WorldWideScience

Sample records for charge distribution studies

  1. Theoretical study of the central depression of nuclear charge density distribution by electron scattering

    International Nuclear Information System (INIS)

    The charge form factors of elastic electron scattering for isotones with N=20 and N=28 are calculated using the phase-shift analysis method, with corresponding charge density distributions from relativistic mean-field theory. The results show that there are sharp variations at the inner parts of charge distributions with the proton number decreasing. The corresponding charge form factors are divided into two groups because of the unique properties of the s-states wave functions, though the proton numbers change uniformly in two isotonic chains. Meanwhile, the shift regularities of the minima are also discussed, and we give a clear relation between the minima of the charge form factors and the corresponding charge radii. This relation is caused by the diffraction effect of the electron. Under this conclusion, we calculate the charge density distributions and the charge form factors of the A=44 nuclei chain. The results are also useful for studying the central depression in light exotic nuclei. (authors)

  2. Charge state distribution studies of the metal vapor vacuum arc ion source

    International Nuclear Information System (INIS)

    We have studied the charge state distribution of the ion beam produced by the MEVVA (metal vapor vacuum arc) high current metal ion source. Beams produced from a wide range of cathode materials have been examined and the charge state distributions have been measured as a function of many operational parameters. In this paper we review the charge state data we have accumulated, with particular emphasis on the time history of the distribution throughout the arc current pulse duration. We find that in general the spectra remain quite constant throughout most of the beam pulse, so long as the arc current is constant. There is an interesting early-time transient behavior when the arc is first initiated and the arc current is still rising, during which time the ion charge states produced are observed to be significantly higher than during the steady current region that follows. 12 refs., 5 figs

  3. Electron Charge Density Distribution from X-Ray Diffraction Study of the 4-Methoxybenzenecarbothioamide Compound

    Directory of Open Access Journals (Sweden)

    Mokhtaria Drissi

    2013-01-01

    Full Text Available The molecular electron charge density distribution of the title compound is described accurately using the multipolar model of Hansen and Coppens. The net atomic charge and the in-crystal molecular dipole moment have been determined in order to understand the nature of inter- and intramolecular charge transfer. The study reveals the nature of intermolecular interactions including charge transfer and hydrogen bonds in the title compound. In this crystal, the molecules form dimers via N–HS intermolecular hydrogen bonds. The dimers are further linked by C–HO hydrogen bonds into chains along the c crystallographic axis. This study has also allowed us to determine the electrostatic potential and therefore locate the electropositive part and the electronegative part in molecular scale of the title compound.

  4. Ion distributions at charged aqueous surfaces: Synchrotron X-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Wei [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface at room temperature. To control surface charge density, lipids, dihexadecyl hydrogen-phosphate (DHDP) and dimysteroyl phosphatidic acid (DMPA), were spread as monolayer materials at the air/water interface, containing CsI at various concentrations. Five decades in bulk concentrations (CsI) are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. The experimental ion distributions are in excellent agreement with a renormalized surface charge Poisson-Boltzmann theory for monovalent ions without fitting parameters or additional assumptions. Energy Scans at four fixed momentum transfers under specular reflectivity conditions near the Cs+ L3 resonance were conducted on 10-3 M CsI with DHDP monolayer materials on the surface. The energy scans exhibit a periodic dependence on photon momentum transfer. The ion distributions obtained from the analysis are in excellent agreement with those obtained from anomalous reflectivity measurements, providing further confirmation to the validity of the renormalized surface charge Poisson-Boltzmann theory for monovalent ions. Moreover, the dispersion corrections f0 and f00 for Cs+ around L3 resonance, revealing the local environment of a Cs+ ion in the solution at the interface, were extracted simultaneously with output of ion distributions.

  5. Distributed charging of electrical assets

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Soumyadip; Phan, Dung; Sharma, Mayank; Wu, Chai Wah; Xiong, Jinjun

    2016-02-16

    The present disclosure relates generally to the field of distributed charging of electrical assets. In various examples, distributed charging of electrical assets may be implemented in the form of systems, methods and/or algorithms.

  6. New approach to $^4{He}$ charge distribution

    CERN Document Server

    Wilets, L; Pepin, S; Stancu, F; Carlson, J; Koepf, W; Stancu, Fl.

    1996-01-01

    We present a study of the $^4$He charge distribution based on realistic nucleonic wave functions and incorporation of the nucleon's quark substructure. The central depression of the proton point density seen in modern four-body calculations is too small by itself to lead to a correct description of the charge distribution. We utilize six-quark structures calculated in the Chromodielectric Model for N-N interactions, and we find a swelling of the proton charge distribution as the internucleon distance decreases. These charge distributions are combined with the $^4$He wave function using the Independent Pair Approximation and two-body distributions generated from Green's Function Monte Carlo calculations. We obtain a reasonably good fit to the experimental charge distribution without including meson exchange currents.

  7. A Statistical Study of the Average Iron Charge Distributions inside Magnetic Clouds for Solar Cycle 23

    CERN Document Server

    Song, Hongqiang; Chen, Yao; Zhang, Jie; Cheng, Xin; Zhao, Liang; Hu, Qiang; Li, Gang

    2016-01-01

    Magnetic clouds (MCs) are the interplanetary counterpart of coronal magnetic flux ropes. They can provide valuable information to reveal the flux rope characteristics at their eruption stage in the corona, which are unable to be explored in situ at present. In this paper, we make a comprehensive survey of the average iron charge state (Fe) distributions inside 96 MCs for solar cycle 23 using ACE (Advanced Composition Explorer) data. As the Fe in the solar wind are typically around 9+ to 11+, the Fe charge state is defined as high when the Fe is larger than 12+, which implies the existence of a considerable amount of Fe ions with high charge states (e.g., \\geq 16+). The statistical results show that the Fe distributions of 92 (~ 96%) MCs can be classified into four groups with different characteristics. In group A (11 MCs), the Fe shows a bimodal distribution with both peaks higher than 12+. Group B (4 MCs) presents a unimodal distribution of Fe with its peak higher than 12+. In groups C (29 MCs) and D (48 MCs...

  8. Comparison study of the charge density distribution induced by heavy ions and pulsed lasers in silicon

    Science.gov (United States)

    Tian, Kai; Cao, Zhou; Xue, Yu-Xiong; Yang, Shi-Yu

    2010-01-01

    Heavy ions and pulsed lasers are important means to simulate the ionization damage effects on semiconductor materials. The analytic solution of high-energy heavy ion energy loss in silicon has been obtained using the Bethe-Bloch formula and the Kobetich-Katz theory, and some ionization damage parameters of Fe ions in silicon, such as the track structure and ionized charge density distribution, have been calculated and analyzed according to the theoretical calculation results. Using the Gaussian function and Beer's law, the parameters of the track structure and charge density distribution induced by a pulsed laser in silicon have also been calculated and compared with those of Fe ions in silicon, which provides a theoretical basis for ionization damage effect modeling.

  9. First study of the negative binomial distribution applied to higher moments of net-charge and net-proton multiplicity distributions

    Science.gov (United States)

    Tarnowsky, Terence J.; Westfall, Gary D.

    2013-07-01

    A study of the first four moments (mean, variance, skewness, and kurtosis) and their products (κσ2 and Sσ) of the net-charge and net-proton distributions in Au + Au collisions at √{sNN} = 7.7- 200 GeV from HIJING simulations has been carried out. The skewness and kurtosis and the collision volume independent products κσ2 and Sσ have been proposed as sensitive probes for identifying the presence of a QCD critical point. A discrete probability distribution that effectively describes the separate positively and negatively charged particle (or proton and anti-proton) multiplicity distributions is the negative binomial (or binomial) distribution (NBD/BD). The NBD/BD has been used to characterize particle production in high-energy particle and nuclear physics. Their application to the higher moments of the net-charge and net-proton distributions is examined. Differences between κσ2 and a statistical Poisson assumption of a factor of four (for net-charge) and 40% (for net-protons) can be accounted for by the NBD/BD. This is the first application of the properties of the NBD/BD to describe the behavior of the higher moments of net-charge and net-proton distributions in nucleus-nucleus collisions.

  10. A direct and at nanometer scale study of electrical charge distribution on membranes of alive cells

    Directory of Open Access Journals (Sweden)

    Marlière Christian

    2016-01-01

    Full Text Available In this paper is presented an innovative method to map in-vivo and at nanometer scale the electrical charge distribution on membranes of alive cells. It relies on a new atomic force microscopy (AFM mode based on an electro-mechanical coupling effect. Furthermore, an additional electrical signal detected by both the deflection of the AFM cantilever and simultaneous direct current measurements was detected at low scanning rates. It was attributed to the detection of the current stemming from ionic channels. It opens a new way to directly investigate in situ biological electrical surface processes involved in bacterial adhesion, biofilm formation, microbial fuel cells, etc.

  11. First Study of the Negative Binomial Distribution Applied to Higher Moments of Net-charge and Net-proton Multiplicity Distributions

    CERN Document Server

    Tarnowsky, Terence J

    2013-01-01

    A study of the first four moments (mean, variance, skewness, and kurtosis) and their products ($\\kappa\\sigma^{2}$ and $S\\sigma$) of the net-charge and net-proton distributions in Au+Au collisions at $\\sqrt{\\rm s_{NN}}$ = 7.7-200 GeV from HIJING simulations has been carried out. It is seen that a Poisson does not effectively describe the actual distributions of positive and negative particles (or protons and anti-protons). A discrete probability distribution that effectively describes the raw distributions is the negative binomial (or binomial) distribution (NBD/BD). The NBD/BD have been used to characterize particle production in high-energy particle and nuclear physics. Differences between $\\kappa\\sigma^{2}$ and the Poisson assumption of a factor of four (for net-charge) and 40% (for net-protons) can be accounted for by the NBD/BD. This is the first application of the NBD/BD to describe the behavior of the higher moments of net-charge and net-proton distributions in nucleus-nucleus collisions.

  12. Electron Charge Density Distribution from X-ray Diffraction Study of the M-Nitrophenol Compound in the Monoclinic Form

    Directory of Open Access Journals (Sweden)

    Gérard Vergoten

    2007-02-01

    Full Text Available At room temperature, the m-Nitrophenol (m-NPH appears in two polymorphicstructures: orthorhombic and monoclinic forms. In the present work, we shall focus on themonoclinic form of this compound which has a centrosymmetric structure with the spacegroup P21/n. The molecular dipole moment has been estimated experimentally. Highresolution single crystal diffraction experiment was performed at low temperature withMoKα radiation. The crystal structure was refined using the multipolar model of Hansen andCoppens (1978. The molecular electron charge density distribution is described accurately.The study reveals the nature of inter-molecular interactions including charge transfer andhydrogen bonds. In this crystal, hydrogen bonds of moderate strength occur between thehydroxyl group and the O atom in the nitro one.

  13. Molecular dynamics studies on the NMR structures of rabbit prion protein wild-type and mutants: surface electrostatic charge distributions

    CERN Document Server

    Zhang, Jiapu

    2014-01-01

    Prion is a misfolded protein found in mammals that causes infectious diseases of the nervous system in humans and animals. Prion diseases are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species such as sheep and goats, cattle, deer, elk and humans etc. Recent studies have shown that rabbits have a low susceptibility to be infected by prion diseases with respect to other animals including humans. The present study employs molecular dynamics (MD) means to unravel the mechanism of rabbit prion proteins (RaPrPC) based on the recently available rabbit NMR structures (of the wild-type and its two mutants of two surface residues). The electrostatic charge distributions on the protein surface are the focus when analysing the MD trajectories. It is found that we can conclude that surface electrostatic charge distributions indeed contribute to the structural stability of wild-type RaPrPC; this may be useful for the medicinal treatment of prion diseases.

  14. Charge Distribution Dependency on Gap Thickness of CMS Endcap RPC

    CERN Document Server

    Park, Sung K; Lee, Kyongsei

    2016-01-01

    We report a systematic study of charge distribution dependency of CMS Resistive Plate Chamber (RPC) on gap thickness. Prototypes of double-gap RPCs with six different gap thickness ranging from from 1.0 to 2.0 mm in 0.2-mm steps have been built with 2-mm-thick phenolic high-pressure-laminated plates. The efficiencies of the six gaps are measured as a function of the effective high voltages. We report that the strength of the electric fields of the gap is decreased as the gap thickness is increased. The distributions of charges in six gaps are measured. The space charge effect is seen in the charge distribution at the higher voltages. The logistic function is used to fit the charge distribution data. Smaller charges can be produced within smaller gas gap. But the digitization threshold should be also lowered to utilize these smaller charges.

  15. Charge distribution over dust particles configured with size distribution in a complex plasma

    Science.gov (United States)

    Misra, Shikha; Mishra, Sanjay K.

    2016-02-01

    A theoretical kinetic model describing the distribution of charge on the dust particles configured with generalized Kappa size distribution in a complex plasma has been developed. The formulation is based on the manifestation of uniform potential theory with an analytical solution of the master differential equation for the probability density function of dust charge; the number and energy balance of the plasma constituents are utilized in writing the kinetic equations. A parametric study to determine the steady state plasma parameters and the charge distribution corresponding to a size distribution of dust grains in the complex plasma has been made; the numerical results are presented graphically. The charge distribution is seen sensitive to the population of small grains in the particle size distribution and thus in contrast to symmetrical distribution of charge around a mean value for uniform sized grains, the charge distribution in the present case peaks around lower charge.

  16. Density functional studies on wurtzite piezotronic transistors: influence of different semiconductors and metals on piezoelectric charge distribution and Schottky barrier

    Science.gov (United States)

    Liu, Wei; Zhang, Aihua; Zhang, Yan; Wang, Zhong Lin

    2016-05-01

    The mechanical-electrical coupling properties of piezoelectric semiconductors endow these materials with novel device applications in microelectromechanical systems, sensors, human-computer interfaces, etc. When an applied strain is exerted on a piezoelectric semiconductor, piezoelectric charges are generated at the surface or interface of the semiconductor, which can be utilized to control the electronic transport characteristics. This is the fundamental working mechanism of piezotronic devices, called the piezotronic effect. In the present report, a series of piezotronic transistors composed of different electrode metals and semiconductors is examined using density functional theory calculation. It is found that the influence of semiconductors on the piezotronic effect is larger than the impact of metals, and GaN and CdS are promising candidates for piezotronic and piezo-phototronic devices, respectively. The width of the piezoelectric charge distribution obtained in the present study can be used as a parameter in classical finite-element-method based simulations, which provide guidance on designing high-performance piezotronic devices.

  17. Density functional studies on wurtzite piezotronic transistors: influence of different semiconductors and metals on piezoelectric charge distribution and Schottky barrier.

    Science.gov (United States)

    Liu, Wei; Zhang, Aihua; Zhang, Yan; Wang, Zhong Lin

    2016-05-20

    The mechanical-electrical coupling properties of piezoelectric semiconductors endow these materials with novel device applications in microelectromechanical systems, sensors, human-computer interfaces, etc. When an applied strain is exerted on a piezoelectric semiconductor, piezoelectric charges are generated at the surface or interface of the semiconductor, which can be utilized to control the electronic transport characteristics. This is the fundamental working mechanism of piezotronic devices, called the piezotronic effect. In the present report, a series of piezotronic transistors composed of different electrode metals and semiconductors is examined using density functional theory calculation. It is found that the influence of semiconductors on the piezotronic effect is larger than the impact of metals, and GaN and CdS are promising candidates for piezotronic and piezo-phototronic devices, respectively. The width of the piezoelectric charge distribution obtained in the present study can be used as a parameter in classical finite-element-method based simulations, which provide guidance on designing high-performance piezotronic devices.

  18. Charge distribution and stability in electret materials

    DEFF Research Database (Denmark)

    Thyssen, Anders

    The objective of the work presented in this Ph.D. thesis is to give a broader understanding of which key parameters influence the charge stability of polymer electrets, and how the electrical charges are distributed. This has been achieved using polypropylene as an electret polymer model system. ...

  19. Distance distributions of photogenerated charge pairs in organic photovoltaic cells.

    Science.gov (United States)

    Barker, Alex J; Chen, Kai; Hodgkiss, Justin M

    2014-08-27

    Strong Coulomb interactions in organic photovoltaic cells dictate that charges must separate over relatively long distances in order to circumvent geminate recombination and produce photocurrent. In this article, we measure the distance distributions of thermalized charge pairs by accessing a regime at low temperature where charge pairs are frozen out following the primary charge separation step and recombine monomolecularly via tunneling. The exponential attenuation of tunneling rate with distance provides a sensitive probe of the distance distribution of primary charge pairs, reminiscent of electron transfer studies in proteins. By fitting recombination dynamics to distributions of recombination rates, we identified populations of charge-transfer states and well-separated charge pairs. For the wide range of materials we studied, the yield of separated charges in the tunneling regime is strongly correlated with the yield of free charges measured via their intensity-dependent bimolecular recombination dynamics at room temperature. We therefore conclude that populations of free charges are established via long-range charge separation within the thermalization time scale, thus invoking early branching between free and bound charges across an energetic barrier. Subject to assumed values of the electron tunneling attenuation constant, we estimate critical charge separation distances of ∼3-4 nm in all materials. In some blends, large fullerene crystals can enhance charge separation yields; however, the important role of the polymers is also highlighted in blends that achieved significant charge separation with minimal fullerene concentration. We expect that our approach of isolating the intrinsic properties of primary charge pairs will be of considerable value in guiding new material development and testing the validity of proposed mechanisms for long-range charge separation.

  20. On equilibrium charge distribution above dielectric surface

    Directory of Open Access Journals (Sweden)

    Yu.V. Slyusarenko

    2009-01-01

    Full Text Available The problem of the equilibrium state of the charged many-particle system above dielectric surface is formulated. We consider the case of the presence of the external attractive pressing field and the case of its absence. The equilibrium distributions of charges and the electric field, which is generated by these charges in the system in the case of ideally plane dielectric surface, are obtained. The solution of electrostatic equations of the system under consideration in case of small spatial heterogeneities caused by the dielectric surface, is also obtained. These spatial inhomogeneities can be caused both by the inhomogeneities of the surface and by the inhomogeneous charge distribution upon it. In particular, the case of the "wavy" spatially periodic surface is considered taking into account the possible presence of the surface charges.

  1. Molecular Dynamics Studies on the Structural Stability of Wild-Type Rabbit Prion Protein: Surface Electrostatic Charge Distributions

    CERN Document Server

    Zhang, Jiapu

    2011-01-01

    Prion diseases cover a large range of neurodegenerative diseases in humans and animals, which are invariably fatal and highly infectious. By now there have not been some effective therapeutic approaches or medications to treat all prion diseases. Fortunately, numerous experimental experiences have showed that rabbits are resistant to infection from prion diseases isolated from other species, and recently the molecular structures of rabbit prion protein and its mutants were released into protein data bank. Prion diseases are "protein structural conformational" diseases. Thus, in order to reveal some secrets of prion diseases, it is amenable to study rabbits by techniques of the molecular structure and its dynamics. Wen et al. (PLoS One 5(10) e13273 (2010), Journal of Biological Chemistry 285(41) 31682-31693 (2010)) reported the surface of NMR RaPrPC(124-228) molecular snapshot has a large land of continuous positive charge distribution, which contributes to the structural stability of rabbit prion protein. Thi...

  2. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mingtian; Li, Baohui, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071 (China); Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2015-05-28

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order

  3. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    International Nuclear Information System (INIS)

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG)5/(KGKG)5, (EEGG)5/(KKGG)5, and (EEGG)5/(KGKG)5, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar

  4. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    Science.gov (United States)

    Zhao, Mingtian; Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai; Li, Baohui

    2015-05-01

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG)5/(KGKG)5, (EEGG)5/(KKGG)5, and (EEGG)5/(KGKG)5, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar

  5. Distribution of vacuum charge near supercharged nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Migdal, A.B.; Voskresenskii, D.N.; Popov, V.S.

    1976-08-05

    We obtain the distribution of the charge produced near supercritical nuclei (Ze/sup 2/..integral integral.. 1) as a result of the restructuring of the electron-positron vacuum. The calculation is carried out in the Thomas-Fermi approximation.

  6. Charge and Size Distributions of Electrospray Drops

    Science.gov (United States)

    de Juan L; de la Mora JF

    1997-02-15

    The distributions of charge q and diameter d of drops emitted from electrified liquid cones in the cone-jet mode are investigated with two aerosol instruments. A differential mobility analyzer (DMA, Vienna type) first samples the spray drops, selects those with electrical mobilities within a narrow band, and either measures the associated current or passes them to a second instrument. The drops may also be individually counted optically and sized by sampling them into an aerodynamic size spectrometer (API's Aerosizer). For a given cone-jet, the distribution of charge q for the main electrospray drops is some 2.5 times broader than their distribution of diameters d, with qmax/qmin approximately 4. But mobility-selected drops have relative standard deviations of only 5% for both d and q, showing that the support of the (q, d) distribution is a narrow band centered around a curve q(d). The approximate one-dimensionality of this support region is explained through the mechanism of jet breakup, which is a random process with only one degree of freedom: the wavelength of axial modulation of the jet. The observed near constancy of the charge over volume ratio (q approximately d3) shows that the charge is frozen in the liquid surface at the time scale of the breakup process. The charge over volume ratio of the primary drops varies between 98 and 55% of the ratio of spray current I over liquid flow rate Q, and decreases at increasing Q. I/Q is therefore an unreliable measure of the charge density of these drops.

  7. Charge and longitudinal momentum distributions in transverse coordinate space

    CERN Document Server

    Mondal, Chandan; Dahiya, Harleen; Chakrabarti, Dipankar

    2016-01-01

    We investigate the charge distributions for the $u$ and $d$ quarks in transverse coordinate space in a light-front quark-diquark model for the nucleons using the overlaps of the wave functions constructed from the soft-wall AdS/QCD prediction. We have also obtained the charge distributions for proton and neutron in transverse coordinate space and compared it with the distributions obtained in impact-parameter space. Further, we study the longitudinal momentum distributions using the wave functions in the transverse coordinate space. We have also shown the explicit fermionic and bosonic contributions for different struck $u$ and $d$ quarks.

  8. INFLUENCE OF ELECTRON-IMPACT MULTIPLE IONIZATION ON EQUILIBRIUM AND DYNAMIC CHARGE STATE DISTRIBUTIONS: A CASE STUDY USING IRON

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, M.; Savin, D. W. [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2015-02-10

    We describe the influence of electron-impact multiple ionization (EIMI) on the ionization balance of collisionally ionized plasmas. Previous ionization balance calculations have largely neglected EIMI. Here, EIMI cross-section data are incorporated into calculations of both equilibrium and non-equilibrium charge-state distributions (CSDs). For equilibrium CSDs, we find that EIMI has only a small effect and can usually be ignored. However, for non-equilibrium plasmas the influence of EIMI can be important. In particular, we find that for plasmas in which the temperature oscillates there are significant differences in the CSD when including versus neglecting EIMI. These results have implications for modeling and spectroscopy of impulsively heated plasmas, such as nanoflare heating of the solar corona.

  9. Influence of Electron-Impact Multiple Ionization on Equilibrium and Dynamic Charge State Distributions: A Case Study Using Iron

    CERN Document Server

    Hahn, Michael

    2014-01-01

    We describe the influence of electron-impact multiple ionization (EIMI) on the ionization balance of collisionally ionized plasmas. We are unaware of any previous ionization balance calculations that have included EIMI, which is usually assumed to be unimportant. Here, we incorporate EIMI cross-section data into calculations of both equilibrium and non-equilibrium charge-state distributions (CSDs). For equilibrium CSDs, we find that EIMI has only a small effect and can usually be ignored. However, for non-equilibrium plasmas the influence of EIMI can be important. In particular, we find that for plasmas in which the temperature oscillates there are significant differences in the CSD when including versus neglecting EIMI. These results have implications for modeling and spectroscopy of impulsively heated plasmas, such as nanoflare heating of the solar corona.

  10. Langevin description of fission fragment charge distribution from excited nuclei

    CERN Document Server

    Karpov, A V

    2002-01-01

    A stochastic approach to fission dynamics based on a set of three-dimensional Langevin equations was applied to calculate fission-fragment charge distribution of compound nucleus sup 2 sup 3 sup 6 U. The following collective coordinates have been chosen - elongation coordinate, neck-thickness coordinate, and charge-asymmetry coordinate. The friction coefficient of charge mode has been calculated in the framework of one-body and two-body dissipation mechanisms. Analysis of the results has shown that Langevin approach is appropriate for investigation of isobaric distribution. Moreover, the dependences of the variance of the charge distribution on excitation energy and on the two-body viscosity coefficient has been studied

  11. Measurement of the electrostatic charge in airborne particles: II - particle charge distribution of different aerosols

    Directory of Open Access Journals (Sweden)

    M. V. Rodrigues

    2006-03-01

    Full Text Available This work gives sequence to the study on the measurement of the electrostatic charges in aerosols. The particle charge classifier developed for this purpose and presented in the previous paper (Marra and Coury, 2000 has been used here to measure the particle charge distribution of a number of different aerosols. The charges acquired by the particles were naturally derived from the aerosol generation procedure itself. Two types of aerosol generators were used: the vibrating orifice generator and turntable Venturi plate generator. In the vibrating orifice generator, mono-dispersed particles were generated by a solution of water/ethanol/methylene blue, while in the rotating plate generator, six different materials were utilized. The results showed no clear dependence between electric charge and particle diameter for the mono-dispersed aerosol. However, for the poly-dispersed aerosols, a linear dependence between particle size and charge could be noticed.

  12. Charge Distributions in Transverse Coordinate Space and in Impact Parameter Space

    OpenAIRE

    Hwang, Dae Sung; Kim, Dong Soo; Kim, Jonghyun

    2008-01-01

    We study the charge distributions of the valence quarks inside nucleon in the transverse coordinate space, which is conjugate to the transverse momentum space. We compare the results with the charge distributions in the impact parameter space.

  13. Device for measuring charge density distribution in charged particle beams

    International Nuclear Information System (INIS)

    A device to measure charge density distribution in charged particle beams has been described. The device contains a set of hollow interinsulated current-receiving electrodes, recording system, and cooling system. The invention is aimed at the increase of admissible capacity of the beams measured at the expense of cooling efficiency increase. The aim is achieved by the fact, that in the device a dynamic evaporating-condensational cooling of electrodes is realized by means of cooling agent supply in perpendicular to their planes through the tubes introduced inside special cups. Spreading in radial direction over electrode surface the cooling agent gradually and intensively washes the side surface of the cup, after that, it enters the cooling cavity in the form of vapour-liquid mixture. In the cavity the cooling agent, supplied using dispensina and receiving collectors in which vapoUr is condensed, circulates. In the device suggested the surface of electrode cooling is decreased significantly at the expense of side surface of the cups which receives the electrode heat

  14. Flat Bunches with a Hollow Distribution for Space Charge Mitigation

    CERN Document Server

    Oeftiger, Adrian; Findlay, Alan James; Hancock, Steven; Rumolo, Giovanni

    2016-01-01

    Longitudinally hollow bunches provide one means to mitigate the impact of transverse space charge. The hollow distributions are created via dipolar parametric excitation during acceleration in CERN's Proton Synchrotron Booster. We present simulation work and beam measurements. Particular emphasis is given to the alleviation of space charge effects on the long injection plateau of the downstream Proton Synchrotron machine, which is the main goal of this study.

  15. Numerical calculation of impurity charge state distributions

    Energy Technology Data Exchange (ETDEWEB)

    Crume, E. C.; Arnurius, D. E.

    1977-09-01

    The numerical calculation of impurity charge state distributions using the computer program IMPDYN is discussed. The time-dependent corona atomic physics model used in the calculations is reviewed, and general and specific treatments of electron impact ionization and recombination are referenced. The complete program and two examples relating to tokamak plasmas are given on a microfiche so that a user may verify that his version of the program is working properly. In the discussion of the examples, the corona steady-state approximation is shown to have significant defects when the plasma environment, particularly the electron temperature, is changing rapidly.

  16. Response of electrostatic probes to eccentric charge distributions

    DEFF Research Database (Denmark)

    Johansson, Torben; McAllister, Iain Wilson

    2001-01-01

    The response of an electrostatic probe mounted in an electrode is examined with reference to eccentric charge distributions. The study involves using the probe λ function to derive a characteristic parameter. This parameter enables the response of the probe to different degrees of eccentricity to...

  17. The self-energy of a charged particle in the presence of a topological defect distribution

    CERN Document Server

    De Carvalho, A M M; Furtado, C; Moraes, Fernando; Furtado, Claudio

    2004-01-01

    In this work we study a charged particle in the presence of both a continuous distribution of disclinations and a continuous distribution of edge dislocations in the framework of the geometrical theory of defects. We obtain the self-energy for a single charge both in the internal and external regions of either distribution. For both distributions the result outside the defect distribution is the self-energy that a single charge experiments in the presence of a single defect.

  18. The structure of XLPE and the distribution of space charge

    Institute of Scientific and Technical Information of China (English)

    李吉晓; 张冶文; 郑飞虎; 吴长顺; 夏钟福

    2003-01-01

    The formation and accumulation of space charge under charge treatment are investigated using PWP method. The interaction between space charge and the structure of XLPE is measured using infrared spectroscopy (IR) method. The related mechanism about space charge distribution and the structure of XLPE are discussed.

  19. An in vivo study of electrical charge distribution on the bacterial cell wall by atomic force microscopy in vibrating force mode

    Science.gov (United States)

    Marlière, Christian; Dhahri, Samia

    2015-05-01

    We report an in vivo electromechanical atomic force microscopy (AFM) study of charge distribution on the cell wall of Gram+ Rhodococcus wratislaviensis bacteria, naturally adherent to a glass substrate, under physiological conditions. The method presented in this paper relies on a detailed study of AFM approach/retract curves giving the variation of the interaction force versus distance between the tip and the sample. In addition to classical height and mechanical (as stiffness) data, mapping of local electrical properties, such as bacterial surface charge, was proved to be feasible at a spatial resolution better than a few tens of nanometers. This innovative method relies on the measurement of the cantilever's surface stress through its deflection far from (>10 nm) the repulsive contact zone: the variations of surface stress come from the modification of electrical surface charge of the cantilever (as in classical electrocapillary measurements) likely stemming from its charging during contact of both the tip and the sample electrical double layers. This method offers an important improvement in local electrical and electrochemical measurements at the solid/liquid interface, particularly in high-molarity electrolytes when compared to techniques focused on the direct use of electrostatic force. It thus opens a new way to directly investigate in situ biological electrical surface processes involved in numerous practical applications and fundamental problems such as bacterial adhesion, biofilm formation, microbial fuel cells, etc.We report an in vivo electromechanical atomic force microscopy (AFM) study of charge distribution on the cell wall of Gram+ Rhodococcus wratislaviensis bacteria, naturally adherent to a glass substrate, under physiological conditions. The method presented in this paper relies on a detailed study of AFM approach/retract curves giving the variation of the interaction force versus distance between the tip and the sample. In addition to classical

  20. Quantum Chemical Studies on the Prediction of Structures, Charge Distributions and Vibrational Spectra of Some Ni(II), Zn(II), and Cd(II) Iodide Complexes

    Science.gov (United States)

    Bardakci, Tayyibe; Kumru, Mustafa; Altun, Ahmet

    2016-06-01

    Transition metal complexes play an important role in coordination chemistry as well as in the formation of metal-based drugs. In order to obtain accurate results for studying these type of complexes quantum chemical studies are performed and especially density functional theory (DFT) has become a promising choice. This talk represents molecular structures, charge distributions and vibrational analysis of Ni(II), Zn(II), and Cd(II) iodide complexes of p-toluidine and m-toluidine by means of DFT. Stable structures of the ligands and the related complexes have been obtained in the gas phase at B3LYP/def2-TZVP level and calculations predict Ni(II) complexes as distorted polymeric octahedral whereas Zn(II) and Cd(II) complexes as distorted tetrahedral geometries. Charge distribution analysis have been performed by means of Mulliken, NBO and APT methods and physically most meaningful method for our compounds is explained. Vibrational spectra of the title compounds are computed from the optimized geometries and theoretical frequencies are compared with the previously obtained experimental data. Since coordination occurs via nitrogen atoms of the free ligands, N-H stretching bands of the ligands are shifted towards lower wavenumbers in the complexes whereas NH_2 wagging and twisting vibrations are shifted towards higher wavenumbers.

  1. Point charges optimally placed to represent the multipole expansion of charge distributions.

    Directory of Open Access Journals (Sweden)

    Ramu Anandakrishnan

    Full Text Available We propose an approach for approximating electrostatic charge distributions with a small number of point charges to optimally represent the original charge distribution. By construction, the proposed optimal point charge approximation (OPCA retains many of the useful properties of point multipole expansion, including the same far-field asymptotic behavior of the approximate potential. A general framework for numerically computing OPCA, for any given number of approximating charges, is described. We then derive a 2-charge practical point charge approximation, PPCA, which approximates the 2-charge OPCA via closed form analytical expressions, and test the PPCA on a set of charge distributions relevant to biomolecular modeling. We measure the accuracy of the new approximations as the RMS error in the electrostatic potential relative to that produced by the original charge distribution, at a distance 2x the extent of the charge distribution--the mid-field. The error for the 2-charge PPCA is found to be on average 23% smaller than that of optimally placed point dipole approximation, and comparable to that of the point quadrupole approximation. The standard deviation in RMS error for the 2-charge PPCA is 53% lower than that of the optimal point dipole approximation, and comparable to that of the point quadrupole approximation. We also calculate the 3-charge OPCA for representing the gas phase quantum mechanical charge distribution of a water molecule. The electrostatic potential calculated by the 3-charge OPCA for water, in the mid-field (2.8 Å from the oxygen atom, is on average 33.3% more accurate than the potential due to the point multipole expansion up to the octupole order. Compared to a 3 point charge approximation in which the charges are placed on the atom centers, the 3-charge OPCA is seven times more accurate, by RMS error. The maximum error at the oxygen-Na distance (2.23 Å is half that of the point multipole expansion up to the octupole

  2. Electric Vehicle (EV) Charging Management with Dynamic Distribution System Tariff

    DEFF Research Database (Denmark)

    O'Connell, Niamh; Wu, Qiuwei; Østergaard, Jacob;

    2011-01-01

    An electric vehicle (EV) charging schedule algorithm was proposed in this paper in order to charge EVs to meet EV users’ driving needs with the minimum EV charging cost and respect the local distribution system constraints. A day-ahead dynamic distribution system tariff scheme was proposed to avoid...... congestions in local distribution systems from the day-ahead planning perspective. Locational marginal pricing method was used to determine the dynamic distribution system tariff based on predicted day-ahead spot prices and predicted charging behaviors. Distribution grids of the Bornholm power system were...

  3. Charge state distribution of {sup 16}O from the {sup 4}He({sup 12}C,{sup 16}O)γ reaction of astrophysical interest studied both experimentally and theoretically

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shengjin, E-mail: liusj@ihep.ac.cn [Institute of High Energy Physics, China Academy of Science, 19B YuquanLu, Shijingshan, Beijing 100049 (China); Department of Physics, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan); Sakurai, Makoto [Department of Physics, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan); Sagara, Kenshi; Teranishi, Takashi; Fujita, Kunihiro; Yamaguchi, Hiroyuki; Matsuda, Sayaka; Mitsuzumi, Tatsuki; Iwazaki, Makoto; Rosary, Mariya T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Kato, Daiji [Fusion Systems Research Division, National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Tolstikhina, I.Yu. [P.N. Lebedev Physical Institute, Leninskii pr. 53, Moscow 119991 (Russian Federation)

    2014-06-01

    In astrophysics, {sup 4}He({sup 12}C,{sup 16}O)γ reaction places an important role. At Kyushu University Tandem accelerator Laboratory (KUTL), the measurement of {sup 4}He({sup 12}C,{sup 16}O)γ cross section is in progress in the energy range of astrophysical nuclear reaction. Since the charge state of product {sup 16}O ions after passing through the gas target is spread and only one charge state can be measured at terminal detector, it is necessary to know the charge state distribution of {sup 16}O ions passing through the He gas target precisely. Here, we report the charge state distribution of the {sup 16}O recoils both experimentally and theoretically. Experimentally, we measured the equilibrium charge state distribution of {sup 16}O ions in the windowless helium gas target with the beam energy of primary {sup 16}O ions at 7.2, 4.5, and 3.45 MeV at KUTL. The measured results showed a Gaussian distribution for the charge state fraction. Theoretically, we proposed a framework for the charge state distribution study. Charge state distribution was computed by solving a set of differential equations including a series of charge exchange cross sections. For the ionization cross section, plane-wave Born approximation was applied and modified by taking target atomic screening as a function of momentum transfer into account. For the capture cross section, continuum distorted wave approximation was applied and the influence of the gas target density was taken into account in the process of electron capture. Using above charge exchange cross sections, the charge state evolution was simulated. According to the equilibrium distribution, we compared the theoretical calculation to the experimental data. After taking into account the density effects in the charge exchange process, the theoretical charge state distributions shows a good agreement with the experimental data. Both experimental and theoretical results are useful to understand the charge fraction of recoil oxygen

  4. Reallocating Charging Loads of Electric Vehicles in Distribution Networks

    Directory of Open Access Journals (Sweden)

    Mohammed Jasim M. Al Essa

    2016-02-01

    Full Text Available In this paper, the charging loads of electric vehicles were controlled to avoid their impact on distribution networks. A centralized control algorithm was developed using unbalanced optimal power flow calculations with a time resolution of one minute. The charging loads were optimally reallocated using a central controller based on non-linear programming. Electric vehicles were recharged using the proposed control algorithm considering the network constraints of voltage magnitudes, voltage unbalances, and limitations of the network components (transformers and cables. Simulation results showed that network components at the medium voltage level can tolerate high uptakes of uncontrolled recharged electric vehicles. However, at the low voltage level, network components exceeded their limits with these high uptakes of uncontrolled charging loads. Using the proposed centralized control algorithm, these high uptakes of electric vehicles were accommodated in the network under study without the need of upgrading the network components.

  5. A study of the charge and potential distribution at the semiconductor/electrolyte interface for the condition of degeneracy

    Science.gov (United States)

    Gerischer, Heinz; McIntyre, Robert

    1985-08-01

    We have calculated the differential surface capacitance for two different semiconductors MoSe2(0001) and WSe2(0001), as a function of applied potential, for the condition of degeneracy. The calculated curves are compared with the experimentally measured capacitance for the systems, MoSe2(0001) in propylene carbonate containing 0.1 M LiClO4, for a range of crystal conductivities, and WSe2(0001) in acetonitrile containing 0.2 M (C3H7)4N BF4. As expected the experimental values are significantly lower than the calculated values, since the measured capacitance is the total capacitance for the system which is described by the surface capacitance of the semiconductor in series with the Helmholtz capacitance. Calculations based on this model, using the data for the Helmholtz capacitance for a mercury electrode in the same electrolyte, are shown to be in good agreement with the measured values. The results are discussed with particular reference to the screening distance for the semiconductor surface charge in the degenerate region.

  6. Charge-State Distributions of Accelerated ^{48}Ca Ions

    CERN Document Server

    Skobelev, N K; Astabatyan, R A; Vincour, J; Kulko, A A; Lobastov, S P; Lukyanov, S M; Markaryan, E R; Maslov, V A; Penionzhkevich, Yu E; Sobolev, Yu G; Ugryumov, V Yu

    2003-01-01

    A stepped pole broad-range magnetic analyzer has been used to measure the charge-state distributions of accelerated ^{48}Ca ions at the two incident energies 242.8 and 264.5 MeV after passing through thin carbon or gold target foils. The measured charge-state distributions and the mean equilibrium charge of the ^{48}Ca ions are compared with various calculations. It has been shown that the calculations can be used only for evaluation purposes.

  7. Distribution of counterions and interaction between two similarly charged dielectric slabs: Roles of charge discreteness and dielectric inhomogeneity

    CERN Document Server

    Pezeshkian, Weria; Norouzi, Davood; Mohammad-Rafiee, Farshid; Fazli, Hossein

    2012-01-01

    The distribution of counterions and the electrostatic interaction between two similarly charged dielectric slabs is studied in the strong coupling limit. Dielectric inhomogeneities and discreteness of charge on the slabs have been taken into account. It is found that the amount of dielectric constant difference between the slabs and the environment, and the discreteness of charge on the slabs have opposing effects on the equilibrium distribution of the counterions. At small inter-slab separations, increasing the amount of dielectric constant difference increases the tendency of the counterions toward the middle of the intersurface space between the slabs and the discreteness of charge pushes them to the surfaces of the slabs. In the limit of point charges, independent of the strength of dielectric inhomogeneity, counterions distribute near the surfaces of the slabs. The interaction between the slabs is attractive at low temperatures and its strength increases with the dielectric constant difference. At room t...

  8. Charge distribution dependency on gap thickness of CMS endcap RPC

    CERN Document Server

    Park, Sung Keun

    2016-01-01

    We present a systematic study of charge distribution dependency of CMS Resistive Plate Chamber (RPC) on gap thickness.Prototypes of double-gap with five different gap thickness from 1.8mm to 1.0mm in 0.2mm steps have been built with 2mm thick phenolic high-pressure-laminated (HPL) plates. The charges of cosmic-muon signals induced on the detector strips are measured as a function of time using two four-channel 400-MHz fresh ADCs. In addition, the arrival time of the muons and the strip cluster sizes are measured by digitizing the signal using a 32-channel voltage-mode front-end-electronics and a 400-MHz 64-channel multi-hit TDC. The gain and the input impedance of the front-end-electronics were 200mV/mV and 20 Ohm, respectively.

  9. Numerical and experimental study of the distribution of charged species in a flat stoichiometric premixed CH4/O2/Ar flame

    KAUST Repository

    Han, Jie

    2015-03-30

    In this paper, an existing ion reaction mechanism is used to compute the distribution of charged species in a at stoichiometric premixed CH4/O2/Ar flame stabilized on top of a McKenna burner. The ion reaction rates and charged species thermodynamic data are updated according to the most recent data. A modified version of the detailed ARAMCO 1.3 reaction mechanism is used to describe the chemistry of neutral species. Because of the important role of CH in the chemi-ionization process, its prediction is improved based on the available measured data. The ability of the ion reaction mechanism to predict the distribution of positive ions is assessed by comparing to the experimental measurements performed in our group. The calculated results are qualitatively consistent with the experimental data, even though there exist quantitative differences that need to be addressed in future work.

  10. Fractal dimension of the topological charge density distribution in SU(2) lattice gluodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buividovich, P.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Kalaydzhyan, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Polikarpov, M.I. [Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2011-11-15

    We study the effect of cooling on the spatial distribution of the topological charge density in quenched SU(2) lattice gauge theory with overlap fermions. We show that as the gauge field configurations are cooled, the Hausdorff dimension of regions where the topological charge is localized gradually changes from d=2/3 towards the total space dimension. Hence the cooling procedure destroys some of the essential properties of the topological charge distribution. (orig.)

  11. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    G P Singh; S Kotambkar

    2005-07-01

    A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.

  12. The Calculation of the Electrostatic Potential of Infinite Charge Distributions

    Science.gov (United States)

    Redzic, Dragan V.

    2012-01-01

    We discuss some interesting aspects in the calculation of the electrostatic potential of charge distributions extending to infinity. The presentation is suitable for the advanced undergraduate level. (Contains 3 footnotes.)

  13. Mass and charge distribution in heavy-ion collisions

    International Nuclear Information System (INIS)

    A statistical model based on the independent particle picture is used to calculate mass and charge distributions in deep inelastic heavy-ion collisions. Different assumptions on volume and charge equilibrations are compared with measured variances of charge distributions. One combination of assumptions is clearly favoured by experiment, and gives a reasonable description of the variance versus energy loss curves up to energy losses of about 200 MeV in the heavy systems Kr+Ho and Xe+Bi, and up to about 60 MeV for the light system Ar+Ca

  14. Pulsed electro-acoustic (PEA) measurements of embedded charge distributions

    Science.gov (United States)

    Dennison, J. R.; Pearson, Lee H.

    2013-09-01

    Knowledge of the spatial distribution and evolution of embedded charge in thin dielectric materials has important applications in semiconductor, high-power electronic device, high-voltage DC power cable insulation, high-energy and plasma physics apparatus, and spacecraft industries. Knowing how, where, and how much charge accumulates and how it redistributes and dissipates can predict destructive charging effects. Pulsed Electro-acoustic (PEA) measurements— and two closely related methods, Pressure Wave Propagation (PWP) and Laser Intensity Modulation (LIMM)— nondestructively probe such internal charge distributions. We review the instrumentation, methods, theory and signal processing of simple PEA experiments, as well as the related PPW and LIMM methods. We emphasize system improvements required to achieve high spatial resolution for in vacuo measurements of thin dielectrics charged using electron beam injection.

  15. Multiplicity distributions and charged-neutral fluctuations

    Indian Academy of Sciences (India)

    Tapan K Nayak; M M Aggarwal; A Agnihotri; Z Ahammed; A L S Angelis; V Antonenko; V Arefiev; V Astakhov; V Avdeitchikov; T C Awes; P V K S Baba; S K Badyal; A Baldine; L Barabach; C Barlag; S Bathe; B Tatiounia; T Bernier; K B Bhalla; V S Bhatia; C Blume; R Bock; E-M Bohne; D Bucher; A Buijs; E-J Buis; H Büsching; L Carlen; V Chalyshev; S Chattopadhyay; K E Chenawi; R Cherbatchev; T Chujo; A Claussen; A C Das; M P Decowski; V Djordjadze; P Donni; I Doubovik; A K Dubey; M R Dutta Majumdar; S Eliseev; K Enosawa; H Feldmann; P Foka; S Fokin; V Frolov; M S Ganti; S Garpman; O Gavrishchuk; F J M Geurts; T K Ghosh; R Glasow; S K Gupta; B Guskov; H A Gustafsson; H H Gutbrod; R Higuchi; I Hrivnacova; M Ippolitov; H Kalechofsky; R Kamermans; K-H Kampert; K Karadjev; K Karpio; S Kato; S Kees; H Kim; B W Kolb; I Kosarev; I Koutcheryaev; A Kugler; P Kulinich; V Kumar; M Kurata; K Kurita; K Kuzmin; I Langbein; A Lebedev; Y Y Lee; H Löhner; D P Mahapatra; V Manko; M Martin; A Maximov; R Mehdiyev; G Mgebrichvili; Y Miake; D Mikhalev; G C Mishra; Y Miyamoto; B Mohanty; D Morrison; D S Mukhopadhyay; V Myalkovski; H Naef; B K Nandi; S K Nayak; T K Nayak; S Neumaier; A Nianine; V Nikitine; S Nikolaev; S Nishimura; P Nomokov; J Nystrand; F E Obenshain; A Oskarsson; I Otterlund; M Pachr; A Parfenov; S Pavliouk; T Peitzmann; V Petracek; F Plasil; M L Purschke; B Raeven; J Rak; R Raniwala; S Raniwala; V S Ramamurthy; N K Rao; F Retiere; K Reygers; G Roland; L Rosselet; I Roufanov; J M Rubio; S S Sambyal; R Santo; S Sato; H Schlagheck; H-R Schmidt; G Shabratova; I Sibiriak; T Siemiarczuk; B C Sinha; N Slavine; K Söderström; N Solomey; G Sood; S P Sørensen; P Stankus; G Stefanek; P Steinberg; E Stenlund; D Stüken; M Sumbera; T Svensson; M D Trivedi; A Tsvetkov; C Twenhöfel; L Tykarski; J Urbahn; N V Eijndhoven; W H V Heeringen; G J V Nieuwenhuizen; A Vinogradov; Y P Viyogi; A Vodopianov; S Vörös; M A Vos; B Wyslouch; K Yogi; Y Yokota; G R Young

    2001-08-01

    Results from the multiplicity distributions of inclusive photons and charged particles, scaling of particle multiplicities, event-by-event multiplicity fluctuations, and charged-neutral fluctuations in 158 GeV Pb+Pb collisions are presented and discussed. A scaling of charged particle multiplicity as $N^{1.07± 0:05}_{\\text{part}}$ and photons as $N^{1.12± 0:03}_{\\text{part}}$ have been observed, indicating violation of naive wounded nucleon model. The analysis of localized charged-neutral fluctuation indicates a model-independent demonstration of non-statistical fluctuations in both charged particles and photons in limited azimuthal regions. However, no correlated charged-neutral fluctuations are observed.

  16. Improving and Handling Electric Vehicle Penetration Level by Different Smart Charging Algorithms in Distribution Grids

    DEFF Research Database (Denmark)

    Kordheili, Reza Ahmadi; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna;

    2015-01-01

    This paper proposes different smart charging algorithms for electric vehicles (EVs) to find out the maximum grid capability in dealing with these new devices. The main objective is to obtain maximum EV penetration in the distribution grid without reinforcing the grid in order to avoid any cost...... for distribution system operators (DSOs). Two smart charging algorithms are proposed in this study. The proposed algorithms are applied to a part of the Danish distribution grid as a case study. As a comparison, a dumb charging scenario, i.e. charging EVs without any specific order or algorithm, is also simulated....... Simulation results demonstrate the capability of the smart charging methods to increase the penetration of EVs up to three times, compared to the base case....

  17. Experimental study of ion stopping power in warm dense matter: charge-state distribution measurements of ions leaving warm dense matter

    International Nuclear Information System (INIS)

    The determination if the ion slowing down process (or stopping power) in warm dense matter is essential especially in the frame of inertial confinement fusion. During my thesis, our interest was driven by the modification of the charge state of ion beam emerging from warm dense matter, this quantity playing a major role in ion stopping power calculation. We took advantage of the properties exhibited by ion beams produced by high intensity short pulse lasers to study during two experiments performed at ELFIE and TITAN facilities, the charge state modification of a carbon and helium ion beams emerging from an aluminum foil isochorically heated by an energetic proton beam. In the first two chapters are presented the major challenges regarding the subject from both a theoretical and experimental point of view. Here are exposed the different simulation tools used during the thesis. The third chapter is devoted to the study of the property of laser-produced ion beams in the scope of our experiments aiming at studying the stopping power. We have studied in particular ion beams generated using lower-than-solid density targets during two experiments: helium gas jet and laser-exploded target. In the last chapter are presented the set-ups and results of the two experiments on the charge state of ion beam emerging from warm dense matter. The data we measured in solid-density cold aluminum are successfully compared with the results already obtained in conventional accelerators. (author)

  18. Influence of charge changing collisions on charge state distributions (CSD) in non-equilibrium plasmas

    International Nuclear Information System (INIS)

    For an optimal design of ion sources and for some aspects of plasma diagnostics it is important to study the influence of all processes and parameters that are essential for the production and loss of multiply charged ions. Till now all existing calculations of CSD neglected charge transfer because of missing data. Now many of the very big charge transfer cross sections are measured and so we are able to include them into our calculations. (orig.)

  19. Probabilistic Harmonic Calculation in Distribution Networks with Electric Vehicle Charging Stations

    Directory of Open Access Journals (Sweden)

    Jianxue Wang

    2014-01-01

    Full Text Available Integrating EV charging station into power grid will bring impacts on power system, among which the most significant one is the harmonic pollution on distribution networks. Due to the uncertainty of the EV charging process, the harmonic currents brought by EV charging stations have a random nature. This paper proposed a mathematical simulation method for studying the working status of charging stations, which considers influencing factors including random leaving factor, electricity price, and waiting time. Based on the proposed simulation method, the probability distribution of the harmonic currents of EV charging stations is obtained and used in the calculation of the probability harmonic power flow. Then the impacts of EVs and EV charging stations on distribution networks can be analyzed. In the case study, the proposed simulation and analysis method is implemented on the IEEE-34 distribution network. The influences of EV arrival rates, the penetration rate, and the accessing location of EV charging station are also investigated. Results show that this research has good potential in guiding the planning and construction of charging station.

  20. Lower Atmospheric Electric Field due to Cloud Charge Distribution

    Science.gov (United States)

    Paul, Suman; Haldar, Dilip kumar; Sundar De, Syam; Ghosh, Abhijit; Hazra, Pranab; Bandyopadhyay, Bijoy

    2016-07-01

    The distributions of electric charge in the electrified clouds introduce important effects in the ionosphere and into the region between the ionosphere and the Earth. The electrical properties of the medium are changed greatly between thundercloud altitudes and the magnetosphere. A model for the penetration of DC thundercloud electric field between the Earth's upper and lower atmosphere has been presented here. The model deals with the electromagnetic responses of the atmosphere simulated through Maxwell's equations together with a time-varying source charge distribution. The modified ellipsoidal-Gaussian profile has been taken for the charge distribution of the electrified cloud. The conductivity profile of the medium is taken to be isotropic below 70 km height and anisotropic above 70 km. The Earth's surface is considered to be perfectly conducting. A general form of equation representing the thundercloud electric field component is deduced. In spite of assumptions for axial symmetry of thundercloud charge distribution considered in the model, the results are obtained giving the electric field variation in the upper atmosphere. The vertical component of the electric field would relate the global electric circuit while the radial component showed the electrical coupling between the lower atmosphere and the ionized Earth's environment. The variations of the values of field components for different heights as well as Maxwell's current have been evaluated. Coupling between the troposphere and the ionosphere is critically dependent on the height variations of electrical conductivity. Field-aligned electron density irregularities in the ionosphere may be investigated through the present analyses.

  1. Connection between elastic relativistic form factors and charge distribution

    International Nuclear Information System (INIS)

    A scheme by means of which one can establish the connection between form factors and charge distribution (for particles of any spin) in proposed. Except for the nonrelativistic domain our results differ from previous ones. Consequences of our relations (some of them in agreement with experimental and previous theoretical results) are briefly discussed

  2. Charge state distribution studies of SrF3, MnF3 and CaF3 molecules using single and double stripping in a Tandem accelerator

    International Nuclear Information System (INIS)

    High energy beams of high ion currents from a Tandem accelerator are a common requirement in nuclear physics, materials science and Accelerator Mass Spectrometry (AMS) research. In many cases, molecular beams are chosen from the ion source to achieve a high ion source yield for the negative ions, or, as for AMS, to suppress isobaric interference. For this reason we have studied the use of consecutive stripper foils, double stripping, to increase the ion yield in conjunction with increased energy of injected molecular beams through a Tandem accelerator. By this method we could achieve a shift in the yield towards higher charge states.

  3. Charge distribution studies in the fast-neutron-induced fission of sup 2 sup 3 sup 2 Th, sup 2 sup 3 sup 8 U, sup 2 sup 4 sup 0 Pu and sup 2 sup 4 sup 4 Cm

    CERN Document Server

    Naik, H; Iyer, R H

    2003-01-01

    Charge distribution studies for heavy-mass fission products were carried out in the fast-neutron-induced fission of sup 2 sup 3 sup 2 Th, sup 2 sup 3 sup 8 U, sup 2 sup 4 sup 0 Pu and sup 2 sup 4 sup 4 Cm using radiochemical and gamma-ray spectrometric techniques. The width parameter(sigma sub Z /sigma sub A), the most probable charge/mass (Z sub P /A sub P), the charge polarization (DELTA Z) and the slope of charge polarization [ delta(DELTA Z)/delta A sup '] as a function of the fragment mass (A sup ') were deduced. The average charge dispersion parameter (left angle sigma sub Z right angle) and proton odd-even effect (delta sub p) were also obtained for these fissioning systems. The left angle sigma sub Z right angle and delta sub p values in the fissioning systems sup 2 sup 4 sup 1 Pu sup * and sup 2 sup 4 sup 5 Cm sup * were determined for the first time. The delta(DELTA Z)/delta A sup ' value is also determined for the first time in the fissioning systems sup 2 sup 3 sup 9 U sup * , sup 2 sup 4 sup 1 Pu...

  4. Charge density distributions derived from smoothed electrostatic potential functions: design of protein reduced point charge models.

    Science.gov (United States)

    Leherte, Laurence; Vercauteren, Daniel P

    2011-10-01

    To generate reduced point charge models of proteins, we developed an original approach to hierarchically locate extrema in charge density distribution functions built from the Poisson equation applied to smoothed molecular electrostatic potential (MEP) functions. A charge fitting program was used to assign charge values to the so-obtained reduced representations. In continuation to a previous work, the Amber99 force field was selected. To easily generate reduced point charge models for protein structures, a library of amino acid templates was designed. Applications to four small peptides, a set of 53 protein structures, and four KcsA ion channel models, are presented. Electrostatic potential and solvation free energy values generated by the reduced models are compared with the corresponding values obtained using the original set of atomic charges. Results are in closer agreement with the original all-atom electrostatic properties than those obtained with a previous reduced model that was directly built from the smoothed MEP functions [Leherte and Vercauteren in J Chem Theory Comput 5:3279-3298, 2009]. PMID:21915750

  5. Charge state distributions of iron in impulsive solar flares: Importance of stripping effects

    Science.gov (United States)

    Ostryakov, V. M.; Kartavykh, Y. Y.; Ruffolo, D.; Kovaltsov, G. A.; Kocharov, L.

    2000-12-01

    A model of stochastic acceleration of heavy ions by Alfvén wave turbulence has been developed. It takes into account spatial diffusion, Coulomb losses, and the possibility of charge changes for ions during stochastic acceleration. The main processes influencing the ionic charge states are the stripping by thermal electrons and protons as constituents of a surrounding medium and dielectronic and radiative recombination. We have calculated energy spectra and charge distributions of nonthermal Fe ions as a sample species. The dependence of the charge distributions and energy spectra of iron on the parameters of the plasma (temperature and number density) is studied. We compare our results with measurements to date of the mean charge of iron in impulsive solar flare events and conclude that they indicate source plasma ionization temperatures between 6□×106 and 107K.

  6. Charging Schedule for Electric Vehicles in Danish Residential Distribution Grids

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Huang, Shaojun; Bak-Jensen, Birgitte;

    2015-01-01

    The prospects of Electric Vehicles (EVs) in providing clean transportation and supporting renewable electricity is widely discussed in sustainable energy forums worldwide. The battery storage of EVs could be used to address the variability and unpredictability of electricity produced from renewable......, the vehicle owner, vehicle fleet operator and other parties involved in the process could economically benefit from the process. This paper investigates an optimal EV charging plan in Danish residential distribution grids in view of supporting high volumes of wind power in electricity grids. The results...... of the analysis show that the charging of the EVs could ensure effective demand response in the local grids, within the existing grid capabilities and random charging patterns of EVs....

  7. Structural Properties and Charge Distribution of the Sodium Uranium, Neptunium, and Plutonium Ternary Oxides: A Combined X-ray Diffraction and XANES Study.

    Science.gov (United States)

    Smith, Anna L; Martin, Philippe; Prieur, Damien; Scheinost, Andreas C; Raison, Philippe E; Cheetham, Anthony K; Konings, Rudy J M

    2016-02-15

    The charge distributions in α-Na2UO4, Na3NpO4, α-Na2NpO4, Na4NpO5, Na5NpO6, Na2PuO3, Na4PuO5, and Na5PuO6 are investigated in this work using X-ray absorption near-edge structure (XANES) spectroscopy at the U-L3, Np-L3, and Pu-L3 edges. In addition, a Rietveld refinement of monoclinic Na2PuO3, in space group C2/c, is reported for the first time, and the existence of the isostructural Na2NpO3 phase is revealed. In contrast to measurements in solution, the number of published XANES data for neptunium and plutonium solid phases with a valence state higher than IV is very limited. The present results cover a wide range of oxidation states, namely, IV to VII, and can serve as reference for future investigations. The sodium actinide series show a variety of local coordination geometries, and correlations between the shape of the XANES spectra and the local structural environments are discussed herein. PMID:26835549

  8. A study of the reactions antiproton-d→antiproton-dπ+π- and antiproton-d→psub(s)antiproton-pπ- at 14.6 GeV/c and a study of charged multiplicity distributions

    International Nuclear Information System (INIS)

    An analysis of two reactions on deuterium has been performed with incident antiprotons of 14.6 GeV/c: antiproton-d→antiproton-dπ+π- and antiproton-d→psub(s)antiproton-pπ-. The final states are dominated by Δ(1236) resonance production and in the coherent reaction the d* effect is observed as at lower incident momenta. At 14.6 GeV/c, it seems that the diffraction dissociation process as well for the incident particle as for the target takes a large part of the production mechanism for the two reactions. A study of charged multiplicity distributions in antiproton-neutron interactions is presented at 5.5, 9.3 and 14.6 GeV/c. The topological cross sections as well as various statistical moments obtained from the charged multiplicities are studied as functions of the incident momentum. A comparison between our results and antiproton-proton and pp data shows, that in the range of incident momenta used, a scaling function which describes antiproton-N and proton-proton interactions does not exist as expected from the KNO model (Koba-Nielsen-Olesen model)

  9. Ionic strength independence of charge distributions in solvation of biomolecules

    OpenAIRE

    Virtanen, J. J.; Sosnick, T. R.; Freed, K. F.

    2014-01-01

    Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations...

  10. Comparison of the charge distributions of the titanium isotopes

    International Nuclear Information System (INIS)

    Measurements have been made of the elastic electron scattering from the three even isotopes of titanium, Ti46, Ti48, and Ti50, with the objective of determining the differences in their ground state charge distributions. The experiment measures the ratios of the elastic cross sections of the three isotopes, thereby eliminating many of the uncertainties peculiar to an absolute cross section measurement. The experiment was done at the NBS Linac in Gaithersburg, Maryland. Theoretical calculations using a partial wave elastic scattering program, showed that the ratios of cross sections arising from scattering from two slightly different Fermi type 2 parameter charge distributions, depended strongly on the differences in the parameter describing the charge distribution, but only weakly on the actual values of these parameters. These ratio curves, considered as a function of momentum transfer, achieved their extreme values at momenta transfer near 1.0 F-1, which is near the point where the Born approximation form factor goes to zero. Therefore, ratios of cross sections were measured at momenta transfer ranging from .55 to 1.1 F-1; by holding the scattering angle fixed at 127.50 and varying the incident beam energy from 60 to 123 MeV. 43 refs., 45 figs., 9 tabs

  11. Ionic strength independence of charge distributions in solvation of biomolecules.

    Science.gov (United States)

    Virtanen, J J; Sosnick, T R; Freed, K F

    2014-12-14

    Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other. PMID:25494774

  12. Electromagnetic contribution to charge symmetry violation in parton distributions

    Directory of Open Access Journals (Sweden)

    X.G. Wang

    2016-02-01

    Full Text Available We report a calculation of the combined effect of photon radiation and quark mass differences on charge symmetry violation (CSV in the parton distribution functions of the nucleon. Following a recent suggestion of Martin and Ryskin, the initial photon distribution is calculated in terms of coherent radiation from the proton as a whole, while the effect of the quark mass difference is based on a recent lattice QCD simulation. The distributions are then evolved to a scale at which they can be compared with experiment by including both QCD and QED radiation. Overall, at a scale of 5 GeV2, the total CSV effect on the phenomenologically important difference between the d and u-quark distributions is some 20% larger than the value based on quark mass differences alone. In total these sources of CSV account for approximately 40% of the NuTeV anomaly.

  13. X-Ray Spectroscopy: An Experimental Technique to Measure Charge State Distribution Right at the Ion-Solid Interaction

    CERN Document Server

    Sharma, Prashant

    2015-01-01

    Charge state distributions of $^{56}$Fe and $^{58}$Ni projectile ions passing through thin carbon foils have been studied in the energy range of 1.44 - 2.69 MeV/u using a novel method from the x-ray spectroscopy technique. Interestingly the charge state distribution in the bulk show Lorentzian behavior instead of usual Gaussian distribution. Further, different parameters of charge state distribution like mean charge state, distribution width and asymmetric parameter are determined and compared with the empirical calculations and ETACHA predictions. It is found that the x-ray measurement technique is appropriate to determine the mean charge state right at the interaction zone or in the bulk. Interestingly, empirical formalism predicts much lower projectile mean charge states compare to x-ray measurements which clearly indicate multi-electron capture from the target surface. The ETACHA predictions and experimental results are found to be comparable for energies $\\geq$ 2 MeV/u.

  14. Highly transverse velocity distribution of convoy electrons emitted by highly charged ions

    Science.gov (United States)

    Seliger, M.; Tőkési, K.; Reinhold, C. O.; Burgdörfer, J.

    2003-05-01

    We present a theoretical study of convoy electron emission resulting from highly charged ion (HCI) transport through carbon foils. Employing a classical transport theory we analyze the angular and energy distribution formed by multiple scattering of electrons in the solid. We find that the convoy electron distribution becomes highly transverse at intermediate foil thicknesses representing an oblate spheroidal distribution due to the stepwise excitation of the HCI. The calculated convoy electron spectra are found to be in good agreement with recent measurements.

  15. Solute location in a nanoconfined liquid depends on charge distribution

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Jacob A.; Thompson, Ward H., E-mail: wthompson@ku.edu [Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (United States)

    2015-07-28

    Nanostructured materials that can confine liquids have attracted increasing attention for their diverse properties and potential applications. Yet, significant gaps remain in our fundamental understanding of such nanoconfined liquids. Using replica exchange molecular dynamics simulations of a nanoscale, hydroxyl-terminated silica pore system, we determine how the locations explored by a coumarin 153 (C153) solute in ethanol depend on its charge distribution, which can be changed through a charge transfer electronic excitation. The solute position change is driven by the internal energy, which favors C153 at the pore surface compared to the pore interior, but less so for the more polar, excited-state molecule. This is attributed to more favorable non-specific solvation of the large dipole moment excited-state C153 by ethanol at the expense of hydrogen-bonding with the pore. It is shown that a change in molecule location resulting from shifts in the charge distribution is a general result, though how the solute position changes will depend upon the specific system. This has important implications for interpreting measurements and designing applications of mesoporous materials.

  16. Consecutive reversible ionization-recombination reactions and ionic charge state distribution of Au plasma

    Institute of Scientific and Technical Information of China (English)

    ZHU; Zhiyan; ZHU; Zhenghe; TANG; Changhuan; TANG; Yongjia

    2005-01-01

    The present work proposes kinetics of ionization-recombination to study the charge state distribution of Au plasma. The first step is to calculate the average lifetime, energy level structure, degeneracy and partition function of Au48+―Au52+ by relativistic quantum mechanics, and next to compute the equilibrium constant and the second-order recombination rate constant by statistical thermodynamics. Based on these data, the differential equations of consecutive reversible ionization-recombination reactions are solved from which the charge state distribution and its average charge are derived. Finally, the influence of electron temperature and density on average charge is given in this paper. It is called the first-principle theory, for no experimental data are needed.

  17. Revealing dressed quarks via the proton's charge distribution.

    Science.gov (United States)

    Cloët, Ian C; Roberts, Craig D; Thomas, Anthony W

    2013-09-01

    The proton is arguably the most fundamental of nature's readily detectable building blocks. It is at the heart of every nucleus and has never been observed to decay. It is nevertheless a composite object, defined by its valence-quark content: u+u+d--i.e., two up (u) quarks and one down (d) quark; and the manner by which they influence, inter alia, the distribution of charge and magnetization within this bound state. Much of novelty has recently been learned about these distributions; and it now appears possible that the proton's momentum-space charge distribution possesses a zero. Experiments in the coming decade should answer critical questions posed by this and related advances; we explain how such new information may assist in charting the origin and impact of key emergent phenomena within the strong interaction. Specifically, we show that the possible existence and location of a zero in the proton's electric form factor are a measure of nonperturbative features of the quark-quark interaction in the standard model, with particular sensitivity to the running of the dressed-quark mass.

  18. Particles inside electrolytes with ion-specific interactions, their effective charge distributions, and effective interactions

    Science.gov (United States)

    Ding, Mingnan; Liang, Yihao; Xing, Xiangjun

    2016-10-01

    In this work, we explore the statistical physics of colloidal particles that interact with electrolytes via ion-specific interactions. Firstly we study particles interacting weakly with electrolyte using linear response theory. We find that the mean potential around a particle is linearly determined by the effective charge distribution of the particle, which depends both on the bare charge distribution and on ion-specific interactions. We also discuss the effective interaction between two such particles and show that, in the far field regime, it is bilinear in the effective charge distributions of two particles. We subsequently generalize the above results to the more complicated case where particles interact strongly with the electrolyte. Our results indicate that in order to understand the statistical physics of non-dilute electrolytes, both ion-specific interactions and ionic correlations have to be addressed in a single unified and consistent framework. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174196 and 91130012).

  19. Isovector coupling channel and central properties of the charge density distribution in heavy spherical nuclei

    Indian Academy of Sciences (India)

    S Haddad

    2010-09-01

    The influence of the isovector coupling channel on the central depression parameter and the central value of the charge density distribution in heavy spherical nuclei was studied. The isovector coupling channel leads to about 50% increase of the central depression parameter, and weakens the dependency of both central depression parameter and central density on the asymmetry, impressively contributing to the semibubble form of the charge density distribution in heavy nuclei, and increasing the probability of larger nuclei with higher proton numbers and higher neutron-to-proton ratios stable.

  20. Measurements of charged-particle distributions with the ATLAS detector

    CERN Document Server

    Cairo, Valentina Maria Martina

    2016-01-01

    Inclusive charged-particle measurements probe the low-energy region of the non-perturbative quantum chromodynamics. The ATLAS collaboration has recently measured the charged-particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam currents, recorded at centre-of-mass energies of 8 TeV and 13 TeV. The measurements at 8 TeV cover a wide spectrum using charged-particle selections with minimum transverse momentum of both 100 MeV and 500 MeV and in various phase space regions of low and high charged-particle multiplicities, some of which are studied for the first time by ATLAS. The measurements at 13 TeV also present detailed studies with a minimum transverse momentum of both 100 MeV and 500 MeV. The measurements are compared with predictions of various tuned Monte Carlo generators and are found to provide strong constraints on these. None of the Monte Carlo generators with their respective tunes are able to reproduce all the features of the data.

  1. Space charge studies in FFAG using the tracking code Zgoubi

    Energy Technology Data Exchange (ETDEWEB)

    Tahar, M. Haj [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    A method is implemented in Zgoubi that allows the computation of space charge effects in 2D distributions and with some restrictions in 3D distributions. It relies on decomposing field maps or analytical elements into slices and applying a space charge kick to the particles. The aim of this study is to investigate the accuracy of this technique, its limitations/advantages by comparisons with other linear/nonlinear computation methods and codes, and to apply it to high power fixed field ring design studies.

  2. Importance of volume corrections on the net-charge distributions at the RHIC BES energies

    CERN Document Server

    Xu, Hao-jie

    2016-01-01

    The paper presents my recent investigations of volume corrections on the cumulant products of net-charge distributions in statistical model, corresponding to the data reported by the STAR collaboration. The corrected statistical expectations, under simple Poisson approximations, can reasonably explain the data measured in experiment. The results indicate that volume corrections play crucial role in event-by-event multiplicity fluctuation studies.

  3. High-resolution study of the Gamow-Teller strength distribution in the light nuclei 9B and 13N using the (3He,t) charge-exchange reaction at 420 MeV beam energy

    International Nuclear Information System (INIS)

    Excited states in the light nuclei 9B and 13C were studied using the (3He,t) charge-exchange reaction on 9Be and 13C targets. The measurements were performed at the research center for nuclear physics (RCNP) in Osaka, Japan, using the magnetic spectrometer Grand Raiden and the dispersive WS course. The 3He beam with an energy of 420 MeV was accelerated by the RCNP Ring Cyclotron. The Grand Raiden spectrometer and the WS course allow to study the (3He,t) charge-exchange reaction with an energy resolution of around 30 keV, which is one order of magnitude better than measurements with the (p,n) charge-exchange reaction. The high resolution allows to better separate individual states and to determine weak excitation strengths because of low background in the spectra. A total of 19 states in 13N were studied, and a total of 20 states were observed in 9B. Of these, 9 states in 13C and 10 states in 9B were identified as being excited by a Gamow-Teller transition. Charge-exchange reactions are related to beta-decay, and at zero momentum transfer a simple proportionality exists between the cross-section of the charge-exchange experiment and the Fermi (F) or Gamow-Teller (GT) beta-decay strength. While the Fermi strength B(F) is concentrated in the transition to the isobaric analog state, the Gamow-Teller strength B(GT) is scattered among the excited states. The main aim of the present study is to determine the B(GT) strengths in the nuclei 9B and 13N. The only charge-exchange study of 9B was made 30 years ago with the (p,n) reaction and a resolution of around 300-400 keV. Many states, especially at high excitation energy, could not be resolved by that study. The present work was able to separate many weakly excited states with small decay width at high excitation energies (12-19 MeV) in 9B and determine the B(GT) strength distribution by using recent high-precision beta-decay data. The results point to a strong difference in spatial structure between the low-lying levels of

  4. On combining Thole's induced point dipole model with fixed charge distributions in molecular mechanics force fields.

    Science.gov (United States)

    Antila, Hanne S; Salonen, Emppu

    2015-04-15

    The Thole induced point dipole model is combined with three different point charge fitting methods, Merz-Kollman (MK), charges from electrostatic potentials using a grid (CHELPG), and restrained electrostatic potential (RESP), and two multipole algorithms, distributed multipole analysis (DMA) and Gaussian multipole model (GMM), which can be used to describe the electrostatic potential (ESP) around molecules in molecular mechanics force fields. This is done to study how the different methods perform when intramolecular polarizability contributions are self-consistently removed from the fitting done in the force field parametrization. It is demonstrated that the polarizable versions of the partial charge models provide a good compromise between accuracy and computational efficiency in describing the ESP of small organic molecules undergoing conformational changes. For the point charge models, the inclusion of polarizability reduced the the average root mean square error of ESP over the test set by 4-10%.

  5. Application of carbon stripping foil to HIRFL-CSR and measurement of charge state distribution

    International Nuclear Information System (INIS)

    Charged ions may be injected into the CSRm by means of the charge stripping injection or the multiple multi-turn injection. The charge state distribution of the ions passing through the carbon foil has great influence on the performance of the accelerator and thus plays a key role in the charge stripping injection. It's found that the charge state distribution is dependent on the thicknesses of the carbon foil and the energy of the ions. In present work, the carbon stripper was applied to HIRFL-CSR and the best optional charge state distribution was measured. (authors)

  6. Influence of Multiple Ionization on Charge State Distributions

    Science.gov (United States)

    Hahn, Michael; Savin, Daniel Wolf

    2015-08-01

    The spectrum emitted by a plasma depends on the charge state distribution (CSD) of the gas. For collisionally ionized plasmas, the CSD is is determined by the corresponding rates for electron-impact ionization and recombination. In astrophysics, such plasmas are formed in stars, supernova remnants, galaxies, and galaxy clusters. Current CSD calculations generally do not account for electron-impact multiple ionization (EIMI), a process in which multiple electrons are ejected by a single electron-ion collision. We have estimated the EIMI cross sections for all charge states of iron using a combination of the available experimental data and semi-empirical formulae. We then modeled the CSD and observed the influence of EIMI compared to only including single ionization. One case of interest for astrophysics is nanoflare heating, which is a leading theory to explain the heating of the solar corona. In order to determine whether this theory can indeed explain coronal heating, spectroscopic measurements are being compared to model nanoflare spectra. Such models have attempted to predict the spectra of impulsively heated plasmas in which the CSD is time dependent. These nonequilbirium ionization calculations have so far ignored EIMI, but our findings suggest that EIMI can have a significant effect on the CSD of a nanoflare-heated plasma, changing the ion abundances by up to about 50%.

  7. Mass and charge distributions in Fe-induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Madani, H.; Mignerey, A.C.; Marchetti, A.A.; Weston-Dawkes, A.P.; Kehoe, W.L.; Obenshain, F.

    1995-02-21

    The charge and mass of the projectile-like fragments produced in the 12-MeV/nucleon {sup 56}Fe + {sup 165}Ho reaction were measured at a laboratory scattering angle of 16 degrees. The mass and charge distributions of the projectile-like fragments were generated as a function of total kinetic energy loss (TKEL), and characterized by their neutron and proton centroids and variances, and correlation factors. A weak drift of the system towards mass asymmetry, opposite to the direction which minimizes the potential energy of the composite system, was observed. The increase in the variances with energy loss is consistent with a nucleon exchange mechanism as a means for energy dissipation. Predictions of two nucleon exchange models, Randrup`s and, Tassan-Got`s models, are compared to the experimental results of the 672-MeV {sup 56}Fe + {sup 165}Ho reaction and to other Fe-induced reactions. The proton and neutron centroids were found to be generally better reproduced by Tassan-Got`s model than by Randrup`s model. The variances and correlation factor are well reproduced for asymmetric systems by both models.

  8. Study on space charge effects of the CSNS/RCS

    Institute of Scientific and Technical Information of China (English)

    XU Shou-Yan; WANG Sheng

    2011-01-01

    The Rapid Cycling Synchrotron (RCS) is a key component of the China Spallation Neutron Source (CSNS).The space charge effect is one of the most important issues in the CSNS/RCS,which limits the maximum beam intensity,as well as the maximum beam power.Space charge effects are the main source of emittance growth and beam loss in the RCS.Space charge effects have been studied by simulation for the CSNS/RCS.By optimizing the painting orbit,the optimized painting distribution was obtained.The space charge effects during the acceleration are studied and dangerous resonances,which may induce emittance growth and beam loss,are investigated.The results are an important reference for the design and commissioning of the CSNS/RCS.

  9. Formation and Distribution of Space-Charge in Cross-Linked Polyethylene

    Institute of Scientific and Technical Information of China (English)

    张冶文; 李吉晓; 郑飞虎; 彭宗仁; 吴长顺; 夏钟福

    2002-01-01

    The formation and distribution of space-charge in a cross-linked polyethylene (XLPE) sample are investigated by means of pressure wave propagation, infrared spectroscopy and electrostatic force microscopy (EFM). The related mechanism of space-charge distribution and the structure of XLPE are discussed. The EFM images show that quite large quantitative space-charges locate at the surface of spherulites.

  10. Surface valence charge distributions and scanning tunneling microscopy of WTe 2

    Science.gov (United States)

    Tang, S. L.; Kasowski, R. V.; Suna, A.; Parkinson, B. A.

    1990-11-01

    We have studied the surface electronic structures of the van der Waals surfaces of tungsten ditelluride (WTe 2) with first principles calculations of the spatial distribution of the surface valence charge densities and compared the results to images obtained with the scanning tunneling microscope (STM). The energy- and z(distance from the surface)-dependent calculations show that the valence charge density distribution above the Te surface could be derived from the surface Te layer, as we previously calculated, but the charge density distribution close to but below the Fermi energy has a distortion that coincidentally makes it appear to have a symmetry close to the paired, zig-zag and buckled rows of the W layer. These results dramatically illustrate that in highly covalent compounds, the surface valence charge density distribution does not necessarily follow the surface atomic positions even on ideal, unreconstructed surfaces. An alternative interpretation of the STM images of this surface is proposed in light of this new surface electronic structure. Our calculated and experimental results are also discussed with reference to recent STM results on other transition metal dichalcogenides.

  11. Distribution Locational Marginal Pricing for Optimal Electric Vehicle Charging Management

    DEFF Research Database (Denmark)

    Li, Ruoyang; Wu, Qiuwei; Oren, Shmuel S.

    2013-01-01

    This paper presents an integrated distribution locational marginal pricing (DLMP) method designed to alleviate congestion induced by electric vehicle (EV) loads in future power systems. In the proposed approach, the distribution system operator (DSO) determines distribution locational marginal...... prices (DLMPs) by solving the social welfare optimization of the Electric distribution system which considers EV aggregators as Price takers in the local DSO market and demand price elasticity. Nonlinear optimization has been used to solve the social welfare optimization problem in order to obtain...... the DLMPs. The efficacy of the proposed approach was demonstrated by using the bus 4 distribution system of the Roy Billinton Test System (RBTS) and Danish driving data. The case study results show that the integrated DLMP methodology can successfully alleviate the congestion caused by EV loads. It is also...

  12. Measurement of charged-particle multiplicity distributions and their $H_q$ moments in hadronic Z decays at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Buijs, A; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Van Dierendonck, D N; Dionisi, C; Dittmar, Michael; Doria, A; Dova, M T; Duchesneau, D; Duinker, P; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, Pierre; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levchenko, P M; Li Chuan; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Valle, R T; De Walle, M; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zilizi, G; Zimmermann, B; Zöller, M

    2003-01-01

    The charged-particle multiplicity distribution and the inclusive momentum distribution, in terms of the variable $\\xi$, are measured for all hadronic events as well as for light-quark and b-quark events in $\\mathrm{e}^{+}\\mathrm{e}^{-}$ collisions at the Z pole. Moments of the charged-particle multiplicity distributions are calculated, and the peak positions of the $\\xi$ distributions determined. The multiplicity distributions are studied in terms of their $H_q$ moments. Their quasi-oscillations when plotted versus the rank of the moment are compared with different theoretical approaches.

  13. Potential energy, force distribution and oscillatory motion of chloride ion inside electrically charged carbon nanotubes

    Science.gov (United States)

    Sadeghi, F.; Ansari, R.; Darvizeh, M.

    2016-06-01

    In this research, a continuum-based model is presented to explore potential energy, force distribution and oscillatory motion of ions, and in particular chloride ion, inside carbon nanotubes (CNTs) decorated by functional groups at two ends. To perform this, van der Waals (vdW) interactions between ion and nanotube are modeled by the 6-12 Lennard-Jones (LJ) potential, whereas the electrostatic interactions between ion and functional groups are modeled by the Coulomb potential and the total interactions are analytically derived by summing the vdW and electrostatic interactions. Making the assumption that carbon atoms and charge of functional groups are all uniformly distributed over the nanotube surface and the two ends of nanotube, respectively, a continuum approach is utilized to evaluate the related interactions. Based on the actual force distribution, the equation of motion is also solved numerically to arrive at the time history of displacement and velocity of inner core. With respect to the proposed formulations, comprehensive studies on the variations of potential energy and force distribution are carried out by varying functional group charge and nanotube length. Moreover, the effects of these parameters together with initial conditions on the oscillatory behavior of system are studied and discussed in detail. It is found out that chloride ion escapes more easily from negatively charged CNTs which is followed by uncharged and positively charged ones. It is further shown that the presence of functional groups leads to enhancing the operating frequency of such oscillatory systems especially when the electric charges of ion and functional groups have different signs.

  14. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yigit, Cemil; Dzubiella, Joachim, E-mail: joachim.dzubiella@helmholtz-berlin.de [Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, 14109 Berlin (Germany); Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine,” 14513 Teltow (Germany); Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Heyda, Jan [Department of Physical Chemistry, University of Chemistry and Technology, Prague, 166 28 Praha 6 (Czech Republic)

    2015-08-14

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.

  15. Gluon saturation and pseudo-rapidity distributions of charged hadrons at RHIC energy regions

    Institute of Scientific and Technical Information of China (English)

    WEI Xin-Bing; FENG Sheng-Qin

    2012-01-01

    We modified the gluon saturation model by rescaling the momentum fraction according to saturation momentum and introduced Cooper-Frye hydrodynamic evolution to systematically study the pseudorapidity distributions of final charged hadrons at different energies and different centralities for Au-Au collisions in relativistic heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC).The features of both gluon saturation and hydrodynamic evolution at different energies and different centralities for Au-Au collisions are investigated in this paper.

  16. Studying Charged Particle Optics: An Undergraduate Course

    Science.gov (United States)

    Ovalle, V.; Otomar, D. R.; Pereira, J. M.; Ferreira, N.; Pinho, R. R.; Santos A. C. F.

    2008-01-01

    This paper describes some computer-based activities to bring the study of charged particle optics to undergraduate students, to be performed as a part of a one-semester accelerator-based experimental course. The computational simulations were carried out using the commercially available SIMION program. The performance parameters, such as the focal…

  17. Dielectric sample with two-layer charge distribution for space charge calibration purposes

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Rasmussen, C.

    2002-01-01

    In the present paper is described a dielectric test sample with two very narrow concentrations of bulk charges, achieved by two internal electrodes not affecting the acoustical properties of the sample, a fact important for optimal application of most space charge measuring systems. Space charge...... formation was investigated under different electrical conditions by means of the laser induced pressure pulse (LIPP) method and the pulsed electro-acoustic method (PEA)....

  18. The effect of polymer charge density and charge distribution on the formation of multilayers

    CERN Document Server

    Voigt, U; Tauer, K; Hahn, M; Jäger, W; Klitzing, K V

    2003-01-01

    Polyelectrolyte multilayers which are built up by alternating adsorption of polyanions and polycations from aqueous solutions at a solid interface are investigated by reflectometry and ellipsometry. Below a degree of charge of about 70% the adsorption stops after a certain number of dipping cycles and no multilayer formation occurs. This indicates an electrostatically driven adsorption process. Below a charge density of 70% an adsorption can take place if the charged segments are combined as a block of the polymer.

  19. Interacting Electrons in Parabolic Quantum Dots:. Energy Levels, Addition Energies, and Charge Distributions

    Science.gov (United States)

    Schreiber, Michael; Siewert, Jens; Vojta, Thomas

    2001-08-01

    We investigate the properties of interacting electrons in a parabolic confinement. To this end we numerically diagonalize the Hamiltonian using the Hartree-Fock based diagonalization method which is related to the configuration interaction approach. We study different types of interactions, Coulomb as well as short range. In addition to the ground state energy we calculate the spatial charge distribution and compare the results to those of the classical calculation. We find that a sufficiently strong screened Coulomb interaction produces energy level bunching for classical as well as for quantum-mechanical dots. Bunching in the quantum-mechanical system occurs due to an interplay of kinetic and interaction energy, moreover, it is observed well before reaching the limit of a Wigner crystal. It also turns out that the shell structure of classical and quantum mechanical spatial charge distributions is quite similar.

  20. Charge state distribution of light ions at glancing collision with solid surface

    International Nuclear Information System (INIS)

    Many experimental results have suggested that the charge state distribution of ions have penetrated through solid is different from that inside the solid. It is important to clarify the physical process taking place at solid surface in order to know the states of ions inside the solid from those observed outside the solid. In the present paper, we report our measurement of charge state distributions of He+ and H2+ ions having been scattered in small angles (less than 40) at surfaces of Au, Ag and C. One of the advantages of the use of the glancing collision of ions at solid surface for the study of ion-surface interaction is that the dwell time of ion near solid surface can be made more than 100 times longer than that in normal transmission experiments. The longer dwell times may alter any contribution of solid surface to electron capture and loss of ions

  1. Plasma Diagnostics by the Charge Distributions of Heavy Ions in Impulsive Solar Flares

    Science.gov (United States)

    Kartavykh, Julia

    We consider stochastic acceleration of heavy ions (Fe as a sample species) by the Alfven wave turbulence in impulsive solar flares. The processes of Coulomb losses and ion stripping during the energy gain are taken into account. The properties of charge distribution function are influenced by the plasma parameters such as temperature, number density and spectral index of turbulence. General dependences of the mean charge, dispersion and asymmetry of charge distribution on plasma parameters are investigated. These simulations could be important in the light of new experimental data from ACE spacecraft that is able to measure charge distribution for an individual impulsive event.

  2. Systematic study of free monopolar discharge in dielectrics with charge excess

    International Nuclear Information System (INIS)

    The monopolar space charge motion in dielectrics is studied in the aim of providing general information about it to the experimentalist. The electric current is obtained for many initial charge distributions and some relations are derived linking the behavior of the current to the initial charge distribution. Methods are proposed for obtaining the mobility of the carriers from experimental results. Finally the conditions for observation of current reversals are analysed. (Author)

  3. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Koichi, E-mail: tanak@mmc.co.jp [Central Research Institute, Mitsubishi Materials Corporation, 1002-14 Mukohyama, Naka-shi, Ibaraki 311-0102 (Japan); Anders, André [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 53, Berkeley, California 94720 (United States)

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  4. Distribution of charge carriers in dissipative structure of semiconductors

    CERN Document Server

    Kamilov, I K; Kovalev, A S

    2002-01-01

    It has been shown experimentally that redistribution of the charge carrier concentration takes place in the volume of Te and InSb monocrystals under formation and excitation by the strong field of a dissipative structure in nonequilibrium electron-hole plasma. This leads to a situation when the presence of only longitudinal autosolitons in the dissipative structure reduces the charge carrier concentration outside autosolitons while the presence of only transversal autosolitons makes the charge carriers concentration larger. These effects are explained in the following manner: longitudinal autosolitons, occurring in nonequilibrium electron-hole plasma created by the Joule heating are considered as cold and transversal autosolitons are considered as hot ones

  5. Equilibrium charge state distributions of high energy heavy ions

    International Nuclear Information System (INIS)

    Equilibrium charge state fractions have been measured for N, O, Ne, S, Ar and Kr ions at 1.04 MeV/nucleon after passing through various stripping materials. Further data were obtained at higher energy for S ions (4.12 MeV/nucleon) and Ar ions (4.12 and 9.6 MeV/nucleon). The mean charge fractions can be fitted to universal curves for both solid and gaseous strippers. Measurements of the equilibrium fraction of krypton ions at 1.04 MeV/nucleon passing through heavy vapours have shown that a higher average charge state is obtained than for lighter gaseous strippers. (Auth.)

  6. Coordinated Charging of Electric Vehicles for Congestion Prevention in the Distribution Grid

    DEFF Research Database (Denmark)

    Hu, Junjie; You, Shi; Lind, Morten;

    2014-01-01

    Distributed energy resources (DERs), like electric vehicles (EVs), can offer valuable services to power systems, such as enabling renewable energy to the electricity producer and providing ancillary services to the system operator. However, these new DERs may challenge the distribution grid due...... to insufficient capacity in peak hours. This paper aims to coordinate the valuable services and operation constraints of three actors: the EV owner, the Fleet operator (FO) and the Distribution system operator (DSO), considering the individual EV owner’s driving requirement, the charging cost of EV and thermal...... for their vehicles with lower cost. The congestion problem will be solved by a coordination between DSO and FOs through a distribution grid capacity market scheme. Then, a mathematical formulation of the market scheme is presented. Further, some case studies are shown to illustrate the effectiveness of the proposed...

  7. Study of a New Quick-Charging Strategy for Electric Vehicles in Highway Charging Stations

    Directory of Open Access Journals (Sweden)

    Lixing Chen

    2016-09-01

    Full Text Available To solve the problem, because of which conventional quick-charging strategies (CQCS cannot meet the requirements of quick-charging for multiple types of electric vehicles (EV on highways where vehicle inflow is excessive, this paper proposed a new quick-charging strategy (NQCS for EVs: on the premise of not affecting those EVs being charged, the remaining power of the quick-charging pile with multiple power output interfaces is used to provide a synchronous charging service for EVs waiting in the queue. To verify the effectiveness of this strategy, a power distribution model of charging pile and a queuing model of charging station (CS were constructed. In addition, based on an actual highway service area where vehicle inflow is excessive during the simulation period (0:00–24:00, charging situations of CQCS and NQCS were respectively simulated in a charging station (CS, with different number of chargers, by basic queuing algorithm and an improved queuing algorithm. The simulation results showed that when the relative EV inflow is excessive, compared to CQCS, NQCS not only can reduce user waiting time, charging time, and stay time, but also can improve the utilisation rate of charging infrastructure and service capacity of CS and reduce the queue length of CS. At the same time, NQCS can reduce the impact on the power grid. In addition, in NQCS, the on-demand power distribution method is more efficient than the average power distribution method. Therefore, NQCS is more suitable for quick-charging for multiple types of EVs on highways where vehicle inflow is excessive.

  8. A thundercloud electric field sounding - Charge distribution and lightning

    Science.gov (United States)

    Weber, M. E.; Few, A. A.; Stewart, M. F.; Christian, H. J.

    1982-01-01

    An instrumented free balloon measured electric fields and field changes as it rose through a thundercloud above Langmuir Laboratory, New Mexico. The variation of the electric field with altitude implied that the cloud contained negative space charge of density -0.6 to -4 nC/cu m between 5.5 and 8.0 km MSL. The environmental temperature at these levels ranged from -5 to -20 C. The measurements imply that the areal extent of this negative charge center was significantly greater than that of the cloud's intense precipitation shafts. At altitudes greater than 8 km, the instrument ascended past net positive charge. In addition, positive space charge adjacent to the earth's surface (concentration 0.6 nC/cu m and in the lowest portion of the cloud (1.0 nC/cu m) is inferred from the measurements. Electric field changes from intracloud lightning were interpreted by using a simple model for the developing streamer of the initial phase. Thunder source reconstructions provided estimates for the orientation of lightning channels. Seven 'streamers' so analyzed propagated on the average, at 50,000 m/s and carried a current of 390 A. The mean charge dissipated during a flash was 30 C.

  9. Direct observation of charge re-distribution in a MgB2 superconductor

    Science.gov (United States)

    Wu, Sheng Yun; Shih, Po-Hsun; Ji, Jhong-Yi; Chan, Ting-Shan; Yang, Chun Chuen

    2016-04-01

    To study the origin of negative thermal expansion effects near the superconducting transition temperature TC in MgB2, low-temperature high-energy synchrotron radiation x-ray diffraction was used to probe the charge redistribution near the boron atoms. Our results reveal that the in-plane hole-distribution of B- hops through the direct orbital overlap of Mg2+ along the c-axis at 50 K and is re-distributed out-of-plane. This study shows that the out-of-plane π-hole distribution plays a dominant role in the possible origin of superconductivity and negative thermal effects in MgB2.

  10. Charged Hadron Multiplicity Distribution at Relativistic Heavy-Ion Colliders

    Directory of Open Access Journals (Sweden)

    Ashwini Kumar

    2013-01-01

    Full Text Available The present paper reviews facts and problems concerning charge hadron production in high energy collisions. Main emphasis is laid on the qualitative and quantitative description of general characteristics and properties observed for charged hadrons produced in such high energy collisions. Various features of available experimental data, for example, the variations of charged hadron multiplicity and pseudorapidity density with the mass number of colliding nuclei, center-of-mass energies, and the collision centrality obtained from heavy-ion collider experiments, are interpreted in the context of various theoretical concepts and their implications. Finally, several important scaling features observed in the measurements mainly at RHIC and LHC experiments are highlighted in the view of these models to draw some insight regarding the particle production mechanism in heavy-ion collisions.

  11. Equilibrium charge-state distributions of highly stripped ions in carbon foils

    International Nuclear Information System (INIS)

    Asymmetric equilibrium charge-state distributions observed for heavy ions (Z approx. >= 7) in carbon foils at high velocities (v > 3.6 x 108 Z0sup(.)45 cm s-1) are closely approximated by a simple statistical distribution: the reduced chi-squared model. The dependences of the mean charge and of the standard deviation of the charge on the projectile velocity are obtained by a previously-known and a newly-proposed relation, respectively. Finally charge-state fractions may be easily predicted using a simple formula depending only on the atomic number and on the velocity of the projectile. (orig.)

  12. Distributed Solar Photovoltaics for Electric Vehicle Charging: Regulatory and Policy Considerations (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-09-01

    Increasing demand for electric vehicle (EV) charging provides an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear information for policy makers, utilities and potential adopters. This paper introduces the pros and cons of EV charging during the day versus at night, summarizes the benefits and grid implications of combining solar and EV charging technologies, and offers some regulatory and policy options available to policy makers and regulators wanting to incentivize solar EV charging.

  13. Probabilistic Method to Assess the Impact of Charging of Electric Vehicles on Distribution Grids

    Directory of Open Access Journals (Sweden)

    David Martínez-Vicente

    2012-05-01

    Full Text Available This paper describes a grid impact analysis of charging electric vehicles (EV using charging curves with detailed battery modelling. A probabilistic method using Monte Carlo was applied to a typical Spanish distribution grid, also using mobility patterns of Barcelona. To carry out this analysis, firstly, an IEEE test system was adapted to a typical distribution grid configuration; secondly, the EV and its battery types were modeled taking into account the current vehicle market and the battery characteristics; and, finally, the recharge control strategies were taken into account. Once these main features were established, a statistical probabilistic model for the household electrical demand and for the EV charging parameters was determined. Finally, with these probabilistic models, the Monte Carlo analysis was performed within the established scenario in order to study the lines’ and the transformers’ loading levels. The results show that an accurate model for the battery gives a more precise estimation about the impact on the grid. Additionally, mobility patterns have been proved to be some of the most important key aspects for these type of studies.

  14. Non-Gaussianities in the topological charge distribution of the SU(3) Yang--Mills theory

    CERN Document Server

    Cé, Marco; Engel, Georg P; Giusti, Leonardo

    2015-01-01

    We study the topological charge distribution of the SU(3) Yang--Mills theory with high precision in order to be able to detect deviations from Gaussianity. The computation is carried out on the lattice with high statistics Monte Carlo simulations by implementing a naive discretization of the topological charge evolved with the Yang--Mills gradient flow. This definition is far less demanding than the one suggested from Neuberger's fermions and, as shown in this paper, in the continuum limit its cumulants coincide with those of the universal definition appearing in the chiral Ward identities. Thanks to the range of lattice volumes and spacings considered, we can extrapolate the results for the second and fourth cumulant of the topological charge distribution to the continuum limit with confidence by keeping finite volume effects negligible with respect to the statistical errors. Our best results for the topological susceptibility is t_0^2*chi=6.67(7)*10^-4, where t_0 is a standard reference scale, while for the...

  15. Effects of target size on the comparison of photon and charged particle dose distributions

    International Nuclear Information System (INIS)

    The work presented here is part of an ongoing project to quantify and evaluate the differences in the use of different radiation types and irradiation geometries in radiosurgery. We are examining dose distributions for photons using the ''Gamma Knife'' and the linear accelerator arc methods, as well as different species of charged particles from protons to neon ions. A number of different factors need to be studied to accurately compare the different modalities such as target size, shape and location, the irradiation geometry, and biological response. This presentation focuses on target size, which has a large effect on the dose distributions in normal tissue surrounding the lesion. This work concentrates on dose distributions found in radiosurgery, as opposed to those usually found in radiotherapy. 5 refs., 2 figs

  16. Linear and nonlinear excitations in complex plasmas with nonadiabatic dust charge fluctuation and dust size distribution

    Institute of Scientific and Technical Information of China (English)

    Zhang Li-Ping; Xue Ju-Kui; Li Yan-Long

    2011-01-01

    Both linear and nonlinear excitation in dusty plasmas have been investigated including the nonadiabatic dust charge fluctuation and Gaussian size distribution dust particles.A linear dispersion relation and a Korteweg-de VriesBurgers equation governing the dust acoustic shock waves are obtained.The relevance of the instability of wave and the wave evolution to the dust size distribution and nonadiabatic dust charge fluctuation is illustrated both analytically and numerically.The numerical results show that the Gaussian size distribution of dust particles and the nonadiabatic dust charge fluctuation have strong common influence on the propagation of both linear and nonlinear excitations.

  17. Axial ion charge state distribution in the vacuum arc plasma jet

    International Nuclear Information System (INIS)

    We report on our experimental studies of the ion charge state distribution (CSD) of vacuum arc plasmas using a time-of-flight diagnostic method. The dependence of the CSD on the axial distance from the plasma source region was measured for a titanium vacuum arc. It was found that the axial CSD profile is nonuniform. Generally, the mean charge state increases approximately linearly with axial distance from about 1.7 at 12 cm up to 1.9 at 25 cm from the plasma source. A model for ion transport in the free boundary plasma jet is proposed which is based on the existence of an electric field in the quasineutral plasma. This model qualitatively explains the experimental results. (c) 2000 American Institute of Physics

  18. Row charge cratering calculations. [Feasibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.W.; Matuska, W.

    1978-06-01

    Two-dimensional calculations have been done to determine the feasibility of constructing deep canals with nuclear explosives subject to the limitation in the proposed PNE Treaty. The conditions under which a series of explosives set in a row can be approximated by a cylindrical line source have been determined. Using this result, the possibility of lifting 250 m of overburden with 150-kt charges spaced at 50-m intervals has been investigated. This study shows that for a variety of equations of state for the geological medium, there appears little possibility that such an excavation can be accomplished.

  19. Charge coupled device image sensor study

    Science.gov (United States)

    1974-01-01

    An evaluation of a charge-coupled device (CCD) image sensors for use in spacecraft-borne imaging systems was conducted. The study resulted in design recommendations for two sensors, an approximately 500 times 500 element imaging device and a 1 times 190 element linear imaging device with a 190 times 121 buffer store. Emphasis was placed on the higher resolution, area-imaging sensor. The objectives of the proposed sensors are listed, results of the experiments are analyzed, and estimates of the device performance are presented. A summary of the major technical recommendations is included.

  20. Deployment Strategy for Charging Piles Based on Distribution Network Capacity Planning and Users’ Needs

    Directory of Open Access Journals (Sweden)

    Du Chongyang

    2015-01-01

    Full Text Available Electric vehicles are the most potential transports in the future. However, the large scale of charging facilities will make a great influence on gird. There is a need to make a research on the construction of charging facilities. Based on the power demand characteristics of electric vehicle charging, distribution network capacity, charging system performance and other aspects, this paper mainly researched the deployment strategy of charging piles. First, the authors built up a model with characteristics of charging power demand of electric vehicle and a model of charging service system. The characteristic of daily load curve is analyzed. Second, based on these works, the authors designed the progress of strategy making. At last, the progress was verified by the actual use case.

  1. Chemical Bonding and Charge Distribution at Metallic Nanocontacts

    OpenAIRE

    Schwingenschloegl, Udo; Schuster, Cosima

    2006-01-01

    We present results of electronic structure calculations for aluminium contacts of atomic size, based on density functional theory and the local density approximation. Addressing the atomic orbitals at the neck of the nanocontact, we find that the local band structure deviates strongly from bulk fcc aluminium. In particular, hybridization between Al 3s and 3p states is fully suppressed due to directed bonds at the contact. Moreover, a charge transfer of 0.6 electrons off the contact aluminium ...

  2. Simulations of Ion Velocity Distribution Functions Taken into Account Both Elastic and Charge Exchange Collisions

    CERN Document Server

    Wang, Huihui; Kaganovich, Igor D; Mustafaev, Alexander S

    2016-01-01

    Based on accurate representation of the He+-He differential angular scattering cross sections consisting of both elastic and charge exchange collisions, we performed detailed numerical simulations of the ion velocity distribution functions (IVDF) by Monte Carlo collision method (MCC). The results of simulations are validated by comparison with the experimental data of the mobility and the transverse diffusion. The IVDF simulation study shows that due to significant effect of scattering in elastic collisions IVDF cannot be separated into product of two independent IVDFs in the transverse and parallel to the electric field directions.

  3. Tensor Metrics and Charged Containers for 3D Q-space Sample Distribution

    OpenAIRE

    Knutsson, Hans; Westin, Carl-Fredrik

    2013-01-01

    This paper extends Jones’ popular electrostatic repulsion based algorithm for distribution of single-shell Q-space samples in two fundamental ways. The first alleviates the single-shell requirement enabling full Q-space sampling. Such an extension is not immediately obvious since it requires distributing samples evenly in 3 dimensions. The extension is as elegant as it is simple: Add a container volume of the desired shape having a constant charge density and a total charge equal to the negat...

  4. Imaging the potential distribution of charged adsorbates on graphene by low-energy electron holography

    CERN Document Server

    Latychevskaia, Tatiana; Escher, Conrad; Fink, Hans-Werner

    2016-01-01

    While imaging individual atoms can routinely be achieved in high resolution transmission electron microscopy, visualizing the potential distribution of individually charged adsorbates leading to a phase shift of the probing electron wave is still a challenging task. Since low-energy electrons are sensitive to localized potential gradients, we employed this tool in the 30 eV kinetic energy range to visualize the potential distribution of localized charged adsorbates present on free-standing graphene.

  5. Determination of the charge state distribution of a highly ionized coronal Au plasma

    International Nuclear Information System (INIS)

    We present the first definitive measurement of the charge state distribution of a highly ionized gold plasma in coronal equilibrium. The experiment utilized the Livermore electron beam ion trap EBIT-II in a novel configuration to create a plasma with a Maxwellian temperature of 2.5 keV. The charge balance in the plasma was inferred from spectral line emission measurements which accounted for charge exchange effects. The measured average ionization state was 46.8±0.75. This differs from the predictions of two modeling codes by up to four charge states

  6. An axisymmetric charged dust distribution with NUT rotation in general relativity

    Science.gov (United States)

    Vargas-Rodriguez, H.; Gonzalez-Silva, R. A.; Lopez Benitez, L. I.

    2010-07-01

    An exact solution of the Einstein-Maxwell's field equations is presented. This solution describes an axisymmetric charged dust distribution, with NUT rotation, in the presence of an electromagnetic field of the pure magnetic type. In the comoving reference frame, there is magnetic field only, the dust's electric charges do not interact with themselves, this is due to the vanishing of the Lorentz force. A naked singularity with magnetic charge is present. The solution is of the Petrov type D and possesses four Killing vectors. This is a generalization of the Lukács solution to the case when dust is charged.

  7. Calculating method for confinement time and charge distribution of ions in electron cyclotron resonance sources

    Energy Technology Data Exchange (ETDEWEB)

    Dougar-Jabon, V.D. [Escuela de Fisica, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); Umnov, A.M. [Russian Friendship University, 117198 Moscow (Russia); Kutner, V.B. [Joint Institute for Nuclear Research, Dubna (Russia)

    1996-03-01

    It is common knowledge that the electrostatic pit in a core plasma of electron cyclotron resonance sources exerts strict control over generation of ions in high charge states. This work is aimed at finding a dependence of the lifetime of ions on their charge states in the core region and to elaborate a numerical model of ion charge dispersion not only for the core plasmas but for extracted beams as well. The calculated data are in good agreement with the experimental results on charge distributions and magnitudes for currents of beams extracted from the 14 GHz DECRIS source. {copyright} {ital 1996 American Institute of Physics.}

  8. Multiplicity and Pseudorapidity Distributions of Charged Particles and Photons at Forward Pseudorapidity in Au + Au Collisions at sqrt{s_NN} = 62.4 GeV

    CERN Document Server

    Adams, J; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Billmeier, A; Bland, L C; Blyth, C O; Blyth, S L; Bonner, B E; Botje, M; Boucham, A; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca-Sanchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Choi, H A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; De Moura, M M; Dedovich, T G; De Phillips, M; Derevshchikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta-Majumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Yu; Fornazier, K S F; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Geurts, F; Ghazikhanian, V; Ghosh, P; González, J E; Gorbunov, Y G; Gos, H; Grachov, O; Grebenyuk, O; Grosnick, D P; Guertin, S M; Guo, Y; Sen-Gupta, A; Gupta, N; Gutíerrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kowalik, K L; Krämer, M; Kravtsov, P; Kravtsov, V I; Krüger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kutuev, R K; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C H; Lehocka, S; Le Vine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; López-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnik, Yu M; Meschanin, A; Miller, M L; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnár, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, Grazyna Janina; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Yu A; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevozchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M V; Potrebenikova, E V; Potukuchi, B V K S; Prindle, D; Pruneau, C A; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D M; Reid, J G; Reinnarth, J; Renault, G; Retière, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Selyuzhenkov, I; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimansky, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sørensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M N; Stringfellow, B C; Suaide, A A P; Sugarbaker, E R; Sumbera, M; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T J; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; Van der Kolk, N; Van Leeuwen, M; Van der Molen, A M; Varma, R; Vasilevski, I M; Vasilev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, X L; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yoo, I K; Yurevich, V I; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2006-01-01

    We present the centrality dependent measurement of multiplicity and pseudorapidity distributions of charged particles and photons in Au + Au collisions at sqrt{s_NN} = 62.4 GeV. The charged particles and photons are measured in the pseudorapidity region 2.9 < eta < 3.9 and 2.3 < eta < 3.7, respectively. We have studied the scaling of particle production with the number of participating nucleons and the number of binary collisions. The photon and charged particle production in the measured pseudorapidity range has been shown to be consistent with energy independent limiting fragmentation behavior. The photons are observed to follow a centrality independent limiting fragmentation behavior while for the charged particles it is centrality dependent. We have carried out a comparative study of the pseudorapidity distributions of positively charged hadrons, negatively charged hadrons, photons, pions, net protons in nucleus--nucleus collisions and pseudorapidity distributions from p+p collisions. From the...

  9. Direct Mapping of Charge Distribution during Lithiation of Ge Nanowires Using Off-Axis Electron Holography

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Zhaofeng; Gu, Meng; Tang, Jianshi; Wang, Chiu-Yen; He, Yang; Wang, Kang L.; Wang, Chongmin; Smith, David J.; McCartney, Martha R.

    2016-06-08

    The successful operation of rechargeable batteries relies on reliable insertion/ extraction of ions into/from the electrodes. The battery performance and the response of the electrodes to such ion insertion and extraction are directly related to the spatial distribution of the charge and its dynamic evolution. However, it remains unclear how charge is distributed in the electrodes during normal battery operation. In this work, we have used offaxis electron holography to measure charge distribution during lithium ion insertion into a Ge nanowire (NW) under dynamic operating conditions. We discovered that the surface region of the Ge core is negatively charged during the core-shell lithiation of the Ge NW, which is counterbalanced by positive charge on the inner surface of the lithiated LixGe shell. The remainder of the lithiated LixGe shell is free from net charge, consistent with its metallic characteristics. The present work provides a vivid picture of charge distribution and dynamic evolution during Ge NW lithiation and should form the basis for tackling the response of these and related materials under real electrochemical conditions.

  10. Direct Mapping of Charge Distribution during Lithiation of Ge Nanowires Using Off-Axis Electron Holography.

    Science.gov (United States)

    Gan, Zhaofeng; Gu, Meng; Tang, Jianshi; Wang, Chiu-Yen; He, Yang; Wang, Kang L; Wang, Chongmin; Smith, David J; McCartney, Martha R

    2016-06-01

    The successful operation of rechargeable batteries relies on reliable insertion/extraction of ions into/from the electrodes. The battery performance and the response of the electrodes to such ion insertion and extraction are directly related to the spatial distribution of the charge and its dynamic evolution. However, it remains unclear how charge is distributed in the electrodes during normal battery operation. In this work, we have used off-axis electron holography to measure charge distribution during lithium ion insertion into a Ge nanowire (NW) under dynamic operating conditions. We discovered that the surface region of the Ge core is negatively charged during the core-shell lithiation of the Ge NW, which is counterbalanced by positive charge on the inner surface of the lithiated LixGe shell. The remainder of the lithiated LixGe shell is free from net charge, consistent with its metallic characteristics. The present work provides a vivid picture of charge distribution and dynamic evolution during Ge NW lithiation and should form the basis for tackling the response of these and related materials under real electrochemical conditions. PMID:27192608

  11. Spatial distribution of ion charges in fast, partially stripped clusters traversing solid targets

    International Nuclear Information System (INIS)

    Joint statistical description of the distribution of ion charge states and the spatial structure of a cluster, made of heavy ions, allows a self-consistent generalization of the Brandt-Kitagawa variational theory, including dynamically-screened inter-ionic interactions, in a form of a non-linear integral equation. Solution of such an equation for fast clusters passing very thin foils shows the familiar reduction of charge per ion, compared to the charge on an isotactic ion, which is rather non-homogeneously distributed throughout the volume of the cluster. As a consequence, the distribution of individual ion charges in the cluster exhibits large dispersion around an average value, which drops with the increasing cluster size

  12. Spatial distribution of ion charges in fast, partially stripped clusters traversing solid targets

    CERN Document Server

    Miskovic, Z L; Goodman, F O; Wang, Y N

    2002-01-01

    Joint statistical description of the distribution of ion charge states and the spatial structure of a cluster, made of heavy ions, allows a self-consistent generalization of the Brandt-Kitagawa variational theory, including dynamically-screened inter-ionic interactions, in a form of a non-linear integral equation. Solution of such an equation for fast clusters passing very thin foils shows the familiar reduction of charge per ion, compared to the charge on an isotactic ion, which is rather non-homogeneously distributed throughout the volume of the cluster. As a consequence, the distribution of individual ion charges in the cluster exhibits large dispersion around an average value, which drops with the increasing cluster size.

  13. Tomographic measurement of the phase space distribution of a space-charge-dominated beam

    Science.gov (United States)

    Stratakis, Diktys

    Many applications of accelerators, such as free electron lasers, pulsed neutron sources, and heavy ion fusion, require a good quality beam with high intensity. In practice, the achievable intensity is often limited by the dynamics at the low-energy, space-charge dominated end of the machine. Because low-energy beams can have complex distribution functions, a good understanding of their detailed evolution is needed. To address this issue, we have developed a simple and accurate tomographic method to map the beam phase using quadrupole magnets, which includes the effects from space charge. We extend this technique to use also solenoidal magnets which are commonly used at low energies, especially in photoinjectors, thus making the diagnostic applicable to most machines. We simulate our technique using a particle in cell code (PIC), to ascertain accuracy of the reconstruction. Using this diagnostic we report a number of experiments to study and optimize injection, transport and acceleration of intense space charge dominated beams. We examine phase mixing, by studying the phase-space evolution of an intense beam with a transversely nonuniform initial density distribution. Experimental measurements, theoretical predictions and PIC simulations are in good agreement each other. Finally, we generate a parabolic beam pulse to model those beams from photoinjectors, and combine tomography with fast imaging techniques to investigate the time-sliced parameters of beam current, size, energy spread and transverse emittance. We found significant differences between the slice emittance profiles and slice orientation as the beam propagates downstream. The combined effect of longitudinal nonuniform profiles and fast imaging of the transverse phase space provided us with information about correlations between longitudinal and transverse dynamics that we report within this dissertation.

  14. Calculation of photon angular distribution and polarization for radiative recombination for high-charged hydrogen-like ions

    Institute of Scientific and Technical Information of China (English)

    Shen Tian-Ming; Chen Chong-Yang; Wang Yan-Sen

    2007-01-01

    In this paper a systematic study is carried out on the angular distribution and polarization of photons emitted following radiative recombination of H-like ions by a non-relativistic dipole approximation. In order to incorporate the screening effect due to inner-shell electrons, a distorted wave approach is used. The dependences of the calculated angular distribution and polarization on the reduced energy and nuclear charge are fitted by the corresponding empirical formulas respectively.

  15. Heavy ion charge-state distribution effects on energy loss in plasmas

    Science.gov (United States)

    Barriga-Carrasco, Manuel D.

    2013-10-01

    According to dielectric formalism, the energy loss of the heavy ion depends on its velocity and its charge density. Also, it depends on the target through its dielectric function; here the random phase approximation is used because it correctly describes fully ionized plasmas at any degeneracy. On the other hand, the Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler is used to determine its mean charge state . This latter criterion implies that the mean charge state depends on the electron density and temperature of the plasma. Also, the initial charge state of the heavy ion is crucial for calculating inside the plasma. Comparing our models and estimations with experimental data, a very good agreement is found. It is noticed that the energy loss in plasmas is higher than that in the same cold gas cases, confirming the well-known enhanced plasma stopping (EPS). In this case, EPS is only due to the increase in projectile effective charge Qeff, which is obtained as the ratio between the energy loss of each heavy ion and that of the proton in the same plasma conditions. The ratio between the effective charges in plasmas and in cold gases is higher than 1, but it is not as high as thought in the past. Finally, another significant issue is that the calculated effective charge in plasmas Qeff is greater than the mean charge state , which is due to the incorporation of the BK charge distribution. When estimations are performed without this distribution, they do not fit well with experimental data.

  16. Study of longitudinal dynamics in space-charge dominated beams

    Science.gov (United States)

    Tian, Kai

    Modern accelerator applications, such as heavy ion fusion drivers, pulsed neutron sources, electron injectors for high-energy linear colliders, and X-ray Free Electron Lasers, demand beams with high intensity, low emittance and small energy spread. At low (non-relativistic) energies, the "electrostatic", collective interactions from space-charge forces existing in such intense beams play the dominant role; we characterize these beams as space-charge dominated beams. This dissertation presents numerous new findings on the longitudinal dynamics of a space-charge dominated beam, particularly on the propagation of density perturbations. In order to fully understand the complex physics of longitudinal space-charge waves, we combine the results of theory, computer simulation, and experiment. In the Long Solenoid Experimental system (LSE), with numerous diagnostic tools and techniques, we have, for the first time, experimentally measured the detailed energy profiles of longitudinal space-charge waves at different locations, both near the beam source and at the end of the transport system. Along with the current profiles, we have a complete set of experimental data for the propagation of space-charge waves. We compare these measured results to a 1-D theory and find better agreement for beams with perturbations in the linear regime, where the perturbation strength is less than 10%, than those with nonlinear perturbations. Using fast imaging techniques that we newly developed, we have, for the first time, obtained the progressive time-resolved images of longitudinal slices of a space-charge dominated beam. These images not only provide us time-resolved transverse density distribution of the beam, but also enable us to take time-resolved transverse phase space measurement using computerized tomography. By combining this information with the longitudinal energy measurement, we have, for the first time, experimentally constructed the full 6-D phase space. Part of the results

  17. Forward-backward correlations and charged-particle azimuthal distributions in $pp$ interactions using the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Hernandez, Carlos Medina; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuler, Georges; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-01-01

    Using inelastic proton-proton interactions at $\\sqrt{s}$ = 900 GeV and 7 TeV, recorded by the ATLAS detector at the LHC, measurements have been made of the correlations between forward and backward charged-particle multiplicities and, for the first time, between forward and backward charged-particle summed transverse momentum. In addition, jet-like structure in the events is studied by means of azimuthal distributions of charged particles relative to the charged particle with highest transverse momentum in a selected kinematic region of the event. The results are compared with predictions from tunes of the PYTHIA and HERWIG++ Monte Carlo generators, which in most cases are found to provide a reasonable description of the data.

  18. Forward-backward correlations and charged-particle azimuthal distributions in pp interactions using the ATLAS detector

    Science.gov (United States)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman, de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.

    2012-07-01

    Using inelastic proton-proton interactions at sqrt {s} = 900 GeV and 7 TeV, recorded by the ATLAS detector at the LHC, measurements have been made of the correlations between forward and backward charged-particle multiplicities and, for the first time, between forward and backward charged-particle summed transverse momentum. In addition, jet-like structure in the events is studied by means of azimuthal distributions of charged particles relative to the charged particle with highest transverse momentum in a selected kinematic region of the event. The results are compared with predictions from tunes of the pythia and herwig++ Monte Carlo generators, which in most cases are found to provide a reasonable description of the data.

  19. Measurements of charged-particle distributions at $\\sqrt{s}=8$ and $13$ TeV with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00332935; The ATLAS collaboration

    2016-01-01

    Inclusive charged-particle measurements at hadron colliders probe the low-energy non-perturbative region of QCD. The ATLAS collaboration has measured the primary-charged-particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC proton--proton beam currents, recorded at centre-of-mass energies of 8~TeV and 13~TeV. The new precise measurements at 8~TeV cover a wide spectrum of distributions using charged-particle selections with minimum transverse momentum of both 100~MeV and 500~MeV and in various phase-space regions of low and high charged-particle multiplicities. Two measurements at 13~TeV present the first detailed studies with a minimum transverse momentum of 500~MeV and 100~MeV. The measurements are compared with predictions of various MC generators and are found to provide strong constraints on these.

  20. Charge distribution on plutonium-containing aerosols produced in mixed-oxide reactor fuel fabrication and the laboratory

    International Nuclear Information System (INIS)

    The inhalation toxicity of potentially toxic aerosols may be affected by the electrostatic charge on the particles. Charge may influence the deposition site during inhalation and therefore its subsequent clearance and dose patterns. The electrostatic charge distributions on plutonium-containing aerosols were measured with a miniature, parallel plate, aerosol electrical mobility spectrometer. Two aerosols were studied: a laboratory-produced 238PuO2 aerosol (15.8 Ci/g) and a plutonium mixed-oxide aerosol (PU-MOX, natural UO2 plus PuO2, 0.02 Ci/g) formed during industrial centerless grinding of mixed-oxide reactor fuel pellets. Plutonium-238 dioxide particles produced in the laboratory exhibited a small net positive charge within a few minutes after passing through a 85Kr discharger due to alpha particle emission removal of valence electrons. PU-MOX aerosols produced during centerless grinding showed a charge distribution essentially in Boltzmann equilibrium. The gross alpha aerosol concentrations (960-1200 nCi/l) within the glove box were sufficient to provide high ion concentrations capable of discharging the charge induced by mechanical and/or nuclear decay processes

  1. 组合充电液力式静电喷嘴的雾滴覆盖分布试验%Exper imental study on droplet cover distribution with Combined-Charging Hydraulic Electrostatic nozzle

    Institute of Scientific and Technical Information of China (English)

    王保华; 杨波; 余泳昌; 李春杰

    2011-01-01

    A Combined-Charging Hydraulic Electrostatic nozzle was designed; and the droplet cover distribution comparison experiment was carried out between traditional spraying and electrostatic spraying. The result indicated that for the effects of electrostatic spraying, higher droplet coverage rate and stronger penetrating ability were achieved by using the new electrostatic nozzle.%设计了一种组合充电液力式静电喷嘴,进行了常规喷雾与静电喷雾雾滴覆盖分布对比试验.结果表明,所设计的静电喷嘴能够达到静电喷雾的效果,雾滴覆盖率有所提高,雾滴在植株内的穿透能力有所增强.

  2. Lateral charged particle distribution of extensive air showers - source of information about energy and nature of the primary cosmic particles

    International Nuclear Information System (INIS)

    The CORSIKA simulated showers for H, C and Fe cosmic primaries in 8 energy intervals from 1016 eV to 1018 eV, taking into account the response of KASCADE-Grande detectors, have been used to reconstruct the charged particle density for KASCADE-Grande observations, based on the Linsley lateral distribution function (LDF). Extensive studies have been done to investigate features for energy estimation and mass discrimination of cosmic primaries around 1017 eV. It has been found that the charged particle density distribution of EAS exhibits interesting information for both aspects: at larger distances from shower core, around 500 m - 600 m the charge particle density could be used as energy identifier, and at shorter distances from shower core, around, 100 m - 200 m, it signals the mass of the EAS primary. (author)

  3. 基于电荷分布的分裂指叉指换能器模型研究%Study on the Split Finger Interdigital Transducer Model Based on the Charge Distribution

    Institute of Scientific and Technical Information of China (English)

    刘砚军; 肖夏

    2014-01-01

    普通单电极叉指换能器由于相邻两个电极反射的波会同相位加强,它的指边缘反射明显,从而在声表面波器件中形成电极内反射干扰。为了尽量减小这种二阶效应,可以采用分裂指叉指换能器(亦称双电极换能器)。该文从场理论出发,得到叉指表面电荷分布函数,通过对电荷分布函数进行傅里叶变换,得到分裂指叉指换能器的一种新的数学解析模型。它可以准确地反映考虑临近效应后分裂指叉指换能器基频和谐振频率响应。%The strip edge reflections of the ordinary single-electrode interdigital transducer are quite obvious be-cause of the in-phase of the scattered waves induced from two adjacent electrodes.The wave reflections may result in the electrode interaction perturbations in the surface acoustic wave device.The split finger interdigital transducer (also called double finger transducer)can be used to minimize this second-order effect.In this paper,a new algo-rithm based on the Fourier transform of the surface charge distribution is proposed to analyze the characters of the split finger interdigital transducer.The surface charge distribution is obtained through the field theory.The model can accurately reflect the harmonic as well as the fundamental frequency response of the split finger interdigital transducer with considering neighbor interactions.

  4. Charge state distributions and charge exchange cross sections of carbon in helium at 30-258 keV

    Science.gov (United States)

    Maxeiner, Sascha; Seiler, Martin; Suter, Martin; Synal, Hans-Arno

    2015-10-01

    With the introduction of helium stripping in radiocarbon (14C) accelerator mass spectrometry (AMS), higher +1 charge state yields in the 200 keV region and fewer beam losses are observed compared to nitrogen or argon stripping. To investigate the feasibility of even lower beam energies for 14C analyses the stripping characteristics of carbon in helium need to be further studied. Using two different AMS systems at ETH Zurich (myCADAS and MICADAS), ion beam transmissions of carbon ions for the charge states -1, +1, +2 and +3 were measured in the range of 258 keV down to 30 keV. The correction for beam losses and the extraction of charge state yields and charge exchange cross sections will be presented. An increase in population of the +1 charge state towards the lowest measured energies up to 75% was found as well as agreement with previous data from literature. The findings suggest that more compact radiocarbon AMS systems are possible and could provide even higher efficiency than current systems operating in the 200 keV range.

  5. High-energy Electron Scattering and the Charge Distributions of Selected Nuclei

    Science.gov (United States)

    Hahn, B.; Ravenhall, D. G.; Hofstadter, R.

    1955-10-01

    Experimental results are presented of electron scattering by Ca, V, Co, In, Sb, Hf, Ta, W, Au, Bi, Th, and U, at 183 Mev and (for some of the elements) at 153 Mev. For those nuclei for which asphericity and inelastic scattering are absent or unimportant, i.e., Ca, V, Co, In, Sb, Au, and Bi, a partial wave analysis of the Dirac equation has been performed in which the nuclei are represented by static, spherically symmetric charge distributions. Smoothed uniform charge distributions have been assumed; these are characterized by a constant charge density in the central region of the nucleus, with a smoothed-our surface. Essentially two parameters can be determined, related to the radium and to the surface thickness. An examination of the Au experiments show that the functional forms of the surface are not important, and that the charge density in the central regions is probably fairly flat, although it cannot be determined very accurately.

  6. Planning Future Electric Vehicle Central Charging Stations Connected to Low-Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Marra, Francesco; Træholt, Chresten; Larsen, Esben

    2012-01-01

    A great interest is recently paid to Electric Vehicles (EV) and their integration into electricity grids. EV can potentially play an important role in power system operation, however, the EV charging infrastructures have been only partly defined, considering them as limited to individual charging...... points, randomly distributed into the networks. This paper addresses the planning of public central charging stations (CCS) that can be integrated in low-voltage (LV) networks for EV parallel charging. The concepts of AC and DC architectures of CCS are proposed and a comparison is given...... on their investment cost. Investigation on location and size of CCS is conducted, analyzing two LV grids of different capacity. The results enlighten that a public CCS should be preferably located in the range of 100 m from the transformer. The AC charging levels of 11 kW and 22 kW have the highest potential in LV...

  7. Equilibrium and non-equilibrium charge-state distributions of 2.0 MeV/u carbon ions passing through carbon foils

    Energy Technology Data Exchange (ETDEWEB)

    Imai, M., E-mail: imai@nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto University, Nishikyo, Kyoto 615-8540 (Japan); Sataka, M.; Matsuda, M.; Okayasu, S. [Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Kawatsura, K. [Kansai Gaidai University, Hirakata, Osaka 573-1001 (Japan); Takahiro, K. [Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Sakyo, Kyoto 606-8585 (Japan); Komaki, K. [Atomic Physics Laboratory, RIKEN, Wako, Saitama 351-0198 (Japan); Shibata, H. [Department of Nuclear Engineering, Kyoto University, Nishikyo, Kyoto 615-8540 (Japan); Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Nishio, K. [Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan)

    2015-07-01

    Both equilibrium and non-equilibrium charge-state distributions were studied experimentally for 2.0 MeV/u carbon ions after passing through carbon foils. Measured charge-state distribution established the equilibrium at a target thickness of 10 μg/cm{sup 2} and this remained unchanged until a maximum target thickness of 98 μg/cm{sup 2}. The equilibrium charge-state distribution, the equilibrium mean charge-state, and the width and skewness of the equilibrium distribution were compared with predictions using existing semi-empirical formulae as well as simulation results, including the ETACHA code. It was found that charge-state distributions, mean charge states, and distribution widths for C{sup 2+}, C{sup 3+}, and C{sup 4+} incident ions merged into quasi-equilibrium values at a target thickness of 5.7 μg/cm{sup 2} in the pre-equilibrium region and evolved simultaneously to the ‘real equilibrium’ values for all of the initial charge states, including C{sup 5+} and C{sup 6+} ions, as previously demonstrated for sulfur projectile ions at the same velocity (Imai et al., 2009). Two kinds of simulation, ETACHA and solution of rate equations taking only single electron transfers into account, were used, and both of them reproduced the measured charge evolution qualitatively. The quasi-equilibrium behavior could be reproduced with the ETACHA code, but not with solution of elementary rate equations.

  8. Equilibrium and non-equilibrium charge-state distributions of 2.0 MeV/u carbon ions passing through carbon foils

    International Nuclear Information System (INIS)

    Both equilibrium and non-equilibrium charge-state distributions were studied experimentally for 2.0 MeV/u carbon ions after passing through carbon foils. Measured charge-state distribution established the equilibrium at a target thickness of 10 μg/cm2 and this remained unchanged until a maximum target thickness of 98 μg/cm2. The equilibrium charge-state distribution, the equilibrium mean charge-state, and the width and skewness of the equilibrium distribution were compared with predictions using existing semi-empirical formulae as well as simulation results, including the ETACHA code. It was found that charge-state distributions, mean charge states, and distribution widths for C2+, C3+, and C4+ incident ions merged into quasi-equilibrium values at a target thickness of 5.7 μg/cm2 in the pre-equilibrium region and evolved simultaneously to the ‘real equilibrium’ values for all of the initial charge states, including C5+ and C6+ ions, as previously demonstrated for sulfur projectile ions at the same velocity (Imai et al., 2009). Two kinds of simulation, ETACHA and solution of rate equations taking only single electron transfers into account, were used, and both of them reproduced the measured charge evolution qualitatively. The quasi-equilibrium behavior could be reproduced with the ETACHA code, but not with solution of elementary rate equations

  9. Equilibrium charge state distributions of Ni, Co, and Cu beams in molybdenum foil at 2 MeV/u

    Science.gov (United States)

    Gastis, Panagiotis; Perdikakis, George; Robertson, Daniel; Bauder, Will; Skulski, Michael; Collon, Phillipe; Anderson, Tyler; Ostdiek, Karen; Aprahamian, Ani; Lu, Wenting; Almus, Robert

    2015-10-01

    The charge states of heavy-ions are important for the study of nuclear reactions in inverse kinematics when electromagnetic recoil mass spectrometers are used. The passage of recoil products through a material, like the windows of gas cells or charge state boosters, results a charge state distribution (CSD) in the exit. This distribution must be known for the extraction of any cross section since only few charge-state can be transmitted through a magnetic separator separator for a given setting. The calculation of CSDs for heavy ions is challenging. Currently we rely on semi-empirical models with unknown accuracy for ion/target combinations in the Z > 20 region. In the present study were measured the CSDs of the stable 60Ni, 59Co, and 63Cu beams while passing through a 1 μm molybdenum foil. The beam energies were 1.84 MeV/u, 2.09 MeV/u, and 2.11 MeV/u for the 60Ni, 59Co, and 63Cu respectively. The results of this study mainly check the accuracy of the semi-empirical models used by the program LISE++, on calculating CSDs for ion/target combinations of Z > 20. In addition, other empirical models on calculating mean charge states were compared and checked.

  10. A parametrisation of the energy loss distributions of charged particles and its applications for silicon detectors

    CERN Document Server

    Sikler, Ferenc

    2012-01-01

    The energy loss distribution of charged particles in silicon is approximated by a simple analytical parametrization. Its use is demonstrated through several examples. With the help of energy deposits in sensing elements of the detector, the position of track segments and the corresponding deposited energy are estimated with improved accuracy and less bias. The parametrization is successfully used to estimate the energy loss rate of charged particles, and it is applied to detector gain calibration tasks.

  11. The influence of nonthermal electron distributions on the charge state of heavy ions

    Science.gov (United States)

    Kartavykh, Yu.; Ostryakov, V.

    2001-08-01

    We investigate the influence of non-thermal electrons on the formation of ionic states of heavy elements in SEP events. The equilibrium mean charge of Mg, Si and Fe for several samples of non-Maxwellian populations (power law electron beam and bi-Maxwellian distribution) were calculated. According to our estimates the anomalously high density of non-thermal electrons is required to obtain substantial difference in the mean charge of heavy ions as compared with `pure' thermal dstribution.

  12. Recoil ion charge state distribution following the beta(sup +) decay of {sup 21}Na

    Energy Technology Data Exchange (ETDEWEB)

    Scielzo, Nicholas D.; Freedman, Stuart J.; Fujikawa, Brian K.; Vetter, Paul A.

    2003-01-03

    The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions.

  13. Role of Molecular Weight Distribution on Charge Transport in Semiconducting Polymers

    KAUST Repository

    Himmelberger, Scott

    2014-10-28

    © 2014 American Chemical Society. Model semiconducting polymer blends of well-controlled molecular weight distributions are fabricated and demonstrated to be a simple method to control intermolecular disorder without affecting intramolecular order or degree of aggregation. Mobility measurements exhibit that even small amounts of low molecular weight material are detrimental to charge transport. Trends in charge carrier mobility can be reproduced by a simple analytical model which indicates that carriers have no preference for high or low molecular weight chains and that charge transport is limited by interchain hopping. These results quantify the role of long polymer tie-chains and demonstrate the need for controlled polydispersity for achieving high carrier mobilities.

  14. Effects of charge distribution on water filling process in carbon nanotube

    Institute of Scientific and Technical Information of China (English)

    MENG LingYi; LI QiKai; SHUAI ZhiGang

    2009-01-01

    Using umbrella sampling technique with molecular dynamics simulation, we investigated the nanoflu-idic transport of water in carbon nanotube (CNT). The simulations showed that a positive charge modi-fication to the carbon nanotube can slow down the water column growth process, while the negative charge modification to the carbon nanotube will, on the other hand, quicken the water column growth process. The free energy curves were obtained through the statistical process of water column growth under different charge distributions, and the results indicated that these free energy curves can be employed to explain the dynamical process of water column growth in the nanosized channels.

  15. Effects of charge distribution on water filling process in carbon nanotube

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using umbrella sampling technique with molecular dynamics simulation,we investigated the nanoflu-idic transport of water in carbon nanotube(CNT).The simulations showed that a positive charge modi-fication to the carbon nanotube can slow down the water column growth process,while the negative charge modification to the carbon nanotube will,on the other hand,quicken the water column growth process.The free energy curves were obtained through the statistical process of water column growth under different charge distributions,and the results indicated that these free energy curves can be employed to explain the dynamical process of water column growth in the nanosized channels.

  16. The Impact of Charging Plug-In Hybrid Electric Vehicles on a Residential Distribution Grid

    OpenAIRE

    Clement-Nyns, Kristien; Haesen, Edwin; Driesen, Johan

    2010-01-01

    Alternative vehicles, such as plug-in hybrid electric vehicles, are becoming more popular. The batteries of these plug-in hybrid electric vehicles are to be charged at home from a standard outlet or on a corporate car park. These extra electrical loads have an impact on the distribution grid which is analyzed in terms of power losses and voltage deviations. Without coordination of the charging, the vehicles are charged instantaneously when they are plugged in or after a fixed start delay. Thi...

  17. Hierarchical charge distribution controls self-assembly process of silk in vitro

    Science.gov (United States)

    Zhang, Yi; Zhang, Cencen; Liu, Lijie; Kaplan, David L.; Zhu, Hesun; Lu, Qiang

    2015-12-01

    Silk materials with different nanostructures have been developed without the understanding of the inherent transformation mechanism. Here we attempt to reveal the conversion road of the various nanostructures and determine the critical regulating factors. The regulating conversion processes influenced by a hierarchical charge distribution were investigated, showing different transformations between molecules, nanoparticles and nanofibers. Various repulsion and compressive forces existed among silk fibroin molecules and aggregates due to the exterior and interior distribution of charge, which further controlled their aggregating and deaggregating behaviors and finally formed nanofibers with different sizes. Synergistic action derived from molecular mobility and concentrations could also tune the assembly process and final nanostructures. It is suggested that the complicated silk fibroin assembly processes comply a same rule based on charge distribution, offering a promising way to develop silk-based materials with designed nanostructures.

  18. Charge state distribution studies of SrF{sub 3}, MnF{sub 3} and CaF{sub 3} molecules using single and double stripping in a Tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj, E-mail: baghelpankaj@gmail.com [Physik Department der Technische, Universitaet Muenchen, D-85748 Garching (Germany); Inter-University Accelerator Center (IUAC), PO Box 10502, New Delhi 110067 (India); Korschinek, G. [Physik Department der Technische, Universitaet Muenchen, D-85748 Garching (Germany); Chopra, S. [Inter-University Accelerator Center (IUAC), PO Box 10502, New Delhi 110067 (India); Faestermann, T.; Ludwig, P.; Rugel, G.; Seiler, D.; Wallner, A. [Physik Department der Technische, Universitaet Muenchen, D-85748 Garching (Germany); Ojha, S.; Gargari, S.; Joshi, R.; Kanjilal, D. [Inter-University Accelerator Center (IUAC), PO Box 10502, New Delhi 110067 (India)

    2011-09-15

    High energy beams of high ion currents from a Tandem accelerator are a common requirement in nuclear physics, materials science and Accelerator Mass Spectrometry (AMS) research. In many cases, molecular beams are chosen from the ion source to achieve a high ion source yield for the negative ions, or, as for AMS, to suppress isobaric interference. For this reason we have studied the use of consecutive stripper foils, double stripping, to increase the ion yield in conjunction with increased energy of injected molecular beams through a Tandem accelerator. By this method we could achieve a shift in the yield towards higher charge states.

  19. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements

    Science.gov (United States)

    Yu, Deyang; Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-11-01

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O3+ ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  20. Charge-state distribution and Doppler effect in an expanding photoionized plasma.

    Science.gov (United States)

    Foord, M E; Heeter, R F; van Hoof, P A M; Thoe, R S; Bailey, J E; Cuneo, M E; Chung, H-K; Liedahl, D A; Fournier, K B; Chandler, G A; Jonauskas, V; Kisielius, R; Mix, L P; Ramsbottom, C; Springer, P T; Keenan, F P; Rose, S J; Goldstein, W H

    2004-07-30

    The charge state distributions of Fe, Na, and F are determined in a photoionized laboratory plasma using high resolution x-ray spectroscopy. Independent measurements of the density and radiation flux indicate unprecedented values for the ionization parameter xi=20-25 erg cm s(-1) under near steady-state conditions. Line opacities are well fitted by a curve-of-growth analysis which includes the effects of velocity gradients in a one-dimensional expanding plasma. First comparisons of the measured charge state distributions with x-ray photoionization models show reasonable agreement.

  1. Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu

    Science.gov (United States)

    Sadhukhan, Jhilam; Nazarewicz, Witold; Schunck, Nicolas

    2016-01-01

    We propose a methodology to calculate microscopically the mass and charge distributions of spontaneous fission yields. We combine the multidimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. We obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to the dissipation in collective motion and to adiabatic fission characteristics.

  2. Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu

    CERN Document Server

    Sadhukhan, Jhilam; Schunck, Nicolas

    2016-01-01

    In this letter, we outline a methodology to calculate microscopically mass and charge distributions of spontaneous fission yields. We combine the multi-dimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. We obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to the dissipation in collective motion and to adiabatic characteristics.

  3. Impacts of electric vehicle charging on distribution networks in Denmark

    DEFF Research Database (Denmark)

    Xu, Lizhong; Yang, Guang Ya; Xu, Zhao;

    2011-01-01

    Electric vehicles (EVs) provide a unique opportunity to reduce carbon dioxide emissions from the transport sector by drawing on renewable resources. As EVs become increasingly popular in the automotive market, the study of its impacts on the low-voltage grid has become increasingly important...

  4. Charged hadron transverse momentum distributions in Au+Au collisions at S=200 GeV

    Science.gov (United States)

    Roland, Christof; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sqrt(s_NN) = 200 GeV. The evolution of the spectra for transverse momenta p_T from 0.25 to 5GeV/c is studied as a function of collision centrality over a range from 65 to 344 participating nucleons. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. Comparing peripheral to central Au+Au collisions, we find that the yields at the highest p_T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.

  5. Charging of a dust particle in a plasma with a nonextensive ion distribution function

    International Nuclear Information System (INIS)

    The dust charge neutralization in a plasma with nonextensive ions is considered. The condition that the total current to a grain be zero is expressed in terms of the Lambert function. The fall-off of the net negative dust charge is then considered and a parameter study conducted, assuming hydrogen as well as argon plasma. Owing to ion nonextensivity, the dust charge reduction becomes much faster. Moreover, stronger is the ions correlation, more important is the involved electron depletion for a complete dust “decharging”. -- Highlights: ► Dust charge neutralization in nonextensive plasma is analyzed. ► Fall-off of dust charge is considered. ► Dust charge neutralization becomes less faster.

  6. Potential distribution around a test charge in a positive dust-electron plasma

    Science.gov (United States)

    Ali, S.

    2016-06-01

    The electrostatic potential caused by a test-charge particle in a positive dust-electron plasma is studied, accounting for the dust-charge fluctuations associated with ultraviolet photoelectron and thermionic emissions. For this purpose, the set of Vlasov-Poisson equations coupled with the dust charging equation is solved by using the space-time Fourier transform technique. As a consequence, a modified dielectric response function is obtained for dust-acoustic waves in a positive dust-electron plasma. By imposing certain conditions on the velocity of the test charge, the electrostatic potential is decomposed into the Debye-H¨uckel (DH), wake-field (WF), and far-field (FF) potentials that are significantly modified in the limit of a large dust-charge relaxation rate both analytically and numerically. The results can be helpful for understanding dust crystallization/coagulation in twocomponent plasmas, where positively charged dust grains are present.

  7. Dust charging processes with a Cairns-Tsallis distribution function with negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Abid, A. A., E-mail: abidaliabid1@hotmail.com [Applied Physics Department, Federal Urdu University of Arts, Science and Technology, Islamabad Campus, Islamabad 45320 (Pakistan); Khan, M. Z., E-mail: mzk-qau@yahoo.com [Applied Physics Department, Federal Urdu University of Arts, Science and Technology, Islamabad Campus, Islamabad 45320 (Pakistan); Plasma Technology Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yap, S. L. [Plasma Technology Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Terças, H., E-mail: hugo.tercas@tecnico.ul.pt [Physics of Information Group, Instituto de Telecomunicações, Av. Rovisco Pais, Lisbon 1049-001 (Portugal); Mahmood, S. [Science Place, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A2 (Canada)

    2016-01-15

    Dust grain charging processes are presented in a non-Maxwellian dusty plasma following the Cairns-Tsallis (q, α)–distribution, whose constituents are the electrons, as well as the positive/negative ions and negatively charged dust grains. For this purpose, we have solved the current balance equation for a negatively charged dust grain to achieve an equilibrium state value (viz., q{sub d} = constant) in the presence of Cairns-Tsallis (q, α)–distribution. In fact, the current balance equation becomes modified due to the Boltzmannian/streaming distributed negative ions. It is numerically found that the relevant plasma parameters, such as the spectral indexes q and α, the positive ion-to-electron temperature ratio, and the negative ion streaming speed (U{sub 0}) significantly affect the dust grain surface potential. It is also shown that in the limit q → 1 the Cairns-Tsallis reduces to the Cairns distribution; for α = 0 the Cairns-Tsallis distribution reduces to pure Tsallis distribution and the latter reduces to Maxwellian distribution for q → 1 and α = 0.

  8. Dust charging processes with a Cairns-Tsallis distribution function with negative ions

    International Nuclear Information System (INIS)

    Dust grain charging processes are presented in a non-Maxwellian dusty plasma following the Cairns-Tsallis (q, α)–distribution, whose constituents are the electrons, as well as the positive/negative ions and negatively charged dust grains. For this purpose, we have solved the current balance equation for a negatively charged dust grain to achieve an equilibrium state value (viz., qd = constant) in the presence of Cairns-Tsallis (q, α)–distribution. In fact, the current balance equation becomes modified due to the Boltzmannian/streaming distributed negative ions. It is numerically found that the relevant plasma parameters, such as the spectral indexes q and α, the positive ion-to-electron temperature ratio, and the negative ion streaming speed (U0) significantly affect the dust grain surface potential. It is also shown that in the limit q → 1 the Cairns-Tsallis reduces to the Cairns distribution; for α = 0 the Cairns-Tsallis distribution reduces to pure Tsallis distribution and the latter reduces to Maxwellian distribution for q → 1 and α = 0

  9. Measurements of the charged particle multiplicity distribution in restricted rapidity intervals

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Meinhard, H; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Settles, Ronald; Seywerd, H C J; Stierlin, U; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Duarte, H; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Schuller, J P; Schwindling, J; Si Mohand, D; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1995-01-01

    Charged particle multiplicity distributions have been measured with the ALEPH detector in restricted rapidity intervals |Y| \\leq 0.5,1.0, 1.5,2.0\\/ along the thrust axis and also without restriction on rapidity. The distribution for the full range can be parametrized by a log-normal distribution. For smaller windows one finds a more complicated structure, which is understood to arise from perturbative effects. The negative-binomial distribution fails to describe the data both with and without the restriction on rapidity. The JETSET model is found to describe all aspects of the data while the width predicted by HERWIG is in significant disagreement.

  10. Polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent counterions: A Monte Carlo simulation study

    Science.gov (United States)

    Luque-Caballero, Germán; Martín-Molina, Alberto; Quesada-Pérez, Manuel

    2014-05-01

    Both experiments and theory have evidenced that multivalent cations can mediate the interaction between negatively charged polyelectrolytes and like-charged objects, such as anionic lipoplexes (DNA-cation-anionic liposome complexes). In this paper, we use Monte Carlo simulations to study the electrostatic interaction responsible for the trivalent-counterion-mediated adsorption of polyelectrolytes onto a like-charged planar surface. The evaluation of the Helmholtz free energy allows us to characterize both the magnitude and the range of the interaction as a function of the polyelectrolyte charge, surface charge density, [3:1] electrolyte concentration, and cation size. Both polyelectrolyte and surface charge favor the adsorption. It should be stressed, however, that the adsorption will be negligible if the surface charge density does not exceed a threshold value. The effect of the [3:1] electrolyte concentration has also been analyzed. In certain range of concentrations, the counterion-mediated attraction seems to be independent of this parameter, whereas very high concentrations of salt weaken the adsorption. If the trivalent cation diameter is doubled the adsorption moderates due to the excluded volume effects. The analysis of the integrated charge density and ionic distributions suggests that a delicate balance between charge inversion and screening effects governs the polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent cations.

  11. Comment on ‘The effect of single-particle charge limits on charge distributions in dusty plasmas’

    Science.gov (United States)

    Heijmans, L. C. J.; van de Wetering, F. M. J. H.; Nijdam, S.

    2016-09-01

    It was recently suggested that the electron affinity may pose an additional upper limit on the charge of a single particle in a plasma, in addition to the electron field emission limit. Here we will, however, show that these two limits both rely on the same physical process and that the limit is only relevant for small particles, because it relies on electron tunneling. Plasma-produced particles of only several nanometres (≲ 10~\\text{nm} ) in size are actively studied, for example in the application of quantum dots and the implications of the proposed charge limit are certainly significant there. However, care must be taken to extend the results to larger particles, which are also actively studied in the field of dusty plasma physics, where typically the limit can be neglected, as we will also show.

  12. Direct measurement of the charge distribution along a biased carbon nanotube bundle using electron holography

    DEFF Research Database (Denmark)

    Beleggia, Marco; Kasama, Takeshi; Dunin-Borkowski, Rafal E.;

    2011-01-01

    Nanowires and nanotubes can be examined in the transmission electron microscope under an applied bias. Here we introduce a model-independent method, which allows the charge distribution along a nanowire or nanotube to be measured directly from the Laplacian of an electron holographic phase image........ We present results from a biased bundle of carbon nanotubes, in which we show that the charge density increases linearly with distance from its base, reaching a value of ~0.8 electrons/nm near its tip.......Nanowires and nanotubes can be examined in the transmission electron microscope under an applied bias. Here we introduce a model-independent method, which allows the charge distribution along a nanowire or nanotube to be measured directly from the Laplacian of an electron holographic phase image...

  13. Flash X Ray: A Diagnostic Tool for Shaped Charge Studies

    Directory of Open Access Journals (Sweden)

    S. G. Tatake

    1992-10-01

    Full Text Available At present many antitank weapon systems are employing shaped charge warheads. It is, therefore, extremely important for a designer to avail of the methods capable of predicting performance of shaped charges, mainly to achieve maximum penetration. For this purpose, it is necessary to study the behaviour of the shaped charge during actual firing tests. These tests are difficult because of high speed of events that take place, production of intense light, smoke, debris, etc, and the large scale destruction caused. To overcome these difficulties, flash x-ray system during the jet studies on 30, 60 and 90 mm shaped charges and the evaluation of jet characteristics parameters.

  14. Charge symmetry breaking from a chiral extrapolation of moments of quark distribution functions

    OpenAIRE

    Shanahan, P. E.; Thomas, A. W.; Young, R.D.(ARC Centre of Excellence for Particle Physics at the Terascale and CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia)

    2013-01-01

    We present a determination, from lattice QCD, of charge symmetry violation in the spin- independent and spin-dependent parton distribution functions of the nucleon. This is done by chirally extrapolating recent QCDSF/UKQCD Collaboration lattice simulations of the first several Mellin moments of the parton distribution functions of octet baryons to the physical point. We find small chiral corrections for the polarized moments, while the corrections are quantitatively significant in the unpolar...

  15. Scaled momentum distributions of charged particles in dijet photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Lab., Argonne, IL (US)] (and others)

    2009-04-15

    The scaled momentum distributions of charged particles in jets have been measured for dijet photoproduction with the ZEUS detector at HERA using an integrated luminosity of 359 pb{sup -1}. The distributions are compared to predictions based on perturbative QCD carried out in the framework of the modified leading-logarithmic approximation (MLLA) and assuming local parton-hadron duality (LPHD). The universal MLLA scale, {lambda}{sub eff}, and the LPHD parameter, {kappa}{sup ch}, are extracted. (orig.)

  16. Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions

    NARCIS (Netherlands)

    Visscher, L; Dyall, KG

    1997-01-01

    Numerical Hartree-Fock calculations based on the Dirac-Coulomb Hamiltonian for the first 109 elements of the periodic table are presented. The results give the total electronic energy, as a function of the nuclear model that is used, for four different models of the nuclear charge distribution. The

  17. Charged particle density distributions in Au + Au collisions at relativistic heavy-ion collider energies

    Indian Academy of Sciences (India)

    Fauad Rami

    2003-05-01

    Charged particle pseudorapidity distributions have been measured in Au + Au collisions using the BRAHMS detector at RHIC. The results are presented as a function of the collision centrality and the center of mass energy. They are compared to the predictions of different parton scattering models and the important role of hard scattering processes at RHIC energies is discussed.

  18. Polarized parton distributions from charged-current deep-inelastic scattering

    International Nuclear Information System (INIS)

    We investigate the capabilities of a neutrino factory in the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments, with special attention to the accuracy of this kind of measurements. We show that a neutrino factory would allow to distinguish between different theoretical scenarios for the proton spin structure

  19. Market-based coordinated charging of electric vehicles on the low-voltage distribution grid

    NARCIS (Netherlands)

    M. Ghijsen; R D'hulst

    2011-01-01

    This paper presents a market based coordination mechanism for charging electric vehicles. In market based coordination, a virtual market is used to match supply and demand of a commodity. The goal is to limit the impact of the electric vehicles on the low voltage distribution grid. First it is shown

  20. Technique of studying the interaction of charges of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Yefremov, E.I.; Kravtsov, V.S.; Myachina, N.I.; Rodak, S.N.

    1982-01-01

    A technique is presented for studying the interaction of explosive charges which includes recording of the velocity of detonation of the studied charges, measurement of mechanical stresses developing in this case in the medium and determination of granulometric composition of the model with simultaneous and diverse initiation.

  1. Study of the Weak Charged Hadronic Current in b Decays

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alpat, B; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Antreasyan, D; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banicz, K; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Borgia, B; Boucham, A; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Buytenhuijs, A O; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Caria, M; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chan, A; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Choi, M T; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; De Boeck, H; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dorne, I; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Fernández, D; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Janssen, H; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kuijten, H; Kunin, A; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee Jae Sik; Lee, K Y; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lieb, E H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Nagy, E; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nippe, A; Nisati, A; Nowak, H; Opitz, H; Organtini, G; Ostonen, R; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riemers, B C; Riles, K; Rind, O; Ro, S; Robohm, A; Rodin, J; Rodríguez-Calonge, F J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Rykaczewski, H; Salicio, J; Sánchez, E; Santocchia, A; Sarakinos, M E; Sarkar, S; Sassowsky, M; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Sens, Johannes C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1997-01-01

    Charged and neutral particle multiplicities of jets associated with identified semileptonic and hadronic b decays are studied. The observed differences between these jets are used to determine the inclusive properties of the weak charged hadronic current. The average charged particle multiplicity of the weak charged hadronic current in b decays is measured for the first time to be 2.69$\\pm$0.07(stat.)$\\pm$0.14(syst.). This result is in good agreement with the JETSET hadronization model of the weak charged hadronic current if 40$\\pm$17\\% of the produced mesons are light--flavored tensor (L=1) mesons. This level of tensor meson production is consistent with the measurement of the $\\pi^0$ multiplicity in the weak charged hadronic current in b decays. \\end{abstract}

  2. Characterization of the surface charge distribution on kaolinite particles using high resolution atomic force microscopy

    Science.gov (United States)

    Kumar, Naveen; Zhao, Cunlu; Klaassen, Aram; van den Ende, Dirk; Mugele, Frieder; Siretanu, Igor

    2016-02-01

    Most solid surfaces, in particular clay minerals and rock surfaces, acquire a surface charge upon exposure to an aqueous environment due to adsorption and/or desorption of ionic species. Macroscopic techniques such as titration and electrokinetic measurements are commonly used to determine the surface charge and ζ -potential of these surfaces. However, because of the macroscopic averaging character these techniques cannot do justice to the role of local heterogeneities on the surfaces. In this work, we use dynamic atomic force microscopy (AFM) to determine the distribution of surface charge on the two (gibbsite-like and silica-like) basal planes of kaolinite nanoparticles immersed in aqueous electrolyte with a lateral resolution of approximately 30 nm. The surface charge density is extracted from force-distance curves using DLVO theory in combination with surface complexation modeling. While the gibbsite-like and the silica-like facet display on average positive and negative surface charge values as expected, our measurements reveal lateral variations of more than a factor of two on seemingly atomically smooth terraces, even if high resolution AFM images clearly reveal the atomic lattice on the surface. These results suggest that simple surface complexation models of clays that attribute a unique surface chemistry and hence homogeneous surface charge densities to basal planes may miss important aspects of real clay surfaces.

  3. Predicting and rationalizing the effect of surface charge distribution and orientation on nano-wire based FET bio-sensors

    DEFF Research Database (Denmark)

    De Vico, L.; Iversen, L.; Sørensen, Martin Hedegård;

    2011-01-01

    A single charge screening model of surface charge sensors in liquids (De Vico et al., Nanoscale, 2011, 3, 706-717) is extended to multiple charges to model the effect of the charge distributions of analyte proteins on FET sensor response. With this model we show that counter-intuitive signal...... changes (e.g. a positive signal change due to a net positive protein binding to a p-type conductor) can occur for certain combinations of charge distributions and Debye lengths. The new method is applied to interpret published experimental data on Streptavidin (Ishikawa et al., ACS Nano, 2009, 3, 3969...

  4. Distributed Cooperative Control of Multi Flywheel Energy Storage System for Electrical Vehicle Fast Charging Stations

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Quintero, Juan Carlos Vasquez;

    2015-01-01

    Plug-in electrical vehicles will play a critical role in future smart grid and sudden connection of electrical vehicles chargers may cause huge power-peaks with high slew-rates on grid. In order to cope with this issue, this paper applies a distributed cooperative control for fast charging station...... with dedicated paralleled flywheel-based energy storage system. The distributed DC-bus signaling method is employed in the power coordination of grid and flywheel converters, and a distributed secondary controller generates DC voltage correction term to adjust the local voltage set-point through a dynamic...

  5. A flexible distributed framework for realising electric and plug-in hybrid vehicle charging policies

    Science.gov (United States)

    Stüdli, S.; Crisostomi, E.; Middleton, R.; Shorten, R.

    2012-08-01

    Motivated by the problems of charging a number of electric vehicles via limited capacity infrastructure, this article considers the problem of individual load adjustment under a total capacity constraint. For reasons of scalability and simplified communications, distributed solutions to this problem are sought. Borrowing from communication networks (AIMD algorithms) and distributed convex optimisation, we describe a number of distributed algorithms for achieving relative average fairness whilst maximising utilisation. We present analysis and simulation results to show the performance of these algorithms. In the scenarios examined, the algorithm's performance is typically within 5% of that achievable in the ideal centralised case, but with greatly enhanced scalability and reduced communication requirements.

  6. Using Kappa Functions to Characterize Outer Heliosphere Proton Distributions in the Presence of Charge-exchange

    Science.gov (United States)

    Zirnstein, E. J.; McComas, D. J.

    2015-12-01

    Kappa functions have long been used in the analysis and modeling of suprathermal particles in various space plasmas. In situ observations of the supersonic solar wind show its distribution contains a cold ion core and power-law tail, which is well-represented by a kappa function. In situ plasma observations by Voyager, as well as observations of energetic neutral atom (ENA) spectra by the Interstellar Boundary Explorer (IBEX), showed that the compressed and heated inner heliosheath (IHS) plasma beyond the termination shock can also be represented by a kappa function. IBEX exposes the IHS plasma properties through the detection of ENAs generated by charge-exchange in the IHS. However, charge-exchange modifies the plasma as it flows through the IHS, and makes it difficult to ascertain the parent proton distribution. In this paper we investigate the evolution of proton distributions, initially represented by a kappa function, that experience losses due to charge-exchange in the IHS. In the absence of other processes, it is no longer representable by a single kappa function due to the energy-dependent, charge-exchange process. While one can still fit a kappa function to the evolving proton distribution over limited energy ranges, this yields fitting parameters (pseudo-density, pseudo-temperature, pseudo-kappa index) that depend on the energy range of the fit. We discuss the effects of fitting a kappa function to the IHS proton distribution over limited energy ranges, its dependence on the initial proton distribution properties at the termination shock, and implications for understanding the observations.

  7. Determination of Nuclear Charge Distributions of Fission Fragments from ^{235}U (n_th, f) with Calorimetric Low Temperature Detectors

    Science.gov (United States)

    Grabitz, P.; Andrianov, V.; Bishop, S.; Blanc, A.; Dubey, S.; Echler, A.; Egelhof, P.; Faust, H.; Gönnenwein, F.; Gomez-Guzman, J. M.; Köster, U.; Kraft-Bermuth, S.; Mutterer, M.; Scholz, P.; Stolte, S.

    2016-08-01

    Calorimetric low temperature detectors (CLTD's) for heavy-ion detection have been combined with the LOHENGRIN recoil separator at the ILL Grenoble for the determination of nuclear charge distributions of fission fragments produced by thermal neutron-induced fission of ^{235}U. The LOHENGRIN spectrometer separates fission fragments according to their mass-to-ionic-charge ratio and their kinetic energy, but has no selectivity with respect to nuclear charges Z. For the separation of the nuclear charges, one can exploit the nuclear charge-dependent energy loss of the fragments passing through an energy degrader foil (absorber method). This separation requires detector systems with high energy resolution and negligible pulse height defect, as well as degrader foils which are optimized with respect to thickness, homogeneity, and energy loss straggling. In the present, contribution results of test measurements at the Maier Leibnitz tandem accelerator facility in Munich with ^{109}Ag and ^{127}I beams with the aim to determine the most suitable degrader material, as well as measurements at the Institut Laue-Langevin will be presented. These include a systematic study of the quality of Z-separation of fission fragments in the mass range 82le A le 132 and a systematic measurement of ^{92}Rb fission yields, as well as investigations of fission yields toward the symmetry region.

  8. Charge states distribution of 3350 keV He ions channeled in silicon

    CERN Document Server

    Bentini, G G; Bianconi, M; Lotti, R; Lulli, G

    2002-01-01

    When an ion beam is aligned along a major crystalline axis the dominant interaction is with valence electrons. In this condition the charge exchange processes mostly concern the interaction between the incident ion and a quasi-free electron gas and a strong reduction of the charge-changing probabilities is expected. In this work, 3350 keV He sup + and He sup 2 sup + ions were aligned at small tilt angles about the axis of a 4650 A silicon crystalline membrane. The charge state distribution (CSD) of the transmitted ions was detected by an electro-magnetic analyzer having a very small acceptance angle. In these conditions the equilibration of the CSD was not yet reached and this allowed, making use of simple approximations, for the measurement of the valence electron loss cross-section.

  9. Ionic charge state distribution of helium, carbon, oxygen, and iron in an energetic storm particle enhancement

    Science.gov (United States)

    Hovestadt, D.; Klecker, B.; Hoefner, H.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.

    1982-01-01

    An analysis is presented of the ionic charge state distribution of He, C, O and Fe in the energetic storm particle event of September 28-29, 1978. Data were obtained with the ULEZEQ electrostatic analyzer-proportional counter on board the ISEE 3 spacecraft. The He(+)/He(++) ratio between 0.4 and 1 MeV/n is shown to be significantly lower during the energetic storm particle event than during the preceding period of solar flare particle enhancement, with a temporal evolution similar to that of the Fe/He ratio as reported by Klecker et al. (1981). Increases in the mean charge state for oxygen by about 3% and for iron by about 16% are also noted. The temporal variations in charge states are accounted for in terms of first-order Fermi acceleration of the pre-existing solar flare particles by a propagating interplanetary shock wave.

  10. Audio and ultrasonic responses of laminated fluoroethylenepropylene and porous polytetrafluoroethylene films with different charge distributions

    Science.gov (United States)

    Zhang, Xiaoqing; Sessler, Gerhard M.; Xue, Yuan; Ma, Xingchen

    2016-05-01

    Laminated fluoropolymer films with a regular microstructure were made from compact fluoroethylenepropylene (FEP) and porous polytetrafluoroethylene (PTFE) using a process consisting of patterning and fusion bonding steps. The fabricated films were rendered piezoelectric via the contact charging or corona charging methods. The piezoelectric responses of such piezoelectret films were measured in the frequency range 100 Hz–100 kHz. The results show that the acoustic impedance of the FEP/PTFE films is around 0.014–0.030 MRayl. Dynamic piezoelectric d 33 coefficients of up to 500 pC N‑1 were achieved at 100 Hz for these films. Microphones built with such films exhibit flat response curves in a broad frequency range if the diffraction effects are eliminated. Bonded films with all positive charges deposited in the porous PTFE layers show the best thermal stability: after annealing for 1100 min at 125 °C, the remaining d 33 at 1020 Hz is about 30% of the initial value, corresponding to 105 pC N‑1, and it remains relatively stable at this temperature. This remarkable thermal stability has to be attributed to the fact that positive charges are more permanent in porous PTFE than in FEP. The entire charge distribution exhibits much better thermal stability than is achievable for customary polypropylene piezoelectrets.

  11. Electronic States and Spatial Charge Distribution of Single Mn Impurity in Diluted Magnetic Semiconductors

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-Hua; ZOU Liang-Jian

    2006-01-01

    The electronic and magnetic properties as well as the spatial charge distribution of single Mn impurity in Ⅲ-V diluted magnetic semiconductors are obtained when the degeneracy of the p orbits contributed from the four nearest-neighbouring As(N) atoms is taken into account. We show that in the ground state, the Mn spin is strongly antiferromagnetically coupled to the surrounding As(N) atoms when the p - d hybridization Vpd is large and both the hole level Ev and the impurity level Ed are close to the Fermi energy. The spatial charge distribution of the Mn acceptor in the (110) plane is non-spherically symmetric, in good agreement with the recent STM images.

  12. Charged-particle pseudorapidity distributions in Au+Au collisions at RHIC

    Institute of Scientific and Technical Information of China (English)

    WANG Zeng-Wei; JIANG Zhi-Jin

    2009-01-01

    Using the Glauber model, we present the formulas for calculating the numbers of participants,spectators and binary nucleon-nucleon collisions. Based on this work, we get the pseudorapidity distributions of charged particles as the function of the impact parameter in nucleus-nucleus collisions. The theoretical results agree well with the experimental observations made by the BRAHMS Collaboration in Au+Au collisions at √SNN=200 GeV in different centrality bins over the whole pseudorapidity range.

  13. PEA System Modeling and Signal Processing for Measurements of Volume Charge Distributions in Thin Dielectric Films

    OpenAIRE

    Pearson, Lee H.; Dennison, JR; Griffiths, Erick W.; Pearson, A. C.

    2016-01-01

    This paper discusses an effort to develop advanced pulsed electroacoustic (PEA) measurement system capabilities that incorporate state-of-the-art hardware and improved signal processing and modeling to characterize embedded charge distributions in thin dielectric films. Objectives in developing this system include: (1) improved spatial resolution, while maintaining reasonable temporal resolution; (2) improved signal processing tools for increased signal/noise ratios; (3) integrated PEA modeli...

  14. Enhanced response and sensitivity of self-corrugated graphene sensors with anisotropic charge distribution

    OpenAIRE

    Seung Yol Jeong; Sooyeon Jeong; Sang Won Lee; Sung Tae Kim; Daeho Kim; Hee Jin Jeong; Joong Tark Han; Kang-Jun Baeg; Sunhye Yang; Mun Seok Jeong; Geon-Woong Lee

    2015-01-01

    We introduce a high-performance molecular sensor using self-corrugated chemically modified graphene as a three dimensional (3D) structure that indicates anisotropic charge distribution. This is capable of room-temperature operation, and, in particular, exhibiting high sensitivity and reversible fast response with equilibrium region. The morphology consists of periodic, “cratered” arrays that can be formed by condensation and evaporation of graphene oxide (GO) solution on interdigitated electr...

  15. Changes of the Nuclear Charge Distribution of Nd from Optical Isotope Shifts

    Institute of Scientific and Technical Information of China (English)

    马洪良; 李茂生; 杨福家

    2001-01-01

    The isotope shifts and hyperfine structures of seven optical transitions for all seven stable isotopes of Nd Ⅱ were measured by using collinear fast-ion-beam laser spectroscopy. The nuclear parameter λ was obtained from the measured optical isotope shifts for alI seven stable isotopes with improved accuracy. The λ values were analysed by using the Fermi distribution for the nuclear charge density. The values of δ, δ and δ were determined.

  16. Measurements of the Charged­ Particle distributions with the ATLAS detector

    CERN Document Server

    Cairo, Valentina; The ATLAS collaboration

    2016-01-01

    Inclusive charged ­particle measurements at hadron colliders probe the low­ energy non­perturbative region of QCD. The ATLAS collaboration has measured the charged­ particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam currents, recorded at center­-of­-mass energies of 8 TeV and 13 TeV. The new precise measurements at 8 TeV cover a wide spectrum using charged­ particle selections with minimum transverse momentum of both 100 MeV and 500 MeV and in various phase space regions of low and high charged particle multiplicities. The measurements at 13 TeV present the first detailed studies with a minimum transverse momentum of both 100 MeV and 500 MeV. The measurements are compared with predictions of various MC generators and are found to provide strong constraints on these.

  17. Distribution of separated energy and injected charge at normal falling of fast electron beam on target

    CERN Document Server

    Smolyar, V A; Eremin, V V

    2002-01-01

    In terms of a kinetic equation diffusion model for a beam of electrons falling on a target along the normal one derived analytical formulae for distributions of separated energy and injected charge. In this case, no empirical adjustable parameters are introduced to the theory. The calculated distributions of separated energy for an electron plate directed source within infinite medium for C, Al, Sn and Pb are in good consistency with the Spencer data derived on the basis of the accurate solution of the Bethe equation being the source one in assumption of a diffusion model, as well

  18. Flywheel-Based Distributed Bus Signalling Strategy for the Public Fast Charging Station

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Sucic, Stepjan; Vasquez, Juan Carlos;

    2014-01-01

    Fast charging stations (FCS) are able to recharge plug-in hybrid electric vehicles (pHEVs) in less than half an hour, thus representing an appealing concept to vehicle owners since the off-road time is similar as for refuelling at conventional public gas stations. However, since these FCS plugs...... (ESS) which is able to mitigate those impacts by ramping the initial power peak. The balancing strategy was implemented in a distributed manner to grid and flywheel interfacing converters by means of distributed bus signaling (DBS) method. Since the parameters in the proposed upper hierarchical control...

  19. Unfolding of event-by-event net-charge distributions in heavy-ion collisions

    CERN Document Server

    Garg, P; Netrakanti, P K; Mohanty, A K; Mohanty, B

    2013-01-01

    An unfolding method, based on Bayes theorem is presented to obtain true event-by-event net-charge multiplicity distribution from a corresponding measured distribution, which is subjected to detector artifacts. The unfolding is demonstrated to work for widely varying particle production mechanism, beam energy and collision centrality. Further the necessity of taking into account the detector effects is emphasized before comparing the experimental measurements to the theoretical calculations, particularly in case of higher moments. The advantage of this approach being that one need not construct new observable to cancel out detector effects which loose their ability to be connected to physical quantities calculable in standard theories.

  20. Stationary self-consistent distributions for a charged particle beam in the longitudinal magnetic field

    Science.gov (United States)

    Drivotin, O. I.; Ovsyannikov, D. A.

    2016-09-01

    A review of analytical solutions of the Vlasov equation for a beam of charged particles is given. These results are analyzed on the basis of a unified approach developed by the authors. In the context of this method, a space of integrals of motion is introduced in which the integrals of motion of particles are considered as coordinates. In this case, specifying a self-consistent distribution is reduced to defining a distribution density in this space. This approach allows us to simplify the construction and analysis of different self-consistent distributions. In particular, it is possible, in some cases, to derive new solutions by considering linear combinations of well-known solutions. This approach also makes it possible in many cases to give a visual geometric representation of self-consistent distributions in the space of integrals of motion.

  1. Study of multiplicity distribution in full phase space in ultra relativistic nuclear collision.

    Science.gov (United States)

    Ghosh, Dipak; Chattopadhyay, Rini; Ghosh, Anit Kumar; Dayum Jafry, Abdul; Lahiri, Madhumita; Das, Susobhan; Purkait, Krishnadas; Biswas, Biswanath; Roychoudhury, Jayanta; Deb, Argha

    A comparative study has been made among three distributions - the negative binomial distribution (NBD), the generalised multiplicity distribution (GMD) and the distribution followed by the two mechanism model (TMM), in order to describe the multiplicity distribution of charged secondary particles produced in 200 A GeV 32S - AgBr interaction.

  2. Multi-Agent-Based Distributed State of Charge Balancing Control for Distributed Energy Storage Units in AC Microgrids

    DEFF Research Database (Denmark)

    Li, Chendan; Dragicevic, Tomislav; Vasquez, Juan Carlos;

    2015-01-01

    and they schedule their own frequency reference given of the real power droop controller according to the SoC values of the other DES units. Further, to obtain the average SoC value of DES, dynamic average consensus algorithm is adapted by each agent. A smallsignal model of the system is developed in order......In this paper, a multiagent based distributed control algorithm has been proposed to achieve state of charge (SoC) balance of distributed energy storage (DES) units in an AC microgrid. The proposal uses frequency scheduling instead of adaptive droop gain. Each DES unit is taken as an agent...... to verify the stability of the control system and control parameters design. Simulation results demonstrate the effectiveness of the control strategy and also show the robustness against communication topology changes....

  3. Study of Emergency Power Based on Solar Battery Charging

    OpenAIRE

    Wang Lei; Zhu Mengfu; Chen Ping; Deng Cheng; Liu Zhimeng; Wang Yanan

    2016-01-01

    To study an emergency power based on solar battery charging. Based on the electric-generation principle of solar panel, solar energy is changed into electrical energy. Through voltage conversion circuit and filter circuit, electrical energy is stored in the energy storage battery. The emergency power realizes the conversion from solar energy to electrical energy. The battery control unit has the function of PWM (Pulse-Width Modulation) charging, overcharging protection, over-discharging prote...

  4. Calculation of ion charge-state distribution in ECR ion sources

    International Nuclear Information System (INIS)

    Starting with the pioneering efforts of Y. Yongen (Louvain-la-Neuve, Belgium) a code has been developed to calculate the equilibrium ion charge-state distribution for electron-cyclotron resonance source (ECR) ion sources. Production of ions is caused by the impact ionization of the charge gas from ECR-heated electrons of a few keV. Loss of an ion of a given charge state is from charge exchange and radiative recombination. Ultimately, the ion flows out of the minimum-B containment region. The ion confinement times are calculated using an ion-trap-potential model which is based upon modeling calculations done at Lawrence Livermore National Laboratory (LLNL) for the Tandem Mirror Machine. Using this model requires the self-consistent determination of the trap potential and thermal electron density in the plasma. Code inputs are gas natural density, hot-electron temperature and density, ion temperature, cold-electron temperature, mirror ratio, physical dimensions, and atomic-physics data. Other than that there are no adjustable parameters. Results of comparison of calculations with the limited available data are reasonable

  5. Beam energy dependence of pseudorapidity distributions of charged particles produced in relativistic heavy-ion collisions

    Science.gov (United States)

    Basu, Sumit; Nayak, Tapan K.; Datta, Kaustuv

    2016-06-01

    Heavy-ion collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN probe matter at extreme conditions of temperature and energy density. Most of the global properties of the collisions can be extracted from the measurements of charged-particle multiplicity and pseudorapidity (η ) distributions. We have shown that the available experimental data on beam energy and centrality dependence of η distributions in heavy-ion (Au +Au or Pb +Pb ) collisions from √{sNN}=7.7 GeV to 2.76 TeV are reasonably well described by the AMPT model, which is used for further exploration. The nature of the η distributions has been described by a double Gaussian function using a set of fit parameters, which exhibit a regular pattern as a function of beam energy. By extrapolating the parameters to a higher energy of √{sNN}=5.02 TeV, we have obtained the charged-particle multiplicity densities, η distributions, and energy densities for various centralities. Incidentally, these results match well with some of the recently published data by the ALICE Collaboration.

  6. Ion charge state distributions of vacuum arc plasmas: The origin of species

    International Nuclear Information System (INIS)

    Vacuum arc plasmas are produced at micrometer-size, nonstationary cathode spots. Ion charge state distributions (CSD close-quote s) are experimentally known for 50 elements, but the theoretical understanding is unsatisfactory. In this paper, CSD close-quote s of vacuum arc plasmas are calculated under the assumption that the spot plasma experiences an instantaneous transition from equilibrium to nonequilibrium while expanding. Observable charge state distributions are the result of a freezing process at this transition. open-quotes Frozenclose quotes CSD close-quote s have been calculated using Saha equations in the Debye-Hueckel approximation of the nonideal plasma for all metals of the Periodic Table and for boron, carbon, silicon, and germanium. The results are presented in a open-quotes periodic table of CSD.close quotes The table contains also the mean ion charge state, the neutral vapor fraction, and the effective plasma temperature and density at the freezing point for each element. The validity of the concepts of open-quotes instantaneous freezingclose quotes and open-quotes effective temperature and densityclose quotes is discussed for low and high currents and for the presence of a magnetic field. Temperature fluctuations have been identified to cause broadening of CSD close-quote s. copyright 1997 The American Physical Society

  7. The transverse space-charge force in tri-gaussian distribution

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2005-12-01

    In tracking, the transverse space-charge force can be represented by changes in the horizontal and vertical divergences, {Delta}x{prime} and {Delta}y{prime} at many locations around the accelerator ring. In this note, they are going to list some formulas for {Delta}x{prime} and {delta}y{prime} arising from space-charge kicks when the beam is tri-Gaussian distributed. They will discuss separately a flat beam and a round beam. they are not interested in the situation when the emittance growth arising from space charge becomes too large and the shape of the beam becomes weird. For this reason, they can assume the bunch still retains its tri-Gaussian distribution, with its rms sizes {sigma}{sub x}, {sigma}{sub y}, and {sigma}{sub z} increasing by certain factors. Thus after each turn, {sigma}{sub x}, {sigma}{sub y}, and {sigma}{sub z} can be re-calculated.

  8. Solar Wind Charge Exchange Studies Of Highly Charged Ions On Atomic Hydrogen

    International Nuclear Information System (INIS)

    Accurate studies of low-energy charge exchange (CX) are critical to understanding underlying soft X-ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H-like, and He-like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H-like ions of C, N, O and fully-stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV/u-20 keV/u) and compared to previous H-oven measurements. The present measurements are performed using a merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV/u-3.3 keV/u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H-oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  9. Solar Wind Charge Exchange Studies Of Highly Charged Ions On Atomic Hydrogen

    Science.gov (United States)

    Draganić, I. N.; Seely, D. G.; McCammon, D.; Havener, C. C.

    2011-06-01

    Accurate studies of low-energy charge exchange (CX) are critical to understanding underlying soft X-ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H-like, and He-like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H-like ions of C, N, O and fully-stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV/u-20 keV/u) and compared to previous H-oven measurements. The present measurements are performed using a merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV/u-3.3 keV/u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H-oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  10. Pseudo-rapidity distributions of charged hadrons in pp and pA collisions at the LHC

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-Min; LIU Jia-Fu; HOU Zhao-Yu; SUN Xian-Jing

    2013-01-01

    In the framework of the Color Glass Condensate,the pseudo-rapidity distributions of charged hadrons in pp and pA collisions at the LHC are studied with the UGD function from the GBW model.With a x2 analysis of the CMS data in pp collisions at √s=0.9,2.36,7 TeV,the normalization factor is obtained and the theoretical results are in good agreement with the experimental data.Then,considering the influence of nucleon hard partons transverse distribution on the number of participants in pA collisions by using a Glauber Monte Carlo method,we also give the predictive results for the multiplicity distributions in pPb collisions at √s=4.4 TeV.

  11. Ligand and Charge Distribution (LCD) model for the description of fulvic acid adsorption to goethite.

    Science.gov (United States)

    Weng, Liping; Van Riemsdijk, Willem H; Koopal, Luuk K; Hiemstra, Tjisse

    2006-10-15

    The LCD model (Ligand and Charge Distribution) has recently been proposed to describe the adsorption of humic substances to oxides, in which the CD-MUSIC model and the NICA model for ion binding to respectively oxides and humic substances are integrated. In this paper, the LCD model is improved by applying the ADAPT model (ADsorption and AdaPTation) to calculate the equilibrium distribution of the humic substances based on the change of the average chemical state of the particles. The improved LCD model is applied to calculate the adsorption of fulvic acid (Strichen) to goethite, in which it is assumed that the carboxylic type of groups of fulvic acid can form innersphere complexes with the surface sites. The charge of the carboxylic groups in the innersphere complexes is distributed between the 0- and d-plane, whereas the charge of the other carboxylic and phenolic groups is located in the d-plane. The average distribution of the carboxylic and phenolic groups among their various chemical states (carboxylic groups: innersphere complex, protonated and deprotonated; phenolic groups: protonated and deprotonated) depends on pH, ionic strength and loading, and are the outcome of the model. The calculation shows that the LCD model can describe sufficiently the effects of pH, ionic strength and loading on the adsorption of fulvic acid, using one adjustable parameter (logK (S,1)). The model calculations indicate that the chemical complexation between fulvic acid and goethite is the main driving force of the adsorption, while the electrostatic repulsion between the particles and the surface is the major limiting factor for further adsorption.

  12. Study of surface charges in ballistic deflection transistors

    Science.gov (United States)

    Millithaler, J.-F.; Iñiguez-de-la-Torre, I.; Mateos, J.; GonzáIez, T.; Margala, M.

    2015-12-01

    This paper presents a comprehensive study of the behavior of surface charges in ballistic deflection transistors, at room temperature, where the in-plane geometry associating two drains with two gates in push-pull modes allows the control of electron path. Monte Carlo simulations were performed and compared with experimental data by using different models for accounting for surface charge effects. The simple model which assumes a constant and uniform value of the surface charge provides good results at equilibrium, but it is not able to correctly reproduce the BDT’s complex behavior when biased. We have confirmed that for a correct description of the device operation it is necessary to use a model allowing the surface charge to adapt itself locally to the carrier concentration in its surroundings.

  13. Computer simulation study of water using a fluctuating charge model

    Indian Academy of Sciences (India)

    M Krishnan; A Verma; S Balasubramanian

    2001-10-01

    Hydrogen bonding in small water clusters is studied through computer simulation methods using a sophisticated, empirical model of interaction developed by Rick et al (S W Rick, S J Stuart and B J Berne 1994 J. Chem. Phys. 101 6141) and others. The model allows for the charges on the interacting sites to fluctuate as a function of time, depending on their local environment. The charge flow is driven by the difference in the electronegativity of the atoms within the water molecule, thus effectively mimicking the effects of polarization of the charge density. The potential model is thus transferable across all phases of water. Using this model, we have obtained the minimum energy structures of water clusters up to a size of ten. The cluster structures agree well with experimental data. In addition, we are able to distinctly identify the hydrogens that form hydrogen bonds based on their charges alone, a feature that is not possible in simulations using fixed charge models. We have also studied the structure of liquid water at ambient conditions using this fluctuating charge model.

  14. Efficient determination of distribution tariffs for the prevention of congestion from EV Charging

    DEFF Research Database (Denmark)

    O'Connell, Niamh; Wu, Qiuwei; Østergaard, Jacob

    2012-01-01

    into the day-ahead market. The DT acts to disperse charging at congested periods and locations, thereby preventing congestion on a day-ahead basis. The magnitude of the DT is determined from a simulated locational marginal prices (LMPs), and the time extent of the DT is determined from analysis of the system...... is highly efficient at grid congestion prevention, and the precise level of congestion that can be alleviated is dependent on the price profile of the optimisation period in question.......A dual objective electric vehicle (EV) charging schedule optimisation is proposed here whereby both consumer driving requirements and grid constraints are respected. A day-ahead dynamic tariff (DT) for distribution systems is proposed as a price signal to EV fleet operators (FO) bidding...

  15. A Numerical Model for Ion Charge Distribution of Plasmas in Collisional Radiative Steady State

    Institute of Scientific and Technical Information of China (English)

    DUAN Yaoyong; GUO Yonghui; QIU Aici; KUAI Bin

    2009-01-01

    A numerical model for the charge state distribution of plasmas in a collisional ra-diative steady state (CRSS) is established by averaging over the atomic process rate coefficients in universal kinetic equations.It is used to calculate the mean ion charge and ion population for a given temperature and density of the plasmas,ranging from low Z to high Z elements.The comparisons of the calculated results with those of other non-local thermodynamic equilibrium kinetics codes show that this model possesses acceptable precision.Furthermore,the NLTE effects are investigated by virtue of the model,and the differences between CRSS and LTE models for low density plasmas are quite evident.

  16. Spectral and angular distributions of charged particles outside biological shielding of the 70 GeV Serpukhov accelerator

    International Nuclear Information System (INIS)

    Space, angular and energy distributions of the charged particle of radiation field outside the Serpukhov accelerator shielding at different protons beam energies obtained with the ΔE-E spectrometer are presented. The influence of the accelerating complex operation on the charged particles field shaping outside the concrete and heterogeneous steel-concrete shieldings has been analyzed. The ratios between neutrons and charged particles of the radiation field outside the 70 GeV accelerator shielding have been estimated

  17. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues.

    Science.gov (United States)

    Das, Rahul K; Pappu, Rohit V

    2013-08-13

    The functions of intrinsically disordered proteins (IDPs) are governed by relationships between information encoded in their amino acid sequences and the ensembles of conformations that they sample as autonomous units. Most IDPs are polyampholytes, with sequences that include both positively and negatively charged residues. Accordingly, we focus here on the sequence-ensemble relationships of polyampholytic IDPs. The fraction of charged residues discriminates between weak and strong polyampholytes. Using atomistic simulations, we show that weak polyampholytes form globules, whereas the conformational preferences of strong polyampholytes are determined by a combination of fraction of charged residues values and the linear sequence distributions of oppositely charged residues. We quantify the latter using a patterning parameter κ that lies between zero and one. The value of κ is low for well-mixed sequences, and in these sequences, intrachain electrostatic repulsions and attractions are counterbalanced, leading to the unmasking of preferences for conformations that resemble either self-avoiding random walks or generic Flory random coils. Segregation of oppositely charged residues within linear sequences leads to high κ-values and preferences for hairpin-like conformations caused by long-range electrostatic attractions induced by conformational fluctuations. We propose a scaling theory to explain the sequence-encoded conformational properties of strong polyampholytes. We show that naturally occurring strong polyampholytes have low κ-values, and this feature implies a selection for random coil ensembles. The design of sequences with different κ-values demonstrably alters the conformational preferences of polyampholytic IDPs, and this ability could become a useful tool for enabling direct inquiries into connections between sequence-ensemble relationships and functions of IDPs. PMID:23901099

  18. Space charge distributions in insulating polymers: A new non-contacting way of measurement

    Science.gov (United States)

    Marty-Dessus, D.; Ziani, A. C.; Petre, A.; Berquez, L.

    2015-04-01

    A new technique for the determination of space charge profiles in insulating polymers is proposed. Based on the evolution of an existing thermal wave technique called Focused Laser Intensity Modulation Method ((F)LIMM), it allows non-contact measurements on thin films exhibiting an internal charge to be studied. An electrostatic model taking into account the new sample-cell geometry proposed was first developed. It has been shown, in particular, that it was theoretically possible to calculate the internal charge from experimental measurements while allowing an evaluation of the air layer appearing between the sample and the electrode when non-contact measurements are performed. These predictions were confirmed by an experimental implementation for two thin polymer samples (25 μm-polyvinylidenefluoride and 50 μm-polytetrafluoroethylene (PTFE)) used as tests. In these cases, minimum air-layer thickness was determined with an accuracy of 3% and 20%, respectively, depending on the signal-to-noise ratio during the experimental procedure. In order to illustrate the reachable possibilities of this technique, 2D and 3D cartographies of a negative space charge implanted by electron beam within the PTFE test sample were depicted: like in conventional (F)LIMM, a multidimensional representation of a selectively implanted charge remains possible at a few microns depth, but using a non-contacting way of measurement.

  19. Charge collection studies in irradiated HV-CMOS particle detectors

    Science.gov (United States)

    Affolder, A.; Andelković, M.; Arndt, K.; Bates, R.; Blue, A.; Bortoletto, D.; Buttar, C.; Caragiulo, P.; Cindro, V.; Das, D.; Dopke, J.; Dragone, A.; Ehrler, F.; Fadeyev, V.; Galloway, Z.; Gorišek, A.; Grabas, H.; Gregor, I. M.; Grenier, P.; Grillo, A.; Hommels, L. B. A.; Huffman, T.; John, J.; Kanisauskas, K.; Kenney, C.; Kramberger, G.; Liang, Z.; Mandić, I.; Maneuski, D.; McMahon, S.; Mikuž, M.; Muenstermann, D.; Nickerson, R.; Perić, I.; Phillips, P.; Plackett, R.; Rubbo, F.; Segal, J.; Seiden, A.; Shipsey, I.; Song, W.; Stanitzki, M.; Su, D.; Tamma, C.; Turchetta, R.; Vigani, L.; Volk, J.; Wang, R.; Warren, M.; Wilson, F.; Worm, S.; Xiu, Q.; Zavrtanik, M.; Zhang, J.; Zhu, H.

    2016-04-01

    Charge collection properties of particle detectors made in HV-CMOS technology were investigated before and after irradiation with reactor neutrons. Two different sensor types were designed and processed in 180 and 350 nm technology by AMS. Edge-TCT and charge collection measurements with electrons from 90Sr source were employed. Diffusion of generated carriers from undepleted substrate contributes significantly to the charge collection before irradiation, while after irradiation the drift contribution prevails as shown by charge measurements at different shaping times. The depleted region at a given bias voltage was found to grow with irradiation in the fluence range of interest for strip detectors at the HL-LHC. This leads to large gains in the measured charge with respect to the one before irradiation. The increase of the depleted region was attributed to removal of effective acceptors. The evolution of depleted region with fluence was investigated and modeled. Initial studies show a small effect of short term annealing on charge collection.

  20. Influence of the vacuum interface on the charge distribution in V 2 O 3 thin films

    KAUST Repository

    Schwingenschlögl, Udo

    2009-09-22

    The electronic structure of V2O3 thin films is studied by means of the augmented spherical wave method as based on density functional theory and the local density approximation. We establish that the effects of charge redistribution, induced by the vacuum interface, in such films are restricted to a very narrow surface layer of ≈15 Å thickness. As a consequence, charge redistribution can be ruled out as a source of the extraordinary thickness dependence of the metal–insulator transition observed in V2O3 thin films of ~100–1000 Å thickness.

  1. Influence of the vacuum interface on the charge distribution in V2O3 thin films

    Science.gov (United States)

    Schwingenschlögl, U.; Frésard, R.; Eyert, V.

    2009-09-01

    The electronic structure of V2O3 thin films is studied by means of the augmented spherical wave method as based on density functional theory and the local density approximation. We establish that the effects of charge redistribution, induced by the vacuum interface, in such films are restricted to a very narrow surface layer of ≈15 Å thickness. As a consequence, charge redistribution can be ruled out as a source of the extraordinary thickness dependence of the metal-insulator transition observed in V2O3 thin films of ~100-1000 Å thickness.

  2. Design and Comparative Study of Three Photovoltaic Battery Charge Control Algorithms in MATLAB/SIMULINK Environment

    OpenAIRE

    Ankur Bhattacharjee

    2012-01-01

    This paper contains the design of a three stage solar battery charge controller and a comparative study of this charge control technique with three conventional solar battery charge control techniques such as 1. Constant Current (CC) charging, 2. Two stage constant current constant voltage (CC-CV) charging technique. The analysis and the comparative study of the aforesaid charging techniques are done in MATLAB/SIMULINK environment. Here the practical data used to simulate the charge control a...

  3. Pseudorapidity Distribution of Charged Particles in d+Au Collisions at √(sNN)=200 GeV

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wysłouch, B.; Zhang, J.

    2004-08-01

    The measured pseudorapidity distribution of primary charged particles in minimum-bias d+Au collisions at √(sNN)=200 GeV is presented for the first time. This distribution falls off less rapidly in the gold direction as compared to the deuteron direction. The average value of the charged particle pseudorapidity density at midrapidity is ∣η∣≤0.6=9.4±0.7(syst) and the integrated primary charged particle multiplicity in the measured region is 82±6(syst). Estimates of the total charged particle production, based on extrapolations outside the measured pseudorapidity region, are also presented. The pseudorapidity distribution, normalized to the number of participants in d+Au collisions, is compared to those of Au+Au and p+p¯ systems at the same energy. The d+Au distribution is also compared to the predictions of the parton saturation model, as well as microscopic models.

  4. Average Distribution of Ionic Charges and Ionizability for the Au Plasma System

    Institute of Scientific and Technical Information of China (English)

    杨天丽; 蒋刚; 朱正和

    2002-01-01

    Using relativistic multi-configuration Dirac-Fock theory, we calculate the transition data of 3dj - n fj, (n =5, 6, 7) for the M-shell from an Ni-like Au ion to an As-like Auion using the GRASP programme with the core-polarization, quantum electrodynamical effect and Breit correction. Based on the present calculation results andthe experiment of the Xingguang-Ⅱ laser facilities, the average distribution of ionic charge and the ionizabilityhave been derived. The average ionization degree of Au plasma Z* is 49.06 ± 0.5, which is comparable with theresult of the Lawrence Livermore National Laboratory.

  5. Distributed Bus Signaling Control for a DC Charging Station with Multi Paralleled Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Vasquez, Juan Carlos;

    2015-01-01

    Fast charging stations (FCS) will become an essential part of future transportation systems with an increasing number of electrical vehicles. However, since these FCS plugs have power ratings of up to 100 kW, serious stress caused by large number of FCS could threaten the stability of the main...... power grid. To overcome the possible adverse impacts, this paper applies a dedicated paralleled flywheels energy storage system (ESS) in FCS, to balance the power by the method of ramping the initial power peak. Distributed DC-bus signaling (DBS) method is employed in the power coordination of grid...

  6. The effect of realistic nuclear charge distributions on isotope shifts and towards the extraction of higher order nuclear radial moments

    OpenAIRE

    Papoulia, A.; Carlsson, B. G.; Ekman, J

    2016-01-01

    Background: Atomic spectral lines from different isotopes display a small shift in energy, commonly referred to as the line isotope shift. One of the components of the isotope shift is the field shift, which depends on the extent and the shape of the nuclear charge density distribution. Purpose: To investigate how sensitive field shifts are with respect to variations in the nuclear size and shape and what information of nuclear charge distributions that can be extracted from measured field sh...

  7. Characteristics of mass and nuclear charge distributions of sup 229 Th(n sub th ,f). Implications for fission dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bocquet, J.P.; Faust, H.R. (Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)); Brissot, R. (Grenoble-1 Univ., 38 (France). Inst. des Sciences Nucleaires); Fowler, M.; Wilhelmy, J. (Los Alamos National Lab. (LANL), NM (USA). Isotope and Nuclear Chemistry Div.); Asghar, M.; Djebara, M. (Universite des Sciences et de la Technologie Houari Boumedienne, Algiers (Algeria))

    1990-01-01

    The mass and nuclear charge distributions of fission fragments from {sup 229}Th(n{sub th},f) have been measured at several kinetic energies with the mass spectrometer Lohengrin (ILL-Grenoble). The average proton e-o effect, which reaches 41%, induces large oscillations in the parameters of the isotopic charge distribution. A comparison of the data from different fissile nuclei shows the importance of the last stage of the process for intrinsic excitations. (orig.).

  8. High-energy X-ray powder diffraction and atomic-pair distribution-function studies of charged/discharged structures in carbon-hybridized Li2MnSiO4 nanoparticles as a cathode material for lithiumion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Maki; Miyahara, Masahiko; Hokazono, Mana; Sasaki, Hirokazu; Nemoto, Atsushi; Katayama, Shingo; Akimoto, Yuji; Hirano, Shin-ichi; Ren, Yang

    2014-10-01

    The stable cycling performance with a high discharge capacity of similar to 190 mAh g(-1) in a carbon-hybridized Li2MnSiO4 nanostructured powder has prompted an experimental investigation of the charged/discharged structures using synchrotron-based and laboratory-based X-rays and atomic-pair distributionfunction (PDF) analyses. A novel method of in-situ spray pyrolysis of a precursor solution with glucose as a carbon source enabled the successful synthesis of the carbon-hybridized Li2(M)nSiO(4) nanoparticles. The XRD patters of the discharged (lithiated) samples exhibit a long-range ordered structure characteristic of the (beta) Li2MnSiO4 crystalline phase (space group Pmn2(1)) which dissipates in the charged (delithiated) samples. However, upon discharging the long-range ordered structure recovers in each cycle. The disordered structure, according to the PDF analysis, is mainly due to local distortions of the MnO4 tetrahedra which show a mean Mn-O nearest neighbor distance shorter than that of the long-range ordered phase. These results corroborate the notion of the smaller Mn3+/Mn4+ ionic radii in the Li extracted phase versus the larger Mn2+ ionic radius in Li inserted phase. Thus Li extraction/insertion drives the fluctuation between the disordered and the long-range ordered structures. (C) 2014 Elsevier B.V. All rights reserved.

  9. Study of nuclei' excitation in the charge exchange reactions (Draft)

    International Nuclear Information System (INIS)

    Carried out experimental and theoretical studies show, that in the nuclear charge exchange reactions there is an unique ability for study both properties and behavior of the delta-isobar in the excited nuclear environment. However for theoretical analysis of these reactions it is necessary have experimental data on nuclei charge exchange on free nucleons. It is offered the experiment of measurement dependence of inclusive cross section of the tritium nuclei charge exchange in 3He nuclei on hydrogen from transferred energy. This reaction is isotopically dependent on 3He nuclei in tritons charge exchange reaction on neutrons. Aim of proposed experiment is checking of a hypothesis believability about the delta-isobar excitation in flying nucleus, and measurement of the process intensity. Peculiarity of this experiment is application of relativistic tritons beams formed from accelerated fragments of 4He nuclei. Experimental facility presents of combination of two one-arm spectrometers: first one - time-flying spectrometer for measurement tritium nuclei impulse in beam to target with accuracy 0.3 % for 6 GeV/s and identification of tritium nuclei, the second one - magnetic spectrometer for identification and measurement of 3He nuclei impulse forming in the result of the charge exchange reaction

  10. Critical review of electrical conductivity measurements and charge distribution analysis of magnesium oxide

    Science.gov (United States)

    Freund, Friedemann; Freund, Minoru M.; Batllo, Francois

    1993-01-01

    The electrical conductivity sigma of MgO single crystals shows a sharp increase at 500-800 C, in particular of sigma surface, generally attributed to surface contamination. Charge Distribution Analysis (CDA), a new technique providing information on fundamental properties that was previously unavailable, allows for the determination of surface charges, their sign and associated internal electric field. Data on 99.99% purity, arc-fusion grown MgO crystals show that mobile charge carriers start to appear in the bulk of the MgO crystals between 200 and 400 C when sigma (measured by conventional techniques) is in t he 10(exp -14) to 10(exp -16) /omega/cm range. Above 500 C, as sigma increases to 10(exp -6) to 10(exp -7)/omega/cm, more charges appear giving rise to a strong positive surface charge supported by a strong internal field. This indicates that charges are generated in the bulk and diffuse to the surface by an internally controlled process. On the basis of their positive sign they are identified as holes (defect electrons). Because of the low cation content of these very pure MgO crystals, theses holes cannnot be associated with transition metal impurties. Instead, they are associated with the O(2-) sublattice, e.g. consist of O(-) states or positive holes. This conclusion is supported by magnetic susceptibility data showing the appearance of 1000 +/- 500 ppm paramagnetic species between 200-500 C. The magnetic data are consistent with strongly coupled, diamagnetic O(-) pairs below 200-500 C, chemically equivalent to peroxy anions, O2(2-), and probably associated with cation vacancies in the MgO matrix. The formation of O2(2-) in arc-fusion grown MgO crystals is very unexpected because of the highly reducing growth conditions. Their presence implies an internal redox reaction involving dissolved 'water' by which OH(-) pairs convert to O2(2-) plus H2 molecules. This redox conversion is supported by mass spectroscopic measurements of the H2 release from highly

  11. Mesoscopic capacitor and zero-point energy: Poisson's distribution for virtual charges, pressure, and decoherence control

    Science.gov (United States)

    Flores, J. C.

    2014-08-01

    Mesoscopic capacitor theory, which includes intrinsic inductive effects from quantum tunneling, is applied to conducting spherical shells. The zero-point pressure and the number of virtual charged pairs are determined assuming a Poisson distribution. They are completely defined by a dimensionless mesoscopic parameter (χc) measuring the average number of virtual pairs per solid angle and carrying mesoscopic information. Fluctuations remain finite and well defined. Connections with usual quantum-field-theory limit enables us to evaluate χc 1.007110. Equivalently, for a mesoscopic parallel-plate capacitor, the shot noise distribution becomes operative with χc 0.94705 as well being related to the density of virtual pairs. Temperature decoherence and capacitor control are discussed by considering typical values of quantum dot devices and Coulomb blockade theory.

  12. Repair activities on the LHC cryogenic distribution line in charge of TS/MME

    CERN Document Server

    Atieh, S; CERN. Geneva. TS Department

    2005-01-01

    The Cryogenic Distribution Line (QRL), running inside the machine tunnel parallel to the regular lattice of superconducting quadrupole and dipole magnets of LHC, transports the refrigeration power produced by the refrigerators over long distances. With a total length of about 25.8 km, QRL consists of a modular set-up of pipe and Service Modules (SM), Vacuum Barriers (VB), Fixed Points (FP), steps and elbows. TS department was charged to replace non-conform sliding tables included in the Cryogenic Distribution Line QRL. For this repair work, based on technologically advanced methods, TS/MME imposed a high level of quality assurance and follow-up for mechanical repair works as well as for the metrological measurements carried out which an innovative polyarticulated arm, a portable measuring device, and leak testing by argon.

  13. Measurements of the Charged-Particle distributions with the ATLAS detector

    CERN Document Server

    Cairo, Valentina; The ATLAS collaboration

    2016-01-01

    Inclusive charged-particle measurements probe the low-energy region of non-perturbative quantum chromodynamics. The ATLAS collaboration has recently measured the charged-particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam currents, recorded at centre-of-mass energies of 8 TeV and 13 TeV. The measurements at 8 TeV cover a wide spectrum using charged-particle selections with minimum transverse momentum of both 100 MeV and 500 MeV and in various phase space regions of low and high charged-particle multiplicities, some of which are studied for the first time by ATLAS. The measurements at 13 TeV also present detailed studies with a minimum transverse momentum of both 100 MeV and 500 MeV. The measurements are compared with predictions of various tuned Monte Carlo generators and are found to provide strong constraints on these. None of the Monte Carlo generators with their respective tunes are able to reproduce all the features of the data.

  14. Effect of Fe3O4 nanoparticles on space charge distribution in propylene carbonate under impulse voltage

    International Nuclear Information System (INIS)

    Addition of nanoparticles of the ferromagnetic material Fe3O4 can increase the positive impulse breakdown voltage of propylene carbonate by 11.65%. To further investigate the effect of ferromagnetic nanoparticles on the space charge distribution in the discharge process, the present work set up a Kerr electro-optic field mapping measurement system using an array photodetector to carry out time-continuous measurement of the electric field and space charge distribution in propylene carbonate before and after modification. Test results show that fast electrons can be captured by Fe3O4 nanoparticles and converted into relatively slow, negatively charged particles, inhibiting the generation and transportation of the space charge, especially the negative space charge

  15. Measurement and modeling of electric field and space-charge distributions in obstructed helium discharge

    Energy Technology Data Exchange (ETDEWEB)

    Fendel, Peter [Thorlabs, 56 Sparta Avenue, Newton, New Jersey 07860 (United States); Ganguly, Biswa N.; Bletzinger, Peter [Air Force Research Laboratory, WPAFB, Ohio 45433 (United States)

    2015-08-15

    Axial and radial variations of electric field have been measured in dielectric shielded 0.025 m diameter parallel plate electrode with 0.0065 m gap for 1.6 mA, 2260 V helium dc discharge at 1.75 Torr. The axial and radial electric field profiles have been measured from the Stark splitting of 2{sup 1}S→11 {sup 1}P transition through collision induced fluorescence from 4{sup 3}D→2{sup 3}P. The electric field values showed a strong radial variation peaking to 500 kV/m near the cathode radial boundary, and decreasing to about 100 kV/m near the anode edge, suggesting the formation of an obstructed discharge for this low nd condition, where n is the gas density and d is the gap distance. The off-axis Stark spectra showed that the electric field vector deviates from normal to the cathode surface which permits longer path electron trajectories in the inter-electrode gap. Also, the on-axis electric field gradient was very small and off-axis electric field gradient was large indicating a radially non-uniform current density. In order to obtain information about the space charge distribution in this obstructed discharge, it was modeled using the 2-d axisymmetric Poisson solver with the COMSOL finite element modeling program. The best fit to the measured electric field distribution was obtained with a space charge variation of ρ(r) = ρ{sub 0}(r/r{sub 0}){sup 3}, where ρ(r) is the local space charge density, ρ{sub 0} = 6 × 10{sup −3} Coulomb/m{sup 3}, r is the local radial value, and r{sub 0} is the radius of the electrode.

  16. Trigger Studies for the search of a heavy Charged Higgs

    CERN Document Server

    Haraki, Mikela

    2016-01-01

    The efficiency of different triggers for the search of a charged Higgs is studied using generator-level simulations. A charged Higgs boson with a mass heavier than the top quark mass is produced in association with a top quark and can decay to $t\\bar{b}$ $(gg\\rightarrow \\bar{t}bH^{+} / H^{+}\\rightarrow t\\bar{b}$) resulting to an all hadronic final state. In order to improve the efficiency of the triggers, several kinematic variables are examined.

  17. Study on orientation fracture blasting with shaped charge in rock

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    On the basis of the theories of mechanics of explosive and rock fracture mechanics, the mechanism of crack initiation and its expansion of directional fracture controlled blasting with shaped charges in rock were studied, then the blasting parameters were designed and tested by a model test in laboratory and field experiment. The experimental and test results showed that the energy from blasting is directionally concentrated for the cumulative action. The directional expansion of cracks is satisfactory, the results of the model test and field test suggested that the orientation fracture blasting with shaped charge is a good means of excavating tunnels or cutting rock.

  18. Pseudorapidity distributions of charged particles in Pb–Pb collisions at super proton synchrotron energies from the NA50 experiment

    Indian Academy of Sciences (India)

    Marek Idzik; M C Abreu; B Alessandro; C Alexa; R Arnaldi; M Atayan; C Baglin; A Baldit; M Bedjidian; S Beolè; V Boldea; P Bordalo; G Borges; A Bussière; L Capelli; C Castanier; J Castor; B Chaurand; I Chevrot; B Cheynis; E Chiavassa; C Cicalò; T Claudino; M P Comets; N Constans; S Constantinescu; P Cortese; A De Falco; N De Marco; G Dellacasa; A Devaux; S Dita; O Drapier; L Ducroux; B Espagnon; J Fargeix; P Force; M Gallio; Y K Gavrilov; C Gerschel; P Giubellino; M B Golubeva; M Gonin; A A Grigorian; S Grigorian; J Y Grossiord; F F Guber; A Guichard; H Gulkanyan; R Hakobyan; R Haroutunian; M Idzik; D Jouan; T L Karavitcheva; L Kluberg; A B Kurepin; Y Le Bornee; C Lourenço; P Macciotta; M Mac Cormick; A Marzari-Chiesa; M Masera; A Masoni; M Monteno; A Musso; P Petiau; A Piccotti; J R Pizzi; W L Prado da Silva; F Prino; G Puddu; C Quintans; L Ramello; S Ramos; P Rato Mendes; L Riccati; A Romana; H Santos; P Saturnini; E Scalas; E Scomparin; S Serci; R Shahoyan; F Sigaudo; S Silva; M Sitta; P Sonderegger; X Tarrago; N S Topilskaya; G L Usai; E Vercellin; L Villatte; N Willis; NA50 Collaboration

    2003-05-01

    We present the measurements of charged particle pseudorapidity distributions dch/d performed by the NA50 experiment in Pb–Pb collisions at the CERN SPS. Measurements were done at incident energies of 40 GeV ($\\sqrt{s}=8.77$ GeV) and 158 GeV ($\\sqrt{s}=17.3$ GeV) per nucleon over a broad impact parameter range. The multiplicity distributions are studied as a function of centrality using the number of participating nucleons (part), or the number of binary nucleon–nucleon collisions (coll). Their values at midrapidity exhibit a linear scaling with part at both energies. Particle yield increases approximately by a factor of 2 between $\\sqrt{s}=8.77$ GeV and $\\sqrt{s}=17.3$ GeV.

  19. Charge collection efficiency studies with irradiated silicon detectors

    CERN Document Server

    Allport, P P; Casse, G; Greenall, A; Jackson, J N; Turner, P R

    2003-01-01

    Small area (1x1 cm sup 2) microstrip detectors, made with a p sup + -n diode structure on FZ silicon substrates, both with and without oxygen enrichment, have been irradiated with 24 GeV/c protons to fluences of 1.9, 2.9 and 5.1x10 sup 1 sup 4 p/cm sup 2. Their charge collection properties have been studied using a sup 1 sup 0 sup 6 Ru beta-source with a wide bandwidth current amplifier and compared with those for a non-irradiated device. The integrated charge collected at different times (10, 25, 40 and 80 ns) has been used to estimate the effect of ballistic deficit. Predictions for the reduction in charge collection efficiency expected at fluences as high as 10 sup 1 sup 5 cm sup - sup 2 are presented using a parameterization described in earlier work which also fits this data well.

  20. Study of Emergency Power Based on Solar Battery Charging

    Directory of Open Access Journals (Sweden)

    Wang Lei

    2016-01-01

    Full Text Available To study an emergency power based on solar battery charging. Based on the electric-generation principle of solar panel, solar energy is changed into electrical energy. Through voltage conversion circuit and filter circuit, electrical energy is stored in the energy storage battery. The emergency power realizes the conversion from solar energy to electrical energy. The battery control unit has the function of PWM (Pulse-Width Modulation charging, overcharging protection, over-discharging protection and over-current protection. It also realizes the fast and safe charging of energy storage battery. The emergency power could provide both 12V AC power for emergency equipment such as miniature PSA oxygen concentrator and 5V USB for electronic equipment (mobile phone, GPS device, rechargeable light, etc..

  1. Reducing greenhouse gas emissions by inducing energy conservation and distributed generation from elimination of electric utility customer charges

    International Nuclear Information System (INIS)

    This paper quantifies the increased greenhouse gas emissions and negative effect on energy conservation (or 'efficiency penalty') due to electric rate structures that employ an unavoidable customer charge. First, the extent of customer charges was determined from a nationwide survey of US electric tariffs. To eliminate the customer charge nationally while maintaining a fixed sum for electric companies for a given amount of electricity, an increase of 7.12% in the residential electrical rate was found to be necessary. If enacted, this increase in the electric rate would result in a 6.4% reduction in overall electricity consumption, conserving 73 billion kW h, eliminating 44.3 million metric tons of carbon dioxide, and saving the entire US residential sector over $8 billion per year. As shown here, these reductions would come from increased avoidable costs, thus leveraging an increased rate of return on investments in energy efficiency, energy conservation behavior, distributed energy generation, and fuel choices. Finally, limitations of this study and analysis are discussed and conclusions are drawn for proposed energy policy changes

  2. Studies of Space Charge Effects in the Proposed CERN PS2

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji; /LBL, Berkeley; Ryne, Robert; /LBL, Berkeley; De Maria, Riccardo; /Brookhaven; Macridin, Alexandru; /Fermilab; Spentzouris, Panagiotis; /Fermilab; Papaphilippou, Yannis; /CERN; Wienands, Ulrich; /SLAC

    2012-06-22

    A new proton synchrotron, the PS2, is under design study to replace the current proton synchrotron at CERN for the LHC upgrade. Nonlinear space charge effects could cause significant beam emittance growth and particle losses and limit the performance of the PS2. In this paper, we report on studies of the potential space-charge effects at the PS2 using three-dimensional self-consistent macroparticle tracking codes, IMPACT, MaryLie/IMPACT, and Synergia. We will present initial benchmark results among these codes. Effects of space-charge on the emittance growth, especially due to synchrotron coupling, aperture sizes, initial painted distribution, and RF ramping scheme will also be discussed.

  3. Surface speciation of yttrium and neodymium sorbed on rutile: Interpretations using the charge distribution model

    Science.gov (United States)

    Ridley, Moira K.; Hiemstra, Tjisse; Machesky, Michael L.; Wesolowski, David J.; van Riemsdijk, Willem H.

    2012-10-01

    The adsorption of Y3+ and Nd3+ onto rutile has been evaluated over a wide range of pH (3-11) and surface loading conditions, as well as at two ionic strengths (0.03 and 0.3 m), and temperatures (25 and 50 °C). The experimental results reveal the same adsorption behavior for the two trivalent ions onto the rutile surface, with Nd3+ first adsorbing at slightly lower pH values. The adsorption of both Y3+ and Nd3+ commences at pH values below the pHznpc of rutile. The experimental results were evaluated using a charge distribution (CD) and multisite complexation (MUSIC) model, and Basic Stern layer description of the electric double layer (EDL). The coordination geometry of possible surface complexes were constrained by molecular-level information obtained from X-ray standing wave measurements and molecular dynamic (MD) simulation studies. X-ray standing wave measurements showed an inner-sphere tetradentate complex for Y3+ adsorption onto the (1 1 0) rutile surface (Zhang et al., 2004b). The MD simulation studies suggest additional bidentate complexes may form. The CD values for all surface species were calculated based on a bond valence interpretation of the surface complexes identified by X-ray and MD. The calculated CD values were corrected for the effect of dipole orientation of interfacial water. At low pH, the tetradentate complex provided excellent fits to the Y3+ and Nd3+ experimental data. The experimental and surface complexation modeling results show a strong pH dependence, and suggest that the tetradentate surface species hydrolyze with increasing pH. Furthermore, with increased surface loading of Y3+ on rutile the tetradentate binding mode was augmented by a hydrolyzed-bidentate Y3+ surface complex. Collectively, the experimental and surface complexation modeling results demonstrate that solution chemistry and surface loading impacts Y3+ surface speciation. The approach taken of incorporating molecular-scale information into surface complexation models

  4. Double-Quadrant State-of-Charge-Based Droop Control Method for Distributed Energy Storage Systems in Autonomous DC Microgrids

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Guerrero, Josep M.;

    2015-01-01

    In this paper, a double-quadrant state-of-charge (SoC) based droop control method for distributed energy storage system (DESS) is proposed to reach the proper power distribution in autonomous DC microgrids. Since DESS is commonly used in DC microgrids, it is necessary to achieve the rational power...

  5. Integral cross section measurements and product recoil velocity distributions of Xe2+ + N2 hyperthermal charge-transfer collisions

    Science.gov (United States)

    Hause, Michael L.; Prince, Benjamin D.; Bemish, Raymond J.

    2016-07-01

    Charge exchange from doubly charged rare gas cations to simple diatomics proceeds with a large cross section and results in populations of many vibrational and electronic product states. The charge exchange between Xe2+ and N2, in particular, is known to create N2 + in both the A and B electronic states. In this work, we present integral charge exchange cross section measurements of the Xe2+ + N2 reaction as well as axial recoil velocity distributions of the Xe+ and N2 + product ions for collision energies between 0.3 and 100 eV in the center-of-mass (COM) frame. Total charge-exchange cross sections decrease from 70 Å2 to about 40 Å2 with increasing collision energy through this range. Analysis of the axial velocity distributions indicates that a Xe2+ - N2 complex exists at low collision energies but is absent by 17.6 eV COM. Analysis of the axial velocity distributions reveals evidence for complexes with lifetimes comparable to the rotational period at low collision energies. The velocity distributions are consistent with quasi-resonant single charge transfer at high collision energies.

  6. Integral cross section measurements and product recoil velocity distributions of Xe(2+) + N2 hyperthermal charge-transfer collisions.

    Science.gov (United States)

    Hause, Michael L; Prince, Benjamin D; Bemish, Raymond J

    2016-07-28

    Charge exchange from doubly charged rare gas cations to simple diatomics proceeds with a large cross section and results in populations of many vibrational and electronic product states. The charge exchange between Xe(2+) and N2, in particular, is known to create N2 (+) in both the A and B electronic states. In this work, we present integral charge exchange cross section measurements of the Xe(2+) + N2 reaction as well as axial recoil velocity distributions of the Xe(+) and N2 (+) product ions for collision energies between 0.3 and 100 eV in the center-of-mass (COM) frame. Total charge-exchange cross sections decrease from 70 Å(2) to about 40 Å(2) with increasing collision energy through this range. Analysis of the axial velocity distributions indicates that a Xe(2+) - N2 complex exists at low collision energies but is absent by 17.6 eV COM. Analysis of the axial velocity distributions reveals evidence for complexes with lifetimes comparable to the rotational period at low collision energies. The velocity distributions are consistent with quasi-resonant single charge transfer at high collision energies. PMID:27475363

  7. Simulation of the current distribution in lead-acid batteries to investigate the dynamic charge acceptance in flooded SLI batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kowal, Julia; Schulte, Dominik; Sauer, Dirk Uwe [Electrochemical Energy Conversion and Storage Systems Group, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, 52066 Aachen (Germany); Karden, Eckhard [Ford Research and Advanced Engineering Europe, Aachen (Germany)

    2009-06-01

    Measurements show that the dynamic charge acceptance (DCA) of flooded SLI lead-acid batteries during micro-cycling in conventional and micro-hybrid vehicles is strongly dependent on the short-term history, such as previous charge or discharge, current rate, lowest state of charge in the last 24 h and more. Factors of 10 have been reported. Inhomogeneous current distribution, especially as a result of acid stratification, has been suggested to explain the DCA variability. This hypothesis was investigated by simulation of a two-dimensional macrohomogeneous model. It provides a spatial resolution of three elements in horizontal direction in each electrode and three elements in vertical direction. For an existing set of parameters, different current profiles were analyzed with regard to the current distribution during charging and discharging. In these simulations, a strong impact of the short-term history on current, charge and acid density distribution was found as well as a strong influence of micro-cycles on both charge distribution and acid stratification. (author)

  8. Future prospects for ECR plasma generators with improved charge state distributions

    International Nuclear Information System (INIS)

    The growing number and variety of fundamental, applied, and industrial uses for high intensity, high charge state ion beams continues to be the driving force behind efforts to develop Electron Cyclotron Resonance (ECR) ion sources with superior performance characteristics. Incumbent with the advent of sub-micron electronic devices and their fabrication has been the demand for improved process control and optimization. These demands have led to the development of methods for cleaning, chemical etching, and deposition of thin films based on the use of plasma devices including ECR sources. Despite the steady advance in the technology, ECR plasma heating has not yet reached its full potential in terms of charge state and intensity within a particular charge state, in part, because of the narrow band width, single-frequency microwave radiation commonly used to heat the plasma electrons. This heating technique, coupled with conventional minimum-B configuration magnetic fields used for confining the electrons, resulting in the formation of the thin, ECR surfaces within the plasma volumes of these sources. This report identifies fundamentally important methods for enhancing the performances of ECR plasma generators by transforming the ECR zones from surfaces to volumes. Two methods are readily available for increasing the sizes of these zones. These techniques include: (1) a tailored magnetic field configuration in combination with single-frequency microwave radiation to create a large uniformly distributed ECR volume and; (2) the use of broadband-frequency domain techniques derived from standard TWT technology, to transform the resonant plasma surfaces of traditional ECR ion sources into resonant plasma volumes

  9. Landau Level Splittings, Phase Transitions, and Nonuniform Charge Distribution in Trilayer Graphene.

    Science.gov (United States)

    Campos, Leonardo C; Taychatanapat, Thiti; Serbyn, Maksym; Surakitbovorn, Kawin; Watanabe, Kenji; Taniguchi, Takashi; Abanin, Dmitry A; Jarillo-Herrero, Pablo

    2016-08-01

    We report on magnetotransport studies of dual-gated, Bernal-stacked trilayer graphene (TLG) encapsulated in boron nitride crystals. We observe a quantum Hall effect staircase which indicates a complete lifting of the 12-fold degeneracy of the zeroth Landau level. As a function of perpendicular electric field, our data exhibit a sequence of phase transitions between all integer quantum Hall states in the filling factor interval -8Landau level splittings and quantum Hall phase transitions can be understood within a single-particle picture, but imply the presence of a charge density imbalance between the inner and outer layers of TLG, even at charge neutrality and zero transverse electric field. Our results indicate the importance of a previously unaccounted band structure parameter which, together with a more accurate estimate of the other tight-binding parameters, results in a significantly improved determination of the electronic and Landau level structure of TLG.

  10. Landau Level Splittings, Phase Transitions, and Nonuniform Charge Distribution in Trilayer Graphene

    Science.gov (United States)

    Campos, Leonardo C.; Taychatanapat, Thiti; Serbyn, Maksym; Surakitbovorn, Kawin; Watanabe, Kenji; Taniguchi, Takashi; Abanin, Dmitry A.; Jarillo-Herrero, Pablo

    2016-08-01

    We report on magnetotransport studies of dual-gated, Bernal-stacked trilayer graphene (TLG) encapsulated in boron nitride crystals. We observe a quantum Hall effect staircase which indicates a complete lifting of the 12-fold degeneracy of the zeroth Landau level. As a function of perpendicular electric field, our data exhibit a sequence of phase transitions between all integer quantum Hall states in the filling factor interval -8 graphene, the observed Landau level splittings and quantum Hall phase transitions can be understood within a single-particle picture, but imply the presence of a charge density imbalance between the inner and outer layers of TLG, even at charge neutrality and zero transverse electric field. Our results indicate the importance of a previously unaccounted band structure parameter which, together with a more accurate estimate of the other tight-binding parameters, results in a significantly improved determination of the electronic and Landau level structure of TLG.

  11. Vertical distribution of overpotentials and irreversible charge losses in lithium ion battery electrodes.

    Science.gov (United States)

    Klink, Stefan; Schuhmann, Wolfgang; La Mantia, Fabio

    2014-08-01

    Porous lithium ion battery electrodes are characterized using a vertical distribution of cross-currents. In an appropriate simplification, this distribution can be described by a transmission line model (TLM) consisting of infinitely thin electrode layers. To investigate the vertical distribution of currents, overpotentials, and irreversible charge losses in a porous graphite electrode in situ, a multi-layered working electrode (MWE) was developed as the experimental analogue of a TLM. In this MWE, each layer is in ionic contact but electrically insulated from the other layers by a porous separator. It was found that the negative graphite electrodes get lithiated and delithiated stage-by-stage and layer-by-layer. Several mass-transport- as well as non-mass-transport-limited processes could be identified. Local current densities can reach double the average, especially on the outermost layer at the beginning of each intercalation stage. Furthermore, graphite particles close to the counter electrode act as "electrochemical sieve" reducing the impurities present in the electrolyte such as water.

  12. Charge-exchange Induced Modulation of the Heliosheath Ion Distribution Downstream of the Termination Shock

    Science.gov (United States)

    Fahr, H. J.; Fichtner, H.; Scherer, K.

    2015-12-01

    We consider the evolution of the solar wind ion distribution function alongthe plasma flow downstream from the termination shock induced by chargeexchange processes with cold interstellar H-atoms. We start from a kineticphase space transport equation valid in the bulk frame of the plasma flowthat takes into account convective changes, cooling processes, energydiffusion and ion injection, and describes solar wind and pick-up ionsas a co-moving, isotropic, joint ion population. From this kinetic transportequation one can ascend to an equation for the pressure moment of the iondistribution function, a so-called pressure transport equation, describingthe evolution of the ion pressure in the comoving rest frame. Assuming thatthe local ion distribution can be represented by an adequate kappa functionwith a kappa parameter that varies with the streamline coordinate, weobtain an ordinary differential equation for kappa as function of thestreamline coordinate s. With this result then we gain the heliosheath iondistribution function downstream of the termination shock. The latter thencan be used to predict the Voyager-2 measured moments of the distributionfunction like ion density and ion temperature, and it can also be used topredict spectral fluxes of ENA`s originating from these ions and registeredby IBEX-Hi and IBEX-Lo.We especially analyse the solar wind ion temperature decreasemeasured by Voyager-2 between the years 2008 to 2011 and try to explain itas a charge-exchange induced cooling of the ion distribution function duringthe associated ion convection period.

  13. Momentum distribution of charged particles in jets in dijet events and comparison to perturbative QCD predictions

    Indian Academy of Sciences (India)

    M E ZOMORRODIAN; M HASHEMINIA; S M ZABIHINPOUR; A MIRJALILI

    2016-08-01

    Inclusive momentum distributions of charged particles are measured in dijet events. Events were produced at the AMY detector with a centre of mass energy of 60 ${\\rm GeV}$. Our results were compared, on the one hand to those obtained from other $e^+ e^-$, $ep$ as well as CDF data, and on the other hand to the perturbative QCD calculations carried out in the framework of the modified leading log approximation (MLLA) and assuming local parton--hadron duality (LPHD). A fit of the shape of the distributions yields $\\scr Q_{eff} = 263 \\pm 13 {\\rm MeV}$ for the AMY data. In addition, a fit to the evolution of the peak position with dijet mass using all data from different experiments gives $\\scr Q_{eff} = 226 \\pm 18 {\\rm MeV}$. Next, αs was extracted using the shape of the distribution at the Z0 scale, with a value of 0.118 \\pm 0.013. This is consistent, within the statistical errors, with many accurate measurements. We conclude that it is the success of LPHD + MLLA that the extracted value of $\\alpha_{s}$ is correct. Possible explanations for all these features will be presented in this paper.

  14. Pseudorapidity and transverse-momentum distributions of charged particles in proton-proton collisions at $\\mathbf{\\sqrt{\\textit s}}$ = 13 TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Boettger, Stefan; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Lokesh, Kumar; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munzer, Robert Helmut; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papcun, Peter; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tangaro, Marco-Antonio; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasar, Cigdem; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-01-01

    The pseudorapidity ($\\eta$) and transverse-momentum ($p_{\\rm T}$) distributions of charged particles produced in proton-proton collisions are measured at the centre-of-mass energy $\\sqrt{s}$ = 13 TeV. The pseudorapidity distribution in $|\\eta|<$ 1.8 is reported for inelastic events and for events with at least one charged particle in $|\\eta|<$ 1. The pseudorapidity density of charged particles produced in the pseudorapidity region $|\\eta|<$ 0.5 is 5.31 $\\pm$ 0.18 and 6.46 $\\pm$ 0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15 $<$ $p_{\\rm T}$ $<$ 20 GeV/c and $|\\eta|<$ 0.8 for events with at least one charged particle in $|\\eta|<$ 1. The correlation between transverse momentum and particle multiplicity is also investigated by studying the evolution of the spectra with event multiplicity. The results are compared with calculations from PYTHIA and EPOS Monte Carlo generators.

  15. Model Simulations of Charged Particles Multiplicity Distributions in the Forward Region for ALICE at LHC

    CERN Document Server

    Braun, M A; Kondratev, V P; Vechernin, V V

    1999-01-01

    We present results of Monte Carlo simulations of charged particles multiplicity distributions and ALICE background conditions in forward region for PbPb collisions at LHC.HIJING event generator [1] results are compared with predictions of Coloured String Fusion Model [2,3].Requirements to the Forward Multiplicity Detector for ALICE arising from these simulations are discussed (multiplicity range, resolution in multiplicity, granularity, timing resolution).References: [1] N.van Eijndhoven et al., ALICE/CERN 95-32, Internal Note 1996[2] M.Braun and C.Pajares, PHys. Rev. D47 (1993) 114-122[2] M.Braun and C.Pajares, PHys. Rev. C51 (1995) 879-889

  16. Enhanced response and sensitivity of self-corrugated graphene sensors with anisotropic charge distribution

    Science.gov (United States)

    Yol Jeong, Seung; Jeong, Sooyeon; Won Lee, Sang; Tae Kim, Sung; Kim, Daeho; Jin Jeong, Hee; Tark Han, Joong; Baeg, Kang-Jun; Yang, Sunhye; Seok Jeong, Mun; Lee, Geon-Woong

    2015-06-01

    We introduce a high-performance molecular sensor using self-corrugated chemically modified graphene as a three dimensional (3D) structure that indicates anisotropic charge distribution. This is capable of room-temperature operation, and, in particular, exhibiting high sensitivity and reversible fast response with equilibrium region. The morphology consists of periodic, “cratered” arrays that can be formed by condensation and evaporation of graphene oxide (GO) solution on interdigitated electrodes. Subsequent hydrazine reduction, the corrugated edge area of the graphene layers have a high electric potential compared with flat graphene films. This local accumulation of electrons interacts with a large number of gas molecules. The sensitivity of 3D-graphene sensors significantly increases in the atmosphere of NO2 gas. The intriguing structures have several advantages for straightforward fabrication on patterned substrates, high-performance graphene sensors without post-annealing process.

  17. Optimal Day-Time Charging Strategies for Electric Vehicles considering Photovoltaic Power System and Distribution Grid Constraints

    Directory of Open Access Journals (Sweden)

    Weige Zhang

    2015-01-01

    Full Text Available Electric vehicles (EVs charging stations with a photovoltaic (PV system for day-time charging have been studied. This paper investigates the issues such as how to coordinate the EVs customers for coordinated charging, maximize photovoltaic utilization, and reduce customers cost of EVs charging and operator electricity. Firstly, an ideal charging load curve was built through using the linear programming algorithm. This optimal curve, which realized maximum photovoltaic power and minimum electricity cost, was used as the objective curve. Secondly, a customer response model was utilized, to propose an optimization method and strategy for charging service tariffs. Particle swarm optimization algorithm was used for time-of-use tariffs and peak-flat-valley time division so that the charging load after price regulation was adjusted to best fit the objective curve, and both the EVs customers and the operator benefit from this. Finally, the proposed model and method have been verified by two cases.

  18. [Time-resolved optical studies of charge relaxation and charge transfer at electrode interfaces

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    Key components were identified in a quantitative model of carrier relaxation in semiconductor electrodes: nonlinear aspects of nonradiative and radiative recombination, effect of space charge field on carrier dynamics, self-absorption effects in direct gas semiconductors, and influence of surface state population kinetics on charge carrier recombination. For CdSe, the first three are operative (no direct proof of the last one). A realistic kinetic model for carrier recombination in the bulk of CdSe was used which includes important nonlinear effects, both radiative and nonradiative. The change in interfacial recombination velocity with the chemical nature of the sinterface was studied (n-CdSe/silane interfaces). Temperature effect (278 to 328 K) on fluorescence decay of n-CdSe in contact with 0.5 M KOH was found to be weak. An analytical solution was obtained for time-resolved fluoresence from electrodes under potential bias, and is being tested. Fluorescence work on a different material, CdS, indicate different recombination kinetics; this material was used to directly pump an optical transition of a surface state.

  19. Design and Comparative Study of Three Photovoltaic Battery Charge Control Algorithms in MATLAB/SIMULINK Environment

    Directory of Open Access Journals (Sweden)

    Ankur Bhattacharjee

    2012-09-01

    Full Text Available This paper contains the design of a three stagesolar battery charge controller and a comparativestudy of this charge control technique with threeconventional solar battery charge controltechniques such as 1. Constant Current (CCcharging, 2. Two stage constant current constantvoltage (CC-CV charging technique. Theanalysis and the comparative study of theaforesaid charging techniques are done inMATLAB/SIMULINK environment. Here thepractical data used to simulate the charge controlalgorithms are based on a 12Volts 7Ah Sealedlead acid battery.

  20. The effects of dust temperature and the dust charge variation in a dusty plasma with vortex-like ion distribution

    Institute of Scientific and Technical Information of China (English)

    段文山

    2003-01-01

    By considering both the dust temperature and the dust charge variation in dusty plasma with vortex-like ion distribution, we obtained a modified Korteweg-de Vries equation. It indicates that the effect of dust charge variation can cause the one-dimensional soliton amplitude to become larger, and the dust temperature can cause the soliton amplitude to become larger as well. Moreover, as the dust temperature increases, the soliton amplitude will increase.

  1. The effects of dust temperature and the dust charge variation in a dusty plasma with vortex—like ion distribution

    Institute of Scientific and Technical Information of China (English)

    DuanWen-Shan

    2003-01-01

    By considering both the dust temperature and the dust charge variation in dusty plasma with vortex-like ion distribution, we obtained a modified Korteweg-de Vries equation. It indicates that the effect of dust charge variation can cause the one-dimensional solition amplitude to become larger, and the dust temperature can cause the soliton amplitude to become larger as well. Moreover, as the dust temperature increases, the soliton amplitude will increase.

  2. Linear and angular momentum of electromagnetic fields generated by an arbitrary distribution of charge and current densities at rest

    CERN Document Server

    Thidé, B; Then, H; Tamburini, F

    2010-01-01

    Starting from Stratton-Panofsky-Phillips-Jefimenko equations for the electric and magnetic fields generated by completely arbitrary charge and current density distributions at rest, we derive far-zone approximations for the fields, containing all components, dominant as well as sub-dominant. Using these approximate formulas, we derive general formulas for the total electromagnetic linear momentum and angular momentum, valid at large distances from arbitrary, non-moving charge and current sources.

  3. Distribution Locational Marginal Pricing for Optimal Electric Vehicle Charging through Chance Constrained Mixed-Integer Programming

    DEFF Research Database (Denmark)

    Liu, Zhaoxi; Wu, Qiuwei; Oren, Shmuel S.;

    2016-01-01

    This paper presents a distribution locational marginal pricing (DLMP) method through chance constrained mixed-integer programming designed to alleviate the possible congestion in the future distribution network with high penetration of electric vehicles (EVs). In order to represent the stochastic...... the driving requirement is below the predetermined confidence parameter. The efficacy of the proposed approach was demonstrated by case studies using a 33-bus distribution system of the Bornholm power system and the Danish driving data. The case study results show that the DLMP method through chance...

  4. The effect of realistic nuclear charge distributions on isotope shifts and towards the extraction of higher order nuclear radial moments

    CERN Document Server

    Papoulia, A; Ekman, J

    2016-01-01

    Background: Atomic spectral lines from different isotopes display a small shift in energy, commonly referred to as the line isotope shift. One of the components of the isotope shift is the field shift, which depends on the extent and the shape of the nuclear charge density distribution. Purpose: To investigate how sensitive field shifts are with respect to variations in the nuclear size and shape and what information of nuclear charge distributions that can be extracted from measured field shifts. Methods: Nuclear properties are obtained from nuclear density functional theory calculations based on the Skyrme-Hartree-Fock-Bogoliubov approach. These results are combined with multiconfiguration Dirac-Hartree-Fock methods to obtain realistic field shifts. Results: Phenomena such as nuclear deformation and variations in the diffuseness of nuclear charge distributions give measurable contributions to the field shifts. Using a novel approach, we demonstrate the possibility to extract new information concerning the n...

  5. Impact of charging electric-powered vehicles on the management of power distribution systems at volatile wind energy input; Einfluss gesteuerten Ladens von Elektrofahrzeugen auf die Netzbetriebsfuehrung bei volatiler Windeinspeisung

    Energy Technology Data Exchange (ETDEWEB)

    Agsten, Michael

    2011-10-10

    This work summarizes findings obtained by controlled charging of Electric Vehicles (EVs) regarding volatile wind power generation. Based on the state of the art of the negotiation of the charging process between the EV and the charging point two approaches will be explained. The Wind-2-Vehicle method (W2V) is an example for using controlled EV charging in order to create a renewable supply following demand by optimizing the energy supply quota wind in each charging process. The Local Load Management (LLM) method is an example of using information from distribution grids to limit the charging power of EVs over time. In this work, two case studies are carried out to quantify the controlled/uncontrolled charging of EVs and their impact on electric power systems. The first case study describes charging of fifty EVs by a reduced W2V approach. The charging process has been analyzed from different point of views. Controlled/Uncontrolled charging results in peak demand (of EV fleets), due to synchronized charging. This may result in violation of preassigned operation limits. The utilization of the developed LLM method in the second case study shows that a small reduction of the achievable W2V quality results in an improved charging performance for small as well as large fleets. Therefore applying LLM can avoid violations of operation limits.

  6. A new class of solutions of anisotropic charged distributions on pseudo-spheroidal spacetime

    Science.gov (United States)

    Ratanpal, B. S.; Thomas, V. O.; Pandya, D. M.

    2015-12-01

    In the present article a new class of exact solutions of Einstein's field equations for charged anisotropic distribution is obtained on the background of pseudo-spheroidal spacetime characterized by the metric potential g_{rr}=1+K {r2/R2}/{1+r2/R2}, where K and R are geometric parameters of the spacetime. The radial pressure pr and electric field intensity E are taken in the form 8π pr=K-1/R2 (1-{r2/R2)}/{ (1+Kr2/R2 )2} and E2=α(K-1){r2/R2}/{R2 (1+Kr2/R2 )2}. The bounds of geometric parameter K and the parameter α appearing in the expression of E2 are obtained by imposing the requirements for a physically acceptable model. It is found that the model is in good agreement with the observational data of number of compact stars like 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, PSR J1614-2230, Cen X-3 given by Gangopadhyay et al. (Mon. Not. R. Astron. Soc. 431:3216, 2013). When α= 0, the model reduces to the uncharged anisotropic distribution given by Ratanpal et al. (arXiv:1506.08512 [gr-qc], 2015).

  7. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  8. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible. PMID:24593615

  9. Design study of an upgraded charge breeder for ISOLDE

    CERN Document Server

    Shornikov, A; Wenander, F; Pikin, A

    2013-01-01

    In this work we present our progress in the design study of a new Electron Beam Ion Source (EBIS) to be installed as a charge breeder for reacceleration of rare ions at ISOLDE. The work is triggered by the HIE-ISOLDE upgrade {[}1] and the planned TSR@ISOLDE project {[}2]. To fulfill the requests of the user community the new EBIS should reach an electron beam density of 10(4) A/cm(2) at electron energies up to 150 key and, provide UHV environment and ion cooling in the breeding region to ensure confinement of the ions long enough to reach the requested charge states. We report on the established design parameters and first prototyping steps towards production and testing of suitable equipment. (C) 2013 Elsevier B.V. All rights reserved.

  10. Analysis of Charge State Distribution by Non-Local Thermodynamic-Equilibrium Spin-Orbit-Split-Array Collisional Radiative Model

    Institute of Scientific and Technical Information of China (English)

    张红; 张继彦; 杨向东; 杨国洪; 郑志坚

    2003-01-01

    A collisional radiative model based on the spin-orbit-split-arrays is used to determine the charge state distribution of gold plasmas. The ab initio atomic structure code of Cowan and the spin-orbit-split-array model were used to calculate all the emission spectra of the different gold species, and a non-local thermodynamic-equilibrium model was coupled to calculate the ion populations at a given plasma density and electron temperature. The charge state distribution and other plasma parameters were determined by comparing the experimental spectra with the theoretical simulated spectra of gold plasmas.

  11. A time-resolved study on the interaction of oppositely charged bicelles--implications on the charged lipid exchange kinetics.

    Science.gov (United States)

    Yang, Po-Wei; Lin, Tsang-Lang; Hu, Yuan; Jeng, U-Ser

    2015-03-21

    Time-resolved small-angle X-ray scattering was applied to study charged lipid exchange between oppositely charged disc-shaped bicelles. The exchange of charged lipids gradually reduces the surface charge density and weakens the electrostatic attraction between the oppositely charged bicelles which form alternately stacked aggregates upon mixing. Initially, at a high surface charge density with almost no free water layer between the stacked bicelles, fast exchange kinetics dominate the exchange process. At a later stage with a lower surface charge density and a larger water gap between the stacked bicelles, slow exchange kinetics take over. The fast exchange kinetics are correlated with the close contact of the bicelles when there is almost no free water layer between the tightly bound bicelles with a charged lipid exchange time constant as short as 20-40 min. When the water gap becomes large enough to have a free water layer between the stacked bicelles, the fast lipid exchange kinetics are taken over by slow lipid exchange kinetics with time constants around 200-300 min, which are comparable to the typical time constant of lipid exchange between vesicles in aqueous solution. These two kinds of exchange mode fit well with the lipid exchange models of transient hemifusion for the fast mode and monomer exchange for the slow mode.

  12. Monte Carlo Studies of Charge Transport Below the Mobility Edge

    OpenAIRE

    Jakobsson, Mattias

    2012-01-01

    Charge transport below the mobility edge, where the charge carriers are hopping between localized electronic states, is the dominant charge transport mechanism in a wide range of disordered materials. This type of incoherent charge transport is fundamentally different from the coherent charge transport in ordered crystalline materials. With the advent of organic electronics, where small organic molecules or polymers replace traditional inorganic semiconductors, the interest for this type of h...

  13. Charged hadron transverse momentum distributions in Au+Au collisions at √sNN=200 GeV

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Lee, J. W.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2004-01-01

    We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sNN=200 GeV. The spectra were measured for transverse momenta pT from 0.25 to 4.5 GeV/c in a pseudorapidity range of 0.2<η<1.4. The evolution of the spectra is studied as a function of collision centrality, from 65 to 344 participating nucleons. The results are compared to data from proton-antiproton collisions and Au+Au collisions at lower RHIC energies. We find a significant change of the spectral shape between proton-antiproton and semi-peripheral Au+Au collisions. Comparing semi-peripheral to central Au+Au collisions, we find that the yields at high pT exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.

  14. Mass, velocity, angular and charge-state distributions from the fusion of /sup 32/S and /sup 112/Sn

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, C.; Schier, W.A.; Tsoupas, N.; Enge, H.; Salomaa, M.; Sperduto, A.; Graue, A.

    1978-07-01

    Evaporation residues from the fusion of /sup 32/S and /sup 112/Sn at E/sub /sup 32/S/ = 160 meV were studied using an energy-mass spectrometer. The velocity selector of the energy-mass spectrometer was first utilized to measure summed fusion products as a function of velocity setting and reaction angle. In-flight mass separtion of the fusion products with the energy-mass spectrometer identified masses 141, 140, and 139 from the evaporation of three to five nucleons from the /sup 144/Dy compound nucleus. Absolute cross-section measurements are compared to theoretical predictions of the statistical evaporation model. Velocity, angular and charge state distributions of evaporation residues are also compared to calculated values.

  15. X-ray derived experimental charge density distribution in GaF3 and VF3 solid systems

    Science.gov (United States)

    Sujatha, K.; Israel, S.; Anzline, C.; Niranjana Devi, R.; Sheeba, R. A. J. R.

    2016-09-01

    The electronic structure and bonding features of metal and transition metal fluorides in low oxidation states, GaF3 and VF3, have been studied from precise single crystal X-ray diffraction data using multipole and maximum entropy methods. The topology of the charge density is analyzed and the (3,-1) bond critical points are determined. Existences of ionic nature of bonding in low valent fluorine compounds are clearly evident. The spherical core of metal atom and aspherical or twisted core of transition metal atom reveal the fact that GaF3 is much more rigid than VF3. Aspherical cores of the polarized ligand atoms are also visible in the two-dimensional density distribution pictures. The true valence charge density surfaces with encapsulating the atomic basins maps are elucidated. An elongated saddle with mid-bond density of 0.6191 e/Å3, observed in the compound VF3, shows that its lattice is less rigid and has more ionic character than GaF3.

  16. Economic considerations for on-road wireless charging systems - A case study

    NARCIS (Netherlands)

    Shekhar, A.; Bolech, M.; Prasanth, V.; Bauer, P.

    2015-01-01

    Economic viability of on-road charging strongly depends on the choice of inductive power transfer (IPT) system configuration (static or dynamic charging), charging power level and the percentage road coverage of dynamic charging. In this paper, a case study is carried out to determine the expected i

  17. Design and Comparative Study of Three Photovoltaic Battery Charge Control Algorithms in MATLAB/SIMULINK Environment

    Directory of Open Access Journals (Sweden)

    Ankur Bhattacharjee

    2012-09-01

    Full Text Available This paper contains the design of a three stage solar battery charge controller and a comparative study of this charge control technique with three conventional solar battery charge control techniques such as 1. Constant Current (CC charging, 2. Two stage constant current constant voltage (CC-CV charging technique. The analysis and the comparative study of the aforesaid charging techniques are done in MATLAB/SIMULINK environment. Here the practical data used to simulate the charge control algorithms are based on a 12Volts 7Ah Sealed lead acid battery.

  18. Charged particle multiplicity and transverse energy distribution using Weibull-Glauber approach in heavy-ion collisions

    CERN Document Server

    Behera, Nirbhay K; Naik, Bharati; Nandi, Basanta K; Pani, Tanmay

    2016-01-01

    The charged particle multiplicity distribution and the transverse energy distribution measured in heavy-ion collisions at top RHIC and LHC energies are described using the two-component model approach based on convolution of Monte Carlo Glauber model with the Weibull model for particle production. The model successfully describes the multiplicity and transverse energy distribution of minimum bias collision data for a wide range of energies. We also propose that Weibull-Glauber model can be used to determine the centrality classes in heavy-ion collision as an alternative to the conventional Negative Binomial distribution for particle production.

  19. Study of the Charge Density Control Method Including the Space Charge Effect in the Proton Synchrotron

    Science.gov (United States)

    Kato, Shinichi; Harada, Hiroyuki; Hotchi, Hideaki; Okabe, Kota; Yamamoto, Kazami; Kinsho, Michikazu

    For high intensity proton accelerators, one of the beam loss sources is the incoherent tune spread caused by the space charge force. In the 3 GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex, beams are injected sequentially and shifted slightly from the central orbit in order to increase the beam size intentionally and suppress the charge density and incoherent tune spread. This injection method has been adopted and suppressed the beam loss. However, simulations clarified that beams did not spread as much as expected because of the space charge effect in the high current case. As simulation results of the optimized beam shift pattern when the space charge effect is considered, it was obtained that the incoherent tune spread could be suppressed to an extent that has not been achieved previously.

  20. Landau Level Splittings, Phase Transitions, and Nonuniform Charge Distribution in Trilayer Graphene

    Science.gov (United States)

    Campos, Leonardo C.; Taychatanapat, Thiti; Serbyn, Maksym; Surakitbovorn, Kawin; Watanabe, Kenji; Taniguchi, Takashi; Abanin, Dmitry A.; Jarillo-Herrero, Pablo

    2016-08-01

    We report on magnetotransport studies of dual-gated, Bernal-stacked trilayer graphene (TLG) encapsulated in boron nitride crystals. We observe a quantum Hall effect staircase which indicates a complete lifting of the 12-fold degeneracy of the zeroth Landau level. As a function of perpendicular electric field, our data exhibit a sequence of phase transitions between all integer quantum Hall states in the filling factor interval -8 theoretical model and argue that, in contrast to monolayer and bilayer graphene, the observed Landau level splittings and quantum Hall phase transitions can be understood within a single-particle picture, but imply the presence of a charge density imbalance between the inner and outer layers of TLG, even at charge neutrality and zero transverse electric field. Our results indicate the importance of a previously unaccounted band structure parameter which, together with a more accurate estimate of the other tight-binding parameters, results in a significantly improved determination of the electronic and Landau level structure of TLG.

  1. State-of-Charge Balance Using Adaptive Droop Control for Distributed Energy Storage Systems in DC MicroGrid Applications

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Guerrero, Josep M.;

    2014-01-01

    This paper presents the coordinated control of distributed energy storage systems (DESSs) in DC micro-grids. In order to balance the state-of-charge (SoC) of each energy storage unit (ESU), an SoC-based adaptive droop control method is proposed. In this decentralized control method, the droop...

  2. The Effect of Organic Modifiers on Electrospray Ionization Charge-State Distribution and Desorption Efficiency for Oligonucleotides

    Science.gov (United States)

    Chen, Buyun; Mason, Sadie F.; Bartlett, Michael G.

    2013-02-01

    The chemical composition of the solution has a critical impact on the electrospray desorption efficiency of oligonucleotides. Several physiochemical properties of various organic modifiers were investigated with respect to their role in the desorption process of oligonucleotides. The Henry's Law Constant, which reflects the volatility of alkylamines, was found to have a prominent effect on both the electrospray charge state distribution and desorption efficiency of oligonucleotides. Alkylamines with higher k_{H,cc}( {aq/gas} ) values such as hexylamine, piperidine, and imidazole reduced the charge state distribution by forming complexes with the oligonucleotide and dissociating from it in the gas phase, while alkylamines with extremely low k_{H,cc}( {aq/gas} ) values reduced the electrospray charge state distribution by facilitating ion emission at an earlier stage of the electrospray desorption process. Ion-pairing agents with moderate k_{H,cc}( {aq/gas} ) values do not alter the electrospray charge state distribution of oligonucleotides and their ability to enhance oligonucleotide ionization followed the order of decreasing k_{H,cc}( {aq/gas} ) values. The Henry's Law Constant also correlated to the impact of the acidic modifiers on oligonucleotide ionization efficiency. Ionization enhancement effects were observed with hexafluoroisopropanol, and this effect was attributed to its low k_{H,cc}( {aq/gas} ) and moderate acidity. The comprehensive effects of both alkylamine and hexafluoroisoproapnol on the electrospray ionization desorption of oligonucleotides were also evaluated, and acid-base equilibrium was found to play a critical role in determining these effects.

  3. Effect of fractal silver electrodes on charge collection and light distribution in semiconducting organic polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Chamousis, RL; Chang, LL; Watterson, WJ; Montgomery, RD; Taylor, RP; Moule, AJ; Shaheen, SE; Ilan, B; van de Lagemaat, J; Osterloh, FE

    2014-08-21

    Living organisms use fractal structures to optimize material and energy transport across regions of differing size scales. Here we test the effect of fractal silver electrodes on light distribution and charge collection in organic semiconducting polymer films made of P3HT and PCBM. The semiconducting polymers were deposited onto electrochemically grown fractal silver structures (5000 nm x 500 nm; fractal dimension of 1.71) with PEDOT:PSS as hole-selective interlayer. The fractal silver electrodes appear black due to increased horizontal light scattering, which is shown to improve light absorption in the polymer. According to surface photovoltage spectroscopy, fractal silver electrodes outperform the flat electrodes when the BHJ film thickness is large (>400 nm, 0.4 V photovoltage). Photocurrents of up to 200 microamperes cm(-2) are generated from the bulk heterojunction (BHJ) photoelectrodes under 435 nm LED (10-20 mW cm(-2)) illumination in acetonitrile solution containing 0.005 M ferrocenium hexafluorophosphate as the electron acceptor. The low IPCE values (0.3-0.7%) are due to slow electron transfer to ferrocenium ion and due to shunting along the large metal-polymer interface. Overall, this work provides an initial assessment of the potential of fractal electrodes for organic photovoltaic cells.

  4. Numerical study of superradiant instability for charged stringy black hole–mirror system

    Directory of Open Access Journals (Sweden)

    Ran Li

    2015-01-01

    Full Text Available We numerically study the superradiant instability of charged massless scalar field in the background of charged stringy black hole with mirror-like boundary condition. We compare the numerical result with the previous analytical result and show the dependencies of this instability upon various values of black hole charge Q, scalar field charge q, and mirror radius rm. Especially, we have observed that imaginary part of BQN frequencies grows with the scalar field charge q rapidly.

  5. Two-Stage Electric Vehicle Charging Coordination in Low Voltage Distribution Grids

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna;

    2014-01-01

    ). Being a sizable rated element, electric vehicles (EVs) can offer a great deal of demand flexibility in future intelligent grids. This paper first investigates and analyzes driving pattern and charging requirements of EVs. Secondly, a two-stage charging algorithm, namely local adaptive control...... encompassed by a central coordinative control, is proposed to realize the flexibility offered by EV. The local control enables adaptive charging; whereas the central coordinative control prepares optimized charging schedules. Results from various scenarios show that the proposed algorithm enables significant...

  6. Charged-particle distributions in √{ s} = 13 TeVpp interactions measured with the ATLAS detector at the LHC

    Science.gov (United States)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gongadze, A.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muskinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Nechansky, F.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2016-07-01

    Charged-particle distributions are measured in proton-proton collisions at a centre-of-mass energy of 13 TeV, using a data sample of nearly 9 million events, corresponding to an integrated luminosity of 170 μb-1, recorded by the ATLAS detector during a special Large Hadron Collider fill. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on the charged-particle multiplicity are presented. The measurements are performed with charged particles with transverse momentum greater than 500 MeV and absolute pseudorapidity less than 2.5, in events with at least one charged particle satisfying these kinematic requirements. Additional measurements in a reduced phase space with absolute pseudorapidity less than 0.8 are also presented, in order to compare with other experiments. The results are corrected for detector effects, presented as particle-level distributions and are compared to the predictions of various Monte Carlo event generators.

  7. Fission fragment charge and mass distributions in 239Pu(n,f) in the adiabatic nuclear energy density functional theory

    CERN Document Server

    Regnier, D; Schunck, N; Verriere, M

    2016-01-01

    Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data is available is an incentive to develop a fully microscopic approach to fission dynamics. In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear energy density functional (EDF) method, where large amplitude collective motion is treated adiabatically using the time dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in tw...

  8. Evidence of self-affne multiplicity scaling of charged-particle multiplicity distribution in hadron–nucleus interaction

    Indian Academy of Sciences (India)

    Dipak Ghosh; Argha Deb; Sitaram Pal; Swarnapratim Bhattacharyya

    2007-05-01

    A self-affne analysis of charged-particle multiplicity distribution (protons + pions) in − –AgBr interaction at 350 GeV/c is performed according to the two-dimensional factorial moment methodology using the concept of Hurst exponent in $X_{\\cos\\theta^{-}}$ phase space. Comparing with the results obtained from self-similar analysis, the self affine analysis shows a better power-law behaviour. Corresponding results are compared with shower multiplicity distribution (pions). Multifractal behaviour is observed for both types of distributions.

  9. Voltage Scheduling Droop Control for State-of-Charge Balance of Distributed Energy Storage in DC Microgrids

    DEFF Research Database (Denmark)

    Li, Chendan; Dragicevic, Tomislav; Aldana, Nelson Leonardo Diaz;

    2014-01-01

    the State-of-Charge balance. In this paper, a new droop method based on voltage scheduling for State-of-Charge balance is proposed to keep the SoC balance for the energy storage units. The proposed method has the advantage of avoiding the stability problem existed in traditional methods based on droop gain...... scheduling. Simulation experiment is taken in Matlab on a DC microgrid with two distributed energy storage units. The simulation results show that the proposed method has successfully achieved SoC balance during the load changes while maintaining the DC bus voltage within the allowable range....

  10. Forward charge distributions associated with hadronically produced J/psi particles

    International Nuclear Information System (INIS)

    We have measured the forward charge as a function of x/sub F/ of the psi for events produced by 225 Gev/c π-Be interactions. The forward charge is the average difference between the number of positive hadrons and negative hadrons produced in the forward hemisphere. The standard Drell-Yan model predicts that the forward charge should become less negative as the x/sub F/ of the J/psi increases. The measured forward charge becomes more negative as the x/sub F/ of the J/psi increases although it is consistent with being flat as a function of x/sub F/. Hence the data is not consistent with any Drell-Yan type model which assumes the forward charge is not strongly dependent on the hadronic energy left over after the J/psi is formed. 45 references

  11. Study on space charge compensation in negative hydrogen ion beam.

    Science.gov (United States)

    Zhang, A L; Peng, S X; Ren, H T; Zhang, T; Zhang, J F; Xu, Y; Guo, Z Y; Chen, J E

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H(+) beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H(-) beam from a 2.45 GHz microwave driven H(-) ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  12. Study on space charge compensation in negative hydrogen ion beam.

    Science.gov (United States)

    Zhang, A L; Peng, S X; Ren, H T; Zhang, T; Zhang, J F; Xu, Y; Guo, Z Y; Chen, J E

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H(+) beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H(-) beam from a 2.45 GHz microwave driven H(-) ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results. PMID:26932087

  13. Study on space charge compensation in negative hydrogen ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, A. L.; Chen, J. E. [University of Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); Peng, S. X., E-mail: sxpeng@pku.edu.cn; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y. [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China)

    2016-02-15

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H{sup +} beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H{sup −} beam from a 2.45 GHz microwave driven H{sup −} ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  14. Study on linear shaped charge in penetrating rock

    Institute of Scientific and Technical Information of China (English)

    Luo Yong

    2008-01-01

    Based on the action mechanism of linear shaped charge (LSC), penetration performance of LSC on rock was studied. The optimal standoff and the vertex angle of LSC were studied and determined by lab experiments. Through cutting sand-cement grout samples, the spacing interval of boreholes can approach 17.5 times of the bore-hole' s diame- ter, and the result of the directional expansion of crack is satisfactory. The result of field experiment indicates cutting effect is very good, the ruggedness in fracture plane is less than 50 mm, the rate of half-hole marks is nearly 100 %, and the crack inspection shows that there is no damage in the internal of the cutting part. All these suggest that the ori-entation fracture blasting with LSC is a good means in directional fracture controlled blasting and is worth popularizing widely.

  15. Low energy highly charged ion beam facility at Inter University Accelerator Centre: Measurement of the plasma potential and ion energy distributions

    International Nuclear Information System (INIS)

    A deceleration lens coupled to one of the beam lines of the electron cyclotron resonance based low energy beam facility at Inter University Accelerator Centre is reported. This system is capable of delivering low energy (2.5 eV/q–1 keV/q) highly charged ion beams. The presence of plasma potential hinders the measurements of low energies (<50 eV), therefore, plasma potential measurements have been undertaken using a retarding plate analyzer in unison with the deceleration assembly. The distributions of the ion energies have been obtained and the effect of different source parameters on these distributions is studied

  16. Pseudorapidity distribution of charged hadrons in proton-proton collisions at $\\sqrt{s} =$ 13 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Fasanella, Giuseppe; Favart, Laurent; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hamer, Matthias; Hensel, Carsten; Mora Herrera, Clemencia; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; El Sawy, Mai; Elgammal, Sherif; Ellithi Kamel, Ali; Kamel, Mohamed; Mahmoud, Mohammed

    2015-01-01

    The pseudorapidity distribution of charged hadrons in pp collisions at $\\sqrt{s} =$ 13 TeV is measured using a data sample obtained with the CMS detector, operated at zero magnetic field, at the CERN LHC. The yield of primary charged long-lived hadrons produced in inelastic pp collisions is determined in the central region of the CMS pixel detector ($|\\eta|$ < 2) using both hit pairs and reconstructed tracks. For central pseudo-rapidities ($|\\eta|$ < 0.5), the charged-hadron multiplicity density ${\\rm d}N_{\\rm ch}/{\\rm d}\\eta | _{|\\eta| {\\rm\\ < 0.5}}$ = $5.49 \\pm 0.01 {\\rm\\ (stat)} \\pm 0.17 {\\rm\\ (syst)}$ , a value obtained by combining the two methods. The result is compared to predictions from Monte Carlo event generators and to similar measurements made at lower collision energie.

  17. Study on sources of charging lead acid batteries

    Science.gov (United States)

    Diniş, C. M.; Popa, G. N.; Iagăr, A.

    2015-06-01

    The paper presents the general characteristics of lead acid batteries and two charging methods of these batteries. For charging of lead batteries was used an intelligent power source K 8012 (from Velleman). The power source allows fixing the level of the battery voltage and battery capacity. The intelligent power source uses the joint method (at constant current and, then, at constant voltage) and warning that indicates different situations in the charging process. Other method of charging presented in the paper is at constant voltage using a stabilized power source. In the paper experimental measurements were carried out using data acquisition card SER 10 BIT (from Conrad) for charging/ discharging of a lead acid battery 12V/9Ah (using an intelligent power source) and charging of another high capacity lead acid battery 12V/47Ah/390 A (using a stabilized power source). At the discharging of the lead acid batteries it were used automotive lamps as electric loads.

  18. Charge distribution of Kr ions produced upon photoionization around the 2s edge

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.C.F., E-mail: toni@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21991-972 (Brazil); Pilling, S. [Laboratório Nacional de Luz Síncroton, Campinas 13084-971 (Brazil); Almeida, D.P. [Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-979 (Brazil)

    2015-08-15

    Highlights: • Charge spectra of Kr after photoionization of the L shell have been measured. • Multiple photoionization of krypton around the 2s edge is a collective process. • Electron correlation plays an important role in multiple ionization of heavy atoms. - Abstract: Charge state spectra of krypton ions generated after ionization (by a single photon) of the L shell have been measured by using the PEPICO technique. Relative abundances of Kr{sup q+} ions in charge state up to 8+ were obtained using monochromatized synchrotron radiation. A comparison with other experimental and theoretical data is presented.

  19. The Study on Differential Charges of Universities in China

    Institute of Scientific and Technical Information of China (English)

    WEN Xiao-zheng

    2005-01-01

    This paper mainly discusses the "double-track charge" system (price prejudice charge system) in theory and practice. The author explains and analyzes the "differential charges phenomenon" of universities in China by taking "Pareto optimality" as regulation standard and "Darwin optimality" as empirical standard, combining regulation standard with practice standard, realistic standard of value judgment with ultimate standard, and fairness with efficiency. This paper provides theoretical reference and an operation platform for application and implementation differential charges and the containment of corruption in college enrollment.

  20. Charge density study of two FeS2 polymorphs

    DEFF Research Database (Denmark)

    Schmøkel, Mette Stokkebro; Jørgensen, Mads Ry Vogel; Bjerg, Lasse;

    and theory is found. References [1] P. Coppens, Synchrotron Radiation in Crystallography, Academic Press: New York, 1992. [2] E.D. Stevens, M.L. DeLucia, P. Coppens, Inorg. Chem. 19 (1980) 813-820. [3] G.V. Gibbs, D.F. Cox, K.M. Rosso, N.L. Ross, R.T. Downs, M.A. Spackman, J. Phys. Chem. B. 111 (2007) 1923......Experimental charge density studies of inorganic solids have proven to be a difficult task due to systematic errors related to data collection such as absorption and extinction; however, the use of synchrotron radiation has the potential to minimize these problems. [1] One of the pioneering...

  1. Study of Charged Pion Photoproduction on Deuteron with Tagged Photons

    Institute of Scientific and Technical Information of China (English)

    HAN Yun-cheng; N.Chiga; Y.Fujii; K.Futatsukawa; O.Hashimoto; K.Hirose; T.Ishikawa; H.Kanda; M.Kaneta; D.Kawama; Konno; MA Yue; K.Maeda; T.Maruta; N.Maruyama; A.Matsumura; Y.Miyagi; K.Miwa; S.N.Nakamura; A.Sasaki; H.Shimizu; K.Shirotori; K.Suzuki; T.Tamae; H.Tamura; K.Tsukada; WANG Tie-shan; H.Yarnazaki

    2009-01-01

    The reactions γd→π~- pp and γd→npπ~+π~- have been studied in an energy range from 0.8 to 1.1 GeV at the tagged photon facility of Laboratory of Nuclear Science,T ohoku University.Charged pions and protons in the final state were measured by using the Neutral Kaon Spectrometer (NKS2).The analysis of the γd→π~- pp was mainly used to check the acceptance of the NKS2 and to calibrate the tagged photon energy.The photoproduction of the Δ~(++)Δ~- was identified in the γd→npπ~+π~- reaction.Since the data analyses are still in progress,we issue an interim report and preliminary results.

  2. Estimation of the spatial distribution of traps using space-charge-limited current measurements in an organic single crystal

    KAUST Repository

    Dacuña, Javier

    2012-09-06

    We used a mobility edge transport model and solved the drift-diffusion equation to characterize the space-charge-limited current of a rubrene single-crystal hole-only diode. The current-voltage characteristics suggest that current is injection-limited at high voltage when holes are injected from the bottom contact (reverse bias). In contrast, the low-voltage regime shows that the current is higher when holes are injected from the bottom contact as compared to hole injection from the top contact (forward bias), which does not exhibit injection-limited current in the measured voltage range. This behavior is attributed to an asymmetric distribution of trap states in the semiconductor, specifically, a distribution of traps located near the top contact. Accounting for a localized trap distribution near the contact allows us to reproduce the temperature-dependent current-voltage characteristics in forward and reverse bias simultaneously, i.e., with a single set of model parameters. We estimated that the local trap distribution contains 1.19×1011 cm -2 states and decays as exp(-x/32.3nm) away from the semiconductor-contact interface. The local trap distribution near one contact mainly affects injection from the same contact, hence breaking the symmetry in the charge transport. The model also provides information of the band mobility, energy barrier at the contacts, and bulk trap distribution with their corresponding confidence intervals. © 2012 American Physical Society.

  3. Transverse-momentum and pseudorapidity distributions of charged hadrons in $pp$ collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Haensel, Stephan; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kasieczka, Gregor; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Benucci, Leonardo; Ceard, Ludivine; De Wolf, Eddi A.; Hashemi, Majid; Janssen, Xavier; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Adler, Volker; Beauceron, Stephanie; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Kalogeropoulos, Alexis; Maes, Joris; Maes, Michael; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Villella, Ilaria; Chabert, Eric Christian; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Marage, Pierre Edouard; Vander Velde, Catherine; Vanlaer, Pascal; Wickens, John; Costantini, Silvia; Grunewald, Martin; Klein, Benjamin; Marinov, Andrey; Ryckbosch, Dirk; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Caudron, Julien; De Favereau De Jeneret, Jerome; Delaere, Christophe; Demin, Pavel; Favart, Denis; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Militaru, Otilia; Ovyn, Severine; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Quertenmont, Loic; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Carvalho, Wagner; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Mundim, Luiz; Oguri, Vitor; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Sznajder, Andre; Torres Da Silva De Araujo, Felipe; De Almeida Dias, Flavia; Ferreira Dias, Marco Andre; Tomei, Thiago; De Moraes Gregores, Eduardo; Da Cunha Marinho, Franciole; Novaes, Sergio F.; Padula, Sandra; Darmenov, Nikolay; Dimitrov, Lubomir; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Stoykova, Stefka; Sultanov, Georgi; Trayanov, Rumen; Vankov, Ivan; Dyulendarova, Milena; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Marinova, Evelina; Mateev, Matey; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Yang, Min; Zang, Jingjing; Zhang, Zhen; Ban, Yong; Guo, Shuang; Hu, Zhen; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Zhu, Bo; Cabrera, Andrés; Carrillo Montoya, Camilo Andres; Gomez Moreno, Bernardo; Ocampo Rios, Alberto Andres; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Lelas, Karlo; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Morovic, Srecko; Attikis, Alexandros; Fereos, Reginos; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Papadakis, Antonakis; Ptochos, Fotios; Razis, Panos A.; Rykaczewski, Hans; Tsiakkouri, Demetra; Zinonos, Zinonas; Mahmoud, Mohammed; Hektor, Andi; Kadastik, Mario; Kannike, Kristjan; Müntel, Mait; Raidal, Martti; Rebane, Liis; Azzolini, Virginia; Eerola, Paula; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Klem, Jukka; Kortelainen, Matti J.; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Dejardin, Marc; Denegri, Daniel; Descamps, Julien; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Gentit, François-Xavier; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Rousseau, Delphine; Titov, Maksym; Verrecchia, Patrice; Baffioni, Stephanie; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Dobrzynski, Ludwik; Elgammal, Sherif

    2010-01-01

    Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at $\\sqrt{s} = 7$~TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit-pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity \\dnchdeta$|_{|\\eta| < 0.5} = 5.78\\pm 0.01\\stat\\pm 0.23\\syst$ for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from $\\sqrt{s} = 0.9$ to 7~TeV is $66.1\\%\\pm 1.0\\%\\stat\\pm 4.2\\%\\syst$. The mean transverse momentum is measured to be $0.545\\pm 0.005\\stat\\pm 0.015\\syst\\GeVc$. The results are compared with similar measurements at lower energies.

  4. Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at sqrt(s) = 7 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Khachatryan, Vardan; Sirunyan, Albert M.; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Er, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; /Yerevan Phys. Inst. /Vienna, OAW /CERN /Minsk, High Energy Phys. Ctr. /Antwerp U., WISINF /Vrije U., Brussels /Brussels U. /Gent U. /Louvain U. /UMH, Mons /Rio de Janeiro, CBPF /Rome U. /INFN, Rome /CERN /Turin U. /INFN, Turin /Piemonte Orientale U., Novara /Trieste U. /INFN, Trieste /CHEP, Taegu /Chonnam Natl. U. /Korea U. /UCLA /CERN /UC, Riverside /Budapest, RMKI /UC, San Diego /UC, Santa Barbara /Caltech /Carnegie Mellon U. /Colorado U. /Cornell U. /Fairfield U.

    2010-05-01

    Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at {radical}s = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit-pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity dN{sub ch}/d{eta}|{eta}|<0.5 = 5.78 {+-} 0.01 (stat.) {+-} 0.23 (syst.) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from {radical}s = 0.9 to 7 TeV is 66.1% {+-} 1.0% (stat.) {+-} 4.2% (syst.). The mean transverse momentum is measured to be 0.545 {+-} 0.005 (stat.) {+-} 0.015 (syst.) GeV/c. The results are compared with similar measurements at lower energies.

  5. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues

    OpenAIRE

    Das, Rahul K.; Pappu, Rohit V.

    2013-01-01

    The functions of intrinsically disordered proteins (IDPs) are governed by relationships between information encoded in their amino acid sequences and the ensembles of conformations that they sample as autonomous units. Most IDPs are polyampholytes, with sequences that include both positively and negatively charged residues. Accordingly, we focus here on the sequence–ensemble relationships of polyampholytic IDPs. The fraction of charged residues discriminates between weak and strong polyamphol...

  6. Energy loss and charge state distribution of calcium ions in dense moderately coupled carbon plasma; Energieverlust und Ladungsverteilung von Calciumionen in dichtem, schwach gekoppeltem Kohlenstoffplasma

    Energy Technology Data Exchange (ETDEWEB)

    Ortner, Alex

    2015-07-15

    In this thesis the interaction of swift calcium ions (Energy: 3.5 MeV/u) with a dense and moderately coupled carbon plasma (Coupling parameter: Γ=0.1-0.5) is investigated. The plasma state is generated by heating a thin carbon foil volumetrically by thermal X-ray radiation. The thermal X-ray radiation itself is generated by the conversion of a high energy laser beam in a hohlraum cavity. Compared to earlier ion stopping experiments the electron density and the plasma coupling parameter could be increased by an order of magnitude. This work provides the first time experimental energy loss and charge state distribution data in this moderately coupled interaction regime. The thesis consists of a theoretical part where the ion beam plasma interaction is studied for a broad range of plasma parameters and an experimental part where the ion beam interaction with the hohlraum plasma target is measured. All the described experiments were carried out at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt. This facility offers the unique possibility to combine a heavy ion beam from an accelerator with a high energy laser beam in one interaction chamber. An intense laser pulse (150 J of laser energy in 1 ns at λ{sub L}=527 nm) is focused inside a 600 μm diameter spherical cavity and generates a hot gold plasma that emits X-rays. The absorbed and reemitted radiation establishes a spatially uniform temperature distribution in the cavity and serves as an intense, isotropic X-ray source with a quasi-thermal spectral distribution. These thermal X-rays with a radiation temperature of T{sub r}=98±6 eV then propagate into a secondary cylindrical hohlraum (diameter: 1000 μm, length: 950 μm) where they volumetrically heat two thin carbon foils to the plasma state. The radiation temperature in the secondary hohlraum is T{sub r}=33±5 eV. This indirect laser heating scheme has the advantage that the whole sample volume is instantaneously heated and that the plasma is

  7. Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC

    CERN Document Server

    ,

    2014-01-01

    We report the first measurements of the moments -mean ($M$), variance ($\\sigma^{2}$), skewness ($S$) and kurtosis ($\\kappa$) -of the net-charge multiplicity distributions at mid-rapidity in Au+Au collisions at seven energies, ranging from $\\sqrt {{s_{\\rm NN}}}$=7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net-charge, which are expected to diverge at the QCD critical point. We compare the products of the moments, $\\sigma^{2}/M$, $S\\sigma$ and $\\kappa\\sigma^{2}$ with the expectations from Poisson and negative binomial distributions (NBD). The $S\\sigma$ values deviate from Poisson and are close to NBD baseline, while the $\\kappa\\sigma^{2}$ values tend to lie between the two. Within the present uncertainties, our data do not show clear evidence of non-monotonic behavior as a function of collision energy.

  8. Understanding of fission dynamics from fragment mass distribution studies

    International Nuclear Information System (INIS)

    Nuclear fission is a complex process involving large scale collective rearrangement of nuclear matter. The shape of the fissioning nucleus evolves in the multidimensional space of relative separation, neck opening, mass asymmetry and deformation of the fragments. Various types of nuclear shape deformation have been observed from the fission fragment spectroscopy studies, which provide crucial information in the understanding of the dynamics of the fission process. The fission fragment mass and charge distributions are decided during saddle to scission transition and are directly related to the scission configuration. Several nuclear models have been put forward to describe the fission fragment mass distribution as well as shape deformation of the fragments. The width of the fission fragment mass distribution is related to the fission process and provides information on the type of fission reactions

  9. NUCLEAR AND HEAVY ION PHYSICS: Charged-particle pseudorapidity distributions in Au+Au collisions at RHIC

    Science.gov (United States)

    Wang, Zeng-Wei; Jiang, Zhi-Jin

    2009-04-01

    Using the Glauber model, we present the formulas for calculating the numbers of participants, spectators and binary nucleon-nucleon collisions. Based on this work, we get the pseudorapidity distributions of charged particles as the function of the impact parameter in nucleus-nucleus collisions. The theoretical results agree well with the experimental observations made by the BRAHMS Collaboration in Au + Au collisions at GeV in different centrality bins over the whole pseudorapidity range.

  10. Analysis and Comparison of Voltage Dependent Charging Strategies for Single-Phase Electric Vehicles in an Unbalanced Danish Distribution Grid

    DEFF Research Database (Denmark)

    Álvarez, Jorge Nájera; Knezovic, Katarina; Marinelli, Mattia

    2016-01-01

    This paper studies four voltage dependent solutions for modulating the charging of multiple Electric Vehicles (EVs) in a real Danish network. Uncontrolled EV charging, especially in grid with high EV penetration, can result in overloaded lines and transformers, low-voltages and other performance...... degradations which lead to poor quality of supply. Therefore, a decentralized control for modulating the EVs’ charging current is developed, which sets the EV reference current based on the phase-to-neutral voltage at the EV connection node. Due to the controller’s decentralised feature, EVs plugged......-in on phases with lower voltages are constrained during the charging period. In order to solve instability issues which may occur due to lack of communication between the controllers, several improvements are applied to the aforementioned droop control. Simulation results demonstrate the performance...

  11. Global plasma simulation of charge state distribution inside a 2.45 GHz ECR plasma with experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Bodendorfer, M; Wurz, P; Hohl, M, E-mail: bodendorfer@ep.isas.jaxa.j [Space Research and Planetary Sciences, University of Bern, 3012 Bern (Switzerland)

    2010-08-15

    For the first time, the charge state distribution inside the MEsskammer fuer FlugzeitInStrumente und Time-Of-Flight (MEFISTO) electron cyclotron resonance (ECR) plasma and in the extracted ion beam was successfully simulated. A self-consistent ECR plasma ionization model (Hohl M 2002 MEFISTO II: Design, setup, characterization and operation of an improved calibration facility for solar plasma instrumentation PhD Thesis University of Bern) was further developed, recomputing the ion confinement time for every ion species and in every time step based on the actual plasma potential rather than using a prescribed constant ion confinement time. The simulation starts with a user defined set of initial conditions and develops the problem in time space by an adaptive step length fourth order Runge-Kutta (RK4) solver, considering particle densities based on ionization rates, recombination rates, ion confinement times and plasma potential. At the simulation end, a steady-state ion charge state distribution is reached, which is in excellent agreement with the measured ion beam charge state distribution of the MEFISTO ion source for Ar{sup 1+} to Ar{sup 5+} and in good agreement for Ar{sup 6+}.

  12. Global plasma simulation of charge state distribution inside a 2.45 GHz ECR plasma with experimental verification

    Science.gov (United States)

    Bodendorfer, M.; Wurz, P.; Hohl, M.

    2010-08-01

    For the first time, the charge state distribution inside the MEsskammer für FlugzeitInStrumente und Time-Of-Flight (MEFISTO) electron cyclotron resonance (ECR) plasma and in the extracted ion beam was successfully simulated. A self-consistent ECR plasma ionization model (Hohl M 2002 MEFISTO II: Design, setup, characterization and operation of an improved calibration facility for solar plasma instrumentation PhD Thesis University of Bern) was further developed, recomputing the ion confinement time for every ion species and in every time step based on the actual plasma potential rather than using a prescribed constant ion confinement time. The simulation starts with a user defined set of initial conditions and develops the problem in time space by an adaptive step length fourth order Runge-Kutta (RK4) solver, considering particle densities based on ionization rates, recombination rates, ion confinement times and plasma potential. At the simulation end, a steady-state ion charge state distribution is reached, which is in excellent agreement with the measured ion beam charge state distribution of the MEFISTO ion source for Ar1+ to Ar5+ and in good agreement for Ar6+.

  13. The Charge and Matter radial distributions of Heavy-Light mesons calculated on a lattice with dynamical fermions

    CERN Document Server

    Green, A M; Pennanen, P; Michael, C

    2003-01-01

    A knowledge of the radial distributions of quarks inside hadrons could lead to a better understanding of the QCD description of these hadrons and possibly suggest forms for phenomenological models. As a step in this direction, in an earlier work, the charge (vector) and matter (scalar) radial distributions of heavy-light mesons were measured in the quenched approximation on a 16^3x24 lattice with a lattice spacing of 'a' approx. 0.17 fm, and a hopping parameter corresponding to a light quark mass about that of the strange quark. Here several improvements are now made: 1) The configurations are generated using dynamical fermions with a approx 0.14 fm; 2) Many more gauge configurations areincluded; 3) The distributions at many off-axis, in addition to on-axis, points are measured; 4) The data analysis is much more complete. In particular, distributions involving excited states are extracted. The exponential decay of the charge and matter distributions can be described by mesons of mass 0.9 +- 0.1 and 1.5 +- 0.1...

  14. Variation of Charge Distribution and Capacitance on Thin Wire Using the Method of Moments

    Directory of Open Access Journals (Sweden)

    Mohamed Louzazni

    2013-09-01

    Full Text Available In this paper, we attempting to determine the linear charge density and capacitance on a finite straight segment of thin charged conducting wire of length L=1 m and radius r. we assume that the charge density piecewise constant over the length and the electric potential are is one volt. If the radius are very small compared to the length r<charge density are piecewise constant onto each segment. The integral equation will be transformed to linear equation in N equation with N unknown system. We use the method of moments for solving this system and we obtained a Toeplitz matrix, the results shows the charge density for N=100 is represented on the low levels of discretisation, and the decreasing of the radius increaser the fidelity of the results.

  15. Investigation of the influence of surface composition on the charge state distribution of ∼keV hydrogen exiting thin carbon foils for space plasma instrumentation

    Science.gov (United States)

    Allegrini, Frédéric; Coulter, Kent; Ebert, Robert W.; Nicolaou, Georgios; Poenitzsch, Vasiliki Zorbas

    2016-06-01

    Energetic neutral atom (ENA) imaging techniques have become a powerful tool for remotely probing plasma environments in space. ENA imagers cover energies from 0.01 keV up to a few MeV, and they use different techniques to cover such a broad energy range. Most of them convert the ENA into a charged particle to remove the converted ENA from the initial neutral direction. In the >∼0.2 keV/nuc to 10's of keV/nuc range, the conversion subsystem is usually an ultra-thin carbon foil. The sensitivity of ENA imagers based on charge conversion by carbon foils is driven by the ability of these foils to convert a neutral atom into an ion. The charge state distribution after the carbon foils is a strong function of the chemical and physical properties of the exit surface. In this study, we analyze the composition and structure of the surface using X-ray photoelectron spectroscopy. The surface is roughly 88% carbon and 12% oxygen, forming strong Csbnd O bonds. Annealing the foil lowers the oxygen content to about 9%. We coat the surface of the foils with Au, Al2O3, or MgO. We compare the exit charge state distributions of hydrogen prior to and post coatings. While no significant difference is observed in the exit charge state for the Au and Al2O3 coatings, there is a slight decrease of the positive fraction after MgO. The annealing of the foil has the benefit of reducing the angular scattering of hydrogen by a factor of ∼1.2. This is a significant improvement that has the potential to increase sensitivity of ENA imagers.

  16. Water Tree Influence on Space Charge Distribution and on the Residual Electric Field in Polyethylene Insulation

    Directory of Open Access Journals (Sweden)

    Cristina Stancu

    2009-10-01

    Full Text Available A computation method of the electricfield and ionic space charge density in planeinsulations with water trees (using a ComsolMultiphysics software and the thermal step currents(Im(t measured with Thermal Step Method ispresented. A parabolic spatial variation of volumecharge density, an exponential spatial variation ofthe electric permittivity ε and a linear dependency ofε and the temperature coefficient of permittivity αεwith the average water concentration in trees, areconsidered. For a water tree with a known length,different values of charge density are consideredand the electric field and the thermal step currentsIc(t are calculated. The currents Ic(t and Im(t arecompared and the volume of charge density andelectric field for which Ic(t is identical with Im(t arekept.

  17. Centralized vs. Distributed Databases. Case Study

    Directory of Open Access Journals (Sweden)

    Nicoleta Magdalena Iacob

    2015-12-01

    Full Text Available Currently, in information technology domain and implicit in databases domain can be noticed two apparently contradictory approaches: centralization and distribution respectively. Although both aim to produce some benefits, it is a known fact that for any advantage a price must be paid. In addition, in this paper we have presented a case study, e-learning portal performance optimization by using distributed databases technology. In the stage of development in which institutions have branches distributed over a wide geographic area, distributed database systems become more appropriate to use, because they offer a higher degree of flexibility and adaptability then centralized ones.

  18. Charged Hadron Distributions In 19.6-gev Gold+gold Collisions

    CERN Document Server

    Picha, R

    2005-01-01

    Experimental results from a low-energy heavy ion run in year 2001 at the Relativistic Heavy Ion Collider (RHIC) using the Solenoidal Tracker at RHIC (STAR) detector are presented. From the collisions of gold ions at sNN = 19.6 GeV, six species of particles (π±, K±, p, and p¯) are identified via energy loss mechanism and their transverse mass spectra are analyzed at midrapidity (|y| < 0.5) and m T − m0 < 1.0 GeV/c 2. Rapidity distributions, particle ratios, and hadronic freeze-out conditions are discussed. This study provides a low energy measurement at RHIC which is very close to that at the SPS for cross comparison between collider experiments and fixed target experiments. The analysis provides a good reference to study excitation functions of strangeness production, net baryon, and collective flow inside heavy ion collisions.

  19. A Monte Carlo study of charge transfer in DNA

    OpenAIRE

    Jakobsson, Mattias; Stafström, Sven

    2008-01-01

    A model describing charge (hole) transport in DNA has been developed. The individual charge transfer steps in the transport process are described by Marcus theory modified to account for electron delocalization over adjacent identical nucleobases. Such a modification, as well as introducing a distance dependence in the reorganization energy, is necessary in order to reach an agreement with the observed transfer rates in well defined model systems to DNA. Using previously published results as ...

  20. Charge collection efficiency of GaAs detectors studied with low-energy heavy charged particles

    CERN Document Server

    Bates, R; Linhart, V; O'Shea, V; Pospísil, S; Raine, C; Smith, K; Sinor, M; Wilhelm, I

    1999-01-01

    Epitaxially grown GaAs layers have recently been produced with sufficient thickness and low enough free carrier concentration to permit their use as radiation detectors. Initial tests have shown that the epi-material behaves as a classical semiconductor as the depletion behaviour follows the square root dependency on the applied bias. This article presents the results of measurements of the growth of the active depletion depth with increasing bias using low-energy protons and alpha particles as probes for various depths and their comparison to values extrapolated from capacitance measurements. From the proton and alpha particle spectroscopic measurements, an active depth of detector material that collects 100% of the charge generated inside it was determined. The consistency of these results with independent capacitance measurements supports the idea that the GaAs epi-material behaves as a classical semiconductor. (author)

  1. Moments of net-charge multiplicity distribution in Au+Au collisions measured by the PHENIX experiment at RHIC

    CERN Document Server

    Garg, P

    2013-01-01

    Beam Energy Scan (BES) program at RHIC is important to search for the existence of the critical point in the QCD phase diagram. Lattice QCD have shown that the predictions of the susceptibility of the medium formed in heavy-ion collisions can be sensitive to the various moments (mean ($\\mu$) =${}$, variance ($\\sigma^2$) = ${}$, skewness (S) = $\\frac{}{\\sigma^3}$ and kurtosis ($\\kappa$) =$\\frac{}{\\sigma^4} -3$) of conserved quantities like net-baryon number ($\\Delta$B), net-electric charge ($\\Delta$Q) and net-strangeness ($\\Delta$S). Any non-monotonic behavior of the higher moments would confirm the existence of the QCD critical point. The recent results of the higher moments of net-charge multiplicity distributions for Au+Au collisions at $\\sqrt{s}_{NN}$ varying from 7.7 GeV to 200 GeV from the PHENIX experiment at RHIC are presented. The energy and centrality dependence of the higher moments and their products (S$\\sigma$ and $\\kappa\\sigma^{2}$) are shown for the net-charge multiplicity distributions. Further...

  2. Model-independent measurement of the charge density distribution along an Fe atom probe needle using off-axis electron holography without mean inner potential effects

    Energy Technology Data Exchange (ETDEWEB)

    Migunov, V., E-mail: v.migunov@fz-juelich.de; Dunin-Borkowski, R. E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich, D-52425 Jülich (Germany); London, A. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Farle, M. [Fakultät für Physik and Center of Nanointegration (CeNIDE), Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2015-04-07

    The one-dimensional charge density distribution along an electrically biased Fe atom probe needle is measured using a model-independent approach based on off-axis electron holography in the transmission electron microscope. Both the mean inner potential and the magnetic contribution to the phase shift are subtracted by taking differences between electron-optical phase images recorded with different voltages applied to the needle. The measured one-dimensional charge density distribution along the needle is compared with a similar result obtained using model-based fitting of the phase shift surrounding the needle. On the assumption of cylindrical symmetry, it is then used to infer the three-dimensional electric field and electrostatic potential around the needle with ∼10 nm spatial resolution, without needing to consider either the influence of the perturbed reference wave or the extension of the projected potential outside the field of view of the electron hologram. The present study illustrates how a model-independent approach can be used to measure local variations in charge density in a material using electron holography in the presence of additional contributions to the phase, such as those arising from changes in mean inner potential and specimen thickness.

  3. Effect of dust size distribution and dust charge fluctuation on dust ion-acoustic shock waves in a multi-ion dusty plasma

    Indian Academy of Sciences (India)

    WANG HONGYAN; ZHANG KAIBIAO

    2016-07-01

    The effects of dust size distribution and dust charge fluctuation of dust grains on the small but finite amplitude nonlinear dust ion-acoustic shock waves, in an unmagnetized multi-ion dusty plasma which contains negative ions, positive ions and electrons, are studied in this paper. A Burgers equation and its stationary solutions are obtained by using the reductive perturbation method. The analytical and numerical results show that the height with polynomial dust size distribution is larger than that of the monosized dusty plasmas with the same dustgrains, but the thickness in the case of different dust grains is smaller than that of the monosized dusty plasmas. Furthermore, the moving speed of the shock waves also depend on different dust size distributions.

  4. Effect of the Net Charge Distribution on the Aqueous Solution Properties of Polyampholytes Effet de la répartition de la charge nette sur les propriétés des solutions aqueuses de polyampholytes

    Directory of Open Access Journals (Sweden)

    Candau F.

    2006-12-01

    Full Text Available The zwitterion nature of ampholytic polymers provides features that are useful in environmental and industrial applications, e. g. ion-exchange membrane, as flocculants in sewage treatment and in oil recovery processes. In the latter case, the increase in viscosity which is observed in the presence of brine (anti -polyelectrolyte behavior make them ideal candidates for high salinity media. The aqueous solution properties of a series of ampholytic terpolymers based on sodium-2-acrylamido-2- rilethylpropanesulfonate (NaAMPS, Methacryloyloxyethyltrimethylammonium chloride (MADQUAT and acrylamide (AM, prepared in inverse micro emulsions have been investigated by viscometry and light scattering experiments. The distribution of the net charge among the chains was varied by adjusting the initial monomer composition and the degree of conversion. The effect of this distribution on the solubility of the samples and on the chain conformation was studied. It was found that samples with a narrow distribution of net charges were soluble in water even if the average net charge is small. Addition of salt produces a transition from an extended conformation to a more compact one in qualitative agreement with theoretical predictions. A practically alternated NaAMPS- MADQUAT copolymer prepared in homogeneous solution and with a small average net charge shows a behaviour quite similar to that of the terpolymers. La nature zwitterioniquedes polymères ampholytes présente des caractéristiques qui sont utiles dans les applications environnementales et industrielles, comme les membranes d'échange ionique, les floculants dans le traitement des eaux usées et dans les procédés de récupération de pétrole. Dans ce dernier cas, l'augmentation de viscosité qui est observée en présence de saumure (comportement antipolyélectrolyte en fait des candidats idéaux pour des milieux de salinité élevée. Les propriétés de la solution aqueuse d'une série de terpolym

  5. Detailed study of the column-based priority logic readout of Topmetal-II- CMOS pixel direct charge sensor

    CERN Document Server

    An, Mangmang; Gao, Chaosong; Han, Mikyung; Huang, Guangming; Ji, Rong; Li, Xiaoting; Mei, Yuan; Pei, Hua; Sun, Quan; Sun, Xiangming; Wang, Kai; Xiao, Le; Yang, Ping; Zhang, Wei; Zhou, Wei

    2016-01-01

    We present the detailed study of the digital readout of Topmetal-II- CMOS pixel direct charge sensor. Topmetal-II- is an integrated sensor with an array of 72X72 pixels each capable of directly collecting external charge through exposed metal electrodes in the topmost metal layer. In addition to the time-shared multiplexing readout of the analog output from Charge Sensitive Amplifiers in each pixel, hits are also generated through comparators with individually DAC settable thresholds in each pixel. The hits are read out via a column-based priority logic structure, retaining both hit location and time information. The in-array column-based priority logic is fully combinational hence there is no clock distributed in the pixel array. Sequential logic and clock are placed on the peripheral of the array. We studied the detailed working behavior and performance of this readout, and demonstrated its potential in imaging applications.

  6. Contribution of material’s surface layer on charge state distribution in laser ablation plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kumaki, Masafumi, E-mail: rogus@asagi.waseda.jp [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Steski, Dannie; Kanesue, Takeshi [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Ikeda, Shunsuke [Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa 226-8503 (Japan); Okamura, Masahiro [Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Washio, Masakazu [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan)

    2016-02-15

    To generate laser ablation plasma, a pulse laser is focused onto a solid target making a crater on the surface. However, not all the evaporated material is efficiently converted to hot plasma. Some portion of the evaporated material could be turned to low temperature plasma or just vapor. To investigate the mechanism, we prepared an aluminum target coated by thin carbon layers. Then, we measured the ablation plasma properties with different carbon thicknesses on the aluminum plate. The results showed that C{sup 6+} ions were generated only from the surface layer. The deep layers (over 250 nm from the surface) did not provide high charge state ions. On the other hand, low charge state ions were mainly produced by the deeper layers of the target. Atoms deeper than 1000 nm did not contribute to the ablation plasma formation.

  7. On the Field of a Spherical Charged Pulsating Distribution of Matter

    Directory of Open Access Journals (Sweden)

    Stavroulakis N.

    2010-10-01

    Full Text Available In the theory of the gravitational field generated by an isotropic spherical mass, the spheres centered at the origin of $R^3$ are non-Euclidean objects, so that each of them possesses a curvature radius distinct from its Euclidean radius. The classical theory suppresses this distinction and consequently leads to inadmissible errors. Specifically, it leads to the false idea that the field of a pulsating source is static. In a number of our previous publications (see references, we have exposed the inevitable role that the curvature radius plays and demonstrated that the field generated by a pulsating not charged spherical course is dynamical. In the present paper we prove that the curvature radius plays also the main role in the description of the gravitational field generated by a charged pulsating source.

  8. A Study of Charged Current Single Charged Pion Productions on Carbon in a Few-GeV Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, Katsuki; /Kyoto U.

    2009-01-01

    Understanding single charged pion production via neutrino-nucleus charged current interaction in the neutrino energy region of a few GeV is essential for future neutrino oscillation experiments since this process is a dominant background for {nu}{sub {mu}} {yields} {nu}{sub x} oscillation measurements. There are two contributions to this process: single pion production via baryonic resonance ({nu}{sub {mu}}N {yields} {mu}{sup -} N{pi}{sup +}) and coherent pion production interacting with the entire nucleus ({nu}{sub {mu}}A {yields} {mu}{sup -} A{pi}{sup +}), where N is nucleon in the nucleus and A is the nucleus. The purpose of the study presented in this thesis is a precise measurement of charged current single charged pion productions, resonant and coherent pion productions, with a good final state separation in the neutrino energy region of a few GeV. In this thesis, we focus on the study of charged current coherent pion production from muon neutrinos scattering on carbon, {nu}{sub {mu}} {sup 12}C {yields} {mu}{sup -12}C{pi}{sup +}, in the SciBooNE experiment. This is motivated by the fact that without measuring this component first, the precise determination of resonant pion production cross section can not be achieved since the contribution of coherent pion production in the region of small muon scattering angle is not small. Furthermore, the coherent process is particularly interesting because it is deeply rooted in fundamental physics via Adler's partially conserved axial-vector current theorem. We took data from June 2007 until August 2008, in both the neutrino and antineutrino beam. In total, 2.52 x 10{sup 20} protons on target were collected. We have performed a search for charged current coherent pion production by using SciBooNE's full neutrino data set, corresponding to 0.99 x 10{sup 20} protons on target. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio of charged

  9. A Study of Charged Current Single Charged Pion Productions on Carbon in a Few-GeV Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, Katsuki [Kyoto Univ. (Japan)

    2009-01-01

    Understanding single charged pion production via neutrino-nucleus charged current interaction in the neutrino energy region of a few GeV is essential for future neutrino oscillation experiments since this process is a dominant background for vμ → vx oscillation measurements. There are two contributions to this process: single pion production via baryonic resonance (vμN → μ-+) and coherent pion production interacting with the entire nucleus (vμA → μ-+), where N is nucleon in the nucleus and A is the nucleus. The purpose of the study presented in this thesis is a precise measurement of charged current single charged pion productions, resonant and coherent pion productions, with a good final state separation in the neutrino energy region of a few GeV. In this thesis, we focus on the study of charged current coherent pion production from muon neutrinos scattering on carbon, vμ 12C → μ-12+, in the SciBooNE experiment. This is motivated by the fact that without measuring this component first, the precise determination of resonant pion production cross section can not be achieved since the contribution of coherent pion production in the region of small muon scattering angle is not small. Furthermore, the coherent process is particularly interesting because it is deeply rooted in fundamental physics via Adler's partially conserved axial-vector current theorem. We took data from June 2007 until August 2008, in both the neutrino and antineutrino beam. In total, 2.52 x 1020 protons on target were collected. We have performed a search for charged current coherent pion production by using SciBooNE's full neutrino data set, corresponding to 0.99 x 1020 protons on target. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio

  10. Catching the role of anisotropic electronic distribution and charge transfer in halogen bonded complexes of noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Bartocci, Alessio; Cappelletti, David; Pirani, Fernando [Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia 06123 (Italy); Belpassi, Leonardo [Istituto di Scienze e Tecnologie Molecolari del CNR, Perugia 06123 (Italy); Falcinelli, Stefano [Dipartimento di Ingegneria Civile ed Ambientale, Università degli Studi di Perugia, 06125 Perugia (Italy); Grandinetti, Felice [Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, 01100 Viterbo (Italy); Tarantelli, Francesco [Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia 06123 (Italy); Istituto di Scienze e Tecnologie Molecolari del CNR, Perugia 06123 (Italy)

    2015-05-14

    The systems studied in this work are gas-phase weakly bound adducts of the noble-gas (Ng) atoms with CCl{sub 4} and CF{sub 4}. Their investigation was motivated by the widespread current interest for the intermolecular halogen bonding (XB), a structural motif recognized to play a role in fields ranging from elementary processes to biochemistry. The simulation of the static and dynamic behaviors of complex systems featuring XB requires the formulation of reliable and accurate model potentials, whose development relies on the detailed characterization of strength and nature of the interactions occurring in simple exemplary halogenated systems. We thus selected the prototypical Ng-CCl{sub 4} and Ng-CF{sub 4} and performed high-resolution molecular beam scattering experiments to measure the absolute scale of their intermolecular potentials, with high sensitivity. In general, we expected to probe typical van der Waals interactions, consisting of a combination of size (exchange) repulsion with dispersion/induction attraction. For the He/Ne-CF{sub 4}, the analysis of the glory quantum interference pattern, observable in the velocity dependence of the integral cross section, confirmed indeed this expectation. On the other hand, for the He/Ne/Ar-CCl{sub 4}, the scattering data unravelled much deeper potential wells, particularly for certain configurations of the interacting partners. The experimental data can be properly reproduced only including a shifting of the repulsive wall at shorter distances, accompanied by an increased role of the dispersion attraction, and an additional short-range stabilization component. To put these findings on a firmer ground, we performed, for selected geometries of the interacting complexes, accurate theoretical calculations aimed to evaluate the intermolecular interaction and the effects of the complex formation on the electron charge density of the constituting moieties. It was thus ascertained that the adjustments of the potential

  11. Delayed neutrons as a probe of nuclear charge distribution in fission of heavy nuclei by neutrons

    CERN Document Server

    Isaev, S G; Piksaikin, V M; Roshchenko, V A

    2001-01-01

    A method of the determination of cumulative yields of delayed neutron precursors is developed. This method is based on the iterative least-square procedure applied to delayed neutron decay curves measured after irradiation of sup 2 sup 3 sup 5 U sample by thermal neutrons. Obtained cumulative yields in turns were used for deriving the values of the most probable charge in low-energy fission of the above-mentioned nucleus.

  12. An algorithm for three-dimensional Monte-Carlo simulation of charge distribution at biofunctionalized surfaces

    KAUST Repository

    Bulyha, Alena

    2011-01-01

    In this work, a Monte-Carlo algorithm in the constant-voltage ensemble for the calculation of 3d charge concentrations at charged surfaces functionalized with biomolecules is presented. The motivation for this work is the theoretical understanding of biofunctionalized surfaces in nanowire field-effect biosensors (BioFETs). This work provides the simulation capability for the boundary layer that is crucial in the detection mechanism of these sensors; slight changes in the charge concentration in the boundary layer upon binding of analyte molecules modulate the conductance of nanowire transducers. The simulation of biofunctionalized surfaces poses special requirements on the Monte-Carlo simulations and these are addressed by the algorithm. The constant-voltage ensemble enables us to include the right boundary conditions; the dna strands can be rotated with respect to the surface; and several molecules can be placed in a single simulation box to achieve good statistics in the case of low ionic concentrations relevant in experiments. Simulation results are presented for the leading example of surfaces functionalized with pna and with single- and double-stranded dna in a sodium-chloride electrolyte. These quantitative results make it possible to quantify the screening of the biomolecule charge due to the counter-ions around the biomolecules and the electrical double layer. The resulting concentration profiles show a three-layer structure and non-trivial interactions between the electric double layer and the counter-ions. The numerical results are also important as a reference for the development of simpler screening models. © 2011 The Royal Society of Chemistry.

  13. Spatial distribution of charged particles along the ion-optical axis in electron cyclotron resonance ion sources. Experimental results

    International Nuclear Information System (INIS)

    The experimental determination of the spatial distribution of charged particles along the ion-optical axis in electron cyclotron resonance ion sources (ECRIS) defines the focus of this thesis. The spatial distributions of different ion species were obtained in the object plane of the bending magnet (∼45 cm downstream from the plasma electrode) and in the plane of the plasma electrode itself, both in high spatial resolution. The results show that each of the different ion species forms a bloated, triangular structure in the aperture of the plasma electrode. The geometry and the orientation of these structures are defined by the superposition of the radial and axial magnetic fields. The radial extent of each structure is defined by the charge of the ion. Higher charge states occupy smaller, more concentrated structures. The total current density increases towards the center of the plasma electrode. The circular and star-like structures that can be observed in the beam profiles of strongly focused, extracted ion beams are each dominated by ions of a single charge state. In addition, the spatially resolved current density distribution of charged particles in the plasma chamber that impinge on the plasma electrode was determined, differentiating between ions and electrons. The experimental results of this work show that the electrons of the plasma are strongly connected to the magnetic field lines in the source and thus spatially well confined in a triangular-like structure. The intensity of the electrons increases towards the center of the plasma electrode and the plasma chamber, as well. These electrons are surrounded by a spatially far less confined and less intense ion population. All the findings mentioned above were already predicted in parts by simulations of different groups. However, the results presented within this thesis represent the first (and by now only) direct experimental verification of those predictions and are qualitatively transferable to other

  14. Spatial distribution of charged particles along the ion-optical axis in electron cyclotron resonance ion sources. Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Panitzsch, Lauri

    2013-02-08

    The experimental determination of the spatial distribution of charged particles along the ion-optical axis in electron cyclotron resonance ion sources (ECRIS) defines the focus of this thesis. The spatial distributions of different ion species were obtained in the object plane of the bending magnet ({approx}45 cm downstream from the plasma electrode) and in the plane of the plasma electrode itself, both in high spatial resolution. The results show that each of the different ion species forms a bloated, triangular structure in the aperture of the plasma electrode. The geometry and the orientation of these structures are defined by the superposition of the radial and axial magnetic fields. The radial extent of each structure is defined by the charge of the ion. Higher charge states occupy smaller, more concentrated structures. The total current density increases towards the center of the plasma electrode. The circular and star-like structures that can be observed in the beam profiles of strongly focused, extracted ion beams are each dominated by ions of a single charge state. In addition, the spatially resolved current density distribution of charged particles in the plasma chamber that impinge on the plasma electrode was determined, differentiating between ions and electrons. The experimental results of this work show that the electrons of the plasma are strongly connected to the magnetic field lines in the source and thus spatially well confined in a triangular-like structure. The intensity of the electrons increases towards the center of the plasma electrode and the plasma chamber, as well. These electrons are surrounded by a spatially far less confined and less intense ion population. All the findings mentioned above were already predicted in parts by simulations of different groups. However, the results presented within this thesis represent the first (and by now only) direct experimental verification of those predictions and are qualitatively transferable to

  15. DFT Study on the Effect of Different Peripheral Chains on Charge Transport Properties of Triphenylene Derivatives

    Institute of Scientific and Technical Information of China (English)

    CHEN,Jun-Rong; CAI,Jing; XU,Bu-Yi; LI,Quan; ZHAO,Ke-Qing

    2008-01-01

    Based on the semi-classical model of the charge transport, theoretical studies on the effect of different periph-eral chains including alkynyl on charge transport properties of triphenylene have been carried out using density functional theory (DFT) at the level of B3LYP/6-31G**. The results indicate that all the title compounds are ad-vantageous to the charge transport. The introduction of amide RCONH to the discotic ring of triphenylene can raise the positive charge transport rate largely, and introduction of ester in peripheral chains is helpful to the positive charge transport and negative charge transport. The positive charge transport properties of monosubstituted triphenylene are better than those of disubstituted and trisubstituted triphenylenes obviously.

  16. A study of 10 men charged with patricide.

    Science.gov (United States)

    Cravens, J M; Campion, J; Rotholc, A; Covan, F; Cravens, R A

    1985-09-01

    The authors reviewed the records of 10 men charged with patricide, including one charged with double parricide, all of whom had been examined at the Forensic Psychiatry Service of Bellevue Hospital from 1970 to 1983. Prior psychoses were documented in all subjects; nine were referred to as delusional. Four perceived their fathers as having posed threats of physical or psychological annihilation to them, and five saw paternal threats to their manhood. The 10th man allegedly killed his father during a drunken brawl. PMID:4025628

  17. Study of symmetry breaking of charged scalar field: Hydrodynamic version

    CERN Document Server

    Matos, T

    2015-01-01

    We rewrite the Klein-Gordon (KG) equation for a complex scalar field as a new Gross-Pitaevskii (GP)-like equation. The potential of the scalar field is a mexican-hat potential and the field is in a thermal bath with one loop contribution. We interpret the new GP equation as a finite temperature generalization of the GP equation for a charged field. We find its hydrodynamic version as well and using it, we derive the corresponding thermodynamics. We also obtain a generalized first law for a charged Bose-Einstein Condensate (BEC).

  18. Study of symmetry breaking of charged scalar field: Hydrodynamic version

    Science.gov (United States)

    Matos, T.; Rodríguez-Meza, M. A.

    2014-11-01

    We rewrite the Klein-Gordon (KG) equation for a complex scalar field as a new Gross-Pitaevskii (GP)-like equation. The potential of the scalar field is a mexican-hat potential and the field is in a thermal bath with one loop contribution. We interpret the new GP equation as a finite temperature generalization of the GP equation for a charged field. We find its hydrodynamic version as well and using it, we derive the corresponding thermodynamics. We also obtain a generalized first law for a charged Bose-Einstein Condensate (BEC).

  19. Charged-particle pseudorapidity distributions in Au+Au collisions at sNN=62.4 GeV

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; Nieuwenhuizen, G. J. Van; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2006-08-01

    The charged-particle pseudorapidity density for Au+Au collisions at sNN=62.4 GeV has been measured over a wide range of impact parameters and compared to results obtained at other energies. As a function of collision energy, the pseudorapidity distribution grows systematically both in height and width. The midrapidity density is found to grow approximately logarithmically between BNL Alternating Gradient Synchrotron (AGS) energies and the top BNL Relativistic Heavy Ion Collider (RHIC) energy. There is also an approximate factorization of the centrality and energy dependence of the midrapidity yields. The new results at sNN=62.4 GeV confirm the previously observed phenomenon of “extended longitudinal scaling” in the pseudorapidity distributions when viewed in the rest frame of one of the colliding nuclei. It is also found that the evolution of the shape of the distribution with centrality is energy independent, when viewed in this reference frame. As a function of centrality, the total charged particle multiplicity scales linearly with the number of participant pairs as it was observed at other energies.

  20. Unveiling the nucleon tensor charge at Jefferson Lab: A study of the SoLID case

    CERN Document Server

    Ye, Zhihong; Allada, Kalyan; Liu, Tianbo; Chen, Jian-Ping; Kang, Zhong-Bo; Prokudin, Alexei; Sun, Peng; Yuan, Feng

    2016-01-01

    Future experiments at the Jefferson Lab 12 GeV upgrade, in particular, the Solenoidal Large Intensity Device (SoLID), aim at a very precise data set in the region where the partonic structure of the nucleon is dominated by the valence quarks. One of the main goals is to constrain the quark transversity distributions. We apply recent theoretical advances of the global QCD extraction of the transversity distributions to study the impact of future experimental data from the SoLID experiments. Especially, we develop a simple strategy based on the Hessian matrix analysis that allows one to estimate the uncertainties of the transversity quark distributions and their tensor charges extracted from SoLID data simulation. We find that the SoLID measurements with the proton and the effective neutron targets can improve the precision of the u- and d-quark transversity distributions up to one order of magnitude in the range 0.05 < x < 0.6.

  1. The reaction current distribution in battery electrode materials revealed by XPS-based state-of-charge mapping.

    Science.gov (United States)

    Pearse, Alexander J; Gillette, Eleanor; Lee, Sang Bok; Rubloff, Gary W

    2016-07-28

    Morphologically complex electrochemical systems such as composite or nanostructured lithium ion battery electrodes exhibit spatially inhomogeneous internal current distributions, particularly when driven at high total currents, due to resistances in the electrodes and electrolyte, distributions of diffusion path lengths, and nonlinear current-voltage characteristics. Measuring and controlling these distributions is interesting from both an engineering standpoint, as nonhomogenous currents lead to lower utilization of electrode material, as well as from a fundamental standpoint, as comparisons between theory and experiment are relatively scarce. Here we describe a new approach using a deliberately simple model battery electrode to examine the current distribution in a electrode material limited by poor electronic conductivity. We utilize quantitative spatially resolved X-ray photoelectron spectroscopy to measure the spatial distribution of the state-of-charge of a V2O5 model electrode as a proxy measure for the current distribution on electrodes discharged at varying current densities. We show that the current at the electrode-electrolyte interface falls off with distance from the current collector, and that the current distribution is a strong function of total current. We compare the observed distributions with a simple analytical model which reproduces the dependence of the distribution on total current, but fails to predict the correct length scale. A more complete numerical simulation suggests that dynamic changes in the electronic conductivity of the V2O5 concurrent with lithium insertion may contribute to the differences between theory and experiment. Our observations should help inform design criteria for future electrode architectures. PMID:27357533

  2. Azimuthal distributions of charged hadrons, pions, and kaons produced in deep-inelastic scattering off unpolarized protons and deuterons

    CERN Document Server

    Airapetian, A; Akopov, Z; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetissian, A; Avetisyan, E; Belostotski, S; Blok, H P; Borissov, A; Bowles, J; Bryzgalov, V; Burns, J; Capiluppi, M; Capitani, G P; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; De Nardo, L; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Düren, M; Elbakian, G; Ellinghaus, F; Fantoni, A; Felawka, L; Frullani, S; Gapienko, G; Gapienko, V; Garibaldi, F; Gavrilov, G; Gharibyan, V; Giordano, F; Gliske, S; Golembiovskaya, M; Hadjidakis, C; Hartig, M; Hasch, D; Hillenbrand, A; Hoek, M; Holler, Y; Hristova, I; Imazu, Y; Ivanilov, A; Jackson, H E; Jo, H S; Joosten, S; Kaiser, R; Karyan, G; Keri, T; Kinney, E; Kisselev, A; Korotkov, V; Kozlov, V; Kravchenko, P; Krivokhijine, V G; Lagamba, L; Lapikás, L; Lehmann, I; Lenisa, P; Ruiz, A López; Lorenzon, W; Ma, B -Q; Mahon, D; Makins, N C R; Manaenkov, S I; Manfré, L; Mao, Y; Marianski, B; de la Ossa, A Martinez; Marukyan, H; Miller, C A; Miyachi, Y; Movsisyan, A; Murray, M; Nappi, E; Naryshkin, Y; Nass, A; Negodaev, M; Nowak, W -D; Pappalardo, L L; Perez-Benito, R; Petrosyan, A; Raithel, M; Reimer, P E; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanftl, F; Schäfer, A; Schnell, G; Schüler, K P; Seitz, B; Shibata, T -A; Stancari, M; Statera, M; Steijger, J J M; Stewart, J; Stinzing, F; Terkulov, A; Truty, R; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van Haarlem, Y; Van Hulse, C; Veretennikov, D; Vikhrov, V; Vilardi, I; Wang, S; Yaschenko, S; Ye, Z; Yen, S; Yu, W; Zagrebelnyy, V; Zeiler, D; Zihlmann, B; Zupranski, P

    2012-01-01

    The azimuthal cos{\\phi} and cos2{\\phi} modulations of the distribution of hadrons produced in unpolarized semi-inclusive deep-inelastic scattering of electrons and positrons off hydrogen and deuterium targets have been measured in the HERMES experiment. For the first time these modulations were determined in a four-dimensional kinematic space for positively and negatively charged pions and kaons separately, as well as for unidentified hadrons. These azimuthal dependences are sensitive to the transverse motion and polarization of the quarks within the nucleon via, e.g., the Cahn, Boer-Mulders and Collins effects.

  3. Azimuthal distributions of charged hadrons, pions, and kaons produced in deep-inelastic scattering off unpolarized protons and deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Akopov, N. [Yerevan Physics Institute (Armenia); Akopov, Z. [DESY Hamburg (DE)] (and others)

    2012-04-15

    The azimuthal cos {phi} and cos 2{phi} modulations of the distribution of hadrons produced in unpolarized semi-inclusive deep-inelastic scattering of electrons and positrons off hydrogen and deuterium targets have been measured in the Hermes experiment. For the first time these modulations were determined in a four-dimensional kinematic space for positively and negatively charged pions and kaons separately, as well as for unidentified hadrons. These azimuthal dependences are sensitive to the transverse motion and polarization of the quarks within the nucleon via, e.g., the Cahn, Boer-Mulders and Collins effects.

  4. Study on High Efficient Electric Vehicle Wireless Charging System

    Science.gov (United States)

    Chen, H. X.; Liu, Z. Z.; Zeng, H.; Qu, X. D.; Hou, Y. J.

    2016-08-01

    Electric and unmanned is a new trend in the development of automobile, cable charging pile can not meet the demand of unmanned electric vehicle. Wireless charging system for electric vehicle has a high level of automation, which can be realized by unmanned operation, and the wireless charging technology has been paid more and more attention. This paper first analyses the differences in S-S (series-series) and S-P (series-parallel) type resonant wireless power supply system, combined with the load characteristics of electric vehicle, S-S type resonant structure was used in this system. This paper analyses the coupling coefficient of several common coil structure changes with the moving distance of Maxwell Ansys software, the performance of disc type coil structure is better. Then the simulation model is established by Simulink toolbox in Matlab, to analyse the power and efficiency characteristics of the whole system. Finally, the experiment platform is set up to verify the feasibility of the whole system and optimize the system. Based on the theoretical and simulation analysis, the higher charging efficiency is obtained by optimizing the magnetic coupling mechanism.

  5. Functional Insights into Chromatin Remodelling from Studies on CHARGE Syndrome

    NARCIS (Netherlands)

    Basson, M. Albert; van Ravenswaaij-Arts, Conny

    2015-01-01

    CHARGE syndrome is a rare genetic syndrome characterised by a unique combination of multiple organ anomalies. Dominant loss-of-function mutations in the gene encoding chromodomain helicase DNA binding protein 7 (CHD7), which is an ATP-dependent chromatin remodeller, have been identified as the cause

  6. Study of the liquid water luminescence induced by charged particles

    International Nuclear Information System (INIS)

    Many observations suggested that liquid water (with impurities) could give a luminescence output when irradiated with charged particles. We investigate theoretical and practical possibility of detecting such luminescence. Preliminary results on this possibility are presented, and a layout of the device proposed for measuring luminescence is given. (authors)

  7. Analytical and numerical studies of photo-injected charge transport in molecularly-doped polymers

    Science.gov (United States)

    Roy Chowdhury, Amrita

    The mobility of photo-injected charge carriers in molecularly-doped polymers (MDPs) exhibits a commonly observed, and nearly universal Poole-Frenkel field dependence, mu exp√(beta0E), that has been shown to arise from the correlated Gaussian energy distribution of transport sites encountered by charges undergoing hopping transport through the material. Analytical and numerical studies of photo-injected charge transport in these materials are presented here with an attempt to understand how specific features of the various models developed to describe these systems depend on the microscopic parameters that define them. Specifically, previously published time-of-flight mobility data for the molecularly doped polymer 30% DEH:PC (polycarbonate doped with 30 wt.% aromatic hydrazone DEH) is compared with direct analytical and numerical predictions of five disorder-based models, the Gaussian disorder model (GDM) of Bassler, and four correlated disorder models introduced by Novikov, et al., and by Parris, et al. In these numerical studies, disorder parameters describing each model were varied from reasonable starting conditions, in order to give the best overall fit. The uncorrelated GDM describes the Poole-Frenkel field dependence of the mobility only at very high fields, but fails for fields lower than about 64 V/mum. The correlated disorder models with small amounts of geometrical disorder do a good over-all job of reproducing a robust Poole-Frenkel field dependence, with correlated disorder theories that employ polaron transition rates showing qualitatively better agreement with experiment than those that employ Miller-Abrahams rates. In a separate study, the heuristic treatment of spatial or geometric disorder incorporated in existing theories is critiqued, and a randomly-diluted lattice gas model is developed to describe the spatial disorder of the transport sites in a more realistic way.

  8. Systematics of radii and nuclear charge distributions deduced from elastic electron scattering, muonic X-ray and optical isotope shift measurements

    CERN Document Server

    Emrich, H J; Höhn, M; Kaser, K; Mallot, M; Miska, H; Robert-Tissot, B; Rychel, D; Schaller, L; Schellenberg, L; Schneuwly, H; Shera, B; Sieberling, H G; Steffen, R; Wohlfahrt, H D; Yamazaki, Y

    1981-01-01

    The nuclear charge distribution and nuclear charge distribution differences have been investigated by 350 MeV elastic electron scattering at the Institut fur Kernphysik, Universitat Mainz. Muonic X-ray measurements yield complementary information to electron scattering results. Both experimental data are analysed in an almost model independent way. Muonic X-ray measurements have been performed for the region /sup 40/Ca up to /sup 100/Mo. (18 refs).

  9. Measurement of higher cumulants of net-charge multiplicity distributions in Au$+$Au collisions at $\\sqrt{s_{_{NN}}}=7.7-200$ GeV

    CERN Document Server

    Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Akimoto, R; Al-Bataineh, H; Alexander, J; Al-Ta'ani, H; Angerami, A; Aoki, K; Apadula, N; Aramaki, Y; Asano, H; Aschenauer, E C; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Bannier, B; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Baumgart, S; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bickley, A A; Black, D; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Bryslawskyj, J; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Castera, P; Chen, C -H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choi, S; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Connors, M; Constantin, P; Cronin, N; Crossette, N; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; Daugherity, M S; David, G; Dehmelt, K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Ding, L; Dion, A; Do, J H; Donadelli, M; D'Orazio, L; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Eyser, K O; Fadem, B; Fields, D E; Finger, M; Jr., \\,; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Gainey, K; Gal, C; Garg, P; Garishvili, A; Garishvili, I; Giordano, F; Glenn, A; Gong, H; Gong, X; Gonin, M; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Perdekamp, M Grosse; Gu, Y; Gunji, T; Guo, L; Gustafsson, H -Å; Hachiya, T; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Hartouni, E P; Hashimoto, K; Haslum, E; Hayano, R; Hayashi, S; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Hollis, R S; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hori, Y; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ide, J; Iinuma, H; Ikeda, Y; Imai, K; Imazu, Y; Imrek, J; Inaba, M; Iordanova, A; Isenhower, D; Ishihara, M; Isinhue, A; Isobe, T; Issah, M; Isupov, A; Ivanishchev, D; Jacak, B V; Javani, M; Jia, J; Jiang, X; Jin, J; Johnson, B M; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kaneti, S; Kang, B H; Kang, J H; Kang, J S; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Key, J A; Khandai, P K; Khanzadeev, A; Kijima, K M; Kim, B I; Kim, C; Kim, D H; Kim, D J; Kim, E; Kim, E -J; Kim, H J; Kim, K -B; Kim, S H; Kim, Y -J; Kim, Y K; Kinney, E; Kiriluk, K; Kiss, Á; Kistenev, E; Klatsky, J; Kleinjan, D; Kline, P; Kochenda, L; Komatsu, Y; Komkov, B; Konno, M; Koster, J; Kotchetkov, D; Kotov, D; Kozlov, A; Král, A; Kravitz, A; Krizek, F; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, B; Lee, D M; Lee, J; Lee, K; Lee, K B; Lee, K S; Lee, S H; Lee, S R; Leitch, M J; Leite, M A L; Leitgab, M; Leitner, E; Lenzi, B; Lewis, B; Li, X; Liebing, P; Lim, S H; Levy, L A Linden; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Luechtenborg, R; Lynch, D; Maguire, C F; Makdisi, Y I; Makek, M; Malakhov, A; Malik, M D; Manion, A; Manko, V I; Mannel, E; Mao, Y; Maruyama, T; Masui, H; Masumoto, S; Matathias, F; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Means, N; Meles, A; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Midori, J; Mignerey, A C; Mikeš, P; Miki, K; Milov, A; Mishra, D K; Mishra, M; Mitchell, J T; Miyachi, Y; Miyasaka, S; Mohanty, A K; Mohapatra, S; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Moskowitz, M; Motschwiller, S; Moukhanova, T V; Murakami, T; Murata, J; Mwai, A; Nagae, T; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nattrass, C; Nederlof, A; Netrakanti, P K; Newby, J; Nguyen, M; Nihashi, M; Niida, T; Nouicer, R; Novitzky, N; Nukariya, A; Nyanin, A S; Obayashi, H; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, B H; Park, I H; Park, J; Park, S; Park, S K; Park, W J; Pate, S F; Patel, L; Pei, H; Peng, J -C; Pereira, H; Perepelitsa, D V; Peresedov, V; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Reygers, K; Reynolds, D; Riabov, V; Riabov, Y; Richardson, E; Riveli, N; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Ružička, P; Ryu, M S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Sako, H; Samsonov, V; Sano, M; Sano, S; Sarsour, M; Sato, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Semenov, A Yu; Sen, A; Seto, R; Sett, P; Sharma, D; Shein, I; Shibata, T -A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Skolnik, M; Slunečka, M; Solano, S; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Sparks, N A; Stankus, P W; Steinberg, P; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sukhanov, A; Sun, J; Sziklai, J; Takagui, E M; Takahara, A; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tarján, P; Tennant, E; Themann, H; Thomas, T L; Todoroki, T; Togawa, M; Toia, A; Tomášek, L; Tomášek, M; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Tsuji, T; Vale, C; Valle, H; van Hecke, H W; Vargyas, M; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Vinogradov, A A; Virius, M; Voas, B; Vossen, A; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Watanabe, Y S; Wei, F; Wei, R; Wessels, J; Whitaker, S; White, S N; Winter, D; Wolin, S; Wood, J P; Woody, C L; Wright, R M; Wysocki, M; Xia, B; Xie, W; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zelenski, A; Zhang, C; Zhou, S; Zolin, L

    2015-01-01

    We report the measurement of cumulants ($C_n, n=1\\ldots4$) of the net-charge distributions measured within pseudorapidity ($|\\eta|<0.35$) in Au$+$Au collisions at $\\sqrt{s_{_{NN}}}=7.7-200$ GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. $C_1/C_2$, $C_3/C_1$) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of $C_1/C_2 = \\mu/\\sigma^2$ and $C_3/C_1 = S\\sigma^3/\\mu$ can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperat...

  10. Measurement of higher cumulants of net-charge multiplicity distributions in Au +Au collisions at √{sN N}=7.7 -200 GeV

    Science.gov (United States)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Alexander, J.; Al-Ta'Ani, H.; Angerami, A.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bickley, A. A.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Castera, P.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Constantin, P.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Garg, P.; Garishvili, A.; Garishvili, I.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Hartouni, E. P.; Hashimoto, K.; Haslum, E.; Hayano, R.; Hayashi, S.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Isinhue, A.; Isobe, T.; Issah, M.; Isupov, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jia, J.; Jiang, X.; Jin, J.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, H. J.; Kim, K.-B.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Kochenda, L.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Leitner, E.; Lenzi, B.; Lewis, B.; Li, X.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Maruyama, T.; Masui, H.; Masumoto, S.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Milov, A.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Miyachi, Y.; Miyasaka, S.; Mohanty, A. K.; Mohapatra, S.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moskowitz, M.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Nederlof, A.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Nouicer, R.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Obayashi, H.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Peresedov, V.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rukoyatkin, P.; Ružička, P.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Sako, H.; Samsonov, V.; Sano, M.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Sawada, S.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Sen, A.; Seto, R.; Sett, P.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Sparks, N. A.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Tennant, E.; Themann, H.; Thomas, T. L.; Todoroki, T.; Togawa, M.; Toia, A.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Voas, B.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; Whitaker, S.; White, S. N.; Winter, D.; Wolin, S.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhang, C.; Zhou, S.; Zolin, L.; Phenix Collaboration

    2016-01-01

    We report the measurement of cumulants (Cn,n =1 ,...,4 ) of the net-charge distributions measured within pseudorapidity (|η |<0.35 ) in Au +Au collisions at √{sNN}=7.7 -200 GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g., C1/C2 , C3/C1 ) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of C1/C2 and C3/C1 can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy. The extracted baryon chemical potentials are in excellent agreement with a thermal-statistical analysis model.

  11. Multiagent Based Distributed Control for State-of-Charge Balance of Distributed Energy Storage in DC microgrids

    DEFF Research Database (Denmark)

    Li, Chendan; Dragicevic, Tomislav; Garcia Plaza, Manuel;

    2014-01-01

    In this paper, a distributed multiagent based algorithm is proposed to achieve SoC balance for DES in the DC microgrid by means of voltage scheduling. Reference voltage given is adjusted instead of droop gain. Dynamic average consensus algorithm is explored in each agent to get the required...... information for scheduling voltage autonomously. State-space analysis on a single energy storage unit and simulation verification shows that the proposed method has two advantages. Firstly, modifying the reference voltage given has less impact on system stability compared to gain scheduling. Secondly, by...

  12. Charge recombination in distributed heterostructures of semiconductor discotic and polymeric materials.

    Science.gov (United States)

    Clark, Jenny; Archer, Robert; Redding, Tim; Foden, Clare; Tant, Julien; Geerts, Yves; Friend, Richard H.; Silva, Carlos

    2008-06-01

    Control of microstructure and energetics at heterojunctions in organic semiconductors is central to achieve high light-emitting or photovoltaic device efficiency. We report the observation of an emissive exciplex formed between an electron-accepting discotic material (hexaazatrinaphthylene or HATNA-SC12) and a hole accepting conjugated polymer {poly[9,9- dioctylfluorene-co-N-(4-butylphenyl)diphenylamine] or TFB}. In contrast to polymer-polymer systems, we find here that the exciplex is strongly localized at the interface, acting as an energy bottleneck with inefficient transfer to bulk exciton states and with low yield of charge separation.

  13. Fragment distribution of thermal decomposition for lignin monomer by QMD calculations using the excited and charged model molecules

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Kazunaka [Department of Chemistry (Faculty of Science), Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa 920-1192 (Japan)], E-mail: endo@wriron1.s.kanazawa-u.ac.jp; Matsumoto, Daisuke; Kato, Kenichi; Takagi, Yusuke; Ida, Tomonori; Mizuno, Motohiro [Department of Chemistry (Faculty of Science), Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa 920-1192 (Japan); Saito, Kaori; Fukushima, Kazuhiko [Graduate School of Bioagricultural Sciences and Technical Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Kato, Nobuhiko [Applied Physics, Seikei University, Musashino-city, Tokyo 180-8633 (Japan)

    2008-12-15

    Simulations with a quantum molecular dynamics (QMD) method (MD with MO) were demonstrated on the thermal decomposition of lignin monomer at the ground state including excited and positive charged states. Geometry and energy optimized results of the lignin monomer at the singlet and triplet states in single excitation, and at (+2) positive charged state by semi-empirical AM1 MO calculations were used as the initial MD step of QMD calculations. In the QMD calculations, we controlled the total energy of the system using Nose-Hoover thermostats in the total energy range of 0.69-0.95 eV, and the sampling position data with a time step of 0.5 fs were carried out up to 5000 steps at 50 different initial conditions. The calculated neutral, positive and negative charged fragment distributions of the monomer model with 0.82 eV energy control were obtained as 90.6, 3.5, and 5.9% to the total fragments, respectively. The ratios seem to correspond well with to the values observed experimentally in SIMS.

  14. Reinvestigation of the charge density distribution in arc discharge fusion system

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Lin Horng; Yee, Lee Kim; Nan, Phua Yeong; Thung, Yong Yun; Khok, Yong Thian; Rahman, Faidz Abd [Centre of Photonics and Advance Material, Universiti Tunku Abdul Rahman Kuala Lumpur (Malaysia)

    2015-04-24

    A continual arc discharge system has been setup and the light intensity of arc discharge has been profiled. The mathematical model of local energy density distribution in arc discharge fusion has been simulated which is in good qualitative agreement with light intensity profile of arc discharge in the experiments. Eventually, the local energy density distribution of arc discharge system is able to be precisely manipulated to act as heat source in the fabrication of fused fiber devices.

  15. Transverse momentum and transverse mass distributions of charged hadrons produced in Au-Au collisions at high energies

    Institute of Scientific and Technical Information of China (English)

    Liu Fu-Hu

    2008-01-01

    The transverse momentum distribution and the transverse mass distribution of charged hadrons produced in nucleus-nucleus collisions at high energies are described by using a two-cylinder model. The results calculated by the model are compared and found to be in agreement with the experimental data of the STAR and E895 Collaborations, measured in Au-Au collisions at the relativistic heavy ion collider (RHIC) and alternating-gradient synchrotron (AGS) energies, respectively. In the energy range concerned, the excitation degree of emission source close to the central axis of cylinders increases obviously with the collision centrality and incident energy increasing, but it does not show any obvious change with the increase of the (pseudo) rapidity in central collisions. The excitation degree of emission source close to the side-surface of cylinders does not show any obvious change with the collision centrality, the (pseudo) rapidity, and the incident energy increasing.

  16. Hydrodynamic description for the pseudorapidity distributions of the charged particles produced in nucleus + nucleus collisions at high energy

    International Nuclear Information System (INIS)

    By using the revised Landau hydrodynamic model and taking into account the effect of leading particles, we discuss the pseudorapidity distributions of the charged particles produced in high energy heavy-ion collisions. The leading particles are assumed to have the rapidity distributions with Gaussian forms with the normalization constant being equal to the number of participants, which can be figured out in theory. The results from the revised Landau hydrodynamic model, together with the contributions from leading particles, were found to be consistent with the experimental data obtained by the PHOBOS Collaboration on RHIC (Relativistic Heavy Ion Collider) at BNL (Brookhaven National Laboratory) in different centrality Cu + Cu and Au + Au collisions at high energies.

  17. Effect of Fe{sub 3}O{sub 4} nanoparticles on space charge distribution in propylene carbonate under impulse voltage

    Energy Technology Data Exchange (ETDEWEB)

    Sima, Wenxia, E-mail: cqsmwx@cqu.edu.cn; Song, He; Yang, Qing; Guo, Hongda; Chen, Qiulin [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Shapingba, Chongqing 400044 (China)

    2015-12-15

    Addition of nanoparticles of the ferromagnetic material Fe{sub 3}O{sub 4} can increase the positive impulse breakdown voltage of propylene carbonate by 11.65%. To further investigate the effect of ferromagnetic nanoparticles on the space charge distribution in the discharge process, the present work set up a Kerr electro-optic field mapping measurement system using an array photodetector to carry out time-continuous measurement of the electric field and space charge distribution in propylene carbonate before and after modification. Test results show that fast electrons can be captured by Fe{sub 3}O{sub 4} nanoparticles and converted into relatively slow, negatively charged particles, inhibiting the generation and transportation of the space charge, especially the negative space charge.

  18. A series resonant switching charging circuit for kicker modulator and its simulation study

    International Nuclear Information System (INIS)

    A novel high voltage charging circuit specially designed for the prototype kicker modulator of the Hefei Light Source storage ring was presented. Zero-current series resonant switching techniques and a simple charging voltage control scheme was adopted in the circuit. Simulation model was established to study the performance of the circuit with a high voltage capacitor load. Designed charging voltage stability and repetition rate can be achieved through simulation analysis. Methods to increase the repetition rate are discussed

  19. Beam Energy Dependence of Moments of the Net-Charge Multiplicity Distributions in Au +Au Collisions at RHIC

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Barnovska, Z.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Grosnick, D.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hajkova, O.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Hays-Wehle, J. P.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lima, L. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Munhoz, M. G.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Oliveira, R. A. N.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Plyku, D.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; deSouza, U. G.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2014-08-01

    We report the first measurements of the moments—mean (M), variance (σ2), skewness (S), and kurtosis (κ)—of the net-charge multiplicity distributions at midrapidity in Au +Au collisions at seven energies, ranging from √sNN =7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net charge, and are sensitive to the location of the QCD critical point. We compare the products of the moments, σ2/M, Sσ, and κσ2, with the expectations from Poisson and negative binomial distributions (NBDs). The Sσ values deviate from the Poisson baseline and are close to the NBD baseline, while the κσ2 values tend to lie between the two. Within the present uncertainties, our data do not show nonmonotonic behavior as a function of collision energy. These measurements provide a valuable tool to extract the freeze-out parameters in heavy-ion collisions by comparing with theoretical models.

  20. ELECTROCHEMICAL STUDIES OF MOBILE CHARGED SPECIES DURING ZIRCONIUM ALLOY OXIDATION

    OpenAIRE

    Smith, James Stephen

    2013-01-01

    This research has used a suite of electrochemical techniques, both in-situ and ex-situ to investigate the mobile charged species in the oxides of zirconium alloys. Limits on the corrosion resistance of existing zirconium alloys used for fuel cladding are a major restriction on the burn-up that can be achieved within a pressurised water reactor (PWR). Developing a full mechanistic understanding of the corrosion process of zirconium alloys in the primary water environment is necessary for prolo...

  1. QIE: performance studies of the next generation charge integrator

    International Nuclear Information System (INIS)

    The Phase 1 upgrade of the Hadron Calorimeter (HCAL) in the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) will include two new generations (named QIE10 and QIE11) of the radiation-tolerant flash ADC chip known as the Charge Integrator and Encoder or QIE. The QIE integrates charge from a photo sensor over a 25 ns time period and encodes the result in a non-linear digital output while having a good sensitivity in both the higher and the lower energy values. The charge integrator has the advantage of analyzing fast signals coming from the calorimeters as long as the timing and pulse information is available. The calorimeters send fast, negative polarity signals, which the QIE integrates in its non-inverting input amplifier. The input analog signal enters the QIE chip through two points: signal and reference. The chip integrates the difference between these two values. This helps in getting rid of the incoming noise, which is effectively cancelled out in the difference. Over a period of about six months between September, 2013 and April, 2014 about 320 QIE10 and about 20 QIE11 chips were tested in Fermilab using a single-chip test stand where every individual chip was tested for its characteristic features using a clam-shell. The results of those tests performed on the QIE10 and QIE11 are summarized in this document

  2. QIE: Performance Studies of the Next Generation Charge Integrator

    Energy Technology Data Exchange (ETDEWEB)

    Roy, T. [Florida Inst. Tech.; Yumiceva, F. [Florida Inst. Tech.; Hirschauer, J. [Fermilab; Freeman, J. [Fermilab; Hughes, E. [Rutgers U., Piscataway; Hare, D. [Fermilab; Dal Monte, L. [Fermilab; Whitbeck, A. [Fermilab; Zimmerman, T. [Fermilab

    2015-02-06

    The Phase 1 upgrade of the Hadron Calorimeter (HCAL) in the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) will include two new generations (named QIE10 and QIE11) of the radiation-tolerant flash ADC chip known as the Charge Integrator and Encoder or QIE. The QIE integrates charge from a photo sensor over a 25 ns time period and encodes the result in a non-linear digital output while having a good sensitivity in both the higher and the lower energy values. The charge integrator has the advantage of analyzing fast signals coming from the calorimeters as long as the timing and pulse information is available. The calorimeters send fast, negative polarity signals, which the QIE integrates in its non-inverting input amplifier. The input analog signal enters the QIE chip through two points: signal and reference. The chip integrates the difference between these two values. This helps in getting rid of the incoming noise, which is effectively cancelled out in the difference. Over a period of about six months between September, 2013 and April, 2014 about 320 QIE10 and about 20 QIE11 chips were tested in Fermilab using a single-chip test stand where every individual chip was tested for its characteristic features using a clam-shell. The results of those tests performed on the QIE10 and QIE11 are summarized in this document.

  3. Energy Dependence of the Transverse Momentum Distributions of Charged Particles in pp Collisions Measured by ALICE

    CERN Document Server

    Abelev, Betty Bezverkhny; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agocs, Andras Gabor; Agostinelli, Andrea; Ahammed, Zubayer; Ahmad, Nazeer; Ahmad, Arshad; Ahmed, Ijaz; Ahn, Sul-Ah; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki Eskeli; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Fernando; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Bogolyubskiy, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Bornschein, Joerg; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile Ioan; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contin, Giacomo; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dainese, Andrea; Dang, Ruina; Danu, Andrea; Das, Kushal; Das, Debasish; Das, Indranil; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; Delagrange, Hugues; Deloff, Andrzej; Denes, Ervin Sandor; Deppman, Airton; Oliveira Valeriano De Barros, Gabriel; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; De Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Doenigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutt Mazumder, Abhee Kanti; D'Erasmo, Ginevra; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erazmus, Barbara Ewa; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigory; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanouil; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gorlich, Lidia Maria; Gomez Jimenez, Ramon; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Costin; Grigoras, Alina Gabriela; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Khan, Kamal; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard Richard; Hippolyte, Boris; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hutter, Dirk; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Vladimir; Ivanov, Marian; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Ketzer, Bernhard Franz; Khan, Palash; Khan, Mohammed Mohisin; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Dong Jo; Kim, Do Won; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratyev, Valery; Kondratyeva, Natalia; Konevskikh, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, Alexey; Kurepin, Alexander; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasilij; Kweon, Min Jung; Kwon, Youngil; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; La Pointe, Sarah Louise; La Rocca, Paola; Lea, Ramona; Lechman, Mateusz Arkadiusz; Lee, Sung Chul; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luzzi, Cinzia; Jacobs, Peter Martin; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martin Blanco, Javier; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mazer, Joel Anthony; Mazumder, Rakesh; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes Prado, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Nyanin, Alexander; Nyatha, Anitha; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Sun Kun; Oh, Saehanseul; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pachr, Milos; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares Vales, Carlos; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woojin; Passfeld, Annika; Patalakha, Dmitry; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piyarathna, Danthasinghe; Planinic, Mirko; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Pohjoisaho, Esko Heikki Oskari; Polishchuk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf, Sarah Julie; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Sudhir; Raniwala, Rashmi; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauch, Wolfgang Hans; Rauf, Aamer Wali; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, Angelo; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Sharma, Rohni; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Pradip Kumar; Roy, Christelle Sophie; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Santoro, Romualdo; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Scott, Patrick Aaron; Segato, Gianfranco; Selyuzhenkov, Ilya; Seo, Jeewon; Serci, Sergio; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Satish; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Soegaard, Carsten; Soltz, Ron Ariel; Song, Myunggeun; Song, Jihye; Soos, Csaba; Soramel, Francesca; Spacek, Michal; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Ter-Minasyan, Astkhik; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Torii, Hisayuki; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urciuoli, Guido Maria; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vande Vyvre, Pierre; Vannucci, Luigi; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vargas Trevino, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Sergey; Voloshin, Kirill; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wagner, Jan; Wang, Yifei; Wang, Yaping; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Kengo; Weber, Michael; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Xiang, Changzhou; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yang, Shiming; Yano, Satoshi; Yasnopolskiy, Stanislav; Yi, Jungyu; Yin, Zhongbao; Yoo, In-Kwon; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Fan; Zhang, Yonghong; Zhang, Haitao; Zhang, Xiaoming; Zhou, Daicui; Zhou, You; Zhou, Fengchu; Zhu, Xiangrong; Zhu, Jianlin; Zhu, Jianhui; Zhu, Hongsheng; Zichichi, Antonino; Zimmermann, Markus Bernhard; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2013-01-01

    Differential cross sections of charged particles in inelastic pp collisions as a function of $p_T$ have been measured at $\\sqrt{s}$ = 0.9, 2.76 and 7 TeV at the LHC. The $p_T$ spectra are compared to NLO-pQCD calculations. Though the differential cross section for an individual $\\sqrt{s}$ cannot be described by NLO-pQCD, the relative increase of cross section with $\\sqrt{s}$ is in agreement with NLO-pQCD. Based on these measurements and observations, procedures are discussed to construct pp reference spectra at $\\sqrt{s}$ = 2.76 and 5.02 TeV up to $p_T$ = 50 GeV/c as required for the calculation of the nuclear modification factor in nucleus-nucleus and proton-nucleus collisions.

  4. Dose distribution of secondary charged particles in multilayer samples irradiated by gamma quanta

    International Nuclear Information System (INIS)

    The calculations of the absorbed dose from secondary electrons and positrons are performed for the fiber light pipe irradiated by gamma-quanta in the energy range 0.2-10 MeV. The light pipe comprises the cylindrical quartz glass layer surrounded by the light-reflective silicone coating. The transmission of gamma-quanta through the light pipe is considered for the cases of two protective shells and without ones. The calculations of the absorbed dose in the light pipe is carried out by means of the FORTRAN program based on the Monte Carlo method. It is shown that the dose of secondary charged particles (mainly electrons) in the light pipe depends significantly on the energy of primary gamma-quanta and increases considerably with protective polymeric shells

  5. Charge-exchange-induced perturbations of ion and atom distribution functions in the heliospheric interface

    CERN Document Server

    Fahr, H J

    2004-01-01

    Various hydrodynamic models of the heliospheric interface have been presented meanwhile, numerically simulating the interaction of the solar wind plasma bubble with the counterstreaming partially ionized interstellar medium. In these model approaches the resulting interface flows are found by the use of hydrodynamic simulation codes trying to consistently describe the dynamic and thermodynamic coupling of the different interacting fluids of protons, H-atoms and pick-up ions. Within such approaches, the fluids are generally expected to be correctly described by the three lowest velocity moments, i.e., by shifted Maxwellians. We shall show that in these approaches the charge-exchange-induced momentum coupling is treated in an unsatisfactory representation valid only at supersonic differential flow speeds. Though this flaw can be removed by an improved coupling term, we shall further demonstrate that the assumption of shifted Maxwellians in some regions of the interface is insufficiently well fulfilled both for ...

  6. The charge state distributions of 0.5-2.9 MeV Be, Al, Cl, Ti and Ni ions measured after carbon foil stripping

    International Nuclear Information System (INIS)

    Equilibrium charge state distributions have been measured for Be, Al, Cl, Ti and Ni ions stripped in the high-voltage terminal of an electrostatic tandem accelerator using a 2 μg/cm2 carbon foil. The series of measurements were made with a terminal voltage ranging from typically 1.5 to 2.9 MV. The charge state distributions were measured on the high-energy side of the accelerator, just in front of the analysing magnet, in order to take charge state-dependent transmission through the high-energy side of the accelerator into account. The obtained charge state distributions will be used for accelerator mass spectrometry measurements to find the optimum terminal voltage of the accelerator. (orig.)

  7. $\\beta$- decay of $^{58}$Zn. A critical test for the charge-exchange reaction as a probe for the $\\beta$- decay strength distribution

    CERN Multimedia

    2002-01-01

    % IS353 \\\\ \\\\ Due to its importance in fundamental physics and astrophysics, a great effort both theoretically and experimentally is devoted to study Gamow Teller (GT)-strength. The GT-strength and its distribution play a key role in late stellar evolution. During the pre-supernova core-collapse of massive stars, the electron capture and nuclear $\\beta$ -decay determine the electron-to-baryon ratio, which influences the infall dynamics and the mass of the final core. The cross-section of the charge-exchange reaction at forward angles with energies above 100~MeV is expected to be proportional to the squares of Fermi and GT matrix elements. This proportionality should provide a Q-value free method to probe the weak interaction strength and renormalization effects in nuclei. Thus charge-exchange reactions are often used to determine the experimental GT-strength. However, the connection between the GT-strength and the cross-section of the charge-exchange reaction is partially model-dependent and the question aris...

  8. Study of various charged p-meson masses in asymmetric nuclear matter

    Institute of Scientific and Technical Information of China (English)

    YAO Hai-Bo; WU Shi-Shu

    2009-01-01

    We study the effective masses of p-mesons for different charged states in asymmetric nuclear matter (ANM) using the Quantum Hadrodynamics II model.The closed form analytical results are presented for the effective masses of p-mesons.We have shown that the different charged p-mesons have mass splitting similar to various charged pions.The effect of the Dirac sea is also examined, and it is found that this effect is very important and leads to a reduction of the different charged p-meson masses in ANM.

  9. Theoretical study of charge exchange dynamics in He$^+$ + NO collisions

    CERN Document Server

    Bene, E

    2014-01-01

    We investigate the charge transfer mechanism in the collisions of helium ions on nitric oxide using a molecular description framework with consideration of the orientation of the projectile toward the target. The anisotropy of the collision process has been analysed in detail in connection with the non-adiabatic interactions around avoided crossings. Potential energy curves, radial and rotational coupling matrix elements have been determined by means of ab initio quantum chemical methods. The collision dynamics is performed in the [1.-25.] keV collision energy range using a semiclassical approach, and the total electron transfer cross sections are analysed with regard to available experimental data.

  10. Effect of Fe(II) spin crossover on charge distribution in and lattice properties of thiospinels

    Science.gov (United States)

    Womes, M.; Jumas, J. C.

    2013-03-01

    The spinels AgFe0.5Sn1.5S4 and CuFe0.5Sn1.5S4 belong to the rare examples of purely inorganic compounds in which Fe(II) exhibits a thermally induced transition from a low spin 3d(t2g)6(eg)0 to a high spin 3d(t2g)4(eg)2 electronic ground state. The extremely rare situation of having 119Sn as a second Mössbauer isotope in the lattice besides 57Fe is used to obtain deeper insight in the consequences the spin transition has on the lattice properties. To this end, 119Sn Mössbauer spectra were recorded between 5 and 500 K. The temperature dependence of the 119Sn hyperfine parameters is analysed. The data are compared to those obtained for the spinels AgMn0.5Sn1.5S4 and CuMn0.5Sn1.5S4 which are characterised by a temperature-independent high spin ground state. The results are discussed in terms of Fe-Sn charge transfer, local distortions on the tin site and changes of the vibrational lattice properties induced by the Fe spin transition.

  11. Beam energy and centrality dependence of the statistical moments of the net-charge and net-kaon multiplicity distributions in Au+Au collisions at STAR

    CERN Document Server

    McDonald, Daniel

    2012-01-01

    In part to search for a possible critical point (CP) in the phase diagram of hot nuclear matter, a Beam Energy Scan was performed at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory. The STAR experiment collected significant Au+Au data sets at beam energies, $\\sqrt{{\\rm s}_{\\rm NN}}$, of 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV. Lattice and phenomenological calculations suggest that the presence of a CP might result in divergences of the thermodynamic susceptibilities and correlation length. The statistical moments of the multiplicity distributions of particles reflecting conserved quantities, such as net-charge and net-strangeness, are expected to depend sensitively on these correlation lengths, making them attractive tools in the search for a possible critical point. The centrality and beam-energy dependence of the statistical moments of the net-charge multiplicity distributions will be discussed. The observables studied include the lowest four statistical moments (mean, variance, ske...

  12. Numerical Studies of Dust Distribution around Small Asteroids

    Science.gov (United States)

    Yu, W.; Wang, J.; Han, D.; Chou, K.

    2015-12-01

    While the dynamics of dust transport around an airless body has been a focused area of research in recent years, various challenging aspects still remain to be addressed. This paper presents an investigation of charged dust transport and distribution around small asteroids utilizing two newly developed numerical models and laboratory measurements of dust layer charging in a simulated asteroid plasma environment. The first model is a full particle Particle-in-Cell (PIC) model to simulate plasma flow around an asteroid and calculate surface charging self-consistently from charge deposition on asteroid. A major feature of this model is that the asteroid surface is treated as an "interface" between two mediums rather than a boundary, and the simulation domain includes not only the plasma but also the entire asteroid. An immersed-finite-element field solver is applied which calculates both the surface floating potential and the electric field inside the asteroid directly from local charge deposition. The material properties of asteroid are also explicitly included in the simulation. Results from PIC simulations of asteroid-plasma interactions, along with laboratory measurements of dust charge-to-mass ratio under a simulated asteroid surface charging environment, are fed into a dust dynamics model to simulate charged dust levitation, transport and distribution. In addition to electrostatic and gravitational forces, the dynamics of dust surface impacts and asteroid body rotation are also included in the model. We discuss the effects of asteroid composition and space plasma environments on dust levitation and transport. We present simulation results of dust distribution around several different types of small asteroids.

  13. Breakdown of the expansion of finite-size corrections to the hydrogen Lamb shift in moments of charge distribution

    Science.gov (United States)

    Hagelstein, Franziska; Pascalutsa, Vladimir

    2015-04-01

    We quantify a limitation in the usual accounting of the finite-size effects, where the leading [(Zα ) 4] and subleading [(Zα ) 5] contributions to the Lamb shift are given by the mean-square radius and the third Zemach moment of the charge distribution. In the presence of any nonsmooth behavior of the nuclear form factor at scales comparable to the inverse Bohr radius, the expansion of the Lamb shift in the moments breaks down. This is relevant for some of the explanations of the "proton size puzzle." We find, for instance, that the de Rújula toy model of the proton form factor does not resolve the puzzle as claimed, despite the large value of the third Zemach moment. Without relying on the radii expansion, we show how tiny, milli-percent (pcm) changes in the proton electric form factor at a MeV scale would be able to explain the puzzle. It shows that one needs to know all the soft contributions to the proton electric form factor to pcm accuracy for a precision extraction of the proton charge radius from atomic Lamb shifts.

  14. Synthesis, crystal structure and charge distribution of Na7As11O31: An oxygen-deficient layered sodium arsenate

    International Nuclear Information System (INIS)

    A new sodium arsenate with layer structure has been synthesized and its crystal structure solved and refined by single-crystal X-ray diffraction. The crystal is trigonal, space group P3-bar m1, a=11.199(3)A, c=5.411(2)A, V=587.80(3)A3, Z=1; the refinement converged to R=0.0282 and wR=0.0751 for 590 reflections with (I)>2sigma(I). The structural model gives the formula Na7As11O32, which would be non-neutral; besides, the structural model is not validated by the charge distribution (CD) analysis, which gives an unsatisfactory agreement on the computed charges of the cations. The CD analysis suggest incomplete (5/6) occupation of the O5 site, which leads to the deficiency of an oxygen atom per unit cell and to formula Na7As11O31: this new structural model corresponds to a neutral compound, is validated by the CD analysis, and results in better displacement parameters for O5 than its non neutral counterpart. The (001) anionic layers are built up from corner and edge sharing of As1 and As2 distorted octahedra and As3 distorted tetrahedra, the sodium cations playing the role of interlayer cations. The effects of the oxygen deficiency on the crystal structure are discussed

  15. CAT SWARM OPTIMIZATION FOR SINGLE STAGE SUPPLY CHAIN DISTRIBUTION SYSTEM WITH FIXED CHARGES

    Directory of Open Access Journals (Sweden)

    P. Manimaran

    2014-01-01

    Full Text Available In this paper, Cat Swarm Optimization (CSO Algorithm is proposed for single stage supply chain distribution system with a fixed cost. This paper considers two kinds of cost: a continuous cost, that linearly increases with the amount transported between a supplier and a customer and a fixed cost, which is incurred whenever a non-zero quantity is transported between a supplier and a customer and it is independent of the amount transported. The aim of this paper is to determine the quantities to be distributed to satisfy the customer demand with minimum cost. Since fixed costs results discontinuities in the objective function, solution procedures are become more difficult and are known to be non-deterministic polynomial (NP hard. In this paper Cat Swarm Optimization (CSO Algorithm is proposed for the optimization of single stage supply chain problem to provide optimal or near optimal solution. The results of the proposed model of this paper have been compared with a spanning tree-based Genetic Algorithm and binary coded Genetic Algorithm. Computational results show the superiority of CSO algorithm over other algorithms.

  16. A new lattice action for studying topological charge

    CERN Document Server

    Hernández, Pilar; Hernandez, Pilar; Sundrum, Raman

    1996-01-01

    We propose a new lattice action for non-abelian gauge theories, which will reduce short-range lattice artifacts in the computation of the topological susceptibility. The standard Wilson action is replaced by the Wilson action of a gauge covariant interpolation of the original fields to a finer lattice. If the latter is fine enough, the action of all configurations with non-zero topological charge will satisfy the continuum bound. As a simpler example we consider the O(3) \\sigma-model in two dimensions, where a numerical analysis of discretized continuum instantons indicates that a finer lattice with half the lattice spacing of the original is enough to satisfy the continuum bound.

  17. Positron annihilation studies of some charge transfer molecular complexes

    CERN Document Server

    El-Sayed, A; Boraei, A A A

    2000-01-01

    Positron annihilation lifetimes were measured for some solid charge transfer (CT) molecular complexes of quinoline compounds (2,6-dimethylquinoline, 6-methoxyquinoline, quinoline, 6-methylquinoline, 3-bromoquinoline and 2-chloro-4-methylquinoline) as electron donor and picric acid as an electron acceptor. The infrared spectra (IR) of the solid complexes clearly indicated the formation of the hydrogen-bonding CT-complexes. The annihilation spectra were analyzed into two lifetime components using PATFIT program. The values of the average and bulk lifetimes divide the complexes into two groups according to the non-bonding ionization potential of the donor (electron donating power) and the molecular weight of the complexes. Also, it is found that the ionization potential of the donors and molecular weight of the complexes have a conspicuous effect on the average and bulk lifetime values. The bulk lifetime values of the complexes are consistent with the formation of stable hydrogen-bonding CT-complexes as inferred...

  18. When the expansion of finite-size corrections to hydrogen Lamb shift in moments of charge distribution breaks down

    CERN Document Server

    Hagelstein, Franziska

    2015-01-01

    We point out a limitation of the standard way of accounting the finite-size effects, i.e., when the leading $[(Z\\alpha)^4]$ and subleading $[(Z\\alpha)^5]$ contributions to the Lamb shift are given by the mean-square radius and the third Zemach moment of the charge distribution. This limitation may have profound consequences for the interpretation of the "proton size puzzle". We find, for instance, that the de R\\'ujula toy model of the proton form factor does not resolve the puzzle as claimed, despite the large value of the third Zemach moment. Given the formula which does not rely on the radii expansion, we show how tiny (less than a hundredth of percent) changes in the proton electric form factor at a MeV scale would be able to explain the puzzle.

  19. Power distribution studies for CMS forward tracker

    International Nuclear Information System (INIS)

    The Electronic Systems Engineering Department of the Computing Division at the Fermi National Accelerator Laboratory is carrying out R and D investigations for the upgrade of the power distribution system of the Compact Muon Solenoid (CMS) Pixel Tracker at the Large Hadron Collider (LHC). Among the goals of this effort is that of analyzing the feasibility of alternative powering schemes for the forward tracker, including DC to DC voltage conversion techniques using commercially available and custom switching regulator circuits. Tests of these approaches are performed using the PSI46 pixel readout chip currently in use at the CMS Tracker. Performance measures of the detector electronics will include pixel noise and threshold dispersion results. Issues related to susceptibility to switching noise will be studied and presented. In this paper, we describe the current power distribution network of the CMS Tracker, study the implications of the proposed upgrade with DC-DC converters powering scheme and perform noise susceptibility analysis.

  20. Surface phase, morphology, and charge distribution transitions on vacuum and ambient annealed SrTi O3 (100)

    Science.gov (United States)

    Dagdeviren, Omur E.; Simon, Georg H.; Zou, Ke; Walker, Fred J.; Ahn, Charles; Altman, Eric I.; Schwarz, Udo D.

    2016-05-01

    The surface structures of SrTi O3 (100) single crystals were examined as a function of annealing time and temperature in either oxygen atmosphere or ultrahigh vacuum (UHV) using noncontact atomic force microscopy (NC-AFM), Auger electron spectroscopy (AES), and low-energy electron diffraction (LEED). Samples were subsequently analyzed for the effect the modulation of their charge distribution had on their surface potential. It was found that the evolution of the SrTi O3 surface roughness, stoichiometry, and reconstruction depends on the preparation scheme. LEED revealed phase transitions from a (1 ×1 ) termination to an intermediate c (4 ×2 ) reconstruction to ultimately a (√ 13 ×√ 13 ) -R 33 .7∘ surface phase when the surface was annealed in an oxygen flux, while the reverse transition from (√ 13 ×√ 13 ) -R 33 .7∘ to c (4 ×2 ) was observed when samples were annealed in UHV. When the surface reverted to c (4 ×2 ) , AES data indicated decreases in both the surface Ti and O concentrations. These findings were corroborated by NC-AFM imaging, where initially Ti O2 -terminated crystals developed half-unit cell high steps following UHV annealing, which is typically attributed to a mix of SrO and Ti O2 terminations. Surface roughness evolved nonmonotonically with UHV annealing temperature, which is explained by electrostatic modulations of the surface potential caused by increasing oxygen depletion. This was further corroborated by experiments in which the apparent roughness tracked in NC-AFM could be correlated with changes in the surface charge distribution that were controlled by applying a bias voltage to the sample. Based on these findings, it is suggested that careful selection of preparation procedures combined with application of an electric field may be used to tune the properties of thin films grown on SrTi O3 .

  1. The Grid-Dose-Spreading Algorithm for Dose Distribution Calculation in Heavy Charged Particle Radiotherapy

    CERN Document Server

    Kanematsu, Nobuyuki

    2007-01-01

    A simple and efficient variant of the pencil-beam algorithm for dose distribution calculation is proposed. Compared to the conventional pencil-beam algorithms, the new algorithm is intrinsically faster due to minimized computation within the convolution integral. Namely, computation for physical interaction is decoupled from the convolution integral and the convolution kernel is approximated by simple grid-to-grid correlation. Implementation to a treatment planning system for carbon-ion radiotherapy has enabled realistic beam blurring with marginal speed decrease from the broad-beam calculation. Evaluation of a modeled proton pencil beam exhibits inaccuracy within its spread at the Bragg peak when the beam incidence is angled to all the dose grid axes, which will be minimized in broad-beam formation and may be acceptable depending on its relative significance to the other sources of errors. The new algorithm will provide balanced accuracy and speed without technical difficulty for high-resolution dose distrib...

  2. 配电网电能质量综合治理型多功能电动汽车充电站研究%Study on multi-function electric vehicle charging station with power quality comprehensive governance for distribution system

    Institute of Scientific and Technical Information of China (English)

    赵贺雍; 朱大为

    2015-01-01

    为解决传统充电站在给电动汽车充电时所造成的配电网谐波污染及影响配电变压器绝缘寿命的问题,提出具有配电网电能质量综合治理的多功能电动汽车充电站(Electric Vehicle Charging Station,EVCS)的拓扑结构,给出了EVCS的并网电流参考值算法和基于两相旋转坐标系下的控制方法.通过搭建50 kW的仿真实验系统验证了具有配电网电能质量治理的多功能EVCS不仅能满足电动汽车的充电需求,而且便于分布电源(Distributed Generation,DG)的灵活接入,并确保交流配电网高效运行.

  3. Economic Viability Study of an On-Road Wireless Charging System with a Generic Driving Range Estimation Method

    OpenAIRE

    Aditya Shekhar; Venugopal Prasanth; Pavol Bauer; Mark Bolech

    2016-01-01

    The economic viability of on-road wireless charging of electric vehicles (EVs) strongly depends on the choice of the inductive power transfer (IPT) system configuration (static or dynamic charging), charging power level and the percentage of road coverage of dynamic charging. In this paper, a case study is carried out to determine the expected investment costs involved in installing the on-road charging infrastructure for an electric bus fleet. Firstly, a generic methodology is described to d...

  4. Pseudorapidity and transverse-momentum distributions of charged particles in proton–proton collisions at s=13 TeV

    Directory of Open Access Journals (Sweden)

    J. Adam

    2016-02-01

    Full Text Available The pseudorapidity (η and transverse-momentum (pT distributions of charged particles produced in proton–proton collisions are measured at the centre-of-mass energy s=13 TeV. The pseudorapidity distribution in |η|<1.8 is reported for inelastic events and for events with at least one charged particle in |η|<1. The pseudorapidity density of charged particles produced in the pseudorapidity region |η|<0.5 is 5.31±0.18 and 6.46±0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15charged particle in |η|<1. The evolution of the transverse momentum spectra of charged particles is also investigated as a function of event multiplicity. The results are compared with calculations from PYTHIA and EPOS Monte Carlo generators.

  5. Electrical resistivity study of some organic charge transfer complexes under pressure

    International Nuclear Information System (INIS)

    Electrical resistivity study of the organic charge transfer complexes tetramethyl benzidine - TCNQ and tetramethyl p-phenylene diamine - TCNQ has been carried out up to pressure 80 kilobar. Using the structural aspect, a conduction mechanism under pressure is suggested. (author)

  6. Charged-particle distributions in $pp$ interactions at $\\sqrt{s}=8$ TeV measured with the ATLAS detector at the LHC

    CERN Document Server

    AUTHOR|(CDS)2069742; ATLAS Collaboration; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin

    2016-01-01

    This paper presents measurements of charged-particle distributions which are produced in proton--proton collisions at a centre-of-mass energy of $\\sqrt{s}=8$ TeV and recorded by the ATLAS detector at the LHC. A special dataset recorded in 2012 with a small number of interactions per beam crossing (below 0.004) and corresponding to an integrated luminosity of $160 \\mathrm{\\mu b^{-1}}$ was used. A minimum-bias trigger was utilised to select a data sample of more than 9 million collision events. The multiplicity, pseudorapidity, and transverse momentum distributions of charged particles are shown in different regions of kinematics and charged-particle multiplicity, including measurements of final states at high multiplicity. The results are presented as particle-level distributions to which predictions of various Monte Carlo event generator models are compared.

  7. Development of hydraulic power unit and accumulator charging circuit for electricity generation, storage and distribution

    Institute of Scientific and Technical Information of China (English)

    C.N.Okoye; JIANG Ji-hai; LIU Hai-chang

    2008-01-01

    It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to induction motor to drive cylinder loads. During upstroke operation, the variable pump/motor (P/M) driven by both electric motor and the second (P/M) works as hydraulic pump and output flow to the cylinders which drive the load. During load deceleration, the cylinders work as pump while the operation of the two secondary units are reversed, the variable (P/M) works as a motor generating a torque with the electric motor to drive the other(P/M) which transforms mechanical energy to hydraulic energy that is saved in the accumulator. When the en-ergy storage capacity of the accumulator is attained as the operation continues, energy storage to the accumulator is thermostatically stopped while the induction motor begins to work as a generator and generates electricity that is stored in the power distribution unit. Simulations were performed using a limited PT2 Block, I.e. 2nd-ordertransfer function with limitation of slope and signal output to determine suitable velocity of the cylinder which will match high performance and system stability. A mathematical model suited to the simulation of the hydrau-lic accumulator both in an open-or close-loop system is presented. The quest for improvement of lower energy capacity storage, saving and re-utilization of the conventional accumulator resulting in the short cycle time usage of hydraulic accumulators both in domestic and industrial purposes necessitates this research. The outcome of the research appears to be very efficient for generating fluctuation free electricity, power quality and reliability, energy saving/reutilization and system noise reduction.

  8. Charged particle and $\\pi^{0}$ multiplicity distributions and the annihilation properties of pp interactions at 70 GeV/c

    CERN Document Server

    Dumont, J J; Ekspong, G; Estruch, J A; Evans, Wynn H; Grard, F; Hagman, V M; Herquet, P; Keski-Kuha, P; Lemonne, J; Mason, P; Muirhead, William Hugh; Poiret, C; Selldén, B; Szilly, L; Tuominiemi, J; Valtonen, K; Vanhomwegen, G; Verbeure, F; Wickens, J; Yamdagni, N

    1982-01-01

    The elastic and inelastic pp cross sections at 70 GeV/c have been determined in an experiment performed at CERN using BEBC equipped with a TST. The topological cross sections were measured and the moments of the inelastic multiplicity distribution are (n/sub c/)=6.16+or-0.09, (n/sub c/)/D=2.04+or-0.05 and f/sub 2//sup cc/=2.97+or-0.03. The average number of Dalitz pairs per inelastic event is (3.12+or-0.09) *10/sup -2/. Assuming that these all arise from\\pi^{0} decay the average\\pi^{0} multiplicity is (n/sub\\pi/)=2.71+or-0.14. The pp- pp cross section differences lead to an annihilation cross section sigma /sub A/=4.42+or-0.41 mb and the moments of the annihilation multiplicity distribution are (n/sub A/)=8.0+or-0.3, (n/sub A/) /D=2.5+or-0.2 and f/sub 2//sup A--/=-1.4+or-0.3. An independent check of sigma /sub A/ was made by investigating fast forward charged and neutral secondary interactions in the TST and in the surrounding neon- hydrogen mixture, and gives a value sigma /sub A/=5.0+or-1.6 mb. The ratio of...

  9. Asymmetric distribution of charged lipids between the leaflets of a vesicle bilayer induced by melittin and alamethicin

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Shuo [ORNL; Heller, William T [ORNL

    2011-01-01

    Cellular membranes are complex mixtures of lipids, proteins, and other small molecules that provide functional, dynamic barriers between the cell and its environment, as well as between environments within the cell. The lipid composition of the membrane is highly specific and controlled in terms of both content and lipid localization. The membrane structure results from the complex interplay between the wide varieties of molecules present. Here, small-angle neutron scattering and selective deuterium labeling were used to probe the impact of the membrane-active peptides melittin and alamethicin on the structure of lipid bilayers composed of a mixture of the lipids dimyristoyl phosphatidylglycerol (DMPG) and chain-perdeuterated dimyristoyl phosphatidylcholine (DMPC). We found that both peptides enriched the outer leaflet of the bilayer with the negatively charged DMPG, creating an asymmetric distribution of lipids. The level of enrichment is peptide concentration-dependent and is stronger for melittin than it is for alamethicin. The enrichment between the inner and outer bilayer leaflets occurs at very low peptide concentrations and increases with peptide concentration, including when the peptide adopts a membrane-spanning, pore-forming state. The results suggest that these membrane-active peptides may have a secondary stressful effect on target cells at low concentrations that results from a disruption of the lipid distribution between the inner and outer leaflets of the bilayer that is independent of the formation of transmembrane pores.

  10. Ion charge state distributions in ECR-plasmas determined from mass spectrometry and X-ray spectroscopy

    International Nuclear Information System (INIS)

    The influence of microwave power, magnetic field, neutral gas pressure and gas mixture on the ion charge state distribution (CSD) of an electron cyclotron resonance (ECR) plasma was investigated by q/A-analysis of an ion beam extracted from the plasma and by X-ray spectroscopy of this plasma. As the ion beam expands from a limited plasma edge and the extraction process alters the plasma properties in this region a small plasma cone including the discharge core is investigated by the X-ray method. For this reason the measured CSD are significantly different. Additionally, the transmission of the ions to the beam stop depends on the q/A ratio of the ion species and can falsify the true, primary CSD. In this way, the analysis of ECR plasma X-rays represents a more accurate method to measure the CSD of a discharge. In comparison to the q/A analysis it provides the true distribution and, moreover, different plasma regions can be examined

  11. Fission fragment charge and mass distributions in 239Pu(n ,f ) in the adiabatic nuclear energy density functional theory

    Science.gov (United States)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-05-01

    Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms

  12. Energy loss and charge state distribution of calcium ions in dense moderately coupled carbon plasma; Energieverlust und Ladungsverteilung von Calciumionen in dichtem, schwach gekoppeltem Kohlenstoffplasma

    Energy Technology Data Exchange (ETDEWEB)

    Ortner, Alex

    2015-07-15

    In this thesis the interaction of swift calcium ions (Energy: 3.5 MeV/u) with a dense and moderately coupled carbon plasma (Coupling parameter: Γ=0.1-0.5) is investigated. The plasma state is generated by heating a thin carbon foil volumetrically by thermal X-ray radiation. The thermal X-ray radiation itself is generated by the conversion of a high energy laser beam in a hohlraum cavity. Compared to earlier ion stopping experiments the electron density and the plasma coupling parameter could be increased by an order of magnitude. This work provides the first time experimental energy loss and charge state distribution data in this moderately coupled interaction regime. The thesis consists of a theoretical part where the ion beam plasma interaction is studied for a broad range of plasma parameters and an experimental part where the ion beam interaction with the hohlraum plasma target is measured. All the described experiments were carried out at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt. This facility offers the unique possibility to combine a heavy ion beam from an accelerator with a high energy laser beam in one interaction chamber. An intense laser pulse (150 J of laser energy in 1 ns at λ{sub L}=527 nm) is focused inside a 600 μm diameter spherical cavity and generates a hot gold plasma that emits X-rays. The absorbed and reemitted radiation establishes a spatially uniform temperature distribution in the cavity and serves as an intense, isotropic X-ray source with a quasi-thermal spectral distribution. These thermal X-rays with a radiation temperature of T{sub r}=98±6 eV then propagate into a secondary cylindrical hohlraum (diameter: 1000 μm, length: 950 μm) where they volumetrically heat two thin carbon foils to the plasma state. The radiation temperature in the secondary hohlraum is T{sub r}=33±5 eV. This indirect laser heating scheme has the advantage that the whole sample volume is instantaneously heated and that the plasma is

  13. Fragment charge and energy distributions in the 1.8-4.8 GeV {sup 3}He + {sup nat}Ag, {sup 197}Au reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, D.S.; Foxford, E.R.; Kwiatkowski, K. [and others

    1995-10-01

    Moving source fits have been performed for IMFs as a function of observables related to collision violence in the 1.8-4.8 GeV {sup 3}He +{sup nat}Ag, {sup l97}Au reactions. The systematic behavior of the source properties and fragment charge distributions will be reviewed. The evolution of the spectral Coulomb parameters provides evidence for nuclear expansion prior to multifragmentation, suggesting a breakup density of p/p{sub o} {approximately} 1/3. The charge distributions will be examined in terms of power-law fits and moment analyses.

  14. Fragment charge and energy distributions in the 1.8-4.8 GeV 3He + natAg, 197Au reactions

    International Nuclear Information System (INIS)

    Moving source fits have been performed for IMFs as a function of observables related to collision violence in the 1.8-4.8 GeV 3He +natAg, l97Au reactions. The systematic behavior of the source properties and fragment charge distributions will be reviewed. The evolution of the spectral Coulomb parameters provides evidence for nuclear expansion prior to multifragmentation, suggesting a breakup density of p/po ∼ 1/3. The charge distributions will be examined in terms of power-law fits and moment analyses

  15. Study of momentum distributions for projectile fragments of 22Ne and 28Si nuclei in collisions with emulsion

    International Nuclear Information System (INIS)

    The charge and mass yield curves and the momentum distributions of the projectile fragments produced in the interactions of 4.1 A GeV/c 22Ne and 4.5 A GeV/c 28Si with emulsion have been studied. The overall charge distributions of the projectile fragments resulting from these interactions are presented. The dependence of the mass yield distributions of the projectile fragments on the impact parameter has been tested. The momentum distributions for the considered reactions have been investigated by two methods. First, the projected momentum distributions in the plane of the microscope have been achieved by fitting the projected angular distributions to gaussian ones. It has been found that the width of the distribution changes with the charge of the projectile fragment and it decreases with the increase of the projectile fragment charge. Secondly, the transverse momentum distributions have been compared with previous studies. The momentum distribution, in the forward cone, is a typically narrow gaussian one

  16. Modeling the adsorption of weak organic acids on goethite: the ligand and charge distribution model

    NARCIS (Netherlands)

    Filius, J.D.

    2001-01-01

    A detailed study is presented in which the CD-MUSIC modeling approach is used in a new modeling approach that can describe the binding of large organic molecules by metal (hydr)oxides taking the full speciation of the adsorbed molecule into account. Batch equilibration experiments were performed usi

  17. Small angle neutron scattering study of mixed micelles of oppositely charged surfactants

    Indian Academy of Sciences (India)

    J V Joshi; V K Aswal; P S Goyal

    2008-11-01

    Structures of mixed micelles of oppositely charged surfactants dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl sulphate (SDS) have been studied using small angle neutron scattering. The concentration of one of the components was kept fixed (0.3 M) and that of another varied in the range 0 to 0.1 M. The aggregation number and micellar size increase and fractional charge decreases dramatically with the addition of small amount of oppositely charged surfactant. The effect of addition of SDS on DTAB is significantly different from that of the addition of DTAB on SDS. The contrast variation SANS experiments using deuterated surfactant suggests the homogeneous mixing of two components in mixed micellar system.

  18. X-ray diffraction studies of charge density waves in cuprate superconductors: A brief review

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, E., E-mail: e.blackburn@bham.ac.uk

    2015-03-01

    High temperature superconductivity in the cuprates has fascinated scientists for more than 25 years, but there is still no consensus on the pairing mechanism. Soon after the discovery of high temperature superconductivity, it was suggested that the cuprates have an incipient tendency towards spatial electronic order – spin and charge order. In this paper, I will review X-ray diffraction studies of charge density waves in the cuprates. These results, by a number of different groups, indicate that short-range charge correlations exist across the cuprate family, and in many cases are clearly competing with the superconductivity.

  19. Performance Studies on Distributed Virtual Screening

    Directory of Open Access Journals (Sweden)

    Jens Krüger

    2014-01-01

    Full Text Available Virtual high-throughput screening (vHTS is an invaluable method in modern drug discovery. It permits screening large datasets or databases of chemical structures for those structures binding possibly to a drug target. Virtual screening is typically performed by docking code, which often runs sequentially. Processing of huge vHTS datasets can be parallelized by chunking the data because individual docking runs are independent of each other. The goal of this work is to find an optimal splitting maximizing the speedup while considering overhead and available cores on Distributed Computing Infrastructures (DCIs. We have conducted thorough performance studies accounting not only for the runtime of the docking itself, but also for structure preparation. Performance studies were conducted via the workflow-enabled science gateway MoSGrid (Molecular Simulation Grid. As input we used benchmark datasets for protein kinases. Our performance studies show that docking workflows can be made to scale almost linearly up to 500 concurrent processes distributed even over large DCIs, thus accelerating vHTS campaigns significantly.

  20. Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel.

    Science.gov (United States)

    Amodeo, Giuseppe Federico; Scorciapino, Mariano Andrea; Messina, Angela; De Pinto, Vito; Ceccarelli, Matteo

    2014-01-01

    Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs) Molecular Dynamics (MD) simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities. PMID:25084457

  1. Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel.

    Directory of Open Access Journals (Sweden)

    Giuseppe Federico Amodeo

    Full Text Available Voltage Dependent Anion-selective Channels (VDACs are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs Molecular Dynamics (MD simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities.

  2. Polymer micelles with hydrophobic core and ionic amphiphilic corona. 1. Statistical distribution of charged and nonpolar units in corona.

    Science.gov (United States)

    Lysenko, Evgeny A; Kulebyakina, Alevtina I; Chelushkin, Pavel S; Rumyantsev, Artem M; Kramarenko, Elena Yu; Zezin, Alexander B

    2012-12-11

    Polymer micelles with hydrophobic polystyrene (PS) core and ionic amphiphilic corona from charged N-ethyl-4-vinylpyridinium bromide (EVP) and uncharged 4-vinylpyridine (4VP) units spontaneously self-assembled from PS-block-poly(4VP-stat-EVP) macromolecules in mixed dimethylformamide/methanol/water solvent. The fraction of statistically distributed EVP units in corona-forming block is β = [EVP]/([EVP]+[4VP]) = 0.3-1. Micelles were transferred into water via dialysis technique, and pH was adjusted to 9, where 4VP is insoluble. Structural characteristics of micelles were investigated both experimentally and theoretically as a function of corona composition β. Methods of dynamic and static light scattering, electrophoretic mobility measurements, sedimentation velocity, transmission electron microscopy, and UV spectrophotometry were applied. All micelles possessed spherical morphology. The aggregation number, structure, and electrophoretic mobility of micelles changed in a jumplike manner near β ~ 0.6-0.75. Below and above this region, micelle characteristics were constant or insignificantly changed upon β. Theoretical dependencies for micelle aggregation number, corona dimensions, and fraction of small counterions outside corona versus β were derived via minimization the micelle free energy, taking into account surface, volume, electrostatic, and elastic contributions of chain units and translational entropy of mobile counterions. Theoretical estimations also point onto a sharp structural transition at a certain corona composition. The abrupt reorganization of micelle structure at β ~ 0.6-0.75 entails dramatic changes in micelle dispersion stability in the presence of NaCl or in the presence of oppositely charged polymeric (sodium polymethacrylate) or amphiphilic (sodium dodecyl sulfate) complexing agents.

  3. Modeling the adsorption of weak organic acids on goethite: the ligand and charge distribution model

    OpenAIRE

    Filius, J.D.

    2001-01-01

    A detailed study is presented in which the CD-MUSIC modeling approach is used in a new modeling approach that can describe the binding of large organic molecules by metal (hydr)oxides taking the full speciation of the adsorbed molecule into account. Batch equilibration experiments were performed using the iron (hydr)oxide goethite to determine the adsorption of a series of weak organic acids (e.g. lactic acid, oxalic acid, malonic acid, phthalic acid, citric acid, and fulvic acid). In order t...

  4. Cumulants of Net-Proton, Net-Kaon and Net-Charge Multiplicity Distributions in Au+Au Collisions at RHIC BES Energies from UrQMD Model

    CERN Document Server

    Xu, Ji; Liu, Feng; Luo, Xiaofeng

    2016-01-01

    Fluctuations of conserved quantities are sensitive observables to probe the signature of QCD phase transition and critical point in heavy-ion collisions. With the UrQMD model, we have studied the centrality and energy dependence of various order cumulants and cumulant ratios (up to fourth order) of net-proton,net-charge and net-kaon multiplicity distributions in Au+Au collisions at $\\sqrt{s_{NN}}$= 7.7, 11.5, 19.6, 27, 39, 62.4, 200 GeV. The model results show that the production mechanism of the particles and anti-particles have significant impacts on the cumulants of net-particles multiplicity distributions and show strong energy dependence. We also made comparisons between model calculations and experimental data measured in the first phase of the beam energy scan (BES) program by the STAR experiment at RHIC. The comparisons indicate that the baryon conservation effect strongly suppress the cumulants of net-proton distributions at low energies and the non-monotonic energy dependence for the net-proton {\\KV...

  5. Radial distribution of dose within heavy charged particle tracks. Models and experimental verification using LiF:Mg,Cu,P TL detectors

    CERN Document Server

    Gieszczyk, W; Olko, P; Obryk, B

    2014-01-01

    A new method of experimental verification of radial dose distribution models using solid state thermoluminescent (TL) detectors LiF:Mg,Cu,P has been recently proposed. In this work the method was applied to verify the spatial distribution of energy deposition within a single 131Xe ion track. Detectors were irradiated at the Department of Physics of the University of Jyv\\"askyl\\"a, Finland. The obtained results have been compared with theoretical data, calculated according to the Zhang et al., Cucinotta et al. and Geiss et al. radial dose distribution (RDD) models. At the lowest dose range the Zhang et al. RDD model exhibited the best agreement as compared to experimental data. In the intermediate dose range, up to 104 Gy, the best agreement was found for the RDD model of Cucinotta et al. The probability of occurrence of doses higher than 104 Gy within a single 131Xe ion track was found to be lower than predicted by all the studied RDD models. This may be a result of diffusion of the charge, which is then capt...

  6. EXPERIMENTAL INVESTIGATIONS OF ION CHARGE DISTRIBUTIONS, EFFECTIVE ELECTRON DENSITIES, AND ELECTRON-ION CLOUD OVERLAP IN ELECTRON BEAM ION TRAP PLASMA USING EXTREME-ULTRAVIOLET SPECTROSCOPY

    International Nuclear Information System (INIS)

    Spectra in the extreme ultraviolet range from 107 to 353 A emitted from Fe ions in various ionization stages have been observed at the Heidelberg electron beam ion trap (EBIT) with a flat-field grating spectrometer. A series of transition lines and their intensities have been analyzed and compared with collisional-radiative simulations. The present collisional-radiative model reproduces well the relative line intensities and facilitates line identification of ions produced in the EBIT. The polarization effect on the line intensities resulting from nonthermal unidirectional electron impact was explored and found to be significant (up to 24%) for a few transition lines. Based upon the observed line intensities, relative charge state distributions (CSD) of ions were determined, which peaked at Fe23+ tailing toward lower charge states. Another simulation on ion charge distributions including the ionization and electron capture processes generated CSDs which are in general agreement with the measurements. By observing intensity ratios of specific lines from levels collisionally populated directly from the ground state and those starting from the metastable levels of Fe XXI, Fe X and other ionic states, the effective electron densities were extracted and found to depend on the ionic charge. Furthermore, it was found that the overlap of the ion cloud with the electron beam estimated from the effective electron densities strongly depends on the charge state of the ion considered, i.e. under the same EBIT conditions, higher charge ions show less expansion in the radial direction.

  7. Preliminary study for the detection of neutrons in heavy-ion collisions with charged particle detectors

    OpenAIRE

    Auditore L.; Pagano A.; Russotto P.

    2015-01-01

    At Laboratori Nazionali del Sud (LNS) the CHIMERA 4π multidetector has been designed and setup to detect charged particles emitted in heavy ion collisions at intermediate energies. Properties and performances of CHIMERA have been widely demonstrated by published results obtained in the performed experiments. Moreover, in recent years, a new charged particle detector (ChPD) for correlation studies (FARCOS) has been designed, and recently a first prototype has been coupled to CHIMERA, in order ...

  8. Experimental study of influence of inlet geometry on thermal stratification in thermal energy storage during charging process

    Directory of Open Access Journals (Sweden)

    Švarc Petr

    2014-03-01

    Full Text Available Various analyses of charging processes of real single-medium thermal energy storage were applied in this work. Two different inlet geometries of direct intakes into thermal energy storage were investigated for the process of charging in Richardson numbers 0.4 and 15. Temperature distributions for both cases are shown and compared in selected time steps. Several simple methods for assessment of an ability to maintain and support thermal stratification during charging processes were compared with exergy analysis.

  9. Lithium-ion batteries: Evaluation study of different charging methodologies based on aging process

    International Nuclear Information System (INIS)

    Highlights: • Different charging methodologies have been tested and analyzed. • Battery impedance representation using the Randle’s equivalent circuit. • Investigate the impact of the charging methodology on the battery’s lifetime. • An extended analysis to select the proper charging method that can be used to design an enhanced charging system. - Abstract: In this paper, high power 7 A h LiFePO4-based cells (LFP) have been used to investigate the impact of the charging methodology on the battery’s lifetime. Three charging techniques have been used: Constant Current (CC), Constant Current–Constant Voltage (CC–CV) and Constant Current–Constant Voltage with Negative Pulse (CC–CVNP). A comparative study between these techniques is presented in this research. For this purpose, a characterization of the batteries has been performed using capacity test and electrochemical impedance spectroscopy (EIS). As expected the obtained results showed that the battery’s aging rate depends on the charging methodology. Indeed, it has been shown that a combination of low amplitude and fewest number of negative pulses has a positive effect on battery’s capacity fading. From the impedance measurements, the results have demonstrated that the CC–CVNP technique with low amplitude and fewest number of negative pulses is more effective than the other techniques in reducing the concentration polarization resistance and the diffusion time constant. This research has provided an extended analysis to select the proper charging methodology that can be used to design an enhanced charging system

  10. Study of neutralization kinetics in charged polymer-metal nanocomposite systems by photoemission spectroscopy

    International Nuclear Information System (INIS)

    In case of photoelectron spectroscopy of an insulating material the data obtained from the charged surface are often distorted due to differentially charged surface domains. Recently we have developed a controlled surface neutralization technique to study the kinetics of the surface charging. Here we demonstrate the application of the technique to study the neutralization kinetics of both thick and thin films of charged polymer-metal nanocomposite material using photoemission. Neutralization kinetics of grounded and floated pure polymer thin films was also studied. It was observed that for the thick sample the transition of positively charged domains to overcompensated ones occurs through percolation. In case of grounded thin films the growth of overcompensated domains exhibit a linear behavior followed by saturation. When electrons appear at both surfaces of a floated thin film, the neutralization kinetics show a completely different behavior. Present investigation indicates that for thin films of insulating materials appearing to be neutral in presence of an electron source, controlled neutralization technique may be an important tool to distinguish between presence of multiple chemical species and differential charging.

  11. Measurement of Parton Distributions of Strange Quarks in the Nucleon from Charged-Kaon Production in Deep-Inelastic Scattering on the Deuteron

    CERN Document Server

    Airapetian, A; Akopov, Z; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Belostotskii, S; Bianchi, N; Blok, H P; Bttcher, H; Bonomo, C; Borisov, A; Brüll, A; Bryzgalov, V; Burns, J; Capiluppi, M; Capitani, G P; Cisbani, E; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Funel, A; Gabbert, D; Gapienko, G; Gapienko, V; Garibaldi, F; Gavrilov, G; Karibian, V; Giordano, F; Gliske, S; Gregor, I M; Guler, H; Hadjidakis, C; Hasch, D; Hasegawa, T; Hesselink, W H A; Hill, G; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Hristova, I; Iarygin, G; Imazu, Y; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Joosten, S; Kaiser, R; Keri, T; Kinney, E; Kiselev, A; Kobayashi, T; Kopytin, M; Korotkov, V; Kozlov, V; Kravchenko, P; Krivokhizhin, V G; Lagamba, L; Lamb, R; Lapikas, L; Lehmann, I; Lenisa, P; Liebing, P; Linden-Levy, L A; Lopez Ruiz, A; Lorenzon, W; Lu, S; Lu, X R; Ma, B Q; Mahon, D; Maiheu, B; Makins, N C R; Manfr, L; Mao, Y; Marianski, B; Marukyan, H; Mexner, V; Miller, C A; Miyachi, Y; Muccifora, V; Murray, M; Mussgiller, A; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Nass, A; Negodaev, M; Nowak, W D; Osborne, A; Pappalardo, L L; Perez-Benito, R; Pickert, N; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rock, S E; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Schäfer, A; Schnell, G; Schüler, K P; Seitz, B; Shearer, C; Shibata, T A; Shutov, V; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Streit, J; Tait, P; Taroian, S; Tchuiko, B; Terkulov, A; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Van Haarlem, Y; van Hulse, C; Varanda, M; Veretennikov, D; Vikhrov, V; Vilardi, I; Vogel, C; Wang, S; Yaschenko, S; Ye, H; Ye, Y; Ye, Z; Yen, S; Yu, W; Zeiler, D; Zihlmann, B; Zupranski, P

    2008-01-01

    The momentum and helicity density distributions of the strange quark sea in the nucleon are obtained in leading order from charged-kaon production in deep-inelastic scattering on the deuteron. The distributions are extracted from spin-averaged K+/- multiplicities, and from K+/- and inclusive double-spin asymmetries for scattering of polarized positrons by a polarized deuterium target. The shape of the momentum distribution is softer than that of the average of the ubar and dbar quarks. In the region of measurement, the helicity distribution is zero within experimental uncertainties.

  12. A STUDY ON JIG DISTRIBUTION CURVE TRANSFORMATION

    Institute of Scientific and Technical Information of China (English)

    路迈西; 常大山; 郭珍旭

    1991-01-01

    An investigation of the errors resulted from distribution curve transformations using six different methods was made on the basis of 61 sets of jig performance test data from the coal preparation plants in China. The results indicate that minimum error occurred when distribution curves were transformed by keeping imperfection I constant. Generalized distribution curves are developed for jigs and their applications are discussed.

  13. Considerations on influence of charge distribution on determination of biomolecules and microorganisms and tailoring the monolithic (continuous bed) materials for bioseparations.

    Science.gov (United States)

    Szumski, Michał; Kłodzińska, Ewa; Jarmalaviciene, Reda; Maruska, Audrius; Buszewski, Bogusław

    2007-02-23

    The importance of continuous beds (monoliths) as separation materials is connected with their better chromatographic properties and easier preparation in comparison to particulate-packed columns. Moreover the tuning of porosity as well as surface chemistry can lead to obtaining of highly selective materials, especially useful in separation of biologically important compounds or even microorganisms. To obtain high selectivity for such analytes as e.g. proteins, it is often important to have a knowledge about their shape, size, charge and finally charge distribution. This article presents our considerations on the charge distribution on the monolithic stationary phase and surface of such species as proteins or microorganisms as well as its eventual influence on the separation or sample preparation processes and tuning of their selectivity. PMID:17137631

  14. Role of Nearby Charges on the Electronic Structure of π-Conjugated Molecules: Symmetric versus Asymmetric Charge Distributions in Oligo(p-phenyleneethynylene)

    DEFF Research Database (Denmark)

    Kirketerp, Maj-Britt Suhr; Ryhding, Torben; Støchkel, Kristian;

    2011-01-01

    Oligo(p-phenyleneethynylene)s (OPEs) are conjugated oligomers of great interest within materials science and molecular electronics on account of their highly applicable electronic and optical properties. Here we use gas-phase action spectroscopy to elucidate how the intrinsic electronic properties...... of these chromophores are affected by nearby charges. An OPE3 chromophore with two nearby ammonium groups was synthesized. This molecule and a related OPE3 with only one amine protonation site were transferred to the gas phase by electrospray ionization and subjected to action spectroscopy. Ions were bunched in a 14......-pole ion trap, accelerated to 50-keV kinetic energies, mass-to-charge selected by a magnet, and photoexcited in a crossed-beam configuration. Fragment ions were finally mass-analyzed by an electrostatic analyzer. The setup enables photodissociation mass spectrometry and action spectroscopy...

  15. Peptide-induced Asymmetric Distribution of Charged Lipids in a Vesicle Bilayer Revealed by Small-Angle Neutron Scattering

    Science.gov (United States)

    Heller, William; Qian, Shuo

    2012-02-01

    Cellular membranes are complex mixtures of lipids, proteins and other small molecules that provide functional, dynamic barriers between the cell and its environment, as well as between environments within the cell. The lipid composition of the membrane is highly specific and controlled in terms of both content and lipid localization. Here, small-angle neutron scattering and selective deuterium labeling were used to probe the impact of the membrane-active peptides melittin and alamethicin on the structure of lipid bilayers composed of a mixture of the lipids dimyristoyl phosphatidylglycerol (DMPG) and chain-perdeuterated dimyristoyl phosphatidylcholine (DMPC). We found that both peptides enriched the outer leaflet of the bilayer with the negatively charged DMPG, creating an asymmetric distribution of lipids. The level of enrichment is peptide concentration-dependent and is stronger for melittin than alamethicin. The enrichment between the inner and outer bilayer leaflets occurs at very low peptide concentrations, and increases with peptide concentration, including when the peptide adopts a membrane-spanning, pore-forming state.

  16. Spherical Kadomtsev–Petviashviliequation for dust acoustic waves with dust size distribution and two-charges-ions

    Indian Academy of Sciences (India)

    K Annou; S Bahamida; R Annou

    2011-03-01

    The nonlinear dust acoustic waves in dusty plasmas with negative as well as positive ions and the combined effects of bounded spherical geometry and the transverse perturbation and the size distribution of dust grains are studied. Using the perturbation method, a spherical Kadomtsev–Petviashvili (SKP) equation that describes the dust acoustic waves is deduced.

  17. Design of asymmetric particles containing a charged interior and a neutral surface charge: comparative study on in vivo circulation of polyelectrolyte microgels.

    Science.gov (United States)

    Chen, Kai; Xu, Jing; Luft, J Christopher; Tian, Shaomin; Raval, Jay S; DeSimone, Joseph M

    2014-07-16

    Lowering the modulus of hydrogel particles could enable them to bypass in vivo physical barriers that would otherwise filter particles with similar size but higher modulus. Incorporation of electrolyte moieties into the polymer network of hydrogel particles to increase the swelling ratio is a straightforward and quite efficient way to decrease the modulus. In addition, charged groups in hydrogel particles can also help secure cargoes. However, the distribution of charged groups on the surface of a particle can accelerate the clearance of particles. Herein, we developed a method to synthesize highly swollen microgels of precise size with near-neutral surface charge while retaining interior charged groups. A strategy was employed to enable a particle to be highly cross-linked with very small mesh size, and subsequently PEGylated to quench the exterior amines only without affecting the internal amines. Acidic degradation of the cross-linker allows for swelling of the particles to microgels with a desired size and deformability. The microgels fabricated demonstrated extended circulation in vivo compared to their counterparts with a charged surface, and could potentially be utilized in in vivo applications including as oxygen carriers or nucleic acid scavengers.

  18. Study of central collisions of relativistic 12C and 40Ar on 208Pb, using neutral and charged pi-meson production, and charged particle multiplicity as probes. Volumes 1 and II

    International Nuclear Information System (INIS)

    Recent advances in accelerator technology have made it possible to accelerate nuclei much heavier than the proton to relativistic energies, opening the study of nuclear matter to a new and exciting avenue of scientific inquiry - the study of relativistic heavy ion collisions. To help expand the boundaries of current knowlege in this field, and to understand the detailed nature of the collision process more fully, the rate of charged and neutral pion production, the total charged particle multiplicity, and the production of low energy γ rays have been measured for central collisions relativistic 12C and 40Ar on 208Pb. Using the results of these measurements, an effort has been made to determine what phenomena may exist which are uniquely characteristic of central collisions of relativistic heavy ions, how central collisions of relativistic heavy ions may be parameterized, e.g., by charged particle multiplicity, so that future studies may be done more systematically, and how thoroughly the incident energy and momentum delivered by the projectile are distributed among the nucleons which participate in the reaction. Toward that end, the observations of the current study are compared with existing heavy ion collision theories whenever possible. The neutral pion production measurments presented in this work represent the first reported data of their kind, and consequently are of particular interest. Overall, the rate of both charged and neutral pion production is found to be a smoothly increasing function of beam energy

  19. Study of charged current reactions induced by muon antineutrinos

    International Nuclear Information System (INIS)

    We present in this work a study of antineutrino reactions on light targets. We have used the Gargamelle cloud chamber with a propane-freon mix. In the 2 first chapters we give a brief description of the experimental setting and we present the selection criteria of the events. In the third chapter we analyse the data for the reaction anti-ν + p → μ+ + n that preserves strangeness. We have deduced the values of the axial (MA) and vector (MV) form factors: MA = (O.92 ± 0.08) GeV and MV = (0.86 ± 0.04) GeV. In the fourth chapter we study reactions in which strange particles appear (ΔS = 1) and we have determined their production cross-sections. The elastic reaction: anti-ν + p → μ+ + Λ is studied in a more accurate manner thanks to a 3-constraint adjustment that enables the selection of events occurring on free protons. We have deduced from our data the longitudinal, orthogonal and transverse polarization of Λ, we have got respectively Pl = -0.06 ± 0.44; Pp = 0.29 ± 0.41; Pt 1.05 ± 0.30. We have also deduced the values of the total cross-section as a function of the incident antineutrino energy E: σ (0.27 ± 0.02)*E*10-38 cm-2. E has been assessed from the energy deposited in the cloud chamber and we have adjusted the cross-section with a straight line as it is expected under the assumption of scale invariance. (A.C.)

  20. Charged-particle distributions in $\\sqrt{s}=13$ TeV $pp$ interactions measured with the ATLAS detector at the LHC

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; do Vale, Maria Aline Barros; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Grohs, Johannes Philipp; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muskinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Nechansky, Filip; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tyndel, Mike; Ucchielli, Giulia; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2016-01-01

    Charged-particle distributions are measured in proton--proton collisions at a centre-of-mass energy of 13 TeV, using a data sample of nearly 9 million events, corresponding to an integrated luminosity of 170 $\\mu$b$^{-1}$, recorded by the ATLAS detector during a special Large Hadron Collider fill. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on the charged-particle multiplicity are presented. The measurements are performed with charged particles with transverse momentum greater than 500 MeV and absolute pseudorapidity less than 2.5, in events with at least one charged particle satisfying these kinematic requirements. Additional measurements in a reduced phase space with absolute pseudorapidity less than 0.8 are also presented, in order to compare with other experiments. The results are corrected for detector effects, presented as particle-level distributions and are compared to the predictions of various Monte Ca...

  1. Charged-particle distributions in s=13 TeV pp interactions measured with the ATLAS detector at the LHC

    Directory of Open Access Journals (Sweden)

    G. Aad

    2016-07-01

    Full Text Available Charged-particle distributions are measured in proton–proton collisions at a centre-of-mass energy of 13 TeV, using a data sample of nearly 9 million events, corresponding to an integrated luminosity of 170 μb−1, recorded by the ATLAS detector during a special Large Hadron Collider fill. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on the charged-particle multiplicity are presented. The measurements are performed with charged particles with transverse momentum greater than 500 MeV and absolute pseudorapidity less than 2.5, in events with at least one charged particle satisfying these kinematic requirements. Additional measurements in a reduced phase space with absolute pseudorapidity less than 0.8 are also presented, in order to compare with other experiments. The results are corrected for detector effects, presented as particle-level distributions and are compared to the predictions of various Monte Carlo event generators.

  2. Alternative approach to study fusion barrier distribution

    International Nuclear Information System (INIS)

    Fusion reactions induced by heavy-ions (HIs) at around barrier energies, play an important role in nuclear physics since they enable to study the nuclei away from the valley of stability. On the other hand, heavy-ion collisions, at below and near barrier energies, provide an ideal opportunity to study quantum tunneling phenomena in systems with many degrees of freedom. In a simple model, a potential barrier for the relative motion between the interacting nuclei is created by the strong interplay of the repulsive Coulomb and the attractive nuclear force. It has, now, been well recognized that heavy-ion collisions at energies around the Coulomb barrier are strongly affected by the internal structure of interacting nuclei. The couplings of the relative motion to the intrinsic degrees of freedom (such as collective inelastic excitations of the colliding nuclei and/or transfer processes) replaced a single potential barrier to a number of distributed barriers, leading to the enhancement in heavy ion fusion cross sections at energies near and below the Coulomb barrier than those expected from single one-dimensional barrier

  3. Distributional Stress Regularity: A Corpus Study

    Science.gov (United States)

    Temperley, David

    2009-01-01

    The regularity of stress patterns in a language depends on "distributional stress regularity", which arises from the pattern of stressed and unstressed syllables, and "durational stress regularity", which arises from the timing of syllables. Here we focus on distributional regularity, which depends on three factors. "Lexical stress patterning"…

  4. Effect of realistic nuclear charge distributions on isotope shifts and progress towards the extraction of higher-order nuclear radial moments

    Science.gov (United States)

    Papoulia, A.; Carlsson, B. G.; Ekman, J.

    2016-10-01

    Atomic spectral lines from different isotopes display a small shift in energy, commonly referred to as the line isotope shift. One of the components of the isotope shift is the field shift, which depends on the extent and the shape of the nuclear charge density distribution. The purpose of this work is to investigate how sensitive field shifts are with respect to variations in the nuclear size and shape and what information of nuclear charge distributions can be extracted from measurements. Nuclear properties are obtained from nuclear density functional theory calculations based on the Skyrme-Hartree-Fock-Bogoliubov approach. These results are combined with multiconfiguration Dirac-Hartree-Fock methods to obtain realistic field shifts and it is seen that phenomena such as nuclear deformation and variations in the diffuseness of nuclear charge distributions give measurable contributions to the isotope shifts. Using a different approach, we demonstrate the possibility to extract information concerning the nuclear charge densities from the observed field shifts. We deduce that combining methods used in atomic and nuclear structure theory gives an improved description of field shifts and that extracting additional nuclear information from measured isotope shifts is possible in the near future with improved experimental methods.

  5. Measurement of parton distributions of strange quarks in the nucleon from charged-kaon production in deep-inelastic scattering on the deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Michigan Univ., Ann Arbor, MI (United States). Randall Lab. of Physics; Akopov, N.; Akopov, Z. [Yerevan Physics Institute (AR)] (and others)

    2008-03-15

    The momentum and helicity density distributions of the strange quark sea in the nucleon are obtained in leading order from charged-kaon production in deep-inelastic scattering on the deuteron. The distributions are extracted from spin-averaged K{sup {+-}} multiplicities, and from K{sup {+-}} and inclusive double-spin asymmetries for scattering of polarized positrons by a polarized deuterium target. The shape of the momentum distribution is softer than that of the average of the anti u and anti d quarks. (orig.)

  6. Preliminary Study on SED Distribution of Tactile Sensation in Fingertip

    Directory of Open Access Journals (Sweden)

    Chen Huiling

    2016-01-01

    Full Text Available For investigating the effects of stimuli on the deformations within the soft tissues of fingertips and the dependence of the tactile sensation on the deformations under pressure, in this paper, a finite element model is developed, to simulate the procedure of a fingertip touching a sharp wedge. Characteristics of the strain energy density (SED distribution within the soft issues are analyzed. Simulation results show that the soft tissues of fingertips are very sensitive to stimuli, and the spatial distribution characteristics of strain energy density within soft tissues can best explain the evoked charging rate of mechanoreceptors.

  7. Studies of high charge-state ions in the constance B quadrupole mirror

    International Nuclear Information System (INIS)

    Experiments have been initiated into the confinement and extraction physics of high charge-state ions in an ECRH mirror plasma. ECRH mirrors are well suited for producing high Z ions because the hot electron temperature (>100 keV) is sufficient to fully strip heavy ions. The charge state distribution (CSD) of the ion endloss and the ion endloss temperatures have been measured using a time-of-flight analyzer. The CSD of the confined ions has been measured using a VUV spectrometer. Applying ICRH to the plasma was found to lower the Z/sub eff/ of the confined ions while raising the Z/sub eff/ of the extracted ions. The experimental results are compared to theoretical models which include Pastukhov, flow, and spatial-diffusion confinement times. 12 refs., 16 figs

  8. Studies of helium distribution in metal tritides

    International Nuclear Information System (INIS)

    The distribution of helium (3He) in LiT, TiT2, and UT3, which are regarded as representative metal tritides, was investigated using pulse nuclear magnetic resonance (NMR) techniques. Analyses of the NMR lineshapes and nuclear relaxation times indicate the 3He atoms are trapped in microscopic gas bubbles for each tritide. The effects of concentration and temperature on the 3He distributions were investigated as well

  9. Charged-particle distributions at low transverse momentum in $\\sqrt{s} = 13$ TeV pp interactions measured with the ATLAS detector at the LHC

    CERN Document Server

    Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Devesa, Maria Roberta; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; do Vale, Maria Aline Barros; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duffield, Emily Marie; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dumancic, Mirta; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisen, Marc; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoar