nanowire (NW, oriented along the c-axis [0001], is significantly affected by free charge carriers within the ZnO NW. In this paper, the effect of free carriers’ distribution in semiconductive ZnO nanowire is investigated, using a Finite Element Method (FEM. The mentioned effect leads to modification of the conduction band variation, carrier concentration profiles, and eventually, the magnitude and distribution of the piezoelectric potential. The impact of free charge carriers shows that the negative potential distributed at the tip of ZnO NW is decreased from V = – 270 mv for the donor concentration ND = 1 × 1015 C/m3 to the V = – 25 mV, in presence of the donor concentration of ND = 1 × 1018 C/m3. With selecting the appropriate electrical boundary conditions and applying the surface charges density at the top of the nanowire, the potential reduction is compensated. The electrostatic effect leads to a significant enhancement of the piezoelectric potential. The results are well shown the interplay of volume and surface charges and their influence on performance of nanogenerator, and so are crucial for designing of nanogenerators with high piezoelectric potential and good efficiency.

  13. [Effect of charged ultrafiltration membrane on natural organic matter removal and membrane fouling].

    Science.gov (United States)

    Hou, Juan; Shao, Jia-Hui; He, Yi-Liang

    2010-06-01

    With the deterioration of water pollution and stringency of water standards, ultrafiltration (UF) has become one of the best alternatives replacing conventional drinking water treatment technologies. However, UF is not very effectively to remove natural organic matter (NOM) due to the comparatively large pore size compared to the size of NOM. Fouling issue is another factor that restricts its widespread application. The rejection coefficient and flux decline during ultrafiltration of humic acid (HA) and raw water through neutral unmodified and negatively charge-modified regenerated cellulose (RC) membranes were investigated, and the analysis for membrane resistance was provided. The initial removal rate for HA is 59% and the flux decline is 32% on neutral unmodified RC membrane with MWCO of 100 x 10(3), while the initial removal rate for HA increases to 92% and the flux decline decreases to 25% on negatively charge-modified RC membrane. Compared to neutral unmodified RC membrane, the removal rate for NOM on negatively charge-modified RC membrane increases 20% and the flux decline decreases 12%. Results indicated that charged UF membrane could be an effective way for better removal of NOM and reduction of the membrane fouling due to the electrostatic interaction with the combination effect of membrane pore size.

  14. Effect of ion compensation of the beam space charge on gyrotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, A. P.; Glyavin, M. Yu. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Nusinovich, G. S. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742-3511 (United States)

    2015-04-15

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ion compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.

  15. Effects of Exhaust Gas Recirculation on the Homogeneous Charge Combustion Process of n-Heptane at Different Load Conditions

    Institute of Scientific and Technical Information of China (English)

    LIU Dexin; FENG Hongqing; ZHENG Jincai; MILLER David L; CERNANSKY Nicholas P

    2005-01-01

    Effects of exhaust gas recirculation (EGR) on homogeneous charge combustion of n-heptane was studied through simulation and experiment. Experiments were carried out in a single cylinder, four-stroke, air cooled engine and a single cylinder, two-stroke, water cooled engine. In the four-stroke engine, experiments of the effects of EGR were examined using heated N2 addition as a surrogate for external EGR and modifying engine to increase internal EGR. The ignition timing was sensitive to EGR due to thermal and chemical effects. EGR or extra air is a key factor in eliminating knock during mid-load conditions. For higher load operation the only way to avoid knock is to control reaction timing through the use of spark ignition. Experimental and modeling results from the two-stroke engine show that auto-ignition can be avoided by increasing the engine speed. The two-stroke engine experiments indicate that high levels of internal EGR can enable spark ignition at lean conditions. At higher load conditions, increasing the engine speed is an effective method to control transition from homogeneous charge compression ignition (HCCI) operation to non-HCCI operation and successful spark ignition of a highly dilute mixture can avoid serious knock.

  16. SEMICONDUCTOR DEVICES: Analytical charge control model for AlGaN/GaN MIS-HFETs including an undepleted barrier layer

    Science.gov (United States)

    Shenghui, Lu; Jiangfeng, Du; Qian, Luo; Qi, Yu; Wei, Zhou; Jianxin, Xia; Mohua, Yang

    2010-09-01

    An analytical charge control model considering the insulator/AlGaN interface charge and undepleted Al-GaN barrier layer is presented for AlGaN/GaN metal-insulator-semiconductor heterostructure field effect transistors (MIS-HFETs) over the entire operation range of gate voltage. The whole process of charge control is analyzed in detail and partitioned into four regions: I—full depletion, II—partial depletion, III—neutral region and IV—electron accumulation at the insulator/AlGaN interface. The results show that two-dimensional electron gas (2DEG) saturates at the boundary of region II/III and the gate voltage should not exceed the 2DEG saturation voltage in order to keep the channel in control. In addition, the span of region II accounts for about 50% of the range of gate voltage before 2DEG saturates. The good agreement of the calculated transfer characteristic with the measured data confirms the validity of the proposed model.

  17. Effects of neutral gas release on current collection during the CHARGE-2 rocket experiment

    Science.gov (United States)

    Gilchrist, B. E.; Banks, P. M.; Neubert, T.; Williamson, P. R.; Myers, Neil B.; Raitt, W. John; Sasaki, S.

    1990-01-01

    Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged rocket payload in the ionosphere are reported. These observations were made during the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother/daughter payload system. The current collection enhancement was observed at the daughter payload located 100 to 400 m away from the mother which was firing an energetic electron beam. The authors interpret these results in terms of an electrical discharge forming in close proximity to the daughter during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. These results can also be compared with recent laboratory observations of hollow cathode plasma contactors operating in the ignited mode. Experimental observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated daughter payload in the nighttime ionosphere were made. These observations were derived from the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother-daughter payload system. The rocket flew from White Sands Missile Range (WSMR) in December, 1985. The rocket achieved an altitude of 261 km and carried a 1 keV electron beam emitting up to 48 mA of current (Myers, et al., 1989a). The mother payload, carried the electron beam source, while the daughter acted as a remote current collection and observation platform and reached a distance of 426 m away from the main payload. Gas emissions at the daughter were due to periodic thruster jet firings to maintain separation velocity between the two payloads.

  18. Effect of surface mechanical finishes on charging ability of electron irradiated PMMA in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Rondot, Sebastien, E-mail: sebastien.rondot@univ-reims.fr [Groupe de Recherche en Sciences pour l' Ingenieur, EA4301, Faculte des Sciences, BP 1039, 51687 Reims Cedex 2 (France); Jbara, Omar [Groupe de Recherche en Sciences pour l' Ingenieur, EA4301, Faculte des Sciences, BP 1039, 51687 Reims Cedex 2 (France); Fakhfakh, Slim [LaMaCop, Faculte des Sciences de SFAX, Route Soukra Km 3, BP 1171, C.P 3000 Sfax (Tunisia); Belkorissat, Redouane; Patat, Jean Marc [Groupe de Recherche en Sciences pour l' Ingenieur, EA4301, Faculte des Sciences, BP 1039, 51687 Reims Cedex 2 (France)

    2011-10-01

    Charging of Polymethyl Methacrylate insulators (PMMA), in a scanning electron microscope (SEM) is studied owing to a time resolved current method. This method allows the evolution of trapped charge versus time and the charging time constant to be deduced. The effect of surface roughness change on the ability of PMMA to trapped charge is highlighted. The results show that the trapped charge at the steady state decreases when the roughness increases in the micrometer range while the time constant of charging increases with surface roughness. This behaviour is due to the increase of leakage current and/or enhanced secondary electron emission (SEE). On the one hand, surface mechanical finishes allows, the build up charge in insulators submitted to an electron bombardment to be lowered. On the other hand this treatment allows the secondary electron emission to be raised for some specific applications.

  19. Battery charging system

    Energy Technology Data Exchange (ETDEWEB)

    Carollo, J.A.; Kalinsky, W.A.

    1984-02-21

    A battery charger utilizes three basic modes of operation that includes a maintenance mode, a rapid charge mode and time controlled limited charging mode. The device utilizes feedback from the battery being charged of voltage, current and temperature to determine the mode of operation and the time period during which the battery is being charged.

  20. Spreading of Electrolyte Drops on Charged Surfaces: Electric Double Layer Effects on Drop Dynamics

    Science.gov (United States)

    Bae, Kyeong; Sinha, Shayandev; Chen, Guang; Das, Siddhartha

    2015-11-01

    Drop spreading is one of the most fundamental topics of wetting. Here we study the spreading of electrolyte drops on charged surfaces. The electrolyte solution in contact with the charged solid triggers the formation of an electric double layer (EDL). We develop a theory to analyze how the EDL affects the drop spreading. The drop dynamics is studied by probing the EDL effects on the temporal evolution of the contact angle and the base radius (r). The EDL effects are found to hasten the spreading behaviour - this is commensurate to the EDL effects causing a ``philic'' tendency in the drops (i.e., drops attaining a contact angle smaller than its equilibrium value), as revealed by some of our recent papers. We also develop scaling laws to illustrate the manner in which the EDL effects make the r versus time (t) variation deviate from the well known r ~tn variation, thereby pinpointing the attainment of different EDL-mediated spreading regimes.

  1. An Effective Wind Energy System based on Buck-boost Controller

    Directory of Open Access Journals (Sweden)

    N. Prakash

    2013-06-01

    Full Text Available In Domestic Wind Machines, if the wind speed is low, the output voltage is not sufficient to charge the battery as it is lower than the rated charging voltage of the battery. This limits the overall efficiency of the Wind Machine to 20%. This study proposed to design and develop a Buck Boost Controller for the effective utilization of the wind machine. By implementing a controller based Buck Boost converter, the voltage produced at the lower wind speeds can also be utilized effectively by boosting it to the rated charging voltage of the battery. Also if the wind speed is high (>14 m/s, the DC output voltage will increase to more than 65 V. The converter bucks this high voltage to the nominal battery charging voltage (52 V, thereby protecting the battery from over charging voltage. Thus the effective utilization of the wind machine has been achieved by the use of the proposed Buck Boost Controller.

  2. The effect of charge on the release kinetics from polysaccharide–nanoclay composites

    Energy Technology Data Exchange (ETDEWEB)

    Buffa, Stefano Del; Grifoni, Emanuele; Ridi, Francesca, E-mail: francesca.ridi@unifi.it; Baglioni, Piero, E-mail: piero.baglioni@unifi.it [University of Florence, Department of Chemistry “Ugo Schiff” and CSGI (Italy)

    2015-03-15

    The objective of this study was to integrate inorganic halloysite nanotubes (HNT) with chitosan and hyaluronic acid to obtain hybrid nanocomposites with opposing charges and to investigate their potential in the controlled release of drug model probes. Two oppositely charged polysaccharides, chitosan and hyaluronic acid, were selected for their biocompatibility and their importance in biomedical applications. The high surface area and the hollow nanometric-sized lumen of HNT allowed for the efficient loading of rhodamine 110 and carboxyfluorescein, used as models for oppositely charged drugs. In the case of chitosan, the preparation of the nanocomposite was carried out exploiting the electrostatic interaction between the polymer and HNT in water, while with hyaluronic acid, a covalent functionalization strategy was employed to couple the polymer with the clay. Nanocomposites were characterized with thermal, microscopic, and spectroscopic techniques, and the release kinetics of the model compounds was assessed by fluorescence measurements. The release curves were fitted with a model able to account for the desorption process from the external and the internal halloysite surfaces. The results show that both polymeric coatings alter the release of the probes, indicating a key role of both charge and coating composition on the initial and final amount of released dye, as well as on the rate of the desorption process.

  3. The effect of charge on the release kinetics from polysaccharide-nanoclay composites

    Science.gov (United States)

    Del Buffa, Stefano; Grifoni, Emanuele; Ridi, Francesca; Baglioni, Piero

    2015-03-01

    The objective of this study was to integrate inorganic halloysite nanotubes (HNT) with chitosan and hyaluronic acid to obtain hybrid nanocomposites with opposing charges and to investigate their potential in the controlled release of drug model probes. Two oppositely charged polysaccharides, chitosan and hyaluronic acid, were selected for their biocompatibility and their importance in biomedical applications. The high surface area and the hollow nanometric-sized lumen of HNT allowed for the efficient loading of rhodamine 110 and carboxyfluorescein, used as models for oppositely charged drugs. In the case of chitosan, the preparation of the nanocomposite was carried out exploiting the electrostatic interaction between the polymer and HNT in water, while with hyaluronic acid, a covalent functionalization strategy was employed to couple the polymer with the clay. Nanocomposites were characterized with thermal, microscopic, and spectroscopic techniques, and the release kinetics of the model compounds was assessed by fluorescence measurements. The release curves were fitted with a model able to account for the desorption process from the external and the internal halloysite surfaces. The results show that both polymeric coatings alter the release of the probes, indicating a key role of both charge and coating composition on the initial and final amount of released dye, as well as on the rate of the desorption process.

  4. Studies of the effect of charged hadrons on lead tungstate crystals

    CERN Document Server

    Nessi-Tedaldi, Francesca

    2008-01-01

    Scintillating crystals are used for calorimetry in several high-energy physics experiments. For some of them, performance has to be ensured in difficult operating conditions, like a high radiation environment, very large particle fluxes and high collision rates. Results are presented here from a thorough series of measurements concerning mainly the effect of charged hadrons on lead tungstate. It is also shown how these results can be used to predict the effect on crystals due to a given flux of particles.

  5. Infrared study of charge injection in organic field-effect transistors

    Science.gov (United States)

    Li, Zhiqiang

    2008-03-01

    We present a systematic infrared (IR) spectroscopic study of charge injection in organic field-effect transistors (FET). These experiments have revealed new unexpected aspects of both polymers and molecular crystals. IR spectromicroscopy was employed to image the charges in poly(3-hexylthiophene) (P3HT) FETs. The charge density profile in the conducting channel uncovers a density-dependent mobility in P3HT due to disorder effects. Our IR studies of single crystal rubrene based FETs show that charge transport in these devices at room temperature is governed by light quasiparticles in molecular orbital bands. This result is at variance with the common beliefs of polaron formation in molecular solids. The above experiments have demonstrated the unique potential of IR spectroscopy for investigating physical phenomena at the nanoscale occurring at the semiconductor-insulator interface in FET devices. This work is in collaboration with G. M. Wang, D. Moses, A. J. Heeger (UCSB), V. Podzorov, M.E. Gershenson (Rutgers), Z. Hao, M. C. Martin (ALS), N. Sai, A. D. Meyertholen, M. M. Fogler, M. Di Ventra and D. N. Basov (UCSD).

  6. Reducing Space Charge Effects in a Linear Ion Trap by Rhombic Ion Excitation and Ejection

    Science.gov (United States)

    Zhang, Xiaohua; Wang, Yuzhuo; Hu, Lili; Guo, Dan; Fang, Xiang; Zhou, Mingfei; Xu, Wei

    2016-07-01

    Space charge effects play important roles in ion trap operations, which typically limit the ion trapping capacity, dynamic range, mass accuracy, and resolving power of a quadrupole ion trap. In this study, a rhombic ion excitation and ejection method was proposed to minimize space charge effects in a linear ion trap. Instead of applying a single dipolar AC excitation signal, two dipolar AC excitation signals with the same frequency and amplitude but 90° phase difference were applied in the x- and y-directions of the linear ion trap, respectively. As a result, mass selective excited ions would circle around the ion cloud located at the center of the ion trap, rather than go through the ion cloud. In this work, excited ions were then axially ejected and detected, but this rhombic ion excitation method could also be applied to linear ion traps with ion radial ejection capabilities. Experiments show that space charge induced mass resolution degradation and mass shift could be alleviated with this method. For the experimental conditions in this work, space charge induced mass shift could be decreased by ~50%, and the mass resolving power could be improved by ~2 times at the same time.

  7. Two-dimensional analytical model of double-gate tunnel FETs with interface trapped charges including effects of channel mobile charge carriers

    Science.gov (United States)

    Xu, Huifang; Dai, Yuehua

    2017-02-01

    A two-dimensional analytical model of double-gate (DG) tunneling field-effect transistors (TFETs) with interface trapped charges is proposed in this paper. The influence of the channel mobile charges on the potential profile is also taken into account in order to improve the accuracy of the models. On the basis of potential profile, the electric field is derived and the expression for the drain current is obtained by integrating the BTBT generation rate. The model can be used to study the impact of interface trapped charges on the surface potential, the shortest tunneling length, the drain current and the threshold voltage for varying interface trapped charge densities, length of damaged region as well as the structural parameters of the DG TFET and can also be utilized to design the charge trapped memory devices based on TFET. The biggest advantage of this model is that it is more accurate, and in its expression there are no fitting parameters with small calculating amount. Very good agreements for both the potential, drain current and threshold voltage are observed between the model calculations and the simulated results. Project supported by the National Natural Science Foundation of China (No. 61376106), the University Natural Science Research Key Project of Anhui Province (No. KJ2016A169), and the Introduced Talents Project of Anhui Science and Technology University.

  8. Control of intrachain charge transfer in model systems for block copolymer photovoltaic materials.

    Science.gov (United States)

    Johnson, Kerr; Huang, Ya-Shih; Huettner, Sven; Sommer, Michael; Brinkmann, Martin; Mulherin, Rhiannon; Niedzialek, Dorota; Beljonne, David; Clark, Jenny; Huck, Wilhelm T S; Friend, Richard H

    2013-04-01

    We report the electronic properties of the conjugated coupling between a donor polymer and an acceptor segment serving as a model for the coupling in conjugated donor-acceptor block copolymers. These structures allow the study of possible intrachain photoinduced charge separation, in contrast to the interchain separation achieved in conventional donor-acceptor blends. Depending on the nature of the conjugated linkage, we observe varying degrees of modification of the excited states, including the formation of intrachain charge transfer excitons. The polymers comprise a block (typically 18 repeat units) of P3HT, poly(3-hexyl thiophene), coupled to a single unit of F8-TBT (where F8 is dioctylfluorene, and TBT is thiophene-benzothiadiazole-thiophene). When the P3HT chain is linked to the TBT unit, we observe formation of a localized charge transfer state, with red-shifted absorption and emission. Independent of the excitation energy, this state is formed very rapidly (<40 fs) and efficiently. Because there is only a single TBT unit present, there is little scope for long-range charge separation and it is relatively short-lived, <1 ns. In contrast, when the P3HT chain and TBT unit are separated by the wider bandgap F8 unit, there is little indication for modification of either ground or excited electronic states, and longer-lived charge separated states are observed.

  9. The control mechanism of surface traps on surface charge behavior in alumina-filled epoxy composites

    Science.gov (United States)

    Li, Chuanyang; Hu, Jun; Lin, Chuanjie; He, Jinliang

    2016-11-01

    To investigate the role surface traps play in the charge injection and transfer behavior of alumina-filled epoxy composites, surface traps with different trap levels are introduced by different surface modification methods which include dielectric barrier discharges plasma, direct fluorination, and Cr2O3 coating. The resulting surface physicochemical characteristics of experimental samples were observed using atomic force microscopy, scanning electron microscopy and fourier transform infrared spectroscopy. The surface potential under dc voltage was detected and the trap level distribution was measured. The results suggest that the surface morphology of the experimental samples differs dramatically after treatment with different surface modification methods. Different surface trap distributions directly determine the charge injection and transfer property along the surface. Shallow traps with trap level of 1.03–1.11 eV and 1.06–1.13 eV introduced by plasma and fluorination modifications are conducive for charge transport along the insulating surface, and the surface potential can be modified, producing a smoother potential curve. The Cr2O3 coating can introduce a large number of deep traps with energy levels ranging from 1.09 to 1.15 eV. These can prevent charge injection through the reversed electric field formed by intensive trapped charges in the Cr2O3 coatings.

  10. Application of Network-Constrained Transactive Control to Electric Vehicle Charging for Secure Grid Operation

    DEFF Research Database (Denmark)

    Hu, Junjie; Yang, Guangya; Bindner, Henrik W.

    2016-01-01

    including power transformer congestion and voltage violations. In this method, a price coordinator is introduced to facilitate the interaction between the distribution system operator (DSO) and aggregators in the smart grid. Electric vehicles are used to illustrate the proposed network......This paper develops a network-constrained transactive control method to integrate distributed energy resources (DERs) into a power distribution system with the purpose of optimizing the operational cost of DERs and power losses of the distribution network as well as preventing grid problems......-constrained transactive control method. Mathematical models are presented to describe the operation of the control method. Finally, simulations are presented to show the effectiveness of the proposed method. To guarantee its optimality, we also checked the numerical results obtained with the network...

  11. Ultrafast universal quantum control of a quantum-dot charge qubit using Landau-Zener-Stückelberg interference.

    Science.gov (United States)

    Cao, Gang; Li, Hai-Ou; Tu, Tao; Wang, Li; Zhou, Cheng; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping

    2013-01-01

    A basic requirement for quantum information processing is the ability to universally control the state of a single qubit on timescales much shorter than the coherence time. Although ultrafast optical control of a single spin has been achieved in quantum dots, scaling up such methods remains a challenge. Here we demonstrate complete control of the quantum-dot charge qubit on the picosecond scale [corrected], orders of magnitude faster than the previously measured electrically controlled charge- or spin-based qubits. We observe tunable qubit dynamics in a charge-stability diagram, in a time domain, and in a pulse amplitude space of the driven pulse. The observations are well described by Landau-Zener-Stückelberg interference. These results establish the feasibility of a full set of all-electrical single-qubit operations. Although our experiment is carried out in a solid-state architecture, the technique is independent of the physical encoding of the quantum information and has the potential for wider applications.

  12. Ultrafast universal quantum control of a quantum-dot charge qubit using Landau–Zener–Stückelberg interference

    Science.gov (United States)

    Cao, Gang; Li, Hai-Ou; Tu, Tao; Wang, Li; Zhou, Cheng; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping

    2013-01-01

    A basic requirement for quantum information processing is the ability to universally control the state of a single qubit on timescales much shorter than the coherence time. Although ultrafast optical control of a single spin has been achieved in quantum dots, scaling up such methods remains a challenge. Here we demonstrate complete control of the quantum-dot charge qubit on the picosecond scale, orders of magnitude faster than the previously measured electrically controlled charge- or spin-based qubits. We observe tunable qubit dynamics in a charge-stability diagram, in a time domain, and in a pulse amplitude space of the driven pulse. The observations are well described by Landau–Zener–Stückelberg interference. These results establish the feasibility of a full set of all-electrical single-qubit operations. Although our experiment is carried out in a solid-state architecture, the technique is independent of the physical encoding of the quantum information and has the potential for wider applications. PMID:23360992

  13. Implementation of RTOS on STM32F4 Microcontroller to Control Parallel Boost for Photovoltaic Battery Charging Application

    Directory of Open Access Journals (Sweden)

    EkaPrasetyono

    2015-12-01

    Full Text Available The DC-DC converter is operated with pulse width modulation (PWM and controlled by modifying duty cycle. The PWM is easy developed on microcontroller system, but the problem become complex when some control algorithm implemented to determine duty cycle value. Multitasking is needed to handle sensor, control algorithm and user interface system. This paper discusses the application of Real Time Operating System (RTOS to handle multitasking process on STM32F407 ARM Cortex M4 microcontroller to control parallel boost converter with load sharing algorithm for photovoltaic (PV battery charging application. The first OS task is to run MPPT to get maximum energy from PV. This first OS task is implemented to control the first boost converter. Then, The second OS task to run fuzzy logic controller to control battery charging current with load sharing energy. This second OS task is task implemented to control second boost converter. The measurement of current and voltage of both converter side, display and user interface system also handled with OS task. As the result, each designed task could run well with recommended OS task priority for MPPT and Fuzzy is IRQ task and for TFT_LCD_displayosPriorityAboveNormal.

  14. Effect of Sulfate on Adsorption of Zinc and Cadmium by Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    ZHANGGANGYA; G.W.BRUMMER; 等

    1998-01-01

    SO42- and Zn2+ or Cd2+ were added to three variable charge soils in different sequences.In one sequence sulfate was added first ,and in the other,Zn2+ or Cd2+ first.The addition of sulfate to the system invariably caused an increase in adsorption of the heavy metal added,with the effect more remarkable whn the soil reacted with the sulfate prior to the metal.the shift in pH50 for both Zn and Cd adsorption was aslo comparatively larger in the first sequence of reactions .It was suggested that the increase in negative charge density and the resultant negative potential of the soil were the primary cause of the pronounced effect of sulfate on adsorption of Zn or Cd,and the formaiton of the ternary surface complex-S-SO4-M might also play a role in the effect.

  15. On Hierarchy, Charge Universality, and 4D Effective Theory in Randall-Sundrum Models

    CERN Document Server

    Benson, K

    2004-01-01

    We present a variant formulation of the Randall-Sundrum model which solves both the hierarchy and charge universality problems. We first critique the rationale for hierarchy solution and 4D effective interactions in the Randall-Sundrum model. We note its asymmetric treatment of matter and gravity in the warped braneworld background, leaving uncalibrated the particle scale; as well as its unconventional spatial attribution of integrated 4D effective gravity. Matter and massless gravitons both localize when branes form to warp spacetime; thus consistent accounting of induced 4D physics must track both particle and Planck scales through brane formation. We perform such self-consistent tracking in the warped Randall-Sundrum background, by treating matter as intrinsically extradimensional, on par with gravity, with a unified mass scale. We find this definite, self-consistent theory solves two major problems: the effective 4D theory shows robust hierarchy solution, and preserves charge universality. Our unified 5D ...

  16. Effect of trapped ions and nonequilibrium electron-energy distribution function on dust-particle charging in gas discharges.

    Science.gov (United States)

    Sukhinin, G I; Fedoseev, A V; Antipov, S N; Petrov, O F; Fortov, V E

    2009-03-01

    Dust-particles charging in a low-pressure glow discharge was investigated theoretically. The dust-particle charge was found on the basis of a developed self-consistent model taking into account the nonequilibrium character of electron distribution function and the formation of an ionic coat composed of bound or trapped ions around the dust particle. The dust-particle charge, the radial distributions of electron density, free and trapped ions densities, and the distribution of electrostatic potential were found. It was shown that the non-Maxwellian electron distribution function and collisional flux of trapped ions both reduce the dust-particle charge in comparison with that received with the help of the conventional orbital motion limited (OML) model. However, in rare collisional regimes in plasma when the collisional flux is negligible, the formation of ionic coat around a particle leads to a shielding of the proper charge of a dust particle. In low-pressure experiments, it is only possible to detect the effective charge of a dust particle that is equal to the difference between the proper charge of the particle and the charge of trapped ions. The calculated effective dust particle charge is in fairly good agreement with the experimental measurements of dust-particle charge dependence on gas pressure.

  17. Nonvolatile multilevel data storage memory device from controlled ambipolar charge trapping mechanism

    Science.gov (United States)

    Zhou, Ye; Han, Su-Ting; Sonar, Prashant; Roy, V. A. L.

    2013-07-01

    The capability of storing multi-bit information is one of the most important challenges in memory technologies. An ambipolar polymer which intrinsically has the ability to transport electrons and holes as a semiconducting layer provides an opportunity for the charge trapping layer to trap both electrons and holes efficiently. Here, we achieved large memory window and distinct multilevel data storage by utilizing the phenomena of ambipolar charge trapping mechanism. As fabricated flexible memory devices display five well-defined data levels with good endurance and retention properties showing potential application in printed electronics.

  18. Control over the charge transfer in dye-nanoparticle decorated graphene

    Science.gov (United States)

    Bongu, Sudhakara Reddy; Veluthandath, Aneesh V.; Nanda, B. R. K.; Ramaprabhu, Sundara; Bisht, Prem B.

    2016-01-01

    Charge transfer interaction between silver decorated graphene and three differently charged dyes, cationic (rhodamine 6G), neutral (rhodamine B) and anionic (fluorescein 27) has been studied. The ground state association constants have been evaluated and changes in the fluorescence intensity and lifetimes have been obtained in two solvents. Strength of complex-formation has been found to be higher with the cationic molecule in water. In a higher viscosity solvent, the ground state complex formation is restricted. Local field of localized surface plasmons of nanoparticles adsorbed on the graphene sheets leads to enhanced absorption and fluorescence of fluorescein 27.

  19. Effects of the Coastal Park Environment Attributes on Its Admission Fee Charges

    Directory of Open Access Journals (Sweden)

    Wang Erda

    2016-01-01

    Full Text Available In this paper, we investigate the effect of those recognized nature-and-activity-based attributes on the level of park’s admission fee charges using a panel data of 29 coastal recreation parks in Dalian city of China. A total of seven different Hedonic pricing model specifications are used in the estimating process. The results indicate that a numerous attributes have statistically significant effects (α≤ 0.10 on the level of park admission fee charges. In terms of the economic valuation, the marine sightseeing results in the highest value of Marginal Willingness to Pay (MWTP of $6.4 as its quality rank improves to a designated higher level. As expected that the park congestion has a negative effect on the MWTP (-$0.47 and overall park’s rankings have a positive effect ($0.05 on park’s MWTP. However, many recreation activities accommodated by the park sites exhibit a relatively weak effect on the park entrance fee charges. One possible reason is perhaps owing to the single admission package fee policy adopted by the park management..

  20. Microscopic and macroscopic characterization of the charging effects in SiC/Si nanocrystals/SiC sandwiched structures.

    Science.gov (United States)

    Xu, Jie; Xu, Jun; Wang, Yuefei; Cao, Yunqing; Li, Wei; Yu, Linwei; Chen, Kunji

    2014-02-07

    Microscopic charge injection into the SiC/Si nanocrystals/SiC sandwiched structures through a biased conductive AFM tip is subsequently characterized by both electrostatic force microscopy and Kelvin probe force microscopy (KPFM). The charge injection and retention characteristics are found to be affected by not only the band offset at the Si nanocrystals/SiC interface but also the doping type of the Si substrate. On the other hand, capacitance-voltage (C-V) measurements investigate the macroscopic charging effect of the sandwiched structures with a thicker SiC capping layer, where the charges are injected from the Si substrates. The calculated macroscopic charging density is 3-4 times that of the microscopic one, and the possible reason is the underestimation of the microscopic charging density caused by the averaging effect and detection delay in the KPFM measurements.

  1. Comprehensive Study of the Flow Control Strategy in a Wirelessly Charged Centrifugal Microfluidic Platform with Two Rotation Axes.

    Science.gov (United States)

    Zhu, Yunzeng; Chen, Yiqi; Meng, Xiangrui; Wang, Jing; Lu, Ying; Xu, Youchun; Cheng, Jing

    2017-09-05

    Centrifugal microfluidics has been widely applied in the sample-in-answer-out systems for the analyses of nucleic acids, proteins, and small molecules. However, the inherent characteristic of unidirectional fluid propulsion limits the flexibility of these fluidic chips. Providing an extra degree of freedom to allow the unconstrained and reversible pumping of liquid is an effective strategy to address this limitation. In this study, a wirelessly charged centrifugal microfluidic platform with two rotation axes has been constructed and the flow control strategy in such platform with two degrees of freedom was comprehensively studied for the first time. Inductively coupled coils are installed on the platform to achieve wireless power transfer to the spinning stage. A micro servo motor is mounted on both sides of the stage to alter the orientation of the device around a secondary rotation axis on demand during stage rotation. The basic liquid operations on this platform, including directional transport of liquid, valving, metering, and mixing, are comprehensively studied and realized. Finally, a chip for the simultaneous determination of hexavalent chromium [Cr(VI)] and methanal in water samples is designed and tested based on the strategy presented in this paper, demonstrating the potential use of this platform for on-site environmental monitoring, food safety testing, and other life science applications.

  2. Selective effects of charge on G protein activation by FSH-receptor residues 551-555 and 650-653.

    Science.gov (United States)

    Grasso, P; Deziel, M R; Reichert, L E

    1995-01-01

    Two cytosolic regions of the rat testicular FSH receptor (FSHR), residues 533-555 and 645-653, have been identified as G protein-coupling domains. We localized the activity in these domains to their C-terminal sequences, residues 551-555 (KIAKR, net charge +3) and 650-653 (RKSH, net charge +3), and examined the effects of charge on G protein activation by the C-terminal peptides, using synthetic analogs containing additions, through alanine (A) linkages, of arginine (R, +), histidine (H, +) or both. RA-KIAKR (net charge +4) mimicked the effect of FSHR-(551-555) on guanine nucleotide exchange in rat testis membranes, but reduced its ability to inhibit FSH-stimulated estradiol biosynthesis in cultured rat Sertoli cells. Further increasing net charge by the addition of H (HARA-KIAKR, net charge +5) increased guanosine 5'-triphosphate (GTP) binding, but eliminated FSHR-(551-555) effects on FSH-stimulated steroidogenesis. HA-RKSH (net charge +4) significantly inhibited guanine nucleotide exchange in rat testis membranes, but stimulated basal and potentiated FSH-induced estradiol biosynthesis in cultured rat Sertoli cells. Addition of two H residues (HAHA-RKSH, net charge +5) restored GTP binding and further potentiated basal and FSH-stimulated steroidogenesis. These results suggest that positive charges in G protein-coupling domains of the FSHR play a role in modulating G protein activation and postbinding effects of FSH, such as steroidogenesis.

  3. Provision of Flexible Load Control by Multi-Flywheel-Energy-Storage System in Electrical Vehicle Charging Stations

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Andrade, Fabio

    2015-01-01

    Electrical vehicle (EV) chargers are going to occupy a considerable portion of total energy consumption in the future smart grid. Fast charging stations (FCS), as the most demanding representatives of charging infrastructure, will be requested to provide some ancillary services to the power system...... in order to support basic electrical operation. This paper proposes a local implementation of a hysteresis-based aggregation algorithm for coordinated control of multiple stations that can provide functions such as peak shaving, spinning reserves, frequency control, regulation and load following. Local...... stability. Finally, corresponding hardware in the loop results based on dSPACE1006 platform have been reported in order to verify the validity of proposed approach....

  4. Electrostatic charges generated on aerosolisation of dispersions

    CERN Document Server

    Wang, Y

    2001-01-01

    In responding to the international community's agreement of phasing out chlorofluorocarbon (CFC) propellants by the year 2000, hydrofluoroalkane (HFA) has been chosen to replace CFCs. Intensive investigations related to the new propellant products have been carried out. Aerosol electrostatics is one of the topics investigated. To understand and subsequently control the charging processes is the motive of the research reported here. To help elucidate the complex charging process occurring naturally during atomization of liquids from pressurised Metered Dose Inhalers (pMDIs), it has been broken down into a sequence of related, simpler sub processes-drop charging, streaming current charging (coarse spray), splashing charging and fine spray charging. Our initial studies are of single drops forming at and breaking away from the tips of capillary tubes. The drop forming processes are so slow that any hydrodynamic effect can be dismissed. Then the charge on the drop is measured. It is found that the charge on water ...

  5. Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Shirk; Jeffrey Wishart

    2015-04-01

    As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, and at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.

  6. Signal modeling of charge sharing effect in simple pixelated CdZnTe detector

    Science.gov (United States)

    Kim, Jae Cheon; Kaye, William R.; He, Zhong

    2014-05-01

    In order to study the energy resolution degradation in 3D position-sensitive pixelated CdZnTe (CZT) detectors, a detailed detector system modeling package has been developed and used to analyze the detector performance. A 20 × 20 × 15 mm3 CZT crystal with an 11 × 11 simple-pixel anode array and a 1.72 mm pixel pitch was modeled. The VAS UM/TAT4 Application Specific Integrated Circuitry (ASIC) was used for signal read-out. Components of the simulation package include gamma-ray interactions with the CZT crystal, charge induction, electronic noise, pulse shaping, and ASIC triggering procedures. The charge induction model considers charge drift, trapping, diffusion, and sharing between pixels. This system model is used to determine the effects of electron cloud sharing, weighting potential non-uniformity, and weighting potential cross-talk which produce non-uniform signal responses for different gamma-ray interaction positions and ultimately degrade energy resolution. The effect of the decreased weighting potential underneath the gap between pixels on the total pulse amplitude of events has been studied. The transient signals induced by electron clouds collected near the gap between pixels may generate false signals, and the measured amplitude can be even greater than the photopeak. As the number of pixels that collect charge increases, the probability of side-neighbor events due to charge sharing significantly increases. If side-neighbor events are not corrected appropriately, the energy resolution of pixelated CZT detectors in multiple-pixel events degrades rapidly.

  7. Signal modeling of charge sharing effect in simple pixelated CdZnTe detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae C.; Kaye, William R.; He, Zhong [University of Michigan, Ann Arbor, MI (United States)

    2014-05-15

    In order to study the energy resolution degradation in 3D position-sensitive pixelated CdZnTe (CZT) detectors, a detailed detector system modeling package has been developed and used to analyze the detector performance. A 20 x 20 x 15 mm{sup 3} CZT crystal with an 11 x 11 simple-pixel anode array and a 1.72 mm pixel pitch was modeled. The VAS UM/TAT4 Application Specific Integrated Circuitry (ASIC) was used for signal read-out. Components of the simulation package include gamma-ray interactions with the CZT crystal, charge induction, electronic noise, pulse shaping, and ASIC triggering procedures. The charge induction model considers charge drift, trapping, diffusion, and sharing between pixels. This system model is used to determine the effects of electron cloud sharing, weighting potential non-uniformity, and weighting potential cross-talk which produce non-uniform signal responses for different gamma-ray interaction positions and ultimately degrade energy resolution. The effect of the decreased weighting potential underneath the gap between pixels on the total pulse amplitude of events has been studied. The transient signals induced by electron clouds collected near the gap between pixels may generate false signals, and the measured amplitude can be even greater than the photopeak. As the number of pixels that collect charge increases, the probability of side-neighbor events due to charge sharing significantly increases. If side-neighbor events are not corrected appropriately, the energy resolution of pixelated CZT detectors in multiple-pixel events degrades rapidly.

  8. DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer.

    Science.gov (United States)

    Bronder, Thomas S; Poghossian, Arshak; Scheja, Sabrina; Wu, Chunsheng; Keusgen, Michael; Mewes, Dieter; Schöning, Michael J

    2015-09-16

    Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event.

  9. The Effect of the Charge Fluctuation of Dust Particles on Ion-acoustic Wave Excited Through Ioniza tion Instability

    Institute of Scientific and Technical Information of China (English)

    华建军; 刘金远; 马腾才

    2002-01-01

    The effect of the charge fluctuation of dust particles on ion acoustic wave (IAW) excited through ionization instability was investigated. The hydrodynamic equations and linear time-dependent perturbation theory served as the starting point of theory, by which the dispersion relation and growth rate of the IAW were given. By comparing the results with the case of constant dust charges, it was found that the charge fluctuation of dust particles reduces the instability of the wave mode.

  10. Interactions of human hemoglobin with charged ligand-functionalized iron oxide nanoparticles and effect of counterions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Goutam, E-mail: ghoshg@yahoo.com [UGC-DAE Consortium for Scientific Research, Mumbai Centre (India); Panicker, Lata [Bhabha Atomic Research Centre, Solid State Physics Division (India)

    2014-12-15

    Human hemoglobin is an important metalloprotein. It has tetrameric structure with each subunit containing a ‘heme’ group which carries oxygen and carbon dioxide in blood. In this work, we have investigated the interactions of human hemoglobin (Hb) with charged ligand-functionalized iron oxide nanoparticles and the effect of counterions, in aqueous medium. Several techniques like DLS and ζ-potential measurements, UV–vis, fluorescence, and CD spectroscopy have been used to characterize the interaction. The nanoparticle size was measured to be in the range of 20–30 nm. Our results indicated the binding of Hb with both positively as well as negatively charged ligand-functionalized iron oxide nanoparticles in neutral aqueous medium which was driven by the electrostatic and the hydrophobic interactions. The electrostatic binding interaction was not seen in phosphate buffer at pH 7.4. We have also observed that the ‘heme’ groups of Hb remained unaffected on binding with charged nanoparticles, suggesting the utility of the charged ligand-functionalized nanoparticles in biomedical applications.

  11. Charge Effect on the Quantum Dots-Peptide Self-Assembly Using Fluorescence Coupled Capillary Electrophoresis.

    Science.gov (United States)

    Wang, Jianhao; Li, Jingyan; Teng, Yiwan; Bi, Yanhua; Hu, Wei; Li, Jinchen; Wang, Cheli; Qiu, Lin; Jiang, Pengju

    2016-04-01

    We present a molecular characterization of metal-affinity driven self-assembly between CdSe-ZnS quantum dots and a series of hexahistidine peptides with different charges. In particular, we uti- lized fluorescence coupled capillary electrophoresis to test the self-assembly process of quantum dots with peptides in solution. Four peptides with different charges can be efficiently separated by fluorescence coupled capillary electrophoresis. The migration time appeared to be influenced by the charges of the peptide. In addition, the kinetics of self-assembly process of quantum dots with one of the peptides manifested a bi-phasic kinetics followed by a saturating stage. This work revealed that there exist two types of binding sites on the surface of quantum dots for peptide 1: one type termed "high priority" binding site and a "low priority" site which is occupied after the first binding sites are fully occupied. The total self-assembly process finishes in solution within 80 s. Our work represents the systematic investigation of the details of self-assembly kinetics utilizing high-resolution fluorescence coupled capillary electrophoresis. The charge effect of peptide coating quantum dots provides a new way of preparing bioprobes.

  12. Effect of extreme temperatures on battery charging and performance of electric vehicles

    Science.gov (United States)

    Lindgren, Juuso; Lund, Peter D.

    2016-10-01

    Extreme temperatures pose several limitations to electric vehicle (EV) performance and charging. To investigate these effects, we combine a hybrid artificial neural network-empirical Li-ion battery model with a lumped capacitance EV thermal model to study how temperature will affect the performance of an EV fleet. We find that at -10 °C, the self-weighted mean battery charging power (SWMCP) decreases by 15% compared to standard 20 °C temperature. Active battery thermal management (BTM) during parking can improve SWMCP for individual vehicles, especially if vehicles are charged both at home and at workplace; the median SWMCP is increased by over 30%. Efficiency (km/kWh) of the vehicle fleet is maximized when ambient temperature is close to 20 °C. At low (-10 °C) and high (+40 °C) ambient temperatures, cabin preconditioning and BTM during parking can improve the median efficiency by 8% and 9%, respectively. At -10 °C, preconditioning and BTM during parking can also improve the fleet SOC by 3-6%-units, but this also introduces a "base" load of around 140 W per vehicle. Finally, we observe that the utility of the fleet can be increased by 5%-units by adding 3.6 kW chargers to workplaces, but further improved charging infrastructure would bring little additional benefit.

  13. Negative Resistance Effect and Charge Transfer Mechanisms in the lon Beam Deposited Diamond Like Carbon Superlattices

    Directory of Open Access Journals (Sweden)

    Andrius VASILIAUSKAS

    2011-03-01

    Full Text Available In the present study DLC:SiOx/DLC/DLC:SiOx/nSi and DLC:SiOx/DLC/DLC:SiOx/pSi structures were fabricated by ion beam deposition using a closed drift ion source. Current-voltage (I-V characteristics of the multilayer samples were measured at room temperature. The main charge transfer mechanisms were considered. Unstable negative resistance effect was observed for some DLC:SiOx/DLC/DLC:SiOx/nSi and DLC:SiOx/DLC/DLC:SiOx/pSi structures. In the case of the diamond like carbon superlattices fabricated on nSi it was observed only during the first measurement. In the case of the some DLC:SiOx/DLC/DLC:SiOx/pSi negative resistance "withstood" several measurements. Changes of the charge carrier mechanisms were observed along with the dissapear of the negative resistance peaks. It seems, that in such a case influence of the bulk related charge transfer mechanisms such as Poole-Frenkel emission increased, while the influence of the contact limited charge transfer mechanisms such as Schottky emission decreased. Observed results were be explained by current flow through the local microconducting channels and subsequent destruction of the localized current pathways as a result of the heating by flowing electric current.http://dx.doi.org/10.5755/j01.ms.17.1.240

  14. Charge Effects and Nanoparticle Pattern Formation in Electrohydrodynamic NanoDrip Printing of Colloids

    CERN Document Server

    Richner, Patrizia; Norris, David J; Poulikakos, Dimos

    2016-01-01

    Advancing open atmosphere printing technologies to produce features in the nanoscale range has important and broad applications ranging from electronics, to photonics, plasmonics and biology. Recently an electrohydrodynamic printing regime has been demonstrated in a rapid dripping mode (termed NanoDrip), where the ejected colloidal droplets from nozzles of diameters of O(1 {\\mu}m) can controllably reach sizes an order of magnitude smaller than the nozzle and can generate planar and out-of-plane structures of similar sizes. Despite demonstrated capabilities, our fundamental understanding of important aspects of the physics of NanoDrip printing needs further improvement. Here we address the topics of charge content and transport in NanoDrip printing. We employ quantum dot and gold nanoparticle dispersions in combination with a specially designed, auxiliary, asymmetric electric field, targeting the understanding of charge locality (particles vs. solvent) and particle distribution in the deposits as indicated by ...

  15. Opposite counter-ion effects on condensed bundles of highly charged supramolecular nanotubes in water.

    Science.gov (United States)

    Wei, Shenghui; Chen, Mingming; Wei, Chengsha; Huang, Ningdong; Li, Liangbin

    2016-07-20

    Although ion specificity in aqueous solutions is well known, its manifestation in unconventional strong electrostatic interactions remains implicit. Herein, the ionic effects in dense packing of highly charged polyelectrolytes are investigated in supramolecular nanotube prototypes. Distinctive behaviors of the orthorhombic arrays composed of supramolecular nanotubes in various aqueous solutions were observed by Small Angle X-ray Scattering (SAXS), depending on the counter-ions' size and affiliation to the surface -COO(-) groups. Bigger tetra-alkyl ammonium (TAA(+)) cations weakly bonding to -COO(-) will compress the orthorhombic arrays, while expansion is induced by smaller alkaline metal (M(+)) ions with strong affiliation to -COO(-). Careful analysis of the changes in the SAXS peaks with different counter/co-ion combinations indicates dissimilar mechanisms underlying the two explicit types of ionic effects. The pH measurements are in line with the ion specificity by SAXS and reveal the strong electrostatic character of the system. It is proposed that the small distances between the charged surfaces, in addition to the selective adsorption of counter-ions by the surface charge, bring out the observed distinctive ionic effects. Our results manifest the diverse mechanisms and critical roles of counter-ion effects in strong electrostatic interactions.

  16. The MicroBooNE Experiment and the Impact of Space Charge Effects

    CERN Document Server

    Mooney, Michael

    2015-01-01

    MicroBooNE is an experiment designed to both probe neutrino physics phenomena and develop the LArTPC (Liquid Argon Time Projection Chamber) detector technology. The MicroBooNE experiment, which began taking data this year, is the first large LArTPC detector in the U.S. This experiment is the beginning of a path of detectors (both on the surface and underground) envisioned for the U.S. SBL (Short-BaseLine) and LBL (Long-BaseLine) programs. In order to interpret the data from the experiments on the surface, the impact of space charge effects must be simulated and calibrated. The space charge effect is the build-up of slow-moving positive ions in a detector due to, for instance, ionization from cosmic rays, leading to a distortion of the electric field within the detector. This effect leads to a displacement in the reconstructed position of signal ionization electrons in LArTPC detectors. The LArTPC utilized in the MicroBooNE experiment is expected to be modestly impacted from the space charge effect, with the e...

  17. Modeling of etch profile evolution including wafer charging effects using self consistent ion fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, R.J.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

    1996-12-31

    As high density plasma reactors become more predominate in industry, the need has intensified for computer aided design tools which address both equipment issues such as ion flux uniformity onto the water and process issues such etch feature profile evolution. A hierarchy of models has been developed to address these issues with the goal of producing a comprehensive plasma processing design capability. The Hybrid Plasma Equipment Model (HPEM) produces ion and neutral densities, and electric fields in the reactor. The Plasma Chemistry Monte Carlo Model (PCMC) determines the angular and energy distributions of ion and neutral fluxes to the wafer using species source functions, time dependent bulk electric fields, and sheath potentials from the HPEM. These fluxes are then used by the Monte Carlo Feature Profile Model (MCFP) to determine the time evolution of etch feature profiles. Using this hierarchy, the effects of physical modifications of the reactor, such as changing wafer clamps or electrode structures, on etch profiles can be evaluated. The effects of wafer charging on feature evolution are examined by calculating the fields produced by the charge deposited by ions and electrons within the features. The effect of radial variations and nonuniformity in angular and energy distribution of the reactive fluxes on feature profiles and feature charging will be discussed for p-Si etching in inductively-coupled plasma (ICP) sustained in chlorine gas mixtures. The effects of over- and under-wafer topography on etch profiles will also be discussed.

  18. Quantum coherence controls the charge separation in a prototypical artificial light harvesting system

    Directory of Open Access Journals (Sweden)

    Schramm H.

    2013-03-01

    Full Text Available Ultrafast spectroscopy and quantum-dynamics simulations of an artificial supramolecular light-harvesting system — a supramolecular triad - provide strong evidence that the quantum-correlated wavelike motion of electrons and nuclei on a timescale of few tens of femtoseconds governs the ultrafast electronic charge transfer.

  19. Modeling and Control of Flexible HEV Charging Station upgraded with Flywheel Energy Storage

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Shafiee, Qobad; Wu, Dan

    2014-01-01

    This paper deals with the design of a fast DC charging station (FCS) for hybrid electric vehicles (HEVs) that is connected at a remote location. Power rating of this new technology can go up to a hundred kW and it represents a main challenge for its broad acceptance in distribution systems...

  20. Effect of reduction of trap charge carrier density in organic field effect transistors by surface treatment of dielectric layer

    Energy Technology Data Exchange (ETDEWEB)

    Dagar, Janardan; Yadav, Vandana; Kumar Singh, Rajiv; Suman, C. K.; Srivastava, Ritu, E-mail: ritu@mail.nplindia.org [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, CSIR-Network of Institute for Solar Energy (NISE), Dr. K.S.Krishnan Road, New Delhi 110012 (India); Tyagi, Priyanka [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, CSIR-Network of Institute for Solar Energy (NISE), Dr. K.S.Krishnan Road, New Delhi 110012 (India); Center for Applied Research in Electronics, Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2013-12-14

    In this work, we have studied the effect of surface treatment of SiO{sub 2} dielectric layer on the reduction of the trap charge carrier density at dielectric/semiconducting interface by fabricating a metal–insulator–semiconductor (MIS) device using α, ω-dihexylcarbonylquaterthiophene as semiconducting layer. SiO{sub 2} dielectric layer has been treated with 1,1,1,3,3,3-hexamethyldisilazane (HMDS) to modify the chemical group acting as charge traps. Capacitance-voltage measurements have been performed on MIS devices fabricated on SiO{sub 2} and HMDS treated SiO{sub 2}. These data have been used for the calculation of trap charge carrier density and Debye length at the dielectric-semiconductor interface. The calculated trap charge carrier density has been found to reduce from (2.925 ± 0.049) × 10{sup 16} cm{sup −3} to (2.025 ± 0.061) × 10{sup 16} cm{sup −3} for the MIS device with HMDS treated SiO{sub 2} dielectric in comparison to that of untreated SiO{sub 2}. Next, the effect of reduction in trap charge carrier density has been studied on the performance of organic field effect transistors. The improvement in the device parameters like mobility, on/off ratio, and gate leakage current has been obtained with the effect of the surface treatment. The charge carrier mobility has been improved by a factor of 2 through this treatment. Further, the influence of the treatment was observed by atomic force microscope and Fourier transform infrared spectroscopy techniques.

  1. A Model of Charge Transfer Excitons: Diffusion, Spin Dynamics, and Magnetic Field Effects

    CERN Document Server

    Lee, Chee Kong; Willard, Adam P

    2016-01-01

    In this letter we explore how the microscopic dynamics of charge transfer (CT) excitons are influenced by the presence of an external magnetic field in disordered molecular semiconductors. This influence is driven by the dynamic interplay between the spin and spatial degrees of freedom of the electron-hole pair. To account for this interplay we have developed a numerical framework that combines a traditional model of quantum spin dynamics with a coarse-grained model of stochastic charge transport. This combination provides a general and efficient methodology for simulating the effects of magnetic field on CT state dynamics, therefore providing a basis for revealing the microscopic origin of experimentally observed magnetic field effects. We demonstrate that simulations carried out on our model are capable of reproducing experimental results as well as generating theoretical predictions related to the efficiency of organic electronic materials.

  2. Space charge effect on parametric resonances of ion cloud in a linear Paul trap

    CERN Document Server

    Mandal, P; De Munshi, D; Dutta, T; Mukherjee, M

    2013-01-01

    The effect of the presence of a finite number of ions on their parametric resonances inside a Paul trap has been investigated both experimentally and theoretically. The Coulomb coupling among the charged particles results in two distinct phenomena: one is the frequency shift of the trapped ion oscillators and second is the collective oscillation of the trapped ion cloud. We observe both in a linear trap configuration. It is found that the strength and the secular frequency of individual ion-oscillation decrease while the strength of the collective oscillation increases with increasing number of trapped ions. The observation has been modeled by considering the space charge potential as an effective dc potential inside the trap. It describes the observations well within the experimental uncertainties.

  3. Dielectric many-body effects in arrays of charged cylindrical macromolecules

    Science.gov (United States)

    Sinkovits, Daniel W.; Barros, Kipton; Dobnikar, Jure; Kandu&{Caron; C}, Matej; Naji, Ali; Podgornik, Rudolf; Luijten, Erik

    2012-02-01

    Nonuniform dielectric constants are a ubiquitous aspect of condensed-matter systems, but nevertheless widely ignored in simulations. Analytical work suggests that the polarization effects resulting from these inhomogeneities can produce many-body interactions that qualitatively alter the behavior of systems driven by electrostatic interactions, but such work relies on approximations. Recently, we have developed an algorithm that computes the fluctuating polarization charge at the interface between dielectric materials during a molecular dynamics simulation, without approximation. Here, we apply this approach to investigate arrays of charged cylindrical macromolecules in the presence of explicit counterions. We study the dielectric many-body effects as a function of separation, dielectric constant variation, and counterion valency. Our findings have implications for the aggregation of polyelectrolytes such as F-actin or DNA.

  4. Investigation of asymmetric alcohol dehydrogenase (ADH) reduction of acetophenone derivatives: effect of charge density.

    Science.gov (United States)

    Naik, Hemantkumar G; Yeniad, Bahar; Koning, Cor E; Heise, Andreas

    2012-07-01

    In an effort to study the effect of substituent groups of the substrate on the alcohol dehydrogenase (ADH) reductions of aryl-alkyl ketones, several derivatives of acetophenone have been evaluated against ADHs from Lactobacillus brevis (LB) and Thermoanaerobacter sp. (T). Interestingly, ketones with non-demanding (neutral) para-substituents were reduced to secondary alcohols by these enzymes in enantiomerically pure form whereas those with demanding (ionizable) substituents could not be reduced. The effect of substrate size, their solubility in the reaction medium, electron donating and withdrawing properties of the ligand and also the electronic charge density distribution on the substrate molecules have been studied and discussed in detail. From the results, it is observed that the electronic charge distribution in the substrate molecules is influencing the orientation of the substrate in the active site of the enzyme and hence the ability to reduce the substrate.

  5. The dependence of the nuclear charge form factor on short range correlations and surface fluctuation effects

    CERN Document Server

    Massen, S E; Grypeos, M E

    1995-01-01

    We investigate the effects of fluctuations of the nuclear surface on the harmonic oscillator elastic charge form factor of light nuclei, while simultaneously approximating the short-range correlations through a Jastrow correlation ~factor. Inclusion of surface-fluctuation effects within this description, by truncating the cluster expansion at the two-body part, is found to improve somewhat the fit to the elastic charge form-factor of ^{16}O and ^{40}Ca. However, the convergence of the cluster expansion is expected to deteriorate. An additional finding is that the surface-fluctuation correlations produce a drastic change in the asymptotic behavior of the point-proton form factor, which now falls off quite slowly (i.e. as const. \\cdot q^{-4}) at large values of the momentum transfer q.

  6. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors

    Science.gov (United States)

    Senanayak, Satyaprasad P.; Yang, Bingyan; Thomas, Tudor H.; Giesbrecht, Nadja; Huang, Wenchao; Gann, Eliot; Nair, Bhaskaran; Goedel, Karl; Guha, Suchi; Moya, Xavier; McNeill, Christopher R.; Docampo, Pablo; Sadhanala, Aditya; Friend, Richard H.; Sirringhaus, Henning

    2017-01-01

    Fundamental understanding of the charge transport physics of hybrid lead halide perovskite semiconductors is important for advancing their use in high-performance optoelectronics. We use field-effect transistors (FETs) to probe the charge transport mechanism in thin films of methylammonium lead iodide (MAPbI3). We show that through optimization of thin-film microstructure and source-drain contact modifications, it is possible to significantly minimize instability and hysteresis in FET characteristics and demonstrate an electron field-effect mobility (μFET) of 0.5 cm2/Vs at room temperature. Temperature-dependent transport studies revealed a negative coefficient of mobility with three different temperature regimes. On the basis of electrical and spectroscopic studies, we attribute the three different regimes to transport limited by ion migration due to point defects associated with grain boundaries, polarization disorder of the MA+ cations, and thermal vibrations of the lead halide inorganic cages. PMID:28138550

  7. Molecular dynamics investigation into the electric charge effect on the operation of ion-based carbon nanotube oscillators

    Science.gov (United States)

    Ansari, R.; Ajori, S.; Sadeghi, F.

    2015-10-01

    The fabrication of nanoscale oscillators working in the gigahertz (GHz) range and beyond has now become the focal center of interest to many researchers. Motivated by this issue, this paper proposes a new type of nano-oscillators with enhanced operating frequency in which both the inner core and outer shell are electrically charged. To this end, molecular dynamics (MD) simulations are performed to investigate the mechanical oscillatory behavior of ions, and in particular chloride ion, tunneling through electrically charged carbon nanotubes (CNTs). It is assumed that the electric charges with similar sign and magnitude are evenly distributed on two ends of nanotube. The interatomic interactions between carbon atoms and van der Waals (vdW) interactions between ion and nanotube are respectively modeled by Tersoff-Brenner and Lennard-Jones (LJ) potential functions, whereas the electrostatic interactions between ion and electric charges are modeled by Coulomb potential function. A comprehensive study is conducted to get an insight into the effects of different parameters such as sign and magnitude of electric charges, nanotube radius, nanotube length and initial conditions (initial separation distance and velocity) on the oscillatory behavior of chloride ion-charged CNT oscillators. It is shown that, the chloride ion frequency inside negatively charged CNTs is lower than that inside positively charged ones with the same magnitude of electric charge, while it is higher than that inside uncharged CNTs. It is further observed that, higher frequencies are generated at higher magnitudes of electric charges distributed on the nanotube.

  8. Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity

    Science.gov (United States)

    Ponglertsakul, Supakchai; Winstanley, Elizabeth

    2017-01-01

    We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.

  9. Charge Transport in Field-Effect Transistors based on Layered Materials and their Heterostructures

    Science.gov (United States)

    Kumar, Jatinder

    In the quest for energy efficiency and device miniaturization, the research in using atomically thin materials for device applications is gaining momentum. The electronic network in layered materials is different from 3D counterparts. It is due to the interlayer couplings and density of states because of their 2D nature. Therefore, understanding the charge transport in layered materials is fundamental to explore the vast opportunities these ultra-thin materials offer. Hence, the challenges targeted in the thesis are: (1) understanding the charge transport in layered materials based on electronic network of quantum and oxide capacitances, (2) studying thickness dependence, ranging from monolayer to bulk, of full range-characteristics of field-effect transistor (FET) based on layered materials, (3) investigating the total interface trap charges to achieve the ultimate subthreshold slope (SS) theoretically possible in FETs, (4) understanding the effect of the channel length on the performance of layered materials, (5) understanding the effect of substrate on performance of the TMDC FETs and studying if the interface of transition metal dichalcogenides (TMDCs)/hexagonalboron nitride (h-BN) can have less enough trap charges to observe ambipolar behavior, (6) Exploring optoelectronic properties in 2D heterostructures that includes understanding graphene/WS2 heterostructure and its optoelectronic applications by creating a p-n junction at the interface. The quality of materials and the interface are the issues for observing and extracting clean physics out of these layered materials and heterostructures. In this dissertation, we realized the use of quantum capacitance in layered materials, substrate effects and carrier transport in heterostructure.

  10. Longitudinal Space Charge Effects in the JLAB IR FEL SRF Linac

    CERN Document Server

    Hernandez-Garcia, Carlos; Behre, Chris; Benson, S V; Herman-Biallas, George; Boyce, James; Douglas, David; Dylla, Fred; Evans, Richard; Grippo, A; Gubeli, Joe; Hardy, David; Jordan, Kevin; Merminga, Lia; Neil, George; Preble, Joe; Shinn, Michelle D; Siggins, Tim; Walker, Richard; Williams, Gwyn; Yunn, Byung; Zhang, Shukui

    2004-01-01

    Observations of energy spread asymmetry when operating the Linac on either side of crest and longitudinal emittance growth have been confirmed by extending PARMELA simulations from the injector to the end of the first SRF Linac module. The asymmetry can be explained by the interaction of the accelerating electric field with that from longitudinal space charge effects within the electron bunch. This can be a major limitation to performance in FEL accelerators.

  11. Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity

    CERN Document Server

    Ponglertsakul, Supakchai

    2016-01-01

    We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.

  12. Moisture effect on the dielectric response and space charge behaviour of mineral oil impregnated paper insulation

    OpenAIRE

    Hao, Jian; Chen, George; Liao, R

    2011-01-01

    Oil-paper insulation system is widely used in power transformers and cables. Moisture is recognized to the ?enemy number one? for transformer insulation except for temperature [1]. Moisture is not only one of the most important factor which can accelerate the transformer paper insulation aging, but also has great effect on the dielectric properties of oil-paper insulation. In this paper, dielectric response and space charge behaviour of oil-paper insulation sample with three different moistur...

  13. pH and Salt Effects on the Associative Phase Separation of Oppositely Charged Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Prateek K. Jha

    2014-05-01

    Full Text Available The classical Voorn-Overbeek thermodynamic theory of complexation and phase separation of oppositely charged polyelectrolytes is generalized to account for the charge accessibility and hydrophobicity of polyions, size of salt ions, and pH variations. Theoretical predictions of the effects of pH and salt concentration are compared with published experimental data and experiments we performed, on systems containing poly(acrylic acid (PAA as the polyacid and poly(N,N-dimethylaminoethyl methacrylate (PDMAEMA or poly(diallyldimethyl ammonium chloride (PDADMAC as the polybase. In general, the critical salt concentration below which the mixture phase separates, increases with degree of ionization and with the hydrophobicity of polyelectrolytes. We find experimentally that as the pH is decreased below 7, and PAA monomers are neutralized, the critical salt concentration increases, while the reverse occurs when pH is raised above 7. We predict this asymmetry theoretically by introducing a large positive Flory parameter (= 0.75 for the interaction of neutral PAA monomers with water. This large positive Flory parameter is supported by molecular dynamics simulations, which show much weaker hydrogen bonding between neutral PAA and water than between charged PAA and water, while neutral and charged PDMAEMA show similar numbers of hydrogen bonds. This increased hydrophobicity of neutral PAA at reduced pH increases the tendency towards phase separation despite the reduction in charge interactions between the polyelectrolytes. Water content and volume of coacervate are found to be a strong function of the pH and salt concentration.

  14. Charge density and particle size effects on oligonucleotide and plasmid DNA binding to nanosized hydrotalcite.

    Science.gov (United States)

    Sanderson, Brian A; Sowersby, Drew S; Crosby, Sergio; Goss, Marcus; Lewis, L Kevin; Beall, Gary W

    2013-12-01

    Hydrotalcite (HT) and other layered double metal hydroxides are of great interest as gene delivery and timed release drug delivery systems and as enteric vehicles for biologically active molecules that are sensitive to gastric fluids. HT is a naturally occurring double metal hydroxide that can be synthesized as a nanomaterial consisting of a brucite structure with isomorphous substitution of aluminum ions. These positively charged nanoparticles exhibit plate-like morphology with very high aspect ratios. Biomolecules such as nucleic acids and proteins form strong associations with HT because they can associate with the positively charged layers. The binding of nucleic acids with HT and other nanomaterials is currently being investigated for potential use in gene therapy; however, the binding of specific nucleic acid forms, such as single- and double-stranded DNA, has been little explored. In addition, the effects of charge density and particle size on DNA adsorption has not been studied. In this paper, the binding of different forms of DNA to a series of HTs prepared at different temperatures and with different anion exchange capacities has been investigated. Experiments demonstrated that HTs synthesized at higher temperatures associate with both single- and double-stranded oligomers and circular plasmid DNA more tightly than HTs synthesized at room temperature, likely due to the hydrothermal conditions promoting larger particle sizes. HT with an anion exchange capacity of 300 meq/100 g demonstrated the highest binding of DNA, likely due to the closer match of charge densities between the HT and DNA. The details of the interaction of various forms of DNA with HT as a function of charge density, particle size, and concentration are discussed.

  15. Solar Charged Stand Alone Inverter

    Directory of Open Access Journals (Sweden)

    M.Vasugi

    2014-07-01

    Full Text Available This paper deals with solar powered stand alone inverter which converts the variable dc output of a photovoltaic solar panel into ac that can be fed to loads. Stand alone inverters are used in systems where the inverter get its energy from batteries charged by photo voltaic arrays. A charge controller limits the rate at which electric current is added to or drawn from electric batteries. This charge discharge controller is needed to prevent the battery from being overcharged or discharged thus prolonging its life. The charge/discharge control is necessary in order to achieve safety and increase the capacity of the battery. The project has been tested according its operational purposes. Maximum power rating of the experimented solar charge controller is 100W according battery capacities. Cost effective solar charge controller has been designed and implemented to have efficient system and much longer battery lifetime. The dc output is given to inverter and then it is supplied to loads. This method is very cheap and cost effective.

  16. Charge Transfer Dissociation (CTD) Mass Spectrometry of Peptide Cations: Study of Charge State Effects and Side-Chain Losses

    Science.gov (United States)

    Li, Pengfei; Jackson, Glen P.

    2017-01-01

    1+, 2+, and 3+ precursors of substance P and bradykinin were subjected to helium cation irradiation in a 3D ion trap mass spectrometer. Charge exchange with the helium cations produces a variety of fragment ions, the number and type of which are dependent on the charge state of the precursor ions. For 1+ peptide precursors, fragmentation is generally restricted to C-CO backbone bonds (a and x ions), whereas for 2+ and 3+ peptide precursors, all three backbone bonds (C-CO, C-N, and N-Cα) are cleaved. The type of backbone bond cleavage is indicative of possible dissociation channels involved in CTD process, including high-energy, kinetic-based, and ETD-like pathways. In addition to backbone cleavages, amino acid side-chain cleavages are observed in CTD, which are consistent with other high-energy and radical-mediated techniques. The unique dissociation pattern and supplementary information available from side-chain cleavages make CTD a potentially useful activation method for the structural study of gas-phase biomolecules.

  17. Long-range charge-density-wave proximity effect at cuprate/manganate interfaces

    Science.gov (United States)

    Frano, A.; Blanco-Canosa, S.; Schierle, E.; Lu, Y.; Wu, M.; Bluschke, M.; Minola, M.; Christiani, G.; Habermeier, H. U.; Logvenov, G.; Wang, Y.; van Aken, P. A.; Benckiser, E.; Weschke, E.; Le Tacon, M.; Keimer, B.

    2016-08-01

    The interplay between charge density waves (CDWs) and high-temperature superconductivity is currently under intense investigation. Experimental research on this issue is difficult because CDW formation in bulk copper oxides is strongly influenced by random disorder, and a long-range-ordered CDW state in high magnetic fields is difficult to access with spectroscopic and diffraction probes. Here we use resonant X-ray scattering in zero magnetic field to show that interfaces with the metallic ferromagnet La2/3Ca1/3MnO3 greatly enhance CDW formation in the optimally doped high-temperature superconductor YBa2Cu3O6+δ (δ ~ 1), and that this effect persists over several tens of nanometres. The wavevector of the incommensurate CDW serves as an internal calibration standard of the charge carrier concentration, which allows us to rule out any significant influence of oxygen non-stoichiometry, and to attribute the observed phenomenon to a genuine electronic proximity effect. Long-range proximity effects induced by heterointerfaces thus offer a powerful method to stabilize the charge-density-wave state in the cuprates and, more generally, to manipulate the interplay between different collective phenomena in metal oxides.

  18. Effective charges, the valence p-n interaction, and the IBM

    Energy Technology Data Exchange (ETDEWEB)

    Casten, R.F. (Brookhaven National Lab., Upton, NY (United States)); Wolf, A. (Brookhaven National Lab., Upton, NY (United States) Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev)

    1992-01-01

    There are three recent themes in nuclear structure that come together in an interesting and useful way via the concept of effective charges and the framework of the IBM. These three concepts are the importance of dynamical symmetries in describing nuclear structure and the benefits that accrue from their exploitation, secondly, the critical role of the p-n interaction in the onset and development of collectivity in nuclei, and, thirdly, the importance of the valence nucleons in determining structure and its evolution. We will illustrate this by showing that the interpretation of measured B(E2) values in the context of the dynamical symmetries of the IBM leads to new insights into the meaning of effective charges and offers new avenues to understand the role of the proton-neutron (p-n) interaction in modulating the nature of the valence space and the growth of collectivity. In particular, we will show that effective charges in valence models, such as the IBM, can be interpreted in terms of derivatives of the collectivity of the low lying levels, that is, as measures of the rate of change of collectivity as the proton and neutron numbers vary. This paper is based on recent work by the authors.

  19. Effective charges, the valence p-n interaction, and the IBM

    Energy Technology Data Exchange (ETDEWEB)

    Casten, R.F. [Brookhaven National Lab., Upton, NY (United States); Wolf, A. [Brookhaven National Lab., Upton, NY (United States)]|[Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1992-10-01

    There are three recent themes in nuclear structure that come together in an interesting and useful way via the concept of effective charges and the framework of the IBM. These three concepts are the importance of dynamical symmetries in describing nuclear structure and the benefits that accrue from their exploitation, secondly, the critical role of the p-n interaction in the onset and development of collectivity in nuclei, and, thirdly, the importance of the valence nucleons in determining structure and its evolution. We will illustrate this by showing that the interpretation of measured B(E2) values in the context of the dynamical symmetries of the IBM leads to new insights into the meaning of effective charges and offers new avenues to understand the role of the proton-neutron (p-n) interaction in modulating the nature of the valence space and the growth of collectivity. In particular, we will show that effective charges in valence models, such as the IBM, can be interpreted in terms of derivatives of the collectivity of the low lying levels, that is, as measures of the rate of change of collectivity as the proton and neutron numbers vary. This paper is based on recent work by the authors.

  20. Charged Molecules Modulate the Volume Exclusion Effects Exerted by Crowders on FtsZ Polymerization.

    Science.gov (United States)

    Monterroso, Begoña; Reija, Belén; Jiménez, Mercedes; Zorrilla, Silvia; Rivas, Germán

    2016-01-01

    We have studied the influence of protein crowders, either combined or individually, on the GTP-induced FtsZ cooperative assembly, crucial for the formation of the dynamic septal ring and, hence, for bacterial division. It was earlier demonstrated that high concentrations of inert polymers like Ficoll 70, used to mimic the crowded cellular interior, favor the assembly of FtsZ into bundles with slow depolymerization. We have found, by fluorescence anisotropy together with light scattering measurements, that the presence of protein crowders increases the tendency of FtsZ to polymerize at micromolar magnesium concentration, being the effect larger with ovomucoid, a negatively charged protein. Neutral polymers and a positively charged protein also diminished the critical concentration of assembly, the extent of the effect being compatible with that expected according to pure volume exclusion models. FtsZ polymerization was also observed to be strongly promoted by a negatively charged polymer, DNA, and by some unrelated polymers like PEGs at concentrations below the crowding regime. The influence of mixed crowders mimicking the heterogeneity of the intracellular environment on the tendency of FtsZ to assemble was also studied and nonadditive effects were found to prevail. Far from exactly reproducing the bacterial cytoplasm environment, this approach serves as a simplified model illustrating how its intrinsically crowded and heterogeneous nature may modulate FtsZ assembly into a functional Z-ring.