WorldWideScience

Sample records for charge carrier recombination

  1. Charge carrier recombination dynamics in perovskite and polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paulke, Andreas; Kniepert, Juliane; Kurpiers, Jona; Wolff, Christian M.; Schön, Natalie; Brenner, Thomas J. K.; Neher, Dieter [Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476, Potsdam (Germany); Stranks, Samuel D. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Snaith, Henry J. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2016-03-14

    Time-delayed collection field experiments are applied to planar organometal halide perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) based solar cells to investigate charge carrier recombination in a fully working solar cell at the nanosecond to microsecond time scale. Recombination of mobile (extractable) charges is shown to follow second-order recombination dynamics for all fluences and time scales tested. Most importantly, the bimolecular recombination coefficient is found to be time-dependent, with an initial value of ca. 10{sup −9} cm{sup 3}/s and a progressive reduction within the first tens of nanoseconds. Comparison to the prototypical organic bulk heterojunction device PTB7:PC{sub 71}BM yields important differences with regard to the mechanism and time scale of free carrier recombination.

  2. Enhancement of charge carrier recombination efficiency by utilizing a hole-blocking interlayer in white OLEDs

    International Nuclear Information System (INIS)

    Wang Qi; Yu Junsheng; Zhao Juan; Li Ming; Lu Zhiyun

    2013-01-01

    Charge carrier balance and recombination are essential factors relating to the performance of white organic light-emitting devices (WOLEDs). In this study, we discussed the contribution of charge carrier balance in the interlayer-based WOLEDs. By varying the interlayer thickness, the mechanisms of electroluminescent spectral alteration, energy transfer, and especially, charge carrier transport and balance in the devices were investigated and revealed in detail. With a 5 nm thick interlayer tailoring charge carrier transport and recombination, WOLEDs yielded a high power efficiency, current efficiency and external quantum efficiency of 36.1 lm W −1 , 47.1 cd A −1 and 18.3%, respectively. Additionally, single-carrier devices and quantitative analysis were subsequently carried out, demonstrating that the enhancement of carrier recombination efficiency corresponds to the optimization of device performance. (paper)

  3. Recombination in liquid filled ionisation chambers with multiple charge carrier species: Theoretical and numerical results

    International Nuclear Information System (INIS)

    Aguiar, P.; González-Castaño, D.M.; Gómez, F.; Pardo-Montero, J.

    2014-01-01

    Liquid-filled ionisation chambers (LICs) are used in radiotherapy for dosimetry and quality assurance. Volume recombination can be quite important in LICs for moderate dose rates, causing non-linearities in the dose rate response of these detectors, and needs to be corrected for. This effect is usually described with Greening and Boag models for continuous and pulsed radiation respectively. Such models assume that the charge is carried by two different species, positive and negative ions, each of those species with a given mobility. However, LICs operating in non-ultrapure mode can contain different types of electronegative impurities with different mobilities, thus increasing the number of different charge carriers. If this is the case, Greening and Boag models can be no longer valid and need to be reformulated. In this work we present a theoretical and numerical study of volume recombination in parallel-plate LICs with multiple charge carrier species, extending Boag and Greening models. Results from a recent publication that reported three different mobilities in an isooctane-filled LIC have been used to study the effect of extra carrier species on recombination. We have found that in pulsed beams the inclusion of extra mobilities does not affect volume recombination much, a behaviour that was expected because Boag formula for charge collection efficiency does not depend on the mobilities of the charge carriers if the Debye relationship between mobilities and recombination constant holds. This is not the case in continuous radiation, where the presence of extra charge carrier species significantly affects the amount of volume recombination. - Highlights: • Analytical extension of Greening and Boag theories to multiple charge carriers. • Detailed numerical study of process of volume recombination in LICs. • Recombination in pulsed beams is independent of number and mobilities of carriers. • Multiple charge carriers have a significant effect in continuous

  4. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies.

    Science.gov (United States)

    Johnston, Michael B; Herz, Laura M

    2016-01-19

    Photovoltaic (PV) devices that harvest the energy provided by the sun have great potential as renewable energy sources, yet uptake has been hampered by the increased cost of solar electricity compared with fossil fuels. Hybrid metal halide perovskites have recently emerged as low-cost active materials in PV cells with power conversion efficiencies now exceeding 20%. Rapid progress has been achieved over only a few years through improvements in materials processing and device design. In addition, hybrid perovskites appear to be good light emitters under certain conditions, raising the prospect of applications in low-cost light-emitting diodes and lasers. Further optimization of such hybrid perovskite devices now needs to be supported by a better understanding of how light is converted into electrical currents and vice versa. This Account provides an overview of charge-carrier recombination and mobility mechanisms encountered in such materials. Optical-pump-terahertz-probe (OPTP) photoconductivity spectroscopy is an ideal tool here, because it allows the dynamics of mobile charge carriers inside the perovskite to be monitored following excitation with a short laser pulse whose photon energy falls into the range of the solar spectrum. We first review our insights gained from transient OPTP and photoluminescence spectroscopy on the mechanisms dominating charge-carrier recombination in these materials. We discuss that mono-molecular charge-recombination predominantly originates from trapping of charges, with trap depths being relatively shallow (tens of millielectronvolts) for hybrid lead iodide perovskites. Bimolecular recombination arises from direct band-to-band electron-hole recombination and is found to be in significant violation of the simple Langevin model. Auger recombination exhibits links with electronic band structure, in accordance with its requirement for energy and momentum conservation for all charges involved. We further discuss charge-carrier mobility

  5. Recombination of charge carriers in the GaAs-based p-i-n diode

    International Nuclear Information System (INIS)

    Ayzenshtat, G. I.; Yushenko, A. Y.; Gushchin, S. M.; Dmitriev, D. V.; Zhuravlev, K. S.; Toropov, A. I.

    2010-01-01

    It is established that the radiative recombination of charge carriers plays a substantial role in the GaAs-based p-i-n diodes at high densities of the forward current. It is shown experimentally that the diodes operating in microwave integrated circuits intensely emit light in the IR range with wavelengths from 890 to 910 nm. The obtained results indicate the necessity of taking into account the features of recombination processes in the GaAs-based microwave p-i-n diodes.

  6. Time-dependent mobility and recombination of the photoinduced charge carriers in conjugated polymer/fullerene bulk heterojunction solar cells

    Science.gov (United States)

    Mozer, A. J.; Dennler, G.; Sariciftci, N. S.; Westerling, M.; Pivrikas, A.; Österbacka, R.; Juška, G.

    2005-07-01

    Time-dependent mobility and recombination in the blend of poly[2-methoxy-5-(3,7-dimethyloctyloxy)-phenylene vinylene] (MDMO-PPV) and 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)- C61 (PCBM) is studied simultaneously using the photoinduced charge carrier extraction by linearly increasing voltage technique. The charge carriers are photogenerated by a strongly absorbed, 3 ns laser flash, and extracted by the application of a reverse bias voltage pulse after an adjustable delay time (tdel) . It is found that the mobility of the extracted charge carriers decreases with increasing delay time, especially shortly after photoexcitation. The time-dependent mobility μ(t) is attributed to the energy relaxation of the charge carriers towards the tail states of the density of states distribution. A model based on a dispersive bimolecular recombination is formulated, which properly describes the concentration decay of the extracted charge carriers at all measured temperatures and concentrations. The calculated bimolecular recombination coefficient β(t) is also found to be time-dependent exhibiting a power law dependence as β(t)=β0t-(1-γ) with increasing slope (1-γ) with decreasing temperatures. The temperature dependence study reveals that both the mobility and recombination of the photogenerated charge carriers are thermally activated processes with activation energy in the range of 0.1 eV. Finally, the direct comparison of μ(t) and β(t) shows that the recombination of the long-lived charge carriers is controlled by diffusion.

  7. Recombination of charge carriers on radiation-induced defects in silicon doped by transition metals impurities

    CERN Document Server

    Kazakevich, L A

    2003-01-01

    It has been studied the peculiarities of recombination of nonequilibrium charge carriers on radiation-induced defects in received according to Czochralski method p-silicon (p approx 3 - 20 Ohm centre dot cm), doped by one of the impurities of transition metals of the IV-th group of periodic table (titanium, zirconium, hafnium). Experimental results are obtained out of the analysis of temperature and injection dependence of the life time of charge carriers. The results are explained taking into consideration the influences of elastic stress fields created by the aggregates of transition metals atoms on space distribution over the crystal of oxygen and carbon background impurities as well as on the migration of movable radiation-induced defects during irradiation. (authors).

  8. Charge-carrier transport and recombination in heteroepitaxial CdTe

    International Nuclear Information System (INIS)

    Kuciauskas, Darius; Farrell, Stuart; Dippo, Pat; Moseley, John; Moutinho, Helio; Li, Jian V.; Allende Motz, A. M.; Kanevce, Ana; Zaunbrecher, Katherine; Gessert, Timothy A.; Levi, Dean H.; Metzger, Wyatt K.; Colegrove, Eric; Sivananthan, S.

    2014-01-01

    We analyze charge-carrier dynamics using time-resolved spectroscopy and varying epitaxial CdTe thickness in undoped heteroepitaxial CdTe/ZnTe/Si. By employing one-photon and nonlinear two-photon excitation, we assess surface, interface, and bulk recombination. Two-photon excitation with a focused laser beam enables characterization of recombination velocity at the buried epilayer/substrate interface, 17.5 μm from the sample surface. Measurements with a focused two-photon excitation beam also indicate a fast diffusion component, from which we estimate an electron mobility of 650 cm 2 (Vs) −1 and diffusion coefficient D of 17 cm 2  s −1 . We find limiting recombination at the epitaxial film surface (surface recombination velocity S surface  = (2.8 ± 0.3) × 10 5  cm s −1 ) and at the heteroepitaxial interface (interface recombination velocity S interface  = (4.8 ± 0.5) × 10 5  cm s −1 ). The results demonstrate that reducing surface and interface recombination velocity is critical for photovoltaic solar cells and electronic devices that employ epitaxial CdTe.

  9. Investigating Recombination and Charge Carrier Dynamics in a One-Dimensional Nanopillared Perovskite Absorber.

    Science.gov (United States)

    Kwon, Hyeok-Chan; Yang, Wooseok; Lee, Daehee; Ahn, Jihoon; Lee, Eunsong; Ma, Sunihl; Kim, Kyungmi; Yun, Seong-Cheol; Moon, Jooho

    2018-05-22

    Organometal halide perovskite materials have become an exciting research topic as manifested by intense development of thin film solar cells. Although high-performance solar-cell-based planar and mesoscopic configurations have been reported, one-dimensional (1-D) nanostructured perovskite solar cells are rarely investigated despite their expected promising optoelectrical properties, such as enhanced charge transport/extraction. Herein, we have analyzed the 1-D nanostructure effects of organometal halide perovskite (CH 3 NH 3 PbI 3- x Cl x ) on recombination and charge carrier dynamics by utilizing a nanoporous anodized alumina oxide scaffold to fabricate a vertically aligned 1-D nanopillared array with controllable diameters. It was observed that the 1-D perovskite exhibits faster charge transport/extraction characteristics, lower defect density, and lower bulk resistance than the planar counterpart. As the aspect ratio increases in the 1-D structures, in addition, the charge transport/extraction rate is enhanced and the resistance further decreases. However, when the aspect ratio reaches 6.67 (diameter ∼30 nm), the recombination rate is aggravated due to high interface-to-volume ratio-induced defect generation. To obtain the full benefits of 1-D perovskite nanostructuring, our study provides a design rule to choose the appropriate aspect ratio of 1-D perovskite structures for improved photovoltaic and other optoelectrical applications.

  10. Charge carriers bulk recombination instead of electroplex emission after their tunneling through hole-blocking layer in OLEDs

    Science.gov (United States)

    Yang, S. Y.; Liu, D.; Jiang, Y.; Teng, F.; Xu, Z.; Hou, Y.; Xu, X. R.

    2006-08-01

    Charge carriers bulk recombination instead of forming electroplex after their tunneling through a hole-blocking layer, i.e. 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), in organic electroluminescence (EL) device ITO/poly-(N-vinyl-carbazole)(PVK)/BCP/tris(8-hydroxyquinoline) aluminum (Alq3)/Al is reported. By changing the thickness of BCP layer, one can find that high electric fields enhance the tunneling process of holes accumulated at the PVK/BCP interface into BCP layer instead of forming “electroplex emission” as reported earlier in literatures. Our experimental data show that charge carriers bulk recombination takes place in both PVK layer and BCP layer, and even in Alq3 layer when BCP layer is thin enough. Further, it is suggested that PVK is the origin of the emission shoulder at 595 nm in the EL spectra of trilayer device ITO/PVK/BCP/Alq3/Al.

  11. Effect of dye-doped concentration on the charge carrier recombination in molecularly doped organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jiangshan; Ma Dongge [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Changchun 130022 (China)

    2006-05-21

    The effect of the concentration of 4-(dicyanomethylene)-2-t-butyl-6- (1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) as dopant in tris(8-hydroxyquinoline) aluminium (Alq{sub 3}) on the charge carrier recombination was studied by transient electroluminescence (EL). The electron-hole recombination coefficient ({gamma}) was determined from the long-time component of the temporal decay of the EL intensity after a rectangular voltage pulse was turned off. It was found that the coefficient monotonically decreased with an increase in the DCJTB-doping concentration. The monotonic decrease is attributed to concentration quenching on the excitons and coincided well with the reduction of the EL efficiency.

  12. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films

    Science.gov (United States)

    Wehrenfennig, Christian; Liu, Mingzhen; Snaith, Henry J.; Johnston, Michael B.; Herz, Laura M.

    2014-08-01

    The optoelectronic properties of the mixed hybrid lead halide perovskite CH3NH3PbI3-xClx have been subject to numerous recent studies related to its extraordinary capabilities as an absorber material in thin film solar cells. While the greatest part of the current research concentrates on the behavior of the perovskite at room temperature, the observed influence of phonon-coupling and excitonic effects on charge carrier dynamics suggests that low-temperature phenomena can give valuable additional insights into the underlying physics. Here, we present a temperature-dependent study of optical absorption and photoluminescence (PL) emission of vapor-deposited CH3NH3PbI3-xClx exploring the nature of recombination channels in the room- and the low-temperature phase of the material. On cooling, we identify an up-shift of the absorption onset by about 0.1 eV at about 100 K, which is likely to correspond to the known tetragonal-to-orthorhombic transition of the pure halide CH3NH3PbI3. With further decreasing temperature, a second PL emission peak emerges in addition to the peak from the room-temperature phase. The transition on heating is found to occur at about 140 K, i.e., revealing significant hysteresis in the system. While PL decay lifetimes are found to be independent of temperature above the transition, significantly accelerated recombination is observed in the low-temperature phase. Our data suggest that small inclusions of domains adopting the room-temperature phase are responsible for this behavior rather than a spontaneous increase in the intrinsic rate constants. These observations show that even sparse lower-energy sites can have a strong impact on material performance, acting as charge recombination centres that may detrimentally affect photovoltaic performance but that may also prove useful for optoelectronic applications such as lasing by enhancing population inversion.

  13. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films

    Directory of Open Access Journals (Sweden)

    Christian Wehrenfennig

    2014-08-01

    Full Text Available The optoelectronic properties of the mixed hybrid lead halide perovskite CH3NH3PbI3−xClx have been subject to numerous recent studies related to its extraordinary capabilities as an absorber material in thin film solar cells. While the greatest part of the current research concentrates on the behavior of the perovskite at room temperature, the observed influence of phonon-coupling and excitonic effects on charge carrier dynamics suggests that low-temperature phenomena can give valuable additional insights into the underlying physics. Here, we present a temperature-dependent study of optical absorption and photoluminescence (PL emission of vapor-deposited CH3NH3PbI3−xClx exploring the nature of recombination channels in the room- and the low-temperature phase of the material. On cooling, we identify an up-shift of the absorption onset by about 0.1 eV at about 100 K, which is likely to correspond to the known tetragonal-to-orthorhombic transition of the pure halide CH3NH3PbI3. With further decreasing temperature, a second PL emission peak emerges in addition to the peak from the room-temperature phase. The transition on heating is found to occur at about 140 K, i.e., revealing significant hysteresis in the system. While PL decay lifetimes are found to be independent of temperature above the transition, significantly accelerated recombination is observed in the low-temperature phase. Our data suggest that small inclusions of domains adopting the room-temperature phase are responsible for this behavior rather than a spontaneous increase in the intrinsic rate constants. These observations show that even sparse lower-energy sites can have a strong impact on material performance, acting as charge recombination centres that may detrimentally affect photovoltaic performance but that may also prove useful for optoelectronic applications such as lasing by enhancing population inversion.

  14. On the radiative recombination and tunneling of charge carriers in SiGe/Si heterostructures with double quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Yablonsky, A. N., E-mail: yablonsk@ipmras.ru; Zhukavin, R. Kh.; Bekin, N. A.; Novikov, A. V.; Yurasov, D. V.; Shaleev, M. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2016-12-15

    For SiGe/Si(001) epitaxial structures with two nonequivalent SiGe quantum wells separated by a thin Si barrier, the spectral and time characteristics of interband photoluminescence corresponding to the radiative recombination of excitons in quantum wells are studied. For a series of structures with two SiGe quantum wells different in width, the characteristic time of tunneling of charge carriers (holes) from the narrow quantum well, distinguished by a higher exciton recombination energy, to the wide quantum well is determined as a function of the Si barrier thickness. It is shown that the time of tunneling of holes between the Si{sub 0.8}5Ge{sub 0.15} layers with thicknesses of 3 and 9 nm steadily decreases from ~500 to <5 ns, as the Si barrier thickness is reduced from 16 to 8 nm. At intermediate Si barrier thicknesses, an increase in the photoluminescence signal from the wide quantum well is observed, with a characteristic time of the same order of magnitude as the luminescence decay time of the narrow quantum well. This supports the observation of the effect of the tunneling of holes from the narrow to the wide quantum well. A strong dependence of the tunneling time of holes on the Ge content in the SiGe layers at the same thickness of the Si barrier between quantum wells is observed, which is attributed to an increase in the effective Si barrier height.

  15. Improved film morphology reduces charge carrier recombination into the triplet excited state in a small bandgap polymer-fullerene photovoltaic cell

    NARCIS (Netherlands)

    Di Nuzzo, D.; Aguirre de Miguel, A.; Shahid, M.; Gevaerts, Veronique; Meskers, S.C.J.; Janssen, R.A.J.

    2010-01-01

    The use of diiodooctane as processing additive for construction of PCPDTBT:PCBM solar cells results in a profound change in photophysical behavior of this blend. In the improved morphology obtained with the additive, recombination of charge carriers to the lowest triplet excited state is suppressed.

  16. Direct femtosecond observation of charge carrier recombination in ternary semiconductor nanocrystals: The effect of composition and shelling

    KAUST Repository

    Bose, Riya

    2015-02-12

    Heavy-metal free ternary semiconductor nanocrystals are emerging as key materials in photoactive applications. However, the relative abundance of intra-bandgap defect states and lack of understanding of their origins within this class of nanocrystals are major factors limiting their applicability. To remove these undesirable defect states which considerably shorten the lifetimes of photogenerated excited carriers, a detailed understanding about their origin and nature is required. In this report, we monitor the ultrafast charge carrier dynamics of CuInS2 (CIS), CuInSSe (CISSe), and CuInSe2 (CISe) nanocrystals, before and after ZnS shelling, using state-of-the-art time-resolved laser spectroscopy with broadband capabilities. The experimental results demonstrate the presence of both electron and hole trapping intra-bandgap states in the nanocrystals which can be removed significantly by ZnS shelling, and the carrier dynamics is slowed down. Another important observation remains the reduction of carrier lifetime in the presence of Se, and the shelling strategy is observed to be less effective at suppressing trap states. This study provides quantitative physical insights into the role of anion composition and shelling on the charge carrier dynamics in ternary CIS, CISSe, and CISe nanocrystals which are essential to improve their applicability for photovoltaics and optoelectronics.

  17. Interface recombination influence on carrier transport

    International Nuclear Information System (INIS)

    Konin, A

    2013-01-01

    A theory of interface recombination in the semiconductor–semiconductor junction is developed. The interface recombination rate dependence on the nonequilibrium carrier densities is derived on the basis of a model in which the interface recombination occurs through the mechanism of trapping. The general relation between the interface recombination parameters at small carrier density deviation from the equilibrium ones is obtained. The validity of this relation is proved considering the generation of the Hall electric field in the extrinsic semiconductor sample. The anomalous Hall electromotive force in a weak magnetic field was investigated and interpreted by means of a new interface recombination model. The experimental data corroborate the developed theory. (paper)

  18. A comparative study on charge carrier recombination across the junction region of Cu2ZnSn(S,Se4 and Cu(In,GaSe2 thin film solar cells

    Directory of Open Access Journals (Sweden)

    Mohammad Abdul Halim

    2016-03-01

    Full Text Available A comparative study with focusing on carrier recombination properties in Cu2ZnSn(S,Se4 (CZTSSe and the CuInGaSe2 (CIGS solar cells has been carried out. For this purpose, electroluminescence (EL and also bias-dependent time resolved photoluminescence (TRPL using femtosecond (fs laser source were performed. For the similar forward current density, the EL-intensity of the CZTSSe sample was obtained significantly lower than that of the CIGS sample. Primarily, it can be attributed to the existence of excess amount of non-radiative recombination center in the CZTSSe, and/or CZTSSe/CdS interface comparing to that of CIGS sample. In case of CIGS sample, TRPL decay time was found to increase with the application of forward-bias. This can be attributed to the reduced charge separation rate resulting from the reduced electric-field at the junction. However, in CZTSSe sample, TRPL decay time has been found almost independent under the forward and reverse-bias conditions. This phenomenon indicates that the charge recombination rate strongly dominates over the charge separation rate across the junction of the CZTSSe sample. Finally, temperature dependent VOC suggests that interface related recombination in the CZTSSe solar cell structure might be one of the major factors that affect EL-intensity and also, TRPL decay curves.

  19. A comparative study on charge carrier recombination across the junction region of Cu{sub 2}ZnSn(S,Se){sub 4} and Cu(In,Ga)Se{sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Mohammad Abdul, E-mail: halimtsukuba2012@gmail.com; Islam, Muhammad Monirul; Luo, Xianjia; Sakurai, Takeaki; Akimoto, Katsuhiro [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Sakai, Noriyuki; Kato, Takuya; Sugimoto, Hiroki [Energy Solution Business Center, Showa Shell Sekiyu K.K., Minato, Tokyo 135-8074 (Japan); Tampo, Hitoshi; Shibata, Hajime; Niki, Shigeru [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)

    2016-03-15

    A comparative study with focusing on carrier recombination properties in Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) and the CuInGaSe{sub 2} (CIGS) solar cells has been carried out. For this purpose, electroluminescence (EL) and also bias-dependent time resolved photoluminescence (TRPL) using femtosecond (fs) laser source were performed. For the similar forward current density, the EL-intensity of the CZTSSe sample was obtained significantly lower than that of the CIGS sample. Primarily, it can be attributed to the existence of excess amount of non-radiative recombination center in the CZTSSe, and/or CZTSSe/CdS interface comparing to that of CIGS sample. In case of CIGS sample, TRPL decay time was found to increase with the application of forward-bias. This can be attributed to the reduced charge separation rate resulting from the reduced electric-field at the junction. However, in CZTSSe sample, TRPL decay time has been found almost independent under the forward and reverse-bias conditions. This phenomenon indicates that the charge recombination rate strongly dominates over the charge separation rate across the junction of the CZTSSe sample. Finally, temperature dependent V{sub OC} suggests that interface related recombination in the CZTSSe solar cell structure might be one of the major factors that affect EL-intensity and also, TRPL decay curves.

  20. Tailoring Charge Recombination in Photoelectrodes Using Oxide Nanostructures

    DEFF Research Database (Denmark)

    Iandolo, Beniamino; Wickman, Björn; Svensson, Elin

    2016-01-01

    Optimizing semiconductor devices for solar energy conversion requires an explicit control of the recombination of photogenerated electron−hole pairs. Here we show how the recombination of charge carriers can be controlled in semiconductor thin films by surface patterning with oxide nanodisks....... The control mechanism relies on the formation of dipole-like electric fields at the interface that, depending on the field direction, attract or repel minority carriers from underneath the disks. The charge recombination rate can be controlled through the choice of oxide material and the surface coverage...... of nanodisks. We provide proof-of-principle demonstration of this approach by patterning the surface of Fe2O3, one of the most studied semiconductors for light-driven water splitting, with TiO2 and Cu2O nanodisks. We expect this method to be generally applicable to a range of semiconductor-based solar energy...

  1. Charge carrier dynamics in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Strothkaemper, Christian

    2013-06-24

    This work investigates the charge carrier dynamics in three different technological approaches within the class of thin film solar cells: radial heterojunctions, the dye solar cell, and microcrystalline CuInSe{sub 2}, focusing on charge transport and separation at the electrode, and the relaxation of photogenerated charge carriers due to recombination and energy dissipation to the phonon system. This work relies mostly on optical-pump terahertz-probe (OPTP) spectroscopy, followed by transient absorption (TA) and two-photon photoemission (2PPE). The charge separation in ZnO-electrode/In{sub 2}S{sub 3}-absorber core/shell nanorods, which represent a model system of a radial heterojunction, is analyzed by OPTP. It is concluded, that the dynamics in the absorber are determined by multiple trapping, which leads to a dispersive charge transport to the electrode that lasts over hundreds of picoseconds. The high trap density on the order of 10{sup 19}/cm{sup 3} is detrimental for the injection yield, which exhibits a decrease with increasing shell thickness. The heterogeneous electron transfer from a series of model dyes into ZnO proceeds on a time-scale of 200 fs. However, the photoconductivity builds up just on a 2-10 ps timescale, and 2PPE reveals that injected electrons are meanwhile localized spatially and energetically at the interface. It is concluded that the injection proceeds through adsorbate induced interface states. This is an important result because the back reaction from long lived interface states can be expected to be much faster than from bulk states. While the charge transport in stoichiometric CuInSe{sub 2} thin films is indicative of free charge carriers, CuInSe{sub 2} with a solar cell grade composition (Cu-poor) exhibits signs of carrier localization. This detrimental effect is attributed to a high density of charged defects and a high degree of compensation, which together create a spatially fluctuating potential that inhibits charge transport. On

  2. Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique

    Science.gov (United States)

    Mozer, A. J.; Sariciftci, N. S.; Lutsen, L.; Vanderzande, D.; Österbacka, R.; Westerling, M.; Juška, G.

    2005-03-01

    Charge carrier mobility and recombination in a bulk heterojunction solar cell based on the mixture of poly[2-methoxy-5-(3,7-dimethyloctyloxy)-phenylene vinylene] (MDMO-PPV) and 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)-C61 (PCBM) has been studied using the novel technique of photoinduced charge carrier extraction in a linearly increasing voltage (Photo-CELIV). In this technique, charge carriers are photogenerated by a short laser flash, and extracted under a reverse bias voltage ramp after an adjustable delay time (tdel). The Photo-CELIV mobility at room temperature is found to be μ =2×10-4cm2V-1s-1, which is almost independent on charge carrier density, but slightly dependent on tdel. Furthermore, determination of charge carrier lifetime and demonstration of an electric field dependent mobility is presented.

  3. Solid state cloaking for electrical charge carrier mobility control

    Science.gov (United States)

    Zebarjadi, Mona; Liao, Bolin; Esfarjani, Keivan; Chen, Gang

    2015-07-07

    An electrical mobility-controlled material includes a solid state host material having a controllable Fermi energy level and electrical charge carriers with a charge carrier mobility. At least one Fermi level energy at which a peak in charge carrier mobility is to occur is prespecified for the host material. A plurality of particles are distributed in the host material, with at least one particle disposed with an effective mass and a radius that minimize scattering of the electrical charge carriers for the at least one prespecified Fermi level energy of peak charge carrier mobility. The minimized scattering of electrical charge carriers produces the peak charge carrier mobility only at the at least one prespecified Fermi level energy, set by the particle effective mass and radius, the charge carrier mobility being less than the peak charge carrier mobility at Fermi level energies other than the at least one prespecified Fermi level energy.

  4. Charge Carrier Dynamics at Silver Nanocluster-Molecular Acceptor Interfaces

    KAUST Repository

    Almansaf, Abdulkhaleq

    2017-07-01

    A fundamental understanding of interfacial charge transfer at donor-acceptor interfaces is very crucial as it is considered among the most important dynamical processes for optimizing performance in many light harvesting systems, including photovoltaics and photo-catalysis. In general, the photo-generated singlet excitons in photoactive materials exhibit very short lifetimes because of their dipole-allowed spin radiative decay and short diffusion lengths. In contrast, the radiative decay of triplet excitons is dipole forbidden; therefore, their lifetimes are considerably longer. The discussion in this thesis primarily focuses on the relevant parameters that are involved in charge separation (CS), charge transfer (CT), intersystem crossing (ISC) rate, triplet state lifetime, and carrier recombination (CR) at silver nanocluster (NCs) molecular-acceptors interfaces. A combination of steady-state and femto- and nanosecond broadband transient absorption spectroscopies were used to investigate the charge carrier dynamics in various donor-acceptor systems. Additionally, this thesis was prolonged to investigate some important factors that influence the charge carrier dynamics in Ag29 silver NCs donor-acceptor systems, such as the metal doping and chemical structure of the nanocluster and molecular acceptors. Interestingly, clear correlations between the steady-state measurements and timeresolved spectroscopy results are found. In the first study, we have investigated the interfacial charge transfer dynamics in positively charged meso units of 5, 10, 15, 20-tetra (1- methyl-4-pyridino)-porphyrin tetra (p-toluene sulfonate) (TMPyP) and neutral charged 5, 10, 15, 20-tetra (4-pyridyl)-porphyrin (TPyP), with negatively charged undoped and gold (Au)- doped silver Ag29 NCs. Moreover, this study showed the impact of Au doping on the charge carrier dynamics of the system. In the second study, we have investigated the interfacial charge transfer dynamics in [Pt2 Ag23 Cl7 (PPh3

  5. Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique

    OpenAIRE

    Mozer, AJ; Sariciftci, NS; Osterbacka, R; Westerling, M; Juska, G; LUTSEN, Laurence; VANDERZANDE, Dirk

    2005-01-01

    Charge carrier mobility and recombination in a bulk heterojunction solar cell based on the mixture of poly[2-methoxy-5-(3,7-dimethyloctyloxy)-phenylene vinylene] (MDMO-PPV) and 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)-C-61 (PCBM) has been studied using the novel technique of photoinduced charge carrier extraction in a linearly increasing voltage (Photo-CELIV). In this technique, charge carriers are photogenerated by a short laser flash, and extracted under a reverse bias voltage ramp after ...

  6. CT-state dissociation and charge recombination in OPVs

    Energy Technology Data Exchange (ETDEWEB)

    Haeusermann, Roger; Reinke, Nils; Huber, Evelyne; Ruhstaller, Beat [ZHAW, Inst. of Computational Physics, Winterthur (Switzerland); Flatz, Thomas; Moos, Michael [Fluxim AG (Germany)

    2009-07-01

    The dissociation of the charge-transfer-state (CT) into free charge carriers is a very important process in the modeling of OPVs. A theoretical description of this mechanism has been developed by Onsager and Braun. The implications of this theory in real OPVs is not completely clear. Recently there was the proposition to reduce the whole device physics to the mechanisms at the donor-acceptor interface. This has been verified for a wide range of OPV materials, but it also raises questions about the universality of this simplification. In this study we developed a comprehensive device simulator. Our simulations have shown that a good agreement with measured J-V curves can be found by omitting any dissociation mechanism but at the same time increasing the influence of the Langevin recombination. This shows that distinct features of J-V curves are multi-causal and therefore a simplification by leaving out some of the mechanisms leads to an overestimation of the influence of other processes. We present the influence of the input parameters (CT-state dissociation, recombination and mobility) on the J-V curves and discuss in detail where and if each parameter can be seen separately in the shape of the J-V curve. The contributions of the different loss mechanisms, namely decay of excitons and CT-states as well as charge recombination will be addressed as function of material properties.

  7. Terahertz transport dynamics of graphene charge carriers

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due

    The electronic transport dynamics of graphene charge carriers at femtosecond (10-15 s) to picosecond (10-12 s) time scales are investigated using terahertz (1012 Hz) time-domain spectroscopy (THz-TDS). The technique uses sub-picosecond pulses of electromagnetic radiation to gauge the electrodynamic...... response of thin conducting films at up to multi-terahertz frequencies. In this thesis THz-TDS is applied towards two main goals; (1) investigation of the fundamental carrier transport dynamics in graphene at femtosecond to picosecond timescales and (2) application of terahertz time-domain spectroscopy...... to rapid and non-contact electrical characterization of large-area graphene, relevant for industrial integration. We show that THz-TDS is an accurate and reliable probe of graphene sheet conductance, and that the technique provides insight into fundamental aspects of the nanoscopic nature of conduction...

  8. Modulation of Charge Recombination in CsPbBr3 Perovskite Films with Electrochemical Bias

    KAUST Repository

    Scheidt, Rebecca A

    2017-11-13

    The charging of mesoscopic TiO2 layer in a metal halide perovskite solar cell can influence the overall power conversion efficiency. By employing CsPbBr3 films deposited on a mesoscopic TiO2 film, we have succeeded in probing the influence of electrochemical bias on the charge carrier recombination process. The transient absorption spectroscopy experiments conducted at different applied potentials indicate a decrease in the charge carrier lifetimes of CsPbBr3 as we increase the potential from -0.6 V to + 0.6 V vs. Ag/AgCl. The charge carrier lifetime increased upon reversing the applied bias, thus indicating the reversibility of the photoresponse to charging effects. The ultrafast spectroelectrochemical experiments described here offer a convenient approach to probe the charging effects in perovskite solar cells.

  9. Modulation of Charge Recombination in CsPbBr3 Perovskite Films with Electrochemical Bias.

    Science.gov (United States)

    Scheidt, Rebecca A; Samu, Gergely F; Janáky, Csaba; Kamat, Prashant V

    2018-01-10

    The charging of a mesoscopic TiO 2 layer in a metal halide perovskite solar cell can influence the overall power conversion efficiency. By employing CsPbBr 3 films deposited on a mesoscopic TiO 2 film, we have succeeded in probing the influence of electrochemical bias on the charge carrier recombination process. The transient absorption spectroscopy experiments conducted at different applied potentials indicate a decrease in the charge carrier lifetimes of CsPbBr 3 as we increase the potential from -0.6 to +0.6 V vs Ag/AgCl. The charge carrier lifetime increased upon reversing the applied bias, thus indicating the reversibility of the photoresponse to charging effects. The ultrafast spectroelectrochemical experiments described here offer a convenient approach to probe the charging effects in perovskite solar cells.

  10. Interpreting impedance spectra of organic photovoltaic cells—Extracting charge transit and recombination rates

    Energy Technology Data Exchange (ETDEWEB)

    Mullenbach, Tyler K.; Zou, Yunlong; Holmes, Russell J., E-mail: rholmes@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Holst, James [New Products R and D, Sigma-Aldrich Corporation, 6000 N. Teutonia Avenue, Milwaukee, Wisconsin 53209 (United States)

    2014-09-28

    Impedance spectroscopy has been widely used to extract the electron-hole recombination rate constant in organic photovoltaic cells (OPVs). This technique is typically performed on OPVs held at open-circuit. Under these conditions, the analysis is simplified with recombination as the only pathway for the decay of excess charge carriers; transit provides no net change in the charge density. In this work, we generalize the application and interpretation of impedance spectroscopy for bulk heterojunction OPVs at any operating voltage. This, in conjunction with reverse bias external quantum efficiency measurements, permits the extraction of both recombination and transit rate constants. Using this approach, the transit and recombination rate constants are determined for OPVs with a variety of electron donor-acceptor pairings and compositions. It is found that neither rate constant individually is sufficient to characterize the efficiency of charge collection in an OPV. It is demonstrated that a large recombination rate constant can be accompanied by a large transit rate constant, thus fast recombination is not necessarily detrimental to OPV performance. Extracting the transit and recombination rate constants permits a detailed understanding of how OPV architecture and processing conditions impact the transient behavior of charge carriers, elucidating the origin of optimum device configurations.

  11. Reduced Charge Transfer Exciton Recombination in Organic Semiconductor Heterojunctions by Molecular Doping

    Science.gov (United States)

    Deschler, Felix; da Como, Enrico; Limmer, Thomas; Tautz, Raphael; Godde, Tillmann; Bayer, Manfred; von Hauff, Elizabeth; Yilmaz, Seyfullah; Allard, Sybille; Scherf, Ullrich; Feldmann, Jochen

    2011-09-01

    We investigate the effect of molecular doping on the recombination of electrons and holes localized at conjugated-polymer-fullerene interfaces. We demonstrate that a low concentration of p-type dopant molecules (<4% weight) reduces the interfacial recombination via charge transfer excitons and results in a favored formation of separated carriers. This is observed by the ultrafast quenching of photoluminescence from charge transfer excitons and the increase in photoinduced polaron density by ˜70%. The results are consistent with a reduced formation of emissive charge transfer excitons, induced by state filling of tail states.

  12. Charge Carrier Trapping Processes in RE2O2S (RE = La, Gd, Y, and Lu)

    NARCIS (Netherlands)

    Luo, H.; Bos, A.J.J.; Dorenbos, P.

    2017-01-01

    Two different charge carrier trapping processes have been investigated in RE2O2S:Ln3+ (RE = La, Gd, Y, and Lu; Ln = Ce, Pr, and Tb) and RE2O2S:M (M = Ti4+ and Eu3+). Cerium, praseodymium and terbium act as recombination centers and hole trapping centers while host intrinsic defects provide the

  13. Hot Charge Carrier Transmission from Plasmonic Nanostructures

    Science.gov (United States)

    Christopher, Phillip; Moskovits, Martin

    2017-05-01

    Surface plasmons have recently been harnessed to carry out processes such as photovoltaic current generation, redox photochemistry, photocatalysis, and photodetection, all of which are enabled by separating energetic (hot) electrons and holes—processes that, previously, were the domain of semiconductor junctions. Currently, the power conversion efficiencies of systems using plasmon excitation are low. However, the very large electron/hole per photon quantum efficiencies observed for plasmonic devices fan the hope of future improvements through a deeper understanding of the processes involved and through better device engineering, especially of critical interfaces such as those between metallic and semiconducting nanophases (or adsorbed molecules). In this review, we focus on the physics and dynamics governing plasmon-derived hot charge carrier transfer across, and the electronic structure at, metal-semiconductor (molecule) interfaces, where we feel the barriers contributing to low efficiencies reside. We suggest some areas of opportunity that deserve early attention in the still-evolving field of hot carrier transmission from plasmonic nanostructures to neighboring phases.

  14. Toroidal charge exchange recombination spectroscopy on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Minyou, E-mail: yemy@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Li, Yingying [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Yu, Yi [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shi, Yuejiang [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); WCI for Fusion Theory, National Fusion Research Institute, 52 Eoeun-Dong, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Lyu, Bo; Fu, Jia [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Du, Xuewei; Yin, Xianghui; Zhang, Yi; Wang, Qiuping [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wan, Baonian [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-10-15

    A toroidal charge exchange recombination spectroscopy (CXRS) diagnostic, on the basis of a heating neutral beam injector (NBI), is constructed on EAST tokamak. Simulation of Spectra (SOS) code is used to design and evaluate the diagnostic performance. 30 spatial channels work simultaneously in recent experiment, which covers a radial region from 1.55 m to 2.30 m in the cross section. The CXRS has a radial resolution of 1–3.5 cm from core to edge. The acquisition time is typically 10 ms, limited by the poor photon statistics. The diagnostic can observe not only the normal C{sup 5+} emission line at 529.1 nm but also any interested wavelength in the range of 400–700 nm. In this work, a brief overview on the R&D and the instrument performance for the toroidal CXRS diagnostic is described, together with first results.

  15. Transient optical studies of charge recombination dynamics in a polymer/fullerene composite at room temperature

    NARCIS (Netherlands)

    Montanari, Ivan; Nogueira, Ana F.; Nelson, Jenny; Durrant, James R.; Winder, Christoph; Loi, Maria Antonietta; Sariciftci, Niyazi Serdar; Brabec, Christoph

    2002-01-01

    The recombination kinetics of photogenerated charge carriers in a composite of poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1-4-phenylene vinylene], (MDMO–PPV) and the functionalised fullerene 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 are investigated at room temperature by transient absorption

  16. Charge-carrier mobilities in disordered semiconducting polymers: effects of carrier density and electric field [refereed

    NARCIS (Netherlands)

    Meisel, K.D.; Pasveer, W.F.; Cottaar, J.; Tanase, C.; Coehoorn, R.; Bobbert, P.A.; Blom, P.W.M.; Leeuw, de D.M.; Michels, M.A.J.

    2006-01-01

    We model charge transport in disordered semiconducting polymers by hopping of charge carriers on a square lattice of sites with Gaussian on-site energy disorder, using Fermi-Dirac statistics. From numerically exact solns. of the Master equation, we study the dependence of the charge-carrier mobility

  17. Charge-carrier mobilities in disordered semiconducting polymers : effects of carrier density and electric field

    NARCIS (Netherlands)

    Meisel, K.D.; Pasveer, W.F.; Cottaar, J.; Tanase, C.; Coehoorn, R.; Bobbert, P.A.; Blom, P.W.M.; Leeuw, D.M. de; Michels, M.A.J.

    2006-01-01

    We model charge transport in disordered semiconducting polymers by hopping of charge carriers on a square lattice of sites with Gaussian on-site energy disorder, using Fermi-Dirac statistics. From numerically exact solutions of the Master equation, we study the dependence of the charge-carrier

  18. On the role of local charge carrier mobility in the charge separation mechanism of organic photovoltaics.

    Science.gov (United States)

    Yoshikawa, Saya; Saeki, Akinori; Saito, Masahiko; Osaka, Itaru; Seki, Shu

    2015-07-21

    Although the charge separation (CS) and transport processes that compete with geminate and non-geminate recombination are commonly regarded as the governing factors of organic photovoltaic (OPV) efficiency, the details of the CS mechanism remain largely unexplored. Here we provide a systematic investigation on the role of local charge carrier mobility in bulk heterojunction films of ten different low-bandgap polymers and polythiophene analogues blended with methanofullerene (PCBM). By correlating with the OPV performances, we demonstrated that the local mobility of the blend measured by time-resolved microwave conductivity is more important for the OPV output than those of the pure polymers. Furthermore, the results revealed two separate trends for crystalline and semi-crystalline polymers. This work offers guidance in the design of high-performance organic solar cells.

  19. Collision and recombination driven instabilities in variable charged ...

    Indian Academy of Sciences (India)

    The dust-acoustic instability driven by recombination of electrons and ions on the surface of charged and variably-charged dust grains as well as by collisions in dusty plasmas with significant pressure of background neutrals have been theoretically investigated. The recombination driven instability is shown to be dominant ...

  20. Understanding charge transport and recombination losses in high performance polymer solar cells with non-fullerene acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuning [HEEGER Beijing Research & Development Center; School of Chemistry; Beihang University; Beijing 100191; China; Zuo, Xiaobing [X-ray Science Division; Argonne National Laboratory; Argonne; USA; Xie, Shenkun [HEEGER Beijing Research & Development Center; School of Chemistry; Beihang University; Beijing 100191; China; Yuan, Jianyu [Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Institute of Functional Nano & Soft Materials (FUNSOM); Soochow University; Suzhou; P. R. China; Zhou, Huiqiong [CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190; China; Zhang, Yuan [HEEGER Beijing Research & Development Center; School of Chemistry; Beihang University; Beijing 100191; China

    2017-01-01

    Photovoltaic characteristics, recombination and charge transport properties are investigated. The determined recombination reduction factor can reconcile the supreme device performance in organic solar cells using non-fullerene ITIC acceptor and severe carrier losses in all-polymer devices with P(NDI2OD-T2).

  1. Importance of polaron effects for charge carrier mobility above and ...

    Indian Academy of Sciences (India)

    It is shown that the scattering of polaronic charge carriers and bosonic Cooper pairs at acoustic and optical phonons are responsible for the charge carrier mobility above and below the PG temperature. We show that the energy scales of the binding energies of large polarons and polaronic Cooper pairs can be identified by ...

  2. Ultrafast carrier dynamics in tetrahedral amorphous carbon: carrier trapping versus electron-hole recombination

    International Nuclear Information System (INIS)

    Carpene, E; Mancini, E; Dallera, C; Schwen, D; Ronning, C; Silvestri, S De

    2007-01-01

    We report the investigation of the ultrafast carrier dynamics in thin tetrahedral amorphous carbon films by means of femtosecond time-resolved reflectivity. We estimated the electron-phonon relaxation time of a few hundred femtoseconds and we observed that under low optical excitation photo-generated carriers decay according to two distinct mechanisms attributed to trapping by defect states and direct electron-hole recombination. With high excitation, when photo-carrier and trap densities are comparable, a unique temporal evolution develops, as the time dependence of the trapping process becomes degenerate with the electron-hole recombination. This experimental evidence highlights the role of defects in the ultrafast electronic dynamics and is not specific to this particular form of carbon, but has general validity for amorphous and disordered semiconductors

  3. Semiconductor nanoparticles with spatial separation of charge carriers: synthesis and optical properties

    International Nuclear Information System (INIS)

    Vasiliev, Roman B; Dirin, Dmitry N; Gaskov, Alexander M

    2011-01-01

    The results of studies on core/shell semiconductor nanoparticles with spatial separation of photoexcited charge carriers are analyzed and generalized. Peculiarities of the electronic properties of semiconductor/semiconductor heterojunctions formed inside such particles are considered. Data on the effect of spatial separation of charge carriers on the optical properties of nanoparticles including spectral shifts of the exciton bands, absorption coefficients and electron–hole pair recombination times are presented. Methods of synthesis of core/shell semiconductor nanoparticles in solutions are discussed. Specific features of the optical properties of anisotropic semiconductor nanoparticles with the semiconductor/semiconductor junctions are noted. The bibliography includes 165 references.

  4. Carrier dynamics and surface vibration-assisted Auger recombination in porous silicon

    Science.gov (United States)

    Zakar, Ammar; Wu, Rihan; Chekulaev, Dimitri; Zerova, Vera; He, Wei; Canham, Leigh; Kaplan, Andrey

    2018-04-01

    Excitation and recombination dynamics of the photoexcited charge carriers in porous silicon membranes were studied using a femtosecond pump-probe technique. Near-infrared pulses (800 nm, 60 fs) were used for the pump while, for the probe, we employed different wavelengths in the range between 3.4 and 5 μ m covering the medium wavelength infrared range. The data acquired in these experiments consist of simultaneous measurements of the transmittance and reflectance as a function of the delay time between the pump and probe for different pump fluences and probe wavelengths. To evaluate the results, we developed an optical model based on the two-dimensional Maxwell-Garnett formula, incorporating the free-carrier Drude contribution and nonuniformity of the excitation by the Wentzel-Kramers-Brillouin model. This model allowed the retrieval of information about the carrier density as a function of the pump fluence, time, and wavelength. The carrier density data were analyzed to reveal that the recombination dynamics is governed by Shockley-Read-Hall and Auger processes, whereas the diffusion has an insignificant contribution. We show that, in porous silicon samples, the Auger recombination process is greatly enhanced at the wavelength corresponding to the infrared-active vibrational modes of the molecular impurities on the surface of the pores. This observation of surface-vibration-assisted Auger recombination is not only for porous silicon in particular, but for low-dimension and bulk semiconductors in general. We estimate the time constants of Shockley-Read-Hall and Auger processes, and demonstrate their wavelength dependence for the excited carrier density in the range of 1018-10191 /cm3 . We demonstrate that both processes are enhanced by up to three orders of magnitude with respect to the bulk counterpart. In addition, we provide a plethora of the physical parameters evaluated from the experimental data, such as the dielectric function and its dependence on the

  5. Initial recombination in the track of heavy charged particles: Numerical solution for air filled ionization chambers

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    2012-01-01

    ). The investigated charge carrier distributions are based on track structure models, which follow a 1/r2 behavior at larger radii and show a constant value at small radii. The results of the calculations are compared to the initial formulation and to data obtained in experiments using carbon ion beams. Results...... The comparison between the experimental data and the calculations shows that the initial approach made by Jaffe is able to reproduce the effects of initial recombination. The amorphous track structure based charge carrier distribution do not reproduce the experimental data well. A small additional correction...

  6. Anisotropic charged impurity-limited carrier mobility in monolayer phosphorene

    International Nuclear Information System (INIS)

    Ong, Zhun-Yong; Zhang, Gang; Zhang, Yong Wei

    2014-01-01

    The room temperature carrier mobility in atomically thin 2D materials is usually far below the intrinsic limit imposed by phonon scattering as a result of scattering by remote charged impurities in its environment. We simulate the charged impurity-limited carrier mobility μ in bare and encapsulated monolayer phosphorene. We find a significant temperature dependence in the carrier mobilities (μ ∝ T −γ ) that results from the temperature variability of the charge screening and varies with the crystal orientation. The anisotropy in the effective mass leads to an anisotropic carrier mobility, with the mobility in the armchair direction about one order of magnitude larger than in the zigzag direction. In particular, this mobility anisotropy is enhanced at low temperatures and high carrier densities. Under encapsulation with a high-κ overlayer, the mobility increases by up to an order of magnitude although its temperature dependence and its anisotropy are reduced

  7. Anisotropic charged impurity-limited carrier mobility in monolayer phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Zhun-Yong; Zhang, Gang; Zhang, Yong Wei [Institute of High Performance Computing, A*STAR, Singapore 138632 (Singapore)

    2014-12-07

    The room temperature carrier mobility in atomically thin 2D materials is usually far below the intrinsic limit imposed by phonon scattering as a result of scattering by remote charged impurities in its environment. We simulate the charged impurity-limited carrier mobility μ in bare and encapsulated monolayer phosphorene. We find a significant temperature dependence in the carrier mobilities (μ ∝ T{sup −γ}) that results from the temperature variability of the charge screening and varies with the crystal orientation. The anisotropy in the effective mass leads to an anisotropic carrier mobility, with the mobility in the armchair direction about one order of magnitude larger than in the zigzag direction. In particular, this mobility anisotropy is enhanced at low temperatures and high carrier densities. Under encapsulation with a high-κ overlayer, the mobility increases by up to an order of magnitude although its temperature dependence and its anisotropy are reduced.

  8. Pressure dependence of excited-state charge-carrier dynamics in organolead tribromide perovskites

    Science.gov (United States)

    Liu, X. C.; Han, J. H.; Zhao, H. F.; Yan, H. C.; Shi, Y.; Jin, M. X.; Liu, C. L.; Ding, D. J.

    2018-05-01

    Excited-state charge-carrier dynamics governs the performance of organometal trihalide perovskites (OTPs) and is strongly influenced by the crystal structure. Characterizing the excited-state charge-carrier dynamics in OTPs under high pressure is imperative for providing crucial insights into structure-property relations. Here, we conduct in situ high-pressure femtosecond transient absorption spectroscopy experiments to study the excited-state carrier dynamics of CH3NH3PbBr3 (MAPbBr3) under hydrostatic pressure. The results indicate that compression is an effective approach to modulate the carrier dynamics of MAPbBr3. Across each pressure-induced phase, carrier relaxation, phonon scattering, and Auger recombination present different pressure-dependent properties under compression. Responsiveness is attributed to the pressure-induced variation in the lattice structure, which also changes the electronic band structure. Specifically, simultaneous prolongation of carrier relaxation and Auger recombination is achieved in the ambient phase, which is very valuable for excess energy harvesting. Our discussion provides clues for optimizing the photovoltaic performance of OTPs.

  9. Magnetic Generation due to Mass Difference between Charge Carriers

    OpenAIRE

    Chen, Shi; Dan, JiaKun; Chen, ZiYu; Li, JianFeng

    2013-01-01

    The possibility of spontaneous magnetization due to the "asymmetry in mass" of charge carriers in a system is investigated. Analysis shows that when the masses of positive and negative charge carriers are identical, no magnetization is predicted. However, if the masses of two species are different, spontaneous magnetic field would appear, either due to the equipartition of magnetic energy or due to fluctuations together with a feedback mechanism. The conditions for magnetization to occur are ...

  10. Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes

    International Nuclear Information System (INIS)

    Feng, Shih-Wei; Liao, Po-Hsun; Leung, Benjamin; Han, Jung; Yang, Fann-Wei; Wang, Hsiang-Chen

    2015-01-01

    Based on quantum efficiency and time-resolved electroluminescence measurements, the effects of carrier localization and quantum-confined Stark effect (QCSE) on carrier transport and recombination dynamics of Ga- and N-polar InGaN/GaN light-emitting diodes (LEDs) are reported. The N-polar LED exhibits shorter ns-scale response, rising, delay, and recombination times than the Ga-polar one does. Stronger carrier localization and the combined effects of suppressed QCSE and electric field and lower potential barrier acting upon the forward bias in an N-polar LED provide the advantages of more efficient carrier relaxation and faster carrier recombination. By optimizing growth conditions to enhance the radiative recombination, the advantages of more efficient carrier relaxation and faster carrier recombination in a competitive performance N-polar LED can be realized for applications of high-speed flash LEDs. The research results provide important information for carrier transport and recombination dynamics of an N-polar InGaN/GaN LED

  11. Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shih-Wei, E-mail: swfeng@nuk.edu.tw; Liao, Po-Hsun [Department of Applied Physics, National University of Kaohsiung, No. 700, Kaohsiung University Rd., Nan Tzu Dist., 811 Kaohsiung, Taiwan (China); Leung, Benjamin; Han, Jung [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520 (United States); Yang, Fann-Wei [Department of Electronic Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Wang, Hsiang-Chen [Graduate Institute of Opto-Mechatronics and Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chia-Yi, Taiwan (China)

    2015-07-28

    Based on quantum efficiency and time-resolved electroluminescence measurements, the effects of carrier localization and quantum-confined Stark effect (QCSE) on carrier transport and recombination dynamics of Ga- and N-polar InGaN/GaN light-emitting diodes (LEDs) are reported. The N-polar LED exhibits shorter ns-scale response, rising, delay, and recombination times than the Ga-polar one does. Stronger carrier localization and the combined effects of suppressed QCSE and electric field and lower potential barrier acting upon the forward bias in an N-polar LED provide the advantages of more efficient carrier relaxation and faster carrier recombination. By optimizing growth conditions to enhance the radiative recombination, the advantages of more efficient carrier relaxation and faster carrier recombination in a competitive performance N-polar LED can be realized for applications of high-speed flash LEDs. The research results provide important information for carrier transport and recombination dynamics of an N-polar InGaN/GaN LED.

  12. Mobility of charge carriers in porous silicon layers

    International Nuclear Information System (INIS)

    Forsh, P. A.; Martyshov, M. N.; Latysheva, A. P.; Vorontsov, A. S.; Timoshenko, V. Yu.; Kashkarov, P. K.

    2008-01-01

    The (conduction) mobility of majority charge carriers in porous silicon layers of the n and p types is estimated by joint measurements of electrical conductivity and free charge carrier concentration, which is determined from IR absorption spectra. Adsorption of donor and acceptor molecules leading to a change in local electric fields in the structure is used to identify the processes controlling the mobility in porous silicon. It is found that adsorption of acceptor and donor molecules at porous silicon of the p and n types, respectively, leads to a strong increase in electrical conductivity, which is associated with an increase in the concentration of free carrier as well as in their mobility. The increase in the mobility of charge carriers as a result of adsorption indicates the key role of potential barriers at the boundaries of silicon nanocrystals and may be due to a decrease in the barrier height as a result of adsorption

  13. The interplay of morphology and carrier recombination in dendrimer-based organic photovoltaics.

    Science.gov (United States)

    Shaheen, Sean; Kopidakis, Nikos; Mitchell, William; Rance, William; van de Lagemaat, Jao; Rumbles, Garry

    2007-03-01

    Pi-conjugated dendrimers provide an alternative to polymers in organic photovoltaic devices that allow for systematic study of how the molecular structure affects the morphology of the donor and acceptor components and subsequently how the device operates. The degree of mixing and specific geometry of the donor-acceptor blend play a determining role in the rate of exciton dissociation as well as the efficacy of charge transport out of the active layer. We find that pi-conjugated dendrimers are more miscible with the fullerene-derivative acceptor than their polymeric counterparts, which leads to smaller domains than are commonly found in polymer-fullerene blends. Here we discuss how these differing morphologies affect exciton dissociation, carrier transport, and carrier recombination in the devices.

  14. One-carrier free space charge motion under applied voltage

    Energy Technology Data Exchange (ETDEWEB)

    de ALMEIDA, L E.C.; FERREIRA, G F.L. [SAO PAULO UNIV., SAO CARLOS (BRAZIL). INSTITUTO DE FISICA E QUIMICA

    1975-12-01

    It is shown how to transform the system of partial differential equations, describing the free one-carrier space charge motion in solid dielectrics under a given applied voltage and while the charge distribution touches only one of the electrodes, into a first order ordinary differential equation from whose solution all the interesting quantities may be easily derived. It was found that some charge distributions can display current reversal.

  15. Revealing the ultrafast charge carrier dynamics in organo metal halide perovskite solar cell materials using time resolved THz spectroscopy

    Science.gov (United States)

    Ponseca, C. S., Jr.; Sundström, V.

    2016-03-01

    Ultrafast charge carrier dynamics in organo metal halide perovskite has been probed using time resolved terahertz (THz) spectroscopy (TRTS). Current literature on its early time characteristics is unanimous: sub-ps charge carrier generation, highly mobile charges and very slow recombination rationalizing the exceptionally high power conversion efficiency for a solution processed solar cell material. Electron injection from MAPbI3 to nanoparticles (NP) of TiO2 is found to be sub-ps while Al2O3 NPs do not alter charge dynamics. Charge transfer to organic electrodes, Spiro-OMeTAD and PCBM, is sub-ps and few hundreds of ps respectively, which is influenced by the alignment of energy bands. It is surmised that minimizing defects/trap states is key in optimizing charge carrier extraction from these materials.

  16. Superposition Principle in Auger Recombination of Charged and Neutral Multicarrier States in Semiconductor Quantum Dots.

    Science.gov (United States)

    Wu, Kaifeng; Lim, Jaehoon; Klimov, Victor I

    2017-08-22

    Application of colloidal semiconductor quantum dots (QDs) in optical and optoelectronic devices is often complicated by unintentional generation of extra charges, which opens fast nonradiative Auger recombination pathways whereby the recombination energy of an exciton is quickly transferred to the extra carrier(s) and ultimately dissipated as heat. Previous studies of Auger recombination have primarily focused on neutral and, more recently, negatively charged multicarrier states. Auger dynamics of positively charged species remains more poorly explored due to difficulties in creating, stabilizing, and detecting excess holes in the QDs. Here we apply photochemical doping to prepare both negatively and positively charged CdSe/CdS QDs with two distinct core/shell interfacial profiles ("sharp" versus "smooth"). Using neutral and charged QD samples we evaluate Auger lifetimes of biexcitons, negative and positive trions (an exciton with an extra electron or a hole, respectively), and multiply negatively charged excitons. Using these measurements, we demonstrate that Auger decay of both neutral and charged multicarrier states can be presented as a superposition of independent elementary three-particle Auger events. As one of the manifestations of the superposition principle, we observe that the biexciton Auger decay rate can be presented as a sum of the Auger rates for independent negative and positive trion pathways. By comparing the measurements on the QDs with the "sharp" versus "smooth" interfaces, we also find that while affecting the absolute values of Auger lifetimes, manipulation of the shape of the confinement potential does not lead to violation of the superposition principle, which still allows us to accurately predict the biexciton Auger lifetimes based on the measured negative and positive trion dynamics. These findings indicate considerable robustness of the superposition principle as applied to Auger decay of charged and neutral multicarrier states

  17. Study of Charge Carrier Transport in GaN Sensors

    Science.gov (United States)

    Gaubas, Eugenijus; Ceponis, Tomas; Kuokstis, Edmundas; Meskauskaite, Dovile; Pavlov, Jevgenij; Reklaitis, Ignas

    2016-01-01

    Capacitor and Schottky diode sensors were fabricated on GaN material grown by hydride vapor phase epitaxy and metal-organic chemical vapor deposition techniques using plasma etching and metal deposition. The operational characteristics of these devices have been investigated by profiling current transients and by comparing the experimental regimes of the perpendicular and parallel injection of excess carrier domains. Profiling of the carrier injection location allows for the separation of the bipolar and the monopolar charge drift components. Carrier mobility values attributed to the hydride vapor phase epitaxy (HVPE) GaN material have been estimated as μe = 1000 ± 200 cm2/Vs for electrons, and μh = 400 ± 80 cm2/Vs for holes, respectively. Current transients under injection of the localized and bulk packets of excess carriers have been examined in order to determine the surface charge formation and polarization effects. PMID:28773418

  18. Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices

    International Nuclear Information System (INIS)

    Kioupakis, Emmanouil; Yan, Qimin; Steiauf, Daniel; Van de Walle, Chris G

    2013-01-01

    Nitride light-emitting diodes are a promising solution for efficient solid-state lighting, but their performance at high power is affected by the efficiency-droop problem. Previous experimental and theoretical work has identified Auger recombination, a three-particle nonradiative carrier recombination mechanism, as the likely cause of the droop. In this work, we use first-principles calculations to elucidate the dependence of the radiative and Auger recombination rates on temperature, carrier density and quantum-well confinement. Our calculated data for the temperature dependence of the recombination coefficients are in good agreement with experiment and provide further validation on the role of Auger recombination in the efficiency reduction. Polarization fields and phase-space filling negatively impact device efficiency because they increase the operating carrier density at a given current density and increase the fraction of carriers lost to Auger recombination. (paper)

  19. A comparative theoretical study of exciton-dissociation and charge-recombination processes in oligothiophene/fullerene and oligothiophene/perylenediimide complexes for organic solar cells

    KAUST Repository

    Yi, Yuanping; Coropceanu, Veaceslav; Bré das, Jean-Luc

    2011-01-01

    ) is faster than that in the fullerene-based devices and (ii) in most cases, can compete with the dissociation of the charge-transfer state into mobile charge carriers. This faster charge-recombination process is consistent with the lower performance observed

  20. Charge carrier coherence and Hall effect in organic semiconductors

    Science.gov (United States)

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  1. Charge carrier coherence and Hall effect in organic semiconductors.

    Science.gov (United States)

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  2. Charge carrier relaxation model in disordered organic semiconductors

    International Nuclear Information System (INIS)

    Lu, Nianduan; Li, Ling; Sun, Pengxiao; Liu, Ming

    2013-01-01

    The relaxation phenomena of charge carrier in disordered organic semiconductors have been demonstrated and investigated theoretically. An analytical model describing the charge carrier relaxation is proposed based on the pure hopping transport theory. The relation between the material disorder, electric field and temperature and the relaxation phenomena has been discussed in detail, respectively. The calculated results reveal that the increase of electric field and temperature can promote the relaxation effect in disordered organic semiconductors, while the increase of material disorder will weaken the relaxation. The proposed model can explain well the stretched-exponential law by adopting the appropriate parameters. The calculation shows a good agreement with the experimental data for organic semiconductors

  3. Photoinduced reversible switching of charge carrier mobility in conjugated polymers

    Czech Academy of Sciences Publication Activity Database

    Weiter, M.; Navrátil, J.; Vala, M.; Toman, Petr

    2009-01-01

    Roč. 48, č. 1 (2009), 10401_1-10401_6 ISSN 1286-0042 R&D Projects: GA ČR GA203/06/0285; GA AV ČR KAN401770651 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymers * switch * charge carrier mobility Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.756, year: 2009

  4. One-carrier free space charge motion under applied voltage

    International Nuclear Information System (INIS)

    Camargo, P.C.; Ferreira, G.F.L.

    1976-01-01

    The system of partial differential equations describing the one-carrier free space-charge motion under a given applied voltage is transformed into a system of two ordinary differential equations. The method is applied to find the external current injection [pt

  5. Charge transport and recombination dynamics in organic bulk heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Andreas

    2011-08-02

    The charge transport in disordered organic bulk heterojunction (BHJ) solar cells is a crucial process affecting the power conversion efficiency (PCE) of the solar cell. With the need of synthesizing new materials for improving the power conversion efficiency of those cells it is important to study not only the photophysical but also the electrical properties of the new material classes. Thereby, the experimental techniques need to be applicable to operating solar cells. In this work, the conventional methods of transient photoconductivity (also known as ''Time-of-Flight'' (TOF)), as well as the transient charge extraction technique of ''Charge Carrier Extraction by Linearly Increasing Voltage'' (CELIV) are performed on different organic blend compositions. Especially with the latter it is feasible to study the dynamics - i.e. charge transport and charge carrier recombination - in bulk heterojunction (BHJ) solar cells with active layer thicknesses of 100-200 nm. For a well performing organic BHJ solar cells the morphology is the most crucial parameter finding a trade-off between an efficient photogeneration of charge carriers and the transport of the latter to the electrodes. Besides the morphology, the nature of energetic disorder of the active material blend and its influence on the dynamics are discussed extensively in this work. Thereby, the material system of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C{sub 61}butyric acid methyl ester (PC{sub 61}BM) serves mainly as a reference material system. New promising donor or acceptor materials and their potential for application in organic photovoltaics are studied in view of charge dynamics and compared with the reference system. With the need for commercialization of organic solar cells the question of the impact of environmental conditions on the PCE of the solar cells raises. In this work, organic BHJ solar cells exposed to synthetic air for finite duration are

  6. Effect of dielectronic recombination on the charge-state distribution ...

    Indian Academy of Sciences (India)

    Abstract. The effect of dielectronic recombination in determining charge-state distribu- tion and radiative emission from a laser-produced carbon plasma has been investigated in the collisional radiative ionization equilibrium. It is observed that the relative abundances of different ions in the plasma, and soft X-ray emission ...

  7. Charge Carrier Generation Followed by Triplet State Formation, Annihilation, and Carrier Recreation in PBDTTT-C:PC 60 BM Photovoltaic Blends

    KAUST Repository

    Gehrig, Dominik W.

    2015-05-22

    Triplet state formation after photoexcitation of low-bandgap polymer:fullerene blends has recently been demonstrated, however, the precise mechanism and its impact on solar cell performance is still under debate. Here, we study exciton dissociation, charge carrier generation and triplet state formation in low-bandgap polymer PBDTTT-C:PC60BM bulk heterojunction photovoltaic blends by a combination of fs-µs broadband Vis-NIR transient absorption (TA) pump-probe spectroscopy and multivariate curve resolution (MCR) data analysis. We found sub-ps exciton dissociation and charge generation followed by sub-ns triplet state creation. The carrier dynamics and triplet state dynamics exhibited a very pronounced intensity dependence indicating non-geminate recombination of free carriers is the origin of triplet formation in these blends. Triplets were found to be the dominant state present on the nanosecond timescale. Surprisingly, the carrier population increased again on the ns-µs timescale. We attribute this to triplet-triplet annihilation and the formation of higher energy excited states that subsequently underwent charge transfer. This unique dip and recovery of the charge population is a clear indication that triplets are formed by non-geminate recombination, as such a kinetic is incompatible with a monomolecular triplet state formation process.

  8. Charge Carrier Generation Followed by Triplet State Formation, Annihilation, and Carrier Recreation in PBDTTT-C:PC 60 BM Photovoltaic Blends

    KAUST Repository

    Gehrig, Dominik W.; Howard, Ian A.; Laquai, Fré dé ric

    2015-01-01

    Triplet state formation after photoexcitation of low-bandgap polymer:fullerene blends has recently been demonstrated, however, the precise mechanism and its impact on solar cell performance is still under debate. Here, we study exciton dissociation, charge carrier generation and triplet state formation in low-bandgap polymer PBDTTT-C:PC60BM bulk heterojunction photovoltaic blends by a combination of fs-µs broadband Vis-NIR transient absorption (TA) pump-probe spectroscopy and multivariate curve resolution (MCR) data analysis. We found sub-ps exciton dissociation and charge generation followed by sub-ns triplet state creation. The carrier dynamics and triplet state dynamics exhibited a very pronounced intensity dependence indicating non-geminate recombination of free carriers is the origin of triplet formation in these blends. Triplets were found to be the dominant state present on the nanosecond timescale. Surprisingly, the carrier population increased again on the ns-µs timescale. We attribute this to triplet-triplet annihilation and the formation of higher energy excited states that subsequently underwent charge transfer. This unique dip and recovery of the charge population is a clear indication that triplets are formed by non-geminate recombination, as such a kinetic is incompatible with a monomolecular triplet state formation process.

  9. Excited state and charge-carrier dynamics in perovskite solar cell materials

    Science.gov (United States)

    Ponseca, Carlito S., Jr.; Tian, Yuxi; Sundström, Villy; Scheblykin, Ivan G.

    2016-02-01

    Organo-metal halide perovskites (OMHPs) have attracted enormous interest in recent years as materials for application in optoelectronics and solar energy conversion. These hybrid semiconductors seem to have the potential to challenge traditional silicon technology. In this review we will give an account of the recent development in the understanding of the fundamental light-induced processes in OMHPs from charge-photo generation, migration of charge carries through the materials and finally their recombination. Our and other literature reports on time-resolved conductivity, transient absorption and photoluminescence properties are used to paint a picture of how we currently see the fundamental excited state and charge-carrier dynamics. We will also show that there is still no fully coherent picture of the processes in OMHPs and we will indicate the problems to be solved by future research.

  10. Excited state and charge-carrier dynamics in perovskite solar cell materials

    International Nuclear Information System (INIS)

    Ponseca, Carlito S Jr; Tian, Yuxi; Sundström, Villy; Scheblykin, Ivan G

    2016-01-01

    Organo-metal halide perovskites (OMHPs) have attracted enormous interest in recent years as materials for application in optoelectronics and solar energy conversion. These hybrid semiconductors seem to have the potential to challenge traditional silicon technology. In this review we will give an account of the recent development in the understanding of the fundamental light-induced processes in OMHPs from charge-photo generation, migration of charge carries through the materials and finally their recombination. Our and other literature reports on time-resolved conductivity, transient absorption and photoluminescence properties are used to paint a picture of how we currently see the fundamental excited state and charge-carrier dynamics. We will also show that there is still no fully coherent picture of the processes in OMHPs and we will indicate the problems to be solved by future research. (topical review)

  11. Charge carrier transport and photogeneration in P3HT:PCBM photovoltaic blends.

    Science.gov (United States)

    Laquai, Frédéric; Andrienko, Denis; Mauer, Ralf; Blom, Paul W M

    2015-06-01

    This article reviews the charge transport and photogeneration in bulk-heterojunction solar cells made from blend films of regioregular poly(3-hexylthiophene) (RR-P3HT) and methano-fullerene (PCBM). The charge transport, specifically the hole mobility in the RR-P3HT phase of the polymer:fullerene photovoltaic blend, is dramatically affected by thermal annealing. The hole mobility increases more than three orders of magnitude and reaches a value of up to 2 × 10(-4) cm(2) V(-1) s(-1) after the thermal annealing process as a result of an improved semi-crystallinity of the film. This significant increase of the hole mobility balances the electron and hole mobilities in a photovoltaic blend in turn reducing space-charge formation, and this is the most important factor for the strong enhancement of the photovoltaic efficiency compared to an as cast, that is, non-annealed device. In fact, the balanced charge carrier mobility in RR-P3HT:PCBM blends in combination with a field- and temperature-independent charge carrier generation and greatly reduced non-geminate recombination explains the large quantum efficiencies mea-sured in P3HT:PCBM photovoltaic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Charge Carrier Transport and Photogeneration in P3HT:PCBM Photovoltaic Blends

    KAUST Repository

    Laquai, Frederic

    2015-05-03

    This article reviews the charge transport and photogeneration in bulk-heterojunction solar cells made from blend films of regioregular poly(3-hexylthiophene) (RR-P3HT) and methano­fullerene (PCBM). The charge transport, specifically the hole mobility in the RR-P3HT phase of the polymer:fullerene photovoltaic blend, is dramatically affected by thermal annealing. The hole mobility increases more than three orders of magnitude and reaches a value of up to 2 × 10−4 cm2 V−1 s−1 after the thermal annealing process as a result of an improved semi-crystallinity of the film. This significant increase of the hole mobility balances the electron and hole mobilities in a photovoltaic blend in turn reducing space-charge formation, and this is the most important factor for the strong enhancement of the photovoltaic efficiency compared to an as cast, that is, non-annealed device. In fact, the balanced charge carrier mobility in RR-P3HT:PCBM blends in combination with a field- and temperature-independent charge carrier generation and greatly reduced non-geminate recombination explains the large quantum efficiencies mea­sured in P3HT:PCBM photovoltaic devices.

  13. Solvent Vapor Annealing-Mediated Crystallization Directs Charge Generation, Recombination and Extraction in BHJ Solar Cells

    KAUST Repository

    Babics, Maxime; Liang, Ru-Ze; Wang, Kai; Cruciani, Federico; Kan, Zhipeng; Wohlfahrt, Markus; Tang, Ming-Chun; Laquai, Fré dé ric; Beaujuge, Pierre

    2017-01-01

    Small-molecule (SM) donors that can be solution-processed with fullerene acceptors (e.g., PC61/71BM), or their “nonfullerene” counterparts, are proving particularly promising for the realization of high-efficiency bulk-heterojunction (BHJ) solar cells. In several recent studies, solvent vapor annealing (SVA) protocols have been found to yield significant BHJ device efficiency improvements via structural changes in the active layer morphologies. However, the mechanisms by which active layer morphologies evolve when subjected to SVA treatments, and the structural factors impacting charge generation, carrier transport, recombination and extraction in BHJ solar cells with SM donors and fullerene acceptors, remain important aspects to be elucidated. In this report, we show that – in BHJ solar cells with SM donors and fullerene acceptors – selective crystallization promoted by SVA mediates the development of optimized morphologies across the active layers, setting domain sizes and boundaries. Examining BHJ solar cells subjected to various SVA exposure times, with BDT[2F]QdC as the SM donor and PC71BM as the acceptor, we connect those morphological changes to specific carrier effects, showing that crystal growth effectively directs charge generation and recombination. We find that the SM donor-pure domains growing at the expense of a mixed donor-acceptor phase play a determining role, establishing optimum networks with 10-20nm-sized domains during the SVA treatment. Longer SVA times result in highly textured active layers with crystalline domains that can exceed the lengthscale of exciton diffusion, while inducing detrimental vertical morphologies and deep carrier traps. Last, we emphasize the field-dependence charge generation occurring upon SVA-mediated crystallization and link this carrier effect to the mixed phase depletion across the BHJ active layer.

  14. Solvent Vapor Annealing-Mediated Crystallization Directs Charge Generation, Recombination and Extraction in BHJ Solar Cells

    KAUST Repository

    Babics, Maxime

    2017-12-19

    Small-molecule (SM) donors that can be solution-processed with fullerene acceptors (e.g., PC61/71BM), or their “nonfullerene” counterparts, are proving particularly promising for the realization of high-efficiency bulk-heterojunction (BHJ) solar cells. In several recent studies, solvent vapor annealing (SVA) protocols have been found to yield significant BHJ device efficiency improvements via structural changes in the active layer morphologies. However, the mechanisms by which active layer morphologies evolve when subjected to SVA treatments, and the structural factors impacting charge generation, carrier transport, recombination and extraction in BHJ solar cells with SM donors and fullerene acceptors, remain important aspects to be elucidated. In this report, we show that – in BHJ solar cells with SM donors and fullerene acceptors – selective crystallization promoted by SVA mediates the development of optimized morphologies across the active layers, setting domain sizes and boundaries. Examining BHJ solar cells subjected to various SVA exposure times, with BDT[2F]QdC as the SM donor and PC71BM as the acceptor, we connect those morphological changes to specific carrier effects, showing that crystal growth effectively directs charge generation and recombination. We find that the SM donor-pure domains growing at the expense of a mixed donor-acceptor phase play a determining role, establishing optimum networks with 10-20nm-sized domains during the SVA treatment. Longer SVA times result in highly textured active layers with crystalline domains that can exceed the lengthscale of exciton diffusion, while inducing detrimental vertical morphologies and deep carrier traps. Last, we emphasize the field-dependence charge generation occurring upon SVA-mediated crystallization and link this carrier effect to the mixed phase depletion across the BHJ active layer.

  15. Meiotic recombination, synapsis, meiotic inactivation and sperm aneuploidy in a chromosome 1 inversion carrier.

    Science.gov (United States)

    Kirkpatrick, Gordon; Chow, Victor; Ma, Sai

    2012-01-01

    Disrupted meiotic behaviour of inversion carriers may be responsible for suboptimal sperm parameters in these carriers. This study investigated meiotic recombination, synapsis, transcriptional silencing and chromosome segregation effects in a pericentric inv(1) carrier. Recombination (MLH1), synapsis (SYCP1, SYCP3) and transcriptional inactivation (γH2AX, BRCA1) were examined by fluorescence immunostaining. Chromosome specific rates of recombination were determined by fluorescence in-situ hybridization. Furthermore, testicular sperm was examined for aneuploidy and segregation of the inv(1). Our findings showed that global recombination rates were similar to controls. Recombination on the inv(1) and the sex chromosomes were reduced. The inv(1) associated with the XY body in 43.4% of cells, in which XY recombination was disproportionately absent, and 94.3% of cells displayed asynapsed regions which displayed meiotic silencing regardless of their association with the XY body. Furthermore, a low frequency of chromosomal imbalance was observed in spermatozoa (3.4%). Our results suggest that certain inversion carriers may display unimpaired global recombination and impaired recombination on the involved and the sex chromosomes during meiosis. Asynapsis or inversion-loop formation in the inverted region may be responsible for impaired spermatogenesis and may prevent sperm-chromosome imbalance. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  16. Contactless Spectral-dependent Charge Carrier Lifetime Measurements in Silicon Photovoltaic Materials

    Science.gov (United States)

    Roller, John; Hamadani, Behrang; Dagenais, Mario

    Charge carrier lifetime measurements in bulk or unfinished photovoltaic (PV) materials allow for a more accurate estimate of power conversion efficiency in completed solar cells. In this work, carrier lifetimes in PV-grade silicon wafers are obtained by way of quasi-steady state photoconductance measurements. These measurements use a contactless RF system coupled with varying narrow spectrum input LEDs, ranging in wavelength from 460 nm to 1030 nm. Spectral dependent lifetime measurements allow for determination of bulk and surface properties of the material, including the intrinsic bulk lifetime and the surface recombination velocity. The effective lifetimes are fit to an analytical physics-based model to determine the desired parameters. Passivated and non-passivated samples are both studied and are shown to have good agreement with the theoretical model.

  17. Origin of long lifetime of band-edge charge carriers in organic-inorganic lead iodide perovskites.

    Science.gov (United States)

    Chen, Tianran; Chen, Wei-Liang; Foley, Benjamin J; Lee, Jooseop; Ruff, Jacob P C; Ko, J Y Peter; Brown, Craig M; Harriger, Leland W; Zhang, Depei; Park, Changwon; Yoon, Mina; Chang, Yu-Ming; Choi, Joshua J; Lee, Seung-Hun

    2017-07-18

    Long carrier lifetime is what makes hybrid organic-inorganic perovskites high-performance photovoltaic materials. Several microscopic mechanisms behind the unusually long carrier lifetime have been proposed, such as formation of large polarons, Rashba effect, ferroelectric domains, and photon recycling. Here, we show that the screening of band-edge charge carriers by rotation of organic cation molecules can be a major contribution to the prolonged carrier lifetime. Our results reveal that the band-edge carrier lifetime increases when the system enters from a phase with lower rotational entropy to another phase with higher entropy. These results imply that the recombination of the photoexcited electrons and holes is suppressed by the screening, leading to the formation of polarons and thereby extending the lifetime. Thus, searching for organic-inorganic perovskites with high rotational entropy over a wide range of temperature may be a key to achieve superior solar cell performance.

  18. Study of the Bulk Charge Carrier Dynamics in Anatase and Rutile TiO2 Single Crystals by Femtosecond Time Resolved Spectroscopy

    KAUST Repository

    Maity, Partha

    2018-04-02

    Understanding of the fundamentals behind charge carriers of photo-catalytic materials are still illusive hindering progress in our quest for renewable energy. TiO2 anatase and rutile are the most understood phases in photo-catalysis and serve as the best model for fundamental studies. Their ultrafast charge carrier dynamics especially on TiO2 anatase single crystal (the most active phase) are unresolved. Here femtosecond time resolved spectroscopy (TRS) was carried out to explore the dynamics of photo-excited charge carriers’ recombination in anatase single crystal, for the first time using pump fluence effects, and compares it to that of the rutile single crystal. A significant difference in charge carrier recombination rates between both crystals is observed. We found that the time constants for carrier recombination are two orders of magnitude slower for anatase (101) when compared to those of rutile (110). Moreover, bulk defects introduced by reduction of the samples via annealing in ultra-high vacuum resulted in faster recombination rates for both polymorphs. Both states (fresh and reduced) probed by pump fluence dependence measurements revealed that the major recombination channel in fresh and reduced anatase and reduced rutile is the first-order Shockley–Reed mediated. However, for fresh rutile, third-body Auger recombination was observed, attributed to the presence of higher density of intrinsic charge carriers. At all excitation wavelengths and fluence investigated, anatase (101) single crystal show longer charge carrier lifetime when compared to rutile (110) single. This may explain the superiority of the anatase phase for the electron transfer H+ reduction to molecular hydrogen.

  19. The Role of Polymer Fractionation in Energetic Losses and Charge Carrier Lifetimes of Polymer: Fullerene Solar Cells

    KAUST Repository

    Baran, Derya

    2015-08-10

    Non-radiative recombination reduces the open-circuit voltage relative to its theoretical limit and leads to reduced luminescence emission at a given excitation. Therefore it is possible to correlate changes in luminescence emission with changes in open-circuit voltage and in the charge carrier lifetime. Here we use luminescence studies combined with transient photovoltage and differential charging analyses to study the effect of polymer fractionation in indacenoedithiophene-co-benzothiadiazole (IDTBT):fullerene solar cells. In this system, polymer fractionation increases electroluminescence and reduces non-radiative recombination. High molecular weight and fractionated IDTBT polymers exhibit higher carrier lifetime-mobility product compared to their non-fractionated analogues, resulting in improved solar cell performance.

  20. The Role of Polymer Fractionation in Energetic Losses and Charge Carrier Lifetimes of Polymer: Fullerene Solar Cells

    KAUST Repository

    Baran, Derya; Vezie, Michelle S; Gasparini, Nicola; Deledalle, Florent; Yao, Jizhong; Schroeder, Bob C.; Bronstein, Hugo; Ameri, Tayebeh; Kirchartz, Thomas; McCulloch, Iain; Nelson, Jenny; Brabec, Christoph J

    2015-01-01

    Non-radiative recombination reduces the open-circuit voltage relative to its theoretical limit and leads to reduced luminescence emission at a given excitation. Therefore it is possible to correlate changes in luminescence emission with changes in open-circuit voltage and in the charge carrier lifetime. Here we use luminescence studies combined with transient photovoltage and differential charging analyses to study the effect of polymer fractionation in indacenoedithiophene-co-benzothiadiazole (IDTBT):fullerene solar cells. In this system, polymer fractionation increases electroluminescence and reduces non-radiative recombination. High molecular weight and fractionated IDTBT polymers exhibit higher carrier lifetime-mobility product compared to their non-fractionated analogues, resulting in improved solar cell performance.

  1. Charge-carrier dynamics and Coulomb effects in semiconductor tetrapods

    International Nuclear Information System (INIS)

    Mauser, Christian

    2011-01-01

    In this thesis the Coulomb interaction and its influence on localization effects and dynamics of charge carriers in semiconductor nanocrystals were studied. In the studied nanostructures it deals with colloidal tetrapod heterostructures, which consist of a cadmium selenide (CdSe) core and four tetraedrical grown cadmium sulfide (CdS) respectively cadmium telluride (CdTe) legs, which exhibit a type-I respectively type-II band transition. The dynamics and interactions were studied by means of photoluminescence (PL) and absorption measurements both on the ensemble and on single nanoparticles, as well as time-resolved PL and transient absorption spectroscopy. Additionally theoretical simulations of the wave-function distributions were performed, which are based on the effective-mass approximation. The special band structure of the CdSe/CdS tetrapods offers a unique possibility to study the Coulomb interaction. The flat conduction band in these heterostructures makes the electron via the Coulomb interaction sensitive to the localization position of the hole within the structure. The valence band has instead a potential maximum in the CdSe, which leads to a directed localization of the hole and the photoluminescence of the core. Polarization-resolved measurements showed hereby an anisotropy of the photoluminescence, which could be explained by means of simulations of the wave-function distribution with an asymmetry at the branching point. Charge-carrier localization occur mainly both in longer structures and in trap states in the CdS leg and can be demonstrated in form of a dual emission from a nanocrystal. The charge-carrier dynamics of electron and hole in tetrapods is indeed coupled by the Coulomb interaction, however it cannot be completely described in an exciton picture. The coupled dynamics and the Coulomb interaction were studied concerning a possible influence of the geometry in CdSe/CdS nanorods and compared with those of the tetrapods. The interactions of the

  2. Charge Carrier Transport Properties of Vacuum Evaporated Anthrylvinylbenzene Thin Films

    Directory of Open Access Journals (Sweden)

    Haikel HRICHI

    2014-05-01

    Full Text Available The charge carrier conduction processes and dielectric properties of two new materials based on anthracene core structure, 1-(9 anthrylvinyl-4-benzyloxybenzene (AVB and 1,4- bis(9-anthrylvinylbenzene (AV2B diodes have been investigated using dc current density–voltage (J–V and AC impedance spectroscopy (100 Hz–10 MHz. The DC electrical properties of ITO/anthracene derivative /Al device showing an ohmic behavior at low voltages and switches to space charge limited current (SCLC conduction with exponential trap distribution at higher voltages. The best performance device was achieved from ITO/AVB/Al structure showing the high charge carrier mobility which has also been evaluated from SCLC as 6.55´10-6 cm/Vs. According to the impedance spectroscopy results the structures were modeled by equivalent circuit designed as a parallel resistor Rp and capacitor Cp network in series with resistor Rs. The evolution of the electrical parameters with frequency and bias voltage of these anthracene-based systems has been discussed. The conductivity s(w evolution with frequency and bias voltage was studied for ITO/anthracene derivatives/Al devices. The dc conductivity sdc for these devices has been determined. The ac conductivity sac showed a variation in angular frequency as A.ws with a critical exponent s< 1 suggesting a hopping conduction mechanism at high frequency.

  3. Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides

    Science.gov (United States)

    Chen, Ke; Roy, Anupam; Rai, Amritesh; Movva, Hema C. P.; Meng, Xianghai; He, Feng; Banerjee, Sanjay K.; Wang, Yaguo

    2018-05-01

    Defect-carrier interaction in transition metal dichalcogenides (TMDs) plays important roles in carrier relaxation dynamics and carrier transport, which determines the performance of electronic devices. With femtosecond laser time-resolved spectroscopy, we investigated the effect of grain boundary/edge defects on the ultrafast dynamics of photoexcited carrier in molecular beam epitaxy (MBE)-grown MoTe2 and MoSe2. We found that, comparing with exfoliated samples, the carrier recombination rate in MBE-grown samples accelerates by about 50 times. We attribute this striking difference to the existence of abundant grain boundary/edge defects in MBE-grown samples, which can serve as effective recombination centers for the photoexcited carriers. We also observed coherent acoustic phonons in both exfoliated and MBE-grown MoTe2, indicating strong electron-phonon coupling in this materials. Our measured sound velocity agrees well with the previously reported result of theoretical calculation. Our findings provide a useful reference for the fundamental parameters: carrier lifetime and sound velocity and reveal the undiscovered carrier recombination effect of grain boundary/edge defects, both of which will facilitate the defect engineering in TMD materials for high speed opto-electronics.

  4. Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2018-05-01

    Full Text Available Defect-carrier interaction in transition metal dichalcogenides (TMDs plays important roles in carrier relaxation dynamics and carrier transport, which determines the performance of electronic devices. With femtosecond laser time-resolved spectroscopy, we investigated the effect of grain boundary/edge defects on the ultrafast dynamics of photoexcited carrier in molecular beam epitaxy (MBE-grown MoTe2 and MoSe2. We found that, comparing with exfoliated samples, the carrier recombination rate in MBE-grown samples accelerates by about 50 times. We attribute this striking difference to the existence of abundant grain boundary/edge defects in MBE-grown samples, which can serve as effective recombination centers for the photoexcited carriers. We also observed coherent acoustic phonons in both exfoliated and MBE-grown MoTe2, indicating strong electron-phonon coupling in this materials. Our measured sound velocity agrees well with the previously reported result of theoretical calculation. Our findings provide a useful reference for the fundamental parameters: carrier lifetime and sound velocity and reveal the undiscovered carrier recombination effect of grain boundary/edge defects, both of which will facilitate the defect engineering in TMD materials for high speed opto-electronics.

  5. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study.

    Science.gov (United States)

    Wang, Haowei; Wang, Yishan; He, Bo; Li, Weile; Sulaman, Muhammad; Xu, Junfeng; Yang, Shengyi; Tang, Yi; Zou, Bingsuo

    2016-07-20

    With its properties of bandgap tunability, low cost, and substrate compatibility, colloidal quantum dots (CQDs) are becoming promising materials for optoelectronic applications. Additionally, solution-processed organic, inorganic, and hybrid ligand-exchange technologies have been widely used in PbS CQDs solar cells, and currently the maximum certified power conversion efficiency of 9.9% has been reported by passivation treatment of molecular iodine. Presently, there are still some challenges, and the basic physical mechanism of charge carriers in CQDs-based solar cells is not clear. Electrochemical impedance spectroscopy is a monitoring technology for current by changing the frequency of applied alternating current voltage, and it provides an insight into its electrical properties that cannot be measured by direct current testing facilities. In this work, we used EIS to analyze the recombination resistance, carrier lifetime, capacitance, and conductivity of two typical PbS CQD solar cells Au/PbS-TBAl/ZnO/ITO and Au/PbS-EDT/PbS-TBAl/ZnO/ITO, in this way, to better understand the charge carriers conduction mechanism behind in PbS CQD solar cells, and it provides a guide to design high-performance quantum-dots solar cells.

  6. The effect of solvent relaxation time constants on free energy gap law for ultrafast charge recombination following photoinduced charge separation.

    Science.gov (United States)

    Mikhailova, Valentina A; Malykhin, Roman E; Ivanov, Anatoly I

    2018-05-16

    To elucidate the regularities inherent in the kinetics of ultrafast charge recombination following photoinduced charge separation in donor-acceptor dyads in solutions, the simulations of the kinetics have been performed within the stochastic multichannel point-transition model. Increasing the solvent relaxation time scales has been shown to strongly vary the dependence of the charge recombination rate constant on the free energy gap. In slow relaxing solvents the non-equilibrium charge recombination occurring in parallel with solvent relaxation is very effective so that the charge recombination terminates at the non-equilibrium stage. This results in a crucial difference between the free energy gap laws for the ultrafast charge recombination and the thermal charge transfer. For the thermal reactions the well-known Marcus bell-shaped dependence of the rate constant on the free energy gap is realized while for the ultrafast charge recombination only a descending branch is predicted in the whole area of the free energy gap exceeding 0.2 eV. From the available experimental data on the population kinetics of the second and first excited states for a series of Zn-porphyrin-imide dyads in toluene and tetrahydrofuran solutions, an effective rate constant of the charge recombination into the first excited state has been calculated. The obtained rate constant being very high is nearly invariable in the area of the charge recombination free energy gap from 0.2 to 0.6 eV that supports the theoretical prediction.

  7. Charge-carrier transport in large-area epitaxial graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kisslinger, Ferdinand; Popp, Matthias; Weber, Heiko B. [Lehrstuhl fuer Angewandte Physik, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen (Germany); Jobst, Johannes [Huygens-Kamerlingh Onnes Laboratorium, Leiden Institute of Physics, Leiden University (Netherlands); Shallcross, Sam [Lehrstuhl fuer theoretische Festkoerperphysik, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen (Germany)

    2017-11-15

    We present an overview of recent charge carrier transport experiments in both monolayer and bilayer graphene, with emphasis on the phenomena that appear in large-area samples. While many aspects of transport are based on quantum mechanical concepts, in the large-area limit classical corrections dominate and shape the magnetoresistance and the tunneling conductance. The discussed phenomena are very general and can, with little modification, be expected in any atomically thin 2D conductor. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Electronic structure of charge carriers in a polysilane quantum wire

    International Nuclear Information System (INIS)

    Kumagai, J.; Yoshida, H.; Ichikawa, T.

    1997-01-01

    The ESR, ESEEM and spectrophotometric studies on polysilane radical ions revealed that charge carriers, hole and conducting electrons, are not delocalized all over the Si-Si main chain but confined to a part of the chain composed of only six Si atoms, probably near the branch on the main chain. Comparison of the ESR spectra of the radical cations and anions revealed that the hole can migrate from the main chain to an adjacent polymer chain via the side chains, whereas the conducting electron can not migrate since the side chains act as good intermolecular insulators for the electron. (author)

  9. Effects of low charge carrier wave function overlap on internal quantum efficiency in GaInN quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Netzel, Carsten; Hoffmann, Veit; Wernicke, Tim; Knauer, Arne; Weyers, Markus [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Kneissl, Michael [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)

    2010-07-15

    To determine relevant processes affecting the internal quantum efficiency in GaInN quantum well structures, we have studied the temperature and excitation power dependent photoluminescence intensity for quantum wells with different well widths on (0001) c-plane GaN and for quantum wells on nonpolar (11-20) a-plane GaN. In thick polar quantum wells, the quantum confined Stark effect (QCSE) causes a stronger intensity decrease with increasing temperature as long as the radiative recombination dominates. At higher temperatures, when the nonradiative recombination becomes more important, thick polar quantum wells feature a lower relative intensity decrease than thinner polar or nonpolar quantum wells. Excitation power dependent photoluminescence points to a transition from a recombination of excitons to a bimolecular recombination of uncorrelated charge carriers for thick polar quantum wells in the same temperature range. This transition might contribute to the limitation of nonradiative recombination by a reduced diffusivity of charge carriers. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Carrier recombination dynamics in anatase TiO 2 nanoparticles

    Science.gov (United States)

    Cavigli, Lucia; Bogani, Franco; Vinattieri, Anna; Cortese, Lorenzo; Colocci, Marcello; Faso, Valentina; Baldi, Giovanni

    2010-11-01

    We present an experimental study of the radiative recombination dynamics in size-controlled TiO 2 nanoparticles in the range 20-130 nm. Time-integrated photoluminescence spectra clearly show a dominance of self-trapped exciton (STE) emission, with main features not dependent on the nanoparticle size and on its environment. From picosecond time-resolved experiments as a function of the excitation density and the nanoparticle size we address the STE recombination dynamics as the result of two main processes related to the direct STE formation and to the indirect STE formation mediated by non-radiative surface states.

  11. The Impact of Donor-Acceptor Phase Separation on the Charge Carrier Dynamics in pBTTT:PCBM Photovoltaic Blends

    KAUST Repository

    Gehrig, Dominik W.

    2015-04-07

    The effect of donor–acceptor phase separation, controlled by the donor–acceptor mixing ratio, on the charge generation and recombination dynamics in pBTTT-C14:PC70BM bulk heterojunction photovoltaic blends is presented. Transient absorption (TA) spectroscopy spanning the dynamic range from pico- to microseconds in the visible and near-infrared spectral regions reveals that in a 1:1 blend exciton dissociation is ultrafast; however, charges cannot entirely escape their mutual Coulomb attraction and thus predominantly recombine geminately on a sub-ns timescale. In contrast, a polymer:fullerene mixing ratio of 1:4 facilitates the formation of spatially separated, that is free, charges and reduces substantially the fraction of geminate charge recombination, in turn leading to much more efficient photovoltaic devices. This illustrates that spatially extended donor or acceptor domains are required for the separation of charges on an ultrafast timescale (<100 fs), indicating that they are not only important for efficient charge transport and extraction, but also critically influence the initial stages of free charge carrier formation.

  12. The Impact of Donor-Acceptor Phase Separation on the Charge Carrier Dynamics in pBTTT:PCBM Photovoltaic Blends

    KAUST Repository

    Gehrig, Dominik W.; Howard, Ian A.; Sweetnam, Sean; Burke, Timothy M.; McGehee, Michael D.; Laquai, Fré dé ric

    2015-01-01

    The effect of donor–acceptor phase separation, controlled by the donor–acceptor mixing ratio, on the charge generation and recombination dynamics in pBTTT-C14:PC70BM bulk heterojunction photovoltaic blends is presented. Transient absorption (TA) spectroscopy spanning the dynamic range from pico- to microseconds in the visible and near-infrared spectral regions reveals that in a 1:1 blend exciton dissociation is ultrafast; however, charges cannot entirely escape their mutual Coulomb attraction and thus predominantly recombine geminately on a sub-ns timescale. In contrast, a polymer:fullerene mixing ratio of 1:4 facilitates the formation of spatially separated, that is free, charges and reduces substantially the fraction of geminate charge recombination, in turn leading to much more efficient photovoltaic devices. This illustrates that spatially extended donor or acceptor domains are required for the separation of charges on an ultrafast timescale (<100 fs), indicating that they are not only important for efficient charge transport and extraction, but also critically influence the initial stages of free charge carrier formation.

  13. Control of charge carrier dynamics in disordered conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Dirk [Physical Chemistry, University of Cologne, Luxemburgerstr. 116, 50939 Cologne, Germany, (Germany)

    2011-07-01

    We developed a new method to probe charge carrier mobility on ultrafast time scale. It is based on electric field induced second harmonic generation. The method is applied to prototypical amorphous conjugated polymers of the polyphenylene- and polyfluorene-type. Typically the carrier mobility in these organic polymers decreases with time in a power law fashion from about 1 cm{sup 2}Vs{sup -1} at 1 ps to its stationary value of about 10{sup -6} cm{sup 2}Vs{sup -1} in hundreds of ns. The dynamics of the mobility is discussed. It is shown, that in nanoscale devices the macroscopic mobility is not adequate to describe charge transport. We study the influence of disorder, morphology and temperature on ultrafast transport. At early times the transport is dominated by tunneling and disorder plays already an essential role. Comparison of transient photocurrents with Monte-Carlo simulation reveals that on-chain transport has to be invoked to rationalize our results. The hopping rates for intrachain transport are much larger compared with interchain transport. The results give access to essential transport properties for the development of advanced theoretical models and may help to design improved solar cells.

  14. Measuring Charge Carrier Diffusion in Coupled Colloidal Quantum Dot Solids

    KAUST Repository

    Zhitomirsky, David

    2013-06-25

    Colloidal quantum dots (CQDs) are attractive materials for inexpensive, room-temperature-, and solution-processed optoelectronic devices. A high carrier diffusion length is desirable for many CQD device applications. In this work we develop two new experimental methods to investigate charge carrier diffusion in coupled CQD solids under charge-neutral, i.e., undepleted, conditions. The methods take advantage of the quantum-size-effect tunability of our materials, utilizing a smaller-bandgap population of quantum dots as a reporter system. We develop analytical models of diffusion in 1D and 3D structures that allow direct extraction of diffusion length from convenient parametric plots and purely optical measurements. We measure several CQD solids fabricated using a number of distinct methods and having significantly different doping and surface ligand treatments. We find that CQD materials recently reported to achieve a certified power conversion efficiency of 7% with hybrid organic-inorganic passivation have a diffusion length of 80 ± 10 nm. The model further allows us to extract the lifetime, trap density, mobility, and diffusion coefficient independently in each material system. This work will facilitate further progress in extending the diffusion length, ultimately leading to high-quality CQD solid semiconducting materials and improved CQD optoelectronic devices, including CQD solar cells. © 2013 American Chemical Society.

  15. A comparative theoretical study of exciton-dissociation and charge-recombination processes in oligothiophene/fullerene and oligothiophene/perylenediimide complexes for organic solar cells

    KAUST Repository

    Yi, Yuanping

    2011-01-01

    The exciton-dissociation and charge-recombination processes in donor-acceptor complexes found in α-sexithienyl/C60 and α-sexithienyl/perylenetetracarboxydiimide (PDI) solar cells are investigated by means of quantum-chemical methods. The electronic couplings and exciton-dissociation and charge-recombination rates have been evaluated for various configurations of the complexes. The results suggest that the decay of the lowest charge-transfer state to the ground state in the PDI-based devices: (i) is faster than that in the fullerene-based devices and (ii) in most cases, can compete with the dissociation of the charge-transfer state into mobile charge carriers. This faster charge-recombination process is consistent with the lower performance observed experimentally for the devices using PDI derivatives as the acceptor. © 2011 The Royal Society of Chemistry.

  16. Effect of Molecular Packing and Charge Delocalization on the Nonradiative Recombination of Charge-Transfer States in Organic Solar Cells

    KAUST Repository

    Chen, Xiankai

    2016-09-05

    In organic solar cells, a major source of energy loss is attributed to nonradiative recombination from the interfacial charge transfer states to the ground state. By taking pentacene–C60 complexes as model donor–acceptor systems, a comprehensive theoretical understanding of how molecular packing and charge delocalization impact these nonradiative recombination rates at donor–acceptor interfaces is provided.

  17. Polarized recombination of acoustically transported carriers in GaAs nanowires

    Science.gov (United States)

    Möller, Michael; Hernández-Mínguez, Alberto; Breuer, Steffen; Pfüller, Carsten; Brandt, Oliver; de Lima, Mauricio M.; Cantarero, Andrés; Geelhaar, Lutz; Riechert, Henning; Santos, Paulo V.

    2012-05-01

    The oscillating piezoelectric field of a surface acoustic wave (SAW) is employed to transport photoexcited electrons and holes in GaAs nanowires deposited on a SAW delay line on a LiNbO3 crystal. The carriers generated in the nanowire by a focused light spot are acoustically transferred to a second location where they recombine. We show that the recombination of the transported carriers occurs in a zinc blende section on top of the predominant wurtzite nanowire. This allows contactless control of the linear polarized emission by SAWs which is governed by the crystal structure. Additional polarization-resolved photoluminescence measurements were performed to investigate spin conservation during transport.

  18. Charge carrier transport mechanisms in nanocrystalline indium oxide

    International Nuclear Information System (INIS)

    Forsh, E.A.; Marikutsa, A.V.; Martyshov, M.N.; Forsh, P.A.; Rumyantseva, M.N.; Gaskov, A.M.; Kashkarov, P.K.

    2014-01-01

    The charge transport properties of nanocrystalline indium oxide (In 2 O 3 ) are studied. A number of nanostructured In 2 O 3 samples with various nanocrystal sizes are prepared by sol–gel method and characterized using various techniques. The mean nanocrystals size varies from 7–8 nm to 18–20 nm depending on the conditions of their preparation. Structural characterizations of the In 2 O 3 samples are performed by means of transmission electron microscopy and X-ray diffraction. The analysis of dc and ac conductivity in a wide temperature range (T = 50–300 K) shows that at high temperatures charge carrier transport takes place over conduction band and at low temperatures a variable range hopping transport mechanism can be observed. We find out that the temperature of transition from one mechanism to another depends on nanocrystal size: the transition temperature rises when nanocrystals are bigger in size. The average hopping distance between two sites and the activation energy are calculated basing on the analysis of dc conductivity at low temperature. Using random barrier model we show a uniform hopping mechanism taking place in our samples and conclude that nanocrystalline In 2 O 3 can be regarded as a disordered system. - Highlights: • In 2 O 3 samples with various nanocrystal sizes are prepared by sol–gel method. • The mean nanocrystal size varies from 7–8 nm to 18–20 nm. • At high temperatures charge carrier transport takes place over conduction band. • At low temperatures a variable range hopping transport mechanism can be observed. • We show a uniform hopping mechanism taking place in our samples

  19. Determination of Charge-Carrier Mobility in Disordered Thin-Film Solar Cells as a Function of Current Density

    Science.gov (United States)

    Mäckel, Helmut; MacKenzie, Roderick C. I.

    2018-03-01

    Charge-carrier mobility is a fundamental material parameter, which plays an important role in determining solar-cell efficiency. The higher the mobility, the less time a charge carrier will spend in a device and the less likely it is that it will be lost to recombination. Despite the importance of this physical property, it is notoriously difficult to measure accurately in disordered thin-film solar cells under operating conditions. We, therefore, investigate a method previously proposed in the literature for the determination of mobility as a function of current density. The method is based on a simple analytical model that relates the mobility to carrier density and transport resistance. By revising the theoretical background of the method, we clearly demonstrate what type of mobility can be extracted (constant mobility or effective mobility of electrons and holes). We generalize the method to any combination of measurements that is able to determine the mean electron and hole carrier density, and the transport resistance at a given current density. We explore the robustness of the method by simulating typical organic solar-cell structures with a variety of physical properties, including unbalanced mobilities, unbalanced carrier densities, and for high or low carrier trapping rates. The simulations reveal that near VOC and JSC , the method fails due to the limitation of determining the transport resistance. However, away from these regions (and, importantly, around the maximum power point), the method can accurately determine charge-carrier mobility. In the presence of strong carrier trapping, the method overestimates the effective mobility due to an underestimation of the carrier density.

  20. Charge carrier density in Li-intercalated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-05-01

    The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young\\'s modulus suggests that Li-intercalation increases the intrinsic stiffness. For decreasing Li-C interaction, the Dirac point shifts to the Fermi level and the associated band splitting vanishes. For Li-intercalated bilayer graphene on SiC(0 0 0 1) the splitting at the Dirac point is tiny. It is also very small at the two Dirac points of Li-intercalated trilayer graphene on SiC(0 0 0 1). For all the systems under study, a large enhancement of the charge carrier density is achieved by Li intercalation. © 2012 Elsevier B.V. All rights reserved.

  1. Intrinsic Charge Carrier Mobility in Single-Layer Black Phosphorus.

    Science.gov (United States)

    Rudenko, A N; Brener, S; Katsnelson, M I

    2016-06-17

    We present a theory for single- and two-phonon charge carrier scattering in anisotropic two-dimensional semiconductors applied to single-layer black phosphorus (BP). We show that in contrast to graphene, where two-phonon processes due to the scattering by flexural phonons dominate at any practically relevant temperatures and are independent of the carrier concentration n, two-phonon scattering in BP is less important and can be considered negligible at n≳10^{13}  cm^{-2}. At smaller n, however, phonons enter in the essentially anharmonic regime. Compared to the hole mobility, which does not exhibit strong anisotropy between the principal directions of BP (μ_{xx}/μ_{yy}∼1.4 at n=10^{13} cm^{-2} and T=300  K), the electron mobility is found to be significantly more anisotropic (μ_{xx}/μ_{yy}∼6.2). Absolute values of μ_{xx} do not exceed 250 (700)  cm^{2} V^{-1} s^{-1} for holes (electrons), which can be considered as an upper limit for the mobility in BP at room temperature.

  2. Charge carriers at organic heterojunction interface: Exciplex emission or electroplex emission?

    Science.gov (United States)

    Yang, Shengyi; Zhang, Xiulong; Hou, Yanbing; Deng, Zhenbo; Xu, Xurong

    2007-05-01

    We report the electroluminescence (EL) of organic heterojunction devices based on N ,N'-diphenyl-N ,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4',-diamine (TPD) and 2-(4'-biphenyl)-5-(4″-tert-butylphenyl)-1,3,4-oxadiazole (PBD). Besides monomolecular emissions from TPD, there are two additional EL peaks at around 460 and 480nm from the bilayer device indium tin oxide (ITO)/TPD(100nm )/PBD(45nm)/Al. Our experimental data confirmed that the EL emission maximized at around 460nm is from electroplex as the result of charge carriers cross recombination at the TPD/PBD interface and the EL emission maximized at around 480nm originates from (TPD*PBD)-type exciplex.

  3. Improved edge charge exchange recombination spectroscopy in DIII-D.

    Science.gov (United States)

    Chrystal, C; Burrell, K H; Grierson, B A; Haskey, S R; Groebner, R J; Kaplan, D H; Briesemeister, A

    2016-11-01

    The charge exchange recombination spectroscopy diagnostic on the DIII-D tokamak has been upgraded with the addition of more high radial resolution view chords near the edge of the plasma (r/a > 0.8). The additional views are diagnosed with the same number of spectrometers by placing fiber optics side-by-side at the spectrometer entrance with a precise separation that avoids wavelength shifted crosstalk without the use of bandpass filters. The new views improve measurement of edge impurity parameters in steep gradient, H-mode plasmas with many different shapes. The number of edge view chords with 8 mm radial separation has increased from 16 to 38. New fused silica fibers have improved light throughput and clarify the observation of non-Gaussian spectra that suggest the ion distribution function can be non-Maxwellian in low collisionality plasmas.

  4. Carrier recombination in mid-wave infrared InAs/InAsSb superlattices

    Science.gov (United States)

    Aytac, Yigit; Olson, Benjamin Varberg; Kim, Jin K.; Shaner, Eric A.; Hawkins, Sam D.; Klem, John F.; Flatté, Michael E.; Boggess, Thomas F.

    2014-03-01

    Measurements of carrier recombination rates using a temperature-dependent time-resolved differential transmission technique are reported for mid-wave infrared InAs / InAs1 - x Sbx type-2 superlattices (T2SLs). By engineering the layer widths and antimony compositions a 16K band-gap of ~ 238 meV was achieved for all five unintentionally doped T2SLs. Carrier recombination rates were determined for all five samples by fitting a rate equation model to the density and temperature dependent data. Minority-carrier lifetimes as long as 22 μs were measured at 14K, while lifetimes in excess of 2 μs were measured for all five samples at 200K. The minority-carrier lifetimes were observed to generally increase with increasing antimony content. While minority-carrier lifetimes are much longer than those observed in InAs/Ga(In)Sb T2SLs, Auger recombination processes were found to be more prominent in the Ga-free T2SLs. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This research was funded by the U.S. Government.

  5. Charge exchange recombination spectroscopy as a plasma diagnostic tool

    International Nuclear Information System (INIS)

    Fonck, R.J.

    1984-12-01

    Intensity and line profile measurements of the spectra of light hydrogenic ion which are excited by charge exchange reactions with fast neutral atoms are being widely used as diagnostics for fusion plasma research. This technique, which is referred to as charge exchange recombination spectroscopy, allows measurements of the densities of fully stripped impurity ions and particle transport coefficients with only minor uncertainties arising from atomic processes. The excitation of long wavelength transitions in light ions such as He + , C 5+ , and O 7+ allows relatively easy measurements of ion velocity distributions to determine ion temperatures and plasma rotation velocities. Among its advantages for such measurements are the facts that fiber optic coupling between a remote spectrometer and the immediate reactor environment is possible in many cases. The measurement is localized by the intersection region of a neutral beamline and viewing sightline, and intrinsic ions can be used so that injection of potentially perturbing impurities can be avoided. A particularly challenging application of this technique lies in the diagnosis of alpha particles expected to be produced in the present generation of Q approx. = 1 tokamak experiments

  6. Charge carrier transport properties in layer structured hexagonal boron nitride

    Directory of Open Access Journals (Sweden)

    T. C. Doan

    2014-10-01

    Full Text Available Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (˜ 6.4 eV, hexagonal boron nitride (hBN has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700 °K. The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of μ ∝ (T/T0−α with α = 3.02, satisfying the two-dimensional (2D carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ħω = 192 meV (or 1546 cm-1, which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.

  7. Recombiner

    International Nuclear Information System (INIS)

    Kikuchi, Nobuo.

    1983-01-01

    Purpose: To shorten the pre-heating time for a recombiner and obtain a uniform temperature distribution for the charged catalyst layer in a BWR type reactor. Constitution: A pre-heating heater is disposed to the outer periphery of a vessel for a recombiner packed with catalysts for recombining hydrogen and oxygen in gases flowing through a radioactive gaseous wastes processing system. Heat pipes for transmitting the heat applied to said container to the catalyst are disposed vertically and horizontally within the container. Different length of the heat pipes are combined. In this way, pre-heating time for the recombiner before the operation start and before the system switching can be shortened and the uniform pre-heating for the inside of the recombiner is also made possible. Further, heater control in the pre-heating can be carried out effectively and with ease. (Moriyama, K.)

  8. Drift of charge carriers in crystalline organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jingjuan; Si, Wei [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Wu, Chang-Qin, E-mail: cqw@fudan.edu.cn [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China)

    2016-04-14

    We investigate the direct-current response of crystalline organic semiconductors in the presence of finite external electric fields by the quantum-classical Ehrenfest dynamics complemented with instantaneous decoherence corrections (IDC). The IDC is carried out in the real-space representation with the energy-dependent reweighing factors to account for both intermolecular decoherence and energy relaxation by which conduction occurs. In this way, both the diffusion and drift motion of charge carriers are described in a unified framework. Based on an off-diagonal electron-phonon coupling model for pentacene, we find that the drift velocity initially increases with the electric field and then decreases at higher fields due to the Wannier-Stark localization, and a negative electric-field dependence of mobility is observed. The Einstein relation, which is a manifestation of the fluctuation-dissipation theorem, is found to be restored in electric fields up to ∼10{sup 5} V/cm for a wide temperature region studied. Furthermore, we show that the incorporated decoherence and energy relaxation could explain the large discrepancy between the mobilities calculated by the Ehrenfest dynamics and the full quantum methods, which proves the effectiveness of our approach to take back these missing processes.

  9. Modeling charge collection efficiency degradation in partially depleted GaAs photodiodes using the 1- and 2-carrier Hecht equations

    International Nuclear Information System (INIS)

    Auden, E.C.; Vizkelethy, G.; Serkland, D.K.; Bossert, D.J.; Doyle, B.L.

    2017-01-01

    The Hecht equation can be used to model the nonlinear degradation of charge collection efficiency (CCE) in response to radiation-induced displacement damage in both fully and partially depleted GaAs photodiodes. CCE degradation is measured for laser-generated photocurrent as a function of fluence and bias in Al_0_._3Ga_0_._7As/GaAs/Al_0_._2_5Ga_0_._7_5As p-i-n photodiodes which have been irradiated with 12 MeV C and 7.5 MeV Si ions. CCE is observed to degrade more rapidly with fluence in partially depleted photodiodes than in fully depleted photodiodes. When the intrinsic GaAs layer is fully depleted, the 2-carrier Hecht equation describes CCE degradation as photogenerated electrons and holes recombine at defect sites created by radiation damage in the depletion region. If the GaAs layer is partially depleted, CCE degradation is more appropriately modeled as the sum of the 2-carrier Hecht equation applied to electrons and holes generated within the depletion region and the 1-carrier Hecht equation applied to minority carriers that diffuse from the field-free (non-depleted) region into the depletion region. Enhanced CCE degradation is attributed to holes that recombine within the field-free region of the partially depleted intrinsic GaAs layer before they can diffuse into the depletion region.

  10. Modeling charge collection efficiency degradation in partially depleted GaAs photodiodes using the 1- and 2-carrier Hecht equations

    Energy Technology Data Exchange (ETDEWEB)

    Auden, E.C., E-mail: eauden@sandia.gov; Vizkelethy, G.; Serkland, D.K.; Bossert, D.J.; Doyle, B.L.

    2017-05-15

    The Hecht equation can be used to model the nonlinear degradation of charge collection efficiency (CCE) in response to radiation-induced displacement damage in both fully and partially depleted GaAs photodiodes. CCE degradation is measured for laser-generated photocurrent as a function of fluence and bias in Al{sub 0.3}Ga{sub 0.7}As/GaAs/Al{sub 0.25}Ga{sub 0.75}As p-i-n photodiodes which have been irradiated with 12 MeV C and 7.5 MeV Si ions. CCE is observed to degrade more rapidly with fluence in partially depleted photodiodes than in fully depleted photodiodes. When the intrinsic GaAs layer is fully depleted, the 2-carrier Hecht equation describes CCE degradation as photogenerated electrons and holes recombine at defect sites created by radiation damage in the depletion region. If the GaAs layer is partially depleted, CCE degradation is more appropriately modeled as the sum of the 2-carrier Hecht equation applied to electrons and holes generated within the depletion region and the 1-carrier Hecht equation applied to minority carriers that diffuse from the field-free (non-depleted) region into the depletion region. Enhanced CCE degradation is attributed to holes that recombine within the field-free region of the partially depleted intrinsic GaAs layer before they can diffuse into the depletion region.

  11. Effects of High Temperature and Thermal Cycling on the Performance of Perovskite Solar Cells: Acceleration of Charge Recombination and Deterioration of Charge Extraction

    KAUST Repository

    Sheikh, Arif D.

    2017-09-18

    In this work, we investigated the effects of high operating temperature and thermal cycling on the photovoltaic performance of perovskite solar cells (PSCs) with a typical mesostructured (m)-TiO2-CH3NH3PbI3-xClx-spiro-OMeTAD architecture. After carrying out temperature-dependent grazing incidence wide-angle X-ray scattering (GIWAXS), in-situ X-ray diffraction (XRD) and optical absorption experiments, thermal durability of PSCs was tested by subjecting the devices to repetitive heating to 70 °C and cooling to room temperature (20 °C). An unexpected regenerative effect was observed after the first thermal cycle; the average power conversion efficiency (PCE) increased by approximately 10 % in reference to the as-prepared device. This increase of PCE was attributed to the heating-induced improvement of crystallinity and p-doping in the hole-transporter, Spiro-OMeTAD, which promotes the efficient extraction of photo-generated carriers. However, further thermal cycles produced a detrimental effect on the photovoltaic performance of PSCs with short-circuit current and fill factor degrading faster than the open-circuit voltage. Similarly, the photovoltaic performance of PSCs degraded at high operation temperatures; both short-circuit current and open-circuit voltage decreased with increasing temperature, but the temperature-dependent trend of fill factor was opposite. Our impedance spectroscopy analysis revealed a monotonous increase of charge transfer resistance and a concurrent decrease of charge recombination resistance with increasing temperature, indicating high recombination of charge carriers. Our results revealed that both thermal cycling and high temperatures produce irreversible detrimental effects on the PSC performance due to the deteriorated interfacial photo-carrier extraction. The present findings suggest that development of robust charge transporters and proper interface engineering are critical for the deployment of perovskite photovoltaics in harsh

  12. Loss of heterozygosity and carrier identification in Duchenne muscular dystrophy: a familiar case with recombination event

    Directory of Open Access Journals (Sweden)

    Fonseca-Mendoza Dora Janeth

    2012-04-01

    Full Text Available Duchenne/Becker Muscular Dystrophy (DMD/BMD is an X-linked recessive disease characterizedby muscular weakness. It is caused by mutations on the dystrophin gen. Loss of heterozygosityallows us to identify female carriers of deletions on the dystrophin gen. Objective: identifyfemale carriers in a family with a patient affected by DMD. Material and methods: nine familymembers and the affected child were analyzed using DNA extraction and posterior amplificationof ten STRs on the dystrophin gen. Haplotypes were constructed and the carrier status determinedin two of the six women analyzed due to loss of heterozygosity in three STRs. Additionally, weobserved a recombination event. Conclusions: loss of heterozygosity allows us to establish witha certainty of 100% the carrier status of females with deletions on the dystrophin gen. By theconstruction of haplotypes we were able to identify the X chromosome with the deletion in twoof the six women analyzed. We also determined a recombination event in one of the sisters of theaffected child. These are described with a high frequency (12%. A possible origin for the mutationis a gonadal mosaicism in the maternal grandfather or in the mother of the affected childin a very early stage in embryogensis. This can be concluded using the analysis of haplotypes.

  13. Charge carrier dynamics of methylammonium lead iodide: from PbI₂-rich to low-dimensional broadly emitting perovskites.

    Science.gov (United States)

    Klein, Johannes R; Flender, Oliver; Scholz, Mirko; Oum, Kawon; Lenzer, Thomas

    2016-04-28

    We provide an investigation of the charge carrier dynamics of the (MAI)(x)(PbI2)(1-x) system in the range x = 0.32-0.90 following the recently published "pseudobinary phase-composition processing diagram" of Song et al. (Chem. Mater., 2015, 27, 4612). The dynamics were studied using ultrafast pump-supercontinuum probe spectroscopy over the pump fluence range 2-50 μJ cm(-2), allowing for a wide variation of the initial carrier density. At high MAI excess (x = 0.90), low-dimensional perovskites (LDPs) are formed, and their luminescence spectra are significantly blue-shifted by ca. 50 nm and broadened compared to the 3D perovskite. The shift is due to quantum confinement effects, and the inhomogeneous broadening arises from different low-dimensional structures (predominantly 2D, but presumably also 1D and 0D). Accurate transient carrier temperatures are extracted from the transient absorption spectra. The regimes of carrier-carrier, carrier-optical phonon and acoustic phonon scattering are clearly distinguished. Perovskites with mole fractions x ≤ 0.71 exhibit extremely fast carrier cooling (ca. 300 fs) at low fluence of 2 μJ cm(-2), however cooling slows down significantly at high fluence of 50 μJ cm(-2) due to the "hot phonon effect" (ca. 2.8 ps). A kinetic analysis of the electron-hole recombination dynamics provides second-order recombination rate constants k2 which decrease from 5.3 to 1.5 × 10(-9) cm(3) s(-1) in the range x = 0.32-0.71. In contrast, recombination in the LDPs (x = 0.90) is more than one order of magnitude faster, 6.4 × 10(-8) cm(3) s(-1), which is related to the confined perovskite structure. Recombination in these LDPs should be however still slow enough for their potential application as efficient broadband emitters or solar light-harvesting materials.

  14. Interfacial Engineering and Charge Carrier Dynamics in Extremely Thin Absorber Solar Cells

    Science.gov (United States)

    Edley, Michael

    Photovoltaic energy is a clean and renewable source of electricity; however, it faces resistance to widespread use due to cost. Nanostructuring decouples constraints related to light absorption and charge separation, potentially reducing cost by allowing a wider variety of processing techniques and materials to be used. However, the large interfacial areas also cause an increased dark current which negatively affects cell efficiency. This work focuses on extremely thin absorber (ETA) solar cells that used a ZnO nanowire array as a scaffold for an extremely thin CdSe absorber layer. Photoexcited electrons generated in the CdSe absorber are transferred to the ZnO layer, while photogenerated holes are transferred to the liquid electrolyte. The transfer of photoexcited carriers to their transport layer competes with bulk recombination in the absorber layer. After charge separation, transport of charge carriers to their respective contacts must occur faster than interfacial recombination for efficient collection. Charge separation and collection depend sensitively on the dimensions of the materials as well as their interfaces. We demonstrated that an optimal absorber thickness can balance light absorption and charge separation. By treating the ZnO/CdSe interface with a CdS buffer layer, we were able to improve the Voc and fill factor, increasing the ETA cell's efficiency from 0.53% to 1.34%, which is higher than that achievable using planar films of the same material. We have gained additional insight into designing ETA cells through the use of dynamic measurements. Ultrafast transient absorption spectroscopy revealed that characteristic times for electron injection from CdSe to ZnO are less than 1 ps. Electron injection is rapid compared to the 2 ns bulk lifetime in CdSe. Optoelectronic measurements such as transient photocurrent/photovoltage and electrochemical impedance spectroscopy were applied to study the processes of charge transport and interfacial recombination

  15. Magnetoresistance based determination of basic parameters of minority charge carriers in solid matter

    Directory of Open Access Journals (Sweden)

    Y.O. Uhryn

    2017-12-01

    Full Text Available Magnetoresistance as a tool of basic parameters determination of minority charge carriers and the ratio of minority charge carriers conductivity to majority ones in solid matter has been considered within the framework of the phenomenological two-band model. The criterion of the application of this model has been found. As examples of these equations usage the conductor, semiconductor and superconductor have been introduced. From the obtained temperature dependences of the aforementioned values in superconductor, a supposition of a deciding role of minority charge carriers in the emergence of superconductivity state has been made.

  16. Terahertz radiation from accelerating charge carriers in graphene under ultrafast photoexcitation

    Science.gov (United States)

    Rustagi, Avinash; Stanton, C. J.

    2016-11-01

    We study the generation of terahertz (THz) radiation from the acceleration of ultrafast photoexcited charge carriers in graphene in the presence of a dc electric field. Our model is based on calculating the transient current density from the time-dependent distribution function which is determined using the Boltzmann transport equation (BTE) within a relaxation time approximation. We include the time-dependent generation of carriers by the pump pulse by solving for the carrier generation rate using the optical Bloch equations in the rotating wave approximation (RWA). The linearly polarized pump pulse generates an anisotropic distribution of photoexcited carriers in the kx-ky plane. The collision integral in the Boltzmann equation includes a term that leads to the thermalization of carriers via carrier-carrier scattering to an effective temperature above the lattice temperature, as well as a cooling term, which leads to energy relaxation via inelastic carrier-phonon scattering. The radiated signal is proportional to the time derivative of the transient current density. In spite of the fact that the magnitude of the velocity is the same for all the carriers in graphene, there is still emitted radiation from the photoexcited charge carriers with frequency components in the THz range due to a change in the direction of velocity of the photoexcited carriers in the external electric field as well as cooling of the photoexcited carriers on a subpicosecond time scale.

  17. Relationship between defect density and charge carrier transport in amorphous and microcrystalline silicon

    International Nuclear Information System (INIS)

    Astakhov, Oleksandr; Carius, Reinhard; Finger, Friedhelm; Petrusenko, Yuri; Borysenko, Valery; Barankov, Dmytro

    2009-01-01

    The influence of dangling-bond defects and the position of the Fermi level on the charge carrier transport properties in undoped and phosphorous doped thin-film silicon with structure compositions all the way from highly crystalline to amorphous is investigated. The dangling-bond density is varied reproducibly over several orders of magnitude by electron bombardment and subsequent annealing. The defects are investigated by electron-spin-resonance and photoconductivity spectroscopies. Comparing intrinsic amorphous and microcrystalline silicon, it is found that the relationship between defect density and photoconductivity is different in both undoped materials, while a similar strong influence of the position of the Fermi level on photoconductivity via the charge carrier lifetime is found in the doped materials. The latter allows a quantitative determination of the value of the transport gap energy in microcrystalline silicon. The photoconductivity in intrinsic microcrystalline silicon is, on one hand, considerably less affected by the bombardment but, on the other hand, does not generally recover with annealing of the defects and is independent from the spin density which itself can be annealed back to the as-deposited level. For amorphous silicon and material prepared close to the crystalline growth regime, the results for nonequilibrium transport fit perfectly to a recombination model based on direct capture into neutral dangling bonds over a wide range of defect densities. For the heterogeneous microcrystalline silicon, this model fails completely. The application of photoconductivity spectroscopy in the constant photocurrent mode (CPM) is explored for the entire structure composition range over a wide variation in defect densities. For amorphous silicon previously reported linear correlation between the spin density and the subgap absorption is confirmed for defect densities below 10 18 cm -3 . Beyond this defect level, a sublinear relation is found i.e., not

  18. Charge carrier dynamics investigation of CuInS{sub 2} quantum dots films using injected charge extraction by linearly increasing voltage (i-CELIV): the role of ZnS Shell

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Ke; Sui, Ning; Zhang, Liquan; Wang, Yinghui, E-mail: yinghui-wang@outlook.com; Liu, Qinghui, E-mail: liuqinghui@jlu.edu.cn; Tan, Mingrui [Jilin University, Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics (China); Zhou, Qiang [Jilin University, Key Laboratory of Superhard Materials, College of Physics (China); Zhang, Hanzhuang, E-mail: zhanghz@jlu.edu.cn [Jilin University, Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics (China)

    2016-12-15

    The role of ZnS shell on the photo-physical properties within CuInS{sub 2}/ZnS quantum dots (QDs) is carefully studied in optoelectronic devices. Linearly increasing voltage technique has been employed to investigate the charge carrier dynamics of both CuInS{sub 2} and CuInS{sub 2}/ZnS QDs films. This study shows that charge carriers follow a similar behavior of monomolecular recombination in this film, with their charge transfer rate correlates to the increase of applied voltage. It turns out that the ZnS shell could affect the carrier diffusion process through depressing the trapping states and would build up a potential barrier.

  19. Reduced Charge Transfer Exciton Recombination in Organic Semiconductor Heterojunctions by Molecular Doping

    NARCIS (Netherlands)

    Deschler, Felix; Da Como, Enrico; Limmer, Thomas; Tautz, Raphael; Godde, Tillmann; Bayer, Manfred; von Hauff, Elizabeth; Yilmaz, Seyfullah; Allard, Sybille; Scherf, Ullrich; Feldmann, Jochen

    2011-01-01

    We investigate the effect of molecular doping on the recombination of electrons and holes localized at conjugated-polymer–fullerene interfaces. We demonstrate that a low concentration of p-type dopant molecules (<4% weight) reduces the interfacial recombination via charge transfer excitons and

  20. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang [Columbia Univ., New York, NY (United States); Frisbie, Daniel [Univ. of Minnesota, Minneapolis, MN (United States)

    2017-03-31

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering.

  1. Mobility of delocalized charge carriers in an ideal homopolar glass as a function of temperature

    International Nuclear Information System (INIS)

    Iskra, V.D.

    1986-01-01

    The relationship between temperature and the mobility of delocalized charge carriers for an intrinsic random field of a homopolar glass is investigated through application of a method of scattering amplitude calculation based on employing short-lived potential factorization

  2. Importance of polaron effects for charge carrier mobility above and ...

    Indian Academy of Sciences (India)

    Orifjon Ganiev

    2017-05-30

    May 30, 2017 ... sizes and effective masses are large polarons. According ... nating metallic and insulating domains with mobile ... The mobile polaronic carriers are con- ..... [51] T Kondo, Y Hamaya, A D Palczewski, T Takeuchi, J S Wen,.

  3. Charge and excitation dynamics in semiconducting polymer layers doped with emitters and charge carrier traps; Ladungstraeger- und Anregungsdynamik in halbleitenden Polymerschichten mit eingemischten Emittern und Ladungstraegerfallen

    Energy Technology Data Exchange (ETDEWEB)

    Jaiser, F

    2006-06-15

    Light-emitting diodes generate light from the recombination of injected charge carriers. This can be obtained in inorganic materials. Here, it is necessary to produce highly ordered crystalline structures that determine the properties of the device. Another possibility is the utilization of organic molecules and polymers. Based on the versatile organic chemistry, it is possible to tune the properties of the semiconducting polymers already during synthesis. In addition, semiconducting polymers are mechanically flexible. Thus, it is possible to construct flexible, large-area light sources and displays. The first light-emitting diode using a polymer emitter was presented in 1990. Since then, this field of research has grown rapidly up to the point where first products are commercially available. It has become clear that the properties of polymer light-emitting diodes such as color and efficiency can be improved by incorporating multiple components inside the active layer. At the same time, this gives rise to new interactions between these components. While components are often added either to improve the charge transport or to change the emission, it has to made sure that other processes are not influenced in a negative manner. This work investigates some of these interactions and describes them with simple physical models. First, blue light-emitting diodes based on polyfluorene are analyzed. This polymer is an efficient emitter, but it is susceptible to the formation of chemical defects that can not be suppressed completely. These defects form electron traps, but their effect can be compensated by the addition of hole traps. The underlying process, namely the changed charge carrier balance, is explained. In the following, blend systems with dendronized emitters that form electron traps are investigated. The different influence of the insulating shell on the charge and energy transfer between polymer host and the emissive core of the dendrimers is examined. In the

  4. Charge transport in disordered organic host-guest systems: effects of carrier density and electric field

    NARCIS (Netherlands)

    Yimer, Y.Y.; Bobbert, P.A.; Coehoorn, R.

    2008-01-01

    We investigate charge transport in disordered organic host–guest systems with a bimodal Gaussian density of states (DOS). The energy difference between the two Gaussians defines the trap depth. By solving the Pauli master equation for the hopping of charge carriers on a regular lattice with site

  5. Charge transport in disordered organic host-guest systems: effects of carrier density and electric field

    NARCIS (Netherlands)

    Yimer, Y.Y.; Bobbert, P.A.; Coehoorn, R.

    2009-01-01

    We investigate charge transport in disordered organic host–guest systems with a bimodal Gaussian density of states. The energy difference between the peaks of the two Gaussians defines the trap depth. By solving the Pauli master equation for the hopping of charge carriers on a regular lattice we

  6. Study of charge-carrier relaxation in a disordered organic semiconductor by simulating impedance spectroscopy

    NARCIS (Netherlands)

    Mesta, M.; Cottaar, J.; Coehoorn, R.; Bobbert, P.A.

    2014-01-01

    Impedance spectroscopy is a very sensitive probe of nonstationary charge transport governed by charge-carrier relaxation in devices of disordered organic semiconductors. We simulate impedance spectroscopy measurements of hole-only devices of a polyfluorene-based disordered organic semiconductor by

  7. The state of itinerant charge carriers and thermoelectric effects in correlated oxide metals

    International Nuclear Information System (INIS)

    Kuzemsky, A.L.; Abdus Salam International Centre for Theoretical Physics, Trieste

    2000-10-01

    We analyzed the physics of transport processes and, in particular, the thermoelectric power in the mercurocuprates and other cuprates to get a better insight into the state of the carriers in these compounds. The actual problems related to the complicated mechanisms of carriers scattering above Tc are discussed. The experimental studies of thermoelectric power showed that the state of carriers in cuprates can be influenced by many complicated scattering processes, however the underlying mechanism for the linear decreasing of the TEP with increasing the temperature for most hole-doped HTSC cuprates is still not yet known. The actual problems related to the complicated mechanisms of carriers scattering above Tc are discussed for a few models of charge transport. A comparison between the analytical and experimental results is also made. It is concluded that the crucial factor for the understanding of the transport properties of correlated oxide metals is the nature of itinerant charge carriers, i.e. renormalized quasiparticles. (author)

  8. Drift of nonequilibrium charge carriers in GaAs-crystals with traps in ultrasonic fields

    International Nuclear Information System (INIS)

    Zaveryukhina, N.N.; Zaveryukhin, B.N.; Zaveryukhina, E.B.

    2007-01-01

    Full text: The drift of nonequilibrium charge carriers in a semiconductor is one of the basic processes determining the efficiency of semiconductor photodetectors. Gallium arsenide possesses certain advantages to other semiconductors in this respect, which allow GaAs-photodetectors to be obtained which possess the maximum efficiency in comparison with all other systems. The purpose of this study was to deepen and expand our knowledge about the acoustic-drift processes in GaAs- crystals. As is known, the drift of nonequilibrium charge carriers in a semiconductor is determined either by external electric fields and/or by internal (built-in) electrostatic fields related to an impurity concentration gradient in the semiconductor. Gallium arsenide is a piezoelectric semiconductor with a structure possessing no center of symmetry. An electric field applied to such a crystal produces deformation of the crystal, and vice versa, any deformation of the crystal leads to the appearance of an induced electric field. Therefore, investigation of the effect of deformation on the drift of nonequilibrium charge carriers is a very important task. One of the possible straining factors is ultrasonic wave. Interaction of the charge carriers with ultrasonic waves in piezo-semiconductors is mediated by piezo exertion. Straining a semiconductor by an ultrasonic wave field gives rise to a force acting upon the charge carriers, which is proportional to the wave vector and the piezoelectric constant of the crystal. The physics of interaction between an ultrasonic wave and nonequilibrium charge carriers in GaAs, as well as in non-polar semiconductors (Si, Ge), consists in the energy and momentum exchange between the wave and the carriers. Besides the ultrasonic waves interact with the traps of carriers and devastate them. These both acoustic effects lead to rise of amplitude of signal of GaAs-photodetectors. (authors)

  9. Charge-reversal nanoparticles: novel targeted drug delivery carriers.

    Science.gov (United States)

    Chen, Xinli; Liu, Lisha; Jiang, Chen

    2016-07-01

    Spurred by significant progress in materials chemistry and drug delivery, charge-reversal nanocarriers are being developed to deliver anticancer formulations in spatial-, temporal- and dosage-controlled approaches. Charge-reversal nanoparticles can release their drug payload in response to specific stimuli that alter the charge on their surface. They can elude clearance from the circulation and be activated by protonation, enzymatic cleavage, or a molecular conformational change. In this review, we discuss the physiological basis for, and recent advances in the design of charge-reversal nanoparticles that are able to control drug biodistribution in response to specific stimuli, endogenous factors (changes in pH, redox gradients, or enzyme concentration) or exogenous factors (light or thermos-stimulation).

  10. Revealing charge carrier dynamics in squaraine:[6, 6]-phenyl-C 71-butyric acid methyl ester based organic solar cells

    Science.gov (United States)

    Rana, Aniket; Sharma, Chhavi; Prabhu, Deepak D.; Kumar, Mahesh; Karuvath, Yoosaf; Das, Suresh; Chand, Suresh; Singh, Rajiv K.

    2018-04-01

    Ultrafast charge carrier dynamics as well as the generation of polaron pair in squaraine (SQ) and squaraine:[6,6]-phenyl-C 71-butyric acid methyl ester (SQ:PCBM71) have been studied using ultrafast transient absorption spectroscopy (UTAS). The current study reveals that the pure SQ exhibits the creation of singlet and triplet states; however, incorporation of PCBM71 in SQ results in the formation of polaron pairs with ˜550ps lifetime, which in turn leads to the creation of free electrons in the device. We show that the considerable increment in monomolecular and bimolecular recombination in SQ:PCBM71 compared to pure SQ which describes the interfacial compatibility of SQ and PCBMC71 molecules. The present work not only provides the information about the carrier generation in SQ and SQ:PCBM71 but also gives the facts relating to the effect of PCBM71 mixing into the SQ which is very significant because the SQ has donor-acceptor-donor (D-A-D) structure and mixing one more acceptor can introduce more complex recombinations in the blend. These findings have been complimented by the charge transport study in the device using impedance spectroscopy. The various important transport parameters are transit time (τt), diffusion constant (Dn), global mobility (μ) and carrier lifetime (τr). The values of these parameters are 26.38 μs, 4.64x10-6 cm2s-1, 6.12x10-6 cm2V-1s-1 and 399 μs, respectively. To the best of our knowledge such study related to SQ is not present in the literature comprehensively.

  11. Poly(silylene)s: Charge carrier photogeneration and transport

    Czech Academy of Sciences Publication Activity Database

    Nešpůrek, Stanislav; Eckhardt, A.

    2001-01-01

    Roč. 12, č. 7 (2001), s. 427-440 ISSN 1042-7147 R&D Projects: GA AV ČR IAA4050603; GA AV ČR IAA1050901; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : charge photogeneration * charge-transfer * ion-pair Subject RIV: CC - Organic Chemistry Impact factor: 0.701, year: 2001

  12. Charge Recombination, Transport Dynamics, and Interfacial Effects in Organic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Heeger, Alan [Univ. of California, Santa Barbara, CA (United States); Bazan, Guillermo [Univ. of California, Santa Barbara, CA (United States); Nguyen, Thuc-Quyen [Univ. of California, Santa Barbara, CA (United States); Wudl, Fred [Univ. of California, Santa Barbara, CA (United States)

    2015-02-12

    The need for renewable sources of energy is well known. Conversion of sunlight to electricity using solar cells is one of the most important opportunities for creating renewable energy sources. The research carried out under DE-FG02-08ER46535 focused on the science and technology of “Plastic” solar cells comprised of organic (i.e. carbon based) semiconductors. The Bulk Heterojunction concept involves a phase separated blend of two organic semiconductors each with dimensions in the nano-meter length scale --- one a material that functions as a donor for electrons and the other a material that functions as an acceptor for electrons. The nano-scale inter-penetrating network concept for “Plastic” solar cells was created at UC Santa Barbara. A simple measure of the impact of this concept can be obtained from a Google search which gives 244,000 “hits” for the Bulk Heterojunction solar cell. Research funded through this program focused on four major areas: 1. Interfacial effects in organic photovoltaics, 2. Charge transfer and photogeneration of mobile charge carriers in organic photovoltaics, 3. Transport and recombination of the photogenerated charge carriers in organic photovoltaics, 4. Synthesis of novel organic semiconducting polymers and semiconducting small molecules, including conjugated polyelectrolytes. Following the discovery of ultrafast charge transfer at UC Santa Barbara in 1992, the nano-organic (Bulk Heterojunction) concept was formulated. The need for a morphology comprising two interpenetrating bicontinuous networks was clear: one network to carry the photogenerated electrons (negative charge) to the cathode and one network to carry the photo-generated holes (positive charge) to the anode. This remarkable self-assembled network morphology has now been established using Transmission electron Microscopy (TEM) either in the Phase Contrast mode or via TEM-Tomography. The steps involved in delivering power from a solar cell to an external circuit

  13. Dynamics of photoexcited carrier relaxation and recombination in CdTe/CdS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Levi, D.H.; Fluegel, B.D.; Ahrenkiel, R.K. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    Efficiency-limiting defects in photovoltaic devices are readily probed by time-resolved spectroscopy. This paper presents the first direct optical measurements of the relaxation and recombination pathways of photoexcited carriers in the CdS window layer of CdTe/CdS polycrystalline thin films. Femtosecond time-resolved pump/probe measurements indicate the possible existence of a two-phase CdS/CdSTe layer, rather than a continuously graded alloy layer at the CdTe/CdS interface. Complementary time-resolved photoluminescence (PL) measurements show that the photoexcited carriers are rapidly captured by deep-level defects. The temporal and density-dependent properties of the photoluminescence prove that the large Stokes shift of the PL relative to the band edge is due to strong phonon coupling to deep-level defects in CdS. The authors suggest that modifications in the CdS processing may enhance carrier collection efficiency in the blue spectral region.

  14. Radiative recombination of highly charged ions: Enhanced rates at low energies

    International Nuclear Information System (INIS)

    Frank, A.; Mueller, A.; Haselbauer, J.; Schennach, S.; Spies, W.; Uwira, O.; Wagner, M.

    1992-01-01

    In a single-pass merged-beams experiment employing a dense cold electron target recombination of highly charged ions is studied. Unexpected high recombination rates are observed at low energies E cm in the electron-ion center-of-mass frame. In particular, theoretical estimates for radiative recombination are dramatically exceeded by the experimental recombination rates at E cm =0 eV for U 28+ and for Au 25+ ions. Considerable rate enhancement is also observed for Ar 15+ . This points to a general phenomenon which has to be interpreted as a consequence of high electron densities, low electron beam temperatures, high ion charge states and presence of strong magnetic fields. (orig.)

  15. [Study on the movement of the carrier recombination region in organic light-emitting diodes (OLEDs) based on DPVBi/Alq3].

    Science.gov (United States)

    Yan, Guang; Zhao, Su-ling; Xu, Zheng; Zhang, Fu-jun; Kong, Chao; Liu, Xiao-dong; Gong, Wei; Gao, Li-yan

    2011-07-01

    Series of organic light emitting devices with basic structure of ITO/PCBM: PVK(x Wt%, approximately 40 nm)/DPVBi(30 nm)/Alq3 (30 nm)/Al were fabricated in order to investigate the carrier recombination region movement in these devices. The carrier injection-dependent, the carrier transport-dependent and the voltage-dependent carrier recombination region movements were investigated respectively by modifying cathode with lithium fluoride, by changing the doping concentration of PCBM and by changing the voltage on the devices. The physical mechanism behind the voltage-dependent carrier recombination region movement was discussed.

  16. Supermolecular structure and charge carriers mobilities of perylene diimides

    Energy Technology Data Exchange (ETDEWEB)

    Marcon, Valentina; Pisula, Wojtek; Andrienko, Denis [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany); Kirkpatrick, James [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany); Department of Physics, Imperial College London, London (United Kingdom)

    2008-07-01

    Perylene diimides form columnar phases, where the molecules stack on top of each other and the columns arrange in a regular lattice. The self-organization into well-ordered columns results in the one-dimensional charge transport along the stack of the aromatic cores of the molecules. Most of the discotic molecules which organize in columns are p-type semiconductors, while the class of rylene diimide molecules, to which perylene belongs, forms n-type organic semiconductors. Using atomistic molecular dynamics (MD) simulations we study the columnar phases of perylene diimides and establish correlations between the molecular structure, packing, and dynamical properties of these materials. By using a scheme which combines electronic structure calculations, MD and kinetic Monte Carlo simulations, a correlation is then established between the molecular structure and charge mobility of perylenes columnar mesophases.

  17. Lifetime of charge carriers in intrinsic indium antimonide

    International Nuclear Information System (INIS)

    Bruhns, H.; Kruse, H.

    1980-01-01

    The lifetime of additional photoinjected electron-hole pairs in intrinsic InSb at 291 K is investigated by measuring the photoconductive (PC) decay. Apart from studying the usual PC-decay an arangement is used with superimposed magnetic field transverse to the electric field. Depending on the direction of the magnetic field the photoinjected plasma is either driven into the sample's bulk or travels parallel to the illuminated surface. The Auger-lifetime is evaluated from the measurements by a numerical magnetohydrodynamical simulation taking into account surface recombination as well as the Suhl profile of the intrinsic plasma. A lifetime of tau = (57+-3) ns is found which is independent of the magnetic field up to 2.3 T. (author)

  18. Charge carrier mobility in thin films of organic semiconductors by the gated van der Pauw method

    Science.gov (United States)

    Rolin, Cedric; Kang, Enpu; Lee, Jeong-Hwan; Borghs, Gustaaf; Heremans, Paul; Genoe, Jan

    2017-01-01

    Thin film transistors based on high-mobility organic semiconductors are prone to contact problems that complicate the interpretation of their electrical characteristics and the extraction of important material parameters such as the charge carrier mobility. Here we report on the gated van der Pauw method for the simple and accurate determination of the electrical characteristics of thin semiconducting films, independently from contact effects. We test our method on thin films of seven high-mobility organic semiconductors of both polarities: device fabrication is fully compatible with common transistor process flows and device measurements deliver consistent and precise values for the charge carrier mobility and threshold voltage in the high-charge carrier density regime that is representative of transistor operation. The gated van der Pauw method is broadly applicable to thin films of semiconductors and enables a simple and clean parameter extraction independent from contact effects. PMID:28397852

  19. Interplay Between Side Chain Pattern, Polymer Aggregation, and Charge Carrier Dynamics in PBDTTPD:PCBM Bulk-Heterojunction Solar Cells

    KAUST Repository

    Dyer-Smith, Clare

    2015-05-01

    Poly(benzo[1,2-b:4,5-b′]dithiophene–alt–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymer donors with linear side-chains yield bulk-heterojunction (BHJ) solar cell power conversion efficiencies (PCEs) of about 4% with phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor, while a PBDTTPD polymer with a combination of branched and linear substituents yields a doubling of the PCE to 8%. Using transient optical spectroscopy it is shown that while the exciton dissociation and ultrafast charge generation steps are not strongly affected by the side chain modifications, the polymer with branched side chains exhibits a decreased rate of nongeminate recombination and a lower fraction of sub-nanosecond geminate recombination. In turn the yield of long-lived charge carriers increases, resulting in a 33% increase in short circuit current (J sc). In parallel, the two polymers show distinct grazing incidence X-ray scattering spectra indicative of the presence of stacks with different orientation patterns in optimized thin-film BHJ devices. Independent of the packing pattern the spectroscopic data also reveals the existence of polymer aggregates in the pristine polymer films as well as in both blends which trap excitons and hinder their dissociation.

  20. Effects of collisions on level populations and dielectronic recombination rates of multiply charged ions

    International Nuclear Information System (INIS)

    Jacobs, V.L.; Davis, J.

    1978-01-01

    A generalization of previously reported statistical theories is developed for determining the excited-level populations and the ionization-recombination balance of multiply charged atomic ions in an optically thin high-temperature plasma. Account is taken of the most important collisional and radiative processes involving bound and autoionizing levels in three consecutive ionization stages. We obtain a set of rate equations for the population densities of the low-lying levels which contains effective excitation, ionization, and recombination rates describing indirect transitions through the more highly excited bound and autoionizing levels. The familiar corona-model equations for the ground-state populations are recovered by making the assumption that all excited states decay by only spontaneous radiative or autoionization processes. When collisional processes become efficient in depopulating the highly excited levels important in dielectronic recombination, the effective rate of recombination must be described by a collisional-dielectronic recombination coefficient. Results of calculations are presented for the collisional-dielectronic recombination rate coefficients for recombination of Fe +8 --Fe +13 ions. At an electron density of 10 16 cm -3 , dielectronic recombination is still the dominant recombination process. However, the collisional-dielectronic recombination rate coefficients are found to be reduced by about an order of magnitude from their corona-model values due to the effects of multiple-collisional excitations on the populations of the highly excited bound levels of the recombined ion. The dielectronic recombination rates into these highly excited levels are found to be enhanced by the effects of collisionally induced angular momentum redistribution on the populations of the autoionizing levels

  1. Charge collection efficiency in ionization chambers operating in the recombination and saturation regimes

    International Nuclear Information System (INIS)

    Chabod, Sebastien P.

    2009-01-01

    We solve the electric charge transport equations in the recombination and saturation regimes using an iterative perturbation method. We then calculate the charge collection efficiencies of ionization chambers. The formulae obtained are presented in the form of series for which we calculate the first coefficients. Our approach allows to account for the spatial as well as the temporal variations of the primary charge density N(r,t) in the calculations. Finally, we apply our method to study different density patterns, N, including the textbook case N=N 0 δ(t) and the charge clusters and columns.

  2. Charge-carrier selective electrodes for organic bulk heterojunction solar cell by contact-printed siloxane oligomers

    International Nuclear Information System (INIS)

    Hwang, Hyun-Sik; Khang, Dahl-Young

    2015-01-01

    ‘Smart’ (or selective) electrode for charge carriers, both electrons and holes, in organic bulk-heterojunction (BHJ) solar cells using insertion layers made of hydrophobically-recovered and contact-printed siloxane oligomers between electrodes and active material has been demonstrated. The siloxane oligomer insertion layer has been formed at a given interface simply by conformally-contacting a cured slab of polydimethylsiloxane stamp for less than 100 s. All the devices, either siloxane oligomer printed at one interface only or printed at both interfaces, showed efficiency enhancement when compared to non-printed ones. The possible mechanism that is responsible for the observed efficiency enhancement has been discussed based on the point of optimum symmetry and photocurrent analysis. Besides its simplicity and large-area applicability, the demonstrated contact-printing technique does not involve any vacuum or wet processing steps and thus can be very useful for the roll-based, continuous production scheme for organic BHJ solar cells. - Highlights: • Carrier-selective insertion layer in organic bulk heterojunction solar cells • Simple contact-printing of siloxane oligomers improves cell efficiency. • Printed siloxane layer reduces carrier recombination at electrode surfaces. • Siloxane insertion layer works equally well at both electrode surfaces. • Patterned PDMS stamp shortens the printing time within 100 s

  3. Magnetic susceptibility of free charge carriers in bismuth tellurides (Bi2Te3)

    International Nuclear Information System (INIS)

    Guha Thakurta, S.R.; Dutta, A.K.

    1977-01-01

    Principal magnetic susceptibilities of both p- and n-type Bi 2 Te 3 crystals have been measured over the range of temperature 90 deg K to 650 deg K. The observed susceptibilities are diamagnetic and temperature dependent. This temperature dependence has been attributed to the contribution of the free charge carriers to the susceptibilities. From the observed susceptibilities the carrier-susceptibilities have been separately obtained which are found to be paramagnetic. From the total carrier-susceptibilities, the susceptibilities of the carriers which are thermally liberated in the intrinsic region have been separated. From an analysis of the carrier-susceptibilities the band gap and its temperature coefficient have been found out and these compare favourably with those obtained from electrical measurements. (author)

  4. Hopping mobility of charge carriers in polymers in the earliest stages after their generation

    International Nuclear Information System (INIS)

    Tyutnev, A.P.; Subbotin, A.V.; Chekunaev, N.I.

    1989-01-01

    It has been found that both the photo- and the radiation conductivity of a number of polymers (primarily polyvinylcarbazole, polystyrene, and polyethylene terephthalate) are of a molecular nature, and movement of the generated charge carriers is by a hopping and not by a band mechanism. Analytical expressions for the instantaneous effective mobility and effective displacement of charge carriers in a unitary electric field were obtained in the approximation of isolated pairs of nearest neighbors for four species (monoenergetic, exponential, Gaussian, and bilevel) of energy application of hopping sites randomly distributed in space. Problems of the application of these expressions to real polymers are discussed on the example of polyvinylcarbazole

  5. Efficient photogeneration of charge carriers in silicon nanowires with a radial doping gradient

    International Nuclear Information System (INIS)

    Murthy, D H K; Houtepen, A J; Savenije, T J; Siebbeles, L D A; Xu, T; Nys, J P; Krzeminski, C; Grandidier, B; Stievenard, D; Chen, W H; Pareige, P; Jomard, F; Patriarche, G; Lebedev, O I

    2011-01-01

    by performing electrodeless time-resolved microwave conductivity measurements, the efficiency of charge carrier generation, their mobility, and the decay kinetics on photoexcitation were studied in arrays of Si nanowires grown by the vapor-liquid-solid mechanism. Large enhancements in the magnitude of the photoconductance and charge carrier lifetime are found depending on the incorporation of impurities during the growth. They are explained by the internal electric field that builds up, due to higher doped sidewalls, as revealed by detailed analysis of the nanowire morphology and chemical composition.

  6. Enhancing Charge Carrier Lifetime in Metal Oxide Photoelectrodes through Mild Hydrogen Treatment

    KAUST Repository

    Jang, Ji-Wook

    2017-08-25

    Widespread application of solar water splitting for energy conversion is largely dependent on the progress in developing not only efficient but also cheap and scalable photoelectrodes. Metal oxides, which can be deposited with scalable techniques and are relatively cheap, are particularly interesting, but high efficiency is still hindered by the poor carrier transport properties (i.e., carrier mobility and lifetime). Here, a mild hydrogen treatment is introduced to bismuth vanadate (BiVO4), which is one of the most promising metal oxide photoelectrodes, as a method to overcome the carrier transport limitations. Time-resolved microwave and terahertz conductivity measurements reveal more than twofold enhancement of the carrier lifetime for the hydrogen-treated BiVO4, without significantly affecting the carrier mobility. This is in contrast to the case of tungsten-doped BiVO4, although hydrogen is also a donor type dopant in BiVO4. The enhancement in carrier lifetime is found to be caused by significant reduction of trap-assisted recombination, either via passivation or reduction of deep trap states related to vanadium antisite on bismuth or vanadium interstitials according to density functional theory calculations. Overall, these findings provide further insights on the interplay between defect modulation and carrier transport in metal oxides, which benefit the development of low-cost, highly-efficient solar energy conversion devices.

  7. Influence of packing motives on charge Carrier mobility in perylene tetracarboxdiimide derivatives

    Energy Technology Data Exchange (ETDEWEB)

    May, Falk; Andrienko, Denis [Max-Planck Institute for Polymer Research, Mainz (Germany); Marcon, Valentina [Center of Smart Interfaces, Darmstadt (Germany)

    2010-07-01

    Discotic mesophases are known for their ability to self-assemble into columnar structures and can serve as semiconducting molecular wires. Charge carrier mobility along these wires strongly depends on molecular packing which is controlled by intermolecular interactions. In this work we compare the influence of side chains on the packing motives of perylene tetracarboxdiimide (PDI) derivatives. Two different (alkyl and glycol) side chains are considered. We first establish how the packing of side chains affects the molecular orientation within the columns using molecular dynamics. Then, using the high temperature non-adiabatic limit of Marcus theory for hopping rates and solving the rate equation for charge transport, we analyze the link between the secondary structure and charge carrier mobility. This analysis eventually provides a pathway to rational design of columnar assemblies of PDI derivatives with high charge mobilities.

  8. Photogeneration of free charge carriers in .pi.-conjugated polymers with bulky side groups

    Czech Academy of Sciences Publication Activity Database

    Menšík, Miroslav; Jex, M.; Pfleger, Jiří; Jung, J.

    2012-01-01

    Roč. 404, 24 August (2012), s. 48-55 ISSN 0301-0104 R&D Projects: GA ČR(CZ) GAP205/10/2280; GA MŠk(CZ) OC10007 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : photogeneration of free charge carriers * charge transfer states * localized excitation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.957, year: 2012

  9. Modelling of the charge carrier mobility in disordered linear polymer materials

    Czech Academy of Sciences Publication Activity Database

    Toman, Petr; Menšík, Miroslav; Bartkowiak, W.; Pfleger, Jiří

    2017-01-01

    Roč. 19, č. 11 (2017), s. 7760-7771 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA15-05095S Grant - others:AV ČR(CZ) M200501204 Program:M Institutional support: RVO:61389013 Keywords : charge carrier mobility * conjugated polymer * charge transport modelling Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 4.123, year: 2016

  10. The Welsh Single-Use Carrier Bag Charge and behavioural spillover

    OpenAIRE

    Thomas, Gregory O.; Poortinga, Wouter; Sautkina, Elena

    2016-01-01

    A Single-Use Carrier Bag Charge (SUCBC) requires bags to be sold for a small fee, instead of free of charge. SUCBCs may produce ‘spillover’ effects, where other pro-environmental attitudes and behaviours could increase or decrease. We investigate the 2011 Welsh SUCBC, and whether spillover occurs in other behaviours and attitudes. Using the Understanding Society Survey (n = 17,636), results show that use of own shopping bags increased in Wales, compared to England and Scotland. Increased use ...

  11. Electronic properties of the charge carriers on oligofluorene backbone

    International Nuclear Information System (INIS)

    Koizumi, Yoshiko; Seki, Shu; Saeki, Akinori; Tagawa, Seiichi

    2007-01-01

    The transient absorption of radical anions and cations of 9,9'-di-n-hexyl-oligofluorene was measured using pulse radiolysis and low-temperature γ-radiolysis techniques. The infrared absorption maxima of both radical anions and cations exhibit red-shift continuously upon elongation of the chain length. The absorption bands are blue-shifted by 0.04-0.07 eV with increasing the temperature from 80 to 106 K. The extinction coefficients were determined by scavenging technique, demonstrating an increase with the elongation of the chain length. The optimized geometry of fluorene trimers, calculated using density functional theory, shows that the oligofluorene molecules are more planar in its charged state than in its neutral state

  12. Exciton-dissociation and charge-recombination processes in pentacene/C60 solar cells: theoretical insight into the impact of interface geometry.

    Science.gov (United States)

    Yi, Yuanping; Coropceanu, Veaceslav; Brédas, Jean-Luc

    2009-11-04

    The exciton-dissociation and charge-recombination processes in organic solar cells based on pentacene/C(60) heterojunctions are investigated by means of quantum-mechanical calculations. The electronic couplings and the rates of exciton dissociation and charge recombination have been evaluated for several geometrical configurations of the pentacene/C(60) complex, which are relevant to bilayer and bulk heterojunctions. The results suggest that, irrespective of the actual pentacene-fullerene orientation, both pentacene-based and C(60)-based excitons are able to dissociate efficiently. Also, in the case of parallel configurations of the molecules at the pentacene/C(60) interface, the decay of the lowest charge-transfer state to the ground state is calculated to be very fast; as a result, it can compete with the dissociation process into mobile charge carriers. Since parallel configurations are expected to be found more frequently in bulk heterojunctions than in bilayer heterojunctions, the performance of pentacene/C(60) bulk-heterojunction solar cells is likely to be more affected by charge recombination than that of bilayer devices.

  13. Exciton-Dissociation and Charge-Recombination Processes in Pentacene/C 60 Solar Cells: Theoretical Insight into the Impact of Interface Geometry

    KAUST Repository

    Yi, Yuanping

    2009-11-04

    The exciton-dissociation and charge-recombination processes in organic solar cells based on pentacene/C60 heterojunctions are investigated by means of quantum-mechanical calculations. The electronic couplings and the rates of exciton dissociation and charge recombination have been evaluated for several geometrical configurations of the pentacene/C60 complex, which are relevant to bilayer and bulk heterojunctions. The results suggest that, irrespective of the actual pentacene-fullerene orientation, both pentacene-based and C60-based excitons are able to dissociate efficiently. Also, in the case of parallel configurations of the molecules at the pentacene/C60 interface, the decay of the lowest charge-transfer state to the ground state is calculated to be very fast; as a result, it can compete with the dissociation process into mobile charge carriers. Since parallel configurations are expected to be found more frequently in bulk heterojunctions than in bilayer heterojunctions, the performance of pentacene/C60 bulk-heterojunction solar cells is likely to be more affected by charge recombination than that of bilayer devices. © 2009 American Chemical Society.

  14. Mechanism of the free charge carrier generation in the dielectric breakdown

    Science.gov (United States)

    Rahim, N. A. A.; Ranom, R.; Zainuddin, H.

    2017-12-01

    Many studies have been conducted to investigate the effect of environmental, mechanical and electrical stresses on insulator. However, studies on physical process of discharge phenomenon, leading to the breakdown of the insulator surface are lacking and difficult to comprehend. Therefore, this paper analysed charge carrier generation mechanism that can cause free charge carrier generation, leading toward surface discharge development. Besides, this paper developed a model of surface discharge based on the charge generation mechanism on the outdoor insulator. Nernst’s Planck theory was used in order to model the behaviour of the charge carriers while Poisson’s equation was used to determine the distribution of electric field on insulator surface. In the modelling of surface discharge on the outdoor insulator, electric field dependent molecular ionization was used as the charge generation mechanism. A mathematical model of the surface discharge was solved using method of line technique (MOL). The result from the mathematical model showed that the behaviour of net space charge density was correlated with the electric field distribution.

  15. Theoretical modeling of influence of the structural disorder on the charge carrier mobility in triphenylene stacks

    Czech Academy of Sciences Publication Activity Database

    Mikolajczyk, M.; Toman, Petr; Bartkowiak, W.

    2010-01-01

    Roč. 485, 1-3 (2010), s. 253-257 ISSN 0009-2614 R&D Projects: GA MŠk MEB050815; GA AV ČR IAA401770601 Institutional research plan: CEZ:AV0Z40500505 Keywords : triphenylene * charge carrier mobility * tight-binding approximation Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.282, year: 2010

  16. The generation of charge carriers in semi conductors – A theoretical study

    CSIR Research Space (South Africa)

    Kiarii, EM

    2017-04-01

    Full Text Available , vol. 678: 167-176 The generation of charge carriers in semi conductors – A theoretical study Kiarii EM Govender, Krishna K Ndungu PG Govender PG ABSTRACT: A systematic study of electronic and optical properties of titanium dioxide under...

  17. Free-carrier-compensated charged domain walls produced with super-bandgap illumination in insulating ferroelectrics

    Czech Academy of Sciences Publication Activity Database

    Bednyakov, Petr; Sluka, T.; Tagantsev, A.; Damjanovic, D.; Setter, N.

    2016-01-01

    Roč. 28, č. 43 (2016), s. 9498-9503 ISSN 0935-9648 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : super-bandgap illumination * charged domain walls * ferroelectric BaTiO 3 * free-carrier generation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 19.791, year: 2016

  18. Ab initio theory of charge-carrier conduction in ultrapure organic crystals

    NARCIS (Netherlands)

    Hannewald, K.; Bobbert, P.A.

    2004-01-01

    We present an ab initio description of charge-carrier mobilities in organic molecular crystals of high purity. Our approach is based on Holstein's original concept of small-polaron bands but generalized with respect to the inclusion of nonlocal electron-phonon coupling. By means of an explicit

  19. Influence of injected charge carriers on photocurrents in polymer solar cells

    NARCIS (Netherlands)

    Wehenkel, D.J.; Koster, L.J.A.; Wienk, M.M.; Janssen, R.A.J.

    2012-01-01

    We determine and analyze the photocurrent Jph in polymer solar cells under conditions where, no, one, or two different charge carriers can be injected by choosing appropriate electrodes and compare the experimental results to simulations based on a drift-diffusion device model that accounts for

  20. Determination of charge carrier mobility in doped low density polyethylene using DC transients

    DEFF Research Database (Denmark)

    Khalil, M.Salah; Henk, Peter O; Henriksen, Mogens

    1989-01-01

    Charge carrier mobility was determined for plain and doped low-density polyethylene (LDPE) using DC transient currents. Barium titanate was used as a strongly polar dopant and titanium dioxide as a semiconductor dopant. The values of the mobility obtained were on the order of 10-10 cm2 v-1 s-1...

  1. Hall mobility of free charge carriers in highly compensated p-Germanium

    International Nuclear Information System (INIS)

    Gavrilyuk, V.Yi.; Kirnas, Yi.G.; Balakyin, V.D.

    2000-01-01

    Hall mobility of free charge carriers in initial detectors Ge (Ga) is studied. It is established that an increase in the compensation factor results in the enlargement of Hall mobility in germanium highly compensated by introduction of Li ions during their drift in an electrical field

  2. The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes.

    Science.gov (United States)

    Villanueva-Cab, J; Anta, J A; Oskam, G

    2016-01-28

    We report on the commonly unaccounted for process of recombination under short-circuit conditions in nanostructured photoelectrodes with special attention to the charge collection efficiency. It is observed that when recombination under short circuit conditions is significant, small perturbation methods overestimate the charge-collection efficiency, which is related to the inaccurate determination of the electron diffusion coefficient and diffusion length.

  3. Extraction of Poloidal Velocity from Charge Exchange Recombination Spectroscopy Measurements

    International Nuclear Information System (INIS)

    Solomon, W.M.; Burrell, K.H.; Gohil, P.; Groebner, R.J.; Baylor, L.R.

    2004-01-01

    A novel approach has been implemented on DIII-D to allow the correct determination of the plasma poloidal velocity from charge exchange spectroscopy measurements. Unlike usual techniques, the need for detailed atomic physics calculations to properly interpret the results is alleviated. Instead, the needed atomic physics corrections are self-consistently determined directly from the measurements, by making use of specially chosen viewing chords. Modeling results are presented that were used to determine a set of views capable of measuring the correction terms. We present the analysis of a quiescent H-mode discharge, illustrating that significant modifications to the velocity profiles are required in these high ion temperature conditions. We also present preliminary measurements providing the first direct comparison of the standard cross-section correction to the atomic physics calculations

  4. Variation of minority charge carrier lifetime in high-resistance p-type silicon under irradiation

    International Nuclear Information System (INIS)

    Basheleishvili, Z.V.; Garnyk, V.S.; Gorin, S.N.; Pagava, T.A.

    1984-01-01

    The minority carrier lifetime (tau) variation was studied in the process of p-type silicon bombardment with fast 8 MeV electrons. The irradiation and all measurements were carried out at room temperature. The tau quantity was measured by the photoconductivity attenuation method at a low injection level 20% measurement error; the resistivity was measured by the four-probe method (10% error). The resistivity and minority charge carrier lifetime tau are shown to increase with the exposure dose. It is supposed that as radiation dose increases, the rearrangement of the centres responsible for reducing the lifetime occurs and results in a tau increase in the material being irradiated, however the tau value observed in the original samples is not attained. The restoration of the minority carrier lifetime in p-type high-resistance silicon with a growing exposure dose might proceed due to reduction in the free carrier concentration

  5. Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fengjiao [Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Ave. Urbana IL 61801 USA; Dai, Xiaojuan [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 P. R. China; Zhu, Weikun [Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Ave. Urbana IL 61801 USA; Chung, Hyunjoong [Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Ave. Urbana IL 61801 USA; Diao, Ying [Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Ave. Urbana IL 61801 USA

    2017-05-10

    Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C8-benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This paper further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor–acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall.

  6. Studies of the mobility of charge carriers in low-dimensional systems in a transverse DC electric field

    Energy Technology Data Exchange (ETDEWEB)

    Sinyavskii, E. P., E-mail: sinyavskii@gmail.com [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of); Karapetyan, S. A., E-mail: karapetyan.sa@gmail.com [Shevchenko Pridnestrovskii State University (Moldova, Republic of)

    2011-08-15

    The mobility of charge carriers {mu} in a parabolic quantum well in an electric field E directed along the size-confinement axis is calculated. With consideration for scattering of charge carriers at a rough surface, the mobility {mu} is shown to decrease with increasing E. A physical interpretation of this effect is proposed.

  7. The effect of ketone defects on the charge transport and charge recombination in polyfluorenes

    NARCIS (Netherlands)

    Kuik, M.; Wetzelaer, G.-J.A.H.; Laddé, J.G.; Nicolai, H.T.; Wildeman, J.; Sweelssen, J.; Blom, P.W.M.

    2011-01-01

    The effect of on-chain ketone defects on the charge transport of the polyfluorene derivative poly(9,9-dioctylfluorene) (PFO) is investigated. Using MoO3 as ohmic hole contact, the hole transport in a pristine PFO diode is observed to be limited by space-charge, whereas fluorenone contaminated PFO

  8. The Effect of Ketone Defects on the Charge Transport and Charge Recombination in Polyfluorenes

    NARCIS (Netherlands)

    Kuik, Martijn; Wetzelaer, Gert-Jan A. H.; Ladde, Jurre G.; Nicolai, Herman T.; Wildeman, Jurjen; Sweelssen, Jorgen; Blom, Paul W. M.; Sweelssen, Jörgen

    2011-01-01

    The effect of on-chain ketone defects on the charge transport of the polyfluorene derivative poly(9,9-dioctylfluorene) (PFO) is investigated. Using MoO3 as ohmic hole contact, the hole transport in a pristine PFO diode is observed to be limited by space-charge, whereas fluorenone contaminated PFO

  9. Thermal generation and mobility of charge carriers in collective proton transport in hydrogen-bonded chains

    International Nuclear Information System (INIS)

    Peyrard, M.; Boesch, R.; Kourakis, I.

    1991-01-01

    The transport of protons in hydrogen-bonded systems is a long standing problem which has not yet obtained a satisfactorily theoretical description. Although this problem was examined first for ice, it is relevant in many systems and in particular in biology for the transport along proteins or for proton conductance across membranes, an essential process in cell life. The broad relevance makes the study of proton conduction very appealing. Since the original work of Bernal and Fowler on ice, the idea that the transport occurs through chains of hydrogen bonds has been well accepted. Such ''proton wires'' were invoked by Nagle and Morowitz for proton transport across membranes proteins and more recently across lipid bilayers. In this report, we assume the existence of such an hydrogen-bonded chain and discuss its consequences on the dynamics of the charge carriers. We show that this assumption leads naturally to the idea of soliton transport and we put a special emphasis on the role of the coupling between the protons and heavy ions motions. The model is presented. We show how the coupling affects strongly the dynamics of the charge carriers and we discuss the role it plays in the thermal generation of carriers. The work presented has been performed in 1986 and 87 with St. Pnevmatikos and N. Flyzanis and was then completed in collaboration with D. Hochstrasser and H. Buettner. Therefore the results presented in this part are not new but we think that they are appropriate in the context of this multidisciplinary workshop because they provide a rather complete example of the soliton picture for proton conduction. This paper discusses the thermal generation of the charge carriers when the coupling between the protons and heavy ions dynamics is taken into account. The results presented in this part are very recent and will deserve further analysis but they already show that the coupling can assist for the formation of the charge carriers

  10. Quantitative description of charge-carrier transport in a white organic light-emitting diode

    Science.gov (United States)

    Schober, M.; Anderson, M.; Thomschke, M.; Widmer, J.; Furno, M.; Scholz, R.; Lüssem, B.; Leo, K.

    2011-10-01

    We present a simulation model for the analysis of charge-carrier transport in organic thin-film devices, and apply it to a three-color white hybrid organic light-emitting diode (OLED) with fluorescent blue and phosphorescent red and green emission. We simulate a series of single-carrier devices, which reconstruct the OLED layer sequence step by step. Thereby, we determine the energy profiles for hole and electron transport, show how to discern bulk from interface limitation, and identify trap states.

  11. Measuring the lateral charge-carrier mobility in metal-insulator-semiconductor capacitors via Kelvin-probe.

    Science.gov (United States)

    Milotti, Valeria; Pietsch, Manuel; Strunk, Karl-Philipp; Melzer, Christian

    2018-01-01

    We report a Kelvin-probe method to investigate the lateral charge-transport properties of semiconductors, most notably the charge-carrier mobility. The method is based on successive charging and discharging of a pre-biased metal-insulator-semiconductor stack by an alternating voltage applied to one edge of a laterally confined semiconductor layer. The charge carriers spreading along the insulator-semiconductor interface are directly measured by a Kelvin-probe, following the time evolution of the surface potential. A model is presented, describing the device response for arbitrary applied biases allowing the extraction of the lateral charge-carrier mobility from experimentally measured surface potentials. The method is tested using the organic semiconductor poly(3-hexylthiophene), and the extracted mobilities are validated through current voltage measurements on respective field-effect transistors. Our widely applicable approach enables robust measurements of the lateral charge-carrier mobility in semiconductors with weak impact from the utilized contact materials.

  12. Measuring the lateral charge-carrier mobility in metal-insulator-semiconductor capacitors via Kelvin-probe

    Science.gov (United States)

    Milotti, Valeria; Pietsch, Manuel; Strunk, Karl-Philipp; Melzer, Christian

    2018-01-01

    We report a Kelvin-probe method to investigate the lateral charge-transport properties of semiconductors, most notably the charge-carrier mobility. The method is based on successive charging and discharging of a pre-biased metal-insulator-semiconductor stack by an alternating voltage applied to one edge of a laterally confined semiconductor layer. The charge carriers spreading along the insulator-semiconductor interface are directly measured by a Kelvin-probe, following the time evolution of the surface potential. A model is presented, describing the device response for arbitrary applied biases allowing the extraction of the lateral charge-carrier mobility from experimentally measured surface potentials. The method is tested using the organic semiconductor poly(3-hexylthiophene), and the extracted mobilities are validated through current voltage measurements on respective field-effect transistors. Our widely applicable approach enables robust measurements of the lateral charge-carrier mobility in semiconductors with weak impact from the utilized contact materials.

  13. Photoexcited carrier trapping and recombination at Fe centers in GaN

    International Nuclear Information System (INIS)

    Uždavinys, T. K.; Marcinkevičius, S.; Leach, J. H.; Evans, K. R.; Look, D. C.

    2016-01-01

    Fe doped GaN was studied by time-resolved photoluminescence (PL) spectroscopy. The shape of PL transients at different temperatures and excitation powers allowed discrimination between electron and hole capture to Fe"3"+ and Fe"2"+ centers, respectively. Analysis of the internal structure of Fe ions and intra-ion relaxation rates suggests that for high repetition rates of photoexciting laser pulses the electron and hole trapping takes place in the excited state rather than the ground state of Fe ions. Hence, the estimated electron and hole capture coefficients of 5.5 × 10"−"8 cm"3/s and 1.8 × 10"−"8 cm"3/s should be attributed to excited Fe"3"+ and Fe"2"+ states. The difference in electron capture rates determined for high (MHz) and low (Hz) (Fang et al., Appl. Phys. Lett. 107, 051901 (2015)) pulse repetition rates may be assigned to the different Fe states participating in the carrier capture. A weak temperature dependence of the electron trapping rate shows that the potential barrier for the multiphonon electron capture is small. A spectral feature observed at ∼420 nm is assigned to the radiative recombination of an electron in the ground Fe"2"+ state and a bound hole.

  14. Experimental investigation of the excess charge and time constant of minority carriers in the thin diffused layer of 0.1 Ohm-cm silicon solar cells

    Science.gov (United States)

    Godlewski, M. P.; Brandhorst, H. W., Jr.; Lindholm, F. A.; Sah, C. T.

    1976-01-01

    The observed low open-circuit voltage in 0.1 Ohm-cm solar cells is probably related to an excessively high diode saturation current. Theoretical studies conducted by Lindholm et al. (1975) and by Godlewski et al. (1975) have shown that a high saturation current could be produced by either high recombination rates or bandgap narrowing effects. A description is given of an investigation which shows that bandgap narrowing effects have a first order significance in determining the charge carrier transport controlling the open-circuit voltage of 0.1 Ohm-cm silicon solar cells.

  15. Effect of degree of order of silicon dioxide on localization processes of non-equilibrium charge carriers under the influence of gamma-radiation

    CERN Document Server

    Garibov, A A; Agaev, T N

    1999-01-01

    The effect of the degree of order of SiO sub 2 on the localization process of non-equilibrium charge carriers (NCC) when exposed to gamma-quanta at 77 K has been investigated. It has been found that with decreasing SiO sub 2 structure degree of order, a localization probability of NCC increases. A contribution of surface defect states in SiO sub 2 to localization, migration and recombination annihilation processes of NCC induced by ionizing radiation has been determined.

  16. Charge exchange as a recombination mechanism in high-temperature plasmas

    International Nuclear Information System (INIS)

    Hulse, R.A.; Post, D.E.; Mikkelsen, D.R.

    1980-03-01

    Charge exchange with neutral hydrogen is examined as a recombination mechanism for multi-charged impurity ions present in high-temperature fusion plasmas. At sufficiently low electron densities, fluxes of atomic hydrogen produced by either the injection of neutral heating beams or the background of thermal neutrals can yield an important or even dominant recombination process for such ions. Equilibrium results are given for selected impurity elements showing the altered ionization balance and radiative cooling rate produced by the presence of various neutral populations. A notable result is that the stripping of impurities to relatively non-radiative ionization states with increasing electron temperature can be postponed or entirely prevented by the application of intense neutral beam heating power. A time dependent calculation modelling the behavior of iron in recent PLT tokamak high power neutral beam heating experiments is also presented

  17. The thermoballistic transport model a novel approach to charge carrier transport in semiconductors

    CERN Document Server

    Lipperheide, Reinhard

    2014-01-01

    The book presents a comprehensive survey of the thermoballistic approach to charge carrier transport in semiconductors. This semi-classical approach, which the authors have developed over the past decade, bridges the gap between the opposing drift-diffusion and ballistic  models of carrier transport. While incorporating basic features of the latter two models, the physical concept underlying the thermoballistic approach constitutes a novel, unifying scheme. It is based on the introduction of "ballistic configurations" arising from a random partitioning of the length of a semiconducting sample into ballistic transport intervals. Stochastic averaging of the ballistic carrier currents over the ballistic configurations results in a position-dependent thermoballistic current, which is the key element of the thermoballistic concept and forms  the point of departure for the calculation of all relevant transport properties. In the book, the thermoballistic concept and its implementation are developed in great detai...

  18. Charge trapping and carrier transport mechanism in silicon-rich silicon oxynitride

    International Nuclear Information System (INIS)

    Yu Zhenrui; Aceves, Mariano; Carrillo, Jesus; Lopez-Estopier, Rosa

    2006-01-01

    The charge-trapping and carrier transport properties of silicon-rich silicon oxynitride (SRO:N) were studied. The SRO:N films were deposited by low pressure chemical vapor deposition. Infrared (IR) and transmission electron microscopic (TEM) measurements were performed to characterize their structural properties. Capacitance versus voltage and current versus voltage measurements (I-V) were used to study the charge-trapping and carrier transport mechanism. IR and TEM measurements revealed the existence of Si nanodots in SRO:N films. I-V measurements revealed that there are two conduction regimes divided by a threshold voltage V T . When the applied voltage is smaller than V T , the current is dominated by the charge transfer between the SRO:N and substrate; and in this regime only dynamic charging/discharging of the SRO:N layer is observed. When the voltage is larger than V T , the current increases rapidly and is dominated by the Poole-Frenkel mechanism; and in this regime, large permanent trapped charge density is obtained. Nitrogen incorporation significantly reduced the silicon nanodots or defects near the SRO:N/Si interface. However, a significant increase of the density of silicon nanodot in the bulk of the SRO:N layer is obtained

  19. Towards high charge carrier mobilities by rational design of organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Andrienko, Denis; Ruehle, Victor; Baumeier, Bjoern; Vehoff, Thorsten; Lukyanov, Alexander; Kremer, Kurt [Max Planck Institute for Polymer Research, Mainz (Germany); Marcon, Valentina [Technische Universitaet Darmstadt (Germany); Kirkpatrick, James; Nelson, Jenny [Imperial College London (United Kingdom); Lennartz, Christian [BASF AG, Ludwigshafen (Germany)

    2010-07-01

    The role of material morphology on charge carrier mobility in partially disordered organic semiconductors is discussed for several classes of materials: derivatives of hexabenzocoronenens, perylenediimides, triangularly-shaped polyaromatic hydrocarbons, and Alq{sub 3}. Simulations are performed using a package developed by Imperial College, London and Max Planck Institute for Polymer Research, Mainz (votca.org). This package combines several techniques into one scheme: quantum chemical methods for the calculation of molecular electronic structures and reorganization energies; molecular dynamics and systematic coarse-graining approaches for simulation of self-assembly and relative positions and orientations of molecules on large scales; kinetic Monte Carlo and master equation for studies of charge transport.

  20. Transient Zitterbewegung of charge carriers in mono- and bilayer graphene, and carbon nanotubes

    International Nuclear Information System (INIS)

    Rusin, Tomasz M.; Zawadzki, Wlodek

    2007-01-01

    Observable effects due to trembling motion [Zitterbewegung (ZB)] of charge carriers in bilayer graphene, monolayer graphene, and carbon nanotubes are calculated. It is shown that, when the charge carriers are prepared in the form of Gaussian wave packets, the ZB has a transient character with the decay time of femtoseconds in graphene and picoseconds in nanotubes. Analytical results for bilayer graphene allow us to investigate phenomena which accompany the trembling motion. In particular, it is shown that the transient character of ZB in graphene is due to the fact that wave subpackets related to positive and negative electron energies move in opposite directions, so their overlap diminishes with time. This behavior is analogous to that of the wave packets representing relativistic electrons in a vacuum

  1. Molecular control of photoexcited charge transfer and recombination at a quaterthiophene/zinc oxide interface

    International Nuclear Information System (INIS)

    Mou Weiwei; Nakano, Aiichiro; Ohmura, Satoshi; Shimojo, Fuyuki

    2012-01-01

    Nonadiabatic quantum molecular dynamics simulations are performed to study photoexcited charge transfer (CT) and charge recombination (CR) at an interface between a conjugated oligomer donor, quaterthiophene (QT), and an inorganic acceptor (ZnO). Simulations reveal a detrimental effect of static disorder in QT conformation on the efficiency of hybrid QT/ZnO solar cells due to increased CR. On the contrary, dynamic disorder (i.e., fluctuation of carbon-hydrogen bonds in QT) is essential for high efficiency by assisting CT. The separate controllability of CT and CR at the molecular level has impacts on molecular design for efficient solar cells and explains recent experimental observations.

  2. The influence of morphology on charge transport/recombination dynamics in planar perovskite solar cells

    Science.gov (United States)

    Yu, Man; Wang, Yi; Wang, Hao-Yi; Han, Jun; Qin, Yujun; Zhang, Jian-Ping; Ai, Xi-Cheng

    2016-10-01

    The photovoltaic performance of planar perovskite solar cell is significantly influenced by the morphology of perovskite film. In this work, five kinds of devices with different perovskite film morphologies were prepared by varying the concentration of CH3NH3Cl in precursor solutions. We found that best morphology of perovskite film results in the excellent photovoltaic performance with an average efficiency of 15.52% and a champion efficiency of 16.38%. Transient photovoltage and photocurrent measurements are performed to elucidate the mechanism of photoelectric conversion processes, which shows that the charge recombination is effectively suppressed and the charge transport is obviously promoted by optimized morphology.

  3. Measurement on the emission of charge exchange recombination in HT-6M tokamak

    International Nuclear Information System (INIS)

    Xu Wei; Wan Baonian

    1999-01-01

    The distribution of C VI line (at 207.1 nm) and the time behavior has been measured with Optical Spectroscope Multichannel Analyzer and single channel near ultra-violet system in HT-6M Tokamak. The result of the analysis of line shape and the time behavior show that C VI line (at 207.1 nm) stemmed from the emission of charge exchange recombination processes

  4. A neural network for the analysis of DIII-D charge exchange recombination data

    International Nuclear Information System (INIS)

    Baker, D.R.; Groebner, R.J.; Burrell, K.H.

    1994-01-01

    A neural network of the multiple-layer perceptron (MLP) type, named CERNEUR, has been created for the task of analysing the charge exchange recombination data from DIII-D for the purpose of providing control-room ion temperatures and rotation velocities between shots and, in the future, to provide initial guesses for the standard curve-fitting code. CERNEUR provides very useful 'control-room' in-between shot analysis of the rotation velocity and ion temperature profiles. (author)

  5. Grain Boundaries Act as Solid Walls for Charge Carrier Diffusion in Large Crystal MAPI Thin Films.

    Science.gov (United States)

    Ciesielski, Richard; Schäfer, Frank; Hartmann, Nicolai F; Giesbrecht, Nadja; Bein, Thomas; Docampo, Pablo; Hartschuh, Achim

    2018-03-07

    Micro- and nanocrystalline methylammonium lead iodide (MAPI)-based thin-film solar cells today reach power conversion efficiencies of over 20%. We investigate the impact of grain boundaries on charge carrier transport in large crystal MAPI thin films using time-resolved photoluminescence (PL) microscopy and numerical model calculations. Crystal sizes in the range of several tens of micrometers allow for the spatially and time resolved study of boundary effects. Whereas long-ranged diffusive charge carrier transport is observed within single crystals, no detectable diffusive transport occurs across grain boundaries. The observed PL transients are found to crucially depend on the microscopic geometry of the crystal and the point of observation. In particular, spatially restricted diffusion of charge carriers leads to slower PL decay near crystal edges as compared to the crystal center. In contrast to many reports in the literature, our experimental results show no quenching or additional loss channels due to grain boundaries for the studied material, which thus do not negatively affect the performance of the derived thin-film devices.

  6. Charge-carrier dynamics in polycrystalline thin-film CuIn{sub 1−x}Ga{sub x}Se{sub 2} photovoltaic devices after pulsed laser excitation: Interface and space-charge region analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuciauskas, Darius; Li, Jian V.; Kanevce, Ana; Guthrey, Harvey; Contreras, Miguel; Pankow, Joel; Dippo, Pat; Ramanathan, Kannan [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401-3305 (United States)

    2015-05-14

    We used time-resolved photoluminescence (TRPL) spectroscopy to analyze time-domain and spectral-domain charge-carrier dynamics in CuIn{sub 1−x}Ga{sub x}Se{sub 2} (CIGS) photovoltaic (PV) devices. This new approach allowed detailed characterization for the CIGS/CdS buffer interface and for the space-charge region. We find that dynamics at the interface is dominated by diffusion, where the diffusion rate is several times greater than the thermionic emission or interface recombination rate. In the space-charge region, the electric field of the pn junction has the largest effect on the carrier dynamics. Based on the minority-carrier (electron) drift-rate dependence on the electric field strength, we estimated drift mobility in compensated CuIn{sub 1−x}Ga{sub x}Se{sub 2} (with x ≈ 0.3) as 22 ± 2 cm{sup 2}(Vs){sup −1}. Analysis developed in this study could be applied to evaluate interface and junction properties of PV and other electronic devices. For CIGS PV devices, TRPL spectroscopy could contribute to understanding effects due to absorber compositional grading, which is one of the focus areas in developing record-efficiency CIGS solar cells.

  7. Correction: The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes.

    Science.gov (United States)

    Villanueva-Cab, J; Anta, J A; Oskam, G

    2016-05-28

    Correction for 'The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes' by J. Villanueva-Cab et al., Phys. Chem. Chem. Phys., 2016, 18, 2303-2308.

  8. Spin-polarization dependent carrier recombination dynamics and spin relaxation mechanism in asymmetrically doped (110) n-GaAs quantum wells

    Science.gov (United States)

    Teng, Lihua; Jiang, Tianran; Wang, Xia; Lai, Tianshu

    2018-05-01

    Carrier recombination and electron spin relaxation dynamics in asymmetric n-doped (110) GaAs/AlGaAs quantum wells are investigated with time-resolved pump-probe spectroscopy. The experiment results reveal that the measured carrier recombination time depends strongly on the polarization of pump pulse. With the same pump photon flux densities, the recombination time of spin-polarized carriers is always longer than that of the spin-balanced carriers except at low pump photon flux densities, this anomaly originates from the polarization-sensitive nonlinear absorption effect. Differing from the traditional views, in the low carrier density regime, the D'yakonov-Perel' (DP) mechanism can be more important than the Bir-Aronov-Pikus (BAP) mechanism, since the DP mechanism takes effect, the spin relaxation time in (110) GaAs QWs is shortened obviously via asymmetric doping.

  9. Quantum electrodynamic theory of recombination of an electron with a highly charged ion

    International Nuclear Information System (INIS)

    Shabaev, V.M.

    1994-01-01

    The consequent quantum electrodynamic theory of the process of the recombination of an electron with a multicharged ion is considered. The reduction technique for the calculation of this process by perturbation theory is formulated. The process of the recombination of an electron with a very highly charged one-electron ion for the case of resonance with the doubly excited (2s,2s) 0 , (2p 1/2 ,2p 1/2 ) 0 , (2s,2p 1/2 ) 0,1 states is studied. The formulas for the cross section of the process are derived for two possible versions of the experiment. The interference between the radiative-recombination process and the dielectronic-recombination (DR) process, and the interference between the DR amplitudes for the levels with the identical quantum numbers [(2s,2s) 0 , (2p 1/2 ) 0 ] are taken into account. The deviation of the shape of the resonances from the Lorentz one, due to the interference terms, is discussed

  10. Kinetics of photo-activated charge carriers in Sn:CdS

    Energy Technology Data Exchange (ETDEWEB)

    Patidar, Manju Mishra, E-mail: manjumishra.iuc@gmail.com; Gorli, V. R.; Gangrade, Mohan; Nath, R.; Ganesan, V. [UGC-DAE CSR, University Campus, Khandwa Road, Indore (M.P.)-452001 (India); Panda, Richa [S.S. Jain Subodh Girls College, Airport Road Sanganer, Jaipur - 302029 (India)

    2016-05-23

    Kinetics of the photo-activated charge carriers has been investigated in Tin substituted Cadmium Sulphide, Cd{sub 1-x}Sn{sub x}S (x=0, 0.05, 0.10 and 0.15), thin films prepared by spray pyrolysis. X-Ray Diffraction shows an increase in strain that resulted in the decreased crystallite size upon Sn substitution. At the first sight, the photo current characteristics show a quenching effect on Sn substitution. However, survival of persistent photocurrents is seen even up to 15% of Sn substitution. Transient photo current decay could be explained with a 2τ relaxation model. CdS normally has an n-type character and the Sn doping expected to inject hole carriers. The two fold increase in τ{sub 1}, increase in activation energy and the decrease in photocurrents upon Sn substitution point towards a band gap cleaning scenario that include compensation and associated carrier injection dynamics. In addition Atomic Force Microscopy shows a drastic change in microstructure that modulates the carrier dynamics as a whole.

  11. Phase separation in strongly correlated electron systems with two types of charge carriers

    International Nuclear Information System (INIS)

    Kugel, K.I.; Rakhmanov, A.L.; Sboychakov, A.O.

    2007-01-01

    Full text: A competition between the localization of the charge carriers due to Jahn-Teller distortions and the energy gain due to their delocalization in doped manganite and related magnetic oxides is analyzed based on a Kondo-lattice type model. The resulting effective Hamiltonian is, in fact, a generalization of the Falicov-Kimball model. We find that the number of itinerant charge carriers can be significantly lower than that implied by the doping level x. The phase diagram of the model in the T plane is constructed. The system exhibits magnetic ordered (antiferromagnetic, ferromagnetic, or canted) states as well the paramagnetic states with zero and nonzero density of the itinerant electrons. It is shown that a phase-separation is favorable in energy for a wide doping range. The characteristic size of inhomogeneities in a phase-separated state is of the order of several lattice constants. We also analyzed the two-band Hubbard model in the limit of strong on-site Coulomb repulsion. It was shown that such a system has a tendency to phase separation into the regions with different charge densities even in the absence of magnetic or any other ordering, if the ratio of the bandwidths is large enough. The work was supported by the European project CoMePhS and by the Russian Foundation for Basic Research, project no. 05-02-17600. (authors)

  12. Electrical control of charged carriers and excitons in atomically thin materials

    Science.gov (United States)

    Wang, Ke; De Greve, Kristiaan; Jauregui, Luis A.; Sushko, Andrey; High, Alexander; Zhou, You; Scuri, Giovanni; Taniguchi, Takashi; Watanabe, Kenji; Lukin, Mikhail D.; Park, Hongkun; Kim, Philip

    2018-02-01

    Electrical confinement and manipulation of charge carriers in semiconducting nanostructures are essential for realizing functional quantum electronic devices1-3. The unique band structure4-7 of atomically thin transition metal dichalcogenides (TMDs) offers a new route towards realizing novel 2D quantum electronic devices, such as valleytronic devices and valley-spin qubits8. 2D TMDs also provide a platform for novel quantum optoelectronic devices9-11 due to their large exciton binding energy12,13. However, controlled confinement and manipulation of electronic and excitonic excitations in TMD nanostructures have been technically challenging due to the prevailing disorder in the material, preventing accurate experimental control of local confinement and tunnel couplings14-16. Here we demonstrate a novel method for creating high-quality heterostructures composed of atomically thin materials that allows for efficient electrical control of excitations. Specifically, we demonstrate quantum transport in the gate-defined, quantum-confined region, observing spin-valley locked quantized conductance in quantum point contacts. We also realize gate-controlled Coulomb blockade associated with confinement of electrons and demonstrate electrical control over charged excitons with tunable local confinement potentials and tunnel couplings. Our work provides a basis for novel quantum opto-electronic devices based on manipulation of charged carriers and excitons.

  13. Charge Carrier Transport Mechanism Based on Stable Low Voltage Organic Bistable Memory Device.

    Science.gov (United States)

    Ramana, V V; Moodley, M K; Kumar, A B V Kiran; Kannan, V

    2015-05-01

    A solution processed two terminal organic bistable memory device was fabricated utilizing films of polymethyl methacrylate PMMA/ZnO/PMMA on top of ITO coated glass. Electrical characterization of the device structure showed that the two terminal device exhibited favorable switching characteristics with an ON/OFF ratio greater than 1 x 10(4) when the voltage was swept between - 2 V and +3 V. The device maintained its state after removal of the bias voltage. The device did not show degradation after a 1-h retention test at 120 degrees C. The memory functionality was consistent even after fifty cycles of operation. The charge transport switching mechanism is discussed on the basis of carrier transport mechanism and our analysis of the data shows that the charge carrier trans- port mechanism of the device during the writing process can be explained by thermionic emission (TE) and space-charge-limited-current (SCLC) mechanism models while erasing process could be explained by the FN tunneling mechanism. This demonstration provides a class of memory devices with the potential for low-cost, low-power consumption applications, such as a digital memory cell.

  14. Observation of disorder effects on charged carrier mobility in triphenylene-based discotic materials

    International Nuclear Information System (INIS)

    Zhang Chunxiu; He, Zhiqun; Mao Huaxiang; Wang Junjie; Wang Dongdong; Wang Yongsheng; Li Zhongxiao; Pu Jialing

    2007-01-01

    A discotic 2,6,10-trihydroxy-3,7,11-tripentyloxytriphenylene material and a triphenylene-based hyperbranched macromolecule were synthesized, in which the latter was prepared from AB m molecules in a one-pot reaction. Adipic chloride and butyryl chloride were chosen as terminal groups to the 2,6,10-trihydroxy-3,7,11-tripentyloxytriphenylene. Mesophase and their structural orders were determined using a polarized optical microscope and a differential scanning calorimeter. Carrier mobilities of the pure and composite materials were measured via a time-of-flight method. A change in carrier mobility on the morphology of the materials was further discussed. It was found that degree of crystallization was the key for a discotic triphenylene material to possess charge-transporting properties, no matter it is ordered or disordered

  15. Positively Charged Nanostructured Lipid Carriers and Their Effect on the Dissolution of Poorly Soluble Drugs

    Directory of Open Access Journals (Sweden)

    Kyeong-Ok Choi

    2016-05-01

    Full Text Available The objective of this study is to develop suitable formulations to improve the dissolution rate of poorly water soluble drugs. We selected lipid-based formulation as a drug carrier and modified the surface using positively charged chitosan derivative (HTCC to increase its water solubility and bioavailability. Chitosan and HTCC-coated lipid particles had higher zeta-potential values than uncoated one over the whole pH ranges and improved encapsulation efficiency. In vitro drug release showed that all NLC formulations showed higher in vitro release efficiency than drug particle at pH 7.4. Furthermore, NLC formulation prepared with chitosan or HTCC represented good sustained release property. The results indicate that chitosan and HTCC can be excellent formulating excipients of lipid-based delivery carrier for improving poorly water soluble drug delivery.

  16. Positively Charged Nanostructured Lipid Carriers and Their Effect on the Dissolution of Poorly Soluble Drugs.

    Science.gov (United States)

    Choi, Kyeong-Ok; Choe, Jaehyeog; Suh, Seokjin; Ko, Sanghoon

    2016-05-20

    The objective of this study is to develop suitable formulations to improve the dissolution rate of poorly water soluble drugs. We selected lipid-based formulation as a drug carrier and modified the surface using positively charged chitosan derivative (HTCC) to increase its water solubility and bioavailability. Chitosan and HTCC-coated lipid particles had higher zeta-potential values than uncoated one over the whole pH ranges and improved encapsulation efficiency. In vitro drug release showed that all NLC formulations showed higher in vitro release efficiency than drug particle at pH 7.4. Furthermore, NLC formulation prepared with chitosan or HTCC represented good sustained release property. The results indicate that chitosan and HTCC can be excellent formulating excipients of lipid-based delivery carrier for improving poorly water soluble drug delivery.

  17. Theoretical rationalization for reduced charge recombination in bulky carbazole-based sensitizers in solar cells.

    Science.gov (United States)

    Surakhot, Yaowarat; Laszlo, Viktor; Chitpakdee, Chirawat; Promarak, Vinich; Sudyoadsuk, Taweesak; Kungwan, Nawee; Kowalczyk, Tim; Irle, Stephan; Jungsuttiwong, Siriporn

    2017-05-05

    The search for greater efficiency in organic dye-sensitized solar cells (DSCs) and in their perovskite cousins is greatly aided by a more complete understanding of the spectral and morphological properties of the photoactive layer. This investigation resolves a discrepancy in the observed photoconversion efficiency (PCE) of two closely related DSCs based on carbazole-containing D-π-A organic sensitizers. Detailed theoretical characterization of the absorption spectra, dye adsorption on TiO 2 , and electronic couplings for charge separation and recombination permit a systematic determination of the origin of the difference in PCE. Although the two dyes produce similar spectral features, ground- and excited-state density functional theory (DFT) simulations reveal that the dye with the bulkier donor group adsorbs more strongly to TiO 2 , experiences limited π-π aggregation, and is more resistant to loss of excitation energy via charge recombination on the dye. The effects of conformational flexibility on absorption spectra and on the electronic coupling between the bright exciton and charge-transfer states are revealed to be substantial and are characterized through density-functional tight-binding (DFTB) molecular dynamics sampling. These simulations offer a mechanistic explanation for the superior open-circuit voltage and short-circuit current of the bulky-donor dye sensitizer and provide theoretical justification of an important design feature for the pursuit of greater photocurrent efficiency in DSCs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Impact of Tortuosity on Charge-Carrier Transport in Organic Bulk Heterojunction Blends

    Science.gov (United States)

    Heiber, Michael C.; Kister, Klaus; Baumann, Andreas; Dyakonov, Vladimir; Deibel, Carsten; Nguyen, Thuc-Quyen

    2017-11-01

    The impact of the tortuosity of the charge-transport pathways through a bulk heterojunction film on the charge-carrier mobility is theoretically investigated using model morphologies and kinetic Monte Carlo simulations. The tortuosity descriptor provides a quantitative metric to characterize the quality of the charge-transport pathways, and model morphologies with controlled domain size and tortuosity are created using an anisotropic domain growth procedure. The tortuosity is found to be dependent on the anisotropy of the domain structure and is highly tunable. Time-of-flight charge-transport simulations on morphologies with a range of tortuosity values reveal that tortuosity can significantly reduce the magnitude of the mobility and the electric-field dependence relative to a neat material. These reductions are found to be further controlled by the energetic disorder and temperature. Most significantly, the sensitivity of the electric-field dependence to the tortuosity can explain the different experimental relationships previously reported, and exploiting this sensitivity could lead to simpler methods for characterizing and optimizing charge transport in organic solar cells.

  19. Explanation of low efficiency droop in semipolar $(20\\bar 2\\bar 1)$ InGaN/GaN LEDs through evaluation of carrier recombination coefficients

    OpenAIRE

    Monavarian, Morteza; Rashidi, Arman; Aragon, Andrew A.; Oh, Sang H.; Nami, Mohsen; DenBaars, Steve P.; Feezell, Daniel F.

    2017-01-01

    We report the carrier dynamics and recombination coefficients in single-quantum-well semipolar $(20\\bar 2\\bar 1)$ InGaN/GaN light-emitting diodes emitting at 440 nm with 93% peak internal quantum efficiency. The differential carrier lifetime is analyzed for various injection current densities from 5 $A/cm^2$ to 10 $kA/cm^2$, and the corresponding carrier densities are obtained. The coupling of internal quantum efficiency and differential carrier lifetime vs injected carrier density ($n$) enab...

  20. Carrier Transport, Recombination, and the Effects of Grain Boundaries in Polycrystalline Cadmium Telluride Thin Films for Photovoltaics

    Science.gov (United States)

    Tuteja, Mohit

    Cadmium Telluride (CdTe), a chalcogenide semiconductor, is currently used as the absorber layer in one of the highest efficiency thin film solar cell technologies. Current efficiency records are over 22%. In 2011, CdTe solar cells accounted for 8% of all solar cells installed. This is because, in part, CdTe has a low degradation rate, high optical absorption coefficient, and high tolerance to intrinsic defects. Solar cells based on polycrystalline CdTe exhibit a higher short-circuit current, fill factor, and power conversion efficiency than their single crystal counterparts. This is despite the fact that polycrystalline CdTe devices exhibit lower open-circuit voltages. This is contrary to the observation for silicon and III-V semiconductors, where material defects cause a dramatic drop in device performance. For example, grain boundaries in covalently-bonded semiconductors (a) act as carrier recombination centers, and (b) lead to localized energy states, causing carrier trapping. Despite significant research to date, the mechanism responsible for the superior current collection properties of polycrystalline CdTe solar cells has not been conclusively answered. This dissertation focuses on the macro-scale electronic band structure, and micro scale electronic properties of grains and grain boundaries in device-grade CdTe thin films to answer this open question. My research utilized a variety of experimental techniques. Samples were obtained from leading groups fabricating the material and devices. A CdCl 2 anneal is commonly performed as part of this fabrication and its effects were also investigated. Photoluminescence (PL) spectroscopy was employed to study the band structure and defect states in CdTe polycrystals. Cadmium vacancy- and chlorine-related states lead to carrier recombination, as in CdTe films grown by other methods. Comparing polycrystalline and single crystal CdTe, showed that the key to explaining the improved performance of polycrystalline CdTe does

  1. Behaviour of Charge Carriers in As-Deposited and Annealed Undoped TCO Films

    International Nuclear Information System (INIS)

    Zhou Yan-Wen; Wu Fa-Yu; Zheng Chun-Yan

    2011-01-01

    We examine the structures, cut-off points of transmittance spectra and electric properties of undoped ZnO, SnO 2 and CdO films by scanning electron microscopy, x-ray diffraction, spectrophotometer and Hall-effect measurements, respectively. The films are deposited by using an rf magnetron sputtering system from powder targets in argon and then annealed in vacuum. The structures and properties of the as-deposited films are compared with those of the annealed one. We try to explain the behaviour of charge carriers based on the semiconductor physics theory. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Modelling of charge carrier transport in conjugated polymers doped by polar additives

    Czech Academy of Sciences Publication Activity Database

    Toman, Petr; Nešpůrek, Stanislav; Bartkowiak, W.

    2009-01-01

    Roč. 27, č. 3 (2009), s. 797-812 ISSN 0137-1339. [International Conference on Electrical and Related Properties of Organic Solids /11./. Piechowice, 13.07.2008-17.07.2008] R&D Projects: GA ČR GA203/06/0285; GA AV ČR KAN400720701; GA MŠk MEB050815 Institutional research plan: CEZ:AV0Z40500505 Keywords : conjugated polymers * charge carrier transport * molecular electronics Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.384, year: 2009

  3. Top-gate dielectric induced doping and scattering of charge carriers in epitaxial graphene

    Science.gov (United States)

    Puls, Conor P.; Staley, Neal E.; Moon, Jeong-Sun; Robinson, Joshua A.; Campbell, Paul M.; Tedesco, Joseph L.; Myers-Ward, Rachael L.; Eddy, Charles R.; Gaskill, D. Kurt; Liu, Ying

    2011-07-01

    We show that an e-gun deposited dielectric impose severe limits on epitaxial graphene-based device performance based on Raman spectroscopy and low-temperature transport measurements. Specifically, we show from studies of epitaxial graphene Hall bars covered by SiO2 that the measured carrier density is strongly inhomogenous and predominantly induced by charged impurities at the grapheme/dielectric interface that limit mobility via Coulomb interactions. Our work emphasizes that material integration of epitaxial graphene and a gate dielectric is the next major road block towards the realization of graphene-based electronics.

  4. Ballistic charge carrier transmission through graphene multi-barrier structures in uniform magnetic field

    International Nuclear Information System (INIS)

    Zubarev, A; Dragoman, D

    2014-01-01

    We investigate charge carrier transport in graphene multi-barrier structures placed in a uniform magnetic field. The transmission coefficient is found analytically by generalizing the transfer matrix method for the case of graphene regions subjected to a uniform magnetic field. The transmission coefficient through the structure can be modulated by varying the gate voltages, the magnetic field and/or the width of the gated regions. Such a configuration could be used in multiple-valued logic circuits, since it has several output states with discrete and easily selectable transmission/current values. (paper)

  5. Designing thiophene-based azomethine oligomers with tailored properties: Self-assembly and charge carrier mobility

    DEFF Research Database (Denmark)

    Kiriy, N.; Bocharova, V.; Kiriy, A.

    2004-01-01

    This paper describes synthesis and characterization of two thiophene-based azomethines designed to optimize solubility, self-assembly, and charge carrier mobility. We found that incorporation of azomethine and amide moieties in the alpha,omega-position, and hexyl chains in the beta-position of th...... with the mobilities of the best organic semiconductors. All these significant differences in properties of related compounds can be attributed to the hydrogen bonding between QT-amide molecules responsible for the observed self-assembly....

  6. Modelling of charge carrier mobility for transport between elastic polyacetylene-like polymer nanorods

    Czech Academy of Sciences Publication Activity Database

    Menšík, Miroslav; Sun, S. J.; Toman, Petr; Král, Karel

    2017-01-01

    Roč. 61, č. 2 (2017), s. 127-135 ISSN 0862-5468 R&D Projects: GA MŠk(CZ) LD14011; GA ČR(CZ) GA15-05095S Grant - others:European Commission(XE) COST Action MP1202 HINT; AV ČR(CZ) KONNECT-007 Program:Bilaterální spolupráce Institutional support: RVO:61389013 ; RVO:68378271 Keywords : charge carrier mobility * polymers * electron-phonon coupling Subject RIV: CF - Physical ; Theoretical Chemistry; CF - Physical ; Theoretical Chemistry (FZU-D) OBOR OECD: Physical chemistry; Physical chemistry (FZU-D) Impact factor: 0.439, year: 2016

  7. X-ray spectroscopic measurements of dielectronic recombination of highly charged krypton ions

    International Nuclear Information System (INIS)

    Biedermann, C.; Fuchs, T.; Liebisch, P.; Radtke, R.; Behar, E.; Doron, R.

    1999-01-01

    We have performed X-ray spectroscopic measurements of the dielectronic recombination (DR) resonance strengths for the KLn (n = 2, .., 5) series of He-, Li-, and Be-like krypton ions. The ions were produced with an electron beam ion trap, and the strengths were obtained from a fit procedure that compares the experimental excitation function for DR to theory. The results agree well with the predictions. By looking at the KLL resonance, the time evolution of different krypton charge states was measured with this technique and compared with a model of the trap inventory. (orig.)

  8. Polarization effects in radiative recombination of an electron with a highly charged ion

    International Nuclear Information System (INIS)

    Klasnikov, A.E.; Shabaev, V.M.; Artemyev, A.N.; Kovtun, A.V.; Stoehlker, T.

    2005-01-01

    The radiative recombination of an unpolarized electron with a polarized highly charged H-like ion in its ground state is studied. The absolute and relative values of the electron spin-flip contribution to the cross section of the process for various scattering angles and photon polarizations are calculated. It is shown that, in addition to the forward and backward directions, there are some other scattering angles of the emitted photon, where, at a fixed linear photon polarization, the spin-flip transition gives a dominant contribution to the differential cross section

  9. Quantum dot sensitized solar cells: Light harvesting versus charge recombination, a film thickness consideration

    Science.gov (United States)

    Wang, Xiu Wei; Wang, Ye Feng; Zeng, Jing Hui; Shi, Feng; Chen, Yu; Jiang, Jiaxing

    2017-08-01

    Sensitizer loading level is one of the key factors determined the performance of sensitized solar cells. In this work, we systemically studied the influence of photo-anode thicknesses on the performance of the quantum-dot sensitized solar cells. It is found that the photo-to-current conversion efficiency enhances with increased film thickness and peaks at around 20 μm. The optimal value is about twice as large as the dye counterparts. Here, we also uncover the underlying mechanism about the influence of film thickness over the photovoltaic performance of QDSSCs from the light harvesting and charge recombination viewpoint.

  10. Sensitized charge carrier injection into organic crystals studied by isotope effects in weak magnetic fields

    International Nuclear Information System (INIS)

    Bube, W.; Michel-Beyerle, M.E.; Haberkorn, R.; Steffens, E.

    1977-01-01

    The magnetic field (H approximately 50 Oe) dependence of the rhodamine sensitized triplet exciton density in anthracene crystals is influenced by isotopic substitution. This confirms the hyperfine interaction as mechanism explaining the change of the spin multiplicity in the initially formed singlet state of the radical pair. The isotope effect occurs in the sensitizing dye ( 14 N/ 15 N) rather than at the molecular site of the injected charge within the crystal. This can be understood in terms of the high hopping frequency of the charge carriers as compared to the time constant of the hyperfine induced singlet-triplet transition. Since the dye molecules adsorb in an oriented fashion, the angular dependence of the magnetic field modulation of the triplet exciton density can be interpreted without assuming any additional interactions. (Auth.)

  11. Dynamics of charge carrier trapping in NO 2 sensors based on ZnO field-effect transistors

    NARCIS (Netherlands)

    Andringa, A.-M.; Vlietstra, N.; Smits, E.C.P.; Spijkman, M.-J.; Gomes, H.L.; Klootwijk, J.H.; Blom, P.W.M.; Leeuw, D.M. de

    2012-01-01

    Nitrogen dioxide (NO 2) detection with ZnO field-effect transistors is based on charge carrier trapping. Here we investigate the dynamics of charge trapping and recovery as a function of temperature by monitoring the threshold voltage shift. The threshold voltage shifts follow a

  12. Charge-exchange recombination spectroscopy measurements of ion temperature and plasma rotation in PBX

    International Nuclear Information System (INIS)

    Jaehnig, K.P.; Fonck, R.J.; Ida, K.; Powell, E.T.

    1984-11-01

    The primary diagnostic on PBX for ion temperature measurements is charge-exchange recombination spectroscopy of low Z ions, wherein fast neutrals from the heating neutral beams excite spectral lines from highly excited states (n greater than or equal to 4) of hydrogenic 0, C, and He via charge-exchange collisions with the respective fully stripped ions. Since the neutral beams on PBX provide relatively low velocity neutrals (i.e., D 0 beams at 44 keV), the best signals are obtained using the near-uv lines of 0 7+ (e.g., n = 8-7, 2976 A). Off-line analysis of the Doppler broadened and shifted line profiles includes non-linear least squares fitting to a model line profile, while a simplified on-line fast analysis code permits between-shot data analysis

  13. A study on the Fusion Reactor - Development of charge exchange recombination spectroscopy for tokamak diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tong Nyong; Kim, Dong Eon; Kim, Dae Sung; Kim, Seong Ho [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    1996-09-01

    This project has been carried to train people and accumulate the knowledge and techniques related to the measurement of the profiles of ion temperature, toroidal rotation velocity, and fully-stripped ion density in a fusion tokamak plasma by the development of plasma diagnostics using charge exchange recombination (CER) spectroscopy. Daring the 1 st year, the basic study and review on the charge exchange process and the conceptual design and review of the diagnostics have been conducted. In addition, the various atomic data centers around the world have been surveyed and atomic data related to CER have been constructed. The results of this project can be used to the construction and tokamak machine installation of a CER plasma diagnostic to a new superconducting supported by National Fusion Program. 42 refs., 3 tabs., 16 figs. (author)

  14. A fast charge coupled device detector for charge exchange recombination spectroscopy on the DIII-D Tokamak

    International Nuclear Information System (INIS)

    Thomas, D.M.; Burrell, K.H.; Groebner, R.J.; Gohil, P.; Kaplan, D.; Makariou, C.; Seraydarian, R.P.

    1997-01-01

    Charge exchange recombination (CER) spectroscopy has become a standard diagnostic for Tokamaks. CER measurements have been used to determine spatially and temporally resolved ion temperature, toroidal and poloidal ion rotation speed, impurity density, and radial electric field. Knowledge of the spatial profile and temporal evolution of the electric field shear in the plasma edge is crucial to understanding the physics of the L to H transition. High speed CER measurements are also valuable for edge localized mode studies. Since the 0.52 ms minimum time resolution of our present system is barely adequate to study the time evolution of these phenomena, we have developed a new charge coupled device (CCD) detector system with about a factor of 2 better time resolution. In addition, our existing system detects sufficient photons to utilize the shortest time resolution only under exceptional conditions. The new CCD detector has a quantum efficiency of about 0.65, which is a factor of 7 better than our previous image intensifier-silicon photodiode detector systems. We have also equipped the new system with spectrometers of lower f/number. This combination should allow more routine operation at the minimum integration time, as well as improving data quality for measurements in the divertor-relevant region outside of the separatrix. Construction details, benchmark data, and initial Tokamak measurements for the new system will be presented. copyright 1997 American Institute of Physics

  15. A new approach to calculate charge carrier transport mobility in organic molecular crystals from imaginary time path integral simulations

    International Nuclear Information System (INIS)

    Song, Linze; Shi, Qiang

    2015-01-01

    We present a new non-perturbative method to calculate the charge carrier mobility using the imaginary time path integral approach, which is based on the Kubo formula for the conductivity, and a saddle point approximation to perform the analytic continuation. The new method is first tested using a benchmark calculation from the numerical exact hierarchical equations of motion method. Imaginary time path integral Monte Carlo simulations are then performed to explore the temperature dependence of charge carrier delocalization and mobility in organic molecular crystals (OMCs) within the Holstein and Holstein-Peierls models. The effects of nonlocal electron-phonon interaction on mobility in different charge transport regimes are also investigated

  16. Mapping Charge Carrier Density in Organic Thin-Film Transistors by Time-Resolved Photoluminescence Lifetime Studies

    DEFF Research Database (Denmark)

    Leißner, Till; Jensen, Per Baunegaard With; Liu, Yiming

    2017-01-01

    The device performance of organic transistors is strongly influenced by the charge carrier distribution. A range of factors effect this distribution, including injection barriers at the metal-semiconductor interface, the morphology of the organic film, and charge traps at the dielectric/organic...... interface or at grain boundaries. In our comprehensive experimental and analytical work we demonstrate a method to characterize the charge carrier density in organic thin-film transistors using time-resolved photoluminescence spectroscopy. We developed a numerical model that describes the electrical...... and optical responses consistently. We determined the densities of free and trapped holes at the interface between the organic layer and the SiO2 gate dielectric by comparison to electrical measurements. Furthermore by applying fluorescence lifetime imaging microscopy we determine the local charge carrier...

  17. Triphenylene columnar liquid crystals: spectroscopic study of triplets states and charge carriers

    International Nuclear Information System (INIS)

    Bondkowski, Jens

    2000-01-01

    This research thesis reports the study of three oxygenated derivatives of triphenylene (two monomers, a symmetric one and an asymmetric one, and a tetramer) by using different experimental techniques: absorption spectroscopy and fluorescence spectroscopy in stationary regime, and time-resolved fluorescence spectroscopy (also said single photon counting). Moreover, the author adapted an existing experiment of transient absorption spectroscopy time-resolved at the microsecond level to obtain spectra of thin layers under electric field. A cyclic voltammetry experiment and a spectro-electrochemistry experiment have also been performed. The report first presents the studied materials, the characterisation of singlet states, and the study of the effect molecular symmetry decreasing have on molecular transitions. Then, the author reports the study of cationic species of the triphenylene derivatives. The next chapters address the characterisation of derivative triplet states, and the study of energy transfer within the meso phase of one of these derivatives. The last chapters address charge carriers of columnar liquid crystals, and the molecular nature of these charge carriers

  18. Control of polythiophene film microstructure and charge carrier dynamics through crystallization temperature

    KAUST Repository

    Marsh, Hilary S.; Reid, Obadiah G.; Barnes, George; Heeney, Martin; Stingelin, Natalie; Rumbles, Garry

    2014-01-01

    The microstructure of neat conjugated polymers is crucial in determining the ultimate morphology and photovoltaic performance of polymer/fullerene blends, yet until recently, little work has focused on controlling the former. Here, we demonstrate that both the long-range order along the (100)-direction and the lamellar crystal thickness along the (001)-direction in neat poly(3-hexylthiophene) (P3HT) and poly[(3,3″-didecyl[2,2′:5′, 2″-terthiophene]-5,5″-diyl)] (PTTT-10) thin films can be manipulated by varying crystallization temperature. Changes in crystalline domain size impact the yield and dynamics of photogenerated charge carriers. Time-resolved microwave conductivity measurements show that neat polymer films composed of larger crystalline domains have longer photoconductance lifetimes and charge carrier yield decreases with increasing crystallite size for P3HT. Our results suggest that the classical polymer science description of temperature-dependent crystallization of polymers from solution can be used to understand thin-film formation in neat conjugated polymers, and hence, should be considered when discussing the structural evolution of organic bulk heterojunctions. © 2014 Wiley Periodicals, Inc.

  19. Control of polythiophene film microstructure and charge carrier dynamics through crystallization temperature

    KAUST Repository

    Marsh, Hilary S.

    2014-03-22

    The microstructure of neat conjugated polymers is crucial in determining the ultimate morphology and photovoltaic performance of polymer/fullerene blends, yet until recently, little work has focused on controlling the former. Here, we demonstrate that both the long-range order along the (100)-direction and the lamellar crystal thickness along the (001)-direction in neat poly(3-hexylthiophene) (P3HT) and poly[(3,3″-didecyl[2,2′:5′, 2″-terthiophene]-5,5″-diyl)] (PTTT-10) thin films can be manipulated by varying crystallization temperature. Changes in crystalline domain size impact the yield and dynamics of photogenerated charge carriers. Time-resolved microwave conductivity measurements show that neat polymer films composed of larger crystalline domains have longer photoconductance lifetimes and charge carrier yield decreases with increasing crystallite size for P3HT. Our results suggest that the classical polymer science description of temperature-dependent crystallization of polymers from solution can be used to understand thin-film formation in neat conjugated polymers, and hence, should be considered when discussing the structural evolution of organic bulk heterojunctions. © 2014 Wiley Periodicals, Inc.

  20. Electrical Conductivity of Rocks and Dominant Charge Carriers. Part 1; Thermally Activated Positive Holes

    Science.gov (United States)

    Freund, Friedemann T.; Freund, Minoru M.

    2012-01-01

    The prevailing view in the geophysics community is that the electrical conductivity structure of the Earth's continental crust over the 5-35 km depth range can best be understood by assuming the presence of intergranular fluids and/or of intragranular carbon films. Based on single crystal studies of melt-grown MgO, magma-derived sanidine and anorthosite feldspars and upper mantle olivine, we present evidence for the presence of electronic charge carriers, which derive from peroxy defects that are introduced during cooling, under non-equilibrium conditions, through a redox conversion of pairs of solute hydroxyl arising from dissolution of H2O.The peroxy defects become thermally activated in a 2-step process, leading to the release of defect electrons in the oxygen anion sublattice. Known as positive holes and symbolized by h(dot), these electronic charge carriers are highly mobile. Chemically equivalent to O(-) in a matrix of O(2-) they are highly oxidizing. Being metastable they can exist in the matrix of minerals, which crystallized in highly reduced environments. The h(dot) are highly mobile. They appear to control the electrical conductivity of crustal rocks in much of the 5-35 km depth range.

  1. Calibration of the charge exchange recombination spectroscopy diagnostic for core poloidal rotation velocity measurements on JET

    International Nuclear Information System (INIS)

    Crombe, K.; Andrew, Y.; Giroud, C.; Hawkes, N.C.; Murari, A.; Valisa, M.; Oost, G. van; Zastrow, K.-D.

    2004-01-01

    This article describes recent improvements in the measurement of C 6+ impurity ion poloidal rotation velocities in the core plasma of JET using charge exchange recombination spectroscopy. Two independent techniques are used to provide an accurate line calibration. The first method uses a Perkin-Elmer type 303-306 samarium hollow cathode discharge lamp, with a Sm I line at 528.291 nm close to the C VI line at 529.1 nm. The second method uses the Be II at 527.06 nm and C III at 530.47 nm in the plasma spectrum as two marker lines on either side of the C VI line. Since the viewing chords have both a toroidal and poloidal component, it is important to determine the contribution of the toroidal rotation velocity component separately. The toroidal rotation velocity in the plasma core is measured with an independent charge exchange recombination spectroscopy diagnostic, looking tangentially at the plasma core. The contribution of this velocity along the lines of sight of the poloidal rotation diagnostic has been determined experimentally in L-mode plasmas keeping the poloidal component constant (K. Crombe et al., Proc. 30th EPS Conference, St. Petersburg, Russia, 7-11 July 2003, p. 1.55). The results from these experiments are compared with calculations of the toroidal contribution that take into account the original design parameters of the diagnostic and magnetic geometry of individual shots

  2. The charge exchange recombination diagnostic system on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Gohil, P.; Burrell, K.H.; Groebner, R.J.; Kim, J.; Martin, W.C.; McKee, E.L.; Seraydarian, R.P.

    1991-11-01

    The charge exchange recombination (CER) diagnostic system on the DIII-D tokamak is used to make spatially and temporally resolved measurements of the ion temperature and toroidal and poloidal rotation velocities. This is performed through visible spectroscopic measurements of the Doppler broadened and Doppler shifted HE II 468.6 nm, the CVI 529.1 nm, and the BV 494.5 nm spectral lines which have been excited by charge exchange recombination interactions between the fully stripped ions and the neutral atoms from the heating beams. The plasma viewing optics comprises 32 viewing chords spanning a typical plasma minor radius of 63 cm across the midplane, of which 15 spatial chords span 4.2 cm at the plasma edge just within the separatrix and provide a chord-to-chord spatial resolution of 0.3 cm. Fast camera readout electronics can provide a temporal resolution of 260 μs per time slice, but the effective minimum integration time, at present, is 1 ms which is limited by the detected photon flux from the plasma and the decay times of the phosphors used on the multichannel plate image intensifiers. Significant changes in the edge plasma radial electric field at the L-H transition have been observed, as determined from the CER measurements, and these results are being extensively compared to theories which consider the effects of sheared electric fields on plasma turbulence. 13 refs., 10 figs

  3. Effects of Te inclusions on charge-carrier transport properties in CdZnTe radiation detectors

    International Nuclear Information System (INIS)

    Gu, Yaxu; Rong, Caicai; Xu, Yadong; Shen, Hao; Zha, Gangqiang; Wang, Ning; Lv, Haoyan; Li, Xinyi; Wei, Dengke; Jie, Wanqi

    2015-01-01

    Highlights: • This work reveals the behaviors of Te inclusion in affecting charge-carrier transport properties in CdZnTe detectors for the first time and analysis the mechanism therein. • The results show that charge collection efficiencies in Te inclusion degraded regions experience fast ascent under low biases and slow descent at high applied biases, which deviates from the Hecht rule. • This phenomenon is attributed to the competitive influence of two mechanisms under different biases, namely charge carrier trapping due to uniformly distributed point defects and Te inclusion induced transient charge loss. • A modified Hecht equation is further proposed to explain the effects of high-density localized defects, say Te inclusions, on the charge collection efficiency. • We believe that this research has wide appeal to analyze the macroscopic defects and their influence on charge transport properties in semiconductor radiation detectors. - Abstract: The influence of tellurium (Te) inclusions on the charge collection efficiency in cadmium zinc telluride (CdZnTe or CZT) detectors has been investigated using ion beam induced charge (IBIC) technique. Combining the analysis of infrared transmittance image, most of the low charge collection areas in the IBIC images prove the existence of Te inclusions. To further clarify the role of Te inclusions on charge transport properties, bias dependent local IBIC scan was performed on Te inclusion related regions from 20 V to 500 V. The result shows that charge collection efficiencies in Te inclusion degraded regions experience fast ascent under low biases and slow descent at high applied biases, which deviates from Hecht rule. This behavior is attributed to the competitive influence of two mechanisms under different biases, namely charge carrier trapping due to uniformly distributed point defects and Te inclusion induced transient charge loss. A modified Hecht equation is further proposed to explain the effects of high

  4. Recombiner

    International Nuclear Information System (INIS)

    Osumi, Morimichi.

    1979-01-01

    Purpose: To provide a recombiner which is capable of converting hydrogen gas into water by use of high-frequency heating at comparatively low temperatures and is safe and cheap in cost. Constitution: Hydrogen gas is introduced from an outer pipeline to the main structure of a recombiner, and when it passes through the vicinity of the central part of the recombiner, it is reacted with copper oxide (CuO 2 ) heated to a temperature more than 300 0 C by a high-frequency heater, and converted gently into water by reduction operation (2H 2 + CuO 2 → Cu + 2H 2 O). The thus prepared water is exhausted through the outer pipeline to a suppression pool. A part of hydrogen gas which has not been converted completely into water by the reaction and is remaining as hydrogen is recovered through exhaust nozzles and again introduced into the main structure of the recombiner. (Yoshino, Y.)

  5. Carrier population control and surface passivation in solar cells

    KAUST Repository

    Cuevas, Andres; Wan, Yimao; Yan, Di; Samundsett, Christian; Allen, Thomas; Zhang, Xinyu; Cui, Jie; Bullock, James

    2018-01-01

    Controlling the concentration of charge carriers near the surface is essential for solar cells. It permits to form regions with selective conductivity for either electrons or holes and it also helps to reduce the rate at which they recombine

  6. Effect of trap states and microstructure on charge carrier conduction mechanism through semicrystalline poly(vinyl alcohol) granular film

    Science.gov (United States)

    Das, A. K.; Bhowmik, R. N.; Meikap, A. K.

    2018-05-01

    We report a comprehensive study on hysteresis behaviour of current-voltage characteristic and impedance spectroscopy of granular semicrystalline poly(vinyl alcohol) (PVA) film. The charge carrier conduction mechanism and charge traps of granular PVA film by measuring and analyzing the temperature dependent current-voltage characteristic indicate a bi-stable electronic state in the film. A sharp transformation of charge carrier conduction mechanism from Poole-Frenkel emission to space charge limited current mechanism has been observed. An anomalous oscillatory behaviour of current has been observed due to electric pulse effect on the molecular chain of the polymer. Effect of microstructure on charge transport mechanism has been investigated from impedance spectroscopy analysis. An equivalent circuit model has been proposed to explain the result.

  7. Tungsten-based nanomaterials (WO{sub 3} & Bi{sub 2}WO{sub 6}): Modifications related to charge carrier transfer mechanisms and photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Girish Kumar, S., E-mail: girichem@yahoo.co.in; Koteswara Rao, K.S.R., E-mail: raoksrk@gmail.com

    2015-11-15

    Graphical abstract: - Highlights: • Photocatalytic applications of WO{sub 3} and Bi{sub 2}WO{sub 6} based nanomaterial are reviewed. • Modifications to improve their performance are highlighted. • Charge carrier generation–separation–recombination is discussed. • Challenges and future prospects in this area are addressed. - Abstract: Heterogeneous photocatalysis is an ideal green energy technology for the purification of wastewater. Although titania dominates as the reference photocatalyst, its wide band gap is a bottleneck for extended utility. Thus, search for non-TiO{sub 2} based nanomaterials has become an active area of research in recent years. In this regard, visible light absorbing polycrystalline WO{sub 3} (2.4–2.8 eV) and Bi{sub 2}WO{sub 6} (2.8 eV) with versatile structure-electronic properties has gained considerable interest to promote the photocatalytic reactions. These materials are also explored in selective functional group transformation in organic reactions, because of low reduction and oxidation potential of WO{sub 3} CB and Bi{sub 2}WO{sub 6} VB, respectively. In this focused review, various strategies such as foreign ion doping, noble metal deposition and heterostructuring with other semiconductors designed for efficient photocatalysis is discussed. These modifications not only extend the optical response to longer wavelengths, but also prolong the life-time of the charge carriers and strengthen the photocatalyst stability. The changes in the surface-bulk properties and the charge carrier transfer dynamics associated with each modification correlating to the high activity are emphasized. The presence of oxidizing agents, surface modification with Cu{sup 2+} ions and synthesis of exposed facets to promote the degradation rate is highlighted. In depth study on these nanomaterials is likely to sustain interest in wastewater remediation and envisaged to signify in various green energy applications.

  8. Inhibition of charge recombination for enhanced dye-sensitized solar cells and self-powered UV sensors by surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Liang, E-mail: chuliang@njupt.edu.cn [Advanced Energy Technology Center, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Wuhan National Laboratory for Optoelectronics (WNLO)-School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074 (China); Qin, Zhengfei; Liu, Wei [School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Ma, Xin’guo, E-mail: maxg2013@sohu.com [Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068 (China)

    2016-12-15

    Graphical abstract: Inhibition of charge recombination was utilized to prolong electrode lifetime in dye-sensitized solar cells (DSSCs) and self-powered UV sensors based on TiO{sub 2}-modified SnO{sub 2} photoelectrodes. The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the electron lifetime was significantly prolonged in DSSCs after TiO{sub 2} modification. And in self-powered UV sensors, the sensitivity and response time were enhanced. - Highlights: • The surface modification to inhibit charge recombination was utilized in photovoltaic devices. • Inhibition of charge recombination can prolong electrode lifetime in photovoltaic devices. • Enhanced DSSCs and self-powered UV sensors based on SnO{sub 2} photoelectrodes were obtained by TiO{sub 2} modification. - Abstract: The surface modification to inhibit charge recombination was utilized in dye-sensitized solar cells (DSSCs) and self-powered ultraviolet (UV) sensors based on SnO{sub 2} hierarchical microspheres by TiO{sub 2} modification. For DSSCs with SnO{sub 2} photoelectrodes modified by TiO{sub 2}, the power conversion efficiency (PCE) was improved from 1.40% to 4.15% under standard AM 1.5G illumination (100 mW/cm{sup 2}). The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the charge recombination was effectively inhibited, resulting in long electron lifetime. For UV sensors with SnO{sub 2} photoelectrodes modified by TiO{sub 2} layer, the self-powered property was more obvious, and the sensitivity and response time were enhanced from 91 to 6229 and 0.15 s to 0.055 s, respectively. The surface modification can engineer the interface energy to inhibit charge recombination, which is a desirable approach to improve the performance of photoelectric nanodevice.

  9. Opto-electro-modulated transient photovoltage and photocurrent system for investigation of charge transport and recombination in solar cells.

    Science.gov (United States)

    Shi, Jiangjian; Li, Dongmei; Luo, Yanhong; Wu, Huijue; Meng, Qingbo

    2016-12-01

    An opto-electro-modulated transient photovoltage/photocurrent system has been developed to probe microscopic charge processes of a solar cell in its adjustable operating conditions. The reliability of this system is carefully determined by electric circuit simulations and experimental measurements. Using this system, the charge transport, recombination and storage properties of a conventional multicrystalline silicon solar cell under different steady-state bias voltages, and light illumination intensities are investigated. This system has also been applied to study the influence of the hole transport material layer on charge extraction and the microscopic charge processes behind the widely considered photoelectric hysteresis in perovskite solar cells.

  10. Internal transmission coefficient in charges carrier generation layer of graphene/Si based solar cell device

    International Nuclear Information System (INIS)

    Rosikhin, Ahmad; Winata, Toto

    2016-01-01

    Internal transmission profile in charges carrier generation layer of graphene/Si based solar cell has been explored theoretically. Photovoltaic device was constructed from graphene/Si heterojunction forming a multilayer stuck with Si as generation layer. The graphene/Si sheet was layered on ITO/glass wafer then coated by Al forming Ohmic contact with Si. Photon incident propagate from glass substrate to metal electrode and assumed that there is no transmission in Al layer. The wavelength range spectra used in this calculation was 200 – 1000 nm. It found that transmission intensity in the generation layer show non-linear behavior and partitioned by few areas which related with excitation process. According to this information, it may to optimize the photons absorption to create more excitation process by inserting appropriate material to enhance optical properties in certain wavelength spectra because of the exciton generation is strongly influenced by photon absorption.

  11. MODELLING OF CHARGE CARRIER MOBILITY FOR TRANSPORT BETWEEN ELASTIC POLYACETYLENE-LIKE POLYMER NANORODS

    Directory of Open Access Journals (Sweden)

    M. Mensik

    2017-03-01

    Full Text Available A quantum model solving the charge carrier mobility between polyacetylene-like polymer nanorods is presented. The model assumes: a Quantum mechanical calculation of hole on-chain delocalization involving electron-phonon coupling leading to the Peierls instability, b Hybridization coupling between the polymer backbone and side-groups (or environmental states, which act as hole traps, and c Semiclassical description of the inter-chain hole transfer in an applied voltage based on Marcus theory. We have found that mobility resonantly depends on the hybridization coupling between polymer and linked groups. We observed also non-trivial mobility dependences on the difference of energies of the highest occupied molecular orbitals localized on the polymer backbone and side-groups, respectively, and hole concentration. Those findings are important for optimization of hybrid opto-electronic devices.

  12. i-CELIV technique for investigation of charge carriers transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Važgėla, J., E-mail: julius.vazgela@ff.vu.lt; Genevičius, K.; Juška, G.

    2016-10-20

    The extraction of the injected charge carriers by linearly increasing voltage (i-CELIV) is a promising method for separate analysis of the holes and electrons transport properties in the bulk heterojunction layers. We are demonstrating how to establish the mobility dependence on the electric field and obtain more precise results by performing corrections in transit time by this technique. [6,6]-Phenyl C61 butyric acid methyl ester (PCBM) and poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) bulk heterojunctions with different blend ratios were experimentally tested with i-CELIV method. The hole and electron mobilities were found to be heavily imbalanced in the optimised 3:1 PCBM:PCPDTBT bulk heterojunction.

  13. Charge-carrier transport in epitactical strontium titanate layers for the application in superconducting components

    International Nuclear Information System (INIS)

    Grosse, Veit

    2011-01-01

    In this thesis thin STO layers were epitactically deposited on YBCO for a subsequent electrical characterization. YBCO layers with a roughness of less than 2 nm (RMS), good out-of-plane orientation with a half-width in the rocking curve in the range (0.2..0.3) at only slightly diminished critical temperature could be reached. The STO layers exhibited also very good crystallographic properties. The charge-carrier transport in STO is mainly dominated by interface-limited processes. By means of an in thesis newly developed barrier model thereby the measured dependencies j(U,T) respectively σ(U,T) could be described very far-reachingly. At larger layer thicknesses and low temperatures the charge-carrier transport succeeds by hopping processes. So in the YBCO/STO/YBCO system the variable-range hopping could be identified as dominating transport process. Just above U>10 V a new behaviour is observed, which concerning its temperature dependence however is also tunnel-like. The STO layers exhibit here very large resistances, so that fields up to 10 7 ..10 8 V/m can be reached without flowing of significant leakage currents through the barrier. In the system YBCO/STO/Au the current transport can be principally in the same way as in the YBCO/STO/YBCO system. The special shape and above all the asymmetry of the barrier however work out very distinctly. It could be shown that at high temperatures according to the current direction a second barrier on the opposite electrode must be passed. So often observed breakdown effects can be well described. For STO layer-thicknesses in the range around 25 nm in the whole temperature range studied inelastic tunneling over chains of localized states was identified as dominating transport process. It could however for the first time be shown that at very low temperatures in the STO layers Coulomb blockades can be formed.

  14. Design of charge exchange recombination spectroscopy for the joint Texas experimental tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Y.; Zhuang, G., E-mail: ge-zhuang@hust.edu.cn; Cheng, Z. F.; Hou, S. Y.; Cheng, C.; Li, Z.; Wang, J. R.; Wang, Z. J. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-11-15

    The old diagnostic neutral beam injector first operated at the University of Texas at Austin is ready for rejoining the joint Texas experimental tokamak (J-TEXT). A new set of high voltage power supplies has been equipped and there is no limitation for beam modulation or beam pulse duration henceforth. Based on the spectra of fully striped impurity ions induced by the diagnostic beam the design work for toroidal charge exchange recombination spectroscopy (CXRS) system is presented. The 529 nm carbon VI (n = 8 − 7 transition) line seems to be the best choice for ion temperature and plasma rotation measurements and the considered hardware is listed. The design work of the toroidal CXRS system is guided by essential simulation of expected spectral results under the J-TEXT tokamak operation conditions.

  15. Mechanism of biphasic charge recombination and accumulation in TiO2 mesoporous structured perovskite solar cells.

    Science.gov (United States)

    Wang, Hao-Yi; Wang, Yi; Yu, Man; Han, Jun; Guo, Zhi-Xin; Ai, Xi-Cheng; Zhang, Jian-Ping; Qin, Yujun

    2016-04-28

    Organic-inorganic halide perovskite solar cells are becoming the next big thing in the photovoltaic field owing to their rapidly developing photoelectric conversion performance. Herein, mesoporous structured perovskite devices with various perovskite grain sizes are fabricated by a sequential dropping method, and the charge recombination dynamics is investigated by transient optical-electric measurements. All devices exhibit an overall power conversion efficiency around 15%. More importantly, a biphasic trap-limited charge recombination process is proposed and interpreted by taking into account the specific charge accumulation mechanism in perovskite solar cells. At low Fermi levels, photo-generated electrons predominately populate in the perovskite phase, while at high Fermi levels, most electrons occupy traps in mesoporous TiO2. As a result, the dynamics of charge recombination is, respectively, dominated by the perovskite phase and mesoporous TiO2 in these two cases. The present work would give a new perspective on the charge recombination process in meso-structured perovskite solar cells.

  16. Enhanced visible light absorption and reduced charge recombination in AgNP plasmonic photoelectrochemical cell

    Directory of Open Access Journals (Sweden)

    Samaila Buda

    Full Text Available In this research work, silver nanoparticles (AgNP were synthesized using a simple solvothermal technique, the obtained AgNP were used to prepare a titania/silver (TiO2/Ag nanocomposites with varied amount of Ag contents and used to fabricated a photoanode of dye-sensitized solar cell (DSSC. X-ray photoelectron spectroscopy (XPS was used to ascertain the presence of silver in the nanocomposite. A photoluminance (PL spectra of the nanocomposite powder shows a low PL activity which indicates a reduced election- hole recombination within the material. UV–vis spectra reveal that the Ag in the DSSC photoanode enhances the light absorption of the solar cell device within the visible range between λ = 382 nm and 558 nm nm owing to its surface plasmon resonance effect. Power conversion efficiency was enhanced from 4.40% for the pure TiO2 photoanode based device to 6.56% for the device fabricated with TiO2/Ag due to the improvement of light harvesting caused by the localized surface plasmonic resonance effect of AgNP. The improvement of power conversion was also achieved due to the reduced charge recombination within the photoanode. Keywords: Nanoparticle, Silver, Plasmonic, Power, Photon

  17. Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins.

    Science.gov (United States)

    Palmieri, Ferdinando; Agrimi, Gennaro; Blanco, Emanuela; Castegna, Alessandra; Di Noia, Maria A; Iacobazzi, Vito; Lasorsa, Francesco M; Marobbio, Carlo M T; Palmieri, Luigi; Scarcia, Pasquale; Todisco, Simona; Vozza, Angelo; Walker, John

    2006-01-01

    The inner membranes of mitochondria contain a family of carrier proteins that are responsible for the transport in and out of the mitochondrial matrix of substrates, products, co-factors and biosynthetic precursors that are essential for the function and activities of the organelle. This family of proteins is characterized by containing three tandem homologous sequence repeats of approximately 100 amino acids, each folded into two transmembrane alpha-helices linked by an extensive polar loop. Each repeat contains a characteristic conserved sequence. These features have been used to determine the extent of the family in genome sequences. The genome of Saccharomyces cerevisiae contains 34 members of the family. The identity of five of them was known before the determination of the genome sequence, but the functions of the remaining family members were not. This review describes how the functions of 15 of these previously unknown transport proteins have been determined by a strategy that consists of expressing the genes in Escherichia coli or Saccharomyces cerevisiae, reconstituting the gene products into liposomes and establishing their functions by transport assay. Genetic and biochemical evidence as well as phylogenetic considerations have guided the choice of substrates that were tested in the transport assays. The physiological roles of these carriers have been verified by genetic experiments. Various pieces of evidence point to the functions of six additional members of the family, but these proposals await confirmation by transport assay. The sequences of many of the newly identified yeast carriers have been used to characterize orthologs in other species, and in man five diseases are presently known to be caused by defects in specific mitochondrial carrier genes. The roles of eight yeast mitochondrial carriers remain to be established.

  18. From Recombination Dynamics to Device Performance: Quantifying the Efficiency of Exciton Dissociation, Charge Separation, and Extraction in Bulk Heterojunction Solar Cells with Fluorine-Substituted Polymer Donors

    KAUST Repository

    Gorenflot, Julien

    2017-09-28

    An original set of experimental and modeling tools is used to quantify the yield of each of the physical processes leading to photocurrent generation in organic bulk heterojunction solar cells, enabling evaluation of materials and processing condition beyond the trivial comparison of device performances. Transient absorption spectroscopy, “the” technique to monitor all intermediate states over the entire relevant timescale, is combined with time-delayed collection field experiments, transfer matrix simulations, spectral deconvolution, and parametrization of the charge carrier recombination by a two-pool model, allowing quantification of densities of excitons and charges and extrapolation of their kinetics to device-relevant conditions. Photon absorption, charge transfer, charge separation, and charge extraction are all quantified for two recently developed wide-bandgap donor polymers: poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-difluorothiophene) (PBDT[2F]T) and its nonfluorinated counterpart poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-thiophene) (PBDT[2H]T) combined with PC71BM in bulk heterojunctions. The product of these yields is shown to agree well with the devices\\' external quantum efficiency. This methodology elucidates in the specific case studied here the origin of improved photocurrents obtained when using PBDT[2F]T instead of PBDT[2H]T as well as upon using solvent additives. Furthermore, a higher charge transfer (CT)-state energy is shown to lead to significantly lower energy losses (resulting in higher VOC) during charge generation compared to P3HT:PCBM.

  19. From Recombination Dynamics to Device Performance: Quantifying the Efficiency of Exciton Dissociation, Charge Separation, and Extraction in Bulk Heterojunction Solar Cells with Fluorine-Substituted Polymer Donors

    KAUST Repository

    Gorenflot, Julien; Paulke, Andreas; Piersimoni, Fortunato; Wolf, Jannic Sebastian; Kan, Zhipeng; Cruciani, Federico; El Labban, Abdulrahman; Neher, Dieter; Beaujuge, Pierre; Laquai, Fré dé ric

    2017-01-01

    An original set of experimental and modeling tools is used to quantify the yield of each of the physical processes leading to photocurrent generation in organic bulk heterojunction solar cells, enabling evaluation of materials and processing condition beyond the trivial comparison of device performances. Transient absorption spectroscopy, “the” technique to monitor all intermediate states over the entire relevant timescale, is combined with time-delayed collection field experiments, transfer matrix simulations, spectral deconvolution, and parametrization of the charge carrier recombination by a two-pool model, allowing quantification of densities of excitons and charges and extrapolation of their kinetics to device-relevant conditions. Photon absorption, charge transfer, charge separation, and charge extraction are all quantified for two recently developed wide-bandgap donor polymers: poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-difluorothiophene) (PBDT[2F]T) and its nonfluorinated counterpart poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-thiophene) (PBDT[2H]T) combined with PC71BM in bulk heterojunctions. The product of these yields is shown to agree well with the devices' external quantum efficiency. This methodology elucidates in the specific case studied here the origin of improved photocurrents obtained when using PBDT[2F]T instead of PBDT[2H]T as well as upon using solvent additives. Furthermore, a higher charge transfer (CT)-state energy is shown to lead to significantly lower energy losses (resulting in higher VOC) during charge generation compared to P3HT:PCBM.

  20. Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems.

    Science.gov (United States)

    Teuscher, Joël; Brauer, Jan C; Stepanov, Andrey; Solano, Alicia; Boziki, Ariadni; Chergui, Majed; Wolf, Jean-Pierre; Rothlisberger, Ursula; Banerji, Natalie; Moser, Jacques-E

    2017-11-01

    Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation), which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research "Molecular Ultrafast Science and Technology," a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena. Structural, electronic, and transport properties of the materials and the detailed mechanisms of photoinduced charge separation in dye-sensitized solar cells, conjugated polymer- and small molecule-based organic photovoltaics, and high-efficiency lead halide perovskite solar energy converters have been scrutinized. Results yielded more than thirty research articles, an overview of which is provided here.

  1. Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems

    Directory of Open Access Journals (Sweden)

    Joël Teuscher

    2017-11-01

    Full Text Available Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation, which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research “Molecular Ultrafast Science and Technology,” a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena. Structural, electronic, and transport properties of the materials and the detailed mechanisms of photoinduced charge separation in dye-sensitized solar cells, conjugated polymer- and small molecule-based organic photovoltaics, and high-efficiency lead halide perovskite solar energy converters have been scrutinized. Results yielded more than thirty research articles, an overview of which is provided here.

  2. Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering

    KAUST Repository

    Shi, Dong

    2016-04-15

    We report the crystal structure and hole-transport mechanism in spiro-OMeTAD [2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene], the dominant hole-transporting material in perovskite and solid-state dye-sensitized solar cells. Despite spiro-OMeTAD’s paramount role in such devices, its crystal structure was unknown because of highly disordered solution-processed films; the hole-transport pathways remained ill-defined and the charge carrier mobilities were low, posing a major bottleneck for advancing cell efficiencies. We devised an antisolvent crystallization strategy to grow single crystals of spiro-OMeTAD, which allowed us to experimentally elucidate its molecular packing and transport properties. Electronic structure calculations enabled us to map spiro-OMeTAD’s intermolecular charge-hopping pathways. Promisingly, single-crystal mobilities were found to exceed their thin-film counterparts by three orders of magnitude. Our findings underscore mesoscale ordering as a key strategy to achieving breakthroughs in hole-transport material engineering of solar cells.

  3. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell

    International Nuclear Information System (INIS)

    Rana, Aniket; Lochan, Abhiram; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.; Gupta, Neeraj; Sharma, G. D.

    2016-01-01

    The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.

  4. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell

    Science.gov (United States)

    Rana, Aniket; Gupta, Neeraj; Lochan, Abhiram; Sharma, G. D.; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.

    2016-08-01

    The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.

  5. Explanation of low efficiency droop in semipolar (202¯1¯) InGaN/GaN LEDs through evaluation of carrier recombination coefficients

    Science.gov (United States)

    Monavarian, Morteza; Rashidi, Arman; Aragon, Andrew; Oh, Sang H.; Nami, Mohsen; DenBaars, Steve P.; Feezell, Daniel

    2017-08-01

    We report the carrier dynamics and recombination coefficients in single-quantum-well semipolar $(20\\bar 2\\bar 1)$ InGaN/GaN light-emitting diodes emitting at 440 nm with 93% peak internal quantum efficiency. The differential carrier lifetime is analyzed for various injection current densities from 5 $A/cm^2$ to 10 $kA/cm^2$, and the corresponding carrier densities are obtained. The coupling of internal quantum efficiency and differential carrier lifetime vs injected carrier density ($n$) enables the separation of the radiative and nonradiative recombination lifetimes and the extraction of the Shockley-Read-Hall (SRH) nonradiative ($A$), radiative ($B$), and Auger ($C$) recombination coefficients and their $n$-dependency considering the saturation of the SRH recombination rate and phase-space filling. The results indicate a three to four-fold higher $A$ and a nearly two-fold higher $B_0$ for this semipolar orientation compared to that of $c$-plane reported using a similar approach [A. David and M. J. Grundmann, Appl. Phys. Lett. 96, 103504 (2010)]. In addition, the carrier density in semipolar $(20\\bar 2\\bar 1)$ is found to be lower than the carrier density in $c$-plane for a given current density, which is important for suppressing efficiency droop. The semipolar LED also shows a two-fold lower $C_0$ compared to $c$-plane, which is consistent with the lower relative efficiency droop for the semipolar LED (57% vs. 69%). The lower carrier density, higher $B_0$ coefficient, and lower $C_0$ (Auger) coefficient are directly responsible for the high efficiency and low efficiency droop reported in semipolar $(20\\bar 2\\bar 1)$ LEDs.

  6. Charge carrier mobility and electronic properties of Al(Op3: impact of excimer formation

    Directory of Open Access Journals (Sweden)

    Andrea Magri

    2015-05-01

    Full Text Available We have studied the electronic properties and the charge carrier mobility of the organic semiconductor tris(1-oxo-1H-phenalen-9-olatealuminium(III (Al(Op3 both experimentally and theoretically. We experimentally estimated the HOMO and LUMO energy levels to be −5.93 and −3.26 eV, respectively, which were close to the corresponding calculated values. Al(Op3 was successfully evaporated onto quartz substrates and was clearly identified in the absorption spectra of both the solution and the thin film. A structured steady state fluorescence emission was detected in solution, whereas a broad, red-shifted emission was observed in the thin film. This indicates the formation of excimers in the solid state, which is crucial for the transport properties. The incorporation of Al(Op3 into organic thin film transistors (TFTs was performed in order to measure the charge carrier mobility. The experimental setup detected no electron mobility, while a hole mobility between 0.6 × 10−6 and 2.1 × 10−6 cm2·V−1·s−1 was measured. Theoretical simulations, on the other hand, predicted an electron mobility of 9.5 × 10−6 cm2·V−1·s−1 and a hole mobility of 1.4 × 10−4 cm2·V−1·s−1. The theoretical simulation for the hole mobility predicted an approximately one order of magnitude higher hole mobility than was observed in the experiment, which is considered to be in good agreement. The result for the electron mobility was, on the other hand, unexpected, as both the calculated electron mobility and chemical common sense (based on the capability of extended aromatic structures to efficiently accept and delocalize additional electrons suggest more robust electron charge transport properties. This discrepancy is explained by the excimer formation, whose inclusion in the multiscale simulation workflow is expected to bring the theoretical simulation and experiment into agreement.

  7. Subnanosecond Charge Recombination Dynamics in P3HT/PC61BM Films

    Directory of Open Access Journals (Sweden)

    Jian-Ping Zhang

    2012-11-01

    Full Text Available Ultrafast near-infrared absorption spectroscopy was used to investigate the influence of film morphology and excitation photon energy on the charge recombination (CR dynamics in the initial nanosecond timescale in the P3HT/PC61BM blend films. With reference to the CS2-cast films, the solvent vapor annealed (SVA ones show 2–3-fold improvement in hole mobility and more than 5-fold reduction in the polymer-localized trap states of holes. At Dt = 70 ps, the hole mobility (mh and the bimolecular CR rate (gbi of the SVA films are mh = 8.7 × 10−4 cm2×s−1×V−1 and gbi = 4.5 × 10−10 cm3×s−1, whereas at Dt = 1 ns they drop to 8.7 × 10−5 cm2×s−1×V−1 and 4.6 × 10−11 cm3×s−1, respectively. In addition, upon increasing the hole concentration, the hole mobility increases substantially faster under the above-gap photoexcitation than it does under the band-gap photoexcitation, irrespective of the film morphologies. The results point to the importance of utilizing the photogenerated free charges in the early timescales.

  8. First measurement of the edge charge exchange recombination spectroscopy on EAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y. Y., E-mail: liyy@ipp.ac.cn; Fu, J.; Jiang, D.; Lyu, B.; Hu, C. D.; Wan, B. N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Yin, X. H.; Feng, S. Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei (China); Shi, Y. J. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei (China); Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Yi, Y.; Ye, M. Y. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei (China); Zhou, X. J. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    An edge toroidal charge exchange recombination spectroscopy (eCXRS) diagnostic, based on a heating neutral beam injection (NBI), has been deployed recently on the Experimental Advanced Superconducting Tokamak (EAST). The eCXRS, which aims to measure the plasma ion temperature and toroidal rotation velocity in the edge region simultaneously, is a complement to the exiting core CXRS (cCXRS). Two rows with 32 fiber channels each cover a radial range from ∼2.15 m to ∼2.32 m with a high spatial resolution of ∼5-7 mm. Charge exchange emission of Carbon VI CVI at 529.059 nm induced by the NBI is routinely observed, but can be tuned to any interested wavelength in the spectral range from 400 to 700 nm. Double-slit fiber bundles increase the number of channels, the fibers viewing the same radial position are binned on the CCD detector to improve the signal-to-noise ratio, enabling shorter exposure time down to 5 ms. One channel is connected to a neon lamp, which provides the real-time wavelength calibration on a shot-to-shot basis. In this paper, an overview of the eCXRS diagnostic on EAST is presented and the first results from the 2015 experimental campaign will be shown. Good agreements in ion temperature and toroidal rotation are obtained between the eCXRS and cCXRS systems.

  9. Real-time observation of intersystem crossing induced by charge recombination during bimolecular electron transfer reactions

    KAUST Repository

    Alsam, Amani Abdu

    2016-09-21

    Real-time probing of intersystem crossing (ISC) and triplet-state formation after photoinduced electron transfer (ET) is a particularly challenging task that can be achieved by time-resolved spectroscopy with broadband capability. Here, we examine the mechanism of charge separation (CS), charge recombination (CR) and ISC of bimolecular photoinduced electron transfer (PET) between poly[(9,9-di(3,3′-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and dicyanobenzene (DCB) using time-resolved spectroscopy. PET from PFN to DCB is confirmed by monitoring the transient absorption (TA) and infrared spectroscopic signatures for the radical ion pair (DCB─•-PFN+•). In addition, our time-resolved results clearly demonstrate that CS takes place within picoseconds followed by CR within nanoseconds. The ns-TA data exhibit the clear spectroscopic signature of PFN triplet-triplet absorption, induced by the CR of the radical ion pairs (DCB─•-PFN+•). As a result, the triplet state of PFN (3PFN*) forms and subsequently, the ground singlet state is replenished within microseconds. © 2016

  10. High spatial and temporal resolution charge exchange recombination spectroscopy on the HL-2A tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Y. L.; Yu, D. L., E-mail: yudl@swip.ac.cn; Liu, L.; Cao, J. Y.; Sun, A. P.; Ma, Q.; Chen, W. J.; Liu, Yi; Yan, L. W.; Yang, Q. W.; Duan, X. R.; Liu, Yong [Southwestern Institute of Physics, Chengdu 610041 (China); Ida, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Hellermann, M. von [ITER Diagnostic Team, IO, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); FOM-Institute for Plasma physics “Rijnhuizen,” Association EURATOM, Trilateral Euregio Cluster, 3430 BE Nieuwegein (Netherlands)

    2014-10-01

    A 32/64-channel charge exchange recombination spectroscopy (CXRS) diagnostic system is developed on the HL-2A tokamak (R = 1.65 m, a = 0.4 m), monitoring plasma ion temperature and toroidal rotation velocity simultaneously. A high throughput spectrometer (F/2.8) and a pitch-controlled fiber bundle enable the temporal resolution of the system up to 400 Hz. The observation geometry and an optimized optic system enable the highest radial resolution up to ~1 cm at the plasma edge. The CXRS system monitors the carbon line emission (C VI, n = 8–7, 529.06 nm) whose Doppler broadening and Doppler shift provide ion temperature and plasma rotation velocity during the neutral beam injection. The composite CX spectral data are analyzed by the atomic data and analysis structure charge exchange spectroscopy fitting (ADAS CXSFIT) code. First experimental results are shown for the case of HL-2A plasmas with sawtooth oscillations, electron cyclotron resonance heating, and edge transport barrier during the high-confinement mode (H-mode)

  11. Electron Impact Excitation and Dielectronic Recombination of Highly Charged Tungsten Ions

    Directory of Open Access Journals (Sweden)

    Zhongwen Wu

    2015-11-01

    Full Text Available Electron impact excitation (EIE and dielectronic recombination (DR of tungsten ions are basic atomic processes in nuclear fusion plasmas of the International Thermonuclear Experimental Reactor (ITER tokamak. Detailed investigation of such processes is essential for modeling and diagnosing future fusion experiments performed on the ITER. In the present work, we studied total and partial electron-impact excitation (EIE and DR cross-sections of highly charged tungsten ions by using the multiconfiguration Dirac–Fock method. The degrees of linear polarization of the subsequent X-ray emissions from unequally-populated magnetic sub-levels of these ions were estimated. It is found that the degrees of linear polarization of the same transition lines, but populated respectively by the EIE and DR processes, are very different, which makes diagnosis of the formation mechanism of X-ray emissions possible. In addition, with the help of the flexible atomic code on the basis of the relativistic configuration interaction method, DR rate coefficients of highly charged W37+ to W46+ ions are also studied, because of the importance in the ionization equilibrium of tungsten plasmas under running conditions of the ITER.

  12. How High Local Charge Carrier Mobility and an Energy Cascade in a Three-Phase Bulk Heterojunction Enable >90% Quantum Efficiency

    KAUST Repository

    Burke, Timothy M.

    2013-12-27

    Charge generation in champion organic solar cells is highly efficient in spite of low bulk charge-carrier mobilities and short geminate-pair lifetimes. In this work, kinetic Monte Carlo simulations are used to understand efficient charge generation in terms of experimentally measured high local charge-carrier mobilities and energy cascades due to molecular mixing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. How High Local Charge Carrier Mobility and an Energy Cascade in a Three-Phase Bulk Heterojunction Enable >90% Quantum Efficiency

    KAUST Repository

    Burke, Timothy M.; McGehee, Michael D.

    2013-01-01

    Charge generation in champion organic solar cells is highly efficient in spite of low bulk charge-carrier mobilities and short geminate-pair lifetimes. In this work, kinetic Monte Carlo simulations are used to understand efficient charge generation in terms of experimentally measured high local charge-carrier mobilities and energy cascades due to molecular mixing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Recombiner

    International Nuclear Information System (INIS)

    Saalfrank, H.

    1985-01-01

    Air containing hydrogen can be oxidized by heating in a container called a recombiner, in order to avoid the collection of hydrogen. The container is long and a large number of straight heating bars are arranged in parallel in it and they are flanged to a lid. The heating bars are surrounded by tubes, in order to obtain good heat transfer by a narrow annular gap. (orig.) [de

  15. Charge Carrier Generation, Recombination, and Extraction in Polymer–Fullerene Bulk Heterojunction Organic Solar Cells

    KAUST Repository

    Laquai, Fré dé ric; Andrienko, Denis; Deibel, Carsten; Neher, Dieter

    2016-01-01

    In this chapter we review the basic principles of photocurrent generation in bulk heterojunction organic solar cells, discuss the loss channels limiting their efficiency, and present case studies of several polymer–fullerene blends. Using steady-state and transient, optical, and electrooptical techniques, we create a precise picture of the fundamental processes that ultimately govern solar cell efficiency.

  16. Charge Carrier Generation, Recombination, and Extraction in Polymer–Fullerene Bulk Heterojunction Organic Solar Cells

    KAUST Repository

    Laquai, Frederic

    2016-12-20

    In this chapter we review the basic principles of photocurrent generation in bulk heterojunction organic solar cells, discuss the loss channels limiting their efficiency, and present case studies of several polymer–fullerene blends. Using steady-state and transient, optical, and electrooptical techniques, we create a precise picture of the fundamental processes that ultimately govern solar cell efficiency.

  17. Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wenchao; Yao, Yao, E-mail: yaoyao@fudan.edu.cn; Wu, Chang-Qin, E-mail: cqw@fudan.edu.cn [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China)

    2015-04-21

    In the currently popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and high open circuit voltages, but the underlying recombination mechanism remains unclear. In this work, we investigate the bimolecular recombination (BR) and the trap-assisted monomolecular recombination (MR) in meso-structured perovskite solar cells under steady state working condition, and try to reveal their roles on determining the device performance. Some interfacial effects such as the injection barriers at the selective contacts are examined as well. Based on the macroscopic device modeling, the recombination resistance-voltage (R{sub rec}−V) and the current density-voltage (J–V) curves are calculated to characterize the recombination mechanism and describe the device performance, respectively. Through comparison with the impedance spectroscopy extracted R{sub rec} data, it is found that under the typical BR reduction factor and deep trap densities observed in experiments, the MR dominates the charge recombination in the low voltage regime, while the BR dominates in the high voltage regime. The short circuit current and the fill factor could be reduced by the significant MR but the open circuit voltage is generally determined by the BR. The different electron injection barriers at the contact can change the BR rate and induce different patterns for the R{sub rec}–V characteristics. For the perovskites of increased band gaps, the R{sub rec}'s are significantly enhanced, corresponding to the high open circuit voltages. Finally, it is revealed that the reduced effective charge mobility due to the transport in electron and hole transporting material makes the R{sub rec} decrease slowly with the increasing voltage, which leads to increased open circuit voltage.

  18. Photogeneration and decay of charge carriers in hybrid bulk heterojunctions of ZnO nanoparticles and conjugated polymers

    NARCIS (Netherlands)

    Quist, P.A.C.; Beek, W.J.E.; Wienk, M.M.; Janssen, R.A.J.; Savenije, T.J.; Siebbeles, L.D.A.

    2006-01-01

    The photogeneration and decay of charge carriers in blend films of ZnO nanoparticles (diam. 5 nm) and poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) or poly(3-hexylthiophene) (P3HT) were studied by means of microwave-photoconductance measurements. Excitation of the

  19. Manipulation of charge carrier injection into organic field-effect transistors by self-assembled monolayers of alkanethiols

    NARCIS (Netherlands)

    Asadi, Kamal; Gholamrezaie, Fatemeh; Smits, Edsger C. P.; Blom, Paul W. M.; de Boer, Bert

    2007-01-01

    Charge carrier injection into two semiconducting polymers is investigated in field-effect transistors using gold source and drain electrodes that are modified by self-assembled monolayers of alkanethiols and perfluorinated alkanethiols. The presence of an interfacial dipole associated with the

  20. Investigation of radiative charging of dielectrics irradiated by ions

    International Nuclear Information System (INIS)

    Dergobuzov, K.A.; Yalovets, A.P.

    1994-01-01

    Within the framework of the Gusel'nikov mathematical model are fulflled numerical investigations of charging dielectrics irradiated with ions and atoms. The model accounts for dynamics of quasi-free charge carriers of each sign with account of processes of dielectrics ionization with a beam, charge recombination and charge drift in an electric fields. The effective mobility of charge carriers is determined with account for its dependence on the dose rate

  1. Intercalated vs Nonintercalated Morphologies in Donor-Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited.

    Science.gov (United States)

    Collado-Fregoso, Elisa; Hood, Samantha N; Shoaee, Safa; Schroeder, Bob C; McCulloch, Iain; Kassal, Ivan; Neher, Dieter; Durrant, James R

    2017-09-07

    In this Letter, we study the role of the donor:acceptor interface nanostructure upon charge separation and recombination in organic photovoltaic devices and blend films, using mixtures of PBTTT and two different fullerene derivatives (PC 70 BM and ICTA) as models for intercalated and nonintercalated morphologies, respectively. Thermodynamic simulations show that while the completely intercalated system exhibits a large free-energy barrier for charge separation, this barrier is significantly lower in the nonintercalated system and almost vanishes when energetic disorder is included in the model. Despite these differences, both femtosecond-resolved transient absorption spectroscopy (TAS) and time-delayed collection field (TDCF) exhibit extensive first-order losses in both systems, suggesting that geminate pairs are the primary product of photoexcitation. In contrast, the system that comprises a combination of fully intercalated polymer:fullerene areas and fullerene-aggregated domains (1:4 PBTTT:PC 70 BM) is the only one that shows slow, second-order recombination of free charges, resulting in devices with an overall higher short-circuit current and fill factor. This study therefore provides a novel consideration of the role of the interfacial nanostructure and the nature of bound charges and their impact upon charge generation and recombination.

  2. Wall reflection modeling for charge exchange recombination spectroscopy (CXRS) measurements on Textor and ITER

    International Nuclear Information System (INIS)

    Banerjee, Santanu; Vasu, P; Von Hellermann, M; Jaspers, R J E

    2010-01-01

    Contamination of optical signals by reflections from the tokamak vessel wall is a matter of great concern. For machines such as ITER and future reactors, where the vessel wall will be predominantly metallic, this is potentially a risk factor for quantitative optical emission spectroscopy. This is, in particular, the case when bremsstrahlung continuum radiation from the bulk plasma is used as a common reference light source for the cross-calibration of visible spectroscopy. In this paper the reflected contribution to the continuum level in Textor and ITER has been estimated for the detection channels meant for charge exchange recombination spectroscopy (CXRS). A model assuming diffuse reflection has been developed for the bremsstrahlung which is a much extended source. Based on this model, it is shown that in the case of ITER upper port 3, a wall with a moderate reflectivity of 20% leads to the wall reflected fraction being as high as 55-60% of the weak signals in the edge channels. In contrast, a complete bidirectional reflectance distribution function (BRDF) based model has been developed in order to estimate the reflections from more localized sources like the charge exchange (CX) emission from a neutral beam in tokamaks. The largest signal contamination of ∼15% is seen in the core CX channels, where the true CX signal level is much lower than that in the edge channels. Similar values are obtained for Textor also. These results indicate that the contributions from wall reflections may be large enough to significantly distort the overall spectral features of CX data, warranting an analysis at different wavelengths.

  3. Wall reflection modeling for charge exchange recombination spectroscopy (CXRS) measurements on Textor and ITER

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Santanu; Vasu, P [Institute for Plasma Research, Bhat, Gandhinagar 382 428, Gujarat (India); Von Hellermann, M [FOM Institute for Plasma Physics, Rijnhuizen (Netherlands); Jaspers, R J E, E-mail: sbanerje@ipr.res.i [Applied Physics Department, Eindhoven University of Technology, Eindhoven (Netherlands)

    2010-12-15

    Contamination of optical signals by reflections from the tokamak vessel wall is a matter of great concern. For machines such as ITER and future reactors, where the vessel wall will be predominantly metallic, this is potentially a risk factor for quantitative optical emission spectroscopy. This is, in particular, the case when bremsstrahlung continuum radiation from the bulk plasma is used as a common reference light source for the cross-calibration of visible spectroscopy. In this paper the reflected contribution to the continuum level in Textor and ITER has been estimated for the detection channels meant for charge exchange recombination spectroscopy (CXRS). A model assuming diffuse reflection has been developed for the bremsstrahlung which is a much extended source. Based on this model, it is shown that in the case of ITER upper port 3, a wall with a moderate reflectivity of 20% leads to the wall reflected fraction being as high as 55-60% of the weak signals in the edge channels. In contrast, a complete bidirectional reflectance distribution function (BRDF) based model has been developed in order to estimate the reflections from more localized sources like the charge exchange (CX) emission from a neutral beam in tokamaks. The largest signal contamination of {approx}15% is seen in the core CX channels, where the true CX signal level is much lower than that in the edge channels. Similar values are obtained for Textor also. These results indicate that the contributions from wall reflections may be large enough to significantly distort the overall spectral features of CX data, warranting an analysis at different wavelengths.

  4. The effects of free volumes on charge carrier transport in polysilanes probed by positron annihilation

    International Nuclear Information System (INIS)

    Seki, Shu; Terashima, Y.; Kunimi, Y.; Kawamori, T.; Tashiro, M.; Honda, Y.; Tagawa, S.

    2003-01-01

    Free volume characteristics were investigated by positron annihilation technique in poly(n-alkylphenylsilane)s with a variety length of n-alkyl chains from methyl (C1) to n-dodecyl (C12). The average radius of free volume: R changes in two steps. An increase in R is observed with an elongation of n-alkyl side-groups from C1 to n-pentyl (C5), followed by an abrupt decrease in R between C5 and n-hexyl (C6), and a gradual increase by further elongation from C6 to C12. The sudden decrease in R at C5 and C6 gives a good interpretation to the reduction of inter-site hopping distances and their fluctuation for the charge carrier (hole) transport estimated by time-of-flight measurements. The values of free volume fraction in the polymers mainly reflect the density of the polymers; however, differences in the microscopic inter-molecular structure are also observed for poly(n-hexylphenylsilane) in the present study

  5. Field effect measurements on charge carrier mobilities in various polymer-fullerene blend compositions

    International Nuclear Information System (INIS)

    Hauff, Elizabeth von; Parisi, Juergen; Dyakonov, Vladimir

    2006-01-01

    In this study we investigated materials typically used in polymer photovoltaics. Field effect measurements were performed in order to determine the hole mobilities in the conjugated polymer poly(3-hexylthiophene) (P3HT) and the electron mobilities in the methanofullerene[6,6]-phenyl C 61 -butyric acid methyl ester (PCBM), and, particularly, in the polymer-fullerene composite blends. Regarding the pure films, electron mobilities in PCBM were found to be in the 10 -2 cm 2 /Vs range, and hole mobilities in P3HT were found to be in the 10 -3 cm2/Vs range. In the PCBM:P3HT blends, it was found that varying the PCBM content in PCBM:P3HT blends led to a steep increase in electron mobility with increasing PCBM content, while the hole mobility was found to slightly decrease with the increasing PCBM concentration. In 2:1 PCBM:P3HT tempered blends, the charge carrier mobilities were found to be roughly balanced, at 10 -3 cm 2 /Vs. For improved electron transport in the blends, tempering was found to be crucial

  6. Accurate Extraction of Charge Carrier Mobility in 4-Probe Field-Effect Transistors

    KAUST Repository

    Choi, Hyun Ho; Rodionov, Yaroslav I.; Paterson, Alexandra F.; Panidi, Julianna; Saranin, Danila; Kharlamov, Nikolai; Didenko, Sergei I.; Anthopoulos, Thomas D.; Cho, Kilwon; Podzorov, Vitaly

    2018-01-01

    Charge carrier mobility is an important characteristic of organic field-effect transistors (OFETs) and other semiconductor devices. However, accurate mobility determination in FETs is frequently compromised by issues related to Schottky-barrier contact resistance, that can be efficiently addressed by measurements in 4-probe/Hall-bar contact geometry. Here, it is shown that this technique, widely used in materials science, can still lead to significant mobility overestimation due to longitudinal channel shunting caused by voltage probes in 4-probe structures. This effect is investigated numerically and experimentally in specially designed multiterminal OFETs based on optimized novel organic-semiconductor blends and bulk single crystals. Numerical simulations reveal that 4-probe FETs with long but narrow channels and wide voltage probes are especially prone to channel shunting, that can lead to mobilities overestimated by as much as 350%. In addition, the first Hall effect measurements in blended OFETs are reported and how Hall mobility can be affected by channel shunting is shown. As a solution to this problem, a numerical correction factor is introduced that can be used to obtain much more accurate experimental mobilities. This methodology is relevant to characterization of a variety of materials, including organic semiconductors, inorganic oxides, monolayer materials, as well as carbon nanotube and semiconductor nanocrystal arrays.

  7. Functionalized organic semiconductor molecules to enhance charge carrier injection in electroluminescent cell

    Science.gov (United States)

    Yalcin, Eyyup; Kara, Duygu Akin; Karakaya, Caner; Yigit, Mesude Zeliha; Havare, Ali Kemal; Can, Mustafa; Tozlu, Cem; Demic, Serafettin; Kus, Mahmut; Aboulouard, Abdelkhalk

    2017-07-01

    Organic semiconductor (OSC) materials as a charge carrier interface play an important role to improve the device performance of organic electroluminescent cells. In this study, 4,4″-bis(diphenyl amino)-1,1':3‧,1″-terphenyl-5'-carboxylic acid (TPA) and 4,4″-di-9H-carbazol-9-yl-1,1':3‧,1″-terphenyl-5'-carboxylic acid (CAR) has been designed and synthesized to modify indium tin oxide (ITO) layer as interface. Bare ITO and PEDOT:PSS coated on ITO was used as reference anode electrodes for comparison. Furthermore, PEDOT:PSS coated over CAR/ITO and TPA/ITO to observe stability of OSC molecules and to completely cover the ITO surface. Electrical, optical and surface characterizations were performed for each device. Almost all modified devices showed around 36% decrease at the turn on voltage with respect to bare ITO. The current density of bare ITO, ITO/CAR and ITO/TPA were measured as 288, 1525 and 1869 A/m2, respectively. By increasing current density, luminance of modified devices showed much better performance with respect to unmodified devices.

  8. Carrier mobility in mesoscale heterogeneous organic materials: Effects of crystallinity and anisotropy on efficient charge transport

    Science.gov (United States)

    Kobayashi, Hajime; Shirasawa, Raku; Nakamoto, Mitsunori; Hattori, Shinnosuke; Tomiya, Shigetaka

    2017-07-01

    Charge transport in the mesoscale bulk heterojunctions (BHJs) of organic photovoltaic devices (OPVs) is studied using multiscale simulations in combination with molecular dynamics, the density functional theory, the molecular-level kinetic Monte Carlo (kMC) method, and the coarse-grained kMC method, which was developed to estimate mesoscale carrier mobility. The effects of the degree of crystallinity and the anisotropy of the conductivity of donors on hole mobility are studied for BHJ structures that consist of crystalline and amorphous pentacene grains that act as donors and amorphous C60 grains that act as acceptors. We find that the hole mobility varies dramatically with the degree of crystallinity of pentacene because it is largely restricted by a low-mobility amorphous region that occurs in the hole transport network. It was also found that the percolation threshold of crystalline pentacene is relatively high at approximately 0.6. This high percolation threshold is attributed to the 2D-like conductivity of crystalline pentacene, and the threshold is greatly improved to a value of approximately 0.3 using 3D-like conductive donors. We propose essential guidelines to show that it is critical to increase the degree of crystallinity and develop 3D conductive donors for efficient hole transport through percolative networks in the BHJs of OPVs.

  9. Corneal permeation properties of a charged lipid nanoparticle carrier containing dexamethasone

    Science.gov (United States)

    Ban, Junfeng; Zhang, Yan; Huang, Xin; Deng, Guanghan; Hou, Dongzhi; Chen, Yanzhong; Lu, Zhufen

    2017-01-01

    Drug delivery carriers can maintain effective therapeutic concentrations in the eye. To this end, we developed lipid nanoparticles (L/NPs) in which the surface was modified with positively charged chitosan, which engaged in hydrogen bonding with the phospholipid membrane. We evaluated in vitro corneal permeability and release characteristics, ocular irritation, and drug dynamics of modified and unmodified L/NPs in aqueous humor. The size of L/NPs was uniform and showed a narrow distribution. Corneal permeation was altered by the presence of chitosan and was dependent on particle size; the apparent permeability coefficient of dexamethasone increased by 2.7 and 1.8 times for chitosan-modified and unmodified L/NPs, respectively. In conclusion, a chitosan-modified system could be a promising method for increasing the ocular bioavailability of unmodified L/NPs by enhancing their retention time and permeation into the cornea. These findings provide a theoretical basis for the development of effective drug delivery systems in the treatment of ocular disease. PMID:28243093

  10. InN/GaN quantum dot superlattices: Charge-carrier states and surface electronic structure

    Science.gov (United States)

    Kanouni, F.; Brezini, A.; Djenane, M.; Zou, Q.

    2018-03-01

    We have theoretically investigated the electron energy spectra and surface states energy in the three dimensionally ordered quantum dot superlattices (QDSLs) made of InN and GaN semiconductors. The QDSL is assumed in this model to be a matrix of GaN containing cubic dots of InN of the same size and uniformly distributed. For the miniband’s structure calculation, the resolution of the effective mass Schrödinger equation is done by decoupling it in the three directions within the framework of Kronig-Penney model. We found that the electrons minibands in infinite ODSLs are clearly different from those in the conventional quantum-well superlattices. The electrons localization and charge-carrier states are very dependent on the quasicrystallographic directions, the size and the shape of the dots which play a role of the artificial atoms in such QD supracrystal. The energy spectrum of the electron states localized at the surface of InN/GaN QDSL is represented by Kronig-Penney like-model, calculated via direct matching procedure. The calculation results show that the substrate breaks symmetrical shape of QDSL on which some localized electronic surface states can be produced in minigap regions. Furthermore, we have noticed that the surface states degeneracy is achieved in like very thin bands located in the minigaps, identified by different quantum numbers nx, ny, nz. Moreover, the surface energy bands split due to the reduction of the symmetry of the QDSL in z-direction.

  11. Storage of charge carriers on emitter molecules in organic light-emitting diodes

    Science.gov (United States)

    Weichsel, Caroline; Burtone, Lorenzo; Reineke, Sebastian; Hintschich, Susanne I.; Gather, Malte C.; Leo, Karl; Lüssem, Björn

    2012-08-01

    Organic light-emitting diodes (OLEDs) using the red phosphorescent emitter iridium(III)bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate) [Ir(MDQ)2(acac)] are studied by time-resolved electroluminescence measurements. A transient overshoot after voltage turn-off is found, which is attributed to electron accumulation on Ir(MDQ)2(acac) molecules. The mechanism is verified via impedance spectroscopy and by application of positive and negative off-voltages. We calculate the density of accumulated electrons and find that it scales linearly with the doping concentration of the emitter. Using thin quenching layers, we locate the position of the emission zone during normal OLED operation and after voltage turn-off. In addition, the transient overshoot is also observed in three-color white-emitting OLEDs. By time- and spectrally resolved measurements using a streak camera, we directly attribute the overshoot to electron accumulation on Ir(MDQ)2(acac). We propose that similar processes are present in many state-of-the-art OLEDs and believe that the quantification of charge carrier storage will help to improve the efficiency of OLEDs.

  12. Optimization of white organic light emitting diodes based on emitting layer charge carrier conduction properties

    International Nuclear Information System (INIS)

    Baek, H I; Lee, C H

    2008-01-01

    We have fabricated white organic light emitting diodes (OLEDs) with multi-emitting layer (EML) structures in which 4,4'-N,N'-dicarbazole-biphenyl (CBP) layers doped with the phosphorescent dopants fac-tris(2-phenylpyridine) iridium (Ir(ppy) 3 ) and bis(2-(2'-benzo[4,5-a]thienyl)pyridinato-N,C3')iridium(acetylacetonate) (btp 2 Ir(acac)) and the fluorescent dopant 4,4'-bis[2-{4-(N,N-diphenylamino) phenyl}vinyl]biphenyl (DPAVBi) were used as green (G), red (R) and blue (B) EMLs, respectively. A higher efficiency was expected with the R/G/B EML sequence from the hole transport layer interface than with the G/R/B sequence because of the differences in the charge carrier conduction properties of the EMLs doped with phosphorescent dopants and the luminance balance between the phosphorescent and fluorescent emissions. A high efficiency of 18.3 cd A -1 (an external quantum efficiency of 8.5%) at 100 cd m -2 and good colour stability were achieved with the R/G/B EML sequence as expected, with an additional non-doped CBP interlayer used between the G and B EMLs. In addition, the OLED with this sequence was found to have the longest lifetime of the white devices we tested

  13. Optimization of white organic light emitting diodes based on emitting layer charge carrier conduction properties

    Energy Technology Data Exchange (ETDEWEB)

    Baek, H I; Lee, C H [School of Electrical Engineering and Computer Science and Inter-University Semiconductor Research Center, Seoul National University, Seoul 151-744 (Korea, Republic of)], E-mail: hibaek75@snu.ac.kr

    2008-05-21

    We have fabricated white organic light emitting diodes (OLEDs) with multi-emitting layer (EML) structures in which 4,4'-N,N'-dicarbazole-biphenyl (CBP) layers doped with the phosphorescent dopants fac-tris(2-phenylpyridine) iridium (Ir(ppy){sub 3}) and bis(2-(2'-benzo[4,5-a]thienyl)pyridinato-N,C3')iridium(acetylacetonate) (btp{sub 2}Ir(acac)) and the fluorescent dopant 4,4'-bis[2-{l_brace}4-(N,N-diphenylamino) phenyl{r_brace}vinyl]biphenyl (DPAVBi) were used as green (G), red (R) and blue (B) EMLs, respectively. A higher efficiency was expected with the R/G/B EML sequence from the hole transport layer interface than with the G/R/B sequence because of the differences in the charge carrier conduction properties of the EMLs doped with phosphorescent dopants and the luminance balance between the phosphorescent and fluorescent emissions. A high efficiency of 18.3 cd A{sup -1} (an external quantum efficiency of 8.5%) at 100 cd m{sup -2} and good colour stability were achieved with the R/G/B EML sequence as expected, with an additional non-doped CBP interlayer used between the G and B EMLs. In addition, the OLED with this sequence was found to have the longest lifetime of the white devices we tested.

  14. Accurate Extraction of Charge Carrier Mobility in 4-Probe Field-Effect Transistors

    KAUST Repository

    Choi, Hyun Ho

    2018-04-30

    Charge carrier mobility is an important characteristic of organic field-effect transistors (OFETs) and other semiconductor devices. However, accurate mobility determination in FETs is frequently compromised by issues related to Schottky-barrier contact resistance, that can be efficiently addressed by measurements in 4-probe/Hall-bar contact geometry. Here, it is shown that this technique, widely used in materials science, can still lead to significant mobility overestimation due to longitudinal channel shunting caused by voltage probes in 4-probe structures. This effect is investigated numerically and experimentally in specially designed multiterminal OFETs based on optimized novel organic-semiconductor blends and bulk single crystals. Numerical simulations reveal that 4-probe FETs with long but narrow channels and wide voltage probes are especially prone to channel shunting, that can lead to mobilities overestimated by as much as 350%. In addition, the first Hall effect measurements in blended OFETs are reported and how Hall mobility can be affected by channel shunting is shown. As a solution to this problem, a numerical correction factor is introduced that can be used to obtain much more accurate experimental mobilities. This methodology is relevant to characterization of a variety of materials, including organic semiconductors, inorganic oxides, monolayer materials, as well as carbon nanotube and semiconductor nanocrystal arrays.

  15. CXSFIT Code Application to Process Charge-Exchange Recombination Spectroscopy Data at the T-10 Tokamak

    Science.gov (United States)

    Serov, S. V.; Tugarinov, S. N.; Klyuchnikov, L. A.; Krupin, V. A.; von Hellermann, M.

    2017-12-01

    The applicability of the CXSFIT code to process experimental data from Charge-eXchange Recombination Spectroscopy (CXRS) diagnostics at the T-10 tokamak is studied with a view to its further use for processing experimental data at the ITER facility. The design and operating principle of the CXRS diagnostics are described. The main methods for processing the CXRS spectra of the 5291-Å line of C5+ ions at the T-10 tokamak (with and without subtraction of parasitic emission from the edge plasma) are analyzed. The method of averaging the CXRS spectra over several shots, which is used at the T-10 tokamak to increase the signal-to-noise ratio, is described. The approximation of the spectrum by a set of Gaussian components is used to identify the active CXRS line in the measured spectrum. Using the CXSFIT code, the ion temperature in ohmic discharges and discharges with auxiliary electron cyclotron resonance heating (ECRH) at the T-10 tokamak is calculated from the CXRS spectra of the 5291-Å line. The time behavior of the ion temperature profile in different ohmic heating modes is studied. The temperature profile dependence on the ECRH power is measured, and the dynamics of ECR removal of carbon nuclei from the T-10 plasma is described. Experimental data from the CXRS diagnostics at T-10 substantially contribute to the implementation of physical programs of studies on heat and particle transport in tokamak plasmas and investigation of geodesic acoustic mode properties.

  16. A fast CCD detector for charge exchange recombination spectroscopy on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Thomas, D.M.; Burrell, K.H.; Groebner, R.J.; Gohil, P.

    1996-05-01

    Charge Exchange Recombination (CER) spectroscopy has become a standard diagnostic for tokamaks. CER measurements have been used to determine spatially and temporally resolved ion temperature, toroidal and poloidal ion rotation speed, impurity density and radial electric field. Knowledge of the spatial profile and temporal evolution of the electric field shear in the plasma edge is crucial to understanding the physics of the L to H transition. High speed CER measurements are also valuable for Edge Localized Mode (ELM) studies. Since the 0.52 ms minimum time resolution of our present system is barely adequate to study the time evolution of these phenomena, we have developed a new CCD detector system with about a factor of two better time resolution. In addition, our existing system detects sufficient photons to utilize the shortest time resolution only under exceptional conditions. The new CCD detector has a quantum efficiency of about 0.65, which is a factor of 7 better than our previous image intensifier-silicon photodiode detector systems. We have also equipped the new system with spectrometers of lower f/number. This combination should allow more routine operation at the minimum integration time, as well as improving data quality for measurements in the divertor-relevant region outside of the separatrix. Construction details, benchmark data and initial tokamak measurements for the new system will be presented

  17. Development of fast charge exchange recombination spectroscopy by using interference filter method in JT-60U

    International Nuclear Information System (INIS)

    Kobayashi, Shinji; Sakasai, Akira; Koide, Yoshihiko; Sakamoto, Yoshiteru; Kamada, Yutaka; Hatae, Takaki; Oyama, Naoyuki; Miura, Yukitoshi

    2003-01-01

    Recent developments and results of fast charge exchange recombination spectroscopy (CXRS) using interference filter method are reported. In order to measure the rapid change of the ion temperature and rotation velocity under collapse or transition phenomena with high-time resolution, two types of interference filter systems were applied to the CXRS diagnostics on the JT-60U Tokamak. One can determine the Doppler broadening and Doppler shift of the CXR emission using three interference filters having slightly different center wavelengths. A rapid estimation method of the temperature ad rotation velocity without non-linear least square fitting is presented. The modification of the three-filters system enables us to improve the minimum time resolution up to 0.8 ms, which is better than that of 16.7 ms for the conventional CXRS system using the CCD detector in JT-60U. The other system having seven wavelength channels is newly fabricated to crosscheck the results obtained by the three-filters assembly, that is, to verify that the CXR emission forms a Gaussian profile under collapse phenomena. In a H-mode discharge having giant edge localized modes, the results obtained by the two systems are compared. The applicability of the three-filters system to the measurement of rapid changes in temperature and rotation velocity is demonstrated. (author)

  18. Side chain engineering of fused aromatic thienopyrazine based low band-gap polymers for enhanced charge carrier mobility

    KAUST Repository

    Mondal, Rajib

    2011-01-01

    A strategic side-chain engineering approach leads to the two orders of magnitude enhancement of charge carrier mobility in phenanthrene based fused aromatic thienopyrazine polymers. Hole carrier mobility up to 0.012 cm 2/Vs can be obtained in thin film transistor devices. Polymers were also utilized to fabricate bulk heterojunction photovoltaic devices and the maximum PCE obtained in these OPV\\'s was 1.15%. Most importantly, performances of the devices were correlated with thin morphological analysis performed by atomic force microscopy and grazing incidence X-ray scattering. © 2011 The Royal Society of Chemistry.

  19. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    Science.gov (United States)

    Spencer, J.; Gajdos, F.; Blumberger, J.

    2016-08-01

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.

  20. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J.; Gajdos, F.; Blumberger, J., E-mail: j.blumberger@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-08-14

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.

  1. The rates of charge separation and energy destructive charge recombination processes within an organic dyad in presence of metal-semiconductor core shell nanocomposites.

    Science.gov (United States)

    Mandal, Gopa; Bhattacharya, Sudeshna; Das, Subrata; Ganguly, Tapan

    2012-01-01

    Steady state and time resolved spectroscopic measurements were made at the ambient temperature on an organic dyad, 1-(4-Chloro-phenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone (MNCA), where the donor 1-methoxynaphthalene (1 MNT) is connected with the acceptor p-chloroacetophenone (PCA) by an unsaturated olefinic bond, in presence of Ag@TiO2 nanoparticles. Time resolved fluorescence and absorption measurements reveal that the rate parameters associated with charge separation, k(CS), within the dyad increases whereas charge recombination rate k(CR) reduces significantly when the surrounding medium is changed from only chloroform to mixture of chloroform and Ag@TiO2 (noble metal-semiconductor) nanocomposites. The observed results indicate that the dyad being combined with core-shell nanocomposites may form organic-inorganic nanocomposite system useful for developing light energy conversion devices. Use of metal-semiconductor nanoparticles may provide thus new ways to modulate charge recombination processes in light energy conversion devices. From comparison with the results obtained in our earlier investigations with only TiO2 nanoparticles, it is inferred that much improved version of light energy conversion device, where charge-separated species could be protected for longer period of time of the order of millisecond, could be designed by using metal-semiconductor core-shell nanocomposites rather than semiconductor nanoparticles only.

  2. Direct spectroscopic observation of charge-exchange recombination of medium-Z elements in the PLT tokamak

    International Nuclear Information System (INIS)

    Skinner, C.H.; Suckewer, S.; Cohen, S.A.; Schilling, G.; Wilson, R.; Stratton, B.

    1984-03-01

    We report the first observation of line emission resulting directly from charge-exchange recombination of medium-Z elements (Al, Sc) injected into a PLT discharge. Transitions due to the radiative cascade immediately following charge-exchange of He-like Al and Sc were observed by a VUV spectrograph and two air monochromators. In two cases, AlXI 3209 A and ScXIX 112.1 A, the observed transition had not previously been experimentally identified. Spatial scans provided information on the profile of the neutral beam in the plasma

  3. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation.

    Science.gov (United States)

    Chang, Jin; Kuga, Yuki; Mora-Seró, Iván; Toyoda, Taro; Ogomi, Yuhei; Hayase, Shuzi; Bisquert, Juan; Shen, Qing

    2015-03-12

    Bulk heterojunction (BHJ) solar cells based on colloidal QDs and metal oxide nanowires (NWs) possess unique and outstanding advantages in enhancing light harvesting and charge collection in comparison to planar architectures. However, the high surface area of the NW structure often brings about a large amount of recombination (especially interfacial recombination) and limits the open-circuit voltage in BHJ solar cells. This problem is solved here by passivating the surface of the metal oxide component in PbS colloidal quantum dot solar cells (CQDSCs). By coating thin TiO2 layers onto ZnO-NW surfaces, the open-circuit voltage and power conversion efficiency have been improved by over 40% in PbS CQDSCs. Characterization by transient photovoltage decay and impedance spectroscopy indicated that the interfacial recombination was significantly reduced by the surface passivation strategy. An efficiency as high as 6.13% was achieved through the passivation approach and optimization for the length of the ZnO-NW arrays (device active area: 16 mm2). All solar cells were tested in air, and exhibited excellent air storage stability (without any performance decline over more than 130 days). This work highlights the significance of metal oxide passivation in achieving high performance BHJ solar cells. The charge recombination mechanism uncovered in this work could shed light on the further improvement of PbS CQDSCs and/or other types of solar cells.

  4. Semiconducting lithium indium diselenide: Charge-carrier properties and the impacts of high flux thermal neutron irradiation

    Science.gov (United States)

    Hamm, Daniel S.; Rust, Mikah; Herrera, Elan H.; Matei, Liviu; Buliga, Vladimir; Groza, Michael; Burger, Arnold; Stowe, Ashley; Preston, Jeff; Lukosi, Eric D.

    2018-06-01

    This paper reports on the charge carrier properties of several lithium indium diselenide (LISe) semiconductors. It was found that the charge collection efficiency of LISe was improved after high flux thermal neutron irradiation including the presence of a typically unobservable alpha peak from hole-only collection. Charge carrier trap energies of the irradiated sample were measured using photo-induced current transient spectroscopy. Compared to previous studies of this material, no significant differences in trap energies were observed. Through trap-filled limited voltage measurements, neutron irradiation was found to increase the density of trap states within the bulk of the semiconductor, which created a polarization effect under alpha exposure but not neutron exposure. Further, the charge collection efficiency of the irradiated sample was higher (14-15 fC) than that of alpha particles (3-5 fC), indicating that an increase in hole signal contribution resulted from the neutron irradiation. Finally, it was observed that significant charge loss takes place near the point of generation, producing a significant scintillation response and artificially inflating the W-value of all semiconducting LISe crystals.

  5. On the definition of dielectric permittivity for media with temporal dispersion in the presence of free charge carriers

    International Nuclear Information System (INIS)

    Bordag, M; Geyer, B; Klimchitskaya, G L; Mostepanenko, V M

    2010-01-01

    We show that in the presence of free charge carriers the definition of the frequency-dependent dielectric permittivity requires additional regularization. As an example, the dielectric permittivity of the Drude model is considered and its time-dependent counterpart is derived and analyzed. The respective electric displacement cannot be represented in terms of the standard Fourier integral. The regularization procedure allowing the circumvention of these difficulties is suggested. For the purpose of comparison it is shown that the frequency-dependent dielectric permittivity of insulators satisfies all rigorous mathematical criteria. This permits us to conclude that in the presence of free charge carriers the concept of dielectric permittivity is not as well defined as for insulators and we make a link to widely discussed puzzles in the theory of thermal Casimir force which might be caused by the use of this kind of permittivities.

  6. On the definition of dielectric permittivity for media with temporal dispersion in the presence of free charge carriers

    Energy Technology Data Exchange (ETDEWEB)

    Bordag, M; Geyer, B; Klimchitskaya, G L; Mostepanenko, V M [Institute for Theoretical Physics, Leipzig University, Postfach 100920, D-04009, Leipzig (Germany)

    2010-01-08

    We show that in the presence of free charge carriers the definition of the frequency-dependent dielectric permittivity requires additional regularization. As an example, the dielectric permittivity of the Drude model is considered and its time-dependent counterpart is derived and analyzed. The respective electric displacement cannot be represented in terms of the standard Fourier integral. The regularization procedure allowing the circumvention of these difficulties is suggested. For the purpose of comparison it is shown that the frequency-dependent dielectric permittivity of insulators satisfies all rigorous mathematical criteria. This permits us to conclude that in the presence of free charge carriers the concept of dielectric permittivity is not as well defined as for insulators and we make a link to widely discussed puzzles in the theory of thermal Casimir force which might be caused by the use of this kind of permittivities.

  7. Double carriers pulse DLTS for the characterization of electron-hole recombination process in GaAsN grown by chemical beam epitaxy

    International Nuclear Information System (INIS)

    Bouzazi, Boussairi; Suzuki, Hidetoshi; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2011-01-01

    A nitrogen-related electron trap (E1), located approximately 0.33 eV from the conduction band minimum of GaAsN grown by chemical beam epitaxy, was confirmed by investigating the dependence of its density with N concentration. This level exhibits a high capture cross section compared with that of native defects in GaAs. Its density increases significantly with N concentration, persists following post-thermal annealing, and was found to be quasi-uniformly distributed. These results indicate that E1 is a stable defect that is formed during growth to compensate for the tensile strain caused by N. Furthermore, E1 was confirmed to act as a recombination center by comparing its activation energy with that of the recombination current in the depletion region of the alloy. However, this technique cannot characterize the electron-hole (e-h) recombination process. For that, double carrier pulse deep level transient spectroscopy is used to confirm the non-radiative e-h recombination process through E1, to estimate the capture cross section of holes, and to evaluate the energy of multi-phonon emission. Furthermore, a configuration coordinate diagram is modeled based on the physical parameters of E1. -- Research Highlights: → Double carrier pulse DLTS method confirms the existence of SRH center. → The recombination center in GaAsN depends on nitrogen concentration. → Minority carrier lifetime in GaAsN is less than 1 ns. → A non-radiative recombination center exits in GaAsN.

  8. The effective charge of heavy ions in hot, dense plasma, special attention being given to dielectronic recombination

    International Nuclear Information System (INIS)

    Peter, T.

    1985-11-01

    This work investigates the effective charge Zsub(eff) of heavy ion beams when passing through hot, dense matter. Major new results concern the temperature and high density effects on Zsub(eff), the importance of dielectronic recombination in the process where free electrons are captured by the projectile, and the corresponding shell oscillations in Zsub(eff), as well as the derivation of approximate scaling relations for Zsub(eff). (orig./GG) [de

  9. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  10. Effects of Radiative Recombination and Photon Recycling on Minority Carrier Lifetime in Epitaxial GaINAsSb Lattice-matched to GaSb

    International Nuclear Information System (INIS)

    S Anikeev; D Donetsky; G Belenky; S Luryl; CA Wang; DA Shiau; M Dashiell; J Beausang; G Nichols

    2004-01-01

    Radiative coefficient (B) is a fundamental recombination parameter which is of importance for a variety of optoelectronic minority carrier devices. Radiative recombination was comprehensively studied for wide-bandgap III-V compounds, while for 0.5-0.6 eV materials experimental data are quite limited and demonstrate significant spreading. Here we report excess carrier lifetime in isotype double heterostructures (DHs) of 0.54-eV p-GaInAsSb capped with p-AlGaAsSb, and grown lattice-matched to GaSb. Lifetime was measured by time-resolved photoluminescence (dynamic lifetime) as well as by optical response to sinusoidal excitation (static lifetime). Wide range of GaInAsSb layer thickness was used to separate contributions from interface and radiative recombination processes. Radiative coefficient and recombination velocity at GaInAsSb/AlGaAsSb heterointerface were determined. Temperature dependence of lifetime demonstrated significant contribution of radiative effects to the total recombination

  11. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO)

    Science.gov (United States)

    Kumar, S. Girish; Rao, K. S. R. Koteswara

    2017-01-01

    Metal oxide semiconductors (TiO2, WO3 and ZnO) finds unparalleled opportunity in wastewater purification under UV/visible light, largely encouraged by their divergent admirable features like stability, non-toxicity, ease of preparation, suitable band edge positions and facile generation of active oxygen species in the aqueous medium. However, the perennial failings of these photocatalysts emanates from the stumbling blocks like rapid charge carrier recombination and meager visible light response. In this review, tailoring the surface-bulk electronic structure through the calibrated and veritable approaches such as impurity doping, deposition with noble metals, sensitizing with other compounds (dyes, polymers, inorganic complexes and simple chelating ligands), hydrogenation process (annealing under hydrogen atmosphere), electronic integration with other semiconductors, modifying with carbon nanostructures, designing with exposed facets and tailoring with hierarchical morphologies to overcome their critical drawbacks are summarized. Taking into account the materials intrinsic properties, the pros and cons together with similarities and striking differences for each strategy in specific to TiO2, WO3 & ZnO are highlighted. These subtlety enunciates the primacy for improving the structure-electronic properties of metal oxides and credence to its fore in the practical applications. Future research must focus on comparing the performances of ZnO, TiO2 and WO3 in parallel to get insight into their photocatalytic behaviors. Such comparisons not only reveal the changed surface-electronic structure upon various modifications, but also shed light on charge carrier dynamics, free radical generation, structural stability and compatibility for photocatalytic reactions. It is envisioned that these cardinal tactics have profound implications and can be replicated to other semiconductor photocatalysts like CeO2, In2O3, Bi2O3, Fe2O3, BiVO4, AgX, BiOX (X = Cl, Br & I), Bi2WO6, Bi2MoO6

  12. Charge carrier transport and collection enhancement of copper indium diselenide photoactive nanoparticle-ink by laser crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Nian, Qiong; Cheng, Gary J., E-mail: gjcheng@purdue.edu [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47906 (United States); School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Zhang, Martin Y. [School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Wang, Yuefeng [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47906 (United States); School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Das, Suprem R.; Bhat, Venkataprasad S. [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47906 (United States); Huang, Fuqiang [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China)

    2014-09-15

    There has been increasing needs for cost-effective and high performance thin film deposition techniques for photovoltaics. Among all deposition techniques, roll-to-roll printing of nanomaterials has been a promising method. However, the printed thin film contains many internal imperfections, which reduce the charge-collection performance. Here, direct pulse laser crystallization (DPLC) of photoactive nanoparticles-inks is studied to meet this challenge. In this study, copper indium selenite (CIS) nanoparticle-inks is applied as an example. Enhanced crystallinity, densified structure in the thin film is resulted after DLPC under optimal conditions. It is found that the decreased film internal imperfections after DPLC results in reducing scattering and multi-trapping effects. Both of them contribute to better charge-collection performance of CIS absorber material by increasing extended state mobility and carrier lifetime, when carrier transport and kinetics are coupled. Charge carrier transport was characterized after DPLC, showing mobility increased by 2 orders of magnitude. Photocurrent under AM1.5 illumination was measured and shown 10 times enhancement of integrated power density after DPLC, which may lead to higher efficiency in photo-electric energy conversion.

  13. Structural defects and recombination behavior of excited carriers in Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Du, H. W.; Li, Y.; Gao, M.; Wan, Y. Z.; Xu, F. [SHU-SolarE R& D Lab, Department of Physics, Shanghai University, Shanghai, 200444 (China); Ma, Z. Q., E-mail: zqma@shu.edu.cn [SHU-SolarE R& D Lab, Department of Physics, Shanghai University, Shanghai, 200444 (China); Instrumental Analysis & Research Center, Shanghai University, Shanghai, 200444 (China)

    2016-08-15

    The carriers’ behavior in neutral region (NTR) and space charged region (SCR) of Cu(In,Ga)Se{sub 2} thin film based solar cells has been investigated by temperature dependent photoluminescence (PL-T), electroluminescence (EL-T) and current-voltage (IV-T) from 10 to 300 K. PL-T spectra show that three kinds of defects, namely V{sub Se}, In{sub Cu} and (In{sub Cu}+V{sub Cu}), are localized within the band gap of NTR and SCR of CIGS layer, corresponding to the energy levels of E{sub C}-0.08, E{sub C}-0.20 and E{sub C}-0.25 eV, respectively. The In{sub Cu} and (In{sub Cu}+V{sub Cu}) deep level defects are non-radiative recombination centers at room temperature. The IV-T and EL-T analysis reveals that the injection modes of electrons from ZnO conduction band into Cu(In,Ga)Se{sub 2} layer are tunneling, thermally-excited tunneling and thermionic emission under 10-40, 60-160, and 180-300 K, respectively. At 10-160 K, the electrons tunnel into (In{sub Cu}+V{sub Cu}) and V{sub se} defect levels in band gap of SCR and the drifting is involved in the emission bands at 0.96 and 1.07 eV, which is the direct evidence for a tunneling assisted recombination. At 180-300 K, the electrons are directly injected into the Cu(In,Ga)Se{sub 2} conduction band, and the emission of 1.13 eV are ascribed to the transitions from the conduction band to the valence band.

  14. Characterization of Charge-Carrier Transport in Semicrystalline Polymers: Electronic Couplings, Site Energies, and Charge-Carrier Dynamics in Poly(bithiophene- alt -thienothiophene) [PBTTT

    KAUST Repository

    Poelking, Carl

    2013-01-31

    We establish a link between the microscopic ordering and the charge-transport parameters for a highly crystalline polymeric organic semiconductor, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). We find that the nematic and dynamic order parameters of the conjugated backbones, as well as their separation, evolve linearly with temperature, while the side-chain dynamic order parameter and backbone paracrystallinity change abruptly upon the (also experimentally observed) melting of the side chains around 400 K. The distribution of site energies follows the behavior of the backbone paracrystallinity and can be treated as static on the time scale of a single-charge transfer reaction. On the contrary, the electronic couplings between adjacent backbones are insensitive to side-chain melting and vary on a much faster time scale. The hole mobility, calculated after time-averaging of the electronic couplings, reproduces well the value measured in a short-channel thin-film transistor. The results underline that to secure efficient charge transport in lamellar arrangements of conjugated polymers: (i) the electronic couplings should present high average values and fast dynamics, and (ii) the energetic disorder (paracrystallinity) should be small. © 2013 American Chemical Society.

  15. Characterization of Charge-Carrier Transport in Semicrystalline Polymers: Electronic Couplings, Site Energies, and Charge-Carrier Dynamics in Poly(bithiophene- alt -thienothiophene) [PBTTT

    KAUST Repository

    Poelking, Carl; Cho, Eunkyung; Malafeev, Alexander; Ivanov, Viktor; Kremer, Kurt; Risko, Chad; Bré das, Jean-Luc; Andrienko, Denis

    2013-01-01

    We establish a link between the microscopic ordering and the charge-transport parameters for a highly crystalline polymeric organic semiconductor, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). We find that the nematic and dynamic order parameters of the conjugated backbones, as well as their separation, evolve linearly with temperature, while the side-chain dynamic order parameter and backbone paracrystallinity change abruptly upon the (also experimentally observed) melting of the side chains around 400 K. The distribution of site energies follows the behavior of the backbone paracrystallinity and can be treated as static on the time scale of a single-charge transfer reaction. On the contrary, the electronic couplings between adjacent backbones are insensitive to side-chain melting and vary on a much faster time scale. The hole mobility, calculated after time-averaging of the electronic couplings, reproduces well the value measured in a short-channel thin-film transistor. The results underline that to secure efficient charge transport in lamellar arrangements of conjugated polymers: (i) the electronic couplings should present high average values and fast dynamics, and (ii) the energetic disorder (paracrystallinity) should be small. © 2013 American Chemical Society.

  16. Enhancing Charge Carrier Lifetime in Metal Oxide Photoelectrodes through Mild Hydrogen Treatment

    KAUST Repository

    Jang, Ji-Wook; Friedrich, Dennis; Mü ller, Sö nke; Lamers, Marlene; Hempel, Hannes; Lardhi, Sheikha F.; Cao, Zhen; Harb, Moussab; Cavallo, Luigi; Heller, René ; Eichberger, Rainer; van de Krol, Roel; Abdi, Fatwa F.

    2017-01-01

    and are relatively cheap, are particularly interesting, but high efficiency is still hindered by the poor carrier transport properties (i.e., carrier mobility and lifetime). Here, a mild hydrogen treatment is introduced to bismuth vanadate (BiVO4), which is one

  17. Exciton-Dissociation and Charge-Recombination Processes in Pentacene/C 60 Solar Cells: Theoretical Insight into the Impact of Interface Geometry

    KAUST Repository

    Yi, Yuanping; Coropceanu, Veaceslav; Brédas, Jean-Luc

    2009-01-01

    The exciton-dissociation and charge-recombination processes in organic solar cells based on pentacene/C60 heterojunctions are investigated by means of quantum-mechanical calculations. The electronic couplings and the rates of exciton dissociation

  18. Evidence for strong Breit interaction in dielectronic recombination of highly charged heavy ions.

    Science.gov (United States)

    Nakamura, Nobuyuki; Kavanagh, Anthony P; Watanabe, Hirofumi; Sakaue, Hiroyuki A; Li, Yueming; Kato, Daiji; Currell, Fred J; Ohtani, Shunsuke

    2008-02-22

    Resonant strengths have been measured for dielectronic recombination of Li-like iodine, holmium, and bismuth using an electron beam ion trap. By observing the atomic number dependence of the state-resolved resonant strength, clear experimental evidence has been obtained that the importance of the generalized Breit interaction (GBI) effect on dielectronic recombination increases as the atomic number increases. In particular, it has been shown that the GBI effect is exceptionally strong for the recombination through the resonant state [1s2s(2)2p(1/2)](1).

  19. Study of the Bulk Charge Carrier Dynamics in Anatase and Rutile TiO2 Single Crystals by Femtosecond Time Resolved Spectroscopy

    KAUST Repository

    Maity, Partha; Mohammed, Omar F.; Katsiev, Khabiboulakh; Idriss, Hicham

    2018-01-01

    as the best model for fundamental studies. Their ultrafast charge carrier dynamics especially on TiO2 anatase single crystal (the most active phase) are unresolved. Here femtosecond time resolved spectroscopy (TRS) was carried out to explore the dynamics

  20. Change in carrier type in high-k gate carbon nanotube field-effect transistors by interface fixed charges

    International Nuclear Information System (INIS)

    Moriyama, N; Ohno, Y; Kitamura, T; Kishimoto, S; Mizutani, T

    2010-01-01

    We study the phenomenon of change in carrier type in carbon nanotube field-effect transistors (CNFETs) caused by the atomic layer deposition (ALD) of a HfO 2 gate insulator. When a HfO 2 layer is deposited on a CNFET, the type of carrier changes from p-type to n-type. The so-obtained n-type device has good performance and stability in air. The conductivity of such a device with a channel length of 0.7 μm is 11% of the quantum conductance 4e 2 /h. The contact resistance for electron current is estimated to be 14 kΩ. The n-type conduction of this CNFET is maintained for more than 100 days. The change in carrier type is attributed to positive fixed charges introduced at the interface between the HfO 2 and SiO 2 layers. We also propose a novel technique to control the type of conduction by utilizing interface fixed charges; this technique is compatible with Si CMOS process technology.

  1. Multi-THz spectroscopy of mobile charge carriers in P3HT:PCBM on a sub-100 fs time scale

    DEFF Research Database (Denmark)

    Cooke, David G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2013-01-01

    The dynamics of mobile charge carrier generation in polymer bulk heterojunction films is of vital importance to the development of more efficient organic photovoltaics. As with conventional semiconductors, the optical signatures of mobile carriers lie in the far-infrared (1-30 THz) although...

  2. Dependence of the carrier mobility and trapped charge limited conduction on silver nanoparticles embedment in doped polypyrrole nanostructures

    Science.gov (United States)

    Biswas, Swarup; Dutta, Bula; Bhattacharya, Subhratanu

    2013-10-01

    The present article demonstrates an intensive study upon the temperature dependent current density (J)-voltage (V) characteristics of moderately doped polypyrrole nanostructure and its silver nanoparticles incorporated nanocomposites. Analysis of the measured J-V characteristics of different synthesized nano-structured samples within a wide temperature range revealed that the electrical conduction behavior followed a trapped charge-limited conduction and a transition of charge transport mechanism from deep exponential trap limited conduction to shallow traps limited conduction had been occurred due to the incorporation of silver nanoparticles within the polypyrrole matrix. A direct evaluation of carrier mobility as a function of electric field and temperature from the measured J-V characteristics illustrates that the incorporation of silver nanoparticles within the polypyrrole matrix enhances the carrier mobility at a large extent by reducing the concentration of traps within the polypyrrole matrix. The calculated mobility is consistent with the Poole-Frenkel form for the electrical field up to a certain temperature range. The nonlinear low temperature dependency of mobility of all the nanostructured samples was explained by Mott variable range hopping conduction mechanisms. Quantitative information regarding the charge transport parameters obtained from the above study would help to extend optimization strategies for the fabrication of new organic semiconducting nano-structured devices.

  3. Ambipolar charge carrier transport in organic semiconductor blends of C{sub 60} and CuPc; Ambipolarer Ladungstransport in organischen Halbleiter-Mischschichten bestehend aus C{sub 60} und CuPc

    Energy Technology Data Exchange (ETDEWEB)

    Bronner, Markus

    2008-06-20

    their ambipolar pendants. Also the potential distribution inside the channel of the transistors was measured and simulated. It was found that the potential is not only given by the applied drain and gate voltages but also by the charge carriers in the channel. In contrast to all present publications there is no recombination of electrons and holes in the channel. Hence, there are regions in the channel where both electrons and holes are accumulated. (orig.)

  4. Effects of carrier concentrations on the charge transport properties in monolayer silicene

    International Nuclear Information System (INIS)

    Abidin, B I; Yeoh, K H; Yong, T K; Ong, D S

    2017-01-01

    Using analytical band Monte Carlo approach, we have carried out a systematic study on the effects of carrier concentrations on the steady-state and transient electron transports that occur within a monolayer silicene. In particular, we have observed the following: First at steady-state, the electron mobility reduces with higher carrier concentrations. Secondly, in the transient regime we found that the drift velocity overshoot can be controlled by varying the carrier concentrations. We uncover that at carrier concentration of 1  ×  10 13 cm −2 , the drift velocity overshoot can reach up to 3.8  ×  10 7 cm s −1 which is close to the steady-state drift velocity saturation of graphene. Thirdly, the distance of the velocity over shoot can be further extended with higher carrier concentrations. Our findings could be useful and can be used as benchmark for future development of nanoscale silicene based devices. (paper)

  5. The deduction of low-Z ion temperature and densities in the JET tokamak using charge exchange recombination spectroscopy

    International Nuclear Information System (INIS)

    Boileau, A.; Hellermann, M. von; Horton, L.D.; Spence, J.; Summers, H.P.

    1989-01-01

    A charge exchange recombination spectroscopy (CXRS) diagnostic has been established on JET to study fully stripped low-Z species. Ion temperature in the plasma centre is measured from visible lines of helium, carbon and oxygen excited by charge exchange with heating neutral beam particles. Coincident cold components produced at the plasma edge are apparent on helium and carbon spectra and most spectra are subject to accidental blending from other species' edge plasma emission. The charge exchange feature can be isolated from the various composite lines and all three impurities agree on the same temperature within experimental error. Observed column emissivities are converted into absolute impurity densities using a neutral beam attenuation code and charge exchange effective rate coefficients. Comprehensive new calculations have been performed to obtain the effective rate coefficients. The models take detailed account of cascading and the influence of the plasma environment in causing l-mixing, and allow the n-dependence of the rate coefficients to be addressed experimentally. The effective ion charge reconstructed from simultaneous measurements of the densities of dominant impurities shows good agreement with the value inferred from visible Bremsstrahlung. Some illustrative results are shown for helium (helium discharge or minority r.f.. heating), carbon and oxygen concentrations monitored during characteristic operating regimes. (author)

  6. Generation of reactive oxygen species and charge carriers in plasmonic photocatalytic Au@TiO2 nanostructures with enhanced activity.

    Science.gov (United States)

    He, Weiwei; Cai, Junhui; Jiang, Xiumei; Yin, Jun-Jie; Meng, Qingbo

    2018-06-13

    The combination of semiconductor and plasmonic nanostructures, endowed with high efficiency light harvesting and surface plasmon confinement, has been a promising way for efficient utilization of solar energy. Although the surface plasmon resonance (SPR) assisted photocatalysis has been extensively studied, the photochemical mechanism, e.g. the effect of SPR on the generation of reactive oxygen species and charge carriers, is not well understood. In this study, we take Au@TiO2 nanostructures as a plasmonic photocatalyst to address this critical issue. The Au@TiO2 core/shell nanostructures with tunable SPR property were synthesized by the templating method with post annealing thermal treatment. It was found that Au@TiO2 nanostructures exhibit enhanced photocatalytic activity in either sunlight or visible light (λ > 420 nm). Electron spin resonance spectroscopy with spin trapping and spin labeling was used to investigate the enhancing effect of Au@TiO2 on the photo-induced reactive oxygen species and charge carriers. The formation of Au@TiO2 core/shell nanostructures resulted in a dramatic increase in light-induced generation of hydroxyl radicals, singlet oxygen, holes and electrons, as compared with TiO2 alone. This enhancement under visible light (λ > 420 nm) irradiation may be dominated by SPR induced local electrical field enhancement, while the enhancement under sunlight irradiation is dominated by the higher electron transfer from TiO2 to Au. These results unveiled that the superior photocatalytic activity of Au@TiO2 nanostructures correlates with enhanced generation of reactive oxygen species and charge carriers.

  7. Analysis of carrier transport and carrier trapping in organic diodes with polyimide-6,13-Bis(triisopropylsilylethynyl)pentacene double-layer by charge modulation spectroscopy and optical second harmonic generation measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Eunju, E-mail: elim@dankook.ac.kr, E-mail: taguchi.d.aa@m.titech.ac.jp, E-mail: iwamoto@pe.titech.ac.jp [Department of Applied Physics, Institute of Nanosensor and Biotechnology, Dankook University, Jukjeon-dong, Gyeonggi-do 448-701 (Korea, Republic of); Taguchi, Dai, E-mail: elim@dankook.ac.kr, E-mail: taguchi.d.aa@m.titech.ac.jp, E-mail: iwamoto@pe.titech.ac.jp; Iwamoto, Mitsumasa, E-mail: elim@dankook.ac.kr, E-mail: taguchi.d.aa@m.titech.ac.jp, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2014-08-18

    We studied the carrier transport and carrier trapping in indium tin oxide/polyimide (PI)/6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene)/Au diodes by using charge modulation spectroscopy (CMS) and time-resolved electric field induced optical second harmonic generation (TR-EFISHG) measurements. TR-EFISHG directly probes the spatial carrier behaviors in the diodes, and CMS is useful in explaining the carrier motion with respect to energy. The results clearly indicate that the injected carriers move across TIPS-pentacene thorough the molecular energy states of TIPS-pentacene and accumulate at the PI/TIPS-pentacene interface. However, some carriers are trapped in the PI layers. These findings take into account the capacitance-voltage and current-voltage characteristics of the diodes.

  8. Nongeminate radiative recombination of free charges in cation-exchanged PbS quantum dot films

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Ashley R. [National Renewable Energy Laboratory, 15013 Denver West Pkwy., Golden, CO 80401 (United States); Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309 (United States); Beard, Matthew C.; Johnson, Justin C. [National Renewable Energy Laboratory, 15013 Denver West Pkwy., Golden, CO 80401 (United States)

    2016-06-01

    Highlights: • Photoluminescence and transient absorption are used to probe PbS QD films. • Cation-exchanged PbS QDs show room-temperature PL emission. • Bimolecular recombination is shown for the first time in coupled, PbS QD films. - Abstract: Using photoluminescence (PL) spectroscopy we explore the radiative recombination pathways in PbS quantum dots (QDs) synthesized by two methods. We compare conventionally synthesized PbS from a PbO precursor to PbS synthesized using cation-exchange from CdS QDs. We show that strongly coupled films of PbS QDs from the cation-exchange luminesce with significant efficiency at room temperature. This is in stark contrast to conventional PbS QDs, which have exceedingly weak room temperature emission. Moreover, the power dependence of the emission is quadratic, indicating bimolecular radiative recombination that is reasonably competitive with trap-assisted recombination, a feature previously unreported in coupled PbS QD films. We interpret these results in terms of a greatly reduced defect concentration for cation-exchanged QDs that mitigates the influence of trap-assisted recombination. Cation-exchanged QDs have recently been employed in highly efficient and air-stable lead chalcogenide QD devices, and the reduced number of trap states inferred here may lead to improved current collection and higher open circuit voltage.

  9. The quantic distribution of mobile carriers in a surface charge coupled device

    International Nuclear Information System (INIS)

    Ionescu, M.

    1977-01-01

    The quantic distribution of the electrons in a surface charge coupled device (CCD), for a MIS structure with a real insulator (finite difference energy between the conduction bands of the insulator and of the semiconductor) is presented. A fundamental limitation of the charge transfer in a surface CCD is obtained. (author)

  10. Charge carrier mobility in poly[methyl(phenyl)silylene] studied by time-resolved terahertz spectroscopy and molecular modeling

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Kratochvílová, Irena; Kužel, Petr; Šebera, Jakub; Kochalska, Anna; Nožár, Juraj; Nešpůrek, Stanislav

    2011-01-01

    Roč. 13, č. 7 (2011), s. 2850-2856 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GP202/09/P099; GA ČR GA203/08/1594; GA AV ČR KAN401770651; GA MŠk LC512; GA ČR(CZ) GAP304/10/1951 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40500505 Keywords : molecular electronics * THz spectroscopy * charge carrier mobility Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.573, year: 2011

  11. Two-frequency method for measuring Hall emf in high-resistive materials with charge-carrier low mobility

    International Nuclear Information System (INIS)

    Aleksandrov, A.L.; Vedeneev, A.S.; Gulyaev, I.B.; Zhdan, A.G.

    1982-01-01

    A facility for measuring Hall emf in high-resistive materials with low mobility of charge carriers by the two-frequency method using digital synchronous integration is described. The facility permits to detect the minimum Hall emf approxamatety equat to 5 μV at approximatety equal to 1 T Ohm of the investigated.sample resistance during the measuring time of approximately equal to 2000 s. Sensitivity by Hall mobility makes up >= 0.01 cm 2 /Vxs at the same measuring time. Measuring results of the Hall emf on GaAs monocrystals, CdSe films and island film of gold are presented

  12. Probing surface states in PbS nanocrystal films using pentacene field effect transistors: controlling carrier concentration and charge transport in pentacene.

    Science.gov (United States)

    Park, Byoungnam; Whitham, Kevin; Bian, Kaifu; Lim, Yee-Fun; Hanrath, Tobias

    2014-12-21

    We used a bilayer field effect transistor (FET) consisting of a thin PbS nanocrystals (NCs) film interfaced with vacuum-deposited pentacene to probe trap states in NCs. We interpret the observed threshold voltage shift in context of charge carrier trapping by PbS NCs and relate the magnitude of the threshold voltage shift to the number of trapped carriers. We explored a series of NC surface ligands to modify the interface between PbS NCs and pentacene and demonstrate the impact of interface chemistry on charge carrier density and the FET mobility in a pentacene FET.

  13. Charge carrier motion in disordered conjugated polymers: a multiscale ab-initio study

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    We developed an ab-initio multiscale method for simulation of carrier transport in large disordered systems, based on direct calculation of electronic states and electron-phonon coupling constants. It enabled us to obtain the never seen before rich microscopic details of carrier motion in conjugated polymers, which led us to question several assumptions of phenomenological models, widely used in such systems. The macroscopic mobility of disordered poly(3- hexylthiophene) (P3HT) polymer, extracted from our simulation, is in agreement with experimental results from the literature.

  14. Chemical vapour deposition diamond. Charge carrier movement at low temperatures and use in time-critical applications

    International Nuclear Information System (INIS)

    Jansen, Hendrik

    2013-09-01

    Diamond, a wide band gap semiconductor with exceptional electrical properties, has found its way in diverse fields of application reaching from the usage as a sensor material for beam loss monitors at particle accelerator facilities, over laser windows, to UV light sensors in space applications, e.g. for space weather forecasting. Though often used at room temperature, little is known about the charge transport in diamond towards liquid helium temperatures. In this work the method of the transient current technique is employed at temperatures between room temperature and 2 K. The temperature and electric field strength dependence of the pulse shape, the charge carrier transit time, the drift velocity, the saturation velocity, and the low-field mobility is measured in detector-grade scCVD diamond. Furthermore, the usability of diamond in time-critical applications is tested, and the main results are presented.

  15. Nanocrystals in the glass and centers of localization of free charge carriers in the thick-film resistors

    International Nuclear Information System (INIS)

    Abdurakhmanov, G.

    2012-01-01

    Conduction mechanism of doped silicate glass (DSG) based on existence of nanocrystals in the glass is proposed. These nanocrystals act as localization centers of free charge carriers. Random distribution of the nanocrystal's sizes and distances between them leads to charge transport by variable length hopping. It is shown that dopant atoms generate the narrow impurity subband of 0.03 eV in width. This subband joins close to the glass valence band top or slightly (less than 0.01 eV) separated from the last. What is why the hopping mechanism coexists with thermal activation one and at low temperatures (T -n ), 0.25 800 K) structure transitions of nanocrystals take place and conductivity of DSG decreases sharply. Beyond of the minimum of conductivity (above 1000 K) energy gap is formed between the impurity subband and the valence band top of glass, so DSG behaves like a typical semiconductor. (author)

  16. Chemical Vapour Deposition Diamond - Charge Carrier Movement at Low Temperatures and Use in Time-Critical Applications

    CERN Document Server

    Jansen, Hendrik; Pernegger, Heinz

    Diamond, a wide band gap semiconductor with exceptional electrical properties, has found its way in diverse fields of application reaching from the usage as a sensor material for beam loss monitors at particle accelerator facilities, to laser windows, to UV light sensors in space applications, e.g. for space weather forecasting. Though often used at room temperature, little is known about the charge transport in diamond towards liquid helium temperatures. In this work the method of the transient current technique is employed at temperatures between room temperature and 2 K. The temperature and electric field strength dependence of the pulse shape, the charge carrier transit time, the drift velocity, the saturation velocity, and the low-field mobility is measured in detector-grade scCVD diamond. Furthermore, the usability of diamond in time-critical applications is tested, and the main results are presented.

  17. Fusion-Related Ionization and Recombination Data for Tungsten Ions in Low to Moderately High Charge States

    Directory of Open Access Journals (Sweden)

    Alfred Müller

    2015-05-01

    Full Text Available Collisional processes and details of atomic structure of heavy many-electron atoms and ions are not yet understood in a fully satisfying manner. Experimental studies are required for guiding new theoretical approaches. In response to fusion-related needs for collisional and spectroscopic data on tungsten atoms in all charge states, a project has been initiated in which electron-impact and photon-induced ionization as well as photorecombination of Wq+ ions are studied. Cross sections and rate coefficients were determined for charge states q ranging from q = 1 to q = 5 for photoionization, for q = 1 up to q = 19 for electron-impact ionization and for q = 18 to q = 21 for electron-ion recombination. An overview, together with a critical assessment of the methods and results is provided.

  18. Charge transport in organic transistors accounting for a wide distribution of carrier energies, Part I : Theory

    NARCIS (Netherlands)

    Torricelli, F.

    2012-01-01

    An extended theory of carrier hopping transport in organic transistors is proposed. According to many experimental studies, the density of localized states in organic thin-film transistors can be described by a double-exponential function. In this work, using a percolation model of hopping, the

  19. Minority carrier lifetime in mid-wavelength infrared InAs/InAsSb superlattices: Photon recycling and the role of radiative and Shockley-Read-Hall recombination mechanisms

    International Nuclear Information System (INIS)

    Höglund, L.; Ting, D. Z.; Soibel, A.; Fisher, A.; Khoshakhlagh, A.; Hill, C. J.; Keo, S.; Gunapala, S. D.

    2014-01-01

    The influence of radiative recombination on the minority carrier lifetime in mid-wavelength InAs/InAsSb superlattices was investigated. From the lifetime's dependence on temperature, photon recycling, and carrier concentration, it was demonstrated that radiative lifetime dominates for carrier concentrations >5 × 10 14  cm −3 , and Shockley-Read-Hall recombination starts to dominate the minority carrier lifetime for carrier concentrations <5 × 10 14  cm −3 . An observed increase of the minority carrier lifetime with increasing superlattice thickness was attributed to photon recycling, and good agreement between measured and theoretical values of the photon recycling factor was obtained

  20. Impact of charge carrier injection on single-chain photophysics of conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Felix J.; Vogelsang, Jan, E-mail: jan.vogelsang@physik.uni-regensburg.de; Lupton, John M. [Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg (Germany)

    2016-06-27

    Charges in conjugated polymer materials have a strong impact on the photophysics and their interaction with the primary excited state species has to be taken into account in understanding device properties. Here, we employ single-molecule spectroscopy to unravel the influence of charges on several photoluminescence (PL) observables. The charges are injected either stochastically by a photochemical process or deterministically in a hole-injection sandwich device configuration. We find that upon charge injection, besides a blue-shift of the PL emission and a shortening of the PL lifetime due to quenching and blocking of the lowest-energy chromophores, the non-classical photon arrival time distribution of the multichromophoric chain is modified towards a more classical distribution. Surprisingly, the fidelity of photon antibunching deteriorates upon charging, whereas one would actually expect the opposite: the number of chromophores to be reduced. A qualitative model is presented to explain the observed PL changes. The results are of interest to developing a microscopic understanding of the intrinsic charge-exciton quenching interaction in devices.

  1. Charge carrier dynamics in PMMA-LiClO4 based polymer electrolytes plasticized with different plasticizers

    Science.gov (United States)

    Pal, P.; Ghosh, A.

    2017-07-01

    We have studied the charge carrier dynamics in poly(methylmethacrylate)-LiClO4 polymer electrolytes plasticized with different plasticizers such as ethylene carbonate (EC), propylene carbonate (PC), polyethylene glycol (PEG), and dimethyl carbonate (DMC). We have measured the broadband complex conductivity spectra of these electrolytes in the frequency range of 0.01 Hz-3 GHz and in the temperature range of 203 K-363 K and analyzed the conductivity spectra in the framework of the random barrier model by taking into account the contribution of the electrode polarization observed at low frequencies and/or at high temperatures. It is observed that the temperature dependences of the ionic conductivity and relaxation time follow the Vogel-Tammann-Fulcher relation for all plasticized electrolytes. We have also performed the scaling of the conductivity spectra, which indicates that the charge carrier dynamics is almost independent of temperature and plasticizers in a limited frequency range. The existence of nearly constant loss in these electrolytes has been observed at low temperatures and/or high frequencies. We have studied the dielectric relaxation in these electrolytes using electric modulus formalism and obtained the stretched exponent and the decay function. We have observed less cooperative ion dynamics in electrolytes plasticized with DMC compared to electrolytes plasticized with EC, PC, and PEG.

  2. Dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate

    Science.gov (United States)

    Pal, P.; Ghosh, A.

    2016-07-01

    In this paper, we have studied the dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. Structural and thermal properties have been examined using X-ray diffraction and differential scanning calorimetry, respectively. We have analyzed the complex conductivity spectra by using power law model coupled with the contribution of electrode polarization at low frequencies and high temperatures. The temperature dependence of the ionic conductivity and crossover frequency exhibits Vogel-Tammann-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The scaling of the ac conductivity indicates that relaxation dynamics of charge carriers follows a common mechanism for all temperatures and ethylene carbonate concentrations. The analysis of the ac conductivity also shows the existence of a nearly constant loss in these polymer electrolytes at low temperatures and high frequencies. The fraction of free anions and ion pairs in polymer electrolyte have been obtained from the analysis of Fourier transform infrared spectra. It is observed that these quantities influence the behavior of the composition dependence of the ionic conductivity.

  3. Determination of energy band diagram and charge carrier mobility of white emitting polymer from optical, electrical and impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Sarjidan, M.A., E-mail: mohd.arif@um.edu.my; Mohd Mokhtar, H.A.; Abd Majid, W.H., E-mail: q3haliza@um.edu.my

    2015-03-15

    A single-layer white polymer light-emitting device (WPLED) has been fabricated using spin coating technique. The device was constructed as ITO/PEDOT:PSS(50 nm)/SPW-111(50 nm)/LiF(1 nm)/Al(100 nm). Indium tin oxide (ITO) and poly(3,4-ethylenedioxythiophene) Polystyrene sulfonate (PEDOT:PSS) are used as the transparent anode. SPW-111 is fabricated as a white emissive layer and lithium fluoride (LiF) and aluminum (Al) are used as reflecting cathode. Energy band diagram of the device was estimated from a combination of ultraviolet–visible (UV–vis) and current–voltage (J–V) analyses. Charge carrier mobility (μ) of PLED was evaluated using negative differential susceptance (−ΔB) method from impedance spectroscopy (IS) analysis. The calculated μ of the SPW-111 device is in the magnitude of 10{sup −6} cm{sup 2}/V/s. - Highlights: • Single layer PLED has been fabricated with spin-coating technique and device performance has been evaluated. • Energy band diagram of the SPW-111 is estimated from optical and electrical analyses. • Charge carrier mobility of the SPW-111 materials is obtained by impedance spectroscopy.

  4. Dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Pal, P.; Ghosh, A., E-mail: sspag@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2016-07-28

    In this paper, we have studied the dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. Structural and thermal properties have been examined using X-ray diffraction and differential scanning calorimetry, respectively. We have analyzed the complex conductivity spectra by using power law model coupled with the contribution of electrode polarization at low frequencies and high temperatures. The temperature dependence of the ionic conductivity and crossover frequency exhibits Vogel-Tammann-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The scaling of the ac conductivity indicates that relaxation dynamics of charge carriers follows a common mechanism for all temperatures and ethylene carbonate concentrations. The analysis of the ac conductivity also shows the existence of a nearly constant loss in these polymer electrolytes at low temperatures and high frequencies. The fraction of free anions and ion pairs in polymer electrolyte have been obtained from the analysis of Fourier transform infrared spectra. It is observed that these quantities influence the behavior of the composition dependence of the ionic conductivity.

  5. Experimental evidence for importance of Hund's exchange interaction for incoherence of charge carriers in iron-based superconductors

    Science.gov (United States)

    Fink, J.; Rienks, E. D. L.; Thirupathaiah, S.; Nayak, J.; van Roekeghem, A.; Biermann, S.; Wolf, T.; Adelmann, P.; Jeevan, H. S.; Gegenwart, P.; Wurmehl, S.; Felser, C.; Büchner, B.

    2017-04-01

    Angle-resolved photoemission spectroscopy is used to study the scattering rates of charge carriers from the hole pockets near Γ in the iron-based high-Tc hole-doped superconductors KxBa1 -xFe2As2 , x =0.4 , and KxEu1 -xFe2As2 , x =0.55 , and the electron-doped compound Ba (Fe1-xCox) 2As2 , x =0.075 . The scattering rate for any given band is found to depend linearly on the energy, indicating a non-Fermi-liquid regime. The scattering rates in the hole-doped compound are considerably higher than those in the electron-doped compounds. In the hole-doped systems the scattering rate of the charge carriers of the inner hole pocket is about three times higher than the binding energy, indicating that the spectral weight is heavily incoherent. The strength of the scattering rates and the difference between electron- and hole-doped compounds signals the importance of Hund's exchange coupling for correlation effects in these iron-based high-Tc superconductors. The experimental results are in qualitative agreement with theoretical calculations in the framework of combined density functional dynamical mean-field theory.

  6. Trap-assisted and Langevin-type recombination in organic light-emitting diodes

    Science.gov (United States)

    Wetzelaer, G. A. H.; Kuik, M.; Nicolai, H. T.; Blom, P. W. M.

    2011-04-01

    Trapping of charges is known to play an important role in the charge transport of organic semiconductors, but the role of traps in the recombination process has not been addressed. Here we show that the ideality factor of the current of organic light-emitting diodes (OLEDs) in the diffusion-dominated regime has a temperature-independent value of 2, which reveals that nonradiative trap-assisted recombination dominates the current. In contrast, the ideality factor of the light output approaches unity, demonstrating that luminance is governed by recombination of the bimolecular Langevin type. This apparent contradiction can be resolved by measuring the current and luminance ideality factor for a white-emitting polymer, where both free and trapped charge carriers recombine radiatively. With increasing bias voltage, Langevin recombination becomes dominant over trap-assisted recombination due to its stronger dependence on carrier density, leading to an enhancement in OLED efficiency.

  7. Analysis of dominant carrier recombination mechanisms depending on injection current in InGaN green light emitting diodes

    International Nuclear Information System (INIS)

    Kim, Kyu-Sang; Han, Dong-Pyo; Kim, Hyun-Sung; Shim, Jong-In

    2014-01-01

    Two kinds of green InGaN light emitting diodes (LEDs) have been investigated in order to understand the different slopes in logarithmic light output power-current (L-I) curves. Through the analysis of the carrier rate equation and by considering the carrier density-dependent the injection efficiency into quantum wells, the slopes of the logarithmic L-I curves can be more rigorously understood. The low current level, two as the tunneling current is initially dominant. The high current level beyond the peak of the external quantum efficiency (EQE) diminishes below one as the carrier overflow becomes dominant. In addition, the normalized carrier injection efficiency can be obtained by analyzing the slopes of the logarithmic L-I curves. The carrier injection efficiency decreases after the EQE peak of the InGaN LEDs, determined from the analysis of the slopes of the logarithmic L-I curves

  8. Picosecond charge transport in rutile at high carrier densities studiedby transient terahertz spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Zajac, Vít; Němec, Hynek; Kužel, Petr

    2016-01-01

    Roč. 94, č. 11 (2016), 1-9, č. článku 115206. ISSN 1098-0121 R&D Projects: GA ČR GA13-12386S Institutional support: RVO:68378271 Keywords : terahertz spectroscopy * charge transport * TiO 2 * rutile * ultrafast spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  9. Charge Carrier Dynamics and pH Effect on Optical Properties of Anionic and Cationic Porphyrin-Graphene Oxide Composites

    Science.gov (United States)

    Bajjou, O.; Bakour, A.; Khenfouch, M.; Baitoul, M.; Mothudi, B.; Maaza, M.; Faulques, E.

    2018-02-01

    Composites of graphene oxide (GO) functionalized with Sn(V) tetrakis (4-pyridyl)porphyrin (SnTPyP2+) and meso-tetrakis(4-phenylsulfonic acid)porphyrin (H4TPPS4 2- ) were prepared at different pH values.Successful synthesis of water-soluble stable suspension of GO-SnTPyP2+ and GO-H4TPPS4 2-was confirmed using various spectroscopic techniques, including scanning electronic microscopy (SEM), Raman spectroscopy, and ultraviolet-visible (UV-Vis) absorption. Variation of the pH was found to strongly influence the optical properties of the GO-SnTPyP2+ and GO-H4TPPS4 2-composites, as demonstrated by the UV-Vis absorption results. Steady-state photoluminescence (PL) and time-resolved PL (TRPL) results for both composites showed PL quenching and decrease in the exciton mean lifetime, suggesting strong excited-state interactions between the different components. Moreover, charge carrier dynamics study revealed that insertion of GO into both porphyrin derivatives led to faster mean lifetime for excitons with a slight advantage in the case of the cationic porphyrin-GO composite, making it a better choice for charge separation applications thanks to the higher efficiency of charge/energy transfer interactions.

  10. Effect of burst and recombination models for Monte Carlo transport of interacting carriers in a-Se x-ray detectors on Swank noise

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuan, E-mail: yuan.fang@fda.hhs.gov [Division of Imaging and Applied Mathematics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993-0002 and Department of Electrical and Computer Engineering, The University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Karim, Karim S. [Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Badano, Aldo [Division of Imaging and Applied Mathematics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993-0002 (United States)

    2014-01-15

    Purpose: The authors describe the modification to a previously developed Monte Carlo model of semiconductor direct x-ray detector required for studying the effect of burst and recombination algorithms on detector performance. This work provides insight into the effect of different charge generation models for a-Se detectors on Swank noise and recombination fraction. Methods: The proposed burst and recombination models are implemented in the Monte Carlo simulation package, ARTEMIS, developed byFang et al. [“Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: Application to pulse-height spectroscopy in a-Se,” Med. Phys. 39(1), 308–319 (2012)]. The burst model generates a cloud of electron-hole pairs based on electron velocity, energy deposition, and material parameters distributed within a spherical uniform volume (SUV) or on a spherical surface area (SSA). A simple first-hit (FH) and a more detailed but computationally expensive nearest-neighbor (NN) recombination algorithms are also described and compared. Results: Simulated recombination fractions for a single electron-hole pair show good agreement with Onsager model for a wide range of electric field, thermalization distance, and temperature. The recombination fraction and Swank noise exhibit a dependence on the burst model for generation of many electron-hole pairs from a single x ray. The Swank noise decreased for the SSA compared to the SUV model at 4 V/μm, while the recombination fraction decreased for SSA compared to the SUV model at 30 V/μm. The NN and FH recombination results were comparable. Conclusions: Results obtained with the ARTEMIS Monte Carlo transport model incorporating drift and diffusion are validated with the Onsager model for a single electron-hole pair as a function of electric field, thermalization distance, and temperature. For x-ray interactions, the authors demonstrate that the choice of burst model can affect the simulation results for the generation

  11. Effect of burst and recombination models for Monte Carlo transport of interacting carriers in a-Se x-ray detectors on Swank noise

    International Nuclear Information System (INIS)

    Fang, Yuan; Karim, Karim S.; Badano, Aldo

    2014-01-01

    Purpose: The authors describe the modification to a previously developed Monte Carlo model of semiconductor direct x-ray detector required for studying the effect of burst and recombination algorithms on detector performance. This work provides insight into the effect of different charge generation models for a-Se detectors on Swank noise and recombination fraction. Methods: The proposed burst and recombination models are implemented in the Monte Carlo simulation package, ARTEMIS, developed byFang et al. [“Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: Application to pulse-height spectroscopy in a-Se,” Med. Phys. 39(1), 308–319 (2012)]. The burst model generates a cloud of electron-hole pairs based on electron velocity, energy deposition, and material parameters distributed within a spherical uniform volume (SUV) or on a spherical surface area (SSA). A simple first-hit (FH) and a more detailed but computationally expensive nearest-neighbor (NN) recombination algorithms are also described and compared. Results: Simulated recombination fractions for a single electron-hole pair show good agreement with Onsager model for a wide range of electric field, thermalization distance, and temperature. The recombination fraction and Swank noise exhibit a dependence on the burst model for generation of many electron-hole pairs from a single x ray. The Swank noise decreased for the SSA compared to the SUV model at 4 V/μm, while the recombination fraction decreased for SSA compared to the SUV model at 30 V/μm. The NN and FH recombination results were comparable. Conclusions: Results obtained with the ARTEMIS Monte Carlo transport model incorporating drift and diffusion are validated with the Onsager model for a single electron-hole pair as a function of electric field, thermalization distance, and temperature. For x-ray interactions, the authors demonstrate that the choice of burst model can affect the simulation results for the generation

  12. Impact of speciation on the electron charge transfer properties of nanodiamond drug carriers.

    Science.gov (United States)

    Sun, Baichuan; Barnard, Amanda S

    2016-08-07

    Unpassivated diamond nanoparticles (bucky-diamonds) exhibit a unique surface reconstruction involving graphitization of certain crystal facets, giving rise to hybrid core-shell particles containing both aromatic and aliphatic carbon. Considerable effort is directed toward eliminating the aromatic shell, but persistent graphitization of subsequent subsurface-layers makes perdurable purification a challenge. In this study we use some simple statistical methods, in combination with electronic structure simulations, to predict the impact of different fractions of aromatic and aliphatic carbon on the charge transfer properties of the ensembles of bucky-diamonds. By predicting quality factors for a variety of cases, we find that perfect purification is not necessary to preserve selectivity, and there is a clear motivation for purifying samples to improve the sensitivity of charge transfer reactions. This may prove useful in designing drug delivery systems where the release of (selected) drugs needs to be sensitive to specific conditions at the point of delivery.

  13. Feature of polaronic charge carriers in polysilanes: Experimental and theoretical approach

    Czech Academy of Sciences Publication Activity Database

    Nešpůrek, Stanislav; Kochalska, Anna; Nožár, Juraj; Kadashchuk, A.; Fishchuk, I. I.; Sworakowski, J.; Kajzar, F.

    2010-01-01

    Roč. 521, - (2010), s. 72-83 ISSN 1542-1406. [International Conference on Frontiers of Polymers and Advanced Materials /10./. Santiago, 27.09.2009-02.10.2009] R&D Projects: GA AV ČR IAA100100622; GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40500505 Keywords : binding energy * charge mobility * hopping transport Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.543, year: 2010

  14. Charge Carrier Dynamics of Methylammonium Lead-Iodide Perovskite Solar Cells

    OpenAIRE

    Neukom, Martin Thomas

    2016-01-01

    Transient opto-electrical measurements of methylammonium lead iodide (MALI) perovskite solar cells (PSCs) are performed and analyzed in order to elucidate the operating mechanisms. The current response to a light pulse or voltage pulse shows an extraordinarily broad dynamic range covering 9 orders of magnitude in time - from microseconds to minutes - until steady-state is reached. Evidence of a slowly changing charge density at the perovskite layer boundaries is found, which is most probably ...

  15. Understanding charge carrier relaxation processes in terbium arsenide nanoparticles using transient absorption spectroscopy

    Science.gov (United States)

    Vanderhoef, Laura R.

    Erbium arsenide nanoparticles epitaxially grown within III-V semiconductors have been shown to improve the performance of devices for applications ranging from thermoelectrics to THz pulse generation. The small size of rare-earth nanoparticles suggests that interesting electronic properties might emerge as a result of both spatial confinement and surface states. However, ErAs nanoparticles do not exhibit any signs of quantum confinement or an emergent bandgap, and these experimental observations are understood from theory. The incorporation of other rare-earth monopnictide nanoparticles into III-V hosts is a likely path to engineering carrier excitation, relaxation and transport dynamics for optoelectronic device applications. However, the electronic structure of these other rare-earth monopnictide nanoparticles remains poorly understood. The objective of this research is to explore the electronic structure and optical properties of III-V materials containing novel rare-earth monopnictides. We use ultrafast pump-probe spectroscopy to investigate the electronic structure of TbAs nanoparticles in III-V hosts. We start with TbAs:GaAs, which was expected to be similar to ErAs:GaAs. We study the dynamics of carrier relaxation into the TbAs states using optical pump terahertz probe transient absorption spectroscopy. By analyzing how the carrier relaxation rates depend on pump fluence and sample temperature, we conclude that the TbAs states are saturable. Saturable traps suggest the existence of a bandgap for TbAs nanoparticles, in sharp contrast with previous results for ErAs. We then apply the same experimental technique to two samples of TbAs nanoparticles in InGaAs with different concentrations of TbAs. We observe similar relaxation dynamics associated with trap saturation, though the ability to resolve these processes is contingent upon a high enough TbAs concentration in the sample. We have also constructed an optical pump optical probe transient absorption

  16. Modulation of Charge Recombination in CsPbBr3 Perovskite Films with Electrochemical Bias

    KAUST Repository

    Scheidt, Rebecca A; Samu, Gergely F.; Janá ky, Csaba; Kamat, Prashant V.

    2017-01-01

    The charging of mesoscopic TiO2 layer in a metal halide perovskite solar cell can influence the overall power conversion efficiency. By employing CsPbBr3 films deposited on a mesoscopic TiO2 film, we have succeeded in probing the influence

  17. Impact of Electrodes on Recombination in Bulk Heterojunction Organic Solar Cells

    NARCIS (Netherlands)

    Chatri, Azadeh Rahimi; Torabi, Solmaz; Le Corre, Vincent M.; Koster, L. Jan Anton

    2018-01-01

    In recent years, the efficiency of organic solar cells (OSCs) has increased to more than 13%, although different barriers are on the way for reaching higher efficiencies. One crucial barrier is the recombination of charge carriers, which can either occur as the bulk recombination of photogenerated

  18. Escherichia coli fusion carrier proteins act as solubilizing agents for recombinant uncoupling protein 1 through interactions with GroEL

    International Nuclear Information System (INIS)

    Douette, Pierre; Navet, Rachel; Gerkens, Pascal; Galleni, Moreno; Levy, Daniel; Sluse, Francis E.

    2005-01-01

    Fusing recombinant proteins to highly soluble partners is frequently used to prevent aggregation of recombinant proteins in Escherichia coli. Moreover, co-overexpression of prokaryotic chaperones can increase the amount of properly folded recombinant proteins. To understand the solubility enhancement of fusion proteins, we designed two recombinant proteins composed of uncoupling protein 1 (UCP1), a mitochondrial membrane protein, in fusion with MBP or NusA. We were able to express soluble forms of MBP-UCP1 and NusA-UCP1 despite the high hydrophobicity of UCP1. Furthermore, the yield of soluble fusion proteins depended on co-overexpression of GroEL that catalyzes folding of polypeptides. MBP-UCP1 was expressed in the form of a non-covalent complex with GroEL. MBP-UCP1/GroEL was purified and characterized by dynamic light scattering, gel filtration, and electron microscopy. Our findings suggest that MBP and NusA act as solubilizing agents by forcing the recombinant protein to pass through the bacterial chaperone pathway in the context of fusion protein

  19. In-situ analysis of microwave conductivity and impedance spectroscopy for evaluation of charge carrier dynamics at interfaces

    Science.gov (United States)

    Choi, Wookjin; Inoue, Junichi; Tsutsui, Yusuke; Sakurai, Tsuneaki; Seki, Shu

    2017-11-01

    A unique concerted analysis comprising non-contact microwave conductivity measurements and impedance spectroscopy was developed to simultaneously assess the charge carrier mobility and injection barriers. The frequency dependence of the microwave conductivity as well as the electrical current was analyzed by applying sinusoidal voltage to determine the equivalent circuit parameters. Based on the temperature dependence of the circuit parameters, the energy of the injection barrier was estimated to be 0.4 eV with the Richardson-Schottky model, and the band-like transport was confirmed with the negative temperature coefficient with the β value of 1.4 in the intra-layer conduction of C8-BTBT. In contrast, the increase in the resistance of the C8-BTBT layer with decreasing temperature implied the occurrence of hopping-like transport in the inter-layer conduction of C8-BTBT.

  20. High charge carrier density at the NaTaO3/SrTiO3 hetero-interface

    KAUST Repository

    Nazir, Safdar

    2011-08-05

    The formation of a (quasi) two-dimensional electron gas between the band insulators NaTaO3 and SrTiO3 is studied by means of the full-potential linearized augmented plane-wave method of density functional theory. Optimization of the atomic positions points to only small changes in the chemical bonding at the interface. Both the p-type (NaO)−/(TiO2)0 and n-type (TaO2)+/(SrO)0 interfaces are found to be metallic with high charge carrier densities. The effects of O vacancies are discussed. Spin-polarized calculations point to the formation of isolated O 2pmagnetic moments, located in the metallic region of the p-type interface.

  1. Infrared spectroscopic studies on the cluster size dependence of charge carrier structure in nitrous oxide cluster anions

    International Nuclear Information System (INIS)

    Thompson, Michael C.; Weber, J. Mathias

    2016-01-01

    We report infrared photodissociation spectra of nitrous oxide cluster anions of the form (N 2 O) n O − (n = 1–12) and (N 2 O) n − (n = 7–15) in the region 800–1600 cm −1 . The charge carriers in these ions are NNO 2 − and O − for (N 2 O) n O − clusters with a solvation induced core ion switch, and N 2 O − for (N 2 O) n − clusters. The N–N and N–O stretching vibrations of N 2 O − (solvated by N 2 O) are reported for the first time, and they are found at (1595 ± 3) cm −1 and (894 ± 5) cm −1 , respectively. We interpret our infrared spectra by comparison with the existing photoelectron spectroscopy data and with computational data in the framework of density functional theory.

  2. Magnetic dipole self-organization of charge carriers in high-temperature superconductors and kinetics of phase transformation

    CERN Document Server

    Voronov, A V; Shuvalov, V V

    2001-01-01

    The phenomenological model, describing the magnetic dipole self-organization of charge carriers (formation of so-called stripe-structures and energy gap in the states spectrum), is designed for interpreting the data on the nonstationary nonlinear spectroscopy of the high-temperature superconductors. It is shown that after fast heating of the superconducting sample the kinetics of the subsequent phase transition depends on the initial temperature T. The destruction of the stripe-structures at low overheating T* < T < T sub m approx = (1.4-1.5)T*, whereby T sub c and T* approx = T sub c are the temperatures of transition into the superconducting state and formation of the stripe-structures occurs slowly (the times above 10 sup - sup 9 s) in spite of practically instantaneous disappearance of the superconductivity

  3. Influence of Blend Morphology and Energetics on Charge Separation and Recombination Dynamics in Organic Solar Cells Incorporating a Nonfullerene Acceptor

    KAUST Repository

    Cha, Hyojung; Wheeler, Scot; Holliday, Sarah; Dimitrov, Stoichko D.; Wadsworth, Andrew; Lee, Hyun Hwi; Baran, Derya; McCulloch, Iain; Durrant, James R.

    2017-01-01

    Nonfullerene acceptors (NFAs) in blends with highly crystalline donor polymers have been shown to yield particularly high device voltage outputs, but typically more modest quantum yields for photocurrent generation as well as often lower fill factors (FF). In this study, we employ transient optical and optoelectronic analysis to elucidate the factors determining device photocurrent and FF in blends of the highly crystalline donor polymer PffBT4T-2OD with the promising NFA FBR or the more widely studied fullerene acceptor PC71BM. Geminate recombination losses, as measured by ultrafast transient absorption spectroscopy, are observed to be significantly higher for PffBT4T-2OD:FBR blends. This is assigned to the smaller LUMO-LUMO offset of the PffBT4T-2OD:FBR blends relative to PffBT4T-2OD:PC71BM, resulting in the lower photocurrent generation efficiency obtained with FBR. Employing time delayed charge extraction measurements, these geminate recombination losses are observed to be field dependent, resulting in the lower FF observed with PffBT4T-2OD:FBR devices. These data therefore provide a detailed understanding of the impact of acceptor design, and particularly acceptor energetics, on organic solar cell performance. Our study concludes with a discussion of the implications of these results for the design of NFAs in organic solar cells.

  4. Influence of Blend Morphology and Energetics on Charge Separation and Recombination Dynamics in Organic Solar Cells Incorporating a Nonfullerene Acceptor

    KAUST Repository

    Cha, Hyojung

    2017-11-27

    Nonfullerene acceptors (NFAs) in blends with highly crystalline donor polymers have been shown to yield particularly high device voltage outputs, but typically more modest quantum yields for photocurrent generation as well as often lower fill factors (FF). In this study, we employ transient optical and optoelectronic analysis to elucidate the factors determining device photocurrent and FF in blends of the highly crystalline donor polymer PffBT4T-2OD with the promising NFA FBR or the more widely studied fullerene acceptor PC71BM. Geminate recombination losses, as measured by ultrafast transient absorption spectroscopy, are observed to be significantly higher for PffBT4T-2OD:FBR blends. This is assigned to the smaller LUMO-LUMO offset of the PffBT4T-2OD:FBR blends relative to PffBT4T-2OD:PC71BM, resulting in the lower photocurrent generation efficiency obtained with FBR. Employing time delayed charge extraction measurements, these geminate recombination losses are observed to be field dependent, resulting in the lower FF observed with PffBT4T-2OD:FBR devices. These data therefore provide a detailed understanding of the impact of acceptor design, and particularly acceptor energetics, on organic solar cell performance. Our study concludes with a discussion of the implications of these results for the design of NFAs in organic solar cells.

  5. Determination of charge carrier mobility of hole transporting polytriarylamine-based diodes

    International Nuclear Information System (INIS)

    Barea, Eva M.; Garcia-Belmonte, Germa; Sommer, Michael; Huettner, Sven; Bolink, Henk J.; Thelakkat, Mukundan

    2010-01-01

    Hole transport properties of three different side chain poly(triarylamines) have been determined by means of the analysis of steady-state current-voltage characteristics using co-planar diode structures. The interpretation is based on space-charge limited models with field-dependent mobility. Mobilities between ∼ 10 -8 and 10 -6 cm 2 V -1 s -1 are obtained. The highest mobility is achieved for poly(tetraphenylbenzidine) devices and the lowest for poly(triphenylamine) devices. Electron-rich methoxy substituents increase the mobility of poly(triphenylamine)s. A comparison of the mobility values with those obtained using organic field-effect transistors is also given.

  6. Conformational regulation of charge recombination reactions in a photosynthetic bacterial reaction center

    DEFF Research Database (Denmark)

    Katona, Gergely; Snijder, Arjan; Gourdon, Pontus Emanuel

    2005-01-01

    In bright light the photosynthetic reaction center (RC) of Rhodobacter sphaeroides stabilizes the P(+)(870).Q(-)(A) charge-separated state and thereby minimizes the potentially harmful effects of light saturation. Using X-ray diffraction we report a conformational change that occurs within the cy...... the cytoplasmic domain of this RC in response to prolonged illumination with bright light. Our observations suggest a novel structural mechanism for the regulation of electron transfer reactions in photosynthesis....

  7. Scaling dependence of memory windows and different carrier charging behaviors in Si nanocrystal nonvolatile memory devices

    Science.gov (United States)

    Yu, Jie; Chen, Kun-ji; Ma, Zhong-yuan; Zhang, Xin-xin; Jiang, Xiao-fan; Wu, Yang-qing; Huang, Xin-fan; Oda, Shunri

    2016-09-01

    Based on the charge storage mode, it is important to investigate the scaling dependence of memory performance in silicon nanocrystal (Si-NC) nonvolatile memory (NVM) devices for its scaling down limit. In this work, we made eight kinds of test key cells with different gate widths and lengths by 0.13-μm node complementary metal oxide semiconductor (CMOS) technology. It is found that the memory windows of eight kinds of test key cells are almost the same of about 1.64 V @ ± 7 V/1 ms, which are independent of the gate area, but mainly determined by the average size (12 nm) and areal density (1.8 × 1011/cm2) of Si-NCs. The program/erase (P/E) speed characteristics are almost independent of gate widths and lengths. However, the erase speed is faster than the program speed of test key cells, which is due to the different charging behaviors between electrons and holes during the operation processes. Furthermore, the data retention characteristic is also independent of the gate area. Our findings are useful for further scaling down of Si-NC NVM devices to improve the performance and on-chip integration. Project supported by the State Key Development Program for Basic Research of China (Grant No. 2010CB934402) and the National Natural Science Foundation of China (Grant Nos. 11374153, 61571221, and 61071008).

  8. Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels

    Science.gov (United States)

    Armstrong, Craig T.; Mason, Philip E.; Anderson, J. L. Ross; Dempsey, Christopher E.

    2016-02-01

    Gating charges in voltage-sensing domains (VSD) of voltage-sensitive ion channels and enzymes are carried on arginine side chains rather than lysine. This arginine preference may result from the unique hydration properties of the side chain guanidinium group which facilitates its movement through a hydrophobic plug that seals the center of the VSD, as suggested by molecular dynamics simulations. To test for side chain interactions implicit in this model we inspected interactions of the side chains of arginine and lysine with each of the 19 non-glycine amino acids in proteins in the protein data bank. The arginine guanidinium interacts with non-polar aromatic and aliphatic side chains above and below the guanidinium plane while hydrogen bonding with polar side chains is restricted to in-plane positions. In contrast, non-polar side chains interact largely with the aliphatic part of the lysine side chain. The hydration properties of arginine and lysine are strongly reflected in their respective interactions with non-polar and polar side chains as observed in protein structures and in molecular dynamics simulations, and likely underlie the preference for arginine as a mobile charge carrier in VSD.

  9. Kinetic Monte Carlo Modeling of Charge Carriers in Organic Electronic Devices: Suppression of the Self-Interaction Error

    KAUST Repository

    Li, Haoyuan

    2017-05-18

    Kinetic Monte Carlo (KMC) simulations have emerged as an important tool to help improve the efficiency of organic electronic devices by providing a better understanding of their device physics. In the KMC simulation of an organic device, the reliability of the results depends critically on the accuracy of the chosen charge-transfer rates, which are themselves strongly influenced by the site-energy differences. These site-energy differences include components coming from the electrostatic forces present in the system, which are often evaluated through electric potentials described by the Poisson equation. Here we show that the charge-carrier self-interaction errors that appear when evaluating the site-energy differences can lead to unreliable simulation results. To eliminate these errors, we propose two approaches that are also found to reduce the impact of finite-size effects. As a consequence, reliable results can be obtained at reduced computational costs. The proposed methodologies can be extended to other device simulation techniques as well.

  10. Temperature dependence of photoluminescence spectra of bilayer two-dimensional electron gases in LaAlO3/SrTiO3 superlattices: coexistence of Auger recombination and single-carrier trapping

    Directory of Open Access Journals (Sweden)

    H. J. Harsan Ma

    2015-06-01

    Full Text Available We report emerging photoluminescence (PL of bilayer two-dimensional electron gases (2DEG in LaAlO3/SrTiO3 (LAO/STO systems. A strong blue PL emerges in bilayer-2DEGs in LAO/STO/LAO/STO which doesn’t show in LAO/STO. PL band in bilayer-2DEGs includes both nearly temperature independent Auger recombination and temperature dependent free electron trapping while it crossovers from Auger recombination to single carrier trapping in LAO/STO. The PL signal of free electron trapping appears at high temperatures and it is much stronger than Auger recombination in the conducting channel in bilayer 2DEGs. This observation shows that high mobility carriers dominate the carrier dynamics in bilayer-2DEGs in LAO/STO superlattices.

  11. Determination of charge carrier mobility of hole transporting polytriarylamine-based diodes

    Energy Technology Data Exchange (ETDEWEB)

    Barea, Eva M. [Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, 12071 Castello (Spain); Garcia-Belmonte, Germa, E-mail: garciag@uji.e [Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, 12071 Castello (Spain); Sommer, Michael; Huettner, Sven [Applied Functional Polymers, Universitaet Bayreuth, 95440 Bayreuth (Germany); Bolink, Henk J. [Molecular Science Institute-Universitat de Valencia, Poligon La Coma s/n, 46980 Paterna, Valencia (Spain); Thelakkat, Mukundan, E-mail: mukundan.thelakkat@uni-bayreuth.d [Applied Functional Polymers, Universitaet Bayreuth, 95440 Bayreuth (Germany)

    2010-04-02

    Hole transport properties of three different side chain poly(triarylamines) have been determined by means of the analysis of steady-state current-voltage characteristics using co-planar diode structures. The interpretation is based on space-charge limited models with field-dependent mobility. Mobilities between {approx} 10{sup -8} and 10{sup -6} cm{sup 2} V{sup -1} s{sup -1} are obtained. The highest mobility is achieved for poly(tetraphenylbenzidine) devices and the lowest for poly(triphenylamine) devices. Electron-rich methoxy substituents increase the mobility of poly(triphenylamine)s. A comparison of the mobility values with those obtained using organic field-effect transistors is also given.

  12. Effect of trapping of charge carriers on the resolution of Ge(Li) detectors

    International Nuclear Information System (INIS)

    Venturini, Luzia

    1979-01-01

    In this work a measurement is described of the variation of the resolution of a Ge(Li) detector as a function of the position of irradiation of a collimated gamma-ray beam. Also the variation of the resolution has been measured as a function of the applied detector voltage, using a collimated and a non-collimated gamma-ray beam. The measurement indicate that in the process of charge collection loss of holes predominates and the best resolution is obtained in the middle of the compensated region. It has been verified that, in the case of a collimated gamma beam the detector resolution improves with increasing detector bias up to at least 5100 Volts. For a non-collimated gamma beam, however, the resolution reaches a constant value at about 4400 Volts. The dependence of resolution on the position of irradiation can be accounted for by introducing a local ionization factor different from the usual position independent Fano factor. (author)

  13. Shape-Tunable Charge Carrier Dynamics at the Interfaces between Perovskite Nanocrystals and Molecular Acceptors

    KAUST Repository

    Ahmed, Ghada H.

    2016-09-19

    Hybrid organic/inorganic perovskites have recently emerged as an important class of materials and have exhibited remarkable performance in photovoltaics. To further improve their device efficiency, an insightful understanding of the interfacial charge transfer (CT) process is required. Here, we report the first direct experimental observation of the tremendous effect that the shape of perovskite nanocrystals (NCs) has on interfacial CT in the presence of a molecular acceptor. A dramatic change in CT dynamics at the interfaces of three different NC shapes, spheres, platelets, and cubes, is recorded. Our results clearly demonstrate that the mechanism of CT is significantly affected by the NC shape. More importantly, the results demonstrate that complexation on the NC surface acts as an additional driving force not only to tune the CT dynamics but also to control the reaction mechanism at the interface. This observation opens a new venue for further developing perovskite NCs-based applications.

  14. Shape-Tunable Charge Carrier Dynamics at the Interfaces between Perovskite Nanocrystals and Molecular Acceptors

    KAUST Repository

    Ahmed, Ghada H.; Liu, Jiakai; Parida, Manas R.; Banavoth, Murali; Bose, Riya; AlYami, Noktan; Hedhili, Mohamed N.; Peng, Wei; Pan, Jun; Besong, Tabot M.D.; Bakr, Osman; Mohammed, Omar F.

    2016-01-01

    Hybrid organic/inorganic perovskites have recently emerged as an important class of materials and have exhibited remarkable performance in photovoltaics. To further improve their device efficiency, an insightful understanding of the interfacial charge transfer (CT) process is required. Here, we report the first direct experimental observation of the tremendous effect that the shape of perovskite nanocrystals (NCs) has on interfacial CT in the presence of a molecular acceptor. A dramatic change in CT dynamics at the interfaces of three different NC shapes, spheres, platelets, and cubes, is recorded. Our results clearly demonstrate that the mechanism of CT is significantly affected by the NC shape. More importantly, the results demonstrate that complexation on the NC surface acts as an additional driving force not only to tune the CT dynamics but also to control the reaction mechanism at the interface. This observation opens a new venue for further developing perovskite NCs-based applications.

  15. Development of the gas puff charge exchange recombination spectroscopy (GP-CXRS) technique for ion measurements in the plasma edge

    International Nuclear Information System (INIS)

    Churchill, R. M.; Theiler, C.; Lipschultz, B.; Dux, R.; Pütterich, T.; Viezzer, E.

    2013-01-01

    A novel charge-exchange recombination spectroscopy (CXRS) diagnostic method is presented, which uses a simple thermal gas puff for its donor neutral source, instead of the typical high-energy neutral beam. This diagnostic, named gas puff CXRS (GP-CXRS), is used to measure ion density, velocity, and temperature in the tokamak edge/pedestal region with excellent signal-background ratios, and has a number of advantages to conventional beam-based CXRS systems. Here we develop the physics basis for GP-CXRS, including the neutral transport, the charge-exchange process at low energies, and effects of energy-dependent rate coefficients on the measurements. The GP-CXRS hardware setup is described on two separate tokamaks, Alcator C-Mod and ASDEX Upgrade. Measured spectra and profiles are also presented. Profile comparisons of GP-CXRS and a beam based CXRS system show good agreement. Emphasis is given throughout to describing guiding principles for users interested in applying the GP-CXRS diagnostic technique

  16. Development of the gas puff charge exchange recombination spectroscopy (GP-CXRS) technique for ion measurements in the plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, R. M.; Theiler, C.; Lipschultz, B. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Dux, R.; Pütterich, T.; Viezzer, E. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Collaboration: Alcator C-Mod Team; ASDEX Upgrade Team

    2013-09-15

    A novel charge-exchange recombination spectroscopy (CXRS) diagnostic method is presented, which uses a simple thermal gas puff for its donor neutral source, instead of the typical high-energy neutral beam. This diagnostic, named gas puff CXRS (GP-CXRS), is used to measure ion density, velocity, and temperature in the tokamak edge/pedestal region with excellent signal-background ratios, and has a number of advantages to conventional beam-based CXRS systems. Here we develop the physics basis for GP-CXRS, including the neutral transport, the charge-exchange process at low energies, and effects of energy-dependent rate coefficients on the measurements. The GP-CXRS hardware setup is described on two separate tokamaks, Alcator C-Mod and ASDEX Upgrade. Measured spectra and profiles are also presented. Profile comparisons of GP-CXRS and a beam based CXRS system show good agreement. Emphasis is given throughout to describing guiding principles for users interested in applying the GP-CXRS diagnostic technique.

  17. Evaluation of soft x-ray average recombination coefficient and average charge for metallic impurities in beam-heated plasmas

    International Nuclear Information System (INIS)

    Sesnic, S.S.; Bitter, M.; Hill, K.W.; Hiroe, S.; Hulse, R.; Shimada, M.; Stratton, B.; von Goeler, S.

    1986-05-01

    The soft x-ray continuum radiation in TFTR low density neutral beam discharges can be much lower than its theoretical value obtained by assuming a corona equilibrium. This reduced continuum radiation is caused by an ionization equilibrium shift toward lower states, which strongly changes the value of the average recombination coefficient of metallic impurities anti γ, even for only slight changes in the average charge, anti Z. The primary agent for this shift is the charge exchange between the highly ionized impurity ions and the neutral hydrogen, rather than impurity transport, because the central density of the neutral hydrogen is strongly enhanced at lower plasma densities with intense beam injection. In the extreme case of low density, high neutral beam power TFTR operation (energetic ion mode) the reduction in anti γ can be as much as one-half to two-thirds. We calculate the parametric dependence of anti γ and anti Z for Ti, Cr, Fe, and Ni impurities on neutral density (equivalent to beam power), electron temperature, and electron density. These values are obtained by using either a one-dimensional impurity transport code (MIST) or a zero-dimensional code with a finite particle confinement time. As an example, we show the variation of anti γ and anti Z in different TFTR discharges

  18. Theoretical models of the spin-dependent charge-carrier dynamics in metals and semiconductors

    International Nuclear Information System (INIS)

    Krauss, Michael

    2010-01-01

    This thesis is concerned with spin-dependent carrier dynamics in semiconductors and metals. We are especially interested in the dynamics on ultrashort timescales, which can be driven by ultrashort optical excitation, and use of a theoretical description in terms of the dynamical spin-density matrix. The first part of this thesis is concerned with spin-dependent carrier dynamics in bulk GaAs. For conduction electrons in GaAs, the most important mechanisms, by which an electron spin polarization can be destroyed, are the Dyakonov-Perel and Bir-Aronov-Pikus mechanisms. For the Dyakonov-Perel effect, our treatment is the first calculation of the dynamics of the spindensity matrix for bulk GaAs. From our microsopic calculation, we extract spin-dephasing times. In particular, we can describe the dependence of the spin-dephasing time for a wide range of n-doping concentrations and explain the spin-dephasing dynamics in and out of the motional-narrowing regime. For the Bir-Aronov-Pikus mechanism, i.e., the exchange interaction of electronics with holes, approximate relaxation times for limiting cases were derived about 30 years ago. We show that these approaches provide an incomplete picture of spin relaxation, and are only valid for high or low densities, whereas the microscopic calculation is capable of explaining the electronic dynamics also for intermediate doping densities, which are most interesting for typical experiments. The spin-dependent hole dynamics in GaAs is much faster than that of electrons, because the p-like hole bands experience the spin-orbit interaction directly, rather than through the interaction with other bands. The resulting spin relaxation is sometimes referred to as an Elliott-Yafet mechanism. For the first time, we present results for the microscopic dynamics of this mechanism for holes in bulk GaAs, and we discuss the different results that may be obtained with different measurement techniques. We also analyze the importance of ''spin hot

  19. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO{sub 2}, WO{sub 3} and ZnO)

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. Girish [Department of Physics, Indian Institute of Science, Bengaluru, 560012 Karnataka (India); Department of Chemistry, School of Engineering and Technology, CMR University, Bengaluru, 562149, Karnataka (India); Rao, K.S.R. Koteswara, E-mail: raoksrk@gmail.com [Department of Physics, Indian Institute of Science, Bengaluru, 560012 Karnataka (India)

    2017-01-01

    Graphical abstract: Semiconductor metal oxides: Modifications, charge carrier dynamics and photocatalysis. - Highlights: • TiO{sub 2}, WO{sub 3} and ZnO based photocatalysis is reviewed. • Advances to improve the efficiency are emphasized. • Differences and similarities in the modifications are highlighted. • Charge carrier dynamics for each strategy are discussed. - Abstract: Metal oxide semiconductors (TiO{sub 2}, WO{sub 3} and ZnO) finds unparalleled opportunity in wastewater purification under UV/visible light, largely encouraged by their divergent admirable features like stability, non-toxicity, ease of preparation, suitable band edge positions and facile generation of active oxygen species in the aqueous medium. However, the perennial failings of these photocatalysts emanates from the stumbling blocks like rapid charge carrier recombination and meager visible light response. In this review, tailoring the surface-bulk electronic structure through the calibrated and veritable approaches such as impurity doping, deposition with noble metals, sensitizing with other compounds (dyes, polymers, inorganic complexes and simple chelating ligands), hydrogenation process (annealing under hydrogen atmosphere), electronic integration with other semiconductors, modifying with carbon nanostructures, designing with exposed facets and tailoring with hierarchical morphologies to overcome their critical drawbacks are summarized. Taking into account the materials intrinsic properties, the pros and cons together with similarities and striking differences for each strategy in specific to TiO{sub 2}, WO{sub 3} & ZnO are highlighted. These subtlety enunciates the primacy for improving the structure-electronic properties of metal oxides and credence to its fore in the practical applications. Future research must focus on comparing the performances of ZnO, TiO{sub 2} and WO{sub 3} in parallel to get insight into their photocatalytic behaviors. Such comparisons not only reveal

  20. Dielectronic recombination of lowly charged tungsten ions Wq+(q = 5 - 10)

    Science.gov (United States)

    Kwon, Duck-Hee

    2018-03-01

    Dielectronic recombination (DR) rate coefficients for the ground levels of low ionization state Wq+ (q = 5 - 10) ions have been obtained by an ab-inito level-by-level calculation using the flexible atomic code (FAC) based on relativistic jj coupling scheme and independent process, isolated resonance, distorted wave approximation. The radiative transition calculation in the original FAC has been adapted into parallel programming for time effective dealing with so many resonance levels of the complex open 4f, 5p, or 5d-shell structure ion. Core excitations Δnc = 0 , 1 of 4f, 5p, and 5d (W5+), Δnc = 2 of 4f, and Δnc = 0 of 4d (W7+), and 5s (W8+) are included to the total DR rate coefficient. The core excitations Δnc = 0 , 5p → 5l and Δnc = 1 , 4f → 5l mainly contribute to the total DR rate coefficients. The strong resonances involved in the DR are analyzed and the total DR rate coefficients are compared with available previous ab-initio predictions and with ADAS data by a simple semiempirical formula.

  1. Charge exchange recombination in X-ray spectra of He-like argon measured at the tokamak TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Schlummer, Tobias

    2014-06-16

    Charge exchange recombination between ions and atomic hydrogen is an important atomic process in magnetically confined fusion plasmas. Besides radiative cooling of the plasma edge, charge exchange causes modifications of the ionization balance and the population densities of excited ion states. The central goal of this work is to investigate the influence of charge exchange on X-ray spectra measured at the tokamak TEXTOR. A new 2D X-ray spectrometer developed for future use at the stellarator W7-X was recently installed at TEXTOR. The spectrometer is optimized for measuring the K{sub α}-spectrum of He-like argon (1s2l - 1s{sup 2}) at wavelengths close to 4 Aa. K{sub α}-spectroscopy on He-like impurity ions is an established diagnostic for electron and ion temperature measurements in fusion plasmas. Still, up to now the observed intensity ratios of the K{sub α}-lines and their associated satellites are not fully understood. They show significant deviations from the predictions made by basic corona models. In the past charge exchange with the neutral particle background and radial impurity transport have been discussed as likely explanations. Yet a detailed description of the experimental spectra still has not been achieved. To reconstruct the 2D K{sub α}-spectra measured at TEXTOR the radial argon ion distribution is modeled using an impurity transport code. The model accounts for charge exchange and transport on basis of given radial profiles of the neutral particle density n{sub 0}(r) and the diffusion coefficient D {sub perpendicular} {sub to} (r). The theoretical spectrum is then constructed based on the processes relevant for line emission. Within an iterative procedure n{sub 0}(r) and D {sub perpendicular} {sub to} (r) are varied until consistency between the theoretical and the experimental spectra is achieved. It is shown that the 2D K{sub α}-spectra allow a clear distinction of charge exchange and transport effects, ensuring unique solutions for n

  2. High-resolution charge carrier mobility mapping of heterogeneous organic semiconductors

    Science.gov (United States)

    Button, Steven W.; Mativetsky, Jeffrey M.

    2017-08-01

    Organic electronic device performance is contingent on charge transport across a heterogeneous landscape of structural features. Methods are therefore needed to unravel the effects of local structure on overall electrical performance. Using conductive atomic force microscopy, we construct high-resolution out-of-plane hole mobility maps from arrays of 5000 to 16 000 current-voltage curves. To demonstrate the efficacy of this non-invasive approach for quantifying and mapping local differences in electrical performance due to structural heterogeneities, we investigate two thin film test systems, one bearing a heterogeneous crystal structure [solvent vapor annealed 5,11-Bis(triethylsilylethynyl)anthradithiophene (TES-ADT)—a small molecule organic semiconductor] and one bearing a heterogeneous chemical composition [p-DTS(FBTTh2)2:PC71BM—a high-performance organic photovoltaic active layer]. TES-ADT shows nearly an order of magnitude difference in hole mobility between semicrystalline and crystalline areas, along with a distinct boundary between the two regions, while p-DTS(FBTTh2)2:PC71BM exhibits subtle local variations in hole mobility and a nanoscale domain structure with features below 10 nm in size. We also demonstrate mapping of the built-in potential, which plays a significant role in organic light emitting diode and organic solar cell operation.

  3. Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics

    KAUST Repository

    Mora-Sero, Ivan; Bertoluzzi, Luca; Gonzalez-Pedro, Victoria; Gimenez, Sixto; Fabregat-Santiago, Francisco; Kemp, Kyle W.; Sargent, Edward H.; Bisquert, Juan

    2013-01-01

    Colloidal quantum dot solar cells achieve spectrally selective optical absorption in a thin layer of solution-processed, size-effect tuned, nanoparticles. The best devices built to date have relied heavily on drift-based transport due to the action of an electric field in a depletion region that extends throughout the thickness of the quantum dot layer. Here we study for the first time the behaviour of the best-performing class of colloidal quantum dot films in the absence of an electric field, by screening using an electrolyte. We find that the action of selective contacts on photovoltage sign and amplitude can be retained, implying that the contacts operate by kinetic preferences of charge transfer for either electrons or holes. We develop a theoretical model to explain these experimental findings. The work is the first to present a switch in the photovoltage in colloidal quantum dot solar cells by purposefully formed selective contacts, opening the way to new strategies in the engineering of colloidal quantum dot solar cells. © 2013 Macmillan Publishers Limited. All rights reserved.

  4. Field enhanced charge carrier reconfiguration in electronic and ionic coupled dynamic polymer resistive memory

    International Nuclear Information System (INIS)

    Zhao Junhui; Thomson, Douglas J; Freund, Michael S; Pilapil, Matt; Pillai, Rajesh G; Aminur Rahman, G M

    2010-01-01

    Dynamic resistive memory devices based on a conjugated polymer composite (PPy 0 DBS - Li + (PPy: polypyrrole; DBS - : dodecylbenzenesulfonate)), with field-driven ion migration, have been demonstrated. In this work the dynamics of these systems has been investigated and it has been concluded that increasing the applied field can dramatically increase the rate at which information can be 'written' into these devices. A conductance model using space charge limited current coupled with an electric field induced ion reconfiguration has been successfully utilized to interpret the experimentally observed transient conducting behaviors. The memory devices use the rising and falling transient current states for the storage of digital states. The magnitude of these transient currents is controlled by the magnitude and width of the write/read pulse. For the 500 nm length devices used in this work an increase in 'write' potential from 2.5 to 5.5 V decreased the time required to create a transient conductance state that can be converted into the digital signal by 50 times. This work suggests that the scaling of these devices will be favorable and that 'write' times for the conjugated polymer composite memory devices will decrease rapidly as ion driving fields increase with decreasing device size.

  5. Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics

    KAUST Repository

    Mora-Sero, Ivan

    2013-08-12

    Colloidal quantum dot solar cells achieve spectrally selective optical absorption in a thin layer of solution-processed, size-effect tuned, nanoparticles. The best devices built to date have relied heavily on drift-based transport due to the action of an electric field in a depletion region that extends throughout the thickness of the quantum dot layer. Here we study for the first time the behaviour of the best-performing class of colloidal quantum dot films in the absence of an electric field, by screening using an electrolyte. We find that the action of selective contacts on photovoltage sign and amplitude can be retained, implying that the contacts operate by kinetic preferences of charge transfer for either electrons or holes. We develop a theoretical model to explain these experimental findings. The work is the first to present a switch in the photovoltage in colloidal quantum dot solar cells by purposefully formed selective contacts, opening the way to new strategies in the engineering of colloidal quantum dot solar cells. © 2013 Macmillan Publishers Limited. All rights reserved.

  6. Exploring the validity and limitations of the Mott-Gurney law for charge-carrier mobility determination of semiconducting thin-films

    Science.gov (United States)

    Röhr, Jason A.; Moia, Davide; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny

    2018-03-01

    Using drift-diffusion simulations, we investigate the voltage dependence of the dark current in single carrier devices typically used to determine charge-carrier mobilities. For both low and high voltages, the current increases linearly with the applied voltage. Whereas the linear current at low voltages is mainly due to space charge in the middle of the device, the linear current at high voltage is caused by charge-carrier saturation due to a high degree of injection. As a consequence, the current density at these voltages does not follow the classical square law derived by Mott and Gurney, and we show that for trap-free devices, only for intermediate voltages, a space-charge-limited drift current can be observed with a slope that approaches a value of two. We show that, depending on the thickness of the semiconductor layer and the size of the injection barriers, the two linear current-voltage regimes can dominate the whole voltage range, and the intermediate Mott-Gurney regime can shrink or disappear. In this case, which will especially occur for thicknesses and injection barriers typical of single-carrier devices used to probe organic semiconductors, a meaningful analysis using the Mott-Gurney law will become unachievable, because a square-law fit can no longer be achieved, resulting in the mobility being substantially underestimated. General criteria for when to expect deviations from the Mott-Gurney law when used for analysis of intrinsic semiconductors are discussed.

  7. Exploring the validity and limitations of the Mott-Gurney law for charge-carrier mobility determination of semiconducting thin-films.

    Science.gov (United States)

    Röhr, Jason A; Moia, Davide; Haque, Saif A; Kirchartz, Thomas; Nelson, Jenny

    2018-03-14

    Using drift-diffusion simulations, we investigate the voltage dependence of the dark current in single carrier devices typically used to determine charge-carrier mobilities. For both low and high voltages, the current increases linearly with the applied voltage. Whereas the linear current at low voltages is mainly due to space charge in the middle of the device, the linear current at high voltage is caused by charge-carrier saturation due to a high degree of injection. As a consequence, the current density at these voltages does not follow the classical square law derived by Mott and Gurney, and we show that for trap-free devices, only for intermediate voltages, a space-charge-limited drift current can be observed with a slope that approaches a value of two. We show that, depending on the thickness of the semiconductor layer and the size of the injection barriers, the two linear current-voltage regimes can dominate the whole voltage range, and the intermediate Mott-Gurney regime can shrink or disappear. In this case, which will especially occur for thicknesses and injection barriers typical of single-carrier devices used to probe organic semiconductors, a meaningful analysis using the Mott-Gurney law will become unachievable, because a square-law fit can no longer be achieved, resulting in the mobility being substantially underestimated. General criteria for when to expect deviations from the Mott-Gurney law when used for analysis of intrinsic semiconductors are discussed.

  8. Insights into the charge carrier terahertz mobility in polyfluorenes from large-scale atomistic simulations and time-resolved terahertz spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Vukmirović, N.; Ponseca, C.S.; Němec, Hynek; Yartsev, A.; Sundström, V.

    2012-01-01

    Roč. 116, č. 37 (2012), s. 19665-1972 ISSN 1932-7447 Institutional research plan: CEZ:AV0Z10100520 Keywords : charge carrier mobility * time-resolved terahertz spectroscopy * multiscale atomistic calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.814, year: 2012

  9. Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots

    Directory of Open Access Journals (Sweden)

    I. Khanonkin

    2017-03-01

    Full Text Available The charge carrier dynamics of improved InP-based InAs/AlGaInAs quantum dot (QD semiconductor optical amplifiers are examined employing the multi-wavelength ultrafast pump-probe measurement technique. The transient transmission response of the continuous wave probe shows interesting dynamical processes during the initial 2-3 ps after the pump pulse, when carriers originating from two photon absorption contribute the least to the recovery. The effects of optical excitations and electrical bias levels on the recovery dynamics of the gain in energetically different QDs are quantified and discussed. The experimental observations are validated qualitatively using a comprehensive finite-difference time-domain model by recording the time evolution of the charge carriers in the QDs ensemble following the pulse.

  10. Charge carrier transport mechanisms in perovskite CdTiO3 fibers

    Directory of Open Access Journals (Sweden)

    Z. Imran

    2014-06-01

    Full Text Available Electrical transport properties of electrospun cadmium titanate (CdTiO3 fibers have been investigated using ac and dc measurements. Air annealing of as spun fibers at 1000 °C yielded the single phase perovskite fibers having diameter ∼600 nm - 800 nm. Both the ac and dc electrical measurements were carried out at temperatures from 200 K – 420 K. The complex impedance plane plots revealed a single semicircular arc which indicates the interfacial effect due to grain boundaries of fibers. The dielectric properties obey the Maxwell-Wagner theory of interfacial polarization. In dc transport study at low voltages, data show Ohmic like behavior followed by space charge limited current (SCLC with traps at higher voltages at all temperatures (200 K – 420 K. Trap density in our fibers system is Nt = 6.27 × 1017 /cm3. Conduction mechanism in the sample is governed by 3-D variable range hopping (VRH from 200 K – 300 K. The localized density of states were found to be N(EF = 5.51 × 1021 eV−1 cm−3 at 2 V. Other VRH parameters such as hopping distance (Rhop and hopping energy (Whop were also calculated. In the high temperature range of 320 K – 420 K, conductivity follows the Arrhenius law. The activation energy found at 2 V is 0.10 eV. Temperature dependent and higher values of dielectric constant make the perovskite CdTiO3 fibers efficient material for capacitive energy storage devices.

  11. Intercalated vs Non-Intercalated Morphologies in Donor-Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited

    KAUST Repository

    Collado Fregoso, Elisa

    2017-08-04

    In this contribution, we study the role of the donor:acceptor interface nanostructure upon charge separation and recombination in organic photovoltaic devices and blend films, using mixtures of PBTTT and two different fullerene derivatives (PC70BM and ICTA) as models for intercalated and non-intercalated morphologies, respectively. Thermodynamic simulations show that while the completely intercalated system exhibits a large free-energy barrier for charge separation, this barrier is significantly lower in the non-intercalated system, and almost vanishes when energetic disorder is included in the model. Despite these differences, both fs-resolved transient absorption spectroscopy (TAS) and TDCF exhibit extensive first-order losses in that system, suggesting that geminate pairs are the primary product of photoexcitation. In contrast, the system that comprises a combination of fully intercalated polymer:fullerene areas and fullerene aggregated domains (1:4 PBTTT:PC70BM), is the only one that shows slow, second-order recombination of free charges, resulting in devices with an overall higher short circuit current and fill factor. This study therefore provides a novel consideration of the role of the interfacial nanostructure and the nature of bound charges, and their impact upon charge generation and recombination.

  12. Intercalated vs Non-Intercalated Morphologies in Donor-Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited

    KAUST Repository

    Collado Fregoso, Elisa; Hood, Samantha N.; Shoaee, Safa; Schroeder, Bob C.; McCulloch, Iain; Kassal, Ivan; Neher, Dieter; Durrant, James R.

    2017-01-01

    In this contribution, we study the role of the donor:acceptor interface nanostructure upon charge separation and recombination in organic photovoltaic devices and blend films, using mixtures of PBTTT and two different fullerene derivatives (PC70BM and ICTA) as models for intercalated and non-intercalated morphologies, respectively. Thermodynamic simulations show that while the completely intercalated system exhibits a large free-energy barrier for charge separation, this barrier is significantly lower in the non-intercalated system, and almost vanishes when energetic disorder is included in the model. Despite these differences, both fs-resolved transient absorption spectroscopy (TAS) and TDCF exhibit extensive first-order losses in that system, suggesting that geminate pairs are the primary product of photoexcitation. In contrast, the system that comprises a combination of fully intercalated polymer:fullerene areas and fullerene aggregated domains (1:4 PBTTT:PC70BM), is the only one that shows slow, second-order recombination of free charges, resulting in devices with an overall higher short circuit current and fill factor. This study therefore provides a novel consideration of the role of the interfacial nanostructure and the nature of bound charges, and their impact upon charge generation and recombination.

  13. Emission and Dynamics of Charge Carriers in Uncoated and Organic/Metal Coated Semiconductor Nanowires

    Science.gov (United States)

    Kaveh Baghbadorani, Masoud

    In this dissertation, the dynamics of excitons in hybrid metal/organic/nanowire structures possessing nanometer thick deposited molecular and metal films on top of InP and GaAs nanowire (NW) surfaces were investigated. Optical characterizations were carried out as a function of the semiconductor NW material, design, NW size and the type and thickness of the organic material and metal used. Hybrid organic and plasmonic semiconductor nanowire heterostructures were fabricated using organic molecular beam deposition technique. I investigated the photon emission of excitons in 150 nm diameter polytype wurtzite/zincblende InP NWs and the influence of a few ten nanometer thick organic and metal films on the emission using intensity- and temperature-dependent time-integrated and time resolved (TR) photoluminescence (PL). The plasmonic NWs were coated with an Aluminum quinoline (Alq3) interlayer and magnesium-silver (Mg0.9:Ag0.1) top layer. In addition, the nonlinear optical technique of heterodyne four-wave mixing was used (in collaboration with Prof. Wolfgang Langbein, University of Cardiff) to study incoherent and coherent carrier relaxation processes on bare nanowires on a 100 femtosecond time-scale. Alq3 covered NWs reveal a stronger emission and a longer decay time of exciton transitions indicating surface state passivation at the Alq3/NW interface. Alq3/Mg:Ag NWs reveal a strong quenching of the exciton emission which is predominantly attributed to Forster energy-transfer from excitons to plasmon oscillations in the metal cluster film. Changing the Mg:Ag to gold and the organic Alq3 spacer layer to PTCDA leads to a similar behavior, but the PL quenching is strongly increased. The observed behavior is attributed to a more continuous gold deposition leading to an increased Forster energy transfer and to a metal induced band-bending. I also investigated ensembles of bare and gold/Alq3 coated GaAs-AlGaAs-GaAs core shell NWs of 130 nm diameter. Plasmonic NWs with Au

  14. Dependence of secondary electron emission on surface charging in sapphire and polycrystalline alumina: Evaluation of the effective cross sections for recombination and trapping

    International Nuclear Information System (INIS)

    Said, K.; Damamme, G.; Si Ahmed, A.; Moya, G.; Kallel, A.

    2014-01-01

    Highlights: • A novel approach for the analysis of the secondary electron emission in connection with the surface density of trapped charges. • Experimental estimation of the effective cross section for electron–hole recombination and electron trapping in defects. • A simplified charge transport and trapping model which corroborates qualitatively the interpretation of the results. - Abstract: The evolution of the secondary electron emission from sapphire and polycrystalline alumina during electron irradiation, achieved in a scanning electron microscope at room temperature, is derived from the measurement of the induced and the secondary electron currents. The semi-logarithmic plot of the secondary electron emission yield versus the surface density of trapped charges displays a plateau followed by a linear variation. For positive charging, the slope of the linear part, whose value is of about 10 −9 cm 2 , is independent of the primary electron energy, the microstructure and the impurities. It is interpreted as an effective microscopic cross section for electron–hole recombination. For negative charging of sapphire, the slope is associated with an effective electron trapping cross section close to 10 −11 cm 2 , which can be assigned to the dominant impurity trap. These effective values reflect the multiple interactions leading to the accumulation of charges. The yield corresponding to the plateau is controlled by the initial density of impurity traps. A charge transport and trapping >model, based on simplifying assumptions, confirms qualitatively these inferences

  15. Carrier injection and recombination processes in perovskite CH3NH3PbI3 solar cells studied by electroluminescence spectroscopy

    Science.gov (United States)

    Handa, Taketo; Okano, Makoto; Tex, David M.; Shimazaki, Ai; Aharen, Tomoko; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2016-02-01

    Organic-inorganic hybrid perovskite materials, CH3NH3PbX3 (X = I and Br), are considered as promising candidates for emerging thin-film photovoltaics. For practical implementation, the degradation mechanism and the carrier dynamics during operation have to be clarified. We investigated the degradation mechanism and the carrier injection and recombination processes in perovskite CH3NH3PbI3 solar cells using photoluminescence (PL) and electroluminescence (EL) imaging spectroscopies. By applying forward bias-voltage, an inhomogeneous distribution of the EL intensity was clearly observed from the CH3NH3PbI3 solar cells. By comparing the PL- and EL-images, we revealed that the spatial inhomogeneity of the EL intensity is a result of the inhomogeneous luminescence efficiency in the perovskite layer. An application of bias-voltage for several tens of minutes in air caused a decrease in the EL intensity and the conversion efficiency of the perovskite solar cells. The degradation mechanism of perovskite solar cells under bias-voltage in air is discussed.

  16. Ultrafast recombination in H+ bombarded InP and GaAs: Consequences for the carrier distribution functions

    International Nuclear Information System (INIS)

    Lamprecht, K.F.; Juen, S.; Hoepfel, R.A.; Palmetshofer, L.

    1992-01-01

    The authors studied the lifetimes and the luminescence spectra of photoexcited carriers in H + bombarded InP and GaAs for different damage doses by means of femtosecond luminescence spectroscopy. For InP the lifetime decreases down to 95 fs for the highest dose, whereas for GaAs no shorter lifetime than 650 fs could be observed. With decreasing lifetime they observe an increase of the high energy tail of the time-integrated luminescence spectrum which is even inverted for the 95 fs InP sample

  17. Facile synthesis of bismuth oxyhalide nanosheet films with distinct conduction type and photo-induced charge carrier behavior

    Science.gov (United States)

    Jia, Huimin; He, Weiwei; Zhang, Beibei; Yao, Lei; Yang, Xiaokai; Zheng, Zhi

    2018-05-01

    A modified successive ionic layer adsorption and reaction (SILAR) method was developed to fabricate 2D ordered BiOX (X = CI, Br, I) nanosheet array films on FTO substrates at room temperature. The formation of BiOX films were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV-vis absorption spectroscopy, and X-ray photoelectron spectroscopy (XPS). The semiconductor surface states determine the type of semiconductor. Although BiOCI, BiOBr and BiOI belong to the bismuth oxyhalide semiconductor family and possess similar crystal and electronic structures, they show different conductivity types due to their respective surface states. Mott-Schottky curve results demonstrate that the BiOCl and BiOI nanosheet arrays display n-type semiconductor properties, while the BiOBr films exhibit p-type semiconductor properties. Assisted by surface photovoltage (SPV) and transient photovoltage (TPV) techniques, the photoinduced charge transfer dynamics on the surface/interface of the BiOX/FTO nanosheet films were systematically and comparatively investigated. As revealed by the results, both the separation and transfer dynamics of the photo-induced carrier are influenced by film thickness.

  18. On the tin impurity in the thermoelectric compound ZnSb: Charge-carrier generation and compensation

    Energy Technology Data Exchange (ETDEWEB)

    Prokofieva, L. V., E-mail: lprokofieva496@gmail.com; Konstantinov, P. P.; Shabaldin, A. A. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-06-15

    The technique for measuring the Hall coefficient and electrical conductivity in the thermal cycling mode is used to study the effect of the Sn impurity on the microstructure and properties of pressed ZnSb samples. Tin was introduced as an excess component (0.1 and 0.2 at %) and as a substitutional impurity for Zn and Sb atoms in a concentration of (2–2.5) at % The temperature dependences of the parameters of lightly doped samples are fundamentally like similar curves for ZnSb with 0.1 at % of Cu. The highest Hall concentration, 1.4 × 10{sup 19} cm{sup –3} at 300 K, is obtained upon the introduction of 0.1 at % of Sn; the dimensionless thermoelectric figure of merit attains its maximum value of 0.85 at 660 K. The experimental data are discussed under the assumption of two doping mechanisms, which are effective in different temperature ranges, with zinc vacancies playing the decisive role of acceptor centers. In two ZnSb samples with SnSb and ZnSn additives, the charge-carrier compensation effect is observed; this effect depends on temperature and markedly changes with doping type. As in p-type A{sup IV}–B{sup VI} materials with a low Sn content, hole compensation can be attributed to atomic recharging Sn{sup 2+} → Sn{sup 4+}. Types of compensating complexes are considered.

  19. High-frequency conductivity of optically excited charge carriers in hydrogenated nanocrystalline silicon investigated by spectroscopic femtosecond pump–probe reflectivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    He, Wei [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom); Yurkevich, Igor V. [Aston University, Nonlinearity and Complexity Research Group, Birmingham B4 7ET (United Kingdom); Zakar, Ammar [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom); Kaplan, Andrey, E-mail: a.kaplan.1@bham.ac.uk [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom)

    2015-10-01

    We report an investigation into the high-frequency conductivity of optically excited charge carriers far from equilibrium with the lattice. The investigated samples consist of hydrogenated nanocrystalline silicon films grown on a thin film of silicon oxide on top of a silicon substrate. For the investigation, we used an optical femtosecond pump–probe setup to measure the reflectance change of a probe beam. The pump beam ranged between 580 and 820 nm, whereas the probe wavelength spanned 770 to 810 nm. The pump fluence was fixed at 0.6 mJ/cm{sup 2}. We show that at a fixed delay time of 300 fs, the conductivity of the excited electron–hole plasma is described well by a classical conductivity model of a hot charge carrier gas found at Maxwell–Boltzmann distribution, while Fermi–Dirac statics is not suitable. This is corroborated by values retrieved from pump–probe reflectance measurements of the conductivity and its dependence on the excitation wavelength and carrier temperature. The conductivity decreases monotonically as a function of the excitation wavelength, as expected for a nondegenerate charge carrier gas. - Highlights: • We study high‐frequency conductivity of excited hydrogenated nanocrystalline silicon. • Reflectance change was measured as a function of pump and probe wavelength. • Maxwell–Boltzmann transport theory was used to retrieve the conductivity. • The conductivity decreases monotonically as a function of the pump wavelength.

  20. Direct femtosecond observation of charge carrier recombination in ternary semiconductor nanocrystals: The effect of composition and shelling

    KAUST Repository

    Bose, Riya; Ahmed, Ghada H.; Alarousu, Erkki; Parida, Manas R.; Abdelhady, Ahmed L.; Bakr, Osman; Mohammed, Omar F.

    2015-01-01

    Heavy-metal free ternary semiconductor nanocrystals are emerging as key materials in photoactive applications. However, the relative abundance of intra-bandgap defect states and lack of understanding of their origins within this class

  1. Charge carrier trapping, recombination and transfer in hematite (-Fe2O3) water splitting photoanodes

    NARCIS (Netherlands)

    Barroso Silva da Cruz, M.; Pendlebury, S.R.; Cowan, A.J.; Durrant, J.R.

    2013-01-01

    Hematite is currently considered one of the most promising materials for the conversion and storage of solar energy via the photoelectrolysis of water. Whilst there has been extensive research and much progress in the development of hematite structures with enhanced photoelectrochemical (PEC)

  2. Efficient charge-carrier extraction from Ag₂S quantum dots prepared by the SILAR method for utilization of multiple exciton generation.

    Science.gov (United States)

    Zhang, Xiaoliang; Liu, Jianhua; Johansson, Erik M J

    2015-01-28

    The utilization of electron-hole pairs (EHPs) generated from multiple excitons in quantum dots (QDs) is of great interest toward efficient photovoltaic devices and other optoelectronic devices; however, extraction of charge carriers remains difficult. Herein, we extract photocharges from Ag2S QDs and investigate the dependence of the electric field on the extraction of charges from multiple exciton generation (MEG). Low toxic Ag2S QDs are directly grown on TiO2 mesoporous substrates by employing the successive ionic layer adsorption and reaction (SILAR) method. The contact between QDs is important for the initial charge separation after MEG and for the carrier transport, and the space between neighbor QDs decreases with more SILAR cycles, resulting in better charge extraction. At the optimal electric field for extraction of photocharges, the results suggest that the threshold energy (hνth) for MEG is 2.41Eg. The results reveal that Ag2S QD is a promising material for efficient extraction of charges from MEG and that QDs prepared by SILAR have an advantageous electrical contact facilitating charge separation and extraction.

  3. Carrier recombination in tailored multilayer Si/Si{sub 1−x}Ge{sub x} nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Mala, S.A. [Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Tsybeskov, L., E-mail: tsybesko@njit.edu [Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Lockwood, D.J.; Wu, X.; Baribeau, J.-M. [National Research Council, Ottawa, ON, Canada KIA 0R6 (Canada)

    2014-11-15

    Photoluminescence (PL) measurements were performed in Si/Si{sub 1−x}Ge{sub x} nanostructures with a single Si{sub 0.92}Ge{sub 0.08} nanometer-thick layer incorporated into Si/Si{sub 0.6}Ge{sub 0.4} cluster multilayers. Under pulsed laser excitation, the PL decay associated with the Si{sub 0.92}Ge{sub 0.08} nano-layer is found to be nearly a 1000 times faster compared to that in Si/Si{sub 0.6}Ge{sub 0.4} cluster multilayers. A model considering Si/SiGe hetero-interface composition and explaining the fast and slow time-dependent recombination rates is proposed.

  4. Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study

    Institute of Scientific and Technical Information of China (English)

    Wee-Jun Ong; Lutfi Kurnianditia Putri; Yoong-Chuen Tan; Lling-Lling Tan; Neng Li; Yun Hau Ng; Xiaoming Wen; Siang-Piao Chai

    2017-01-01

    In this work,we demonstrated the successful construction of metal-free zerodimensional/two-dimensional carbon nanodot (CND)-hybridized protonated g-C3N4 (pCN) (CND/pCN) heterojunction photocatalysts by means of electrostatic attraction.We experimentally found that CNDs with an average diameter of 4.4 nm were uniformly distributed on the surface of pCN using electron microscopy analysis.The CND/pCN-3 sample with a CND content of 3 wt.% showed the highest catalytic activity in the CO2 photoreduction process under visible and simulated solar light.Thisprocess results in the evolution of CH4 and CO.The total amounts of CH4 and CO generated by the CND/pCN-3 photocatalyst after 10 h of visible-light activity were found to be 29.23 and 58.82 μmol·gcatalyst-1,respectively.These values were 3.6 and 2.28 times higher,respectively,than the amounts generated when using pCN alone.The corresponding apparent quantum efficiency (AQE) was calculated to be 0.076%.Furthermore,the CND/pCN-3 sample demonstrated high stability and durability after four consecutive photoreaction cycles,with no significant decrease in the catalytic activity.The significant improvement in the photoactivity using CND/pCN-3 was attributed to the synergistic interaction between pCN and CNDs.This synergy allows the effective migration of photoexcited electrons from pCN to CNDs via wellcontacted heterojunction interfaces,which retards the charge recombination.This was confirmed by photoelectrochemical measurements,and steady-state and time-resolved photoluminescence analyses.The first-principles density functional theory (DFT) calculations were consistent with our experimental results,and showed that the work function of CNDs (5.56 eV) was larger than that of pCN (4.66 eV).This suggests that the efficient shuttling of electrons from the conduction band of pCN to CNDs hampers the recombination of electron-hole pairs.This significantly increased the probability of free charge carriers reducing CO2 to CH4

  5. Ultrafast Charge and Triplet State Formation in Diketopyrrolopyrrole Low Band Gap Polymer/Fullerene Blends: Influence of Nanoscale Morphology of Organic Photovoltaic Materials on Charge Recombination to the Triplet State

    Directory of Open Access Journals (Sweden)

    René M. Williams

    2017-01-01

    Full Text Available Femtosecond transient absorption spectroscopy of thin films of two types of morphologies of diketopyrrolopyrrole low band gap polymer/fullerene-adduct blends is presented and indicates triplet state formation by charge recombination, an important loss channel in organic photovoltaic materials. At low laser fluence (approaching solar intensity charge formation characterized by a 1350 nm band (in ~250 fs dominates in the two PDPP-PCBM blends with different nanoscale morphologies and these charges recombine to form a local polymer-based triplet state on the sub-ns timescale (in ~300 and ~900 ps indicated by an 1100 nm absorption band. The rate of triplet state formation is influenced by the morphology. The slower rate of charge recombination to the triplet state (in ~900 ps belongs to a morphology that results in a higher power conversion efficiency in the corresponding device. Nanoscale morphology not only influences interfacial area and conduction of holes and electrons but also influences the mechanism of intersystem crossing (ISC. We present a model that correlates morphology to the exchange integral and fast and slow mechanisms for ISC (SOCT-ISC and H-HFI-ISC. For the pristine polymer, a flat and unstructured singlet-singlet absorption spectrum (between 900 and 1400 nm and a very minor triplet state formation (5% are observed at low laser fluence.

  6. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes.

    Science.gov (United States)

    Wu, Kaifeng; Song, Nianhui; Liu, Zheng; Zhu, Haiming; Rodríguez-Córdoba, William; Lian, Tianquan

    2013-08-15

    Recent studies of group II-VI colloidal semiconductor heterostuctures, such as CdSe/CdS core/shell quantum dots (QDs) or dot-in-rod nanorods, show that type II and quasi-type II band alignment can facilitate electron transfer and slow down charge recombination in QD-molecular electron acceptor complexes. To explore the general applicability of this wave function engineering approach for controlling charge transfer properties, we investigate exciton relaxation and dissociation dynamics in InP (a group III-V semiconductor) and InP/CdS core/shell (a heterostructure beween group III-V and II-VI semiconductors) QDs by transient absorption spectroscopy. We show that InP/CdS QDs exhibit a quasi-type II band alignment with the 1S electron delocalized throughout the core and shell and the 1S hole confined in the InP core. In InP-methylviologen (MV(2+)) complexes, excitons in the QD can be dissociated by ultrafast electron transfer to MV(2+) from the 1S electron level (with an average time constant of 11.4 ps) as well as 1P and higher electron levels (with a time constant of 0.39 ps), which is followed by charge recombination to regenerate the complex in its ground state (with an average time constant of 47.1 ns). In comparison, InP/CdS-MV(2+) complexes show similar ultrafast charge separation and 5-fold slower charge recombination rates, consistent with the quasi-type II band alignment in these heterostructures. This result demonstrates that wave function engineering in nanoheterostructures of group III-V and II-VI semiconductors provides a promising approach for optimizing their light harvesting and charge separation for solar energy conversion applications.

  7. The effects of interfacial recombination and injection barrier on the electrical characteristics of perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Lin Xing Shi

    2018-02-01

    Full Text Available Charge carrier recombination in the perovskite solar cells (PSCs has a deep influence on the electrical performance, such as open circuit voltage, short circuit current, fill factor and ultimately power conversion efficiency. The impacts of injection barrier, recombination channels, doping properties of carrier transport layers and light intensity on the performance of PSCs are theoretically investigated by drift-diffusion model in this work. The results indicate that due to the injection barrier at the interfaces of perovskite and carrier transport layer, the accumulated carriers modify the electric field distribution throughout the PSCs. Thus, a zero electric field is generated at a specific applied voltage, with greatly increases the interfacial recombination, resulting in a local kink of current density-voltage (J-V curve. This work provides an effective strategy to improve the efficiency of PSCs by pertinently reducing both the injection barrier and interfacial recombination.

  8. Space and time resolved measurements of ion temperature with the CVI 5292 A charge exchange recombination line after subtracting background radiation

    International Nuclear Information System (INIS)

    Ida, K.; Hidekuma, S.

    1988-08-01

    An ion temperature profile has been obtained with the CVI 5292 A (n = 8 - 7) charge exchange recombination (CXR) line using a space and wave-length resolving visible spectrometer installed on the JIPP TII-U tokamak. Two sets of 50 channels optical fiber arrays: one viewing a fast neutral hydrogen beam (CXR channels) and the other viewing off the neutral beam line (background channels), is arranged on the entrance slit of the spectrometer. This spectrometer is coupled to an image intensifier and CCD detector at the focal plane and provides temperature profile every 1/60 second. An ion temperature is derived from the Doppler broadened line profile after subtracting the simultaneously measured cold component (background channels), which is due to electron-excitation and/or charge exchange recombination in the plasma periphery. Alternative approach to obtain the ion temperature profile without CXR is also demonstrated. This method is based on an Abel inversion technique for each wavelength separately. (author)

  9. Interfacial charge recombination via the triplet state? Mimicry of photoprotection in the photosynthetic process with a dye-sensitized TiO 2 solar cell reaction

    Science.gov (United States)

    Weng, Yu-Xiang; Li, Long; Liu, Yin; Wang, Li; Yang, Guo-Zhen; Sheng, Jian-Qun

    2002-04-01

    Evidence for the photoinduced charge recombination to the excited-triplet state has been observed in chemical solar cell reaction consisting of dye-sensitized TiO 2 colloidal ethanol solution, which mimicks the photoprotection function in the photosynthetic units. The dye is all -trans-retinoic acid, a structural analog of β-carotenoid. Two channels of charge recombination, i.e., through triplet and ground states were observed by nano-second flash photolysis. The possibility of applying the function of photoprotection to the synthetic solar cell is discussed, which provides a potential entry of molecular engineering of the dye to improve the long term stability of the synthetic solar cell.

  10. Optimization of the charge-carrier injection in organic light-emitting diodes; Optimierung der Ladungstraegerinjektion in organische Leuchtdioden

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Ralf

    2009-07-01

    Nowadays based on resource shortage and climate warming there is a big interest in the use of power-saving lighting sources. Therefore the research on white organic light emitting devices (OLEDs) has gained importance during the last years. To obtain high power efficiencies in OLEDs it is necessary to provide low driving voltages. That can be realised by the use of doped transport layers, in which donors and acceptors are coevaporated with organic transport materials. In this thesis I discuss novel p-type and n-type doping materials for small organic molecules which decrease the ohmic loss in organic transport layers used in OLEDs. This reduction of the resistance is caused by an increase of the intrinsic charge carrier density and therefore an increase of the conductivity. First single layer devices are used to analyse the properties of potential doping materials by varying the doping concentration. The tested p-doping materials are commercially available metal oxides (MoO{sub 3} and Re{sub 2}O{sub 7}) and metal-organic complexes. Both metal oxides show a strong conductivity improvement of up to 7 orders of magnitude. The investigated n-doping materials are alkali salts, metal-organic and organic complexes. Among the alkali salts Cs{sub 2}CO{sub 3} is the best material in test with a conductivity enhancement of up to 7 orders of magnitude. For this material class I focused on the question whether the metal cation or the organic anion causes the doping effect. Using similar Caesium salts differently strong doping effects were obtained. Therefore I came to the conclusion that beside the metal cation also the anion plays a role for the doping effect. Secondly I performed a series of multilayer devices for two doping materials (Re{sub 2}O{sub 7} as acceptor and Cs{sub 2}CO{sub 3} as donor) to separate the transport and injection enhancement. The results show that a doped transport layer improves the hole or electron injection into an undoped material by several orders

  11. Polymer:Nonfullerene Bulk Heterojunction Solar Cells with Exceptionally Low Recombination Rates

    KAUST Repository

    Gasparini, Nicola; Salvador, Michael; Heumueller, Thomas; Richter, Moses; Classen, Andrej; Shrestha, Shreetu; Matt, Gebhard J.; Holliday, Sarah; Strohm, Sebastian; Egelhaaf, Hans-Joachim; Wadsworth, Andrew; Baran, Derya; McCulloch, Iain; Brabec, Christoph J.

    2017-01-01

    Organic semiconductors are in general known to have an inherently lower charge carrier mobility compared to their inorganic counterparts. Bimolecular recombination of holes and electrons is an important loss mechanism and can often be described by the Langevin recombination model. Here, the device physics of bulk heterojunction solar cells based on a nonfullerene acceptor (IDTBR) in combination with poly(3-hexylthiophene) (P3HT) are elucidated, showing an unprecedentedly low bimolecular recombination rate. The high fill factor observed (above 65%) is attributed to non-Langevin behavior with a Langevin prefactor (β/βL) of 1.9 × 10−4. The absence of parasitic recombination and high charge carrier lifetimes in P3HT:IDTBR solar cells inform an almost ideal bimolecular recombination behavior. This exceptional recombination behavior is explored to fabricate devices with layer thicknesses up to 450 nm without significant performance losses. The determination of the photoexcited carrier mobility by time-of-flight measurements reveals a long-lived and nonthermalized carrier transport as the origin for the exceptional transport physics. The crystalline microstructure arrangement of both components is suggested to be decisive for this slow recombination dynamics. Further, the thickness-independent power conversion efficiency is of utmost technological relevance for upscaling production and reiterates the importance of understanding material design in the context of low bimolecular recombination.

  12. Polymer:Nonfullerene Bulk Heterojunction Solar Cells with Exceptionally Low Recombination Rates

    KAUST Repository

    Gasparini, Nicola

    2017-09-01

    Organic semiconductors are in general known to have an inherently lower charge carrier mobility compared to their inorganic counterparts. Bimolecular recombination of holes and electrons is an important loss mechanism and can often be described by the Langevin recombination model. Here, the device physics of bulk heterojunction solar cells based on a nonfullerene acceptor (IDTBR) in combination with poly(3-hexylthiophene) (P3HT) are elucidated, showing an unprecedentedly low bimolecular recombination rate. The high fill factor observed (above 65%) is attributed to non-Langevin behavior with a Langevin prefactor (β/βL) of 1.9 × 10−4. The absence of parasitic recombination and high charge carrier lifetimes in P3HT:IDTBR solar cells inform an almost ideal bimolecular recombination behavior. This exceptional recombination behavior is explored to fabricate devices with layer thicknesses up to 450 nm without significant performance losses. The determination of the photoexcited carrier mobility by time-of-flight measurements reveals a long-lived and nonthermalized carrier transport as the origin for the exceptional transport physics. The crystalline microstructure arrangement of both components is suggested to be decisive for this slow recombination dynamics. Further, the thickness-independent power conversion efficiency is of utmost technological relevance for upscaling production and reiterates the importance of understanding material design in the context of low bimolecular recombination.

  13. Low temperature luminescence and charge carrier trapping in a cryogenic scintillator Li{sub 2}MoO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Spassky, D.A., E-mail: deris2002@mail.ru [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119991 Moscow (Russian Federation); Nagirnyi, V. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Savon, A.E. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119991 Moscow (Russian Federation); Kamenskikh, I.A. [Physics Faculty, Moscow State University, 119991 Moscow (Russian Federation); Barinova, O.P.; Kirsanova, S.V. [D. Mendeleyev University of Chemical Technology of Russia, 125047 Moscow (Russian Federation); Grigorieva, V.D.; Ivannikova, N.V.; Shlegel, V.N. [Nikolaev Institute of Inorganic Chemistry, SB RAS, 630090 Novosibirsk (Russian Federation); Aleksanyan, E. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); A.Alikhanyan National Science Laboratory, 2 Br. Alikhanyan Str., 0036 Yerevan (Armenia); Yelisseyev, A.P. [Sobolev Institute of Geology and Mineralogy, SB RAS, 630090 Novosibirsk (Russian Federation); Belsky, A. [Institute of Light and Matter, CNRS, University Lyon1, 69622 Villeurbanne (France)

    2015-10-15

    The luminescence and optical properties of promising cryogenic scintillator Li{sub 2}MoO{sub 4} were studied in the temperature region of 2–300 K. The data on luminescence spectra and decay characteristics, excitation spectra, thermostimulated luminescence curves and spectra as well as transmission and reflectivity spectra are presented for the single crystals grown by two different procedures, the conventional Czochralski method and the low-temperature gradient Czochralski technique. The bandgap of Li{sub 2}MoO{sub 4} is estimated from the analysis of transmission, luminescence excitation and reflectivity spectra. Up to three luminescence bands with the maxima at 1.98, 2.08 and 2.25 eV are detected in the emission spectra of crystals and their origin is discussed. In the thermoluminescence curves of both studied crystals, two high-intensity peaks were observed at 22 and 42 K, which are ascribed to the thermal release of self-trapped charge carriers. The coexistence of self-trapped electrons and holes allows one to explain the poor scintillation light yield of Li{sub 2}MoO{sub 4} at low temperatures. - Highlights: • Single crystals of Li{sub 2}MoO{sub 4} were grown by two methods. • The transparency cutoff (~4.3 eV) and bandgap values (<4.9 eV) are estimated. • The emission 2.08 eV is ascribed to self-trapped excitons and quenches at T>7 K. • Shallow traps considerably influence the energy transfer to emission centres. • Co-existence of self-trapped holes and electrons results in a low light yield.

  14. A possibility for generation of two species of charge carriers along main-chain and side-chains for a π-conjugated polymer

    International Nuclear Information System (INIS)

    Kudo, Yuki; Kawabata, Kohsuke; Goto, Hiromasa

    2013-01-01

    Iodide doping produces charge carriers in π-conjugated polymers. Solitons can be generated in the case of polyacetylene, and polarons in the case of aromatic-type conjugated polymers. We synthesized a conjugated main-chain/side-chain polymer, which consists of polyene in the main-chain and aromatic-type conjugated units in the side-chains. Based on the SSH (Su, Schrieffer, Heeger) theoretical model of solitons in one-dimensional conjugated polymers, we experimentally carried out chemical doping to the main-chain/side-chains conjugated polymer. Generation of the charge carriers was examined by electron spin resonance spectroscopy. This study may lead to realization of a dual doping system of solitons and polarons in π-conjugation expanded to two-dimensional directions in polymers.

  15. Hard X-ray polarimetry with position sensitve germanium detectors. Studies of the recombination transitions into highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Tashenov, Stanislav

    2005-07-01

    In this work a first study of the photon polarization for the process of radiative recombination has been performed. This was done at the ESR storage ring at GSI for uranium ions colliding with N2 at various collision energies. For this measurement a high purity Ge Pixel Detector with a 4 x 4 segmentation matrix was applied. The investigation was performed at the Gas-jet target of the ESR. The detector was placed at 60 and 90 observation angles. The sensitivity of the Compton scattering effect to the linear polarization of the X-Ray radiation was employed for the polarization measurement. Detailed investigations of the scattering and geometrical effects inside the detector were performed in order to develop a method to interpret the experimental data and extract the degree of the linear polarization in the hard X-Ray regime with a high precision. A special emphasis was given to the geometry of the detector and it's influence on the measured pixel-to-pixel Compton scattering intensities. The developed method enabled to achieve a precision of the order of 10% with the Pixel Detector which is dominated by the statistical uncertainties. The obtained results show a good agreement with the theoretical values derived from the exact relativistic calculations. For the case of the linear polarization of the K-REC photons, the measured data con rm the theoretical prediction that strong depolarization effects occur for high projectile charges in the forward hemisphere. The latter is in disagreement with the nonrelativistic theory which predicts a 100 % polarization regardless of the emission angle. (orig.)

  16. Hard X-ray polarimetry with position sensitve germanium detectors. Studies of the recombination transitions into highly charged ions

    International Nuclear Information System (INIS)

    Tashenov, Stanislav

    2005-01-01

    In this work a first study of the photon polarization for the process of radiative recombination has been performed. This was done at the ESR storage ring at GSI for uranium ions colliding with N2 at various collision energies. For this measurement a high purity Ge Pixel Detector with a 4 x 4 segmentation matrix was applied. The investigation was performed at the Gas-jet target of the ESR. The detector was placed at 60 and 90 observation angles. The sensitivity of the Compton scattering effect to the linear polarization of the X-Ray radiation was employed for the polarization measurement. Detailed investigations of the scattering and geometrical effects inside the detector were performed in order to develop a method to interpret the experimental data and extract the degree of the linear polarization in the hard X-Ray regime with a high precision. A special emphasis was given to the geometry of the detector and it's influence on the measured pixel-to-pixel Compton scattering intensities. The developed method enabled to achieve a precision of the order of 10% with the Pixel Detector which is dominated by the statistical uncertainties. The obtained results show a good agreement with the theoretical values derived from the exact relativistic calculations. For the case of the linear polarization of the K-REC photons, the measured data con rm the theoretical prediction that strong depolarization effects occur for high projectile charges in the forward hemisphere. The latter is in disagreement with the nonrelativistic theory which predicts a 100 % polarization regardless of the emission angle. (orig.)

  17. Radiative recombination mechanism of carriers in InGaN/AlInGaN multiple quantum wells with varying aluminum content

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tong [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Jiao, Shujie, E-mail: shujiejiao@gmail.com [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory for Photonic and Electric Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150001 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Wang, Dongbo [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Gao, Shiyong, E-mail: gaoshiyong@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yang, Tianpeng [EpiTop Optoelectronic Co., Ltd., Pingxiang 337000 (China); Liang, Hongwei [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Zhao, Liancheng [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-02-05

    Highlights: • Structural and optical properties of In GaN/Al{sub x}In{sub y}Ga{sub 1−x−y}N MQWs were investigated. • The existence of In-rich clusters has been verified by Raman spectra. • The degree of localization effect increase with increasing Al content in barriers. • The origin of the deep localized states could be assigned to the larger QCSE. • Recombination mechanism of carriers with increasing temperature has been proposed. - Abstract: The structural and optical properties of In{sub 0.20}Ga{sub 0.80}N/Al{sub x}In{sub y}Ga{sub 1−x−y}N multiple quantum wells samples with varying Al content in barrier layers grown on sapphire substrates by metalorganic chemical vapor deposition have been investigated by means of high-resolution X-ray diffraction, Raman scattering measurements and temperature-dependent photoluminescence. Raman measurements verified the existence of In-rich clusters in ternary and quaternary layers. At 10 K and 300 K, the PL spectrum of each sample is dominated by a sharp emission peak arising from In{sub 0.20}Ga{sub 0.80}N well layers. The anomalous temperature-dependent S-shaped behaviors of emission energies have been observed, indicating the presence of localized states induced by the potential fluctuations in the quantum wells due to the inhomogeneous distribution of In-rich clusters. The degree of the localization effect and the transition temperatures between different temperature regions can be enhanced by increasing Al content in barrier layers. The improvement of the localized states emission has been observed at the lower energy side of band gap emission of quantum wells with increasing Al content. The origin of the deep localized states could be attributed to the larger quantum-confined Stark effect in the quantum wells with higher Al content. The recombination mechanism of carriers between band edge and localized states was proposed for interpreting of the emission characteristics.

  18. Non-contact, non-destructive, quantitative probing of interfacial trap sites for charge carrier transport at semiconductor-insulator boundary

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Wookjin; Miyakai, Tomoyo; Sakurai, Tsuneaki; Saeki, Akinori [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yokoyama, Masaaki [Kaneka Fundamental Technology Research Alliance Laboratories, Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Seki, Shu, E-mail: seki@chem.eng.osaka-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Kaneka Fundamental Technology Research Alliance Laboratories, Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan)

    2014-07-21

    The density of traps at semiconductor–insulator interfaces was successfully estimated using microwave dielectric loss spectroscopy with model thin-film organic field-effect transistors. The non-contact, non-destructive analysis technique is referred to as field-induced time-resolved microwave conductivity (FI-TRMC) at interfaces. Kinetic traces of FI-TRMC transients clearly distinguished the mobile charge carriers at the interfaces from the immobile charges trapped at defects, allowing both the mobility of charge carriers and the number density of trap sites to be determined at the semiconductor-insulator interfaces. The number density of defects at the interface between evaporated pentacene on a poly(methylmethacrylate) insulating layer was determined to be 10{sup 12 }cm{sup −2}, and the hole mobility was up to 6.5 cm{sup 2} V{sup −1} s{sup −1} after filling the defects with trapped carriers. The FI-TRMC at interfaces technique has the potential to provide rapid screening for the assessment of interfacial electronic states in a variety of semiconductor devices.

  19. Efficient charge carriers induced by extra outer-shell electrons in iron-pnictides: a comparison between Ni- and Co-doped CaFeAsF

    International Nuclear Information System (INIS)

    Zhang Min; Yu Yi; Tan Shun; Zhang Yuheng; Zhang Changjin; Zhang Lei; Qu Zhe; Ling Langsheng; Xi, Chuanying

    2010-01-01

    A comprehensive study of the difference between CaFe 1-x Ni x AsF and CaFe 1-x Co x AsF systems has been carried out by measuring the efficient charge carrier concentration, the valence states and the superconducting phase diagram. It is found that at the same doping level, Ni doping introduces nearly twice the number of charge carriers as Co doping. However, x-ray absorption near-edge spectroscopy measurements reveal that the valence state of Fe in both systems is close to 2, indicating that there is no valence mismatch. We suggest that the charge carriers in CaFe 1-x M x AsF (M=transition metal elements) are not induced by valence mismatch but come from the difference in the number of outer-shell electrons. We also suggest that with Ni and Co doping, the systems change from a multi-band material in the underdoped regions to a single-band state in the overdoped regions.

  20. Hexon-modified recombinant E1-deleted adenoviral vectors as bivalent vaccine carriers for Coxsackievirus A16 and Enterovirus 71.

    Science.gov (United States)

    Zhang, Chao; Yang, Yong; Chi, Yudan; Yin, Jieyun; Yan, Lijun; Ku, Zhiqiang; Liu, Qingwei; Huang, Zhong; Zhou, Dongming

    2015-09-22

    Hand, foot and mouth disease (HFMD) is a major public health concern in Asia; more efficient vaccines against HFMD are urgently required. Adenoviral (Ad) capsids have been used widely for the presentation of foreign antigens to induce specific immune responses in the host. Here, we describe a novel bivalent vaccine for HFMD based on the hexon-modified, E1-deleted chimpanzee adenovirus serotype 68 (AdC68). The novel vaccine candidate was generated by incorporating the neutralising epitope of Coxsackievirus A16 (CA16), PEP71, into hypervariable region 1 (HVR1), and a shortened neutralising epitope of Enterovirus 71 (EV71), sSP70, into HVR2 of the AdC68 hexon. In order to enhance the immunogenicity of EV71, VP1 of EV71 was cloned into the E1-region of the AdC68 vectors. The results demonstrated that these two epitopes were well presented on the virion surface and had high affinity towards specific antibodies, and VP1 of EV71 was also significantly expressed. In pre-clinical mouse models, the hexon-modified AdC68 elicited neutralising antibodies against both CA16 and EV71, which conferred protection to suckling mice against a lethal challenge of CA16 and EV71. In summary, this study demonstrates that the hexon-modified AdC68 may represent a promising bivalent vaccine carrier against EV71 and CA16 and an epitope-display platform for other pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Carrier population control and surface passivation in solar cells

    KAUST Repository

    Cuevas, Andres

    2018-05-02

    Controlling the concentration of charge carriers near the surface is essential for solar cells. It permits to form regions with selective conductivity for either electrons or holes and it also helps to reduce the rate at which they recombine. Chemical passivation of the surfaces is equally important, and it can be combined with population control to implement carrier-selective, passivating contacts for solar cells. This paper discusses different approaches to suppress surface recombination and to manipulate the concentration of carriers by means of doping, work function and charge. It also describes some of the many surface-passivating contacts that are being developed for silicon solar cells, restricted to experiments performed by the authors.

  2. The impact of Au doping on the charge carrier dynamics at the interfaces between cationic porphyrin and silver nanoclusters

    KAUST Repository

    Almansaf, Abdulkhaleq A.

    2017-02-04

    We explore the impact of Au doping on the charge transfer dynamics between the positively charged porphyrin (TMPyP) and negatively charged silver nanoclusters (Ag29 NCs). Our transient absorption (TA) spectroscopic results demonstrate that the interfacial charge transfer, the intersystem crossing and the triplet state lifetime of porphyrin can be tuned by the doping of Au atoms in Ag29 NCs. Additionally, we found that the electrostatic interaction between the negative charge of the cluster and the positive charge on the TMPyP is the driving force that brings them close to each other for complex formation and subsequently facilitates the transfer process.

  3. The impact of Au doping on the charge carrier dynamics at the interfaces between cationic porphyrin and silver nanoclusters

    KAUST Repository

    Almansaf, Abdulkhaleq A.; Parida, Manas R.; Besong, Tabot M.D.; Maity, Partha; Bootharaju, Megalamane Siddaramappa; Bakr, Osman; Mohammed, Omar F.

    2017-01-01

    We explore the impact of Au doping on the charge transfer dynamics between the positively charged porphyrin (TMPyP) and negatively charged silver nanoclusters (Ag29 NCs). Our transient absorption (TA) spectroscopic results demonstrate that the interfacial charge transfer, the intersystem crossing and the triplet state lifetime of porphyrin can be tuned by the doping of Au atoms in Ag29 NCs. Additionally, we found that the electrostatic interaction between the negative charge of the cluster and the positive charge on the TMPyP is the driving force that brings them close to each other for complex formation and subsequently facilitates the transfer process.

  4. Charge recombination process in X-ray irradiated pyrene-doped polystyrene as studied by optically detected electron spin resonance and magnetic field dependence of the recombination fluorescence

    International Nuclear Information System (INIS)

    Okazaki, Masaharu; Tai, Yutaka; Toriyama, Kazumi

    1993-01-01

    The optically-detected ESR (ODESR) spectrum and magnetic field dependence on recombination fluorescence were observed for X-ray irradiated pyrene-doped polystyrene at temperatures of 242-348 K. The ODESR intensity as a function of the pyrene concentration, 0.1-8.9 wt%, showed an unusual minimum at about 1.0%. Two phases were separated in the magnetic field dependence of the fluorescence: one was sharp and saturates at fields of over 50 mT, while the other was broad with a dip at around 60-150 mT. The cause of this dip was naturally attributed to the ST -1 level crossing. The sharp magnetic field effect also showed a minimum at around a concentration of 1.0 wt%. These novel findings have been interpreted using a recombination model modified from the previous one for pyrene-doped ethylene-propylene rubber and polyethylene. The essential points of the present model are: (1) although electron hopping within the polystyrene molecule is rapid, electron transfer at the last step of recombination between the polystyrene anion and the pyrene cation proceeds at a moderate rate; (2) the hole-transfer rate in the polymer chain is moderate; (3) electron hopping between the doped pyrene molecules is very much dependent on the concentration; (4) hole hopping between the pyrenes is inhibited. (author)

  5. Mobility of charge carriers in electron-irradiated crystals of n-type Hg0.8Cd0.2Te

    International Nuclear Information System (INIS)

    Voitsekhovskii, A.V.; Kiryushkin, E.M.; Kokhanenko, A.P.; Kurbanov, K.R.; Lilenko, Yu.V.

    1988-01-01

    We present the results of an investigation of the behavior of the mobility of the charge carriers in Hg 1-x Cd x Te crystals with n-type conduction as a function of the dose of irradiation by electrons with an energy of 3.0 MeV at 300 K and the initial content of defects in the material. The complex character of the variation of the mobility of the electrons as a function of the dose observed when crystals of n-Hg 1-x Cd x Te (x ∼ 0.20) with different initial concentrations of defects are irradiated by fast electrons has been attributed to the influence of the factors of the shielding of the ionized scattering centers by electrons and the additional scattering of the charge carriers on the radiation defects. Good agreement between the experimental and calculated plots of the dependence of the mobility of electrons on the irradiation dose has been obtained with consideration of a model of the simultaneous introduction of donor (single charged) and acceptor (doubly charged) defects into a narrow-band semiconductor characterized by a degenerate and nonparabolic conduction band

  6. Interfacial dynamic surface traps of lead sulfide (PbS) nanocrystals: test-platform for interfacial charge carrier traps at the organic/inorganic functional interface

    Science.gov (United States)

    Kim, Youngjun; Ko, Hyungduk; Park, Byoungnam

    2018-04-01

    Nanocrystal (NC) size and ligand dependent dynamic trap formation of lead sulfide (PbS) NCs in contact with an organic semiconductor were investigated using a pentacene/PbS field effect transistor (FET). We used a bilayer pentacene/PbS FET to extract information of the surface traps of PbS NCs at the pentacene/PbS interface through the field effect-induced charge carrier density measurement in the threshold and subthreshold regions. PbS size and ligand dependent trap properties were elucidated by the time domain and threshold voltage measurements in which threshold voltage shift occurs by carrier charging and discharging in the trap states of PbS NCs. The observed threshold voltage shift is interpreted in context of electron trapping through dynamic trap formation associated with PbS NCs. To the best of our knowledge, this is the first demonstration of the presence of interfacial dynamic trap density of PbS NC in contact with an organic semiconductor (pentacene). We found that the dynamic trap density of the PbS NC is size dependent and the carrier residence time in the specific trap sites is more sensitive to NC size variation than to NC ligand exchange. The probing method presented in the study offers a means to investigate the interfacial surface traps at the organic-inorganic hetero-junction, otherwise understanding of the buried surface traps at the functional interface would be elusive.

  7. Persistent photoconductivity due to trapping of induced charges in Sn/ZnO thin film based UV photodetector

    International Nuclear Information System (INIS)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay

    2010-01-01

    Photoconductivity relaxation in rf magnetron sputtered ZnO thin films integrated with ultrathin tin metal overlayer is investigated. Charge carriers induced at the ZnO-metal interface by the tin metal overlayer compensates the surface lying trap centers and leads to the enhanced photoresponse. On termination of ultraviolet radiation, recombination of the photoexcited electrons with the valence band holes leaves the excess carriers deeply trapped at the recombination center and holds the dark conductivity level at a higher value. Equilibrium between the recombination centers and valence band, due to trapped charges, eventually stimulates the persistent photoconductivity in the Sn/ZnO photodetectors.

  8. Persistent photoconductivity due to trapping of induced charges in Sn/ZnO thin film based UV photodetector

    Science.gov (United States)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay

    2010-05-01

    Photoconductivity relaxation in rf magnetron sputtered ZnO thin films integrated with ultrathin tin metal overlayer is investigated. Charge carriers induced at the ZnO-metal interface by the tin metal overlayer compensates the surface lying trap centers and leads to the enhanced photoresponse. On termination of ultraviolet radiation, recombination of the photoexcited electrons with the valence band holes leaves the excess carriers deeply trapped at the recombination center and holds the dark conductivity level at a higher value. Equilibrium between the recombination centers and valence band, due to trapped charges, eventually stimulates the persistent photoconductivity in the Sn/ZnO photodetectors.

  9. Effects of emission layer doping on the spatial distribution of charge and host recombination rate density in organic light emitting devices: A numerical study

    Science.gov (United States)

    Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo; Peng, Yingquan

    2013-12-01

    Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs.

  10. Effects of emission layer doping on the spatial distribution of charge and host recombination rate density in organic light emitting devices: A numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo [Institute of Microelectronics, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Peng, Yingquan, E-mail: yqpeng@lzu.edu.cn [Institute of Microelectronics, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2013-12-28

    Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs.

  11. Effects of emission layer doping on the spatial distribution of charge and host recombination rate density in organic light emitting devices: A numerical study

    International Nuclear Information System (INIS)

    Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo; Peng, Yingquan

    2013-01-01

    Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs

  12. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    International Nuclear Information System (INIS)

    Teyssedre, G.; Laurent, C.; Vu, T. T. N.

    2015-01-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10 −14 –10 −13  m 2  V −1  s −1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets

  13. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    Science.gov (United States)

    Teyssedre, G.; Vu, T. T. N.; Laurent, C.

    2015-12-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  14. The effect of N2/+/ recombination on the aeronomic determination of the charge exchange rate coefficient of O/+//2D/ with N2

    Science.gov (United States)

    Torr, D. G.; Orsini, N.

    1978-01-01

    The Atmosphere Explorer (AE) data are reexamined in the light of new laboratory measurements of the N2(+) recombination rate coefficient alpha. The new measurements support earlier measurements which yielded values of alpha significantly lower than the AE values. It is found that the values for alpha determined from the satellite data can be reconciled with the laboratory measurements, if the charge exchange rate coefficient for O(+)(2D) with N2 is less than one-quarter of that derived in the laboratory by Rutherford and Vroom (1971).

  15. Steady state minority carrier lifetime and defect level occupation in thin film CdTe solar cells

    International Nuclear Information System (INIS)

    Cheng, Zimeng; Delahoy, Alan E.; Su, Zhaoqian; Chin, Ken K.

    2014-01-01

    A model consisting of Shockley Read Hall (SRH) recombination under steady state conditions of constant photon injection is proposed in this work to study the steady state minority carrier lifetime in CdS/CdTe thin film solar cells. The SRH recombination rate versus optical injection level is analytically approximated in the junction and neutral regions. In the neutral region, it is found that the recombination rate through certain defect levels has one constant value under lower optical injection conditions and another constant value under higher optical injection conditions with the transition occurring at a critical optical injection level. By simultaneously solving the equations of charge neutrality, charge conservation and SRH recombination in the neutral region, it is found that the compensation of doping and the reduction of minority carrier lifetime by donors in the p-type semiconductor can each be remedied by optical injection. It is also demonstrated that this optical-dependent SRH recombination is significant in large bandgap thin films. The measured minority carrier diffusion length in a CdS/CdTe solar cells, as determined from the steady-state photo-generated carrier collection efficiency, shows the predicted transition of minority carrier lifetime versus optical injection level. A numerical fitting of the indirectly-measured minority carrier lifetime by assuming the minority carrier mobility gives a non-intuitive picture of the p–n junction with a low free hole concentration but a narrow depletion region width. - Highlights: • Minority carrier lifetimes under different optical injections are solved. • Simplifications of Shockley–Read–Hall recombination equation are discussed. • The compensation of donor can be remedied with optical injection. • The recombination efficiency of donor can be remedied with optical injection. • The minority carrier lifetime transition under illumination was experimentally observed

  16. Interfacial charge trapping in the polymer solar cells and its elimination by solvent annealing

    Directory of Open Access Journals (Sweden)

    A. K. Chauhan

    2016-09-01

    Full Text Available The PCDTBT:PCBM solar cells were fabricated adopting a tandem layer approach to investigate the critical issues of charge trapping, radiation absorption, and efficiency in polymer solar cells. This layered structure was found to be a source of charge trapping which was identified and confirmed by impedance spectroscopy. The low efficiency in multilayered structures was related to trapping of photo-generated carriers and low carrier mobility, and thus an increased recombination. Solvent annealing of the structures in tetrahydrofuran vapors was found beneficial in homogenizing the active layer, dissolving additional interfaces, and elimination of charge traps which improved the carrier mobilities and eventually the device efficiencies.

  17. Unraveling Unprecedented Charge Carrier Mobility through Structure Property Relationship of Four Isomers of Didodecyl[1]benzothieno[3,2-b][1]benzothiophene.

    Science.gov (United States)

    Tsutsui, Yusuke; Schweicher, Guillaume; Chattopadhyay, Basab; Sakurai, Tsuneaki; Arlin, Jean-Baptiste; Ruzié, Christian; Aliev, Almaz; Ciesielski, Artur; Colella, Silvia; Kennedy, Alan R; Lemaur, Vincent; Olivier, Yoann; Hadji, Rachid; Sanguinet, Lionel; Castet, Frédéric; Osella, Silvio; Dudenko, Dmytro; Beljonne, David; Cornil, Jérôme; Samorì, Paolo; Seki, Shu; Geerts, Yves H

    2016-09-01

    The structural and electronic properties of four isomers of didodecyl[1]-benzothieno[3,2-b][1]benzothiophene (C12-BTBT) have been investigated. Results show the strong impact of the molecular packing on charge carrier transport and electronic polarization properties. Field-induced time-resolved microwave conductivity measurements unravel an unprecedented high average interfacial mobility of 170 cm(2) V(-1) s(-1) for the 2,7-isomer, holding great promise for the field of organic electronics. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Two-dimensional analytical model of double-gate tunnel FETs with interface trapped charges including effects of channel mobile charge carriers

    Science.gov (United States)

    Xu, Huifang; Dai, Yuehua

    2017-02-01

    A two-dimensional analytical model of double-gate (DG) tunneling field-effect transistors (TFETs) with interface trapped charges is proposed in this paper. The influence of the channel mobile charges on the potential profile is also taken into account in order to improve the accuracy of the models. On the basis of potential profile, the electric field is derived and the expression for the drain current is obtained by integrating the BTBT generation rate. The model can be used to study the impact of interface trapped charges on the surface potential, the shortest tunneling length, the drain current and the threshold voltage for varying interface trapped charge densities, length of damaged region as well as the structural parameters of the DG TFET and can also be utilized to design the charge trapped memory devices based on TFET. The biggest advantage of this model is that it is more accurate, and in its expression there are no fitting parameters with small calculating amount. Very good agreements for both the potential, drain current and threshold voltage are observed between the model calculations and the simulated results. Project supported by the National Natural Science Foundation of China (No. 61376106), the University Natural Science Research Key Project of Anhui Province (No. KJ2016A169), and the Introduced Talents Project of Anhui Science and Technology University.

  19. Characterization of cross-section correction to charge exchange recombination spectroscopy rotation measurements using co- and counter-neutral-beam views.

    Science.gov (United States)

    Solomon, W M; Burrell, K H; Feder, R; Nagy, A; Gohil, P; Groebner, R J

    2008-10-01

    Measurements of rotation using charge exchange recombination spectroscopy can be affected by the energy dependence of the charge exchange cross section. On DIII-D, the associated correction to the rotation can exceed 100 kms at high temperatures. In reactor-relevant low rotation conditions, the correction can be several times larger than the actual plasma rotation and therefore must be carefully validated. New chords have been added to the DIII-D CER diagnostic to view the counter-neutral-beam line. The addition of these views allows determination of the toroidal rotation without depending on detailed atomic physics calculations, while also allowing experimental characterization of the atomic physics. A database of rotation comparisons from the two views shows that the calculated cross-section correction can adequately describe the measurements, although there is a tendency for "overcorrection." In cases where accuracy better than about 15% is desired, relying on calculation of the cross-section correction may be insufficient.

  20. Charge Transport in LDPE Nanocomposites Part II—Computational Approach

    Directory of Open Access Journals (Sweden)

    Anh T. Hoang

    2016-03-01

    Full Text Available A bipolar charge transport model is employed to investigate the remarkable reduction in dc conductivity of low-density polyethylene (LDPE based material filled with uncoated nanofillers (reported in the first part of this work. The effect of temperature on charge transport is considered and the model outcomes are compared with measured conduction currents. The simulations reveal that the contribution of charge carrier recombination to the total transport process becomes more significant at elevated temperatures. Among the effects caused by the presence of nanoparticles, a reduced charge injection at electrodes has been found as the most essential one. Possible mechanisms for charge injection at different temperatures are therefore discussed.

  1. Time-resolved terahertz spectroscopy of charge carrier dynamics in the chalcogenide glass As30Se30Te40 [Invited

    DEFF Research Database (Denmark)

    Wang, Tianwu; Romanova, Elena A.; Abdel-Moneim, Nabil

    2016-01-01

    absorption bands at 2-3 and 5-8 THz were observed. TRTS reveals an ultrafast relaxation process of the photoinduced carrier response, well described by a rate equation model with a finite concentration of mid-bandgap trap states for self-trapped excitons. The photoinduced conductivity can be well described...

  2. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    Energy Technology Data Exchange (ETDEWEB)

    Teyssedre, G., E-mail: gilbert.teyssedre@laplace.univ-tlse.fr; Laurent, C. [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, LAPLACE, F-31062 Toulouse (France); Vu, T. T. N. [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); Electric Power University, 235 Hoang Quoc Viet, 10000 Hanoi (Viet Nam)

    2015-12-21

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10{sup −14}–10{sup −13} m{sup 2} V{sup −1} s{sup −1} for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  3. Recombination properties of dislocations in GaN

    Science.gov (United States)

    Yakimov, Eugene B.; Polyakov, Alexander Y.; Lee, In-Hwan; Pearton, Stephen J.

    2018-04-01

    The recombination activity of threading dislocations in n-GaN with different dislocation densities and different doping levels was studied using electron beam induced current (EBIC). The recombination velocity on a dislocation, also known as the dislocation recombination strength, was calculated. The results suggest that dislocations in n-GaN giving contrast in EBIC are charged and surrounded by a space charge region, as evidenced by the observed dependence of dislocation recombination strength on dopant concentration. For moderate (below ˜108 cm-2) dislocation densities, these defects do not primarily determine the average diffusion length of nonequilibrium charge carriers, although locally, dislocations are efficient recombination sites. In general, it is observed that the effect of the growth method [standard metalorganic chemical vapor deposition (MOCVD), epitaxial lateral overgrowth versions of MOCVD, and hydride vapor phase epitaxy] on the recombination activity of dislocations is not very pronounced, although the average diffusion lengths can widely differ for various samples. The glide of basal plane dislocations at room temperature promoted by low energy electron irradiation does not significantly change the recombination properties of dislocations.

  4. Light absorption in thin quantizing semiconductor wires with non-parabolic law of dispersion of charge carriers

    International Nuclear Information System (INIS)

    Djotian, A.P.; Kazarian, E.M.; Karakashinian, Y.V.

    1993-01-01

    Interband absorption of light in a quantizing wire with non-parabolic dispersion law of charge carries, as well as energy spectrum and state densities are studied. The effect of Coulomb interaction between particles on the spectral curve of interband absorption is considered. Non-parabolic dispersion law of charge carries leads to an essential displacement of absorption line to ground state of one-dimensional exciton. 7 refs

  5. The importance of a hot-sequential mechanism in triplet-state formation by charge recombination in reaction centers of bacterial photosynthesis

    International Nuclear Information System (INIS)

    Saito, K.; Mukai, K.; Sumi, H.

    2006-01-01

    In photosynthesis, pigment-excitation energies in the antenna system produced by light harvesting are transferred among antenna pigments toward the core antenna, where they are captured by the reaction center and initially fixed in the form of a charge separation. Primary charge separation between an oxidized special pair (P + ) and a reduced bacteriopheohytin (H - ) is occasionally intervened by recombination, and a spin-triplet state ( 3 P*) is formed on P in the bacterial reaction center. The 3 P* state is harmful to bio-organisms, inducing the formation of the highly damaging singlet oxygen species. Therefore, understanding the 3 P*-formation mechanism is important. The 3 P* formation is mediated by a state |m> of intermediate charge separation between P and the accessory chlorophyll, which is located between P and H. It will be shown theoretically in the present work that at room temperature, not only the mechanism of superexchange by quantum-mechanical virtual mediation at |m>, but also a hot-sequential mechanism contributes to the mediation. In the latter, although |m> is produced as a real state, the final state 3 P* is quickly formed during thermalization of phonons in the protein matrix in |m>. In the former, the final state is formed more quickly before dephasing-thermalization of phonons in |m>. 3 P* is unistep formed from the charge-separated state in the both mechanisms

  6. Photocatalytic hydrogen generation enhanced by band gap narrowing and improved charge carrier mobility in AgTaO3 by compensated co-doping.

    Science.gov (United States)

    Li, Min; Zhang, Junying; Dang, Wenqiang; Cushing, Scott K; Guo, Dong; Wu, Nianqiang; Yin, Penggang

    2013-10-14

    The correlation of the electronic band structure with the photocatalytic activity of AgTaO3 has been studied by simulation and experiments. Doping wide band gap oxide semiconductors usually introduces discrete mid-gap states, which extends the light absorption but has limited benefit for photocatalytic activity. Density functional theory (DFT) calculations show that compensated co-doping in AgTaO3 can overcome this problem by increasing the light absorption and simultaneously improving the charge carrier mobility. N/H and N/F co-doping can delocalize the discrete mid-gap states created by sole N doping in AgTaO3, which increases the band curvature and the electron-to-hole effective mass ratio. In particular, N/F co-doping creates a continuum of states that extend the valence band of AgTaO3. N/F co-doping thus improves the light absorption without creating the mid-gap states, maintaining the necessary redox potentials for water splitting and preventing from charge carrier trapping. The experimental results have confirmed that the N/F-codoped AgTaO3 exhibits a red-shift of the absorption edge in comparison with the undoped AgTaO3, leading to remarkable enhancement of photocatalytic activity toward hydrogen generation from water.

  7. Terahertz response of two-dimensional charge carrier systems in GaAs-based heterostructures; Terahertz-Antwort von zweidimensionalen Ladungstraegersystemen in GaAs-basierten Heterostrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Torben

    2009-12-17

    This thesis deals with the THz response of two-dimensional charge carrier systems in different semiconductor heterostructures under varying conditions. The utilized spectrometer is suitable for time-resolved optical pump - THz probe experiments, as well as for optical pump-probe experiments in the near infrared for identical conditions. It allows the investigation of the transverse dielectric function of both, a (GaIn)As/GaAs quantum well and a two-dimensional electron gas in a GaAs-based heterostructure. First, the THz response of an electron-hole plasma is examined for different carrier densities. The plasma is generated by interband transitions in a (GaIn)As/GaAs quantum well. The measured transverse dielectric function reveals that the plasma behaves in accordance with the classical Drude oscillator model. It also conforms to the microscopic theory of the THz response of corresponding many-body systems. Evidence of a plasma resonance in the negative imaginary part of the inverse dielectric function is found. The squared peak frequency of the resonance is proportional to the carrier density of the plasma. This behavior corresponds to the plasma frequency of a three-dimensional plasma. Overall, it can be shown that the transverse THz response of a two-dimensional electron-hole plasma behaves like the response of a three-dimensional plasma. Therefore, the transversal THz response of an electron-hole plasma seems to be independent of the dimension of the charge carrier system. Secondly, the behavior of the quantum well for a 1s-exciton dominated carrier system is investigated. A good agreement between experiment and microscopic theory is obtained for the dielectric function. The negative imaginary part of the inverse dielectric function shows a resonance at the intraexcitonic 1s-2p transition frequency, even in weakly excited excitonic systems. Increasing the carrier density leads to a plasma-like behavior of the system. However, in these densities a significant

  8. Two interesting cases in spatial charge movement

    International Nuclear Information System (INIS)

    Novellino, R.A.

    1983-01-01

    The relation between current and voltage in a dielectric under radiation is obtained, assuming only one carrier to be mobile, recombination and injection of the mobile charge from the electrode. For this last boundary condition a constant charge density at the electrode-dielectric interface was chosen. The other problem treated is a generalization of the classic transient problem studied by Many-Rakavy, using the constant charge density boundary condition. Analytic solutions were obtained during the first transit time and computed ones for larger times. Some attention was given to the damped current oscilations approaching the steady state value. (Author) [pt

  9. Atomic Data for Neutron-capture Elements I. Photoionization and Recombination Properties of Low-charge Selenium Ions

    Science.gov (United States)

    Sterling, N. C.; Witthoeft, Michael

    2011-01-01

    We present multi-configuration Breit-Pauli AUTOSTRUCTURE calculations of distorted-wave photoionization (PI) cross sections. and total and partial final-state resolved radiative recombination (RR) and dielectronic recombination (DR) rate coefficients for the first six ions of the trans-iron element Se. These calculations were motivated by the recent detection of Se emission lines in a large number of planetary nebulae. Se is a potentially useful tracer of neutron-capture nucleosynthesis. but accurate determinations of its abundance in photoionized nebulae have been hindered by the lack of atomic data governing its ionization balance. Our calculations were carried out in intermediate coupling with semi re1ativistic radial wavefunctions. PI and recombination data were determined for levels within the ground configuration of each ion, and experimental PI cross-section measurements were used to benchmark our results. For DR, we allowed (Delta)n = 0 core excitations, which are important at photoionized plasma temperatures. We find that DR is the dominant recombination process for each of these Se ions at temperatures representative of photoionized nebulae (approx.10(exp 4) K). In order to estimate the uncertainties of these data, we compared results from three different configuration-interaction expansions for each ion, and also tested the sensitivity of the results to the radial scaling factors in the structure calculations. We find that the internal uncertainties are typically 30-50% for the direct PI cross sections and approx.10% for the computed RR rate coefficients, while those for low-temperature DR can be considerably larger (from 15-30% up to two orders of magnitude) due to the unknown energies of near-threshold autoionization resonances. These data are available at the CDS, and fitting coefficients to the total RR and DR rate coefficients are presented. The results are suitable for incorporation into photoionization codes used to numerically simulate

  10. Model of Organic Solar Cell Photocurrent Including the Effect of Charge Accumulation at Interfaces and Non-Uniform Carrier Generation

    DEFF Research Database (Denmark)

    Torto, Lorenzo; Cester, Andrea; Rizzo, Antonio

    2017-01-01

    We developed an improved model to fit the photocurrent density versus voltage in organic solar cells. The model has been validated by fitting data from P3HT:PCBM solar cells. Our model quantitatively accounts for the band bending near the electrodes caused by charge accumulation in the active layer...

  11. Effects of geminate and bimolecular recombination on the performance of polymeric-small molecular solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Marcel; Yin, Chunhong; Castellani, Mauro; Neher, Dieter [University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam-Golm (Germany); Sellinger, Alan [IMRE, 3 Research Link, 117602 Singapore (Singapore)

    2009-07-01

    Many physical properties of organic photovoltaics are related to the nature of the geminate pair, an intermediate state that forms after dissociation of photogenerated excitons and prior to free charge carrier generation. Whereas it was found that photocurrent generation is dominated by the strong field dependent process of geminate pair dissociation, the recombination of uncorrelated free charge carriers and the formation of space charge seem to play a minor role in the prominent P3HT/PCBM combination. The situation may change, when using different D/A combinations or other soluble acceptor molecules. We present organic solar cells comprising a novel small molecule based on 2-vinyl-4,5-dicyanoimidazole (Vinazene) as acceptor and M3EH-PPV as donor. While bilayer devices show promising results with a fill factor up to 57 %, the IU-characteristics of bulk heterojunction devices are dominated by bimolecular recombination and space charge effects even at moderate illumination intensities. Photo-CELIV measurements were performed to study the bimolecular recombination in detail. By combining photo-CELIV results with PL and IU measurements we are able to analyze the interrelation of recombination losses, free charge carrier generation and exciplex formation.

  12. Structural dependences of localization and recombination of photogenerated carriers in the top GaInP Subcells of GaInP/GaAs double-junction tandem solar cells.

    Science.gov (United States)

    Deng, Zhuo; Ning, Jiqiang; Su, Zhicheng; Xu, Shijie; Xing, Zheng; Wang, Rongxin; Lu, Shulong; Dong, Jianrong; Zhang, Baoshun; Yang, Hui

    2015-01-14

    In high-efficiency GaInP/GaAs double-junction tandem solar cells, GaInP layers play a central role in determining the performance of the solar cells. Therefore, gaining a deeper understanding of the optoelectronic processes in GaInP layers is crucial for improving the energy conversion efficiency of GaInP-based photovoltaic devices. In this work, we firmly show strong dependences of localization and recombination of photogenerated carriers in the top GaInP subcells in the GaInP/GaAs double-junction tandem solar cells on the substrate misorientation angle with excitation intensity- and temperature-dependent photoluminescence (PL). The entire solar cell structures including GaInP layers were grown with metalorganic chemical vapor deposition on GaAs substrates with misorientation angles of 2° (denoted as Sample 2°) and 7° (Sample 7°) off (100) toward (111)B. The PL spectral features of the two top GaInP subcells, as well as their excitation-power and temperature dependences exhibit remarkable variation on the misorientation angle. In Sample 2°, the dominant localization mechanism and luminescence channels are due to the energy potential minima caused by highly ordered atomic domains; In Sample 7°, the main localization and radiative recombination of photogenerated carriers occur in the atomically disordered regions. Our results reveal a more precise picture on the localization and recombination mechanisms of photogenerated carriers in the top GaInP subcells, which could be the crucial factors in controlling the optoelectronic efficiency of the GaInP-based multijunction photovoltaic devices.

  13. Localized vs. delocalized character of charge carriers in LaAlO3/SrTiO3 heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kejin; Schlappa, Justine; Strocov, Vladimir; Frison, Ruggero; Patthey, Luc; Schmitt, Thorsten [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Radovic, Milan [Laboratory for Synchrotron and Neutron Spectroscopy, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Mesot, Joel [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Laboratory for Synchrotron and Neutron Spectroscopy, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)

    2011-07-01

    Oxide heterostructures have been attracting great attention due to extraordinary phenomena occurring at the interface and their potential application for device design. A particularly fascinating system is the two-dimensional conductive interface between the band insulators LaAlO{sub 3} (LAO) and SrTiO{sub 3} (STO), which can be even driven to magnetic and superconducting phases at low temperatures. Resonant inelastic X-ray scattering at Ti L-edges is particularly suitable to address the electronic structure of its interface since the Ti{sup 3+} states clearly display strong dd excitations while Ti{sup 4+} states exhibit only elastic emission in the low energy loss regime. Our studies on LAO/STO superlattices prepared by pulsed laser deposition unambiguously reveal the presence of both localized and delocalized Ti 3d carriers generated during the building of the LAO/STO interfaces. Systematic studies on samples before and after annealing under O{sub 2} atmosphere and high temperature show that the dual character carriers can be either induced by electron transfer due to the polar-discontinuity or by oxygen vacancies defects. Oxygen vacancies and electronic reconstruction are equivalent in balancing the built-up electric potential.

  14. Charge recombination processes in minerals studied using optically stimulated luminescence and time-resolved exo-electrons

    DEFF Research Database (Denmark)

    Tsukamoto, Sumiko; Murray, Andrew; Ankjærgaard, Christina

    2010-01-01

    electron concentration in the conduction band. In this study, TR-OSE and time-resolved optically stimulated luminescence (TR-OSL) were measured for the first time using quartz, K-feldspar and NaCl by stimulating the samples using pulsed blue LEDs at different temperatures between 50 and 250 °C after beta...... irradiation and preheating to 280 °C. The majority of TR-OSE signals from all the samples decayed much faster than TR-OSL signals irrespective of the stimulation temperatures. This suggests that the lifetime of OSL in these dosimeters arises mainly from the relaxation of an excited state of the recombination...

  15. Investigation of charges carrier density in phosphorus and boron doped SiNx:H layers for crystalline silicon solar cells

    International Nuclear Information System (INIS)

    Paviet-Salomon, B.; Gall, S.; Slaoui, A.

    2013-01-01

    Highlights: ► We investigate the properties of phosphorus and boron-doped silicon nitride films. ► Phosphorus-doped layers yield higher lifetimes than undoped ones. ► The fixed charges density decreases when increasing the films phosphorus content. ► Boron-doped films feature very low lifetimes. ► These doped layers are of particular interest for crystalline silicon solar cells. -- Abstract: Dielectric layers are of major importance in crystalline silicon solar cells processing, especially as anti-reflection coatings and for surface passivation purposes. In this paper we investigate the fixed charge densities (Q fix ) and the effective lifetimes (τ eff ) of phosphorus (P) and boron (B) doped silicon nitride layers deposited by plasma-enhanced chemical vapour deposition. P-doped layers exhibit a higher τ eff than standard undoped layers. In contrast, B-doped layers exhibit lower τ eff . A strong Q fix decrease is to be seen when increasing the P content within the film. Based on numerical simulations we also demonstrate that the passivation obtained with P- and B-doped layers are limited by the interface states rather than by the fixed charges

  16. Charge recombination processes in minerals studied using optically stimulated luminescence and time-resolved exo-electrons

    International Nuclear Information System (INIS)

    Tsukamoto, Sumiko; Murray, Andrew; Ankjaergaard, Christina; Jain, Mayank; Lapp, Torben

    2010-01-01

    A time-resolved optically stimulated exo-electron (TR-OSE) measurement system has been developed using a Photon Timer attached to a gas-flow semi-proportional pancake electron detector within a Risoe TL/OSL reader. The decay rate of the exo-electron emission after the stimulation pulse depends on the probability of (1) escape of electrons into the detector gas from the conduction band by overcoming the work function of the material and (2) thermalization of electrons in the conduction band, and subsequent re-trapping/recombination. Thus, we expect the exo-electron signal to reflect the instantaneous electron concentration in the conduction band. In this study, TR-OSE and time-resolved optically stimulated luminescence (TR-OSL) were measured for the first time using quartz, K-feldspar and NaCl by stimulating the samples using pulsed blue LEDs at different temperatures between 50 and 250 0 C after beta irradiation and preheating to 280 0 C. The majority of TR-OSE signals from all the samples decayed much faster than TR-OSL signals irrespective of the stimulation temperatures. This suggests that the lifetime of OSL in these dosimeters arises mainly from the relaxation of an excited state of the recombination centre, rather than from residence time of an electron in the conduction band.

  17. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D.

    Science.gov (United States)

    Haskey, S R; Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Kaplan, D H; Pablant, N A; Stagner, L

    2016-11-01

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.

  18. Optimization of charge-carrier generation in amorphous-silicon thin-film tandem solar cell backed by two-dimensional metallic surface-relief grating

    Science.gov (United States)

    Civiletti, Benjamin J.; Anderson, Tom H.; Ahmad, Faiz; Monk, Peter B.; Lakhtakia, Akhlesh

    2017-08-01

    The rigorous coupled-wave approach was implemented in a three-dimensional setting to calculate the chargecarrier-generation rate in a thin-film solar cell with multiple amorphous-silicon p-i-n junctions. The solar cell comprised a front antireflection window; three electrically isolated p-i-n junctions in tandem; and a periodically corrugated silver back-reflector with hillock-shaped corrugations arranged on a hexagonal lattice. The differential evolution algorithm (DEA) was used to maximize the charge-carrier-generation rate over a set of selected optical and electrical parameters. This optimization exercise minimized the bandgap of the topmost i-layer but all other parameters turned out to be uninfluential. More importantly, the exercise led to a configuration that would very likely render the solar cell inefficient. Therefore, another optimization exercise was conducted to maximize power density. The resulting configuration was optimal over all parameters.

  19. Energy spectrum of charge carriers in TlIn{sub 1–x}Yb{sub x}Te{sub 2} solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, F. F., E-mail: farzali@physics.ab.az [Azerbaijan National Academy of Sciences, Institute of Physics (Azerbaijan); Agaeva, U. M.; Zarbaliev, M. M., E-mail: zarbalievmm51@mail.ru [Sumqayit State University (Azerbaijan)

    2016-10-15

    The temperature dependences of the electrical conductivity σ(T), the Hall coefficient R(T), and the thermoelectric coefficient α(T) are investigated in TlIn{sub 1–x}Yb{sub x}Te{sub 2} (0 < x < 0.10) solid solutions at 80–1000K. From the kinetic parameters, the effective masses of electrons and holes are determined. The obtained experimental data on σ(T) and α(T) are interpreted within the context of a model with one and two types of charge carriers. It is established that, since x = 0.05, the TlIn{sub 1–x}Yb{sub x}Te{sub 2} solid solutions belong to the class of narrow-gap semiconductors that have high matrix elements of interaction.

  20. Tail state-assisted charge injection and recombination at the electron-collecting interface of P3HT:PCBM bulk-heterojunction polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, He [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 (United States); Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 (United States); Shah, Manas [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ganesan, Venkat [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Chabinyc, Michael L. [Materials Department, University of California Santa Barbara, CA 93106 (United States); Loo, Yueh-Lin [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2012-12-15

    The systematic insertion of thin films of P3HT and PCBM at the electron- and hole-collecting interfaces, respectively, in bulk-heterojunction polymer solar cells results in different extents of reduction in device characteristics, with the insertion of P3HT at the electron-collecting interface being less disruptive to the output currents compared to the insertion of PCBM at the hole-collecting interface. This asymmetry is attributed to differences in the tail state-assisted charge injection and recombination at the active layer-electrode interfaces. P3HT exhibits a higher density of tail states compared to PCBM; holes in these tail states can thus easily recombine with electrons at the electron-collection interface during device operation. This process is subsequently compensated by the injection of holes from the cathode into these tail states, which collectively enables net current flow through the polymer solar cell. The study presented herein thus provides a plausible explanation for why preferential segregation of P3HT to the cathode interface is inconsequential to device characteristics in P3HT:PCBM bulk-heterojunction solar cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Method to quantify the delocalization of electronic states in amorphous semiconductors and its application to assessing charge carrier mobility of p -type amorphous oxide semiconductors

    Science.gov (United States)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2018-01-01

    Amorphous semiconductors are usually characterized by a low charge carrier mobility, essentially related to their lack of long-range order. The development of such material with higher charge carrier mobility is hence challenging. Part of the issue comes from the difficulty encountered by first-principles simulations to evaluate concepts such as the electron effective mass for disordered systems since the absence of periodicity induced by the disorder precludes the use of common concepts derived from condensed matter physics. In this paper, we propose a methodology based on first-principles simulations that partially solves this problem, by quantifying the degree of delocalization of a wave function and of the connectivity between the atomic sites within this electronic state. We validate the robustness of the proposed formalism on crystalline and molecular systems and extend the insights gained to disordered/amorphous InGaZnO4 and Si. We also explore the properties of p -type oxide semiconductor candidates recently reported to have a low effective mass in their crystalline phases [G. Hautier et al., Nat. Commun. 4, 2292 (2013), 10.1038/ncomms3292]. Although in their amorphous phase none of the candidates present a valence band with delocalization properties matching those found in the conduction band of amorphous InGaZnO4, three of the seven analyzed materials show some potential. The most promising candidate, K2Sn2O3 , is expected to possess in its amorphous phase a slightly higher hole mobility than the electron mobility in amorphous silicon.

  2. Charge-carrier transport in epitactical strontium titanate layers for the application in superconducting components; Ladungstraegertransport in epitaktischen Strontiumtitanat-Schichten fuer den Einsatz in supraleitenden Bauelementen

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Veit

    2011-02-01

    In this thesis thin STO layers were epitactically deposited on YBCO for a subsequent electrical characterization. YBCO layers with a roughness of less than 2 nm (RMS), good out-of-plane orientation with a half-width in the rocking curve in the range (0.2..0.3) at only slightly diminished critical temperature could be reached. The STO layers exhibited also very good crystallographic properties. The charge-carrier transport in STO is mainly dominated by interface-limited processes. By means of an in thesis newly developed barrier model thereby the measured dependencies j(U,T) respectively {sigma}(U,T) could be described very far-reachingly. At larger layer thicknesses and low temperatures the charge-carrier transport succeeds by hopping processes. So in the YBCO/STO/YBCO system the variable-range hopping could be identified as dominating transport process. Just above U>10 V a new behaviour is observed, which concerning its temperature dependence however is also tunnel-like. The STO layers exhibit here very large resistances, so that fields up to 10{sup 7}..10{sup 8} V/m can be reached without flowing of significant leakage currents through the barrier. In the system YBCO/STO/Au the current transport can be principally in the same way as in the YBCO/STO/YBCO system. The special shape and above all the asymmetry of the barrier however work out very distinctly. It could be shown that at high temperatures according to the current direction a second barrier on the opposite electrode must be passed. So often observed breakdown effects can be well described. For STO layer-thicknesses in the range around 25 nm in the whole temperature range studied inelastic tunneling over chains of localized states was identified as dominating transport process. It could however for the first time be shown that at very low temperatures in the STO layers Coulomb blockades can be formed.

  3. Limits for Recombination in a Low Energy Loss Organic Heterojunction

    KAUST Repository

    Menke, S. Matthew; Sadhanala, Aditya; Nikolka, Mark; Ran, Niva A.; Ravva, Mahesh Kumar; Abdel-Azeim, Safwat; Stern, Hannah L.; Wang, Ming; Sirringhaus, Henning; Nguyen, Thuc-Quyen; Bredas, Jean-Luc; Bazan, Guillermo C.; Friend, Richard H.

    2016-01-01

    Donor-acceptor organic solar cells often show high quantum yields for charge collection, but relatively low open-circuit voltages (VOC) limit power conversion efficiencies to around 12%. We report here the behavior of a system, PIPCP:PC61BM, that exhibits very low electronic disorder (Urbach energy less than 27 meV), very high carrier mobilities in the blend (field-effect mobility for holes >10-2 cm2 V-1 s-1), and a very low driving energy for initial charge separation (50 meV). These characteristics should give excellent performance, and indeed, the VOC is high relative to the donor energy gap. However, we find the overall performance is limited by recombination, with formation of lower-lying triplet excitons on the donor accounting for 90% of the recombination. We find this is a bimolecular process that happens on time scales as short as 100 ps. Thus, although the absence of disorder and the associated high carrier mobility speeds up charge diffusion and extraction at the electrodes, which we measure as early as 1 ns, this also speeds up the recombination channel, giving overall a modest quantum yield of around 60%. We discuss strategies to remove the triplet exciton recombination channel.

  4. Limits for Recombination in a Low Energy Loss Organic Heterojunction

    KAUST Repository

    Menke, S. Matthew

    2016-11-03

    Donor-acceptor organic solar cells often show high quantum yields for charge collection, but relatively low open-circuit voltages (VOC) limit power conversion efficiencies to around 12%. We report here the behavior of a system, PIPCP:PC61BM, that exhibits very low electronic disorder (Urbach energy less than 27 meV), very high carrier mobilities in the blend (field-effect mobility for holes >10-2 cm2 V-1 s-1), and a very low driving energy for initial charge separation (50 meV). These characteristics should give excellent performance, and indeed, the VOC is high relative to the donor energy gap. However, we find the overall performance is limited by recombination, with formation of lower-lying triplet excitons on the donor accounting for 90% of the recombination. We find this is a bimolecular process that happens on time scales as short as 100 ps. Thus, although the absence of disorder and the associated high carrier mobility speeds up charge diffusion and extraction at the electrodes, which we measure as early as 1 ns, this also speeds up the recombination channel, giving overall a modest quantum yield of around 60%. We discuss strategies to remove the triplet exciton recombination channel.

  5. Polyoxovanadate-alkoxide clusters as multi-electron charge carriers for symmetric non-aqueous redox flow batteries.

    Science.gov (United States)

    VanGelder, L E; Kosswattaarachchi, A M; Forrestel, P L; Cook, T R; Matson, E M

    2018-02-14

    Non-aqueous redox flow batteries have emerged as promising systems for large-capacity, reversible energy storage, capable of meeting the variable demands of the electrical grid. Here, we investigate the potential for a series of Lindqvist polyoxovanadate-alkoxide (POV-alkoxide) clusters, [V 6 O 7 (OR) 12 ] (R = CH 3 , C 2 H 5 ), to serve as the electroactive species for a symmetric, non-aqueous redox flow battery. We demonstrate that the physical and electrochemical properties of these POV-alkoxides make them suitable for applications in redox flow batteries, as well as the ability for ligand modification at the bridging alkoxide moieties to yield significant improvements in cluster stability during charge-discharge cycling. Indeed, the metal-oxide core remains intact upon deep charge-discharge cycling, enabling extremely high coulombic efficiencies (∼97%) with minimal overpotential losses (∼0.3 V). Furthermore, the bulky POV-alkoxide demonstrates significant resistance to deleterious crossover, which will lead to improved lifetime and efficiency in a redox flow battery.

  6. Probing Temperature-Dependent Recombination Kinetics in Polymer:Fullerene Solar Cells by Electric Noise Spectroscopy

    Directory of Open Access Journals (Sweden)

    Giovanni Landi

    2017-09-01

    Full Text Available The influence of solvent additives on the temperature behavior of both charge carrier transport and recombination kinetics in bulk heterojunction solar cells has been investigated by electric noise spectroscopy. The observed differences in charge carrier lifetime and mobility are attributed to a different film ordering and donor-acceptor phase segregation in the blend. The measured temperature dependence indicates that bimolecular recombination is the dominant loss mechanism in the active layer, affecting the device performance. Blend devices prepared with a high-boiling-point solvent additive show a decreased recombination rate at the donor-acceptor interface as compared to the ones prepared with the reference solvent. A clear correlation between the device performance and the morphological properties is discussed in terms of the temperature dependence of the mobility-lifetime product.

  7. A comparison of different experimental methods for general recombination correction for liquid ionization chambers

    DEFF Research Database (Denmark)

    Andersson, Jonas; Kaiser, Franz-Joachim; Gomez, Faustino

    2012-01-01

    Radiation dosimetry of highly modulated dose distributions requires a detector with a high spatial resolution. Liquid filled ionization chambers (LICs) have the potential to become a valuable tool for the characterization of such radiation fields. However, the effect of an increased recombination...... of the charge carriers, as compared to using air as the sensitive medium has to be corrected for. Due to the presence of initial recombination in LICs, the correction for general recombination losses is more complicated than for air-filled ionization chambers. In the present work, recently published...

  8. Thermal Annealing Reduces Geminate Recombination in TQ1:N2200 All-Polymer Solar Cells

    KAUST Repository

    Karuthedath, Safakath

    2018-03-27

    A combination of steady-state and time-resolved spectroscopic measurements is used to investigate the photophysics of the all-polymer bulk heterojunction system TQ1:N2200. Upon thermal annealing a doubling of the external quantum efficiency and an improved fill factor (FF) is observed, resulting in an increase in the power conversion efficiency. Carrier extraction is similar for both blends, as demonstrated by time-resolved electric-field-induced second harmonic generation experiments in conjunction with transient photocurrent studies, spanning the ps-µs time range. Complementary transient absorption spectroscopy measurements reveal that the different quantum efficiencies originate from differences in charge carrier separation and recombination at the polymer-polymer interface: in as-spun samples ~35 % of the charges are bound in interfacial charge-transfer states and recombine geminately, while this pool is reduced to ~7 % in thermally-annealed sample, resulting in higher short-circuit currents. Time-delayed collection field experiments demonstrate a field-dependent charge generation process in as-spun samples, which reduces the FF. In contrast, field-dependence of charge generation is weak in annealed films. While both devices exhibit significant non-geminate recombination competing with charge extraction, causing low FFs, our results demonstrate that the donor/acceptor interface in all-polymer solar cells can be favourably altered to enhance charge separation, without compromising charge transport and extraction.

  9. Measurement of the drift mobilities and the mobility-lifetime products of charge carriers in a CdZnTe crystal by using a transient pulse technique

    International Nuclear Information System (INIS)

    Cho, H Y; Kwon, Y K; Lee, C S; Lee, J H; Moon, J Y

    2011-01-01

    In this work we present results on the measurement of the drift mobility and the mobility-lifetime product of charge carriers in a 16-pixellated CdZnTe detector. For the determination of an interaction position based on the pulse rise-time method in a CZT detector, it is necessary to characterize the transport properties governed by drift mobility and lifetime for electrons and holes. In order to extract the transport properties of an electron and a hole, we bombarded 5.5-MeV alpha particles from a 241 Am source and 81-keV gamma rays emitted from a 133 Ba source on the negatively biased contact of the CZT detector. A time-of-flight (TOF) method was used to measure the electron drift mobility at room temperature whose value turned out to be 906.4 cm 2 /Vc s. With the Hecht's equation, the electron mobility-lifetime product was also determined from the bias-dependent alpha response and was equal to (9.88 ± 2.33) x 10 -3 cm 2 /V. On the other hand, the hole mobility-lifetime product was evaluated by a model based on the average charge collection efficiency which accounts for the absorption probability with a given photon energy. By using a single parameter fitting of the model, we obtained the hole mobility-lifetime product of (8.28 ± 0.17) x 10 -4 cm 2 /V.

  10. Performance of hybrid p-type vertical transistors with poly(N-vinylcarbazole) as emitter and the transfer mechanism of charge carriers through the base

    International Nuclear Information System (INIS)

    Huang, Jinying; Ma, Dongge; Hümmelgen, Ivo A

    2013-01-01

    We report hybrid vertical architecture p-type transistors with poly(N-vinylcarbazole) as the emitter, p-type silicon as the collector and Al:Ca alloy layer as the base. The investigation of the common-base and common-emitter characteristics clearly demonstrates that the devices operate as permeable-base transistors (PBTs). The PBTs show common-base current gain α of 0.98 at −V BC = 1.5 V and common-emitter gain β of over 100. Atomic force microscope images of the base layer show an uneven surface, showing that the annealing does not dissolve the charge trap states but offers ‘pinholes’ for the oxidation in-depth even through the whole base layer. In this case, the charge carriers must tunnel the thin oxidized layer, and then are collected. It is clearly seen that there exists a barrier against holes injection from the base to the collector semiconductor at the interface, and the further oxidation caused by exposing the devices in air changes the operational mode of the resulting devices from the PBT to the metal-base transistor. (paper)

  11. The Effect of Dopant-Free Hole-Transport Polymers on Charge Generation and Recombination in Cesium-Bismuth-Iodide Solar Cells.

    Science.gov (United States)

    Zhu, Huimin; Johansson, Malin B; Johansson, Erik M J

    2018-03-22

    The photovoltaic characteristics of CsBi 3 I 10 -based solar cells with three dopant-free hole-conducting polymers are investigated. The effect on charge generation and charge recombination in the solar cells using the different polymers is studied and the results indicate that the choice of polymer strongly affects the device properties. Interestingly, for the solar cell with poly[[2,3-bis(3-octyloxyphenyl)-5,8-quinoxalinediyl]-2,5-thiophenediyl] (TQ1), the photon-to-current conversion spectrum is highly improved in the red wavelength region, suggesting that the polymer also contributes to the photocurrent generation in this case. This report provides a new direction for further optimization of Bi-halide solar cells by using dopant-free hole-transporting polymers and shows that the energy levels and the interaction between the Bi-halide and the conducting polymers are very important for solar cell performance. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Comparison of chitosan and chitosan nanoparticles on the performance and charge recombination of water-based gel electrolyte in dye sensitized solar cells.

    Science.gov (United States)

    Khalili, Malihe; Abedi, Mohammad; Amoli, Hossein Salar; Mozaffari, Seyed Ahmad

    2017-11-01

    In commercialization of liquid dye-sensitized solar cells (DSSCs), whose leakage, evaporation and toxicity of organic solvents are limiting factors, replacement of organic solvents with water-based gel electrolyte is recommended. This work reports on utilizing and comparison of chitosan and chitosan nanoparticle as different gelling agents in preparation of water-based gel electrolyte in fabrication of dye sensitized solar cells. All photovoltaic parameters such as open circuit voltage (V oc ), fill factor (FF), short circuit current density (J sc ) and conversion efficiency (η) were measured. For further characterization, electrochemical impedance spectroscopy (EIS) was used to study the charge transfer at Pt/electrolyte interface and charge recombination and electron transport at TiO 2 /dye/electrolyte interface. Significant improvements in conversion efficiency and short circuit current density of DSSCs fabricated by chitosan nanoparticle were observed that can be attributed to the higher mobility of I 3 - due to the lower viscosity and smaller size of chitosan nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Evaluation of the Combined Effect of Recombinant High-Density Lipoprotein Carrier and the Encapsulated Lovastatin in RAW264.7 Macrophage Cells Based on the Median-Effect Principle.

    Science.gov (United States)

    Jiang, Cuiping; Zhao, Yi; Yang, Yun; He, Jianhua; Zhang, Wenli; Liu, Jianping

    2018-03-05

    Recombinant high-density lipoprotein (rHDL) displays a similar anti-atherosclerotic effect with native HDL and could also be served as a carrier of cardiovascular drug for atherosclerotic plaque targeting. In our previous studies, rHDL has shown a more potent anti-atherosclerotic efficacy as compared to the other conventional nanoparticles with a payload of lovastatin (LS). Therefore, we hypothesized that a synergistic anti-atherosclerotic effect of the rHDL carrier and the encapsulated LS might exist. In this study, the dose-effect relationships and the combined effect of the rHDL and LS were quantitatively evaluated in RAW 264.7 macrophage cells using the median-effect analysis, in which the rHDL carrier was regarded as a drug combined. Median-effect analysis suggested that rHDL and LS exerted a desirable synergistic inhibition on the oxLDL internalization at a ratio of 6:1 ( D m,LS : D m,rHDL ) in RAW 264.7 macrophage cells. About 50% of the reduction on the intracellular lipid contents was found when RAW264.7 cells were treated with LS-loaded rHDLs at their respective median-effect dose ( D m ) concentrations and a synergistic effect on the mediating cholesterol efflux was also observed, which verified the accuracy of the results obtained from the median-effect analysis. The mechanism underlying the synergistic effect of the rHDL carrier and the drug might be attributed to their potent inhibitory effects on SR-A expression. In conclusion, the median-effect analysis was proven to be a feasible method to quantitatively evaluate the synergistic effect of the biofunctional carrier and the drug encapsulated.

  14. Decreased Charge Transport Barrier and Recombination of Organic Solar Cells by Constructing Interfacial Nanojunction with Annealing-Free ZnO and Al Layers.

    Science.gov (United States)

    Liu, Chunyu; Zhang, Dezhong; Li, Zhiqi; Zhang, Xinyuan; Guo, Wenbin; Zhang, Liu; Ruan, Shengping; Long, Yongbing

    2017-07-05

    To overcome drawbacks of the electron transport layer, such as complex surface defects and unmatched energy levels, we successfully employed a smart semiconductor-metal interfacial nanojunciton in organic solar cells by evaporating an ultrathin Al interlayer onto annealing-free ZnO electron transport layer, resulting in a high fill factor of 73.68% and power conversion efficiency of 9.81%. The construction of ZnO-Al nanojunction could effectively fill the surface defects of ZnO and reduce its work function because of the electron transfer from Al to ZnO by Fermi level equilibrium. The filling of surface defects decreased the interfacial carrier recombination in midgap trap states. The reduced surface work function of ZnO-Al remodulated the interfacial characteristics between ZnO and [6,6]-phenyl C71-butyric acid methyl ester (PC 71 BM), decreasing or even eliminating the interfacial barrier against the electron transport, which is beneficial to improve the electron extraction capacity. The filled surface defects and reduced interfacial barrier were realistically observed by photoluminescence measurements of ZnO film and the performance of electron injection devices, respectively. This work provides a simple and effective method to simultaneously solve the problems of surface defects and unmatched energy level for the annealing-free ZnO or other metal oxide semiconductors, paving a way for the future popularization in photovoltaic devices.

  15. The Role of Trap-assisted Recombination in Luminescent Properties of Organometal Halide CH3NH3PbBr3 Perovskite Films and Quantum Dots

    Science.gov (United States)

    Zhang, Zhen-Yu; Wang, Hai-Yu; Zhang, Yan-Xia; Hao, Ya-Wei; Sun, Chun; Zhang, Yu; Gao, Bing-Rong; Chen, Qi-Dai; Sun, Hong-Bo

    2016-06-01

    Hybrid metal halide perovskites have been paid enormous attentions in photophysics research, whose excellent performances were attributed to their intriguing charge carriers proprieties. However, it still remains far from satisfaction in the comprehensive understanding of perovskite charge-transport properities, especially about trap-assisted recombination process. In this Letter, through time-resolved transient absorption (TA) and photoluminescence (PL) measurements, we provided a relative comprehensive investigation on the charge carriers recombination dynamics of CH3NH3PbBr3 (MAPbBr3) perovskite films and quantum dots (QDs), especially about trap-assisted recombination. It was found that the integral recombination mode of MAPbBr3 films was highly sensitive to the density distribution of generated charge carriers and trap states. Additional, Trap effects would be gradually weakened with elevated carrier densities. Furthermore, the trap-assisted recombination can be removed from MAPbBr3 QDs through its own surface passivation mechanism and this specialty may render the QDs as a new material in illuminating research. This work provides deeper physical insights into the dynamics processes of MAPbBr3 materials and paves a way toward more light-harvesting applications in future.

  16. A novel research approach on the dynamic properties of photogenerated charge carriers at Ag{sub 2}S quantum-dots-sensitized TiO{sub 2} films by a frequency-modulated surface photovoltage technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Zhang, Wei [Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036 (China); Xie, Tengfeng; Wang, Dejun [College of Chemistry, Jilin University, Changchun 130012 (China); Song, Xi-Ming, E-mail: songlab@lnu.edu.cn [Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036 (China)

    2013-09-01

    Graphical abstract: The changed SPV with chopping frequencies indicate the separation speeds of photogenerated charge carriers in different films. - Highlights: • Ag{sub 2}S-sensitized TiO{sub 2} films show good photoelectric responses in visible-light region. • Frequency-modulated SPV give dynamic information and evidence of Ag{sub 2}S QDSSCs’ performance. • Frequency-modulated SPV can supply complementary information in the study of Ag{sub 2}S ODSSCs. - Abstract: Ag{sub 2}S quantum-dots-sensitized TiO{sub 2} films with different amount of Ag{sub 2}S were fabricated by a successive ionic layer adsorption and reaction (SILAR) method. The separation and transport of photogenerated charge carriers at different spectral regions were studied by the frequency-modulated surface photovoltage technology. Some novel dynamic information of photogenerated charge carriers in a wide spectral range is found. The results indicate that the rate and direction of separation (diffusion) for photogenerated charge carriers are closely related to the performance of quantum-dots-sensitized solar cells (QDSSCs) based on the Ag{sub 2}S/TiO{sub 2} nano-structure.

  17. The effect of charge carrier and doping site on thermoelectric properties of Mg2Sn0.75Ge0.25

    International Nuclear Information System (INIS)

    Saparamadu, Udara; Mao, Jun; Dahal, Keshab; Zhang, Hao; Tian, Fei; Song, Shaowei; Liu, Weishu; Ren, Zhifeng

    2017-01-01

    Mg 2 Sn 0.75 Ge 0.25 has been recently demonstrated to be a promising thermoelectric material for power generation in the temperature range from room temperature to 723 K because of the high power factor of ∼54 μW cm −1  K −2 upon Sb doping to the Sn site. The enhanced density of states effective mass and weak electron scattering from the alloying effect are believed to be the main reasons for the high power factor (PF) and hence high figure of merit (ZT). In this study, it is shown that the right choice of carrier donor also plays an important role in obtaining high power factor. The effect of carrier donors Y and La at Mg-site and Bi and P at Sn-site in Mg 2 Sn 0.75 Ge 0.25 is systematically investigated. It is found that charge donors at the Sn-site are much more effective than at the Mg-site in enhancing PF and ZT. Bi doped Mg 2 Sn 0.73 Bi 0.02 Ge 0.25 shows a peak ZT of ∼1.4 at 673 K, a peak PF of ∼54 μW cm −1  K −2 at 577 K, which resulted in an engineering figure of merit (ZT) eng of ∼0.76 and (PF) eng of ∼2.05 W m −1  K −1 for cold side fixed at 323 K and hot side at 723 K.

  18. Tracking Ultrafast Carrier Dynamics in Single Semiconductor Nanowire Heterostructures

    Directory of Open Access Journals (Sweden)

    Taylor A.J.

    2013-03-01

    Full Text Available An understanding of non-equilibrium carrier dynamics in silicon (Si nanowires (NWs and NW heterostructures is very important due to their many nanophotonic and nanoelectronics applications. Here, we describe the first measurements of ultrafast carrier dynamics and diffusion in single heterostructured Si nanowires, obtained using ultrafast optical microscopy. By isolating individual nanowires, we avoid complications resulting from the broad size and alignment distribution in nanowire ensembles, allowing us to directly probe ultrafast carrier dynamics in these quasi-one-dimensional systems. Spatially-resolved pump-probe spectroscopy demonstrates the influence of surface-mediated mechanisms on carrier dynamics in a single NW, while polarization-resolved femtosecond pump-probe spectroscopy reveals a clear anisotropy in carrier lifetimes measured parallel and perpendicular to the NW axis, due to density-dependent Auger recombination. Furthermore, separating the pump and probe spots along the NW axis enabled us to track space and time dependent carrier diffusion in radial and axial NW heterostructures. These results enable us to reveal the influence of radial and axial interfaces on carrier dynamics and charge transport in these quasi-one-dimensional nanosystems, which can then be used to tailor carrier relaxation in a single nanowire heterostructure for a given application.

  19. Development of a laser cleaning method for the first mirror surface of the charge exchange recombination spectroscopy diagnostics on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A. P., E-mail: APKuznetsov@mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Buzinskij, O. I. [State Research Center Troitsk Institute for Innovation and Fusion Research (TRINITI) (Russian Federation); Gubsky, K. L.; Nikitina, E. A.; Savchenkov, A. V.; Tarasov, B. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Tugarinov, S. N. [State Research Center Troitsk Institute for Innovation and Fusion Research (TRINITI) (Russian Federation)

    2015-12-15

    A set of optical diagnostics is expected for measuring the plasma characteristics in ITER. Optical elements located inside discharge chambers are exposed to an intense radiation load, sputtering due to collisions with energetic atoms formed in the charge transfer processes, and contamination due to recondensation of materials sputtered from different parts of the construction of the chamber. Removing the films of the sputtered materials from the mirrors with the aid of pulsed laser radiation is an efficient cleaning method enabling recovery of the optical properties of the mirrors. In this work, we studied the efficiency of removal of metal oxide films by pulsed radiation of a fiber laser. Optimization of the laser cleaning conditions was carried out on samples representing metal substrates polished with optical quality with deposition of films on them imitating the chemical composition and conditions expected in ITER. It is shown that, by a proper selection of modes of radiation exposure to the surface with a deposited film, it is feasible to restore the original high reflection characteristics of optical elements.

  20. Development of a laser cleaning method for the first mirror surface of the charge exchange recombination spectroscopy diagnostics on ITER

    International Nuclear Information System (INIS)

    Kuznetsov, A. P.; Buzinskij, O. I.; Gubsky, K. L.; Nikitina, E. A.; Savchenkov, A. V.; Tarasov, B. A.; Tugarinov, S. N.

    2015-01-01

    A set of optical diagnostics is expected for measuring the plasma characteristics in ITER. Optical elements located inside discharge chambers are exposed to an intense radiation load, sputtering due to collisions with energetic atoms formed in the charge transfer processes, and contamination due to recondensation of materials sputtered from different parts of the construction of the chamber. Removing the films of the sputtered materials from the mirrors with the aid of pulsed laser radiation is an efficient cleaning method enabling recovery of the optical properties of the mirrors. In this work, we studied the efficiency of removal of metal oxide films by pulsed radiation of a fiber laser. Optimization of the laser cleaning conditions was carried out on samples representing metal substrates polished with optical quality with deposition of films on them imitating the chemical composition and conditions expected in ITER. It is shown that, by a proper selection of modes of radiation exposure to the surface with a deposited film, it is feasible to restore the original high reflection characteristics of optical elements

  1. First principles analysis of the CDW instability of single-layer 1T-TiSe2 and its evolution with charge carrier density

    Science.gov (United States)

    Guster, Bogdan; Canadell, Enric; Pruneda, Miguel; Ordejón, Pablo

    2018-04-01

    We present a density functional theory study of the electronic structure of single-layer TiSe2, and focus on the charge density wave (CDW) instability present on this 2D material. We explain the 2× 2 periodicity of the CDW from the phonon band structure of the undistorted crystal, which is unstable under one of the phonon modes at the M point. This can be understood in terms of a partial band gap opening at the Fermi level, which we describe on the basis of the symmetry of the involved crystal orbitals, leading to an energy gain upon the displacement of the atoms following the phonon mode in a 2  ×  1 structure. Furthermore, the combination of the corresponding phonons for the three inequivalent M points of the Brillouin zone leads to the 2  ×  2 distortion characteristic of the CDW state. This leads to a further opening of a full gap, which reduces the energy of the 2  ×  2 structure compared to the 2  ×  1 one of a single M point phonon, and makes the CDW structure the most stable one. We also analyze the effect of charge injection into the layer on the structural instability. We predict that the 2  ×  2 structure only survives for a certain range of doping levels, both for electrons and for holes, as doping reduces the energy gain due to the gap opening. We predict the transition from the commensurate 2  ×  2 distortion to an incommensurate one with increasing wavelength upon increasing the doping level, followed by the appearance of the undistorted 1  ×  1 structure for larger carrier concentrations.

  2. Effect of the external electric field on the kinetics of recombination of photoexcited carriers in a ZnSe/BeTe type II heterostructure

    Science.gov (United States)

    Filatov, E. V.; Maksimov, A. A.; Tartakovskii, I. I.; Yakovlev, D. R.; Waag, A.

    2012-02-01

    The kinetics of the radiative recombination of photoexcited electrons and holes for a spatially direct transition in a ZnSe/BeTe type II heterostructure in an external electric field has been analyzed. A strong decrease (more than two orders of magnitude) in the photoluminescence intensity, as well as a decrease in the duration of the relaxation of the direct transition, is observed when the electric field is applied. The energy levels and wavefunctions of electrons and holes in the ZnSe/BeTe heterostructure subjected to the electric field have been numerically calculated. It has been shown that the observed decrease in the photoluminescence intensity and duration of the relaxation of the direct transition is due to both an increase in the radiative recombination time and an increase in the rate of escape of photoexcited holes from the above-barrier level in the ZnSe layer to the BeTe layer.

  3. Inhomogeneous bimolecular recombination in partially crystallised tri-methylphenyl diamine glasses

    International Nuclear Information System (INIS)

    Goldie, D.M.

    2013-01-01

    The rise and fall dynamics of transient photocurrents induced by exposure to ultraviolet radiation have been analysed for a series of glassy tri-methylphenyl diamine films that have been partially crystallised by ageing under ambient conditions following vapour deposition. An inhomogeneous bimolecular recombination model that uses coupled rate equations is found to provide a consistent fit for the observed photocurrent dynamics provided the recombination rate of holes in the crystallised regions of the films is lower compared to the amorphous regions. Parameters returned by the bimolecular model are investigated as a function of the film age but are observed to be highly sensitive to the initial experimental estimates that are supplied for the effective hole recombination time. The effective hole recombination time generated by the model is found to be relatively independent of film age, however, and has a value of around 0.16 s for a carrier generation rate of 7 × 10 14 cm −3 s −1 . The effective recombination time and steady-state photoconductivity magnitudes are found to be consistent with experimental hole mobility and photo-carrier generation efficiency values that are obtained using complementary time-of-flight and charge collection experiments. - Highlights: ► Transient photocurrents in evaporated diamine films have fast and slow components. ► Transient photocurrents are modelled using inhomogeneous bimolecular recombination. ► Recombination rates differ between crystallised and amorphous film regions. ► Recombination parameters evolve with film age as the films crystallise

  4. Design of suitable carrier buffer for free-flow zone electrophoresis by charge-to-mass ratio and band broadening analysis.

    Science.gov (United States)

    Kong, Fan-Zhi; Yang, Ying; He, Yu-Chen; Zhang, Qiang; Li, Guo-Qing; Fan, Liu-Yin; Xiao, Hua; Li, Shan; Cao, Cheng-Xi

    2016-09-01

    In this work, charge-to-mass ratio (C/M) and band broadening analyses were combined to provide better guidance for the design of free-flow zone electrophoresis carrier buffer (CB). First, the C/M analyses of hemoglobin and C-phycocyanin (C-PC) under different pH were performed by CLC Protein Workbench software. Second, band dispersion due to the initial bandwidth, diffusion, and hydrodynamic broadening were discussed, respectively. Based on the analyses of the C/M and band broadening, a better guidance for preparation of free-flow zone electrophoresis CB was obtained. Series of experiments were performed to validate the proposed method. The experimental data showed high accordance with our prediction allowing the CB to be prepared easily with our proposed method. To further evaluate this method, C-PC was purified from crude extracts of Spirulina platensis with the selected separation condition. Results showed that C-PC was well separated from other phycobiliproteins that have similar physicochemical properties, and analytical grade product with purity up to 4.5 (A620/A280) was obtained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Room-Temperature Triple-Ligand Surface Engineering Synergistically Boosts Ink Stability, Recombination Dynamics, and Charge Injection toward EQE-11.6% Perovskite QLEDs.

    Science.gov (United States)

    Song, Jizhong; Li, Jinhang; Xu, Leimeng; Li, Jianhai; Zhang, Fengjuan; Han, Boning; Shan, Qingsong; Zeng, Haibo

    2018-06-10

    Developing low-cost and high-quality quantum dots (QDs) or nanocrystals (NCs) and their corresponding efficient light-emitting diodes (LEDs) is crucial for the next-generation ultra-high-definition flexible displays. Here, there is a report on a room-temperature triple-ligand surface engineering strategy to play the synergistic role of short ligands of tetraoctylammonium bromide (TOAB), didodecyldimethylammonium bromide (DDAB), and octanoic acid (OTAc) toward "ideal" perovskite QDs with a high photoluminescence quantum yield (PLQY) of >90%, unity radiative decay in its intrinsic channel, stable ink characteristics, and effective charge injection and transportation in QD films, resulting in the highly efficient QD-based LEDs (QLEDs). Furthermore, the QD films with less nonradiative recombination centers exhibit improved PL properties with a PLQY of 61% through dopant engineering in A-site. The robustness of such properties is demonstrated by the fabrication of green electroluminescent LEDs based on CsPbBr 3 QDs with the peak external quantum efficiency (EQE) of 11.6%, and the corresponding peak internal quantum efficiency (IQE) and power efficiency are 52.2% and 44.65 lm W -1 , respectively, which are the most-efficient perovskite QLEDs with colloidal CsPbBr 3 QDs as emitters up to now. These results demonstrate that the as-obtained QD inks have a wide range application in future high-definition QD displays and high-quality lightings. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Nonradiative recombination in semiconductors

    CERN Document Server

    Abakumov, VN; Yassievich, IN

    1991-01-01

    In recent years, great progress has been made in the understandingof recombination processes controlling the number of excessfree carriers in semiconductors under nonequilibrium conditions. As a result, it is now possible to give a comprehensivetheoretical description of these processes. The authors haveselected a number of experimental results which elucidate theunderlying physical problems and enable a test of theoreticalmodels. The following topics are dealt with: phenomenological theory ofrecombination, theoretical models of shallow and deep localizedstates, cascade model of carrier captu

  7. A Comparison of the recombination efficiency in green-emitting InGaN quantum dots and quantum wells

    International Nuclear Information System (INIS)

    Park, Il-Kyu; Kwon, Min-Ki; Park, Seong-Ju

    2012-01-01

    A comparative investigation of the recombination efficiency of green-emitting InGaN quantum dots (QDs) and quantum wells (QWs) is reported in this paper. Optical investigations using temperature dependent photoluminescence (PL) results showed that the internal quantum efficiency of InGaN QDs at room temperature was 8.7 times larger than that found for InGaN QWs because they provided dislocation-free recombination sites for the electrical charge carriers. The excitation power-dependent PL and electroluminescence results showed that the effect of the polarization induced electric field on the recombination process of electrical charge carriers in the QDs was negligibly small whereas it was dominant in the QWs. These results indicate that InGaN QDs are more beneficial than QWs in improving the luminescence efficiency of LEDs in the green spectral range.

  8. Terahertz radiation on the base of accelerated charge carriers in GaAs; Terahertz-Strahlung auf der Basis beschleunigter Ladungstraeger in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Dreyhaupt, Andre

    2008-07-01

    Electromagnetic radiation in the frequency range between about 100 GHz and 5 THz can be used for spectroscopy and microscopy, but it is also promising for security screening and even wireless communication. In the present thesis a planar photoconducting large-area THz radiation source is presented. The device exhibits outstanding properties, in particular high THz field strength and generation efficiency and large spectral bandwidth with short THz pulse length. The THz emission is based on acceleration and deceleration of photoexcited carriers in semiconductor substrates. A metallic interdigitated structure at the surface of semi-insulating GaAs provides the electrodes of an Auston switch. In a biased structure photoexcited charge carriers are accelerated. Hence electromagnetic waves are emitted. An appropriately structured second metallization, electrically isolated from the electrodes, prevents destructive interference of the emitted waves. The structure investigated here combines several advantages of different conventional photoconducting THz sources. First, it provides high electric acceleration fields at moderate voltages owing to the small electrode separation. Second, the large active area in the mm2 range allows excitation by large optical powers of some mW. Optical excitation with near-infrared femtosecond lasers is possible with repetition rates in the GHz range. The presented results point out the excellent characteristics regarding the emitted THz field strength, average power, spectral properties, and easy handling of the interdigitated structure in comparison to various conventional emitter structures. Various modifications of the semiconductor substrate and the optimum excitation conditions were investigated. In the second part of this thesis the dynamic conductivity of GaAs/Al{sub x}Ga{sub 1-x}As superlattices in an applied static electric field was investigated with time-resolved THz spectroscopy. The original goal was to explore whether the

  9. A Low-Energy-Gap Thienochrysenocarbazole Dye for Highly Efficient Mesoscopic Titania Solar Cells: Understanding the Excited State and Charge Carrier Dynamics.

    Science.gov (United States)

    Wang, Junting; Xie, Xinrui; Weng, Guorong; Yuan, Yi; Zhang, Jing; Wang, Peng

    2018-05-09

    Maintaining both a high external quantum efficiency and a large open-circuit photovoltage of dye-sensitized solar cells (DSSCs) is a crucial challenge in the process of developing narrow-energy-gap dyes for the capture of infrared solar photons. Herein, we report two donor-acceptor organic dyes, C294 and C295, with a polycyclic heteroaromatic unit, 6,11-dihydrothieno[3',2':8,9]chryseno[10,11,12,1-bcdefg]carbazole (TCC), as the central module of the electron donor, and ethylbenzothiadiazole-benzioc acid as the electron acceptor. The interfacial charge recombination was successfully mitigated by introducing an additional branched aliphatic chain in C295. Furthermore, the O⋅⋅⋅S nonbonding interaction between the oxygen atom of the alkoxy group and the sulfur atom of the thiophene in C295 controlled the conformation of C295, resulting in a narrow energy-gap. Time-resolved spectroscopic measurements on C294 and the model dye C272 indicated that the elevation of the HOMO energy level decreased the kinetics and yield of hole injection owing to a reduction in the driving force and that the shortened excited-state lifetime caused by the narrowing of the energy gap was unfavorable for electron injection. By fine tuning the composition of the electrolyte, C294 and C295 eventually achieved high power conversion efficiencies of 11.5 % and 12.4 %, respectively, under full sunlight of air mass 1.5 global conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Nonlinear charge transport in bipolar semiconductors due to electron heating

    International Nuclear Information System (INIS)

    Molina-Valdovinos, S.; Gurevich, Yu.G.

    2016-01-01

    It is known that when strong electric field is applied to a semiconductor sample, the current voltage characteristic deviates from the linear response. In this letter, we propose a new point of view of nonlinearity in semiconductors which is associated with the electron temperature dependence on the recombination rate. The heating of the charge carriers breaks the balance between generation and recombination, giving rise to nonequilibrium charge carriers concentration and nonlinearity. - Highlights: • A new mechanism of nonlinearity of current-voltage characteristic (CVC) is proposed. • The hot electron temperature violates the equilibrium between electrons and holes. • This violation gives rise to nonequilibrium concentration of electrons and holes. • This leads to nonlinear CVC (along with the heating nonlinearity).

  11. Nonlinear charge transport in bipolar semiconductors due to electron heating

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Valdovinos, S., E-mail: sergiom@fisica.uaz.edu.mx [Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad esq. Paseo, La Bufa s/n, CP 98060, Zacatecas, Zac, México (Mexico); Gurevich, Yu.G. [Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Física, Av. IPN 2508, México D.F., CP 07360, México (Mexico)

    2016-05-27

    It is known that when strong electric field is applied to a semiconductor sample, the current voltage characteristic deviates from the linear response. In this letter, we propose a new point of view of nonlinearity in semiconductors which is associated with the electron temperature dependence on the recombination rate. The heating of the charge carriers breaks the balance between generation and recombination, giving rise to nonequilibrium charge carriers concentration and nonlinearity. - Highlights: • A new mechanism of nonlinearity of current-voltage characteristic (CVC) is proposed. • The hot electron temperature violates the equilibrium between electrons and holes. • This violation gives rise to nonequilibrium concentration of electrons and holes. • This leads to nonlinear CVC (along with the heating nonlinearity).

  12. Separation and recombinatiuon of charge carriers in solar cells with a nanostructured ZnO electrode; Trennung und Rekombination von Ladungstraegern in Solarzellen mit nanostrukturierter ZnO-Elektrode

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, Julian

    2010-03-02

    The publication investigates electrodes consisting of ZnO nanorods deposited hydrothermally on conductive glass substrate (conductive glass). The electrodes are transparent to visible light and are sensitized for solar cell applications by a light-absorbing layer which in this case consists either of organometallic dye molecules (N3) or of an indium sulfide layer with a thickness of only a few nanometers. Electric contacts for the sensitized electrode are either made of a liquid electrolyte or of a perforated solid electrolyte. Methods of analysis were impedance spectroscopy, time-resolved photocurrent measurements, and time-resolved microwave photoconductivity. A high concentration of up to 10{sup 20} was found in the ZnO nanorods. The dye-sensitized solar cell showed exessively fast recombination with the oxydized dye molecules (sub-{mu}s) but a slow recombination rate with the oxydized redox ions of the electrolyte (ms). In the indium sulfide solar cells, the charges are separated at the contact with the ZnO nanorods while contact with the perforated CuSCN conductor is not charge-separating. Recombination takes place in indium sulfide, directly between the perforated conductor and ZnO, and also via the charge-separating contact with decreasing rates.

  13. Combined effects of space charge and energetic disorder on photocurrent efficiency loss of field-dependent organic photovoltaic devices

    International Nuclear Information System (INIS)

    Yoon, Sangcheol; Hwang, Inchan; Park, Byoungchoo

    2015-01-01

    The loss of photocurrent efficiency by space-charge effects in organic solar cells with energetic disorder was investigated to account for how energetic disorder incorporates space-charge effects, utilizing a drift-diffusion model with field-dependent charge-pair dissociation and suppressed bimolecular recombination. Energetic disorder, which induces the Poole–Frenkel behavior of charge carrier mobility, is known to decrease the mobility of charge carriers and thus reduces photovoltaic performance. We found that even if the mobilities are the same in the absence of space-charge effects, the degree of energetic disorder can be an additional parameter affecting photocurrent efficiency when space-charge effects occur. Introducing the field-dependence parameter that reflects the energetic disorder, the behavior of efficiency loss with energetic disorder can differ depending on which charge carrier is subject to energetic disorder. While the energetic disorder that is applied to higher-mobility charge carriers decreases photocurrent efficiency further, the efficiency loss can be suppressed when energetic disorder is applied to lower-mobility charge carriers. (paper)

  14. Spatial variation in carrier dynamics along a single CdSSe nanowire

    International Nuclear Information System (INIS)

    Blake, Jolie C.; Eldridge, Peter S.; Gundlach, Lars

    2014-01-01

    Highlights: • Femtosecond Kerr-gate microscopy allows ultrafast fluorescence measurements along different positions of a single nanowire. • Amplified spontaneous emission observed at high fluences can be used to calculate recombination rates. • Observation of ASE at different locations along a single CdSSe nanowire provides the ability to extract defect densities. - Abstract: Ultrafast charge carrier dynamics along individual CdS x Se 1−x nanowires has been measured. The use of an improved ultrafast Kerr-gated microscope allows for spatially resolved luminescence measurements along a single nanowire. Amplified spontaneous emission (ASE) was observed at high excitation fluences. Position dependent variations of ultrafast ASE dynamics were observed. SEM and colorimetric measurements showed that the difference in dynamics can be attributed to variations in non-radiative recombination rates along the wire. The dominant Shockley-Read recombination rate can be extracted from ASE dynamics and can be directly related to charge carrier mobility and defect density. Employing ASE as a probe for defect densities provides a new sub-micron spatially resolved, contactless method for measurements of charge carrier mobility

  15. Cascading electron and hole transfer dynamics in a CdS/CdTe core-shell sensitized with bromo-pyrogallol red (Br-PGR): slow charge recombination in type II regime.

    Science.gov (United States)

    Maity, Partha; Debnath, Tushar; Chopra, Uday; Ghosh, Hirendra Nath

    2015-02-14

    Ultrafast cascading hole and electron transfer dynamics have been demonstrated in a CdS/CdTe type II core-shell sensitized with Br-PGR using transient absorption spectroscopy and the charge recombination dynamics have been compared with those of CdS/Br-PGR composite materials. Steady state optical absorption studies suggest that Br-PGR forms strong charge transfer (CT) complexes with both the CdS QD and CdS/CdTe core-shell. Hole transfer from the photo-excited QD and QD core-shell to Br-PGR was confirmed by both steady state and time-resolved emission spectroscopy. Charge separation was also confirmed by detecting electrons in the conduction band of the QD and the cation radical of Br-PGR as measured from femtosecond transient absorption spectroscopy. Charge separation in the CdS/Br-PGR composite materials was found to take place in three different pathways, by transferring the photo-excited hole of CdS to Br-PGR, electron injection from the photo-excited Br-PGR to the CdS QD, and direct electron transfer from the HOMO of Br-PGR to the conduction band of the CdS QD. However, in the CdS/CdTe/Br-PGR system hole transfer from the photo-excited CdS to Br-PGR and electron injection from the photo-excited Br-PGR to CdS take place after cascading through the CdTe shell QD. Charge separation also takes place via direct electron transfer from the Br-PGR HOMO to the conduction band of CdS/CdTe. Charge recombination (CR) dynamics between the electron in the conduction band of the CdS QD and the Br-PGR cation radical were determined by monitoring the bleach recovery kinetics. The CR dynamics were found to be much slower in the CdS/CdTe/Br-PGR system than in the CdS/Br-PGR system. The formation of the strong CT complex and the separation of charges cascading through the CdTe shell help to slow down charge recombination in the type II regime.

  16. Engineering charge transport by heterostructuring solution-processed semiconductors

    Science.gov (United States)

    Voznyy, Oleksandr; Sutherland, Brandon R.; Ip, Alexander H.; Zhitomirsky, David; Sargent, Edward H.

    2017-06-01

    Solution-processed semiconductor devices are increasingly exploiting heterostructuring — an approach in which two or more materials with different energy landscapes are integrated into a composite system. Heterostructured materials offer an additional degree of freedom to control charge transport and recombination for more efficient optoelectronic devices. By exploiting energetic asymmetry, rationally engineered heterostructured materials can overcome weaknesses, augment strengths and introduce emergent physical phenomena that are otherwise inaccessible to single-material systems. These systems see benefit and application in two distinct branches of charge-carrier manipulation. First, they influence the balance between excitons and free charges to enhance electron extraction in solar cells and photodetectors. Second, they promote radiative recombination by spatially confining electrons and holes, which increases the quantum efficiency of light-emitting diodes. In this Review, we discuss advances in the design and composition of heterostructured materials, consider their implementation in semiconductor devices and examine unexplored paths for future advancement in the field.

  17. Interfacial Charge Transfer States in Condensed Phase Systems

    Science.gov (United States)

    Vandewal, Koen

    2016-05-01

    Intermolecular charge transfer (CT) states at the interface between electron-donating (D) and electron-accepting (A) materials in organic thin films are characterized by absorption and emission bands within the optical gap of the interfacing materials. CT states efficiently generate charge carriers for some D-A combinations, and others show high fluorescence quantum efficiencies. These properties are exploited in organic solar cells, photodetectors, and light-emitting diodes. This review summarizes experimental and theoretical work on the electronic structure and interfacial energy landscape at condensed matter D-A interfaces. Recent findings on photogeneration and recombination of free charge carriers via CT states are discussed, and relations between CT state properties and optoelectronic device parameters are clarified.

  18. Periodontal wound healing/regeneration following implantation of recombinant human growth/differentiation factor-5 (rhGDF-5) in an absorbable collagen sponge carrier into one-wall intrabony defects in dogs: a dose-range study.

    Science.gov (United States)

    Kim, Tae-Gyun; Wikesjö, Ulf M E; Cho, Kyoo-Sung; Chai, Jung-Kiu; Pippig, Susanne D; Siedler, Michael; Kim, Chong-Kwan

    2009-07-01

    Recombinant human growth/differentiation factor-5 (rhGDF-5) is being evaluated as a candidate therapy in support of periodontal regeneration. The objective of this study was to evaluate cementum and alveolar bone formation, and aberrant healing events following surgical implantation of rhGDF-5 in an absorbable collagen sponge (ACS) carrier using an established periodontal defect model. Bilateral 4 x 5 mm (width x depth), one-wall, critical-size, intrabony periodontal defects were surgically created at the mandibular second and fourth pre-molar teeth in 15 Beagle dogs. Five animals received 1 microg/defect and five animals 20 microg/defect rhGDF-5 in unilateral defect sites. Contralateral sites received treatments reported elsewhere. Five animals received rhGDF-5/ACS with 0 (buffer control) and 100 microg/defect rhGDF-5 in contralateral defect sites. The animals were euthanized at 8 weeks post-surgery for histologic and histometric evaluation. Surgical implantation of rhGDF-5 stimulated significant periodontal regeneration. Cementum formation was significantly enhanced in sites implanted with rhGDF-5 (1 and 100 microg) compared with control (phealing/regeneration in intrabony periodontal defects without complications.

  19. Recombinant Programming

    OpenAIRE

    Pawlak , Renaud; Cuesta , Carlos; Younessi , Houman

    2004-01-01

    This research report presents a promising new approach to computation called Recombinant Programming. The novelty of our approach is that it separates the program into two layers of computation: the recombination and the interpretation layer. The recombination layer takes sequences as inputs and allows the programmer to recombine these sequences through the definition of cohesive code units called extensions. The output of such recombination is a mesh that can be used by the interpretation la...

  20. Effects of electric field and charge distribution on nanoelectronic processes involving conducting polymers

    International Nuclear Information System (INIS)

    Ramos, Marta M.D.; Correia, Helena M.G.

    2006-01-01

    The injection of charge carriers in conducting polymer layers gives rise to local electric fields which should have serious implications on the charge transport through the polymer layer. The charge distribution and the related electric field inside the ensemble of polymer molecules, with different molecular arrangements at nanoscale, determine whether or not intra-molecular charge transport takes place and the preferential direction for charge hopping between neighbouring molecules. Consequently, these factors play a significant role in the competition between current flow, charge trapping and recombination in polymer-based electronic devices. By suitable Monte Carlo calculations, we simulated the continuous injection of electrons and holes into polymer layers with different microstructures and followed their transport through those polymer networks. Results of these simulations provided a detailed picture of charge and electric field distribution in the polymer layer and allowed us to assess the consequences for current transport and recombination efficiency as well as the distribution of recombination events within the polymer film. In the steady state we found an accumulation of electrons and holes near the collecting electrodes giving rise to an internal electric field which is greater than the external applied field close to the electrodes and lower than the one in the central region of the polymer layer. We also found that a strong variation of electric field inside the polymer layer leads to an increase of recombination events in regions inside the polymer layer where the values of the internal electric field are lower

  1. Phonon and free-charge carrier properties in group-III nitride heterostructures investigated by spectroscopic ellipsometry and optical Hall effect

    Science.gov (United States)

    Schoeche, Stefan

    The material class of group-III nitrides gained tremendous technological importance for optoelectronic and high-power/high-frequency amplification devices. Tunability of the direct band gap from 0.65 eV (InN) to 6.2 eV (AlN) by alloying, high breakthrough voltages and intrinsic mobilities, as well as the formation of highly mobile 2d electron gases (2DEG) at heterointerfaces make these compounds ideal for many applications. GaN and Ga-rich alloys are well studied and current research is mainly device-oriented. For example, choice and quality of the gate dielectric significantly influence device performance in high-electron mobility transistors (HEMT) which utilize highly mobile 2DEGs at heterointerfaces. Experimental access to the 2DEG channel properties without influence from parasitic currents or contact properties are desirable. In- and Al-rich ternary alloys are less explored than Ga-rich compounds. For InN and In-rich alloys, while many material parameters such as stiffness constants or effective mass values are largely unknown, reliable p-type doping is a major challenge, also because p-type conducting channels are buried within highly conductive n-type material formed at the surface and interfaces preventing electrical characterization. For AlN and high-Al content alloys, doping mechanisms are not understood and reliable fabrication of material with high free-charge carrier (FCC) concentrations was achieved just recently. Difficulties to form ohmic contacts impair electrical measurements and optical characterization is impeded by lack of high-energy excitation sources. In this work, spectroscopic ellipsometry over the wide spectral range from the THz to VUV in combination with optical Hall effect (generalized ellipsometry with applied magnetic field) from THz to MIR are applied in order to investigate the phonon modes and FCC properties in group-III nitride heterostructures. Adequate model descriptions and analysis strategies are introduced which allow

  2. The effects of metallicity, radiation field and dust extinction on the charge state of PAHs in diffuse clouds: implications for the DIB carrier

    NARCIS (Netherlands)

    Cox, N.L.J.; Spaans, M.

    2006-01-01

    Context.The unidentified diffuse interstellar bands (DIB) are observed throughout the Galaxy, the Local Group and beyond. Their carriers are possibly related to complex carbonaceous gas-phase molecules, such as (cationic) polycyclic aromatic hydrocarbons and fullerenes. Aims.In order to reveal the

  3. The effects of metallicity, radiation field and dust extinction on the charge state of PAHs in diffuse clouds : implications for the DIB carrier

    NARCIS (Netherlands)

    Cox, NLJ; Spaans, M

    Context. The unidentified diffuse interstellar bands (DIB) are observed throughout the Galaxy, the Local Group and beyond. Their carriers are possibly related to complex carbonaceous gas-phase molecules, such as (cationic) polycyclic aromatic hydrocarbons and fullerenes. Aims. In order to reveal the

  4. Dynamics of Interfacial Charge Transfer States and Carriers Separation in Dye-Sensitized Solar Cells: A Time-Resolved Terahertz Spectroscopy Study

    OpenAIRE

    Brauer, Jan C.; Marchioro, Arianna; Paraecattil, Arun A.; Oskouei, Ahmad A.; Moser, Jacques-E.

    2015-01-01

    Electron injection from a photoexcited molecular sensitizer into a wide-bandgap semiconductor is the primary step toward charge separation in dye-sensitized solar cells (DSSCs). According to the current understanding of DSSCs functioning mechanism, charges are separated directly during this primary electron transfer process, yielding hot conduction band electrons in the semiconductor and positive holes localized on oxidized dye molecules at the surface. Comparing results of ultrafast transien...

  5. Boosting the Visible-Light Photoactivity of BiOCl/BiVO4/N-GQD Ternary Heterojunctions Based on Internal Z-Scheme Charge Transfer of N-GQDs: Simultaneous Band Gap Narrowing and Carrier Lifetime Prolonging.

    Science.gov (United States)

    Zhu, Mingyue; Liu, Qian; Chen, Wei; Yin, Yuanyuan; Ge, Lan; Li, Henan; Wang, Kun

    2017-11-08

    The efficient separation of photogenerated electron-hole pairs in photoactive materials is highly desired, allowing their transfer to specific sites for undergoing redox reaction in various applications. The construction of ternary heterojunctions is a practical strategy to enhance the migration of photogenerated electron that realizes the synergistic effect of multicomponents rather than the simple overlay of single component. Here, we demonstrate an available way to fabricate new BiOCl/BiVO 4 /nitrogen-doped graphene quantum dot (N-GQD) ternary heterojunctions that exhibit higher efficiency in charge separation than any binary heterojunction or pure material under visible-light irradiation. UV-vis diffuse reflectance spectroscopy demonstrated that the proposed BiOCl/BiVO 4 /N-GQD ternary heterojunctions possess the narrower band gap energy. More importantly, the ternary heterojunctions reveal the prolonged lifetime of photogenerated charges and enhanced the separation efficiency of photogenerated electron-hole pairs, which may be ascribed to sensitization based on an internal Z-scheme charge transfer at the interface of N-GQDs with oxygen functional groups. Furthermore, we examine the photoactive performance of proposed ternary heterojunctions in aqueous solution by using the photodegradation of bisphenol A as a model system and BiOCl/BiVO 4 /N-GQD ternary heterojunctions also display a dramatically enhanced photodegradation rate. The proposed charge separation and transfer process of BiOCl/BiVO 4 /N-GQD ternary heterojunctions for the enhanced photoactivity were deduced by electrochemical measurements, photoluminescence, and electron spin resonance. The results demonstrate that a Z-scheme charge process was formed between BiOCl/BiVO 4 binary heterojunctions and N-GQDs, leading to an efficient charge carrier separation and strong photocatalytic ability. Notably, this work may assist in a better understanding of the role of N-GQDs in kinds of heterojunctions

  6. Charge carrier transport in Cu(In,Ga)Se2 thin-film solar-cells studied by electron beam induced current and temperature and illumination dependent current voltage analysis

    International Nuclear Information System (INIS)

    Nichterwitz, Melanie

    2012-01-01

    This work contributes to the understanding of generation dependent charge-carrier transport properties in Cu(In,Ga)Se 2 (CIGSe)/ CdS/ ZnO solar cells and a consistent model for the electronic band diagram of the heterojunction region of the device is developed. Cross section electron-beam induced current (EBIC) and temperature and illumination dependent current voltage (IV) measurements are performed on CIGSe solar cells with varying absorber layer compositions and CdS thickness. For a better understanding of possibilities and limitations of EBIC measurements applied on CIGSe solar cells, detailed numerical simulations of cross section EBIC profiles for varying electron beam and solar cell parameters are performed and compared to profiles obtained from an analytical description. Especially the effects of high injection conditions are considered. Even though the collection function of the solar cell is not independent of the generation function of the electron beam, the local electron diffusion length in CIGSe can still be extracted. Grain specific values ranging from (480±70) nm to (2.3±0.2) μm are determined for a CuInSe 2 absorber layer and a value of (2.8±0.3) μm for CIGSe with a Ga-content of 0.3. There are several models discussed in literature to explain generation dependent charge carrier transport, all assuming a high acceptor density either located in the CIGSe layer close to the CIGSe/CdS interface (p + layer), within the CdS layer or at the CdS/ZnO interface. In all models, a change in charge carrier collection properties is caused by a generation dependent occupation probability of the acceptor type defect state and the resulting potential distribution throughout the device. Numerical simulations of EBIC and IV data are performed with parameters according to these models. The model that explains the experimental data best is that of a p + layer at the CIGSe/CdS interface and acceptor type defect states at the CdS/ZnO interface. The p + layer leads

  7. Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells.

    Science.gov (United States)

    De Marco, Nicholas; Zhou, Huanping; Chen, Qi; Sun, Pengyu; Liu, Zonghao; Meng, Lei; Yao, En-Ping; Liu, Yongsheng; Schiffer, Andy; Yang, Yang

    2016-02-10

    Hybrid perovskites have shown astonishing power conversion efficiencies owed to their remarkable absorber characteristics including long carrier lifetimes, and a relatively substantial defect tolerance for solution-processed polycrystalline films. However, nonradiative charge carrier recombination at grain boundaries limits open circuit voltages and consequent performance improvements of perovskite solar cells. Here we address such recombination pathways and demonstrate a passivation effect through guanidinium-based additives to achieve extraordinarily enhanced carrier lifetimes and higher obtainable open circuit voltages. Time-resolved photoluminescence measurements yield carrier lifetimes in guanidinium-based films an order of magnitude greater than pure-methylammonium counterparts, giving rise to higher device open circuit voltages and power conversion efficiencies exceeding 17%. A reduction in defect activation energy of over 30% calculated via admittance spectroscopy and confocal fluorescence intensity mapping indicates successful passivation of recombination/trap centers at grain boundaries. We speculate that guanidinium ions serve to suppress formation of iodide vacancies and passivate under-coordinated iodine species at grain boundaries and within the bulk through their hydrogen bonding capability. These results present a simple method for suppressing nonradiative carrier loss in hybrid perovskites to further improve performances toward highly efficient solar cells.

  8. An alternative approach to charge transport in semiconducting electrodes

    Science.gov (United States)

    Thomchick, J.; Buoncristiani, A. M.

    1980-01-01

    The excess-carrier charge transport through the space-charge region of a semiconducting electrode is analyzed by a technique known as the flux method. In this approach reflection and transmission coefficients appropriate for a sheet of uniform semiconducting material describe its transport properties. A review is presented of the flux method showing that the results for a semiconductor electrode reduce in a limiting case to those previously found by Gaertner if the depletion layer is treated as a perfectly transmitting medium in which scattering and recombination are ignored. Then, in the framework of the flux method the depletion layer is considered more realistically by explicitly taking into account scattering and recombination processes which occur in this region.

  9. Fundamental Studies of Recombinant Hydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael W. [Univ. of Georgia, Athens, GA (United States)

    2014-01-25

    This research addressed the long term goals of understanding the assembly and organization of hydrogenase enzymes, of reducing them in size and complexity, of determining structure/function relationships, including energy conservation via charge separation across membranes, and in screening for novel H2 catalysts. A key overall goal of the proposed research was to define and characterize minimal hydrogenases that are produced in high yields and are oxygen-resistant. Remarkably, in spite of decades of research carried out on hydrogenases, it is not possible to readily manipulate or design the enzyme using molecular biology approaches since a recombinant form produced in a suitable host is not available. Such resources are essential if we are to understand what constitutes a “minimal” hydrogenase and design such catalysts with certain properties, such as resistance to oxygen, extreme stability and specificity for a given electron donor. The model system for our studies is Pyrococcus furiosus, a hyperthermophile that grows optimally at 100°C, which contains three different nickel-iron [NiFe-] containing hydrogenases. Hydrogenases I and II are cytoplasmic while the other, MBH, is an integral membrane protein that functions to both evolve H2 and pump protons. Three important breakthroughs were made during the funding period with P. furiosus soluble hydrogenase I (SHI). First, we produced an active recombinant form of SHI in E. coli by the co-expression of sixteen genes using anaerobically-induced promoters. Second, we genetically-engineered P. furiosus to overexpress SHI by an order of magnitude compared to the wild type strain. Third, we generated the first ‘minimal’ form of SHI, one that contained two rather than four subunits. This dimeric form was stable and active, and directly interacted with a pyruvate-oxidizing enzyme with any intermediate electron carrier. The research resulted in five peer-reviewed publications.

  10. Radiative recombination channels in Si/Si1−xGex nanostructures

    International Nuclear Information System (INIS)

    Berashevich, Yu. A.; Panfilenok, A. S.; Borisenko, V. E.

    2008-01-01

    Using the solution of the 2D Schrödinger equation, systematic features of distribution of charge carriers in the Si/Si 1−x Ge x nanostructures and variations in the efficiency of radiative recombination when pyramidal 2D clusters are transformed into 3D dome clusters with increasing thickness of nanolayers are established. The effect of the composition of the layers on the efficiency of the elastic stress in the structure and, as a consequence, the variation in conduction bands and valence band of the Si 1−x Ge x nanostructures is taken into account. On realization of the suggested kinetics model, which describes recombination processes in crystalline structures, saturation of radiation intensity with increasing the pump intensity caused by an increase in the contribution of the Auger recombination is observed. A decrease in the contribution of the nonradiative Auger recombination is attained by decreasing the injection rate of carriers into the clusters, and more precisely, by an increase in the cluster concentration and an increase in the rate of radiative recombination.

  11. The effect of the Grain-Boundary and surface scattering of charge carriers on electrical conductance of thin V and Re films

    International Nuclear Information System (INIS)

    Lakh, Kh.G.; Stasyuk, Z.V.

    1994-01-01

    Size effects in electrical conductivity and the Hall coefficient of thin V and Re films have been investigated. An analysis of experimental data was made within the framework of modified Mayadas -Shatzkes and Tellier - Tosser - Pichard models. The parameters of charge transport for V and Re have been found

  12. Collection efficiency of charges in ionization chambers in presence of constant or variable radiation intensity

    International Nuclear Information System (INIS)

    Decuyper, J.

    1970-01-01

    The theoretical and experimental study of the collection of carriers built up by ionization in standard chambers, is made by varying the value of different acting parameters. In the presence of constant ionization intensity and under a D.C. and A.C. voltage, the effect of geometry, recombination, diffusion and attachment is analyzed. The compensation of thermal neutron D.C. chambers is equally considered. Under a time dependent ionization intensity and D.C. voltage, is then studied the effect of recombination on current response, and on the collection efficiency of all formed charges. (author) [fr

  13. Compton polarimetry of 6-35 keV X-rays. Influence of Breit interaction on the linear polarisation of KLL dielectronic recombination transitions in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Joerg, Holger Eric

    2016-12-21

    The polarisation of X-rays emitted during K shell dielectronic recombination (DR) into highly charged ions was studied using electron beam ion traps. In the first experiment, the degree of linear polarisation of X-rays due to K shell DR transitions of highly charged krypton ions was measured with a newly developed Compton polarimeter based on SiPIN diodes. Such polarisation measurements allow a study of the population mechanism of magnetic sublevels in collisions between electrons and ions. In a second experiment, the influence of Breit interaction between electrons on the polarisation of X-rays emitted during K shell DR into highly charged xenon ions was studied. Here, polarisation measurements provide an access to the finer details of the electron-electron interaction in electron-ion collisions. Furthermore, a second Compton polarimeter based on silicon drift detectors has been developed for polarisation measurements at synchrotrons. It has been developed for X-ray polarimetry with a high energy resolution for energies between 6 keV and 35 keV. It was tested in the course of polarisation measurements at an electron beam ion trap and at a synchrotron radiation source.

  14. Carrier Decay and Diffusion Dynamics in Single-Crystalline CdTe as seen via Microphotoluminescence

    Science.gov (United States)

    Mascarenhas, Angelo; Fluegel, Brian; Alberi, Kirstin; Zhang, Yong-Hang

    2015-03-01

    The ability to spatially resolve the degree to which extended defects impact carrier diffusion lengths and lifetimes is important for determining upper limits for defect densities in semiconductor devices. We show that a new spatially and temporally resolved photoluminescence (PL) imaging technique can be used to accurately extract carrier lifetimes in the immediate vicinity of dark-line defects in CdTe/MgCdTe double heterostructures. A series of PL images captured during the decay process show that extended defects with a density of 1.4x10-5 cm-2 deplete photogenerated charge carriers from the surrounding semiconductor material on a nanosecond time scale. The technique makes it possible to elucidate the interplay between nonradiative carrier recombination and carrier diffusion and reveals that they both combine to degrade the PL intensity over a fractional area that is much larger than the physical size of the defects. Carrier lifetimes are correctly determined from numerical simulations of the decay behavior by taking these two effects into account. Our study demonstrates that it is crucial to measure and account for the influence of local defects in the measurement of carrier lifetime and diffusion, which are key transport parameters for the design and modeling of advanced solar-cell and light-emitting devices. We acknowledge the financial support of the Department of Energy Office of Science under Grant No. DE-AC36-08GO28308.

  15. Surface/Interface Carrier-Transport Modulation for Constructing Photon-Alternative Ultraviolet Detectors Based on Self-Bending-Assembled ZnO Nanowires.

    Science.gov (United States)

    Guo, Zhen; Zhou, Lianqun; Tang, Yuguo; Li, Lin; Zhang, Zhiqi; Yang, Hongbo; Ma, Hanbin; Nathan, Arokia; Zhao, Dongxu

    2017-09-13

    Surface/interface charge-carrier generation, diffusion, and recombination/transport modulation are especially important in the construction of photodetectors with high efficiency in the field of nanoscience. In the paper, a kind of ultraviolet (UV) detector is designed based on ZnO nanostructures considering photon-trapping, surface plasmonic resonance (SPR), piezophototronic effects, interface carrier-trapping/transport control, and collection. Through carefully optimized surface/interface carrier-transport modulation, a designed device with detectivity as high as 1.69 × 10 16 /1.71 × 10 16 cm·Hz 1/2 /W irradiating with 380 nm photons under ultralow bias of 0.2 V is realized by alternating nanoparticle/nanowire active layers, respectively, and the designed UV photodetectors show fast and slow recovery processes of 0.27 and 4.52 ms, respectively, which well-satisfy practical needs. Further, it is observed that UV photodetection could be performed within an alternative response by varying correlated key parameters, through efficient surface/interface carrier-transport modulation, spectrally resolved photoresponse of the detector revealing controlled detection in the UV region based on the ZnO nanomaterial, photodetection allowed or limited by varying the active layers, irradiation distance from one of the electrodes, standing states, or electric field. The detailed carrier generation, diffusion, and recombination/transport processes are well illustrated to explain charge-carrier dynamics contributing to the photoresponse behavior.

  16. Interfacial Charge-Carrier Trapping in CH3NH3PbI3-Based Heterolayered Structures Revealed by Time-Resolved Photoluminescence Spectroscopy.

    Science.gov (United States)

    Yamada, Yasuhiro; Yamada, Takumi; Shimazaki, Ai; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2016-06-02

    The fast-decaying component of photoluminescence (PL) under very weak pulse photoexcitation is dominated by the rapid relaxation of the photoexcited carriers into a small number of carrier-trapping defect states. Here, we report the subnanosecond decay of the PL under excitation weaker than 1 nJ/cm(2) both in CH3NH3PbI3-based heterostructures and bare thin films. The trap-site density at the interface was evaluated on the basis of the fluence-dependent PL decay profiles. It was found that high-density defects determining the PL decay dynamics are formed near the interface between CH3NH3PbI3 and the hole-transporting Spiro-OMeTAD but not at the CH3NH3PbI3/TiO2 interface and the interior regions of CH3NH3PbI3 films. This finding can aid the fabrication of high-quality heterointerfaces, which are required improving the photoconversion efficiency of perovskite-based solar cells.

  17. Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy.

    Science.gov (United States)

    Joyce, Hannah J; Wong-Leung, Jennifer; Yong, Chaw-Keong; Docherty, Callum J; Paiman, Suriati; Gao, Qiang; Tan, H Hoe; Jagadish, Chennupati; Lloyd-Hughes, James; Herz, Laura M; Johnston, Michael B

    2012-10-10

    Using transient terahertz photoconductivity measurements, we have made noncontact, room temperature measurements of the ultrafast charge carrier dynamics in InP nanowires. InP nanowires exhibited a very long photoconductivity lifetime of over 1 ns, and carrier lifetimes were remarkably insensitive to surface states despite the large nanowire surface area-to-volume ratio. An exceptionally low surface recombination velocity (170 cm/s) was recorded at room temperature. These results suggest that InP nanowires are prime candidates for optoelectronic devices, particularly photovoltaic devices, without the need for surface passivation. We found that the carrier mobility is not limited by nanowire diameter but is strongly limited by the presence of planar crystallographic defects such as stacking faults in these predominantly wurtzite nanowires. These findings show the great potential of very narrow InP nanowires for electronic devices but indicate that improvements in the crystallographic uniformity of InP nanowires will be critical for future nanowire device engineering.

  18. Influence of Silver and Gold Nanoparticles and Thin Layers on Charge Carrier Generation in InGaN/GaN Multiple Quantum Well Structures and Crystalline Zinc Oxide Films

    Science.gov (United States)

    Mezdrogina, M. M.; Vinogradov, A. Ya.; Kozhanova, Yu. V.; Levitskii, V. S.

    2018-04-01

    It has been shown that Ag and Au nanoparticles and thin layers influence charge carrier generation in InGaN/GaN multiple quantum well structures and crystalline ZnO films owing to the surface morphology heterogeneity of the semiconductors. When nanoparticles 10 films, the radiation intensity has turned out to grow considerably because of a plasmon resonance with the participation of localized plasmons. The application of Ag or Au layers on the surface of the structures strongly attenuates the radiation. When Ag and Au nanoparticles are applied on crystalline ZnO films obtained by rf magnetron sputtering, the radiation intensity in the short-wavelength part of the spectrum increases insignificantly because of their highly heterogeneous surface morphology.

  19. Genetic Recombination

    Science.gov (United States)

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  20. Three-dimensional minority carrier lifetime mapping of thin film semiconductors for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Brian [PLANT PV, Inc., Belmont, CA (United States); Peters, Craig [PLANT PV, Inc., Belmont, CA (United States); Barnard, Edward [PLANT PV, Inc., Belmont, CA (United States)

    2015-09-30

    This project addresses the difficulty of accurately measuring charge carrier dynamics in novel semiconductor materials for thin film photovoltaic cells. We have developed a two- photon lifetime tomography technique to separate bulk minority carrier lifetime from surface recombination effects and effects of recombination at sub-surface defects. This technique also enables us to characterize how local defects such as grain boundaries– buried below the surface of a sample–affect carrier lifetimes in the active layer, dynamics that have been previously inaccessible. We have applied this newly developed technique to illuminate how CdCl2 treatment improves CdTe PV efficiency. From striking 3D lifetime tomography maps, a clear, sub- surface understanding emerges of the photophysical changes that occur in CdTe active medium following exposure to CdCl2, a standard step in the fabrication of high-efficiency CdTe-based solar cells. This work demonstrates a well-defined method to quantify grain-boundary, interface, and bulk recombination in CdTe and other optically-active polycrystalline semiconductor materials; information that can provide critical information to the development of next- generation photovoltaics and many other semiconductor technologies.