WorldWideScience

Sample records for charge affect surfactant

  1. How Chain Length and Charge Affect Surfactant Denaturation of Acyl Coenzyme A Binding Protein (ACBP)

    DEFF Research Database (Denmark)

    Andersen, Kell Kleiner; Otzen, Daniel

    2009-01-01

    . This behavior contrasts with the simplicity of unfolding in chemical denaturants and highlights the changing properties of surfactant micelles. We suggest that the transition from spherical to more elongated micelles leads to inhibition of unfolding kinetics, while weaker binding sites may cause a subsequent...

  2. Mechanisms of Particle Charging by Surfactants in Nonpolar Dispersions.

    Science.gov (United States)

    Lee, Joohyung; Zhou, Zhang-Lin; Alas, Guillermo; Behrens, Sven Holger

    2015-11-10

    Electric charging of colloidal particles in nonpolar solvents plays a crucial role for many industrial applications and products, including rubbers, engine oils, toners, or electronic displays. Although disfavored by the low solvent permittivity, particle charging can be induced by added surfactants, even nonionic ones, but the underlying mechanism is poorly understood, and neither the magnitude nor the sign of charge can generally be predicted from the particle and surfactant properties. The conclusiveness of scientific studies has been limited partly by a traditional focus on few surfactant types with many differences in their chemical structure and often poorly defined composition. Here we investigate the surface charging of poly(methyl methacrylate) particles dispersed in hexane-based solutions of three purified polyisobutylene succinimide polyamine surfactants with "subtle" structural variations. We precisely vary the surfactant chemistry by replacing only a single electronegative atom located at a fixed position within the polar headgroup. Electrophoresis reveals that these small differences between the surfactants lead to qualitatively different particle charging. In the respective particle-free surfactant solutions we also find potentially telling differences in the size of the surfactant aggregates (inverse micelles), the residual water content, and the electric solution conductivity as well as indications for a significant size difference between oppositely charged inverse micelles of the most hygroscopic surfactant. An analysis that accounts for the acid/base properties of all constituents suggests that the observed particle charging is better described by asymmetric adsorption of charged inverse micelles from the liquid bulk than by charge creation at the particle surface. Intramicellar acid-base interaction and intermicellar surfactant exchange help rationalize the formation of micellar ions pairs with size asymmetry. PMID:26484617

  3. Bending elasticity of charged surfactant layers: the effect of mixing.

    Science.gov (United States)

    Bergström, L Magnus

    2006-08-01

    Expressions have been derived from which the spontaneous curvature (H(0)), bending rigidity (k(c)), and saddle-splay constant (k(c)) of mixed monolayers and bilayers may be calculated from molecular and solution properties as well as experimentally available quantities such as the macroscopic hydrophobic-hydrophilic interfacial tension. Three different cases of binary surfactant mixtures have been treated in detail: (i) mixtures of an ionic and a nonionic surfactant, (ii) mixtures of two oppositely charged surfactants, and (iii) mixtures of two ionic surfactants with identical headgroups but different tail volumes. It is demonstrated that k(c)H(0), k(c), and k(c) for mixtures of surfactants with flexible tails may be subdivided into one contribution that is due to bending properties of an infinitely thin surface as calculated from the Poisson-Boltzmann mean field theory and one contribution appearing as a result of the surfactant film having a finite thickness with the surface of charge located somewhat outside the hydrophobic-hydrophilic interface. As a matter of fact, the picture becomes completely different as finite layer thickness effects are taken into account, and as a result, the spontaneous curvature is extensively lowered whereas the bending rigidity is raised. Furthermore, an additional contribution to k(c) is present for surfactant mixtures but is absent for k(c)H(0) and k(c). This contribution appears as a consequence of the minimization of the free energy with respect to the composition of a surfactant layer that is open in the thermodynamic sense and must always be negative (i.e., k(c) is generally found to be brought down by the process of mixing two or more surfactants). The magnitude of the reduction of k(c) increases with increasing asymmetry between two surfactants with respect to headgroup charge number and tail volume. As a consequence, the bending rigidity assumes the lowest values for layers formed in mixtures of two oppositely charged

  4. Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes

    Directory of Open Access Journals (Sweden)

    Duangjit S

    2014-04-01

    Full Text Available Sureewan Duangjit,1,2 Boonnada Pamornpathomkul,1 Praneet Opanasopit,1 Theerasak Rojanarata,1 Yasuko Obata,2 Kozo Takayama,2 Tanasait Ngawhirunpat11Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; 2Department of Pharmaceutics, Hoshi University, Shinagawa-ku, Tokyo, JapanAbstract: The objective of this study was to investigate the influence of surfactant charge, surfactant carbon chain length, and surfactant content on the physicochemical characteristics (ie, vesicle size, zeta potential, elasticity, and entrapment efficiency, morphology, stability, and in vitro skin permeability of meloxicam (MX-loaded liposome. Moreover, the mechanism for the liposome-enhanced skin permeation of MX was determined by Fourier transform infrared spectroscopy and differential scanning calorimetry. The model formulation used in this study was obtained using a response surface method incorporating multivariate spline interpolation (RSM-S. Liposome formulations with varying surfactant charge (anionic, neutral, and cationic, surfactant carbon chain length (C4, C12, and C16, and surfactant content (10%, 20%, and 29% were prepared. The formulation comprising 29% cationic surfactant with a C16 chain length was found to be the optimal liposome for the transdermal delivery of MX. The skin permeation flux of the optimal formulation was 2.69-fold higher than that of a conventional liposome formulation. Our study revealed that surfactants affected the physicochemical characteristics, stability, and skin permeability of MX-loaded liposomes. These findings provide important fundamental information for the development of liposomes as transdermal drug delivery systems.Keywords: optimal liposome, optimization, transdermal drug delivery, surfactant charge, surfactant carbon chain length, surfactant content

  5. Electrostatic interactions and aqueous two-phase separation modes of aqueous mixed oppositely charged surfactants system.

    Science.gov (United States)

    Hao, Li-Sheng; Gui, Yuan-Xiang; Chen, Yan-Mei; He, Shao-Qing; Nan, Yan-Qing; You, Yi-Lan

    2012-08-30

    Electrostatic interactions play an important role in setting the aqueous two-phase separation behaviors of mixtures of oppositely charged surfactants. The aqueous mixture of cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfonate (AS) is actually a five-component system, comprised of CTAB, AS, complex salt (cetyltrimethylammonium dodecylsulfonate, abbreviated as CTA(+)AS(-)), NaBr, and water. In the three-dimensional pyramid phase diagram, the aqueous two-phase region with excess AS or with excess CTAB extends successively from the region very near to the NaBr-H2O line through the CTAB-AS-H2O conventional mixing plane to the CTA(+)AS(-)-AS-H2O side plane or to the CTA(+)AS(-)-CTAB-H2O side plane, respectively. Large or small molar ratios between the counterions and their corresponding surfactant ions for oppositely charged surfactants located in the NaBr side or the CTA(+)AS(-) side of the pyramid imply strong or weak electrostatic screening. Electrostatic screening of counterions alters the electrostatic attractions between the oppositely charged head groups or the electrostatic repulsions between the like-charged head groups in excess, and the electrostatic free energy of aggregation thus affects the aqueous two-phase separation modes. Composition analysis, rheological property investigation, and TEM images suggest that there are two kinds of aqueous two-phase systems (ATPSs). On the basis of these experimental results and Kaler's cell model, two kinds of phase separation modes were proposed. Experimental results also indicate that all of the top phases are surfactant-rich, and all of the bottom phases are surfactant-poor; the density difference between the top phase and the bottom phase in one ATPS is very small; the interfacial tension (σ) of the ATPS is ultralow. PMID:22856887

  6. Gemini surfactants affect the structure, stability, and activity of ribonuclease Sa.

    Science.gov (United States)

    Amiri, Razieh; Bordbar, Abdol-Khalegh; Laurents, Douglas V

    2014-09-11

    Gemini surfactants have important advantages, e.g., low micromolar CMCs and slow millisecond monomer ↔ micelle kinetics, for membrane mimetics and for delivering nucleic acids for gene therapy or RNA silencing. However, as a prerequisite, it is important to characterize interactions occurring between Gemini surfactants and proteins. Here NMR and CD spectroscopies are employed to investigate the interactions of cationic Gemini surfactants with RNase Sa, a negatively charged ribonuclease. We find that RNase Sa binds Gemini surfactant monomers and micelles at pH values above 4 to form aggregates. Below pH 4, where the protein is positively charged, these aggregates dissolve and interactions are undetectable. Thermal denaturation experiments show that surfactant lowers RNase Sa's conformational stability, suggesting that surfactant binds the protein's denatured state preferentially. Finally, Gemini surfactants were found to bind RNA, leading to the formation of large complexes. Interestingly, Gemini surfactant binding did not prevent RNase Sa from cleaving RNA. PMID:25133582

  7. Surfactant selection principle for reducing critical micelle concentration in mixtures of oppositely charged gemini surfactants.

    Science.gov (United States)

    Liu, Zhang; Fan, Yaxun; Tian, Maozhang; Wang, Ruijuan; Han, Yuchun; Wang, Yilin

    2014-07-15

    Cationic quaternary ammonium gemini surfactants C(n)H(2n+1)(CH3)2N(+)CH2CHCHCH2(CH3)2N(+)C(n)H(2n+1)2Br(-) (C(n)C4C(n), n = 12, 8, 6) with alkyl spacers, C(n)H(2n+1)(CH3)2N(+)CH2CHOHCHOHCH2(CH3)2N(+)C(n)H(2n+1)2Br(-) (C(n)C4(OH)2C(n), n = 12, 8, 6, 4) with two hydroxyl groups in alkyl spacers, and cationic ammonium single-chain surfactants C(n)H(2n+1)(CH3)2N(+)Br(-) (C(n)TAB, n = 12, 8, 6) have been chosen to fabricate oppositely charged surfactant mixtures with anionic sulfonate gemini surfactant C12H25N(CH2CH2CH2SO3(-))CH2CH2CH2(CH3)2N(CH2CH2CH2SO3(-))C12H252Na (C12C3C12(SO3)2). Surface tension, electrical conductivity, and isothermal titration microcalorimetry (ITC) were used to study their surface properties, aggregation behaviors, and intermolecular interactions. The mixtures of C12C3C12(SO3)2/C(n)C4(OH)2C(n) (n = 12, 8) and C12C3C12(SO3)2/C12C4C12 show anomalous larger critical micelle concentration (CMC) than C12C3C12(SO3)2, while the mixtures of C12C3C12(SO3)2/C(n)C4(OH)2C(n) (n = 6, 4), C12C3C12(SO3)2/C(n)C4(OH)2C(n) (n = 6, 4), and C12C3C12(SO3)2/C(n)TAB (n = 12, 8, 6) exhibit much lower CMC than C12C3C12(SO3)2. The results indicate that strong hydrophobic interactions between the alkyl chains assisted by strong electrostatic attractions between the headgroups and hydrogen bonds between the spacers lead to the formation of less surface active premicellar aggregates in bulk solution, resulting in the increase of CMC. If these interactions are weakened or inhibited, less surface active premicellar aggregates are no longer formed in the mixtures, and thus the CMC values are reduced. The work reveals that the combination of two surfactants with great self-assembling ability separately may have strong intermolecular binding interactions; however, their mixtures do not always generate superior synergism properties. Only moderate intermolecular interaction can generate the strongest synergism in CMC reduction. PMID:24933418

  8. Small angle neutron scattering study of mixed micelles of oppositely charged surfactants

    Indian Academy of Sciences (India)

    J V Joshi; V K Aswal; P S Goyal

    2008-11-01

    Structures of mixed micelles of oppositely charged surfactants dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl sulphate (SDS) have been studied using small angle neutron scattering. The concentration of one of the components was kept fixed (0.3 M) and that of another varied in the range 0 to 0.1 M. The aggregation number and micellar size increase and fractional charge decreases dramatically with the addition of small amount of oppositely charged surfactant. The effect of addition of SDS on DTAB is significantly different from that of the addition of DTAB on SDS. The contrast variation SANS experiments using deuterated surfactant suggests the homogeneous mixing of two components in mixed micellar system.

  9. Modeling Aggregation of Ionic Surfactants Using a Smeared Charge Approximation in Dissipative Particle Dynamics Simulations.

    Science.gov (United States)

    Mao, Runfang; Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V

    2015-09-01

    Using dissipative particle dynamics (DPD) simulations, we explore the specifics of micellization in the solutions of anionic and cationic surfactants and their mixtures. Anionic surfactant sodium dodecyl sulfate (SDS) and cationic surfactant cetyltrimethylammonium bromide (CTAB) are chosen as characteristic examples. Coarse-grained models of the surfactants are constructed and parameterized using a combination of atomistic molecular simulation and infinite dilution activity coefficient calibration. Electrostatic interactions of charged beads are treated using a smeared charge approximation: the surfactant heads and dissociated counterions are modeled as beads with charges distributed around the bead center in an implicit dielectric medium. The proposed models semiquantitatively describe self-assembly in solutions of SDS and CTAB at various surfactant concentrations and molarities of added electrolyte. In particular, the model predicts a decline in the free surfactant concentration with the increase of the total surfactant loading, as well as characteristic aggregation transitions in single-component surfactant solutions caused by the addition of salt. The calculated values of the critical micelle concentration reasonably agree with experimental observations. Modeling of catanionic SDS-CTAB mixtures show consecutive transitions to worm-like micelles and then to vesicles caused by the addition of CTAB to micellar solution of SDS. PMID:26241704

  10. Space-charge-limited current in DNA-surfactant complex

    Science.gov (United States)

    Chen, I.-Ching; Lin, Ting-Yu; Hung, Yu-Chueh

    2013-03-01

    In recent years, deoxyribonucleic acid (DNA) biopolymers have attracted much research attention and been considered as a promising material when being employed in many optoelectronic devices. Since performance of many DNA biopolymer-based devices relies on carrier transport, it is crucial to study the carrier mobility of these DNA-surfactant complexes for practical implement. In this work, we present hole mobility characterization of cetyltrimethylammonium (CTMA)-modified DNA biopolymer by using space-charge-limited current (SCLC) method. Devices were fabricated using a sandwich structure with a buffer layer of MoO3 to enhance hole injection and achieve ohmic contact between the anode and the DNA layer. Current-voltage (I-V) curves of the devices were analyzed. A trap-free SCLC behavior can ultimately be achieved and a quadratic dependence in I-V curve was observed. With increasing electric field, a positive field-dependent mobility was demonstrated. The correlation between mobility and temperature was also investigated and a positive relation was found. The characterization results can be further utilized for DNA-based device design and applications.

  11. Rheological properties of ovalbumin hydrogels as affected by surfactants addition.

    Science.gov (United States)

    Hassan, Natalia; Messina, Paula V; Dodero, Veronica I; Ruso, Juan M

    2011-04-01

    The gel properties of ovalbumin mixtures with three different surfactants (sodium perfluorooctanoate, sodium octanoate and sodium dodecanoate) have been studied by rheological techniques. The gel elasticities were determined as a function of surfactant concentration and surfactant type. The fractal dimension of the formed structures was evaluated from plots of storage modulus against surfactant concentration. The role of electrostatic, hydrophobic and disulfide SS interactions in these systems has been demonstrated to be the predominant. The viscosity of these structures tends to increase with surfactant concentration, except for the fluorinated one. Unfolded ovalbumin molecules tend to form fibrillar structures that tend to increase with surfactant concentration, except for the fluorinated one. This fact has been related to the particular nature of this molecule.

  12. NMR spectroscopy of proteins encapsulated in a positively charged surfactant.

    Science.gov (United States)

    Lefebvre, Brian G; Liu, Weixia; Peterson, Ronald W; Valentine, Kathleen G; Wand, A Joshua

    2005-07-01

    Traditionally, large proteins, aggregation-prone proteins, and membrane proteins have been difficult to examine by modern multinuclear and multidimensional solution NMR spectroscopy. A major limitation presented by these protein systems is that their slow molecular reorientation compromises many aspects of the more powerful solution NMR methods. Several approaches have emerged to deal with the various spectroscopic difficulties arising from slow molecular reorientation. One of these takes the approach of actively seeking to increase the effective rate of molecular reorientation by encapsulating the protein of interest within the protective shell of a reverse micelle and dissolving the resulting particle in a low viscosity fluid. Since the encapsulation is largely driven by electrostatic interactions, the preparation of samples of acidic proteins suitable for NMR spectroscopy has been problematic owing to the paucity of suitable cationic surfactants. Here, it is shown that the cationic surfactant CTAB may be used to prepare samples of encapsulated anionic proteins dissolved in low viscosity solvents. In a more subtle application, it is further shown that this surfactant can be employed to encapsulate a highly basic protein, which is completely denatured upon encapsulation using an anionic surfactant. PMID:15949753

  13. Shear thickening and onion formation of non-ionic surfactant solution and the effect of charge

    International Nuclear Information System (INIS)

    A shear-induced lamellar to onion transition of a surfactant solution has attracted considerable attention in these decades. Diat and Roux have shown that shear flow induces a transformation from planer lamellar structure to multilamellar vesicles (onions) with a polyhedral shape, which fill all the space without excess water and lead shear thickening. In a nonionic surfactant aqueous solution, pentaethylene glycol monododecyl ether (C12E5) and D2O, onion formation associated with shear thickening is observed in 40 wt% C12E5 solution at T=55° C Effects of charge on the nonionic surfactant mixture were investigated by adding ionic surfactant and onion structure is induced by the suppression of Helfrich undulation of surfactant membranes. [3] Here we investigated the rheological behavior of a dilute solution of C12E5 (10 wt%) and D2O and the effect of charge. We have already shown that a disordered structure of C12E5 and D2O at T=59 °C transforms to an ordered lamellar structure by adding an antagonistic salt such as sodium tetraphenylborate (NaBPh4). An electrostatic interaction between surfactant membranes caused by a heterogeneous distribution of anions and cations originates the transformation as the effect of adding ionic surfactant sodium dodecyl sulfate (SDS). Figure 1 shows molar ratio between SDS and C12E5, S, dependence of viscosity as a function of shear rate. It is clear that shear thickening is observed for all the samples measured including SDS and a shoulder at 2 s-1 is observed for the sample without charged molecules. The present SANS experiment confirmed that the lamellar layers are oriented parallel to the flow direction at low shear rate, while onion structure is formed as evident by isotropic scattering pattern, which is eventually broken by further increase of shear rate. This is the first evidence of the shear thickening and the onion formation in the dilute solution of nonionic surfactant.

  14. BINDING OF IONIC SURFACTANTS ON OPPOSITELY CHARGED POLYELECTROLYTES OBSERVED BY FLUORESCENCE METHODS

    Institute of Scientific and Technical Information of China (English)

    Zhen Tong; Chao-yang Wang; Bi-ye Ren; Xin-xing Liu; Fang Zeng

    2003-01-01

    Our recent studies concerning the binding of ionic surfactants on oppositely charged polyelectrolytes observed with fluorescence techniques are reviewed. The cationic surfactants cetyltrimethylammonium bromide (CTAB),dodecyltrimethylammonium chloride (DTAC), and nonionic surfactant octaethylene glycol monododecyl ether (C12E8) were allowed to bind on anionic poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) and its pyrene and/or naphthalene labeled copolymers. The relative excimer emission intensity IE/IM of a cationic probe 1-pyrenemethylamine hydrochloride were chosen to monitor the binding process and the conformation change of surfactant-bound polyelectrolytes. The 1:1aggregation of polyelectrolyte-CTAB with respect to the charge was found as long as the CTAB concentration was slightly higher than its critical aggregation concentration (CAC). The intermolecular NRET indicated that the CTAB-bound polyelectrolytes aggregated together through the hydrophobic interaction between the CTAB tails. However, neither 1:1polyelectrolyte-DTAC aggregation nor intermolecular aggregation of DTAC-bound polyelectrolyte was observed owing to its weaker hydrophobicity of 12 carbon atoms in the tail, which is shorter than that of CTAB. As known from the fluorescence results, nonionic surfactant C12E8 did not bind on the anionic polyelectrolytes, but the presence of PAMPS promoted the micelle formation for C12E8 at the CAC slightly below its critical micelle concentration (CMC). The solid complex of dansyl labeled AMPS copolymer-surfactant exhibited a decrease in local polarity with increasing charge density of the polyelectrolyte or with alkane tail length of the surfactant. SAXS suggested a lamella structure for the AMPS copolymersurfactant solid complexes with a long period of 3.87 nm for CTAB and 3.04 nm for DTAC, respectively.

  15. Charged particles interacting with a mixed supported lipid bilayer as a biomimetic pulmonary surfactant.

    Science.gov (United States)

    Munteanu, B; Harb, F; Rieu, J P; Berthier, Y; Tinland, B; Trunfio-Sfarghiu, A-M

    2014-08-01

    This study shows the interactions of charged particles with mixed supported lipid bilayers (SLB) as biomimetic pulmonary surfactants. We tested two types of charged particles: positively charged and negatively charged particles. Two parameters were measured: adsorption density of particles on the SLB and the diffusion coefficient of lipids by FRAPP techniques as a measure of interaction strength between particles and lipids. We found that positively charged particles do not adsorb on the bilayer, probably due to the electrostatic repulsion between positively charged parts of the lipid head and the positive groups on the particle surface, therefore no variation in diffusion coefficient of lipid molecules was observed. On the contrary, the negatively charged particles, driven by electrostatic interactions are adsorbed onto the supported bilayer. The adsorption of negatively charged particles increases with the zeta-potential of the particle. Consecutively, the diffusion coefficient of lipids is reduced probably due to binding onto the lipid heads which slows down their Brownian motion. The results are directly relevant for understanding the interactions of particulate matter with pulmonary structures which could lead to pulmonary surfactant inhibition or deficiency causing severe respiratory distress or pathologies.

  16. THE EFFECT OF CHARGE AND CHEMICAL STRUCTURE OF CATIONIC SURFACTANTS ON LASER TONER AGGLOMERATION UNDER ALKALINE PULPING CONDITIONS

    Directory of Open Access Journals (Sweden)

    Jie Jiang,

    2012-02-01

    Full Text Available Laboratory-scale agglomeration experiments followed by image analysis were used to evaluate the effectiveness of different cationic surfactants on the 1-octadecanol agglomeration of a negatively charged laser toner. Various types of surfactants with different geometric structures were investigated. It was found that this toner became agglomerated under neutral pulping conditions, but it did not agglomerate under alkaline conditions at all. A small amount of the cationic surfactant compensated for the agglomeration disruption caused by the negative surface charge of the toner and made this toner agglomerate very well. These cationic surfactants consist of a chemical structure of C12 to C18 saturated alkyl hydrophobic chains. The positive charge of these surfactants played the major role in alleviating agglomeration disruption. Additionally, an extra phenol group on these surfactants contributed only minor advantages for toner agglomeration in the presence of 1-octadecanol. The best co-agglomeration performance occurred within a very narrow range of similar total positive charge densities based on the total toner weight. It was also found that this positive charge effect could not be applied to the chemical compounds of high molecular weight polymeric materials.

  17. Nanostructures formed by self-assembly of negatively charged polymer and cationic surfactants.

    Science.gov (United States)

    Nizri, G; Makarsky, A; Magdassi, S; Talmon, Y

    2009-02-17

    The formation of nanoparticles by interaction of an anionic polyelectrolyte, sodium polyacrylate (NaPA), was studied with a series of oppositely charged surfactants with different chain lengths, alkyltrimethylammonium bromide (CnTAB). The binding and formation of nanoparticles was characterized by dynamic light scattering, zeta-potential, and self-diffusion NMR. The inner nanostructure of the particles was observed by direct-imaging cryogenic-temperature transmission electron microscopy (cryo-TEM), indicating aggregates of hexagonal liquid crystal with nanometric size. PMID:19143559

  18. Electrostatic Screening and Charge Correlation Effects in Micellization of Ionic Surfactants

    KAUST Repository

    Jusufi, Arben

    2009-05-07

    We have used atomistic simulations to study the role of electrostatic screening and charge correlation effects in self-assembly processes of ionic surfactants into micelles. Specifically, we employed grand canonical Monte Carlo simulations to investigate the critical micelle concentration (cmc), aggregation number, and micellar shape in the presence of explicit sodium chloride (NaCl). The two systems investigated are cationic dodecyltrimethylammonium chloride (DTAC) and anionic sodium dodecyl sulfate (SDS) surfactants. Our explicit-salt results, obtained from a previously developed potential model with no further adjustment of its parameters, are in good agreement with experimental data for structural and thermodynamic micellar properties. We illustrate the importance of ion correlation effects by comparing these results with a Yukawa-type surfactant model that incorporates electrostatic screening implicitly. While the effect of salt on the cmc is well-reproduced even with the implicit Yukawa model, the aggregate size predictions deviate significantly from experimental observations at low salt concentrations. We attribute this discrepancy to the neglect of ion correlations in the implicit-salt model. At higher salt concentrations, we find reasonable agreement of the Yukawa model with experimental data. The crossover from low to high salt concentrations is reached when the electrostatic screening length becomes comparable to the headgroup size. © 2009 American Chemical Society.

  19. Modification of reduced-charge montmorillonites by a series of Gemini surfactants: Characterization and application in methyl orange removal

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Zhongxin; Gao, Manglai, E-mail: mlgao@cup.edu.cn; Ye, Yage; Yang, Senfeng

    2015-01-01

    Highlights: • RCMs were modified by three Gemini surfactants with different spacer length. • The adsorption kinetics and thermodynamics of MO on organoclays were investigated. • Both the spacer length and clay layer charge have significant effects on the removal of MO. • The removal efficiency of MO increased with increasing clay layer charge. • Gemini surfactants modified RCMs were low-cost and high efficient adsorbents for the uptake of MO. - Abstract: The influences that the spacer chain length of Gemini surfactants and clay layer charge have on the structures and sorption characteristics of organoclays have been investigated. Organoclays were obtained by modifying a series of reduced charge montmorillonites (RCMs) using three Gemini surfactants with different spacer length. And their structures and sorption characteristics for methyl orange (MO) were examined. It was suggested that the amount, spacer length of Gemini surfactant and clay layer charge had significant effects on the microstructure of the organoclays. The adsorption experiments results claimed that the uptake of MO onto organoclays was in the order: 16-4-16-Mt > 16-8-16-Mt > 16-6-16-Mt, while it increased with increasing clay layer charge. The adsorption isotherms of MO onto the organoclays could be best described by Langmuir equation, and the adsorption kinetic was in good agreement with the pseudo-second-order model. Thermodynamic parameters demonstrated that the sorption process was spontaneous and endothermic in nature. This work will provide a deep insight into the interaction of Gemini-modified clays and MO, which pave the way for their practical applications in anionic dye adsorption.

  20. Understanding self-assembly of charged-neutral block copolymer (BCP) and surfactant complexes using molecular dynamics (MD) simulation

    Science.gov (United States)

    Goswami, Monojoy; Sumpter, Bobby; Kilbey, Michael

    Here we report the formation of phase separated BCP-surfactant complexes resulting from the electrostatic self-assembly of charge-neutral block copolymers with oppositely charged surfactants. Complexation behaviors of oppositely charged polyelectrolytes has gained considerable attention in the field of soft condensed matter physics due to their potential application as functional nanomaterials for batteries, wastewater treatment and drug delivery systems. Numerous experiments have examined the self-assembled structures resulting from complexation of charge-neutral BCP and surfactants, however, there is a lack of comprehensive understanding at the fundamental level. To help bridge this gap, we use, MD simulations to study self-assembly and dynamics of the BCP-surfactant complex at the molecular level. Our results show an overcharging effect in BCPs with hydrophobic neutral blocks and a formation of core-shell colloidal structure. Hydrophilic neutral blocks, on the other hand, show stable, hairy colloidal structures with neutral blocks forming a loosely-bound, fuzzy outer layer. Our results qualitatively agree with previous SANS and SAXS experiments. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Materials Science and Engineering Division.

  1. Surface Charge Density Determines the Efficiency of Cationic Gemini Surfactant Based Lipofection

    Science.gov (United States)

    Ryhänen, Samppa J.; Säily, Matti J.; Paukku, Tommi; Borocci, Stefano; Mancini, Giovanna; Holopainen, Juha M.; Kinnunen, Paavo K. J.

    2003-01-01

    The efficiencies of the binary liposomes composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and cationic gemini surfactant, (2S,3R)-2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide as transfection vectors, were measured using the enhanced green fluorescent protein coding plasmid and COS-1 cells. Strong correlation between the transfection efficiency and lipid stoichiometry was observed. Accordingly, liposomes with XSR−1 ≥ 0.50 conveyed the enhanced green fluorescent protein coding plasmid effectively into cells. The condensation of DNA by liposomes with XSR−1 > 0.50 was indicated by static light scattering and ethidium bromide intercalation assay, whereas differential scanning calorimetry and fluorescence anisotropy of diphenylhexatriene revealed stoichiometry dependent reorganization in the headgroup region of the liposome bilayer, in alignment with our previous Langmuir-balance study. Surface charge density and the organization of positive charges appear to determine the mode of interaction of DNA with (2S,3R)-2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide/1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes, only resulting in DNA condensation when XSR−1 > 0.50. Condensation of DNA in turn seems to be required for efficient transfection. PMID:12524311

  2. Photophysical study of a charge transfer oxazole dye in micelles: Role of surfactant headgroups

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Jyotirmay [Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126 (India); Sarkar, Yeasmin; Parui, Partha Pratim [Department of Chemistry, Jadavpur University, Kolkata 700032 (India); Chakraborty, Sandipan [Department of Microbiology, University of Calcutta, Kolkata 700019 (India); Biswas, Suman [Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126 (India); Das, Ranjan, E-mail: ranjan.das68@gmail.com [Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126 (India)

    2015-07-15

    Photophysics of 5-(4′′-dimethylaminophenyl)-2-(4′-sulfophenyl)oxazole, sodium salt (DMO) which undergoes intramolecular charge transfer in the excited state was studied in micelles. In the cationic and the nonionic micelles, significantly higher fluorescence quantum yield is observed in comparison to the anionic micelles, due to much lower accessibility of DMO to the water molecules in the former micelles than the latter. Time-resolved fluorescence decays were characterized by a fast (τ{sub 1}) and a slow (τ{sub 2}) component of decay in all the micelles. The fast decay component (τ{sub 1}) increases significantly in going from the anionic micelles to the cationic micelles, because of the poorly hydrated headgroup region of the latter micelles compared to the former. Furthermore, much higher value of the slow component of decay (τ{sub 2}) is observed for the cationic and the neutral micelles than the anionic micelles. This is attributed to the increased penetration of water molecules into the micellar core of the anionic micelles compared to the cationic and the neutral micelles. - Highlights: • Photophysics of the fluorophore are remarkably different in the cationic and the anionic micelles. • Differential hydration of the surfactant headgroups gives rise to significantly different fluorescence quantum yield and lifetime in oppositely charged micelles. • Electrostatic interactions fine tune location of the fluorophore in the micelle–water interface of ionic micelles.

  3. Effects of Surfactants and Polyelectrolytes on the Interaction between a Negatively Charged Surface and a Hydrophobic Polymer Surface.

    Science.gov (United States)

    Rapp, Michael V; Donaldson, Stephen H; Gebbie, Matthew A; Gizaw, Yonas; Koenig, Peter; Roiter, Yuri; Israelachvili, Jacob N

    2015-07-28

    We have measured and characterized how three classes of surface-active molecules self-assemble at, and modulate the interfacial forces between, a negatively charged mica surface and a hydrophobic end-grafted polydimethylsiloxane (PDMS) polymer surface in solution. We provide a broad overview of how chemical and structural properties of surfactant molecules result in different self-assembled structures at polymer and mineral surfaces, by studying three characteristic surfactants: (1) an anionic aliphatic surfactant, sodium dodecyl sulfate (SDS), (2) a cationic aliphatic surfactant, myristyltrimethylammonium bromide (MTAB), and (3) a silicone polyelectrolyte with a long-chain PDMS midblock and multiple cationic end groups. Through surface forces apparatus measurements, we show that the separate addition of three surfactants can result in interaction energies ranging from fully attractive to fully repulsive. Specifically, SDS adsorbs at the PDMS surface as a monolayer and modifies the monotonic electrostatic repulsion to a mica surface. MTAB adsorbs at both the PDMS (as a monolayer) and the mica surface (as a monolayer or bilayer), resulting in concentration-dependent interactions, including a long-range electrostatic repulsion, a short-range steric hydration repulsion, and a short-range hydrophobic attraction. The cationic polyelectrolyte adsorbs as a monolayer on the PDMS and causes a long-range electrostatic attraction to mica, which can be modulated to a monotonic repulsion upon further addition of SDS. Therefore, through judicious selection of surfactants, we show how to modify the magnitude and sign of the interaction energy at different separation distances between hydrophobic and hydrophilic surfaces, which govern the static and kinetic stability of colloidal dispersions. Additionally, we demonstrate how the charge density of silicone polyelectrolytes modifies both their self-assembly at polymer interfaces and the robust adhesion of thin PDMS films to target

  4. Effects of Surfactants and Polyelectrolytes on the Interaction between a Negatively Charged Surface and a Hydrophobic Polymer Surface

    OpenAIRE

    Rapp, MV; Donaldson, SH; Gebbie, MA; Gizaw, Y; Koenig, P; Roiter, Y; Israelachvili, JN

    2015-01-01

    © 2015 American Chemical Society. We have measured and characterized how three classes of surface-active molecules self-assemble at, and modulate the interfacial forces between, a negatively charged mica surface and a hydrophobic end-grafted polydimethylsiloxane (PDMS) polymer surface in solution. We provide a broad overview of how chemical and structural properties of surfactant molecules result in different self-assembled structures at polymer and mineral surfaces, by studying three charact...

  5. Surfactant adsorption to soil components and soils.

    Science.gov (United States)

    Ishiguro, Munehide; Koopal, Luuk K

    2016-05-01

    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on water/air interfaces, the latter gives an impression of surfactant adsorption to a hydrophobic surface and illustrates the importance of the CMC for the adsorption process. Then attention is paid to the most important types of soil particles: humic and fulvic acids, silica, metal oxides and layered aluminosilicates. Information is provided on their structure, surface properties and primary (proton) charge characteristics, which are all important for surfactant binding. Subsequently, the adsorption of different types of surfactants on these individual soil components is discussed in detail, based on mainly experimental results and considering the specific (chemical) and electrostatic interactions, with hydrophobic attraction as an important component of the specific interactions. Adsorption models that can describe the features semi-quantitatively are briefly discussed. In the last part of the paper some trends of surfactant adsorption on soils are briefly discussed together with some complications that may occur and finally the consequences of surfactant adsorption for soil colloidal stability and permeability are considered. When we seek to understand the fate of surfactants in soil and aqueous environments, the hydrophobicity and charge density of the soil or soil particles, must be considered together with the structure, hydrophobicity and charge of the surfactants, because these factors affect the adsorption. The pH and ionic strength are important parameters with respect to the charge density of the particles. As surfactant adsorption influences soil structure and permeability, insight in surfactant adsorption to soil particles is useful for good soil management. PMID

  6. A light-responsive organofluid based on reverse worm-like micelles formed from an equi-charged, mixed, anionic gemini surfactant with an azobenzene spacer and a cationic conventional surfactant.

    Science.gov (United States)

    Yang, Duoping; Zhao, Jianxi

    2016-05-01

    An equally-charged mixture of an anionic gemini surfactant, O,O'-bis(sodium 2-tetradecylcarboxylate)-p-azodiphendiol (G14-azo), and a cationic surfactant, cetyltrimethylammonium bromide (CTAB), was dissolved in cyclohexane to form reverse worm-like micelles. Samples with different surfactant concentrations and amounts of added water were studied using rheological measurements. The amount of water, represented as the molar ratio of water to total surfactants W0, was c. 13 (at its minimum) in these equally charged systems of G14-azo (200 mmol L(-1))/CTAB. The low shear viscosity ηL of this system reached 4370 Pa s at W0 = 13 and the dynamic rheological result showed typical surfactant gel behaviour. Under UV-light irradiation, the transparent sample (G14-azo (300 mmol L(-1))/CTAB (600 mmol L(-1))) at W0 = 40 became turbid, during which ηL was rapidly reduced from the original 285 Pa s to 0.3 Pa s, indicating a transition of aggregate morphology from reverse worms into simple reverse micelles. Then the sample was returned to its original homogeneous state with c. 290 Pa s viscosity under visible light irradiation. However, this transition cannot be well achieved at low W0 due to the interior cores being too small. This limit has been attributed to both the Gemini type of surfactant molecule and to the inverted structure of aggregates. PMID:27021435

  7. Discrete space charge affected field emission: Flat and hemisphere emitters

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Kevin L., E-mail: kevin.jensen@nrl.navy.mil [Code 6854, Naval Research Laboratory, Washington, DC 20375 (United States); Shiffler, Donald A.; Tang, Wilkin [Air Force Research Laboratory, Kirtland AFB, New Mexico 87117 (United States); Rittersdorf, Ian M. [Code 6770, Naval Research Laboratory, Washington, DC 20375 (United States); Lebowitz, Joel L. [Department of Mathematics and Department of Physics, Rutgers University, Piscataway, New Jersey 08854-8019 (United States); Harris, John R. [U.S. Navy Reserve, New Orleans, Louisiana 70143 (United States); Lau, Y. Y. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Petillo, John J. [Leidos, Billerica, Massachusetts 01821 (United States); Luginsland, John W. [Physics and Electronics Directorate, AFOSR, Arlington, Virginia 22203 (United States)

    2015-05-21

    Models of space-charge affected thermal-field emission from protrusions, able to incorporate the effects of both surface roughness and elongated field emitter structures in beam optics codes, are desirable but difficult. The models proposed here treat the meso-scale diode region separate from the micro-scale regions characteristic of the emission sites. The consequences of discrete emission events are given for both one-dimensional (sheets of charge) and three dimensional (rings of charge) models: in the former, results converge to steady state conditions found by theory (e.g., Rokhlenko et al. [J. Appl. Phys. 107, 014904 (2010)]) but show oscillatory structure as they do. Surface roughness or geometric features are handled using a ring of charge model, from which the image charges are found and used to modify the apex field and emitted current. The roughness model is shown to have additional constraints related to the discrete nature of electron charge. The ability of a unit cell model to treat field emitter structures and incorporate surface roughness effects inside a beam optics code is assessed.

  8. Internal charge transfer based ratiometric interaction of anionic surfactant with calf thymus DNA bound cationic surfactant: Study I

    Science.gov (United States)

    Mukherjee, Abhijit; Chaudhuri, Tandrima; Moulik, Satya Priya; Banerjee, Manas

    2016-01-01

    Cetyl trimethyl ammonium bromide (CTAB) binds calf thymus (ct-) DNA like anionic biopolymers electrostatically and established equilibrium both in the ground as well as in excited state in aqueous medium at pH 7. Anionic sodium dodecyl sulfate (SDS) does not show even hydrophobic interaction with ct-DNA at low concentration. On contrary, SDS can establish well defined equilibrium with DNA bound CTAB in ground state where the same CTAB-DNA isosbestic point reappears. First report of internal charge transfer (ICT) based binding of CTAB with ct-DNA as well as ICT based interaction of anionic SDS with DNA bound CTAB that shows dynamic quenching contribution also. The reappearance of anodic peak and slight increase in cathodic peak current with increasing concentration (at lower range) of anionic SDS, possibly reflect the release of CTAB from DNA bound CTAB by SDS.

  9. Internal charge transfer based ratiometric interaction of anionic surfactant with calf thymus DNA bound cationic surfactant: Study I.

    Science.gov (United States)

    Mukherjee, Abhijit; Chaudhuri, Tandrima; Moulik, Satya Priya; Banerjee, Manas

    2016-01-01

    Cetyl trimethyl ammonium bromide (CTAB) binds calf thymus (ct-) DNA like anionic biopolymers electrostatically and established equilibrium both in the ground as well as in excited state in aqueous medium at pH 7. Anionic sodium dodecyl sulfate (SDS) does not show even hydrophobic interaction with ct-DNA at low concentration. On contrary, SDS can establish well defined equilibrium with DNA bound CTAB in ground state where the same CTAB-DNA isosbestic point reappears. First report of internal charge transfer (ICT) based binding of CTAB with ct-DNA as well as ICT based interaction of anionic SDS with DNA bound CTAB that shows dynamic quenching contribution also. The reappearance of anodic peak and slight increase in cathodic peak current with increasing concentration (at lower range) of anionic SDS, possibly reflect the release of CTAB from DNA bound CTAB by SDS.

  10. Ionic Surfactant Binding to pH-Responsive Polyelectrolyte Brush-Grafted Nanoparticles in Suspension and on Charged Surfaces.

    Science.gov (United States)

    Riley, John K; An, Junxue; Tilton, Robert D

    2015-12-29

    The interactions between silica nanoparticles grafted with a brush of cationic poly(2-(dimethylamino) ethyl methacrylate) (SiO2-g-PDMAEMA) and anionic surfactant sodium dodecyl sulfate (SDS) is investigated by dynamic light scattering, electrophoretic mobility, quartz crystal microbalance with dissipation, ellipsometry, and atomic force microscopy. SiO2-g-PDMAEMA exhibits pH-dependent charge and size properties which enable the SDS binding to be probed over a range of electrostatic conditions and brush conformations. SDS monomers bind irreversibly to SiO2-g-PDMAEMA at low surfactant concentrations (∼10(-4) M) while exhibiting a pH-dependent threshold above which cooperative, partially reversible SDS binding occurs. At pH 5, SDS binding induces collapse of the highly charged and swollen brush as observed in the bulk by DLS and on surfaces by QCM-D. Similar experiments at pH 9 suggest that SDS binds to the periphery of the weakly charged and deswollen brush and produces SiO2-g-PDMAEMA/SDS complexes with a net negative charge. SiO2-g-PDMAEMA brush collapse and charge neutralization is further confirmed by colloidal probe AFM measurements, where reduced electrosteric repulsions and bridging adhesion are attributed to effects of the bound SDS. Additionally, sequential adsorption schemes with SDS and SiO2-g-PDMAEMA are used to enhance deposition relative to SiO2-g-PDMAEMA direct adsorption on silica. This work shows that the polyelectrolyte brush configuration responds in a more dramatic fashion to SDS than to pH-induced changes in ionization, and this can be exploited to manipulate the structure of adsorbed layers and the corresponding forces of compression and friction between opposing surfaces.

  11. Nanocontact electrification: patterned surface charges affecting adhesion, transfer, and printing.

    Science.gov (United States)

    Cole, Jesse J; Barry, Chad R; Knuesel, Robert J; Wang, Xinyu; Jacobs, Heiko O

    2011-06-01

    Contact electrification creates an invisible mark, overlooked and often undetected by conventional surface spectroscopic measurements. It impacts our daily lives macroscopically during electrostatic discharge and is equally relevant on the nanoscale in areas such as soft lithography, transfer, and printing. This report describes a new conceptual approach to studying and utilizing contact electrification beyond prior surface force apparatus and point-contact implementations. Instead of a single point contact, our process studies nanocontact electrification that occurs between multiple nanocontacts of different sizes and shapes that can be formed using flexible materials, in particular, surface-functionalized poly(dimethylsiloxane) (PDMS) stamps and other common dielectrics (PMMA, SU-8, PS, PAA, and SiO(2)). Upon the formation of conformal contacts and forced delamination, contacted regions become charged, which is directly observed using Kelvin probe force microscopy revealing images of charge with sub-100-nm lateral resolution. The experiments reveal chemically driven interfacial proton exchange as the dominant charging mechanism for the materials that have been investigated so far. The recorded levels of uncompensated charges approach the theoretical limit that is set by the dielectric breakdown strength of the air gap that forms as the surfaces are delaminated. The macroscopic presence of the charges is recorded using force-distance curve measurements involving a balance and a micromanipulator to control the distance between the delaminated objects. Coulomb attraction between the delaminated surfaces reaches 150 N/m(2). At such a magnitude, the force finds many applications. We demonstrate the utility of printed charges in the fields of (i) nanoxerography and (ii) nanotransfer printing whereby the smallest objects are ∼10 nm in diameter and the largest objects are in the millimeter to centimeter range. The printed charges are also shown to affect the electronic

  12. Regular and irregular deswelling of polyacrylate and hyaluronate gels induced by oppositely charged surfactants.

    Science.gov (United States)

    Nilsson, Peter; Hansson, Per

    2008-09-15

    The deswelling kinetics of macroscopic polyacrylate (PA) gels in solutions of dodecyltrimethylammonium bromide (C(12)TAB) and cetyltrimethylammonium bromide (C(16)TAB), with and without added sodium bromide, as well as hyaluronate (HA) gels in solutions of cetylpyridinium chloride (CPC) are investigated. Additional data are also provided by small-angle X-ray scattering and microgel experiments. The purpose is to study the deswelling behavior of (1) regularly deswelling gels, for which the deswelling is successfully described using a core/shell model earlier employed for microgels, and (2) irregularly deswelling gels, where the gel turns into a balloon-like structure with a dense outer layer surrounding a liquid-filled core. For regularly deswelling gels, the deswelling of PA/C(12)TAB is found to be controlled by diffusion through both stagnant layer and collapsed surface phase, while for PA/C(16)TAB it is found to be controlled mainly by the latter. The difference in deswelling rate between the two is found to correspond to the difference in surfactant diffusion coefficient in the surface phase. Factors found to promote irregular deswelling, described as balloon formation, are rapid surfactant binding, high bromide and surfactant concentration, longer surfactant chain length, and macroscopic gel size. Scattering data indicating a cubic structure for HA/CPC complexes are reported. PMID:18565536

  13. Chemical Behavior of Cadmium in Purple Soil as Affected by Surfactants and EDTA

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-Cheng; XIONG Zhi-Ting; DONG Shan-Yan

    2006-01-01

    A soil batch experiment was conducted to investigate both separate and compound effects of three types of surfactants:anionic dodecylbenzene sulfonic acid sodiumsalt (DBSS), cationic cetyltrimethylammonium bromide (CTAB), and nonionic nonyl phenol polyethyleneoxy ether (TX-100), as well as ethylenediaminetetraacetic acid (EDTA) on cadmium solubility, sorption kinetics, and sorption-desorption behavior in purple soil. The results indicated that both individual application of the three types of surfactants and surfactants combined with EDTA could stimulate Cd extraction from the soil with a general effectiveness ranking of EDTA/TX-100 > EDTA/DBSS > EDTA/CTAB > EDTA > TX-100 >DBSS > CTAB. Further study showed that the compound application of surfactants and EDTA had stronger (P < 0.05)effects on Cd solubility than those added individually. The application of surfactants and EDTA to purple soil (P < 0.05)decreased the proportion of Cd sorbed, while their effectiveness ranking was similar to that of enhanced solubilization. The sorption kinetics of Cd in purple soil was best described by the double-constant equation, while the Freundlich equation gave an excellent fit to the sorption isotherm curves. Therefore, surfactant-enhanced remediation of Cd contaminated soil is feasible and further research should be conducted.

  14. Factors Affecting Sensitivity of Variable Charge Soils to Acid Rain

    Institute of Scientific and Technical Information of China (English)

    WANGJING-HUA

    1995-01-01

    The sensitivity of a large number of variable charge soils to acid rain was evaluated through examining pH-H2SO4 input curves.Two derivative parameters,the consumption of hydrogen ions by the soil and the acidtolerant limit as defined as the quantity of sulfuric acid required to bring the soil to pH 3.5 in a 0.001mol L-1 Ca(NO3)2 solution,were used.The sensitivity of variable charge soils was higher than that of constant charge soils,due to the predominance of kaolinite in clay mineralogical composition.Among these soils the sensitivity was generally of the order lateritic red soil>red soil> latosol.For a given type of soil within the same region the sensitivity was affected by parent material,due to differences in clay minerals and texture.The sensitivity of surface soil may be lower or higher than that of subsiol,depending on whether organic matter or texture plays the dominant role in determining the buffering capacity.Paddy soils consumed more acid within lower range of acid input when compared with upland soils,due to the presence of more exchangeable bases,but consumed less acid within higher acid input range,caused by the decrease in clay content.

  15. Surfactant functionalization induces robust, differential adhesion of tumor cells and blood cells to charged nanotube-coated biomaterials under flow.

    Science.gov (United States)

    Mitchell, Michael J; Castellanos, Carlos A; King, Michael R

    2015-07-01

    The metastatic spread of cancer cells from the primary tumor to distant sites leads to a poor prognosis in cancers originating from multiple organs. Increasing evidence has linked selectin-based adhesion between circulating tumor cells (CTCs) and endothelial cells of the microvasculature to metastatic dissemination, in a manner similar to leukocyte adhesion during inflammation. Functionalized biomaterial surfaces hold promise as a diagnostic tool to separate CTCs and potentially treat metastasis, utilizing antibody and selectin-mediated interactions for cell capture under flow. However, capture at high purity levels is challenged by the fact that CTCs and leukocytes both possess selectin ligands. Here, a straightforward technique to functionalize and alter the charge of naturally occurring halloysite nanotubes using surfactants is reported to induce robust, differential adhesion of tumor cells and blood cells to nanotube-coated surfaces under flow. Negatively charged sodium dodecanoate-functionalized nanotubes simultaneously enhanced tumor cell capture while negating leukocyte adhesion, both in the presence and absence of adhesion proteins, and can be utilized to isolate circulating tumor cells regardless of biomarker expression. Conversely, diminishing nanotube charge via functionalization with decyltrimethylammonium bromide both abolished tumor cell capture while promoting leukocyte adhesion.

  16. Shear-driven redistribution of surfactant affects enzyme activity in well-mixed femtoliter droplets

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Pat [ORNL

    2009-01-01

    We developed a microfluidic platform for splitting well-mixed, femtoliter-volume droplets from larger water-in-oil plugs, where the sizes of the daughter droplets were not limited by channel width. These droplets were separated from mother plugs at a microfabricated T-junction, which enabled the study of how increased confinement affected enzyme kinetics in droplets 4-10 {mu}m in diameter. Initial rates for enzyme catalysis in the mother plugs and the largest daughter drops were close to the average bulk rate, while the rates in smaller droplets decreased linearly with increasing surface to volume ratio. Rates in the smallest droplets decreased by a factor of 4 compared to the bulk rate. Traditional methods for detecting nonspecific adsorption at the water-oil interface were unable to detect evidence of enzyme adsorption, including pendant drop tensiometry, laser scanning confocal microscopy of drops containing labeled proteins in microemulsions, and epifluorescence microscopy of plugs and drops generated on-chip. We propose the slowing of enzyme reaction kinetics in the smaller droplets was the result of increased adsorption and inactivation of enzymes at the water-oil interface arising from transient interfacial shear stresses imparted on the daughter droplets as they split from the mother plugs and passed through the constricted opening of the T-junction. Such stresses are known to modulate the interfacial area and density of surfactant molecules that can passivate the interface. Bright field images of the splitting processes at the junction indicate that these stresses scaled with increasing surface to volume ratios of the droplets but were relatively insensitive to the average flow rate of plugs upstream of the junction.

  17. Interactions of cellulose-based comb polyelectrolyte with oppositely charged surfactant dodecyl-trimethylammonium bromide.

    Science.gov (United States)

    Pan, Hong; Chen, Pei-Yao; Liu, Hai-Xue; Chen, Yu; Wei, Yu-Ping; Zhang, Ming-Jie; Cheng, Fa

    2012-07-01

    A comb ethyl cellulose-g-sodium polyacrylate (EC-g-SPA) was synthesized by atom transfer radical polymerization. The amphiphilic properties of the EC-g-SPA were determined by surface tension measurements. The interactions between EC-g-SPA and the cationic surfactant dodecyl-trimethylammonium bromide (C12TAB) were investigated by surface tension, turbidity, dynamic light scattering and transmission electron microscopy (TEM). The results revealed that the critical aggregate concentration (CAC) of the complexes was 0.8mM. When the C12TAB concentration was lower than the CAC, the hydrodynamic diameter (Dh) of the complexes decreased as the surfactant concentration was increased. As the C12TAB concentration was increased above the CAC, the Dh initially increased slightly, followed by a sharp decrease. The changes in the sizes and shapes of the aggregates were studied by TEM. The interactions between two species and the structure of the EC-g-SPA/C12TAB complexes were also discussed. PMID:24750878

  18. Studies on the inclusion complexation between intramolecular charge transfer probe trans-ethyl p-(dimethylamino) cinamate and β-cyclodextrin in presence of ionic and nonionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, T. Sanjoy [Department of Chemistry, Assam University, Silchar – 788011 (India); Mitra, Sivaprasad, E-mail: smitra@nehu.ac.in [Department of Chemistry, North-Eastern Hill University, Shillong 793022 (India)

    2013-11-15

    The intramolecular charge transfer (ICT) fluorescence of trans-ethyl p-(dimethylamino) cinamate (EDAC) is used to monitor the complexation behavior of this probe with surfactants/β-CD by steady state and picosecond time-resolved fluorescence spectroscopy. The ICT fluorescence band intensity was found to increase with concomitant blue shift in presence of surfactants/β-CD. The encapsulation behavior was further characterized by increase in emission yield as well as lifetime values. Detailed analyses of the spectroscopic data indicate that the probe forms 1:1 complex with β-CD in aqueous medium. However, in presence of surfactants, 1:1 complex is formed below the critical micelle concentration (cmc) value; whereas, 1:2 complexes are formed under fully micellized condition. -- Highlights: • Steady state and time resolved fluorescence on spectral modulation of EDAC in presence of surfactant and CD. • Estimation of local physico-chemical properties of micro-heterogeneous environment. • Estimation of binding constants of EDAC in different assemblies by fluorescence titration. • Fluorescence studies in mixed CD-surfactant system. • Change of binding stoichiometry from 1:1 in homogeneous environment to 1:2 in mixed CD-surfactant system.

  19. Modification of the charge transport properties of the copper phthalocyanine/poly(vinyl alcohol) interface using cationic or anionic surfactant for field-effect transistor performance enhancement

    International Nuclear Information System (INIS)

    We report on the performance enhancement of organic field-effect transistors prepared using cross-linked poly(vinyl alcohol) as gate dielectric and copper phthalocyanine as channel semiconductor through gate dielectric surface treatment. The gate dielectric surface was treated using either a cationic surfactant, hexadecyltrimethylammonium bromide (CTAB), or an anionic surfactant, sodium dodecyl sulfate (SDS). We determined the charge-carrier field-effect mobility ( μ FET) in these transistors as a function of the effective channel thickness in the channel bottleneck, near to the transistor source. When compared to the untreated devices, in the devices treated with CTAB or SDS, the channel formation occurs at lower gate voltage and the carrier mobility in the thinnest channel region, corresponding to the immediate vicinity of the insulator/semiconductor interface, is significantly higher. The surfactant treatment leads to a tenfold increase in μ FET and significant enhancement in capacitance, on/off current ratio and transconductance of the transistor. (paper)

  20. Physiological variables affecting surface film formation by native lamellar body-like pulmonary surfactant particles.

    Science.gov (United States)

    Hobi, Nina; Siber, Gerlinde; Bouzas, Virginia; Ravasio, Andrea; Pérez-Gil, Jesus; Haller, Thomas

    2014-07-01

    Pulmonary surfactant (PS) is a surface active complex of lipids and proteins that prevents the alveolar structures from collapsing and reduces the work of breathing by lowering the surface tension at the alveolar air-liquid interface (ALI). Surfactant is synthesized by the alveolar type II (AT II) cells, and it is stored in specialized organelles, the lamellar bodies (LBs), as tightly packed lipid bilayers. Upon secretion into the alveolar lining fluid, a large fraction of these particles retain most of their packed lamellar structure, giving rise to the term lamellar body like-particles (LBPs). Due to their stability in aqueous media, freshly secreted LBPs can be harvested from AT II cell preparations. However, when LBPs get in contact with an ALI, they quickly and spontaneously adsorb into a highly organized surface film. In the present study we investigated the adsorptive capacity of LBPs at an ALI under relevant physiological parameters that characterize the alveolar environment in homeostatic or in pathological conditions. Adsorption of LBPs at an ALI is highly sensitive to pH, temperature and albumin concentration and to a relatively lesser extent to changes in osmolarity or Ca(2+) concentrations in the physiological range. Furthermore, proteolysis of LBPs significantly decreases their adsorptive capacity confirming the important role of surfactant proteins in the formation of surface active films. PMID:24582711

  1. The dynamic response of a fungal lipase in the presence of charged surfactants

    DEFF Research Database (Denmark)

    Peters, Günther H.J.

    2002-01-01

    Lipases are efficient catalysts for lipolytic reactions and require a lipid interface for optimal activity. To study the effect of small charged lipid aggregates on the behavior of these enzymes, we have performed molecular dynamics simulations on five different systems. The simulations carried out...... environment, protein motions are mainly concentrated in three segments, which are Lys53-Asn63, Ser83-Asn86 and the C-terminus. The former region is structurally conserved in the lipase family and has been proposed to be involved in the activation of lipases. Interestingly, in the presence of the lipid...... molecules these fluctuations are suppressed, which is partly due to the interaction of the C-terminus with the lipid molecules. This may suggest that the C-terminus (which is not conserved in the lipase family) may have an important role in recognizing and binding to different lipid surfaces...

  2. Micellization properties of cardanol as a renewable co-surfactant.

    Science.gov (United States)

    Fontana, Antonella; Guernelli, Susanna; Zaccheroni, Nelsi; Zappacosta, Romina; Genovese, Damiano; De Crescentini, Lucia; Riela, Serena

    2015-09-21

    With the aim to improve the features of surfactant solutions in terms of sustainability and renewability we propose the use of hydrogenated natural and sustainable plant-derived cardanol as an additive to commercial surfactants. In the present study we demonstrated that its addition, in amounts as high as 10%, to commercial surfactants of different charge does not significantly affect surfactant properties. Conversely, the presence of hydrogenated cardanol can strongly affect spectrophotometric determination of CMC if preferential interactions with the dyes used take place. This latter evidence may be profitably exploited in surfactant manufacturing by considering that the concurrent presence of a rigid organic molecule such as Orange OT and 10% hydrogenated cardanol decreases the CMC of CTAB up to 65 times. PMID:26223697

  3. Micellization properties of cardanol as a renewable co-surfactant.

    Science.gov (United States)

    Fontana, Antonella; Guernelli, Susanna; Zaccheroni, Nelsi; Zappacosta, Romina; Genovese, Damiano; De Crescentini, Lucia; Riela, Serena

    2015-09-21

    With the aim to improve the features of surfactant solutions in terms of sustainability and renewability we propose the use of hydrogenated natural and sustainable plant-derived cardanol as an additive to commercial surfactants. In the present study we demonstrated that its addition, in amounts as high as 10%, to commercial surfactants of different charge does not significantly affect surfactant properties. Conversely, the presence of hydrogenated cardanol can strongly affect spectrophotometric determination of CMC if preferential interactions with the dyes used take place. This latter evidence may be profitably exploited in surfactant manufacturing by considering that the concurrent presence of a rigid organic molecule such as Orange OT and 10% hydrogenated cardanol decreases the CMC of CTAB up to 65 times.

  4. Pulmonary surfactant and lung transplantation

    OpenAIRE

    Erasmus, Michiel Elardus

    1997-01-01

    Pulmonary surfactant lowers the surface tension at the air-water interface inside the alveolus. This is achieved by adsorption of surfactant phospholipids at the air-water interface, a process controlled by surfactant-associated proteins, such as SP-A. In this way, surfactant prevents collapse of the alveolus at end expiration, prevents formation of alveolar edema and increases the compliance of the lung. In chapter 1a an overview is given how the normal function of surfactant can be affected...

  5. Factors affecting the design of slow release formulations of herbicides based on clay-surfactant systems. A methodological approach.

    Directory of Open Access Journals (Sweden)

    María Del Carmen Galán-Jiménez

    Full Text Available A search for clay-surfactant based formulations with high percentage of the active ingredient, which can yield slow release of active molecules is described. The active ingredients were the herbicides metribuzin (MZ, mesotrione (MS and flurtamone (FL, whose solubilities were examined in the presence of four commercial surfactants; (i neutral: two berols (B048, B266 and an alkylpolyglucoside (AG6202; (ii cationic: an ethoxylated amine (ET/15. Significant percent of active ingredient (a.i. in the clay/surfactant/herbicide formulations could be achieved only when most of the surfactant was added as micelles. MZ and FL were well solubilized by berols, whereas MS by ET/15. Sorption of surfactants on the clay mineral sepiolite occurred mostly by sorption of micelles, and the loadings exceeded the CEC. Higher loadings were determined for B266 and ET/15. The sorption of surfactants was modeled by using the Langmuir-Scatchard equation which permitted the determination of binding coefficients that could be used for further predictions of the sorbed amounts of surfactants under a wide range of clay/surfactant ratios. A possibility was tested of designing clay-surfactant based formulations of certain herbicides by assuming the same ratio between herbicides and surfactants in the formulations as for herbicides incorporated in micelles in solution. Calculations indicated that satisfactory FL formulations could not be synthesized. The experimental fractions of herbicides in the formulations were in agreement with the predicted ones for MS and MZ. The validity of this approach was confirmed in in vitro release tests that showed a slowing down of the release of a.i. from the designed formulations relative to the technical products. Soil dissipation studies with MS formulations also showed improved bioactivity of the clay-surfactant formulation relative to the commercial one. This methodological approach can be extended to other clay-surfactant systems for

  6. Charged histidine affects alpha-helix stability at all positions in the helix by interacting with the backbone charges.

    OpenAIRE

    Armstrong, K M; Baldwin, R L

    1993-01-01

    To determine whether a charged histidine side chain affects alpha-helix stability only when histidine is close to one end of the helix or also when it is in the central region, we substitute a single histidine residue at many positions in two reference peptides and measure helix stability and histidine pKa. The position of a charged histidine residue has a major effect on helix stability in 0.01 M NaCl: the helix content of a 17-residue peptide is 24% when histidine is at position 3 compared ...

  7. NOS2 Is Critical to the Development of Emphysema in Sftpd Deficient Mice but Does Not Affect Surfactant Homeostasis

    OpenAIRE

    Knudsen, Lars; Atochina-Vasserman, Elena N.; GUO, CHANG-JIANG; Pamela A Scott; Haenni, Beat; Beers, Michael F.; Ochs, Matthias; Gow, Andrew J.

    2014-01-01

    Rationale Surfactant protein D (SP-D) has important immuno-modulatory properties. The absence of SP-D results in an inducible NO synthase (iNOS, coded by NOS2 gene) related chronic inflammation, development of emphysema-like pathophysiology and alterations of surfactant homeostasis. Objective In order to test the hypothesis that SP-D deficiency related abnormalities in pulmonary structure and function are a consequence of iNOS induced inflammation, we generated SP-D and iNOS double knockout m...

  8. NOS2 is critical to the development of emphysema in Sftpd deficient mice but does not affect surfactant homeostasis.

    Directory of Open Access Journals (Sweden)

    Lars Knudsen

    Full Text Available RATIONALE: Surfactant protein D (SP-D has important immuno-modulatory properties. The absence of SP-D results in an inducible NO synthase (iNOS, coded by NOS2 gene related chronic inflammation, development of emphysema-like pathophysiology and alterations of surfactant homeostasis. OBJECTIVE: In order to test the hypothesis that SP-D deficiency related abnormalities in pulmonary structure and function are a consequence of iNOS induced inflammation, we generated SP-D and iNOS double knockout mice (DiNOS. METHODS: Structural data obtained by design-based stereology to quantify the emphysema-like phenotype and disturbances of the intracellular surfactant were correlated to invasive pulmonary function tests and inflammatory markers including activation markers of alveolar macrophages and compared to SP-D (Sftpd(-/- and iNOS single knockout mice (NOS2(-/- as well as wild type (WT littermates. MEASUREMENTS AND RESULTS: DiNOS mice had reduced inflammatory cells in BAL and BAL-derived alveolar macrophages showed an increased expression of markers of an alternative activation as well as reduced inflammation. As evidenced by increased alveolar numbers and surface area, emphysematous changes were attenuated in DiNOS while disturbances of the surfactant system remained virtually unchanged. Sftpd(-/- demonstrated alterations of intrinsic mechanical properties of lung parenchyma as shown by reduced stiffness and resistance at its static limits, which could be corrected by additional ablation of NOS2 gene in DiNOS. CONCLUSION: iNOS related inflammation in the absence of SP-D is involved in the emphysematous remodeling leading to a loss of alveoli and associated alterations of elastic properties of lung parenchyma while disturbances of surfactant homeostasis are mediated by different mechanisms.

  9. Neural Activation Underlying Cognitive Control in the Context of Neutral and Affectively Charged Pictures in Children

    Science.gov (United States)

    Lamm, Connie; White, Lauren K.; McDermott, Jennifer Martin; Fox, Nathan A.

    2012-01-01

    The neural correlates of cognitive control for typically developing 9-year-old children were examined using dense-array ERPs and estimates of cortical activation (LORETA) during a go/no-go task with two conditions: a neutral picture condition and an affectively charged picture condition. Activation was estimated for the entire cortex after which…

  10. Binding of cationic surfactants to humic substances

    NARCIS (Netherlands)

    Ishiguro, M.; Tan, W.; Koopal, L.K.

    2007-01-01

    Commercial surfactants are introduced into the environment either through waste products or site-specific contamination. The amphiphilic nature of both surfactants and humic substances (HS) leads to their mutual attraction especially when surfactant and HS are oppositely charged. Binding of the cati

  11. X-ray photoelectron spectroscopy and positron annihilation spectroscopy analysis of surfactant affected FePt spintronic films

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Chun, E-mail: fengchun@ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Li, Xujing; Liu, Fen; Wang, Qiang [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Yang, Meiyin [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); The Center for Micromagnetics and Information Technologies (MINT) and Department of Electrical and Computer Engineering, University of Minnesota, 200 Union St SE, Minneapolis, MN 55455 (United States); Zhao, Chongjun [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Gong, Kui [Centre for the Physics of Materials and Department of Physics, McGill University, Montreal, Quebec, H3A2T8 Canada (Canada); Zhang, Peng; Wang, Bao-Yi; Cao, Xing-Zhong [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Yu, Guanghua [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)

    2014-07-01

    This paper reports the effects of surfactant Bi atomic diffusion on the microstructure evolution and resulted property manipulation in FePt spintronic films by the quantitative studies of X-ray photoelectron spectroscopy and positron annihilation spectroscopy. The defect density in the FePt layer, which was tunable by varying the thermal treatment temperatures, was found to be remarkably enhanced correlated with the Bi atomic diffusion behavior. The observed defect density evolution substantially favors Fe(Pt) atomic migrations and lowers the energy barrier for atomic ordering transition, resulting in a great improvement of hard magnet property of the films.

  12. Effects of Concentration and Conformation of Surfactants on Phase Separation of Surfactant-Water-Oil Systems

    Institute of Scientific and Technical Information of China (English)

    袁银权; 邹宪武; 刘昊阳

    2004-01-01

    The effects of surfactants on the phase separation of surfactant-water-oil systems have been investigated by using discontinuous molecular dynamic simulations. The phase separation speed and equilibrium configuration are dependent on the surfactant concentration and conformation. The equilibrium concentration of surfactants at the interface remains constant. With the increasing surfactant concentration, the equilibrium configuration crosses over from the disperse phase to the bicontinuous one. The crossover concentration is estimated. The conformation of the surfactant has little effect on the equilibrium concentration of surfactants at the interface,while it affects the equilibrium configuration after phase separation.

  13. A spectroscopic study of factors affecting charge transfer at organo-metallic interfaces

    CERN Document Server

    Tucker, C E

    2001-01-01

    polydiacetylene and omega-tricosenoic acid LB films. The resulting analyses have allowed comparison of charge trapping within the different bulk films and also at the film to substrate interface. In addition to DBARS, Fourier Transform Infra-red (FTIR) and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopies have been used to investigate the factors affecting the carboxylic acid group at the head of the LB molecule and the role this plays in charge transport across the organo-metallic boundary. The properties of organic films produced by the Langmuir-Blodgett (LB) technique have become more widely known in the last few decades, as the variety of organic molecules suitable for this method of production has increased. One class of LB molecule receiving particular attention has been that of conjugated polymers. These organic materials exhibit an anisotropic semi-conductor like behavior along the polymer chain, making them suitable candidate materials for use in molecular electronic devices. However,...

  14. Cationic versus anionic surfactant in tuning the structure and interaction of nanoparticle, protein, and surfactant complexes.

    Science.gov (United States)

    Mehan, Sumit; Aswal, Vinod K; Kohlbrecher, Joachim

    2014-08-26

    The structure and interaction in complexes of anionic Ludox HS40 silica nanoparticle, anionic bovine serum albumin (BSA) protein, and cationic dodecyl trimethylammonium bromide (DTAB) surfactant have been studied using small-angle neutron scattering (SANS). The results are compared with similar complexes having anionic sodium dodecyl sulfate (SDS) surfactant (Mehan, S; Chinchalikar, A. J.; Kumar, S.; Aswal, V. K.; Schweins, R. Langmuir 2013, 29, 11290). In both cases (DTAB and SDS), the structure in nanoparticle-protein-surfactant complexes is predominantly determined by the interactions of the individual two-component systems. The nanoparticle-surfactant (mediated through protein-surfactant complex) and protein-surfactant interactions for DTAB, but nanoparticle-protein (mediated through protein-surfactant complex) and protein-surfactant interactions for SDS, are found to be responsible for the resultant structure of nanoparticle-protein-surfactant complexes. Irrespective of the charge on the surfactant, the cooperative binding of surfactant with protein leads to micellelike clusters of surfactant formed along the unfolded protein chain. The adsorption of these protein-surfactant complexes for DTAB on oppositely charged nanoparticles gives rise to the protein-surfactant complex-mediated aggregation of nanoparticles (similar to that of DTAB surfactant). It is unlike that of depletion-induced aggregation of nanoparticles with nonadsorption of protein-surfactant complexes for SDS in similarly charged nanoparticle systems (similar to that of protein alone). The modifications in nanoparticle aggregation as well as unfolding of protein in these systems as compared to the corresponding two-component systems have also been examined by selectively contrast matching the constituents.

  15. Surface Deposition and Phase Behavior of Oppositely Charged Polyion–Surfactant Ion Complexes. Delivery of Silicone Oil Emulsions to Hydrophobic and Hydrophilic Surfaces

    OpenAIRE

    Clauzel, Maryline; Johnson, Eric S.; Nylander, Tommy; Panandiker, Rajan K.; Sivik, Mark R.; Piculell, Lennart

    2011-01-01

    The adsorption from mixed polyelectrolyte–surfactant solutions at hydrophobized silica surfaces was investigated by in situ null-ellipsometry, and compared to similar measurements for hydrophilic silica surfaces. Three synthetic cationic copolymers of varying hydrophobicity and one cationic hydroxyethyl cellulose were compared in mixtures with the anionic surfactant sodium dodecylsulfate (SDS) in the absence or presence of a dilute silicone oil emulsion. The adsorption behavior was mapped whi...

  16. Wettability alteration by trimeric cationic surfactant at water-wet/oil-wet mica mineral surfaces

    International Nuclear Information System (INIS)

    The wettability of oil reservoir rock affects the efficiency of the oil recovery process by reducing the capillary force. Methyldodecylbis [2-(dimethyldodecylammonio) ethyl] ammonium tribromide is a trimeric cationic surfactant that contains three dodecyl chains and three quaternary ammonium head groups connected by divinyl groups. The surfactant was synthesized, purified and used as a new wetting alteration agent. This paper focuses on the ability of this trimeric cationic surfactant to alter the wettability of water-wet and oil-wet mica mineral surfaces. The contact angle data of the solid-liquid interface in oil/water/solid three-phase system show that the trimeric cationic surfactant, when compared with single- and double-chain cationic surfactant, is a more effective wetting agent for water-wet and oil-wet mica surfaces at lower concentration. Measurements by atomic force microscopy (AFM) show that the surfactant molecules have formed a monolayer to reverse the wetting properties. On the water-wet surface, the surface is suffused with negative charge, which could attract the cationic head of surfactant, and leave the hydrophobic tails exposed. In contrast, on the oil-wet surface, the hydrophobic tails were attracted by hydrophobic interactions to the oil film between the surfactant and the crude oil. The hydrophilic heads were left outside to form a hydrophilic layer, which could explain the wettable to hydrophilic trend. Alteration to the degree of wettability is mainly dependent on the adsorption areas of the surfactant. The data show that the ability of the trimeric cationic surfactant affect the wettability is independent of surface tension.

  17. Kolliphor surfactants affect solubilization and bioavailability of fenofibrate. Studies of in vitro digestion and absorption in rats

    DEFF Research Database (Denmark)

    Berthelsen, Ragna; Holm, Rene; Jacobsen, Jette;

    2015-01-01

    Selection of excipients for drug formulations requires both intellectual and experimental considerations as many of the used excipients are affected by physiological factors, e.g., they may be digested by pancreatic enzymes in the gastrointestinal tract. In the present paper we have looked...

  18. Surfactant enhanced volumetric sweep efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Harwell, J.H.; Scamehorn, J.F.

    1989-10-01

    Surfactant-enhanced waterflooding is a novel EOR method aimed to improve the volumetric sweep efficiencies in reservoirs. The technique depends upon the ability to induce phase changes in surfactant solutions by mixing with surfactants of opposite charge or with salts of appropriate type. One surfactant or salt solution is injected into the reservoir. It is followed later by injection of another surfactant or salt solution. The sequence of injections is arranged so that the two solutions do not mix until they are into the permeable regions well away from the well bore. When they mix at this point, by design they form a precipitate or gel-like coacervate phase, plugging this permeable region, forcing flow through less permeable regions of the reservoir, improving sweep efficiency. The selectivity of the plugging process is demonstrated by achieving permeability reductions in the high permeable regions of Berea sandstone cores. Strategies were set to obtain a better control over the plug placement and the stability of plugs. A numerical simulator has been developed to investigate the potential increases in oil production of model systems. Furthermore, the hardness tolerance of anionic surfactant solutions is shown to be enhanced by addition of monovalent electrolyte or nonionic surfactants. 34 refs., 32 figs., 8 tabs.

  19. Sugar-based gemini surfactants with pH-dependent aggregation behavior : Vesicle-to-micelle transition, critical micelle concentration, and vesicle surface charge reversal

    NARCIS (Netherlands)

    Johnsson, M; Wagenaar, A; Stuart, MCA; Engberts, JBFN

    2003-01-01

    In a recent report, we presented data on the rich and unusual pH-dependent aggregation behavior of a sugar-based (reduced glucose) gemini surfactant (Johnsson et al. J. Am. Chem. Soc. 2003, 125, 757). In the present study, we extend the previous investigation by introducing a different sugar headgro

  20. Transport of charged Aerosol OT inverse micelles in nonpolar liquids.

    Science.gov (United States)

    Karvar, Masoumeh; Strubbe, Filip; Beunis, Filip; Kemp, Roger; Smith, Ashley; Goulding, Mark; Neyts, Kristiaan

    2011-09-01

    Surfactants such as Aerosol OT (AOT) are commonly used to stabilize and electrically charge nonpolar colloids in devices such as electronic ink displays. The electrical behavior of such devices is strongly influenced by the presence of charged inverse micelles, formed by excess surfactant that does not cover the particles. The presence of charged inverse micelles results in increased conductivity of the solution, affecting both the energy consumption of the device and its switching characteristics. In this work, we use transient current measurements to investigate the electrical properties of suspensions of the surfactant Aerosol OT in dodecane. No particles are added, to isolate the effect of excess surfactant. The measured currents upon application of a voltage step are found to be exponentially decaying, and can be described by an analytical model based on an equivalent electric circuit. This behavior is physically interpreted, first by the high generation rate of charged inverse micelles giving the suspension resistor like properties, and second by the buildup of layers of charged inverse micelles at both electrodes, acting as capacitors. The model explains the measurements over a large range of surfactant concentrations, applied voltages, and device thicknesses. PMID:21728309

  1. HENRY'S LAW CONSTANTS AND MICELLAR PARTITIONING OF VOLATILE ORGANIC COMPOUNDS IN SURFACTANT SOLUTIONS

    Science.gov (United States)

    Partitioning of volatile organic compounds (VOCs) into surfactant micelles affects the apparent vapor-liquid equilibrium of VOCs in surfactant solutions. This partitioning will complicate removal of VOCs from surfactant solutions by standard separation processes. Headspace expe...

  2. Tuning Polyelectrolyte-Surfactant Interactions: Modification of Poly(ethylenimine) with Propylene Oxide and Blocks of Ethylene Oxide.

    Science.gov (United States)

    Penfold, J; Thomas, R K; Li, P; Batchelor, S N; Tucker, I M; Burley, A W

    2016-02-01

    Significantly enhanced adsorption at the air-water interface arises in polyelectrolyte/ionic surfactant mixtures, such as poly(ethylenimine)/sodium dodecyl sulfate (PEI/SDS), down to relatively low surfactant concentrations due to a strong surface interaction between the polyelectrolyte and surfactant. In the region of charge neutralization this can result in precipitation or coacervation and give rise to undesirable properties in many applications. Ethoxylation of the PEI can avoid precipitation, but can also considerably weaken the interaction. Localization of the ethoxylation can overcome these shortcomings. Further manipulation of the polyelectrolyte-surfactant interaction can be achieved by selective ethoxylation and propoxylation of the PEI amine groups. Neutron reflectivity and surface tension data are presented here which show how the polyelectrolyte-surfactant interaction can be manipulated by tuning the PEI structure. Using deuterium labeled surfactant and polymer the neutron reflectivity measurements provide details of the surface composition and structure of the adsorbed layer. The general pattern of behavior is that at low surfactant concentrations there is enhanced surfactant adsorption due to the strong surface interaction; whereas around the region of the SDS critical micellar concentration, cmc, the surface is partially depleted of surfactant in favor bulk aggregate structures. The results presented here show how these characteristic features of the adsorption are affected by the degree of ethoxylation and propoxylation. Increasing the degree of propoxylation enhances the surfactant adsorption, whereas varying the degree of ethoxylation has a less pronounced effect. In the region of surfactant surface depletion increasing both the degree of ethoxylation and propoxylation result in an increased surface depletion. PMID:26757099

  3. A Review on Progress in QSPR Studies for Surfactants

    OpenAIRE

    Zhengwu Wang; Xiaoyi Zhang; Jiwei Hu

    2010-01-01

    This paper presents a review on recent progress in quantitative structure-property relationship (QSPR) studies of surfactants and applications of various molecular descriptors. QSPR studies on critical micelle concentration (cmc) and surface tension (γ) of surfactants are introduced. Studies on charge distribution in ionic surfactants by quantum chemical calculations and its effects on the structures and properties of the colloids of surfactants are also reviewed. The trends of QSPR studies o...

  4. Investigation and optimization of parameters affecting the multiply charged ion yield in AP-MALDI MS.

    Science.gov (United States)

    Ryumin, Pavel; Brown, Jeffery; Morris, Michael; Cramer, Rainer

    2016-07-15

    Liquid matrix-assisted laser desorption/ionization (MALDI) allows the generation of predominantly multiply charged ions in atmospheric pressure (AP) MALDI ion sources for mass spectrometry (MS) analysis. The charge state distribution of the generated ions and the efficiency of the ion source in generating such ions crucially depend on the desolvation regime of the MALDI plume after desorption in the AP-to-vacuum inlet. Both high temperature and a flow regime with increased residence time of the desorbed plume in the desolvation region promote the generation of multiply charged ions. Without such measures the application of an electric ion extraction field significantly increases the ion signal intensity of singly charged species while the detection of multiply charged species is less dependent on the extraction field. In general, optimization of high temperature application facilitates the predominant formation and detection of multiply charged compared to singly charged ion species. In this study an experimental set-up and optimization strategy is described for liquid AP-MALDI MS which improves the ionization efficiency of selected ion species up to 14 times. In combination with ion mobility separation, the method allows the detection of multiply charged peptide and protein ions for analyte solution concentrations as low as 2fmol/μL (0.5μL, i.e. 1fmol, deposited on the target) with very low sample consumption in the low nL-range. PMID:26827934

  5. Synthesis of high quality MCM-48 with binary cationic-nonionic surfactants.

    Science.gov (United States)

    Zhao, Wei; Li, Quanzhi; Wang, Lina; Chu, Jinglong; Qu, Jinkui; Li, Shaohua; Qi, Tao

    2010-05-18

    Highly ordered MCM-48 was synthesized in the hydrothermal system of a mixture of cationic cetyltrimethylammonium bromide (CTAB) and nonionic poly(ethylene glycol) monooctylphenyl ether (Tx-100) using water glass as the silicon source. The effect of various factors, such as the amount of surfactant, CTAB/Tx-100, Si source, crystallization temperature, and crystallization time, on the synthesis were discussed in detail. The local effective surfactant packing parameter theory and the charge balance theory were used to explain the reason that various factors can affect the product structure reasonably. Especially, the role of Tx-100 was expounded. The optimum synthesis conditions for MCM-48 were obtained.

  6. Aerosol delivery of synthetic lung surfactant

    Directory of Open Access Journals (Sweden)

    Frans J. Walther

    2014-05-01

    Full Text Available Background. Nasal continuous positive airway pressure (nCPAP is a widely accepted technique of non-invasive respiratory support in premature infants with respiratory distress syndrome due to lack of lung surfactant. If this approach fails, the next step is often intubation, mechanical ventilation (MV and intratracheal instillation of clinical lung surfactant. Objective. To investigate whether aerosol delivery of advanced synthetic lung surfactant, consisting of peptide mimics of surfactant proteins B and C (SP-B and SP-C and synthetic lipids, during nCPAP improves lung function in surfactant-deficient rabbits. Methods. Experimental synthetic lung surfactants were produced by formulating 3% Super Mini-B peptide (SMB surfactant, a highly surface active SP-B mimic, and a combination of 1.5% SMB and 1.5% of the SP-C mimic SP-Css ion-lock 1 (BC surfactant, with a synthetic lipid mixture. After testing aerosol generation using a vibrating membrane nebulizer and aerosol conditioning (particle size, surfactant composition and surface activity, we investigated the effects of aerosol delivery of synthetic SMB and BC surfactant preparations on oxygenation and lung compliance in saline-lavaged, surfactant-deficient rabbits, supported with either nCPAP or MV. Results. Particle size distribution of the surfactant aerosols was within the 1–3 µm distribution range and surfactant activity was not affected by aerosolization. At a dose equivalent to clinical surfactant therapy in premature infants (100 mg/kg, aerosol delivery of both synthetic surfactant preparations led to a quick and clinically relevant improvement in oxygenation and lung compliance in the rabbits. Lung function recovered to a greater extent in rabbits supported with MV than with nCPAP. BC surfactant outperformed SMB surfactant in improving lung function and was associated with higher phospholipid values in bronchoalveolar lavage fluid; these findings were irrespective of the type of

  7. The Molecular Era of Surfactant Biology

    OpenAIRE

    Jeffrey A Whitsett

    2014-01-01

    Advances in the physiology, biochemistry, molecular and cell biology of the pulmonary surfactant system transformed the clinical care and outcome of preterm infants with respiratory distress syndrome. The molecular era of surfactant biology provided genetic insights into the pathogenesis of pulmonary disorders, previously termed “idiopathic” that affect newborn infants, children and adults. Knowledge related to the structure and function of the surfactant proteins and their roles in alveolar ...

  8. Polyelectrolyte surfactant aggregates and their deposition on macroscopic surfaces

    CERN Document Server

    Voisin, D

    2002-01-01

    Oppositely charged surfactant and polyelectrolyte are present in hair shampoos and conditioners, together with particles (e.g. anti-dandruff agents for scalp) and droplets (e.g. silicone oil for the hair). These are normally formulated at high surfactant concentrations, beyond the flocculation region for the polyelectrolyte concentration used. However, on dilution with water, during application, flocs are formed which carry the particles and droplets to the scalp and hair. The addition of an anionic surfactant to an aqueous solution of cationic polyelectrolyte, at a given concentration, can lead to the formation of polyelectrolyte-surfactant 'particles', in which the surfactant 'binds' to the polyelectrolyte. This occurs from the critical association concentration (CAC), up to the surfactant concentration corresponding to maximum binding. Within this range of surfactant concentrations, the surfactant bound to the polyelectrolyte is thought to associate to form what might be termed 'internal micelles'. Each po...

  9. Effects of surfactant mixtures, including Corexit 9527, on bacterial oxidation of acetate and alkanes in crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Bruheim, P.; Bredholt, H.; Eimhjellen, K. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Dept. of Biotechnology

    1999-04-01

    Mixtures of nonionic and anionic surfactants, including Corexit 9527, were tested to determine their effects on bacterial oxidation of acetate and alkanes in crude oil by cells pregrown on these substrates. Corexit 9527 inhibited oxidation of the alkanes in crude oil by Acinetobacter calcoaceticus ATCC 31012, while Span 80, a Corexit 9527 constituent, markedly increased the oil oxidation rate. Another Corexit 9257 constituent, the negatively charged dioctyl sulfosuccinate (AOT), strongly reduced the oxidation rate. The combination of Span 80 and AOT increased the rate, but not as much as Span 80 alone increased it, which tentatively explained the negative effect of Corexit 9527. The results of acetate uptake and oxidation experiments indicated that the nonionic surfactants interacted with the acetate uptake system while the anionic surfactant interacted with the oxidation system of the bacteria. The overall effect of Corexit 9527 on alkane oxidation by A. calcoaceticus ATCC 31012 thus seems to be the sum of the independent effects of the individual surfactants in the surfactant mixture. When Rhodococcus sp. strain 094 was used, the alkane oxidation rate decreased to almost zero in the presence of a mixture of Tergitol 15-S-7 and AOT even though the Tergitol 15-S-7 surfactant increased the alkane oxidation rate and AOT did not affect it. This indicated that there was synergism between the two surfactants rather than an additive effect like that observed for A. calcoaceticus ATCC 31012.

  10. Affect of brane thickness on microscopic tidal-charged black holes

    OpenAIRE

    Casadio, Roberto(Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, Bologna, 40126, Italy); Harms, Benjamin; Micu, Octavian

    2010-01-01

    We study the phenomenological implications stemming from the dependence of the tidal charge on the brane thickness $L$ for the evaporation and decay of microscopic black holes. In general, the larger $L$, the longer are the black hole life-times and the greater their maximum mass for those cases in which the black hole can grow. In particular, we again find that tidal-charged black holes might live long enough to escape the detectors and even the gravitational field of the Earth, thus resulti...

  11. Thermally stable surfactants and compositions and methods of use thereof

    Science.gov (United States)

    Chaiko, David J.

    2008-09-02

    There are provided novel thermally stable surfactants for use with fillers in the preparation of polymer composites and nanocomposites. Typically, surfactants of the invention are urethanes, ureas or esters of thiocarbamic acid having a hydrocarbyl group of from 10 to 50 carbons and optionally including an ionizable or charged group (e.g., carboxyl group or quaternary amine). Thus, there are provided surfactants having Formula I: ##STR00001## wherein the variables are as defined herein. Further provided are methods of making thermally stable surfactants and compositions, including composites and nanocomposites, using fillers coated with the surfactants.

  12. High Charge-Carrier Mobility of 2.5 cm(2) V(-1) s(-1) from a Water-Borne Colloid of a Polymeric Semiconductor via Smart Surfactant Engineering.

    Science.gov (United States)

    Cho, Jangwhan; Cheon, Kwang Hee; Ahn, Hyungju; Park, Kwang Hun; Kwon, Soon-Ki; Kim, Yun-Hi; Chung, Dae Sung

    2015-10-01

    Semiconducting polymer nanoparticles dispersed in water are synthesized by a novel method utilizing non-ionic surfactants. By developing a smart surfactant engineering technique involving a selective post-removal process of surfactants, an unprecedentedly high mobility of 2.51 cm(2) V(-1) s(-1) from a water-borne colloid is demonstrated for the first time. PMID:26288123

  13. Switchable Pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a conventional cationic surfactant.

    Science.gov (United States)

    Zhu, Yue; Jiang, Jianzhong; Liu, Kaihong; Cui, Zhenggang; Binks, Bernard P

    2015-03-24

    A stable oil-in-water Pickering emulsion stabilized by negatively charged silica nanoparticles hydrophobized in situ with a trace amount of a conventional cationic surfactant can be rendered unstable on addition of an equimolar amount of an anionic surfactant. The emulsion can be subsequently restabilized by adding a similar trace amount of cationic surfactant along with rehomogenization. This destabilization-stabilization behavior can be cycled many times, demonstrating that the Pickering emulsion is switchable. The trigger is the stronger electrostatic interaction between the oppositely charged ionic surfactants compared with that between the cationic surfactant and the (initially) negatively charged particle surfaces. The cationic surfactant prefers to form ion pairs with the added anionic surfactant and thus desorbs from particle surfaces rendering them surface-inactive. This access to switchable Pickering emulsions is easier than those employing switchable surfactants, polymers, or surface-active particles, avoiding both the complicated synthesis and the stringent switching conditions.

  14. The effects of alkylammonium counterions on the aggregation of fluorinated surfactants and surfactant ionic liquids.

    Science.gov (United States)

    Pottage, Matthew J; Greaves, Tamar L; Garvey, Christopher J; Tabor, Rico F

    2016-08-01

    The effects of organic counterions with varying carbon number on surfactant aggregation have been analysed by coupling perfluorooctanoate surfactant anions with various alkylammonium counterions. Both the degree of substitution (primary to tertiary) and alkyl chain length (0-3 carbons) of the counterions were varied to provide a comprehensive matrix of geometries and lipophilicities. Surface activity was measured using pendant drop tensiometry, while temperature-controlled small-angle neutron scattering was used to probe changes in aggregation morphology. It was found that the use of such alkylammonium counterions resulted in a strong preference for bilayer formation even at low surfactant concentration (separation wherein a surfactant-rich lamellar phase coexists with a dilute micellar phase. The results indicate that aggregation is controlled by a delicate balance of counterion size, hydrophilicity and diffuseness of charge, providing new methods for the subtle control of surfactant solutions. PMID:27156087

  15. Thermally cleavable surfactants

    Science.gov (United States)

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  16. Modulation of pyridinium cationic lipid-DNA complex properties by pyridinium gemini surfactants and its impact on lipoplex transfection properties.

    Science.gov (United States)

    Sharma, Vishnu Dutt; Lees, Julia; Hoffman, Nicholas E; Brailoiu, Eugen; Madesh, Muniswamy; Wunder, Stephanie L; Ilies, Marc A

    2014-02-01

    The study presents the effects of blending a cationic gemini surfactant into cationic lipid bilayers and its impact on the plasmid DNA compaction and delivery process. Using nanoDSC, dynamic light scattering, zeta potential, and electrophoretic mobility measurements, together with transfection (2D- and 3D-) and viability assays, we identified the main physicochemical parameters of the lipid bilayers, liposomes, and lipoplexes that are affected by the gemini surfactant addition. We also correlated the cationic bilayer composition with the dynamics of the DNA compaction process and with transfection efficiency, cytotoxicity, and the internalization mechanism of the resultant nucleic acid complexes. We found that the blending of gemini surfactant into the cationic bilayers fluidized the supramolecular assemblies, reduced the amount of positive charge required to fully compact the plasmid DNA and, in certain cases, changed the internalization mechanism of the lipoplexes. The transfection efficiency of select ternary lipoplexes derived from cationic gemini surfactants and lipids was several times superior to the transfection efficiency of corresponding binary lipoplexes, also surpassing standard transfection systems. The overall impact of gemini surfactants into the formation and dynamic of cationic bilayers was found to depend heavily on the presence of colipids, their nature, and amount present in lipoplexes. The study confirmed the possibility of combining the specific properties of pyridinium gemini surfactants and cationic lipids synergistically to obtain efficient synthetic transfection systems with negligible cytotoxicity useful for therapeutic gene delivery. PMID:24377350

  17. Dissolution of Aluminum in Variably Charged Soils as Affected by Low-Molecular-Weight Organic Acids

    Institute of Scientific and Technical Information of China (English)

    LI Jiu-Yu; XU Ren-Kou; JI Guo-Liang

    2005-01-01

    Low-molecular-weight (LMW) organic acids exist widely in soils and play an important role in soil processes such as mineral weathering, nutrient mobilization and Al detoxification. In this research, a batch experiment was conducted to examine the effects of LMW organic acids on dissolution of aluminum in two variably charged soils, an Ultisol and an Oxisol. The results showed that the LMW organic acids enhanced the dissolution of Al in the two investigated soils in the following order: citric > oxalic > malonic > malic > tartaric > salicylic > lactic > maleic. This was generally in agreement with the magnitude of the stability constants for the Al-organic complexes. The effects of LMW organic acids on Al dissolution were greater in the Ultisol than in the Oxisol as compared to their controls. Also, the accelerating effects of citric and oxalic acids on dissolution of Al increased with an increase in pH, while the effects of lactic and salicylic acids decreased. Additionally, when the organic acid concentration was less than 0.2 mmol L-1, the dissolution of Al changed little with increase in acid concentration. However, when the organic acid concentration was greater than 0.2 mmol L-1,the dissolution of Al increased with increase in acid concentration. In addition to the acid first dissociation constant and stability constant of Al-organic complexes, the promoting effects of LMW organic acids on dissolution of Al were also related to their sorption-desorption equilibrium in the soils.

  18. Predictive model of cationic surfactant binding to humic substances

    NARCIS (Netherlands)

    Ishiguro, M.; Koopal, L.K.

    2011-01-01

    The humic substances (HS) have a high reactivity with other components in the natural environment. An important factor for the reactivity of HS is their negative charge. Cationic surfactants bind strongly to HS by electrostatic and specific interaction. Therefore, a surfactant binding model is devel

  19. A study of surfactant-assisted waterflooding

    Energy Technology Data Exchange (ETDEWEB)

    Scamehorn, J F; Harwell, J H

    1990-09-01

    In surfactant-assisted waterflooding, a surfactant slug is injected into a reservoir, followed by a brine spacer, followed by second surfactant slug. The charge on the surfactant in the first slug has opposite sign to that in the second slug. When the two slugs mix in the reservoir, a precipitate or coacervate is formed which plugs the permeable region of the reservoir. Subsequently injected water or brine is forced through the low permeability region of the reservoir, increasing sweep efficiency of the waterflood, compared to a waterflood not using surfactants. In this part of the work, two major tasks are performed. First, core floods are performed with oil present to demonstrate the improvement in incremental oil production, as well as permeability modification. Second, a reservoir simulation model will be proposed to further delineate the optimum strategy for implementation of the surfactant-assisted waterflooding, as well as indicate the reservoir types for which it would be most effective. Surfactants utilized were sodium dodecyl sulfate and dodecyl pyridinium chloride. 44 refs., 17 figs., 3 tabs.

  20. Adsorption of cationic surfactants on silica surface: 2. Comparison of theory with experiment

    NARCIS (Netherlands)

    Goloub, T.P.; Koopal, L.K.

    2004-01-01

    Possible application of the SCFA lattice model to describe the adsorption of ionic surfactants on the surface whose charge and potential can be changed under the effect of adsorbing surfactant was theoretically studied. Calculated isotherms of surfactant adsorption were compared with experimental ad

  1. Affectivity

    OpenAIRE

    Stenner, Paul; Greco, Monica

    2013-01-01

    The concept of affectivity has assumed central importance in much recent scholarship, and many in the social sciences and humanities now talk of an ‘affective turn’. The concept of affectivity at play in this ‘turn’ remains, however, somewhat vague and slippery. Starting with Silvan Tomkins’ influential theory of affect, this paper will explore the relevance of the general assumptions (or ‘utmost abstractions’) that inform thinking about affectivity. The technological and instrumentalist char...

  2. Charge and geometry of residues in the loop 2 β hairpin differentially affect agonist and ethanol sensitivity in glycine receptors.

    Science.gov (United States)

    Perkins, Daya I; Trudell, James R; Asatryan, Liana; Davies, Daryl L; Alkana, Ronald L

    2012-05-01

    Recent studies highlighted the importance of loop 2 of α1 glycine receptors (GlyRs) in the propagation of ligand-binding energy to the channel gate. Mutations that changed polarity at position 52 in the β hairpin of loop 2 significantly affected sensitivity to ethanol. The present study extends the investigation to charged residues. We found that substituting alanine with the negative glutamate at position 52 (A52E) significantly left-shifted the glycine concentration response curve and increased sensitivity to ethanol, whereas the negative aspartate substitution (A52D) significantly right-shifted the glycine EC₅₀ but did not affect ethanol sensitivity. It is noteworthy that the uncharged glutamine at position 52 (A52Q) caused only a small right shift of the glycine EC₅₀ while increasing ethanol sensitivity as much as A52E. In contrast, the shorter uncharged asparagine (A52N) caused the greatest right shift of glycine EC₅₀ and reduced ethanol sensitivity to half of wild type. Collectively, these findings suggest that charge interactions determined by the specific geometry of the amino acid at position 52 (e.g., the 1-Å chain length difference between aspartate and glutamate) play differential roles in receptor sensitivity to agonist and ethanol. We interpret these results in terms of a new homology model of GlyR based on a prokaryotic ion channel and propose that these mutations form salt bridges to residues across the β hairpin (A52E-R59 and A52N-D57). We hypothesize that these electrostatic interactions distort loop 2, thereby changing agonist activation and ethanol modulation. This knowledge will help to define the key physical-chemical parameters that cause the actions of ethanol in GlyRs.

  3. Macroscopic modelling of the surface tension of polymer-surfactant systems

    OpenAIRE

    Bell, C. G.; Breward, C. J. W.; Howell, P. D.; Penfold, J; Thomas, R.K

    2007-01-01

    Polymer-surfactant mixtures are increasingly being used in a wide range of applications. Weakly-interacting systems, such as SDS/PEO and SDS/PVP, comprise ionic surfactants and neutral polymers, while strongly-interacting systems, such as SDS/POLYDMDAAC and C12TAB/NaPSS, comprise ionic surfactants and oppositely charged ionic polymers. The complex nature of interactions in the mixtures leads to interesting and surprising surface tension profiles as the concentrations of polymer and surfactant...

  4. Lung surfactants and different contributions to thin film stability.

    Science.gov (United States)

    Hermans, Eline; Bhamla, M Saad; Kao, Peter; Fuller, Gerald G; Vermant, Jan

    2015-11-01

    The surfactant lining the walls of the alveoli in the lungs increases pulmonary compliance and prevents collapse of the lung at the end of expiration. In premature born infants, surfactant deficiency causes problems, and lung surfactant replacements are instilled to facilitate breathing. These pulmonary surfactants, which form complex structured fluid-fluid interfaces, need to spread with great efficiency and once in the alveolus they have to form a thin stable film. In the present work, we investigate the mechanisms affecting the stability of surfactant-laden thin films during spreading, using drainage flows from a hemispherical dome. Three commercial lung surfactant replacements Survanta, Curosurf and Infasurf, along with the phospholipid dipalmitoylphosphatidylcholine (DPPC), are used. The surface of the dome can be covered with human alveolar epithelial cells and experiments are conducted at the physiological temperature. Drainage is slowed down due to the presence of all the different lung surfactant replacements and therefore the thin films show enhanced stability. However, a scaling analysis combined with visualization experiments demonstrates that different mechanisms are involved. For Curosurf and Infasurf, Marangoni stresses are essential to impart stability and interfacial shear rheology does not play a role, in agreement with what is observed for simple surfactants. Survanta, which was historically the first natural surfactant used, is rheologically active. For DPPC the dilatational properties play a role. Understanding these different modes of stabilization for natural surfactants can benefit the design of effective synthetic surfactant replacements for treating infant and adult respiratory disorders. PMID:26307946

  5. Surfactant administration in neonates: A review of delivery methods

    OpenAIRE

    Nouraeyan, Nina; Lambrinakos-Raymond, Alicia; Leone, Marisa; Sant’Anna, Guilherme

    2014-01-01

    Surfactant has revolutionized the treatment of respiratory distress syndrome and some other respiratory conditions that affect the fragile neonatal lung. Despite its widespread use, the optimal method of surfactant administration in preterm infants has yet to be clearly determined. The present article reviews several aspects of administration techniques that can influence surfactant delivery into the pulmonary airways: the bolus volume, injection rate, gravity and orientation, ventilation str...

  6. Surfactant phospholipid metabolism

    OpenAIRE

    Agassandian, Marianna; Mallampalli, Rama K.

    2012-01-01

    Pulmonary surfactant is essential for life and is comprised of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant compone...

  7. Surfactants in tribology

    CERN Document Server

    Biresaw, Girma

    2014-01-01

    Surface science and tribology play very critical roles in many industries. Manufacture and use of almost all consumer and industrial products rely on the application of advanced surface and tribological knowledge. The fourth in a series, Surfactants in Tribology, Volume 4 provides an update on research and development activities connecting surfactants and tribological phenomena. Written by renowned subject matter experts, the book demonstrates how improved design of surfactants can be harnessed to control tribological phenomena. Profusely illustrated and copiously referenced, the chapters also

  8. Interaction of photosensitive surfactant with DNA and poly acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zakrevskyy, Yuriy, E-mail: yuriy.zakrevskyy@fh-koeln.de; Paasche, Jens; Lomadze, Nino; Santer, Svetlana, E-mail: santer@uni-potsdam.de [Experimental Physics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam (Germany); Cywinski, Piotr; Cywinska, Magdalena; Reich, Oliver; Löhmannsröben, Hans-Gerd [Physical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam (Germany)

    2014-01-28

    In this paper, we investigate interactions and phase transitions in polyelectrolyte-surfactant complexes formed between a cationic azobenzene-containing surfactant and two types of polyelectrolytes: natural (DNA) or synthetic (PAA: poly acrylic acid). The construction of a phase diagram allowed distancing between four major phases: extended coil conformation, colloidally stable compacted globules, colloidal instability range, and surfactant-stabilized compact state. Investigation on the complexes’ properties in different phases and under irradiation with UV light provides information about the role of the surfactant's hydrophobic trans isomers both in the formation and destruction of DNA and PAA globules as well as in their colloidal stabilization. The trans isomer shows much stronger affinity to the polyelectrolytes than the hydrophilic cis counterpart. There is no need for complete compensation of the polyelectrolyte charges to reach the complete compaction. On contrary to the findings previously reported in the literature, we demonstrate – for the first time – complete polyelectrolyte compaction which occurs already at 20% of DNA (and at 50% of PAA) charge compensation. The trans isomer plays the main role in the compaction. The aggregation between azobenzene units in the photosensitive surfactant is a driving force of this process. The decompaction can be realized during UV light irradiation and is strongly influenced by the interplay between surfactant-surfactant and surfactant-DNA interactions in the compacted globules.

  9. POLYMERIC SURFACTANT STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    P.M. Saville; J.W. White

    2001-01-01

    Polymeric surfactants are amongst the most widespread of all polymers. In nature, proteins and polysaccharides cause self organization as a result of this surfactancy; in industry, polymeric surfactants play key roles in the food, explosives and surface coatings sectors. The generation of useful nano- and micro-structures in films and emulsions as a result of polymer amphiphilicity and the application of mechanical stress is discussed. The use of X-ray and neutron small angle scattering and reflectivity to measure these structures and their dynamic properties will be described. New results on linear and dendritic polymer surfactants are presented.

  10. Dendrimer-surfactant interactions.

    Science.gov (United States)

    Cheng, Yiyun; Zhao, Libo; Li, Tianfu

    2014-04-28

    In this article, we reviewed the interactions between dendrimers and surfactants with particular focus on the interaction mechanisms and physicochemical properties of the yielding dendrimer-surfactant aggregates. In order to provide insight into the behavior of dendrimers in biological systems, the interactions of dendrimers with bio-surfactants such as phospholipids in bulk solutions, in solid-supported bilayers and at the interface of phases or solid-states were discussed. Applications of the dendrimer-surfactant aggregates as templates to guide the synthesis of nanoparticles and in drug or gene delivery were also mentioned.

  11. Structural and Energetic Studies on the Interaction of Cationic Surfactants and Cellulose Nanocrystals.

    Science.gov (United States)

    Brinatti, César; Huang, John; Berry, Richard M; Tam, Kam C; Loh, Watson

    2016-01-26

    We report a comprehensive study on the interactions between cationic surfactant homologues CnTAB (n = 12, 14, and 16) with negatively charged cellulose nanocrystals (CNCs). By combining different techniques, such as isothermal titration calorimetry (ITC), surface tension, light scattering, electrophoretic mobility, and fluorescence anisotropy measurements, we identified two different driving forces for the formation of surface induced micellar aggregates. For the C12TAB surfactant, a surfactant monolayer with the alkyl chains exposed to the water is formed via electrostatic interactions at low concentration. At a higher surfactant concentration, micellar aggregates are formed at the CNC surface. For the C14TAB and C16TAB systems, micellar aggregates are formed at the CNC surface at a much lower surfactant concentration via electrostatic interactions, followed by hydrophobic interactions between the alkyl chains. At higher surfactant concentration, charge neutralization and association of the surfactant decorated CNC aggregates led to flocculation. PMID:26731488

  12. Surfactant Sector Needs Urgent Readjustment

    Institute of Scientific and Technical Information of China (English)

    Huang Hongzhou

    2007-01-01

    @@ Surfactant industrial system has been basically established After 50 years' development, China has already established a surfactant industrial system with a relatively complete product portfolio and can produce 4714 varieties of surfactants in cationic,anionic, nonionic and amphoteric categories.

  13. Fluctuations in Electronic Energy Affecting Singlet Fission Dynamics and Mixing with Charge-Transfer State: Quantum Dynamics Study.

    Science.gov (United States)

    Fujihashi, Yuta; Ishizaki, Akihito

    2016-02-01

    Singlet fission is a spin-allowed process by which a singlet excited state is converted to two triplet states. To understand mechanisms of the ultrafast fission via a charge transfer (CT) state, one has investigated the dynamics through quantum-dynamical calculations with the uncorrelated fluctuation model; however, the electronic states are expected to experience the same fluctuations induced by the surrounding molecules because the electronic structure of the triplet pair state is similar to that of the singlet state except for the spin configuration. Therefore, the fluctuations in the electronic energies could be correlated, and the 1D reaction coordinate model may adequately describe the fission dynamics. In this work we develop a model for describing the fission dynamics to explain the experimentally observed behaviors. We also explore impacts of fluctuations in the energy of the CT state on the fission dynamics and the mixing with the CT state. The overall behavior of the dynamics is insensitive to values of the reorganization energy associated with the transition from the singlet state to the CT state, although the coherent oscillation is affected by the fluctuations. This result indicates that the mixing with the CT state is rather robust under the fluctuations in the energy of the CT state as well as the high-lying CT state. PMID:26732701

  14. Microbial activity and community diversity in a variable charge soil as affected by cadmium exposure levels and time

    Institute of Scientific and Technical Information of China (English)

    Jia-li SHENTU; Zhen-li HE; Xiao-e YANG; Ting-qiang LI

    2008-01-01

    Effects of cadmium (Cd) on microbial biomass, activity and community diversity were assessed in a representative variable charge soil (Typic Aquult) using an incubation study. Cadmium was added as Cd(NO3)2> to reach a concentration range of 0~16 mg Cd/kg soil. Soil extractable Cd generally increased with Cd loading rate, but decreased with incubation time. Soil mi-crobial biomass was enhanced at low Cd levels (0.5~1 mg/kg), but was inhibited consistently with increasing Cd rate. The ratio of microbial biomass C/N varied with Cd treatment levels, decreasing at low Cd rate (<0.7 mg/kg available Cd), but increasing progressively with Cd loading. Soil respiration was restrained at low Cd loading (<1 mg/kg), and enhanced at higher Cd levels. Soil microbial metabolic quotient (MMQ) was generally greater at high Cd loading (1~16 mg/kg). However, the MMQ is also affected by other factors. Cd contamination reduces species diversity of soil microbial communities and their ability to metabolize different C substrates. Soils with higher levels of Cd contamination showed decreases in indicator phospholipids fatty acids (PLFAs) for Gram-negative bacteria and actinomycetes, while the indicator PLFAs for Gram-positive bacteria and fungi increased with increasing levels of Cd contamination.

  15. New serine-derived gemini surfactants as gene delivery systems.

    Science.gov (United States)

    Cardoso, Ana M; Morais, Catarina M; Cruz, A Rita; Silva, Sandra G; do Vale, M Luísa; Marques, Eduardo F; de Lima, Maria C Pedroso; Jurado, Amália S

    2015-01-01

    Gemini surfactants have been extensively used for in vitro gene delivery. Amino acid-derived gemini surfactants combine the special aggregation properties characteristic of the gemini surfactants with high biocompatibility and biodegradability. In this work, novel serine-derived gemini surfactants, differing in alkyl chain lengths and in the linker group bridging the spacer to the headgroups (amine, amide and ester), were evaluated for their ability to mediate gene delivery either per se or in combination with helper lipids. Gemini surfactant-based DNA complexes were characterized in terms of hydrodynamic diameter, surface charge, stability in aqueous buffer and ability to protect DNA. Efficient formulations, able to transfect up to 50% of the cells without causing toxicity, were found at very low surfactant/DNA charge ratios (1/1-2/1). The most efficient complexes presented sizes suitable for intravenous administration and negative surface charge, a feature known to preclude potentially adverse interactions with serum components. This work brings forward a new family of gemini surfactants with great potential as gene delivery systems. PMID:25513958

  16. Characterization and control of surfactant-mediated Norovirus interactions.

    Science.gov (United States)

    Mertens, Brittany S; Velev, Orlin D

    2015-11-28

    Understanding of the colloidal interactions of Norovirus particles in aqueous medium could provide insights on the origins of the notorious stability and infectivity of these widespread viral agents. We characterized the effects of solution pH and surfactant type and concentration on the aggregation, dispersion, and disassembly of Norovirus virus-like particles (VLPs) using dynamic light scattering, electrophoretic light scattering, and transmission electron microscopy. Owing to net negative surface charge of the VLPs at neutral pH, low concentrations of cationic surfactant tend to aggregate the VLPs, whereas low concentrations of anionic surfactant tend to disperse the particles. Increasing the concentration of these surfactants beyond their critical micelle concentration leads to virus capsid disassembly and breakdown of aggregates. Non-ionic surfactants, however, had little effect on virus interactions and likely stabilized them additionally in suspension. The data were interpreted on the basis of simple models for surfactant binding and re-charging of the virus capsid. We used zeta potential data to characterize virus surface charge and interpret the mechanisms behind these demonstrated surfactant-virus interactions. The fundamental understanding and control of these interactions will aid in practical formulations for virus inactivation and removal from contaminated surfaces.

  17. Biophysical inhibition of synthetic vs. naturally-derived pulmonary surfactant preparations by polymeric nanoparticles.

    Science.gov (United States)

    Beck-Broichsitter, Moritz; Ruppert, Clemens; Schmehl, Thomas; Günther, Andreas; Seeger, Werner

    2014-01-01

    Reasonable suspicion has accumulated that inhaled nano-scale particulate matter influences the biophysical function of the pulmonary surfactant system. Hence, it is evident to provide novel insights into the extent and mechanisms of nanoparticle-surfactant interactions in order to facilitate the fabrication of safe nanomedicines suitable for pulmonary applications. Negatively- and positively-charged poly(styrene) nanoparticles (diameters of ~100nm) served as model carriers. Nanoparticles were incubated with several synthetic and naturally-derived pulmonary surfactants to characterize the sensitivity of each preparation to biophysical inactivation. Changes in surface properties (i.e. adsorption and dynamic surface tension behavior) were monitored in a pulsating bubble surfactometer. Both nanoparticle formulations revealed a dose-dependent influence on the biophysical behavior of all investigated pulmonary surfactants. However, the surfactant sensitivity towards inhibition depended on both the carrier type, where negatively-charged nanoparticles showed increased inactivation potency compared to their positively-charged counterparts, and surfactant composition. Among the surfactants tested, synthetic mixtures (i.e. phospholipids, phospholipids supplemented with surfactant protein B, and Venticute®) were more susceptible to surface-activity inhibition as the more complex naturally-derived preparations (i.e. Alveofact® and large surfactant aggregates isolated from rabbit bronchoalveolar lavage fluid). Overall, nanoparticle characteristics and surfactant constitution both influence the extent of biophysical inhibition of pulmonary surfactants.

  18. Role of Silicone Surfactant in Flexible Polyurethane Foam.

    Science.gov (United States)

    Zhang; Macosko; Davis; Nikolov; Wasan

    1999-07-15

    Grafted copolymers which consist of a polydimethylsiloxane backbone and polyethylene oxide-co-propylene oxide pendant groups are used as surfactants to stabilize the foam cells in the flexible polyurethane foaming process. The mechanical properties of the cured polyurethane foam such as air permeability and foam cell size are affected significantly by the structure of the silicone surfactant used in the formulation. It is shown that silicone surfactant has an important impact on both the bubble generation and the cell window stabilization stage. A series of silicone surfactants with different structures was tested. Surfactants with higher silicone content will provide lower surface tension and thus help increase the number of air bubbles introduced during mixing. These air bubbles serve as the starting point for foam cell growth. As a result, the cured polyurethane foam made with higher silicone content surfactant has a smaller bubble size. It is also shown that silicone surfactant can reduce the cell window drainage rate due to the surface tension gradient along the cell window. The Gibbs film elasticity, the dynamic film elasticity, and the film drainage rate were measured for the first time versus surfactant composition. Surfactants with longer siloxane backbones are shown to give higher film elasticity. Using the vertical film drainage and foam column tests, it is shown that surfactants with higher film elasticity will yield slower drainage rate and better foam cell stability. Copyright 1999 Academic Press. PMID:10419661

  19. Dynamic covalent surfactants

    NARCIS (Netherlands)

    Minkenberg, C.B.

    2012-01-01

    In this thesis the development of surfactant aggregates with fast exchange dynamics between the aggregated and non-aggregated state is described. Dynamic surfactant exchange plays an important role in natural systems, for instance in cell signaling, cell division, and uptake and release of cargo. Re

  20. Pulmonary surfactant proteins and polymer combinations reduce surfactant inhibition by serum

    OpenAIRE

    Lu, Karen W.; Pérez-Gil, Jesús; Echaide, Mercedes; Taeusch, H. William

    2011-01-01

    Acute respiratory distress syndrome (ARDS) is an inflammatory condition that can be associated with capillary leak of serum into alveoli causing inactivation of surfactant. Resistance to inactivation is affected by types and concentrations of surfactant proteins, lipids, and polymers. Our aim was to investigate the effects of different combinations of these three components. A simple lipid mixture (DPPC/POPG) or a more complex lipid mixture (DPPC/POPC/POPG/cholesterol) was used. Native surfac...

  1. Surfactant-assisted growth of anodic nanoporous niobium oxide with a grained surface

    International Nuclear Information System (INIS)

    Nanoporous niobium oxide film with a maximum thickness of 520 nm was prepared by anodizing niobium in a mixture of 1 wt% HF, 1 M H3PO4, and a small amount of Sodium Dodecyl Sulfate (SDS) surfactant. The porosity of the anodic niobium oxide prepared without SDS is irregular with the surface of the oxide suggesting a grained surface pattern rather than an ordered porous structure. A proper amount of SDS addition can prepare a pore arrangement with stripe patterns. The pore depth and surface pattern were strongly affected by the concentration of SDS and bath temperature. We found that the addition of SDS surfactant facilitated improvement in the chemical resistance of niobium oxide, leading to the formation of pores with a longer length compared to those prepared without a SDS surfactant. This can be in part ascribed to the protection of the surface by the physical adsorption of SDS on the surface due to a charge-charge interaction and be in part attributed to the formation of Nb=O bonding on the outermost oxide layer by SDS. When anodization was carried out for 4 h, the surface dissolution of niobium oxide was observed, which means that the maximum tolerance time against chemical dissolution was less than 4 h.

  2. Hot foam for weed control-Do alkyl polyglucoside surfactants used as foaming agents affect the mobility of organic contaminants in soil?

    Science.gov (United States)

    Cederlund, H; Börjesson, E

    2016-08-15

    Use of alkyl polyglucosides (APGs) as a foaming agent during hot water weed control may influence the environmental fate of organic contaminants in soil. We studied the effects of the APG-based foaming agent NCC Spuma (C8-C10) on leaching of diuron, glyphosate, and polycyclic aromatic hydrocarbons (PAHs) in sand columns. We also examined how APG concentration affected the apparent water solubility and adsorption of the herbicides and of the PAHs acenaphthene, acenaphthylene and fluorene. Application of APGs at the recommended concentration of 0.3% did not significantly affect leaching of any of the compounds studied. However, at a concentration of 1.5%, leaching of both diuron and glyphosate was significantly increased. The increased leaching corresponded to an increase in apparent water solubility of diuron and a decrease in glyphosate adsorption to the sand. However, APG addition did not significantly affect the mobility of PAHs even though their apparent water solubility was increased. These results suggest that application of APG-based foam during hot water weed control does not significantly affect the mobility of organic contaminants in soil if used according to recommendations. Moreover, they suggest that APGs could be useful for soil bioremediation purposes if higher concentrations are used.

  3. Hot foam for weed control-Do alkyl polyglucoside surfactants used as foaming agents affect the mobility of organic contaminants in soil?

    Science.gov (United States)

    Cederlund, H; Börjesson, E

    2016-08-15

    Use of alkyl polyglucosides (APGs) as a foaming agent during hot water weed control may influence the environmental fate of organic contaminants in soil. We studied the effects of the APG-based foaming agent NCC Spuma (C8-C10) on leaching of diuron, glyphosate, and polycyclic aromatic hydrocarbons (PAHs) in sand columns. We also examined how APG concentration affected the apparent water solubility and adsorption of the herbicides and of the PAHs acenaphthene, acenaphthylene and fluorene. Application of APGs at the recommended concentration of 0.3% did not significantly affect leaching of any of the compounds studied. However, at a concentration of 1.5%, leaching of both diuron and glyphosate was significantly increased. The increased leaching corresponded to an increase in apparent water solubility of diuron and a decrease in glyphosate adsorption to the sand. However, APG addition did not significantly affect the mobility of PAHs even though their apparent water solubility was increased. These results suggest that application of APG-based foam during hot water weed control does not significantly affect the mobility of organic contaminants in soil if used according to recommendations. Moreover, they suggest that APGs could be useful for soil bioremediation purposes if higher concentrations are used. PMID:27149400

  4. Adaptations to hibernation in lung surfactant composition of 13-lined ground squirrels influence surfactant lipid phase segregation properties.

    Science.gov (United States)

    Suri, Lakshmi N M; Cruz, Antonio; Veldhuizen, Ruud A W; Staples, James F; Possmayer, Fred; Orgeig, Sandra; Perez-Gil, Jesus

    2013-08-01

    Pulmonary surfactant lines the entire alveolar surface, serving primarily to reduce the surface tension at the air-liquid interface. Surfactant films adsorb as a monolayer interspersed with multilayers with surfactant lipids segregating into different phases or domains. Temperature variation, which influences lipid physical properties, affects both the lipid phase segregation and the surface activity of surfactants. In hibernating animals, such as 13-lined ground squirrels, which vary their body temperature, surfactant must be functional over a wide range of temperatures. We hypothesised that surfactant from the 13-lined ground squirrel, Ictidomys tridecemlineatus, would undergo appropriate lipid structural re-arrangements at air-water interfaces to generate phase separation, sufficient to attain the low surface tensions required to remain stable at both low and high body temperatures. Here, we examined pressure-area isotherms at 10, 25 and 37°C and found that surfactant films from both hibernating and summer-active squirrels reached their highest surface pressure on the Wilhelmy-Langmuir balance at 10°C. Epifluorescence microscopy demonstrated that films of hibernating squirrel surfactant display different lipid micro-domain organisation characteristics than surfactant from summer-active squirrels. These differences were also reflected at the nanoscale as determined by atomic force microscopy. Such re-arrangement of lipid domains in the relatively more fluid surfactant films of hibernating squirrels may contribute to overcoming collapse pressures and support low surface tension during the normal breathing cycle at low body temperatures. PMID:23506681

  5. Co-adsorption of peptide amphiphile V(6)K and conventional surfactants SDS and C(12)TAB at the solid/water interface.

    Science.gov (United States)

    Jayawardane, Dharana; Pan, Fang; Lu, Jian R; Zhao, Xiubo

    2015-10-28

    Recent research has reported many attractive benefits from short peptide amphiphiles. A practical route for them to enter the real world of applications is through formulation with conventional surfactants. This study reports the co-adsorption of the surfactant-like peptide, V6K, with conventional anionic and cationic surfactants at the solid/water interface. The time-dependant adsorption behaviour was examined using spectroscopic ellipsometry whilst adsorbed layer composition and structural distribution of the components were investigated by neutron reflection with the use of hydrogen/deuterium labelling of the surfactant molecules. Both binary (surfactant/peptide mixtures) and sequential (peptide followed by surfactant) adsorption have been studied. It was found that at the hydrophilic SiO2/water interface, the peptide was able to form a stable, flat, defected bilayer structure however both the structure and adsorbed amount were highly dependent on the initial peptide concentration. This consequently affected surfactant adsorption. In the presence of a pre-adsorbed peptide layer anionic sodium dodecyl sulfate (SDS) could readily co-adsorb at the interface; however, cationic dodecyl trimethyl ammonium bromide (C12TAB) could not co-adsorb due to the same charge character. However on a trimethoxy octyl silane (C8) coated hydrophobic surface, V6K formed a monolayer, and subsequent exposure to cationic and anionic surfactants both led to some co-adsorption at the interface. In binary surfactant/peptide mixtures, it was found that adsorption was dependent on the molar ratio of the surfactant and peptide. For SDS mixtures below molar unity and concentrations below CMC for C12TAB, V6K was able to dominate adsorption at the interface. Above molar unity, no adsorption was detected for SDS/V6K mixtures. In contrast, C12TAB gradually replaced the peptide and became dominant at the interface. These results thus elucidate the adsorption behaviour of V6K, which was found to

  6. Pulmonary surfactant coating of multi-walled carbon nanotubes (MWCNTs influences their oxidative and pro-inflammatory potential in vitro

    Directory of Open Access Journals (Sweden)

    Gasser Michael

    2012-05-01

    Full Text Available Abstract Background Increasing concern has been expressed regarding the potential adverse health effects that may be associated with human exposure to inhaled multi-walled carbon nanotubes (MWCNTs. Thus it is imperative that an understanding as to the underlying mechanisms and the identification of the key factors involved in adverse effects are gained. In the alveoli, MWCNTs first interact with the pulmonary surfactant. At this interface, proteins and lipids of the pulmonary surfactant bind to MWCNTs, affecting their surface characteristics. Aim of the present study was to investigate if the pre-coating of MWCNTs with pulmonary surfactant has an influence on potential adverse effects, upon both (i human monocyte derived macrophages (MDM monocultures, and (ii a sophisticated in vitro model of the human epithelial airway barrier. Both in vitro systems were exposed to MWCNTs either pre-coated with a porcine pulmonary surfactant (Curosurf or not. The effect of MWCNTs surface charge was also investigated in terms of amino (−NH2 and carboxyl (−COOH surface modifications. Results Pre-coating of MWCNTs with Curosurf affects their oxidative potential by increasing the reactive oxygen species levels and decreasing intracellular glutathione depletion in MDM as well as decreases the release of Tumour necrosis factor alpha (TNF-α. In addition, an induction of apoptosis was observed after exposure to Curosurf pre-coated MWCNTs. In triple cell-co cultures the release of Interleukin-8 (IL-8 was increased after exposure to Curosurf pre-coated MWCNTs. Effects of the MWCNTs functionalizations were minor in both MDM and triple cell co-cultures. Conclusions The present study clearly indicates that the pre-coating of MWCNTs with pulmonary surfactant more than the functionalization of the tubes is a key factor in determining their ability to cause oxidative stress, cytokine/chemokine release and apoptosis. Thus the coating of nano-objects with pulmonary

  7. Interactions of cationic trimeric, gemini and monomeric surfactants with trianionic curcumin in aqueous solution.

    Science.gov (United States)

    Wang, Meina; Wu, Chunxian; Tang, Yongqiang; Fan, Yaxun; Han, Yuchun; Wang, Yilin

    2014-05-21

    Interactions of trianionic curcumin (Cur(3-)) with a series of cationic surfactants, monomeric surfactant dodecyl trimethylammonium bromide (DTAB), dimeric surfactant hexamethylene-1,6-bis(dodecyldimethylammonium bromide) (12-6-12) and trimeric surfactant tri(dodecyldimethylammonioacetoxy)diethyltriamine trichloride (DTAD), have been investigated in aqueous solution of pH 13.0. Surface tension and spectral measurements indicate that the cationic surfactants display a similar surfactant concentration dependent interaction process with Cur(3-), involving three interaction stages. At first the three cationic surfactants electrostatically bind on Cur(3-) to form the surfactant-Cur(3-) complex. Then the bound and unbound cationic surfactants with Cur(3-) aggregate into surfactant-Cur(3-) mixed micelles through hydrophobic interactions above the critical micelle concentration of the surfactants (CMCC) in the presence of Cur(3-). Finally excess unbound surfactants self-assemble into micelles like those without Cur(3-). For all the three surfactants, the addition of Cur(3-) only decreases the critical micelle concentration of 12-6-12 but does not affect the critical micelle concentration of DTAB and DTAD. As the oligomeric degree of surfactants increases, the intermolecular interaction of the cationic surfactants with Cur(3-) increases and the surfactant amount needed for Cur(3-) encapsulation decreases. Compared with 12-6-12, either the weaker interaction of DTAB with Cur(3-) or stronger interaction of DTAD with Cur(3-) limits the stability or solubility of Cur(3-) in surfactant micelles. Therefore, gemini surfactant 12-6-12 is the best choice to effectively suppress Cur(3-) degradation at very low concentrations. Isothermal titration microcalorimetry, surface tension and (1)H NMR results reveal that 12-6-12 and Cur(3-) form a (12-6-12)2-Cur(3-) complex and start to form micelles at extremely decreased concentrations, where either 12-6-12 or Cur(3-) works as a bridge

  8. Phase diagrams of DNA-photosensitive surfactant complexes: effect of ionic strength and surfactant structure.

    Science.gov (United States)

    Zakrevskyy, Yuriy; Titov, Evgenii; Lomadze, Nino; Santer, Svetlana

    2014-10-28

    Realization of all-optically controlled and efficient DNA compaction is the major motivation in the study of interactions between DNA and photosensitive surfactants. In this article, using recently published approach of phase diagram construction [Y. Zakrevskyy, P. Cywinski, M. Cywinska, J. Paasche, N. Lomadze, O. Reich, H.-G. Löhmannsroben, and S. Santer, J. Chem. Phys. 140, 044907 (2014)], a strategy for substantial reduction of compaction agent concentration and simultaneous maintaining the light-induced decompaction efficiency is proposed. The role of ionic strength (NaCl concentration), as a very important environmental parameter, and surfactant structure (spacer length) on the changes of positions of phase transitions is investigated. Increase of ionic strength leads to increase of the surfactant concentration needed to compact DNA molecule. However, elongation of the spacer results to substantial reduction of this concentration. DNA compaction by surfactants with longer tails starts to take place in diluted solutions at charge ratios Z surfactant systems allowed explanation and proposal of a strategy to overcome previously reported limitations of the light-induced decompaction for complexes with increasing surfactant hydrophobicity.

  9. Small-angle neutron scattering study of aggregate structures of multi-headed pyridinium surfactants in aqueous solution

    Indian Academy of Sciences (India)

    J Haldar; V K Aswal; P S Goyal; S Bhattacharya

    2004-08-01

    The aggregate structures of a set of novel single-chain surfactants bearing one, two and three pyridinium headgroups have been studied using small-angle neutron scattering (SANS). It is found that the nature of aggregate structures of these cationic surfactants depend on the number of headgroups present in the surfactants. The single-headed pyridinium surfactant forms the lamellar structure, whereas surfactants with double and triple headgroups form micelles in water. The aggregates shrink in size with increase in the number of headgroups in the surfactants. The aggregation number () continually decreases and the fractional charge () increases with more number of headgroups on the surfactants. The semimajor axis () and semiminor axis ( = ) of the micelle also decrease with the increase in the number of headgroups in the surfactants. This indicates that hydrocarbon chains in such micelles prepared from multiheaded surfactants adopt bent conformation and no longer stay in extended conformation.

  10. Tuning of protein-surfactant interaction to modify the resultant structure.

    Science.gov (United States)

    Mehan, Sumit; Aswal, Vinod K; Kohlbrecher, Joachim

    2015-09-01

    Small-angle neutron scattering and dynamic light scattering studies have been carried out to examine the interaction of bovine serum albumin (BSA) protein with different surfactants under varying solution conditions. We show that the interaction of anionic BSA protein (pH7) with surfactant and the resultant structure are strongly modified by the charge head group of the surfactant, ionic strength of the solution, and mixed surfactants. The protein-surfactant interaction is maximum when two components are oppositely charged, followed by components being similarly charged through the site-specific binding, and no interaction in the case of a nonionic surfactant. This interaction of protein with ionic surfactants is characterized by the fractal structure representing a bead-necklace structure of micellelike clusters adsorbed along the unfolded protein chain. The interaction is enhanced with ionic strength only in the case of site-specific binding of an anionic surfactant with an anionic protein, whereas it is almost unchanged for other complexes of cationic and nonionic surfactants with anionic proteins. Interestingly, the interaction of BSA protein with ionic surfactants is significantly suppressed in the presence of nonionic surfactant. These results with mixed surfactants thus can be used to fold back the unfolded protein as well as to prevent surfactant-induced protein unfolding. For different solution conditions, the results are interpreted in terms of a change in fractal dimension, the overall size of the protein-surfactant complex, and the number of micelles attached to the protein. The interplay of electrostatic and hydrophobic interactions is found to govern the resultant structure of complexes.

  11. Competitive Adsorption: A Physical Model for Lung Surfactant Inactivation

    OpenAIRE

    Fernsler, Jonathan G.; Zasadzinski, Joseph A.

    2009-01-01

    Charged, surface-active serum proteins can severely reduce or eliminate the adsorption of lung surfactant from the subphase to the alveolar air-liquid interface via a kinetically controlled competitive adsorption process. The decreased surfactant concentration at the interface leads to higher surface tensions during the compression of the interface during breathing. The correspondence between the factors governing colloid stability and competitive adsorption is validated via a new method of m...

  12. Electric double layer in concentrated solutions of ionic surfactants

    OpenAIRE

    Tsekov, R.

    2008-01-01

    A simple non-local theoretical model is developed considering concentrated ionic surfactant solutions as regular ones. Their thermodynamics is described by the Cahn-Hilliard theory coupled with electrostatics. It is discovered that unstable solutions possess two critical temperatures, where the temperature coefficients of all characteristic lengths are discontinuous. At temperatures below the lower critical temperature ionic surfactant solutions separate into thin layers of oppositely charged...

  13. Effects of Surfactants on the Rate of Chemical Reactions

    Directory of Open Access Journals (Sweden)

    B. Samiey

    2014-01-01

    Full Text Available Surfactants are self-assembled compounds that depend on their structure and electric charge can interact as monomer or micelle with other compounds (substrates. These interactions which may catalyze or inhibit the reaction rates are studied with pseudophase, cooperativity, and stoichiometric (classical models. In this review, we discuss applying these models to study surfactant-substrate interactions and their effects on Diels-Alder, redox, photochemical, decomposition, enzymatic, isomerization, ligand exchange, radical, and nucleophilic reactions.

  14. Meconium Impairs Pulmonary Surfactant by a Combined Action of Cholesterol and Bile Acids

    OpenAIRE

    Lopez-Rodriguez, Elena; Echaide, Mercedes; Cruz, Antonio; Taeusch, H. William; Perez-Gil, Jesus

    2011-01-01

    Mechanisms for meconium-induced inactivation of pulmonary surfactant as part of the meconium aspiration syndrome in newborn infants, to our knowledge, are not clearly understood. Here we have studied the biophysical mechanisms of how meconium affects surface activity of pulmonary surfactant and whether the membrane-perturbing effects of meconium can be mimicked by exposure of surfactant to a mixture of bile acids and cholesterol. Surface activity of pulmonary surfactant complexes purified fro...

  15. Metathesis depolymerizable surfactants

    Science.gov (United States)

    Jamison, Gregory M.; Wheeler, David R.; Loy, Douglas A.; Simmons, Blake A.; Long, Timothy M.; McElhanon, James R.; Rahimian, Kamyar; Staiger, Chad L.

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  16. Effects of Surfactant on Solubility and Microbial Conversion of Steroid

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Enhancing the dispersion and dissolution of substrate particles in substrate/water suspension is a feasible way to improve steroid bioconversion. The aim of the present study is to investigate the effects of applying surfactant to microbial conversion system on the dispersion, solubilization and in turn bioconversion of steroid substrate. The model system is hydroxylation of substrate 16α-,17α-epoxy-4-pregnene-3,20-dine by microbial enzymes from Rhizopus nigricanl. The results show that the presence of substrate leads to an increase in critical micelle concentration (CMC) of surfactant PSE compared with the normal CMC of PSE in aqueous solution. The grinding time during substrate suspension preparation affects the substrate aqueous solubility differently with the varied surfactant concentrations while barely making any difference in substrate solubility in the absence of surfactant. The properly prolonged grinding time can make up for the loss in substrate solubility arising from the reduction in surfactant concentration. The surfactant complexes composed of surfactants PSE and MGE at appropriate ratios are screened out with orthodoxy experiment method, the interaction between PSE and MGE exerts the most prominent effects on substrate bioconversion, and the surfactant complexes show more beneficial effects on steroid bioconversion than the surfactant PSE used alone.

  17. Effect of surfactant on surface hardness of dental stone and investment casts produced from polyvinyl siloxane duplicating materials.

    Science.gov (United States)

    Al-Johani, Attalah; Clark, Robert K F; Juszczyk, Andrzej S; Radford, David R

    2008-06-01

    Polyvinylsiloxane duplicating materials are typically treated with a topical surfactant before pouring dental models, but the use of topical surfactants in the dental laboratory may affect the surface hardness of the resultant models. The effect of two different topical surfactants on surface hardness of two dental stones (FujiRock and Dentstone) and one phosphate bonded investment material (Croform WB) produced from polyvinyl siloxane (PVS) dental laboratory duplicating moulds was investigated. Topical surfactants affected the surface hardness of FujiRock, Dentstone and Croform WB investment material. Surface hardness of FujiRock increased with Wax-Mate surfactant. However, surface hardness of Croform WB investment material decreased with both topical surfactants.

  18. Charge properties of peptides derived from casein affect their bioavailability and cytoprotection against H2O2-induced oxidative stress.

    Science.gov (United States)

    Wang, Bo; Xie, Ningning; Li, Bo

    2016-04-01

    The effects of charge properties of casein peptides on absorption stability, antioxidant activity, and cytoprotection were evaluated. Alcalase hydrolysates of casein were separated into 4 fractions by cation-exchange chromatography according to charge properties. After simulated digestion and Caco-2 cell transmembrane transport, we determined the total antioxidant capacity (Trolox equivalent antioxidative capacity and oxygen radical antioxidant activity) and nitrogen content of peptide fractions to estimate available antioxidant efficacy and bioavailability (BA) of peptides. Results showed that negatively charged peptide fractions had greater BA and antioxidant activities after digestion and absorption. The peptide permeates were used to test the cytoprotective effect against H2O2-induced oxidative damage in HepG-2 cells. All peptide permeates increased cell viability, elevated catalase activity, and decreased superoxide dismutase activity. However, negatively charged peptide fractions preserved cell viability to a greater degree. Therefore, the negatively charged peptides from casein may be potential antioxidants and could be used as ingredients in functional foods and dietary supplements. PMID:26851854

  19. Surfactant-Wrapped Multiwalled Carbon Nanotubes in Aquatic Systems: Surfactant Displacement in the Presence of Humic Acid.

    Science.gov (United States)

    Chang, Xiaojun; Bouchard, Dermont C

    2016-09-01

    Sodium dodecyl sulfate (SDS) facilitates multiwalled carbon nanotube (MWCNT) debundling and enhances nanotube stability in the aqueous environment by adsorbing on the nanotube surfaces, thereby increasing repulsive electrostatic forces and steric effects. The resulting SDS-wrapped MWCNTs are utilized in industrial applications and have been widely employed in environmental studies. In the present study, MWCNTs adsorbed SDS during ultrasonication to form stable MWCNTs suspensions. Desorption of SDS from MWCNTs surfaces was then investigated as a function of Suwannee River Humic Acid (SRHA) and background electrolyte concentrations. Due to hydrophobic effects and π-π interactions, MWCNTs exhibit higher affinity for SRHA than SDS. In the presence of SRHA, SDS adsorbed on MWCNTs was displaced. Cations (Na(+), Ca(2+)) decreased SDS desorption from MWCNTs due to charge screening effects. Interestingly, the presence of the divalent calcium cation facilitated multilayered SRHA adsorption on MWCNTs through bridging effects, while monovalent sodium reduced SRHA adsorption. Results of the present study suggest that properties of MWCNTs wrapped with commercial surfactants will be altered when these materials are released to surface waters and the surfactant coating will be displaced by natural organic matter (NOM). Changes on their surfaces will significantly affect MWCNTs fate in aquatic environments. PMID:27500910

  20. Surfactant phospholipid metabolism.

    Science.gov (United States)

    Agassandian, Marianna; Mallampalli, Rama K

    2013-03-01

    Pulmonary surfactant is essential for life and is composed of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. PMID:23026158

  1. Phosphine oxide surfactants revisited.

    Science.gov (United States)

    Stubenrauch, Cosima; Preisig, Natalie; Laughlin, Robert G

    2016-04-01

    This review summarizes everything we currently know about the nonionic surfactants alkyl dimethyl (C(n)DMPO) and alkyl diethyl (C(n)DEPO) phosphine oxide (PO surfactants). The review starts with the synthesis and the general properties (Section 2) of these compounds and continues with their interfacial properties (Section 3) such as surface tension, surface rheology, interfacial tension and adsorption at solid surfaces. We discuss studies on thin liquid films and foams stabilized by PO surfactants (Section 4) as well as studies on their self-assembly into lyotropic liquid crystals and microemulsions, respectively (Section 5). We aim at encouraging colleagues from both academia and industry to take on board PO surfactants whenever possible and feasible because of their broad variety of excellent properties. PMID:26869216

  2. Dilute Surfactant Methods for Carbonate Formations

    Energy Technology Data Exchange (ETDEWEB)

    Kishore K. Mohanty

    2006-02-01

    There are many fractured carbonate reservoirs in US (and the world) with light oil. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). The process of using dilute anionic surfactants in alkaline solutions has been investigated in this work for oil recovery from fractured oil-wet carbonate reservoirs both experimentally and numerically. This process is a surfactant-aided gravity drainage where surfactant diffuses into the matrix, lowers IFT and contact angle, which decrease capillary pressure and increase oil relative permeability enabling gravity to drain the oil up. Anionic surfactants have been identified which at dilute concentration of 0.05 wt% and optimal salinity can lower the interfacial tension and change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil. The force of adhesion in AFM of oil-wet regions changes after anionic surfactant treatment to values similar to those of water-wet regions. The AFM topography images showed that the oil-wetting material was removed from the surface by the anionic surfactant treatment. Adsorption studies indicate that the extent of adsorption for anionic surfactants on calcite minerals decreases with increase in pH and with decrease in salinity. Surfactant adsorption can be minimized in the presence of Na{sub 2}CO{sub 3}. Laboratory-scale surfactant brine imbibition experiments give high oil recovery (20-42% OOIP in 50 days; up to 60% in 200 days) for initially oil-wet cores through wettability alteration and IFT reduction. Small (<10%) initial gas saturation does not affect significantly the rate of oil recovery in the imbibition process, but larger gas saturation decreases the oil recovery rate. As the core permeability decreases, the rate of oil recovery reduces

  3. Non Invasive Surfactant Application

    OpenAIRE

    Hacer Yapicioglu; Eren Kale Cekinmez; Ferda Ozlu

    2013-01-01

    Surfactant replacement therapy has been the mainstay of treatment for preterm infants with respiratory distress syndrome for more than twenty years. In recent years, the growing interest in noninvasive ventilation has led to novel approaches of administration. Non-invasive techniques of respiratory support were developed in order to reduce the adverse effects associated with ventilation via an endotracheal tube. Noninvasive surfactant administration technique during spontaneous breathing alon...

  4. Other indications for surfactant].

    OpenAIRE

    PROENÇA FERNANDES, E.; Carvalho, C; Silva, A.; Ferreira, P.; Alegria, A.; Lopes, L.; AREIAS, M.A.

    2002-01-01

    An Esp Pediatr. 2002 Jan;56(1):45-8. [Other indications for surfactant] [Article in Spanish] Proença Fernandes E, Carvalho C, Silva A, Ferreira P, Alegria A, Lopes L, Areias MA. Unidades de Cuidados Intensivos Neonatales y Pediátricos, Hospital Maria Pia, Spain. Abstract OBJECTIVE: The introduction of surfactant replacement therapy in the management of respiratory distress syndrome in the premature infant was a remarkable advance in neonatal intensive care. In the last few y...

  5. Pharmacoeconomics of Surfactant Therapy

    OpenAIRE

    Barbarello-Andrews, Liza; Marsh, Wallace

    2006-01-01

    Surfactant therapy has become an integral part of the standard of care for treating premature infants with respiratory distress syndrome (RDS). Institutions that routinely treat this patient population have to select a surfactant based upon clinical and pharmacoeconomic considerations. Pharmacoeconomic studies have established the cost-effectiveness of individual agents based on a variety of factors, including length of hospitalization, mortality odds ratio, and other direct medical costs. Th...

  6. Phase Transitions in Nanostructured Polyelectrolyte-Surfactant Complexes

    Science.gov (United States)

    Leonard, Michael; Strey, Helmut

    2001-03-01

    When a water-soluble polyelectrolyte is combined with an oppositely-charged surfactant solution at a stoichiometric charge ratio, self-assembly into highly-ordered, water-insoluble structures occurs. We have prepared such complexes with poly(sodium acrylate)-co-acrylamide, alginic acid, and chitosan, combined with cationic and anionic surfactants. The phases exhibited by these complexes in aqueous solution are highly sensitive to such factors as osmotic pressure, salt type, ionic strength, and polyelectrolyte charge density. In this study, we have used small angle X-ray scattering to examine osmotic stress-induced structural phase transitions in these complexes under these various environmental conditions. The morphological consequences of combining polyelectrolytes with swollen, emulsion-bound surfactant micelles were also investigated. Results of this work, as well as the potential to use these complexes as nanoporous, biocompatible materials, will be discussed.

  7. Removal of cationic surfactant (CTAB from aqueous solution on to activated carbon obtained from corncob.

    Directory of Open Access Journals (Sweden)

    S. M. Yakout

    2009-05-01

    Full Text Available Direct and indirect releases of large quantities of surfactants to the environment may result in serious health and environmental problems. Therefore, surfactants should be removed from water before water is released to the environment or delivered for public use. Using powdered activated carbon (PAC as adsorbent may be an effective technique to remove surfactants. In this study, the removal of surfactants by PAC was investigated and the influencesof the operating parameters on the effectiveness on adsorption rate were studied. Cationic surfactant, Cetyl trimethyl ammonium bromide (CTAB was selected for the experiments. A series of batch experiments were performed to determine the sorption isotherms of surfactants to PAC. The results showed that carbon structure affect mainly on the surfactant adsorption. Surfactant equilibrium data fitted very well to the binary langmuir model. The pseudo first-,second- order and intraparticle diffusion kinetic models were applied. Both, the external mass transfer and intraparticle diffusion mechanisms involve in CTAB sorption.

  8. Responsive Aqueous Foams Stabilized by Silica Nanoparticles Hydrophobized in Situ with a Conventional Surfactant.

    Science.gov (United States)

    Zhu, Yue; Pei, Xiaomei; Jiang, Jianzhong; Cui, Zhenggang; Binks, Bernard P

    2015-12-01

    In the recent past, switchable surfactants and switchable/stimulus-responsive surface-active particles have been of great interest. Both can be transformed between surface-active and surface-inactive states via several triggers, making them recoverable and reusable afterward. However, the synthesis of these materials is complicated. In this paper we report a facile protocol to obtain responsive surface-active nanoparticles and their use in preparing responsive particle-stabilized foams. Hydrophilic silica nanoparticles are initially hydrophobized in situ with a trace amount of a conventional cationic surfactant in water, rendering them surface-active such that they stabilize aqueous foams. The latter can then be destabilized by adding equal moles of an anionic surfactant, and restabilized by adding another trace amount of the cationic surfactant followed by shaking. The stabilization-destabilization of the foams can be cycled many times at room temperature. The trigger is the stronger electrostatic interaction between the oppositely charged surfactants than that between the cationic surfactant and the negatively charged particles. The added anionic surfactant tends to form ion pairs with the cationic surfactant, leading to desorption of the latter from particle surfaces and dehydrophobization of the particles. Upon addition of another trace amount of cationic surfactant, the particles are rehydrophobized in situ and can then stabilize foams again. This principle makes it possible to obtain responsive surface-active particles using commercially available inorganic nanoparticles and conventional surfactants.

  9. Fibrinogen stability under surfactant interaction.

    Science.gov (United States)

    Hassan, Natalia; Barbosa, Leandro R S; Itri, Rosangela; Ruso, Juan M

    2011-10-01

    Differential scanning calorimetry (DSC), circular dichroism (CD), difference spectroscopy (UV-vis), Raman spectroscopy, and small-angle X-ray scattering (SAXS) measurements have been performed in the present work to provide a quantitatively comprehensive physicochemical description of the complexation between bovine fibrinogen and the sodium perfluorooctanoate, sodium octanoate, and sodium dodecanoate in glycine buffer (pH 8.5). It has been found that sodium octanoate and dodecanoate act as fibrinogen destabilizer. Meanwhile, sodium perfluorooctanoate acts as a structure stabilizer at low molar concentration and as a destabilizer at high molar concentration. Fibrinogen's secondary structure is affected by all three studied surfactants (decrease in α-helix and an increase in β-sheet content) to a different extent. DSC and UV-vis revealed the existence of intermediate states in the thermal unfolding process of fibrinogen. In addition, SAXS data analysis showed that pure fibrinogen adopts a paired-dimer structure in solution. Such a structure is unaltered by sodium octanoate and perfluoroctanoate. However, interaction of sodium dodecanoate with the fibrinogen affects the protein conformation leading to a complex formation. Taken together, all results evidence that both surfactant hydrophobicity and tail length mediate the fibrinogen stability upon interaction.

  10. Surfactant administration in neonates: A review of delivery methods.

    Science.gov (United States)

    Nouraeyan, Nina; Lambrinakos-Raymond, Alicia; Leone, Marisa; Sant'Anna, Guilherme

    2014-01-01

    Surfactant has revolutionized the treatment of respiratory distress syndrome and some other respiratory conditions that affect the fragile neonatal lung. Despite its widespread use, the optimal method of surfactant administration in preterm infants has yet to be clearly determined. The present article reviews several aspects of administration techniques that can influence surfactant delivery into the pulmonary airways: the bolus volume, injection rate, gravity and orientation, ventilation strategies, alveolar recruitment, and viscosity and surface tension of the fluid instilled. Based on the present review, knowledge gaps regarding the best way to administer surfactant to neonates remain. From the available evidence, however, the most effective way to optimize surfactant delivery and obtain a more homogeneous distribution of the drug is by using rapid bolus instillation in combination with appropriate alveolar recruitment techniques. PMID:26078618

  11. A Function of Lung Surfactant Protein SP-B

    Science.gov (United States)

    Longo, M. L.; Bisagno, A. M.; Zasadzinski, J. A. N.; Bruni, R.; Waring, A. J.

    1993-07-01

    The primary function of lung surfactant is to form monolayers at the alveolar interface capable of lowering the normal surface tension to near zero. To accomplish this process, the surfactant must be capable of maintaining a coherent, tightly packed monolayer that avoids collapse during expiration. The positively charged amino-terminal peptide SP-B1-25 of lung surfactant-specific protein SP-B increases the collapse pressure of an important component of lung surfactant, palmitic acid (PA), to nearly 70 millinewtons per meter. This alteration of the PA isotherms removes the driving force for "squeeze-out" of the fatty acids from the primarily dipalmitoylphosphatidylcholine monolayers of lung surfactant. An uncharged mutant of SP-B1-25 induced little change in the isotherms, suggesting that a specific charge interaction between the cationic peptide and the anionic lipid is responsible for the stabilization. The effect of SP-B1-25 on fatty acid isotherms is remarkably similar to that of simple poly-cations, suggesting that such polymers might be useful as components of replacement surfactants for the treatment of respiratory distress syndrome.

  12. How the Chinese system of charges and subsidies affects pollution control efforts by China's top industrial polluters

    OpenAIRE

    Hua Wang; Ming Chen

    1999-01-01

    There have been extensive theoretical studies of firms'responses to environmental regulations ad enforcement but few empirical analyses of firms'expenditures on pollution abatement in response to different regulations and enforcement strategies. The authors empirically analyze the pollution abatement efforts of Chinese industrial firms under a system combining pollution charges and abatement subsidies. Using data on China's top industrial polluters and on regional development in China, they f...

  13. How Do the Size, Charge and Shape of Nanoparticles Affect Amyloid β Aggregation on Brain Lipid Bilayer?

    Science.gov (United States)

    Kim, Yuna; Park, Ji-Hyun; Lee, Hyojin; Nam, Jwa-Min

    2016-01-01

    Here, we studied the effect of the size, shape, and surface charge of Au nanoparticles (AuNPs) on amyloid beta (Aβ) aggregation on a total brain lipid-based supported lipid bilayer (brain SLB), a fluid platform that facilitates Aβ-AuNP aggregation process. We found that larger AuNPs induce large and amorphous aggregates on the brain SLB, whereas smaller AuNPs induce protofibrillar Aβ structures. Positively charged AuNPs were more strongly attracted to Aβ than negatively charged AuNPs, and the stronger interactions between AuNPs and Aβ resulted in fewer β-sheets and more random coil structures. We also compared spherical AuNPs, gold nanorods (AuNRs), and gold nanocubes (AuNCs) to study the effect of nanoparticle shape on Aβ aggregation on the brain SLB. Aβ was preferentially bound to the long axis of AuNRs and fewer fibrils were formed whereas all the facets of AuNCs interacted with Aβ to produce the fibril networks. Finally, it was revealed that different nanostructures induce different cytotoxicity on neuroblastoma cells, and, overall, smaller Aβ aggregates induce higher cytotoxicity. The results offer insight into the roles of NPs and brain SLB in Aβ aggregation on the cell membrane and can facilitate the understanding of Aβ-nanostructure co-aggregation mechanism and tuning Aβ aggregate structures.

  14. Studies on Anionic Surfactant Structure in the Aggregation with (Hydroxypropylcellulose

    Directory of Open Access Journals (Sweden)

    Ricardo M. de Martins

    2002-01-01

    Full Text Available Fluorescence probing, viscosity and light scattering measurements have been combined to study the aggregation of different anionic surfactants mainly in dilute solutions (0.5% w/v of (hydroxypropylcellulose (HPC MW 173,000, in moderate ionic strength (NaCl 0.1 mol.L-1. The set of surfactants includes natural cholesterol derivatives, sodium cholate (CS and sodium deoxycholate (DC, and the alkylsulphate, sodium dodecylsulphate (SDS. At 298 K the critical surfactant concentration related to aggregate/HPC formation (C1 decreases for SDS and DC whereas it increases slightly for CS. At 312 K the C1 values for CS and DC are slightly shifted toward higher values whereas it is not changed for SDS. All surfactant/HPC systems increase C1 values as the HPC concentration increases to 1.2%. Above C1 the viscosity increases for all surfactant/HPC systems but it is sharper in the increasing order CS, DC and SDS. The hydrodynamic behavior indicates that CS induces higher diffusion to HPC than SDS and DC. The aggregation in the surfactant/HPC systems is analyzed through the feature of surfactant/aggregate structure (size, charge density, etc.

  15. Surfactant-Amino Acid and Surfactant-Surfactant Interactions in Aqueous Medium: a Review.

    Science.gov (United States)

    Malik, Nisar Ahmad

    2015-08-01

    An overview of surfactant-amino acid interactions mainly in aqueous medium has been discussed. Main emphasis has been on the solution thermodynamics and solute-solvent interactions. Almost all available data on the topic has been presented in a lucid and simple way. Conventional surfactants have been discussed as amphiphiles forming micelles and amino acids as additives and their effect on the various physicochemical properties of these conventional surfactants. Surfactant-surfactant interactions in aqueous medium, various mixed surfactant models, are also highlighted to assess their interactions in aqueous medium. Finally, their applied part has been taken into consideration to interpret their possible uses.

  16. Deformation and stability of surfactant - or particle - laden drop

    Science.gov (United States)

    Brosseau, Quentin; Pradillo, Gerardo; Oberlander, Andrew; Vlahovska, Petia; SoftMech@Brown Team

    2015-11-01

    We present an experimental study of the behavior of a drop covered with insoluble surfactant or colloidal particles in a uniform DC electric field. Steady drop shapes, drop evolution upon application of the field, and drop relaxation after the field is turned off are observed for leaky dielectric fluids: Polybutadiene (PB), Silicon oil (PDMS), and Castor oil (CO). The surfactant is generated at the drop interface by reaction between end-functionalized PB and PDMS. The experimental data is compared with existing theoretical models for the steady shape of surfactant covered droplet, and adjusted models taking into account the presence of colloidal spheres with range of electrical properties. We will discuss the complex interplay of shape deformation, surfactant elasticity, particle redistribution, and interfacial charging in droplet electrohydrodynamics. Our results are important for understanding electrorheology of emulsions commonly found in the petroleum industry. We acknowledge grant NSF CBET 1437545 for funding.

  17. Surfactant Proteins in Smoking-Related Lung Disease.

    Science.gov (United States)

    Papaioannou, Andriana I; Papiris, Spyridon; Papadaki, Georgia; Manali, Effrosyni D; Roussou, Aneza; Spathis, Aris; Karakitsos, Petros; Kostikas, Konstantinos

    2016-01-01

    Pulmonary surfactant is a highly surface-active mixture of proteins and lipids that is synthesized and secreted in the alveoli by type II epithelial cells and is found in the fluid lining the alveolar surface. The protein part of surfactant constitutes two hydrophilic proteins (SP-A and SP-D) that regulate surfactant metabolism and have immunologic functions, and two hydrophobic proteins (SP-B and SP-C), which play a direct role in the organization of the surfactant structure in the interphase and in the stabilization of the lipid layers during the respiratory cycle. Several studies have shown that cigarette smoke seems to affect, in several ways, both surfactant homeostasis and function. The alterations in surfactants' biophysical properties caused by cigarette smoking, contribute to the development of several smoking related lung diseases. In this review we provide information on biochemical and physiological aspects of the pulmonary surfactant and on its possible association with the development of two major chronic diseases of the lung known to be related to smoking, i.e. chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Additional information on the possible role of surfactant protein alterations and/or dysfunction in the combination of these two conditions, recently described as combined pulmonary fibrosis and emphysema (CPFE) are also provided. PMID:26420367

  18. Non Invasive Surfactant Application

    Directory of Open Access Journals (Sweden)

    Hacer Yapicioglu

    2013-08-01

    Full Text Available Surfactant replacement therapy has been the mainstay of treatment for preterm infants with respiratory distress syndrome for more than twenty years. In recent years, the growing interest in noninvasive ventilation has led to novel approaches of administration. Non-invasive techniques of respiratory support were developed in order to reduce the adverse effects associated with ventilation via an endotracheal tube. Noninvasive surfactant administration technique during spontaneous breathing along with nasal continous positive airway pressure support successfully reduces the need for further respiratory support and bronchopulmonary dysplasia rate in very low birth weight infants. Here we reviewed the new approches ton surfactant administration. [Archives Medical Review Journal 2013; 22(4.000: 634-644

  19. BINDING ISOTHERMS SURFACTANT-PROTEINS

    OpenAIRE

    Elena Irina Moater; Cristiana Radulescu; Ionica Ionita

    2011-01-01

    The interactions between surfactants and proteins shows some similarities with interactions between surfactants and polymers, but the hydrophobic amphoteric nature of proteins and their secondary and tertiary structure components make them different from conventional polymer systems. Many studies from the past about surfactant - proteins bonding used the dialysis techniques. Other techniques used to determine the binding isotherm, included ultrafiltration, ultracentrifugation, potentiometry, ...

  20. Perfluorinated Alcohols Induce Complex Coacervation in Mixed Surfactants.

    Science.gov (United States)

    Jenkins, Samuel I; Collins, Christopher M; Khaledi, Morteza G

    2016-03-15

    (-)) whereas the two counterions (Br(-) and Na(+)) primarily reside in the aqueous-rich phase. The results suggest the formation of a catanionic complex in the coacervate phase through ion pairing with a concomitant release of the surfactant counterions (Na(+) and Br(-)) into the aqueous-rich phase. Finally, the fluorocarbon alcohol systems are contrasted with the effects of aliphatic alcohols in the mixed catanionic surfactant systems. Isopropanol does not have the same interactions as HFIP with respect to solubilization, aggregation, and phase separation of the oppositely charged surfactants.

  1. Induced Crystallization of Polyelectrolyte-Surfactant Complexes at the Gas-Water Interface

    OpenAIRE

    Vaknin, D; Dahlke, S.; Travesset, A.; Nizri, G.; Magdassi, S.

    2004-01-01

    Synchrotron-X-ray and surface tension studies of a strong polyelectrolyte (PE) in the semi-dilute regime (~ 0.1M monomer-charges) with varying surfactant concentrations show that minute surfactant concentrations induce the formation of a PE-surfactant complex at the gas/solution interface. X-ray reflectivity and grazing angle X-ray diffraction (GIXD) provide detailed information of the top most layer, where it is found that the surfactant forms a two-dimensional liquid-like monolayer, with a ...

  2. Sublethal effect of agronomical surfactants on the spider Pardosa agrestis.

    Science.gov (United States)

    Niedobová, Jana; Hula, Vladimír; Michalko, Radek

    2016-06-01

    In addition to their active ingredients, pesticides contain also additives - surfactants. Use of surfactants has been increasing over the past decade, but their effects on non-target organisms, especially natural enemies of pests, have been studied only very rarely. The effect of three common agrochemical surfactants on the foraging behavior of the wolf spider Pardosa agrestis was studied in the laboratory. Differences in short-term, long-term, and overall cumulative predatory activities were investigated. We found that surfactant treatment significantly affected short-term predatory activity but had no effect on long-term predatory activity. The surfactants also significantly influenced the cumulative number of killed prey. We also found the sex-specific increase in cumulative kills after surfactants treatment. This is the first study showing that pesticide additives have a sublethal effect that can weaken the predatory activity of a potential biological control agent. More studies on the effects of surfactants are needed to understand how they affect beneficial organisms in agroecosystems. PMID:26878602

  3. Mechanistic study of wettability alteration of oil-wet sandstone surface using different surfactants

    Science.gov (United States)

    Hou, Bao-feng; Wang, Ye-fei; Huang, Yong

    2015-03-01

    Different analytical methods including Fourier transform infrared (FTIR), atomic force microscopy (AFM), zeta potential measurements, contact angle measurements and spontaneous imbibition tests were utilized to make clear the mechanism for wettability alteration of oil-wet sandstone surface using different surfactants. Results show that among three types of surfactants including cationic surfactants, anionic surfactants and nonionic surfactants, the cationic surfactant CTAB demonstrates the best effect on the wettability alteration of oil-wet sandstone surface. The positively charged head groups of CTAB molecules and carboxylic acid groups from crude oil could interact to form ion pairs, which could be desorbed from the solid surface and solubilized into the micelle formed by CTAB. Thus, the water-wetness of the solid surface is improved. Nonionic surfactant TX-100 could be adsorbed on oil-wet sandstone surface through hydrogen bonds and hydrophobic interaction to alter the wettability of oil-wet solid surface. The wettability alteration of oil-wet sandstone surface using the anionic surfactant POE(1) is caused by hydrophobic interaction. Due to the electrostatic repulsion between the anionic surfactant and the negatively charged surface, POE(1) shows less effect on the wettability alteration of oil-wet sandstone surface.

  4. Sizing up surfactant synthesis.

    Science.gov (United States)

    Han, SeungHye; Mallampalli, Rama K

    2014-08-01

    Phosphatidylcholine is generated through de novo synthesis and remodeling involving a lysophospholipid. In this issue of Cell Metabolism, research from the Shimizu lab (Harayama et al., 2014) demonstrates the highly selective enzymatic behavior of lysophospholipid acyltransferases. The authors present an enzymatic model for phosphatidylcholine molecular species diversification that impacts surfactant formation.

  5. Dispersion of carbon nanotubes using mixed surfactants: experimental and molecular dynamics simulation studies.

    Science.gov (United States)

    Sohrabi, B; Poorgholami-Bejarpasi, N; Nayeri, N

    2014-03-20

    The ability of cationic-rich and anionic-rich mixtures of CTAB (cetyltrimethylammonium bromide) and SDS (sodium dodecyl sulfate) for dispersing of carbon nanotubes (CNTs) in aqueous media has been studied through both the experimental and molecular dynamics simulation methods. Compared to the pure CTAB and SDS, these mixtures are more effective with the lower concentrations and more individual CNTs, reflecting a synergistic effect in these mixtures. The synergistic effects observed in mixed surfactant systems are mainly due to the electrostatic attractions between surfactant heads. In addition, the surface charge related to the colloidal stability of mixed surfactant-covered nanotubes has been characterized by means of ζ-potential measurements. The results indicate that the hydrophobic interactions between surfactant tails also give rise to the higher adsorption of surfactant molecules. Furthermore, molecular dynamics (MD) simulations have been performed to provide insight about the structure of surfactant aggregates onto nanotubes and to attempt an explanation of the experimental results. The MD simulation results indicate that the random and disordered adsorption of mixed surfactants onto carbon nanotubes may be preferred for a low surfactant concentration. Our research may provide experimental and theoretical bases for using mixed surfactants to disperse CNTs, which can open an avenue for new applications of mixed surfactants. PMID:24555914

  6. Mechanistic study of wettability alteration of oil-wet sandstone surface using different surfactants

    International Nuclear Information System (INIS)

    Graphical abstract: Zeta potential of oil-wet quartz powder treated with different surfactants at different concentrations. - Highlights: • Mechanisms of wettability alteration during surfactant flooding were studied. • Different analytical instruments were used to study sandstone wettability alteration. • Surfactants’ structure plays a great role in wettability alteration of solid surface. • CTAB irreversibly desorbs carboxylic acid from solid surface by ionic interaction. • Cationic surfactant is more effective in wettability alteration of sandstone surface. - Abstract: Different analytical methods including Fourier transform infrared (FTIR), atomic force microscopy (AFM), zeta potential measurements, contact angle measurements and spontaneous imbibition tests were utilized to make clear the mechanism for wettability alteration of oil-wet sandstone surface using different surfactants. Results show that among three types of surfactants including cationic surfactants, anionic surfactants and nonionic surfactants, the cationic surfactant CTAB demonstrates the best effect on the wettability alteration of oil-wet sandstone surface. The positively charged head groups of CTAB molecules and carboxylic acid groups from crude oil could interact to form ion pairs, which could be desorbed from the solid surface and solubilized into the micelle formed by CTAB. Thus, the water-wetness of the solid surface is improved. Nonionic surfactant TX-100 could be adsorbed on oil-wet sandstone surface through hydrogen bonds and hydrophobic interaction to alter the wettability of oil-wet solid surface. The wettability alteration of oil-wet sandstone surface using the anionic surfactant POE(1) is caused by hydrophobic interaction. Due to the electrostatic repulsion between the anionic surfactant and the negatively charged surface, POE(1) shows less effect on the wettability alteration of oil-wet sandstone surface

  7. Mechanistic study of wettability alteration of oil-wet sandstone surface using different surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Bao-feng, E-mail: hbf370283@163.com; Wang, Ye-fei; Huang, Yong

    2015-03-01

    Graphical abstract: Zeta potential of oil-wet quartz powder treated with different surfactants at different concentrations. - Highlights: • Mechanisms of wettability alteration during surfactant flooding were studied. • Different analytical instruments were used to study sandstone wettability alteration. • Surfactants’ structure plays a great role in wettability alteration of solid surface. • CTAB irreversibly desorbs carboxylic acid from solid surface by ionic interaction. • Cationic surfactant is more effective in wettability alteration of sandstone surface. - Abstract: Different analytical methods including Fourier transform infrared (FTIR), atomic force microscopy (AFM), zeta potential measurements, contact angle measurements and spontaneous imbibition tests were utilized to make clear the mechanism for wettability alteration of oil-wet sandstone surface using different surfactants. Results show that among three types of surfactants including cationic surfactants, anionic surfactants and nonionic surfactants, the cationic surfactant CTAB demonstrates the best effect on the wettability alteration of oil-wet sandstone surface. The positively charged head groups of CTAB molecules and carboxylic acid groups from crude oil could interact to form ion pairs, which could be desorbed from the solid surface and solubilized into the micelle formed by CTAB. Thus, the water-wetness of the solid surface is improved. Nonionic surfactant TX-100 could be adsorbed on oil-wet sandstone surface through hydrogen bonds and hydrophobic interaction to alter the wettability of oil-wet solid surface. The wettability alteration of oil-wet sandstone surface using the anionic surfactant POE(1) is caused by hydrophobic interaction. Due to the electrostatic repulsion between the anionic surfactant and the negatively charged surface, POE(1) shows less effect on the wettability alteration of oil-wet sandstone surface.

  8. Interaction of surfactants with hydrophobic surfaces in nanopores.

    Science.gov (United States)

    Brumaru, Claudiu; Geng, Maxwell L

    2010-12-21

    Surfactant-induced wetting of hydrophobic nanopores is investigated. SDS micelles interact with the C18 layer on the nanopore walls with their hydrophobic tails, creating a charged wall lining with their head groups and inducing a breakthrough of the aqueous solution to wet the pores. The surface coverage of the surfactant molecules is evaluated electrophoretically. A surprising discovery is that pore wetting is achieved with 0.73 μmol/m(2) coverage of SDS surfactant, corresponding to only 18% of a monolayer on the walls of the nanopores. Clearly, the surfactant molecules cannot organize as a compact uninterrupted monolayer. Instead, formation of hemimicelles is thermodynamically favored. Modeling shows that, to be consistent with the experimental observations, the aggregation number of hemimicelles is lower than 25 and the size of hemimicelle is limited to a maximum radius of 11.7 Å. The hydrophobic tails of SDS thus penetrate into and intercalate with the C18 layer. The insight gained in the C18-surfactant interactions is essential in the surfactant-induced solubilization of hydrophobic nanoporous particles. The results have bearing on the understanding of the nature of hydrophobic interactions. PMID:21043464

  9. Large scale molecular dynamics study of polymer-surfactant complex

    Science.gov (United States)

    Goswami, Monojoy; Sumpter, Bobby

    2012-02-01

    In this work, we study the self-assembly of cationic polyelectrolytes mediated by anionic surfactants in dilute or semi-dilute and gel states. The understanding of the dilute system is a requirement for the understanding of gel states. The importance of polyelectrolyte with oppositely charged colloidal particles can be found in biological systems, such as immobilization of enzymes in polyelectrolyte complexes or nonspecific association of DNA with protein. With the same understanding, interaction of surfactants with polyelectrolytes shows intriguing phenomena that are important for both in academic research as well as industrial applications. Many useful properties of PE surfactant complexes come from the highly ordered structures of surfactant self-assembly inside the PE aggregate. We do large scale molecular dynamics simulation using LAMMPS to understand the structure and dynamics of PE-surfactant systems. Our investigation shows highly ordered ring-string structures that have been observed experimentally in biological systems. We will investigate many different properties of PE-surfactant complexation which will be helpful for pharmaceutical, engineering and biological applications.

  10. Electrohydrodynamics of a surfactant-covered drop

    Science.gov (United States)

    Oberlander, Andrew; Ouriemi, Malika; Vlahovska, Petia

    2014-11-01

    We present an experimental study of the behavior of a drop covered with insoluble surfactant in a uniform DC electric field. Steady drop shapes, drop evolution upon application of the field, and drop relaxation after the field is turned off are observed for a polybutadiene (PB) drop suspended in silicon oil (PDMS). The surfactant is generated at the drop interface by reaction between end-functionalized PB and PDMS. The experimental data is compared with the theory of Nganguia et al. (2013) for the steady shapes, and a new model developed by us which accounts for polarization relaxation. The latter effect turns to be significant for our system of very low conductivity fluids, for which the Maxwell-Wagner time is of the order of tens of seconds. We will discuss the complex interplay of shape deformation, surfactant redistribution, and interfacial charging in droplet electrohydrodynamics. Our results are important for understanding electrorheology of emulsions commonly found in the petroleum industry. Supported by NSF-CBET-1132614.

  11. Stabilizing and destabilizing protein surfactant-based foams in the presence of a chemical surfactant: Effect of adsorption kinetics.

    Science.gov (United States)

    Li, Huazhen; Le Brun, Anton P; Agyei, Dominic; Shen, Wei; Middelberg, Anton P J; He, Lizhong

    2016-01-15

    Stimuli-responsive protein surfactants promise alternative foaming materials that can be made from renewable sources. However, the cost of protein surfactants is still higher than their chemical counterparts. In order to reduce the required amount of protein surfactant for foaming, we investigated the foaming and adsorption properties of the protein surfactant, DAMP4, with addition of low concentrations of the chemical surfactant sodium dodecylsulfate (SDS). The results show that the small addition of SDS can enhance foaming functions of DAMP4 at a lowered protein concentration. Dynamic surface tension measurements suggest that there is a synergy between DAMP4 and SDS which enhances adsorption kinetics of DAMP4 at the initial stage of adsorption (first 60s), which in turn stabilizes protein foams. Further interfacial properties were revealed by X-ray reflectometry measurements, showing that there is a re-arrangement of adsorbed protein-surfactant layer over a long period of 1h. Importantly, the foaming switchability of DAMP4 by metal ions is not affected by the presence of SDS, and foams can be switched off by the addition of zinc ions at permissive pH. This work provides fundamental knowledge to guide formulation using a mixture of protein and chemical surfactants towards a high performance of foaming at a low cost. PMID:26433478

  12. Clouding behaviour in surfactant systems.

    Science.gov (United States)

    Mukherjee, Partha; Padhan, Susanta K; Dash, Sukalyan; Patel, Sabita; Mishra, Bijay K

    2011-02-17

    A study on the phenomenon of clouding and the applications of cloud point technology has been thoroughly discussed. The phase behaviour of clouding and various methods adopted for the determination of cloud point of various surfactant systems have been elucidated. The systems containing anionic, cationic, nonionic surfactants as well as microemulsions have been reviewed with respect to their clouding phenomena and the effects of structural variation in the surfactant systems have been incorporated. Additives of various natures control the clouding of surfactants. Electrolytes, nonelectrolytes, organic substances as well as ionic surfactants, when present in the surfactant solutions, play a major role in the clouding phenomena. The review includes the morphological study of clouds and their applications in the extraction of trace inorganic, organic materials as well as pesticides and protein substrates from different sources. PMID:21296314

  13. Phase behavior of polyion-surfactant ion complex salts: effects of surfactant chain length and polyion length.

    Science.gov (United States)

    Svensson, Anna; Norrman, Jens; Piculell, Lennart

    2006-06-01

    The aqueous phase behavior of a series of complex salts, containing cationic surfactants with polymeric counterions, has been investigated by visual inspection and small-angle X-ray scattering (SAXS). The salts were alkyltrimethylammonium polyacrylates, CxTAPAy, based on all combinations of five surfactant chain lengths (C6, C8, C10, C12, and C16) and two lengths of the polyacrylate chain (30 and 6 000 repeating units). At low water contents, all complex salts except C6TAPA6000 formed hexagonal and/or cubic Pm3n phases, with the hexagonal phase being favored by lower water contents. The aggregate dimensions in the liquid crystalline phases changed with the surfactant chain length. The determined micellar aggregation numbers of the cubic phases indicated that the micelles were only slightly aspherical. At high water contents, the C6TAPAy salts were miscible with water, whereas the other complex salts featured wide miscibility gaps with a concentrated phase in equilibrium with a (sometimes very) dilute aqueous solution. Thus, the attraction between oppositely charged surfactant aggregates and polyions decreases with decreasing surfactant chain length, and with decreasing polyion length, resulting in an increased miscibility with water. The complex salt with the longest surfactant chains and polyions gave the widest miscibility gap, with a concentrated hexagonal phase in equilibrium with almost pure water. A decrease in the attraction led to cubic-micellar and micellar-micellar coexistence in the miscibility gap and to an increasing concentration of the complex salt in the dilute phase. For each polyion length, the mixtures for the various surfactant chain lengths were found to conform to a global phase diagram, where the surfactant chain length played the role of an interaction parameter. PMID:16722736

  14. Genetic Disorders of Surfactant Dysfunction

    OpenAIRE

    Wert, Susan E.; Whitsett, Jeffrey A.; Nogee, Lawrence M.

    2009-01-01

    Mutations in the genes encoding the surfactant proteins B and C (SP-B and SP-C) and the phospholipid transporter, ABCA3, are associated with respiratory distress and interstitial lung disease in the pediatric population. Expression of these proteins is regulated developmentally, increasing with gestational age, and is critical for pulmonary surfactant function at birth. Pulmonary surfactant is a unique mixture of lipids and proteins that reduces surface tension at the air-liquid interface, pr...

  15. Pulmonary Surfactant: An Immunological Perspective

    OpenAIRE

    Chroneos, Zissis C.; Sever-Chroneos, Zvjezdana; Shepherd, Virginia L.

    2009-01-01

    Pulmonary surfactant has two crucial roles in respiratory function; first, as a biophysical entity it reduces surface tension at the air water interface, facilitating gas exchange and alveolar stability during breathing, and, second, as an innate component of the lung's immune system it helps maintain sterility and balance immune reactions in the distal airways. Pulmonary surfactant consists of 90% lipids and 10% protein. There are four surfactant proteins named SP-A, SP-B, SP-C, and SP-D; th...

  16. Adsorption of polyhydroxyl based surfactants

    OpenAIRE

    Matsson, Maria

    2005-01-01

    Adsorption on solid surfaces from solution is a fundamental property of a surfactant. It might even be the most important aspect of surfactant behavior, since it influences many applications, such as cleaning, detergency, dispersion, separation, flotation, and lubrication. Consequently, fundamental investigations of surfactant adsorption are relevant to many areas. The main aim of this thesis has been to elucidate the adsorption properties, primarily on the solid/water interface, of a particu...

  17. Diseases of Pulmonary Surfactant Homeostasis

    OpenAIRE

    Jeffrey A Whitsett; Wert, Susan E.; Weaver, Timothy E.

    2015-01-01

    Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after bi...

  18. Gemini surfactants as gene carriers

    Directory of Open Access Journals (Sweden)

    Teresa Piskorska

    2010-03-01

    Full Text Available Gemini surfactants are a new class of amphiphilic compounds built from two classic surfactant moieties bound together by a special spacer group. These compounds appear to be excellent for creating complexes with DNA and are effective in mediating transfection. Thanks to their construction, DNA carrier molecules built from gemini surfactants are able to deliver genes to cells of almost any DNA molecule size, unattainable when using viral gene delivery systems. Moreover, they are much safer for living organisms.

  19. Surfactant phosphatidylcholine metabolism and surfactant function in preterm, ventilated lambs

    Energy Technology Data Exchange (ETDEWEB)

    Jobe, A.H.; Ikegami, M.; Seidner, S.R.; Pettenazzo, A.; Ruffini, L.

    1989-02-01

    Preterm lambs were delivered at 138 days gestational age and ventilated for periods up to 24 h in order to study surfactant metabolism and surfactant function. The surfactant-saturated phosphatidylcholine pool in the alveolar wash was 13 +/- 4 mumol/kg and did not change from 10 min to 24 h after birth. Trace amounts of labeled natural sheep surfactant were mixed with fetal lung fluid at birth. By 24 h, 80% of the label had become lung-tissue-associated, yet there was no loss of label from phosphatidylcholine in the lungs when calculated as the sum of the lung tissue plus alveolar wash. De novo synthesized phosphatidylcholine was labeled with choline given by intravascular injection at 1 h of age. Labeled phosphatidylcholine accumulated in the lung tissue linearly to 24 h, and the labeled phosphatidylcholine moved through lamellar body to alveolar pools. The turnover time for alveolar phosphatidylcholine was estimated to be about 13 h, indicating an active metabolic pool. A less surface-active surfactant fraction recovered as a supernatant after centrifugation of the alveolar washes at 40,000 x g increased from birth to 10 min of ventilation, but no subsequent changes in the distribution of surfactant phosphatidylcholine in surfactant fractions occurred. The results were consistent with recycling pathway(s) that maintained surface-active surfactant pools in preterm ventilated lambs.

  20. Surfactant phosphatidylcholine metabolism and surfactant function in preterm, ventilated lambs

    International Nuclear Information System (INIS)

    Preterm lambs were delivered at 138 days gestational age and ventilated for periods up to 24 h in order to study surfactant metabolism and surfactant function. The surfactant-saturated phosphatidylcholine pool in the alveolar wash was 13 +/- 4 mumol/kg and did not change from 10 min to 24 h after birth. Trace amounts of labeled natural sheep surfactant were mixed with fetal lung fluid at birth. By 24 h, 80% of the label had become lung-tissue-associated, yet there was no loss of label from phosphatidylcholine in the lungs when calculated as the sum of the lung tissue plus alveolar wash. De novo synthesized phosphatidylcholine was labeled with choline given by intravascular injection at 1 h of age. Labeled phosphatidylcholine accumulated in the lung tissue linearly to 24 h, and the labeled phosphatidylcholine moved through lamellar body to alveolar pools. The turnover time for alveolar phosphatidylcholine was estimated to be about 13 h, indicating an active metabolic pool. A less surface-active surfactant fraction recovered as a supernatant after centrifugation of the alveolar washes at 40,000 x g increased from birth to 10 min of ventilation, but no subsequent changes in the distribution of surfactant phosphatidylcholine in surfactant fractions occurred. The results were consistent with recycling pathway(s) that maintained surface-active surfactant pools in preterm ventilated lambs

  1. Alteration in cell surface properties of Burkholderia spp. during surfactant-aided biodegradation of petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Sagarika; Mukherji, Suparna [Indian Institute of Technology Bombay, Mumbai (India). Centre for Environmental Science and Engineering (CESE)

    2012-04-15

    Chemical surfactants may impact microbial cell surface properties, i.e., cell surface hydrophobicity (CSH) and cell surface charge, and may thus affect the uptake of components from non-aqueous phase liquids (NAPLs). This work explored the impact of Triton X-100, Igepal CA 630, and Tween 80 (at twice the critical micelle concentration, CMC) on the cell surface characteristics of Burkholderia cultures, Burkholderia cepacia (ES1, aliphatic degrader) and Burkholderia multivorans (NG1, aromatic degrader), when grown on a six-component model NAPL. In the presence of Triton X-100, NAPL biodegradation was enhanced from 21% to 60% in B. cepacia and from 18% to 53% in B. multivorans. CSH based on water contact angle (50-52 ) was in the same range for both strains while zeta potential at neutral pH was -38 and -31 mV for B. cepacia and B. multivorans, respectively. In the presence of Triton X-100, their CSH increased to greater than 75 and the zeta potential decreased. This induced a change in the mode of uptake and initiated aliphatic hydrocarbon degradation by B. multivorans and increased the rate of aliphatic hydrocarbon degradation in B. cepacia. Igepal CA 630 and Tween 80 also altered the cell surface properties. For B. cepacia grown in the presence of Triton X-100 at two and five times its CMC, CSH increased significantly in the log growth phase. Growth in the presence of the chemical surfactants also affected the abundance of chemical functional groups on the cell surface. Cell surface changes had maximum impact on NAPL degradation in the presence of emulsifying surfactants, Triton X-100 and Igepal CA630.

  2. Interaction of nonionic surfactant AEO9 with ionic surfactants

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-guo; YIN Hong

    2005-01-01

    The interaction in two mixtures of a nonionic surfactant AEO9 (C12H25O(CH2CH2O)9H) and different ionic surfactants was investigated. The two mixtures were AEO9/sodium dodecyl sulfate (SDS) and AEO9/cetyltrimethylammonium bromide (CTAB) at molar fraction of AEO9, αAEO9 =0.5. The surface properties of the surfactants, critical micelle concentration (CMC),effectiveness of surface tension reduction (γCMC), maximum surface excess concentration (Гmax) and minimum area per molecule at the air/solution interface (Amin) were determined for both individual surfactants and their mixtures. The significant deviations from ideal behavior (attractive interactions) of the nonionic/ionic surfactant mixtures were determined. Mixtures of both AEO9/SDS and AEO9/CTAB exhibited synergism in surface tension reduction efficiency and mixed micelle formation, but neither exhibited synergism in surface tension reduction effectiveness.

  3. Electrophoretic separations in poly(dimethylsiloxane) microchips using mixtures of ionic, nonionic and zwitterionic surfactants.

    Science.gov (United States)

    Guan, Qian; Noblitt, Scott D; Henry, Charles S

    2012-09-01

    The use of surfactant mixtures to affect both EOF and separation selectivity in electrophoresis with PDMS substrates is reported, and capacitively coupled contactless conductivity detection is introduced for EOF measurement on PDMS microchips. First, the EOF was measured for two nonionic surfactants (Tween 20 and Triton X-100), mixed ionic/nonionic surfactant systems (SDS/Tween 20 and SDS/Triton X-100), and finally for the first time, mixed zwitterionic/nonionic surfactant systems (TDAPS/Tween 20 and TDAPS/Triton X-100). EOF for the nonionic surfactants decreased with increasing surfactant concentration. The addition of SDS or TDAPS to a nonionic surfactant increased EOF. After establishing the EOF behavior, the separation of model catecholamines was explored to show the impact on separations. Similar analyte resolution with greater peak heights was achieved with mixed surfactant systems containing Tween 20 and TDAPS relative to the single surfactant system. Finally, the detection of catecholamine release from PC12 cells by stimulation with 80 mM K(+) was performed to demonstrate the usefulness of mixed surfactant systems to provide resolution of biological compounds in complex samples.

  4. Influence of liquid-layer thickness on pulmonary surfactant spreading and collapse.

    Science.gov (United States)

    Siebert, Trina A; Rugonyi, Sandra

    2008-11-15

    Pulmonary surfactant spreads on the thin ( approximately 0.1 microm) liquid layer that lines the alveoli, forming a film that reduces surface tension and allows normal respiration. Pulmonary surfactant deposited in vitro on liquid layers that are several orders of magnitude thicker, however, does not reach the low surface tensions ( approximately 0.001 N/m) achieved in the lungs during exhalation when the surfactant film compresses. This is due to collapse, a surface phase transition during which the surfactant film, rather than decreasing surface tension by increasing its surface density, becomes thicker at constant surface tension ( approximately 0.024 N/m). Formation of the collapse phase requires transport of surfactant to collapse sites, and this transport can be hindered in thinner liquid layers by viscous resistance to motion. Our objective is to determine the effect of the liquid-layer thickness on surfactant transport, which might affect surfactant collapse. To this end, we developed a mathematical model that accounts for the effect of the liquid-layer thickness on surfactant transport, and focused on surfactant spreading and collapse. Model simulations showed a marked decrease in collapse rates for thinner liquid layers, but this decrease was not enough to completely explain differences in surfactant film behavior between in vitro and in situ experiments. PMID:18676658

  5. Genetics Home Reference: surfactant dysfunction

    Science.gov (United States)

    ... and decreased surfactant function. The loss of functional surfactant raises surface tension in the alveoli, causing severe breathing problems. The combination of SP-B and SP-C dysfunction may explain why the signs and symptoms of SP-B deficiency ... dysfunction sometimes called SP-C dysfunction. These mutations ...

  6. Novel Approaches to Surfactant Administration

    OpenAIRE

    Samir Gupta; Donn, Steven M.

    2012-01-01

    Surfactant replacement therapy has been the mainstay of treatment for preterm infants with respiratory distress syndrome for more than twenty years. For the most part, surfactant is administered intratracheally, followed by mechanical ventilation. In recent years, the growing interest in noninvasive ventilation has led to novel approaches of administration. This paper will review these techniques and the associated clinical evidence.

  7. Mineral-Surfactant Interactions for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    P. Somasundaran

    2008-09-20

    Chemical EOR can be an effective method for increasing oil recovery and reducing the amount of produced water; however, reservoir fluids are chemically complex and may react adversely to the polymers and surfactants injected into the reservoir. While a major goal is to alter rock wettability and interfacial tension between oil and water, rock-fluid and fluid-fluid interactions must be understood and controlled to minimize reagent loss, maximize recovery and mitigate costly failures. The overall objective of this project was to elucidate the mechanisms of interactions between polymers/surfactants and the mineral surfaces responsible for determining the chemical loss due to adsorption and precipitation in EOR processes. The role of dissolved inorganic species that are dependent on the mineralogy is investigated with respect to their effects on adsorption. Adsorption, wettability and interfacial tension are studied with the aim to control chemical losses, the ultimate goal being to devise schemes to develop guidelines for surfactant and polymer selection in EOR. The adsorption behavior of mixed polymer/surfactant and surfactant/surfactant systems on typical reservoir minerals (quartz, alumina, calcite, dolomite, kaolinite, gypsum, pyrite, etc.) was correlated to their molecular structures, intermolecular interactions and the solution conditions such as pH and/or salinity. Predictive models as well as general guidelines for the use of polymer/surfactant surfactant/surfactant system in EOR have been developed The following tasks have been completed under the scope of the project: (1) Mineral characterization, in terms of SEM, BET, size, surface charge, and point zero charge. (2) Study of the interactions among typical reservoir minerals (quartz, alumina, calcite, dolomite, kaolinite, gypsum, pyrite, etc.) and surfactants and/or polymers in terms of adsorption properties that include both macroscopic (adsorption density, wettability) and microscopic (orientation

  8. Dielectrophoresis of a surfactant-laden viscous drop

    Science.gov (United States)

    Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-06-01

    The dielectrophoresis of a surfactant-laden viscous drop in the presence of non-uniform DC electric field is investigated analytically and numerically. Considering the presence of bulk-insoluble surfactants at the drop interface, we first perform asymptotic solution for both low and high surface Péclet numbers, where the surface Péclet number signifies the strength of surface convection of surfactants as compared to the diffusion at the drop interface. Neglecting fluid inertia and interfacial charge convection effects, we obtain explicit expression for dielectrophoretic drop velocity for low and high Péclet numbers by assuming small deviation of drop shape from sphericity and small deviation of surfactant concentration from the equilibrium uniform distribution. We then depict a numerical solution, assuming spherical drop, for arbitrary values of Péclet number. Our analyses demonstrate that the asymptotic solution shows excellent agreement with the numerical solution in the limiting conditions of low and high Péclet numbers. The present analysis shows that the flow-induced redistribution of the surfactants at the drop interface generates Marangoni stress, owing to the influence of the surfactant distribution on the local interfacial tension, at the drop interface and significantly alters the drop velocity at steady state. For a perfectly conducting/dielectric drop suspended in perfectly dielectric medium, Marangoni stress always retards the dielectrophoretic velocity of the drop as compared with a surfactant-free drop. For a leaky dielectric drop suspended in another leaky dielectric medium, in the low Péclet number limit, depending on the electrical conductivity and permittivity of both the liquids, the Marangoni stress may aid or retard the dielectrophoretic velocity of the drop. The Marangoni stress also has the ability to move the drop in the opposite direction as compared with a surfactant-free drop. This non-intuitive reverse motion of the drop is

  9. Observation of two different fractal structures in nanoparticle, protein and surfactant complexes

    Energy Technology Data Exchange (ETDEWEB)

    Mehan, Sumit, E-mail: sumit.mehan@gmail.com; Kumar, Sugam, E-mail: sumit.mehan@gmail.com; Aswal, V. K., E-mail: sumit.mehan@gmail.com [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2014-04-24

    Small angle neutron scattering has been carried out from a complex of nanoparticle, protein and surfactant. Although all the components are similarly (anionic) charged, we have observed strong interactions in their complex formation. It is characterized by the coexistence of two different mass fractal structures. The first fractal structure is originated from the protein and surfactant interaction and second from the depletion effect of first fractal structure leading the nanoparticle aggregation. The fractal structure of protein-surfactant complex represents to bead necklace structure of micelle-like clusters of surfactant formed along the unfolded protein chain. Its fractal dimension depends on the surfactant to protein ratio (r) and decreases with the increase in r. However, fractal dimension of nanoparticle aggregates in nanoparticle-protein complex is found to be independent of protein concentration and governed by the diffusion limited aggregation like morphology.

  10. Observation of two different fractal structures in nanoparticle, protein and surfactant complexes

    Science.gov (United States)

    Mehan, Sumit; Kumar, Sugam; Aswal, V. K.

    2014-04-01

    Small angle neutron scattering has been carried out from a complex of nanoparticle, protein and surfactant. Although all the components are similarly (anionic) charged, we have observed strong interactions in their complex formation. It is characterized by the coexistence of two different mass fractal structures. The first fractal structure is originated from the protein and surfactant interaction and second from the depletion effect of first fractal structure leading the nanoparticle aggregation. The fractal structure of protein-surfactant complex represents to bead necklace structure of micelle-like clusters of surfactant formed along the unfolded protein chain. Its fractal dimension depends on the surfactant to protein ratio (r) and decreases with the increase in r. However, fractal dimension of nanoparticle aggregates in nanoparticle-protein complex is found to be independent of protein concentration and governed by the diffusion limited aggregation like morphology.

  11. Fast online determination of surfactant inhibition in acidic phase bioreactors.

    Science.gov (United States)

    Feitkenhauer, H

    2004-01-01

    Surfactants have been shown to inhibit the anaerobic digestion process severely, with the methanogenic microorganisms being the most affected. The diverse nature of surfactants used even in one (e.g. textile finishing) plant makes an online determination of surfactants sometimes very difficult and expensive. Therefore a fast online determination of inhibitory effects on the acidogenic microorganisms (first step of the degradation cascade) can help to give an early warning signal or to calculate a "pseudo"-surfactant concentration. In a two-phase system this information can be used to protect the methanogenic reactor against surfactant overloading and its long term negative effects. In this paper it is shown that the inhibition is a consequence of microbial inhibition and is not caused by an inactivation of extracellular hydrolytic enzymes (released by the cells for biopolymer cleavage). A titration technique was successfully employed to measure the surfactant inhibition in a laboratory-scale acidification reactor. Additional experiments demonstrate (using sodium dodecyl sulfate as the model substance) how inhibitory effects (and strategies to overcome inhibitory effects) can be investigated efficiently. PMID:14979534

  12. Critical Heat Flux during Flow Boiling Experiment with Surfactant Solutions

    International Nuclear Information System (INIS)

    Some additives enhance heat transfer, although, the magnitude and mechanism of enhancement are not consistent or clearly understood. A low concentration of surfactant can also reduce the solution's surface tension considerably, and its level of reduction depends on the amount and type of surfactant present in solution. The surfactant concentrations are usually low enough that the addition of surfactant to water causes no significant change in saturation temperature and most other physical properties, except viscosity and surface tension. Reduced surface tension influences the activation of nucleation sites, bubble growth and dynamics, affecting the boiling heat transfer coefficient. Surfactants effect on CHF (Critical Heat Flux) was determined during flow boiling at atmospheric pressure in closed loop filled with water solutions of tri-sodium phosphate (TSP, Na3PO4.12H2O). TSP was added to the containment sump water to adjust pH level during accidents in nuclear power plants. CHF was measured for four water surfactant solutions at different mass fluxes (100 - 500 kg/m2sec) and two inlet subcooling temperatures (50 .deg. C and 75 .deg. C). Wettability was determined by measuring the contact angle at different concentration cases that will substantiate any CHF increase

  13. Barrier or carrier? Pulmonary surfactant and drug delivery.

    Science.gov (United States)

    Hidalgo, Alberto; Cruz, Antonio; Pérez-Gil, Jesús

    2015-09-01

    To consider the lung as a target for drug delivery and to optimise strategies directed at the pulmonary route, it is essential to consider the role of pulmonary surfactant, a thin lipid-protein film lining the respiratory surface of mammalian lungs. Membrane-based surfactant multilayers are essential for reducing the surface tension at the respiratory air-liquid interface to minimise the work of breathing. Different components of surfactant are also responsible for facilitating the removal of potentially pathological entities such as microorganisms, allergens or environmental pollutants and particles. Upon inhalation, drugs or nanoparticles first contact the surfactant layer, and these interactions critically affect their lifetime and fate in the airways. This review summarises the current knowledge on the possible role and effects of the pulmonary surfactant system in drug delivery strategies. It also summarises the evidence that suggests that pulmonary surfactant is far from being an insuperable barrier and could be used as an efficient shuttle for delivering hydrophobic and hydrophilic compounds deep into the lung and the organism.

  14. Sorption behavior and acute toxicity of cationic surfactants in the aquatic environment

    NARCIS (Netherlands)

    Chen, Y.

    2014-01-01

    Cationic surfactants are widely used as detergents, fabric softeners and disinfectants. Due to the charged nitrogen atoms, they have a high potential to sorb to negatively charged sediments, soils and sludge. That is also the reason why they are frequently detected in sediment and sludge. Sorption t

  15. Improving reseeding success after catastrophic wildfire with surfactant seed coating technology

    Science.gov (United States)

    The application of soil surfactants in wildfire-affected ecosystems has been limited due to logistical and economic constraints associated with the standard practice of using large quantities of irrigation water as the surfactant carrier. We tested a potential solution to this problem that uses seed...

  16. Biophysicochemical Interaction of a Clinical Pulmonary Surfactant with Nanoalumina.

    Science.gov (United States)

    Mousseau, F; Le Borgne, R; Seyrek, E; Berret, J-F

    2015-07-01

    We report on the interaction of pulmonary surfactant composed of phospholipids and proteins with nanometric alumina (Al2O3) in the context of lung exposure and nanotoxicity. We study the bulk properties of phospholipid/nanoparticle dispersions and determine the nature of their interactions. The clinical surfactant Curosurf, both native and extruded, and a protein-free surfactant are investigated. The phase behavior of mixed surfactant/particle dispersions was determined by optical and electron microscopy, light scattering, and zeta potential measurements. It exhibits broad similarities with that of strongly interacting nanosystems such as polymers, proteins or particles, and supports the hypothesis of electrostatic complexation. At a critical stoichiometry, micron-sized aggregates arising from the association between oppositely charged vesicles and nanoparticles are formed. Contrary to the models of lipoprotein corona or of particle wrapping, our work shows that vesicles maintain their structural integrity and trap the particles at their surfaces. The agglomeration of particles in surfactant phase is a phenomenon of importance that could change the interactions of the particles with lung cells.

  17. Mechanisms of enhanced mobilisation of trace metals by anionic surfactants in soil

    International Nuclear Information System (INIS)

    Long-term applications of small concentrations of surfactants in soil via wastewater irrigation or pesticide application may enhance trace metal solubility. Mechanisms by which anionic surfactants (Aerosol 22, SDS and Biopower) affect trace metal solubility were assessed using batch, incubation and column experiments. In batch experiments on seven soils, the concentrations of Cu, Cd, Ni and Zn in the dissolved fraction of soils increased up to 100-fold at the high application rates, but increased less than 1.5-fold below the critical micelle concentration. Dissolved metal concentrations were less than 20% affected by surfactants in long-term incubations (70 days) up to the largest dose of 200 mg C kg-1 soil. Leaching soil columns with A22 (100-1000 mg C L-1) under unsaturated conditions increased trace metal concentrations in the leachates 2-4 fold over the control. Correlation analysis and speciation modelling showed that the increased solubility of metals upon surfactant application was more related to the solubilisation of soil organic matter from soil than to complexation of the metals with the surfactant. Organic matter from soil was solubilised in response to a decrease of solution Ca2+ as a result of Ca-surfactant precipitation. At environmentally relevant concentrations, surfactant application is unlikely to have a significant effect on trace metal mobility. - Graphical abstract: Display Omitted Research highlights: →Anionic surfactants increase metal mobility by solubilising soil organic matter. → Metal complexation with surfactants is relevant only at elevated surfactant doses. → Surfactants have little effect on metal mobility at environmentally relevant doses. - Anionic surfactants mobilise metals from soil through solubilisation of soil organic matter and direct complexation.

  18. A study of polymer-surfactant interactions by neutron reflectivity

    CERN Document Server

    Warren, N

    1999-01-01

    surfactants and their relative levels of interaction with the polymer. The surface behaviour of these systems was observed to be in many ways more remarkable than that of the bulk solution. In the high total surfactant concentration range, once all polymer molecules were associated with bound micelles, the extent of adsorption at the air-liquid interface was found to be dominated largely, as might be expected, by the solution monomer concentrations of the two surfactants. Prior to this, however, adsorption was dominated by the presence of a very surface active polymer-SDS complex which gave rise to enhanced SDS adsorption and low surface tensions compared with those found in polymer-free systems. The origin of this effect, being the stabilisation of the adsorbed SDS monolayer due to a reduction in the inter-headgroup repulsions through screening, by the charged polymer segments, suggests that this may be a characteristic feature of systems continuing a polyelectrolyte and an oppositely charged surfactant. In ...

  19. Viscoelasticity Enhancement of Surfactant Solutions Depends on Molecular Conformation: Influence of Surfactant Headgroup Structure and Its Counterion.

    Science.gov (United States)

    Lutz-Bueno, Viviane; Pasquino, Rossana; Liebi, Marianne; Kohlbrecher, Joachim; Fischer, Peter

    2016-05-01

    During the anisotropic growth from globular to wormlike micelles, the basic interactions among distinct parts of the surfactant monomer, its counterion, and additives are fundamental to tune molecular self-assembly. We investigate the addition of sodium salicylate (NaSal) to hexadecyltrimethylammonium chloride and bromide (CTAC and CTAB), 1-hexadecylpyridinium chloride and bromide (CPyCl and CPyBr), and benzyldimethylhexadecylammonium chloride (BDMC), which have the same hydrophobic tail. Their potential to enhance viscoelasticity by anisotropic micellar growth upon salt addition was compared in terms of (i) the influence of the headgroup structure, and (ii) the influence of surfactant counterion type. Employing proton nuclear magnetic resonance ((1)H NMR), we focused on the molecular conformation of surfactant monomers in the core and polar shell regions of the micelles and their interactions with increasing concentration of NaSal. The viscoelastic response was investigated by rotational and oscillatory rheology. We show that micellar growth rates can be tuned by varying the flexibility and size of the surfactant headgroup as well as the dissociation degree of the surfactant counterion, which directly influences the strength of headgroup-counterion pairing. As a consequence, the morphological transitions depend directly on charge neutralization by electrostatic screening. For example, the amount of salt necessary to start the rodlike-to-wormlike micelle growth depends directly on the number of dissociated counterions in the polar shell. PMID:27081871

  20. On the Structure and Dynamics of Polyelectrolyte Gel Systems and Gel-surfactant Complexes

    OpenAIRE

    Råsmark, Per Johan

    2004-01-01

    This thesis describes the results of experimental work on polyelectrolyte gels and their interaction with oppositely charged surfactants, and presents two new algorithms applicable to the simulation of colloid and polymer systems. The model systems investigated were crosslinked poly(acrylate) (PA) and poly(styrene sulphonate) (PSS), and the surfactant was dodecyl trimethylammonium bromide (DoTAB). Pure gel materials were studied using dynamic light scattering. It was shown that the diffusion ...

  1. Binding of 12-s-12 dimeric surfactants to calf thymus DNA: Evaluation of the spacer length influence.

    Science.gov (United States)

    Sarrión, Beatriz; Bernal, Eva; Martín, Victoria Isabel; López-López, Manuel; López-Cornejo, Pilar; García-Calderón, Margarita; Moyá, María Luisa

    2016-08-01

    Several cationic dimeric surfactants have shown high affinity towards DNA. Bis-quaternary ammonium salts (m-s-m) have been the most common type of dimeric surfactants investigated and it is generally admitted that those that posses a short spacer (s≤3) show better efficiency to bind or compact DNA. However, experimental results in this work show that 12-s-12 surfactants with long spacers make the surfactant/ctDNA complexation more favorable than those with short spacers. A larger contribution of the hydrophobic interactions, which control the binding Gibbs energy, as well as a higher average charge of the surfactant molecules bound to the nucleic acid, which favors the electrostatic attractions, could explain the experimental observations. Dimeric surfactants with intermediate spacer length seem to be the less efficient for DNA binding. PMID:27108208

  2. Adsorption of anionic surfactant at the electrode–NaClO4 solution interface

    OpenAIRE

    Gugała-Fekner, Dorota; Nieszporek, Jolanta; Sieńko, Dorota

    2015-01-01

    Abstract Adsorption of 1-decanesulfonic acid at the electrode–NaClO4 solution interface was determined by double-layer differential capacity measurements. At potentials less than −1,200 mV, the adsorption of the anionic surfactant on the electrode does not occur. Low concentrations of the anionic surfactant (below cmc) causes slight changes in the zero charge potential, E z, and the surface tension at this potential, γ z. The adsorption of the anionic surfactant was analyzed using the constan...

  3. Surfactant loss control in chemical flooding spectroscopic and calorimetric study of adsorption and precipitation on reservoir minerals. Annual report, September 30, 1993--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaran, P.

    1995-06-01

    The aim of this project is to elucidate the mechanisms underlying adsorption and surface precipitation of flooding surfactants on reservoir minerals. Effect of surfactant structure, surfactant combinations, other inorganic and polymeric species is being studied. A multi-pronged approach consisting of micro and nano spectroscopy, microcalorimetry, electrokinetics, surface tension and wettability is used to achieve the goals. The results of this study should help in controlling surfactant loss in chemical flooding and also in developing optimum structures and conditions for efficient chemical flooding processes. During the second year of this three year contract, adsorption/desorption of single surfactants and select surfactant mixtures on alumina and silica was studied. Surfactants studied include the anionic sodium dodecyl sulfate (SDS), cationic tetradecyl trimethyl ammonium chloride (TTAC), nonionic pentadecylethoxylated nonyl phenol (NP-15) and the nonionic octaethylene glycol n-dodecyl ether (C{sub 12}EO{sub 8}) of varying hydrocarbon chain length. The microstructure of the adsorbed layer in terms of micropolarity and aggregation numbers was probed using fluorescence spectroscopy. Changes of microstructure upon dilution (desorption) were also studied. Presence of the nonionic surfactant in the mixed aggregate led to shielding of the charge of the ionic surfactant which in-turn promoted aggregation but reduced electrostatic attraction between the charged surfactant and the mineral surface. Strong consequences of surfactant interactions in solution upon adsorption as well as correlations between monomer concentrations in mixtures and adsorption were revealed.

  4. Genetic disorders of surfactant homeostasis.

    Science.gov (United States)

    Whitsett, Jeffrey A; Wert, Susan E; Xu, Yan

    2005-01-01

    Adaptation to air breathing at birth requires the precise orchestration of cellular processes to initiate fluid clearance, enhance pulmonary blood flow, and to synthesize and secrete pulmonary surfactant needed to reduce surface tension at the air-liquid interface in the alveoli. Genetic programs regulating the synthesis of the surfactant proteins and lipids required for the production and function of pulmonary surfactant are highly conserved across vertebrates, and include proteins that regulate the synthesis and packaging of pulmonary surfactant proteins and lipids. Surfactant proteins B and C (SP-B and -C) are small, uniquely hydrophobic proteins that play important roles in the stability and spreading of surfactant lipids in the alveolus. Deletion or mutations in SP-B and -C cause acute and chronic lung disease in neonates and infants. SP-B and -C are synthesized and packaged with surfactant phospholipids in lamellar bodies. Normal lamellar body formation requires SP-B and a member of the ATP-binding cassette (ABC) family of ATP-dependent membrane-associated transport proteins, ABCA3. Mutations in ABCA3 cause fatal respiratory disease in newborns and severe chronic lung disease in infancy. Expression of SP-B, -C, and ABCA3 are coregulated during late gestation by transcriptional programs influenced by thyroid transcription factor-1 and forkhead box a2, transcription factors that regulate both differentiation of the respiratory epithelium and transcription of genes required for perinatal adaptation to air breathing. PMID:15985750

  5. MICROBIAL SURFACTANTS IN ENVIRONMENTAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2015-08-01

    Full Text Available It was shown literature and own experimental data concerning the use of microbial surface active glycolipids (rhamno-, sophoro- and trehalose lipids and lipopeptides for water and soil purification from oil and other hydrocarbons, removing toxic heavy metals (Cu2+, Cd2+, Ni2+, Pb2+, degradation of complex pollution (oil and other hydrocarbons with heavy metals, and the role of microbial surfactants in phytoremediation processes. The factors that limit the use of microbial surfactants in environmental technologies are discussed. Thus, at certain concentrations biosurfactant can exhibit antimicrobial properties and inhibit microorganisms destructing xenobiotics. Microbial biodegradability of surfactants may also reduce the effectiveness of bioremediation. Development of effective technologies using microbial surfactants should include the following steps: monitoring of contaminated sites to determine the nature of pollution and analysis of the autochthonous microbiota; determining the mode of surfactant introduction (exogenous addition of stimulation of surfactant synthesis by autochthonous microbiota; establishing an optimal concentration of surfactant to prevent exhibition of antimicrobial properties and rapid biodegradation; research both in laboratory and field conditions.

  6. Formation and stability of nanoemulsions with mixed ionic-nonionic surfactants.

    Science.gov (United States)

    Wang, Lijuan; Tabor, Rico; Eastoe, Julian; Li, Xuefeng; Heenan, Richard K; Dong, Jinfeng

    2009-11-14

    A simple, low-energy two-step dilution process has been applied with binary mixtures of ionic-nonionic surfactants to prepare nanoemulsions. The systems consist of water/DDAB-C(12)E(5)/decane. Nanoemulsions were obtained by dilution of concentrates located in bicontinuous microemulsion or lamellar liquid crystal phase regions. The nanoemulsions generated were investigated both by contrast-variation small-angle neutron scattering (SANS) and dynamic light scattering (DLS). The SANS profiles show that C(12)E(5) nanodroplets suffer essentially no structural change on incorporation of the cationic DDAB surfactant, except for increased electrostatic repulsive interactions. Interestingly, SANS indicated that the preferred droplet sizes were hardly affected by the surfactant mixture composition (up to a DDAB molar ratio (m(DDAB)/(m(DDAB) + m(C(12)E(5))) of 0.40) and droplet volume fraction, phi, between 0.006 and 0.120. No notable changes in the structure or radius of nanoemulsion droplets were observed by SANS over the test period of 1 d, although the droplet number intensity decreased significantly in systems stabilized by C(12)E(5) only. However, the DLS sizing shows a marked increase with time, with higher droplet volume fractions giving rise to the largest changes. The discrepancy between apparent nanoemulsion droplet size determined by DLS and SANS data can be attributed to long-range droplet interactions occurring outside of the SANS sensitivity range. The combined SANS and DLS results suggest flocculation is the main mechanism of instability for these nanoemulsions. The flocculation rate is shown to be significantly retarded by addition of the charged DDAB, which may be due to enhanced electrostatic repulsive forces between droplets, leading to improved stability of the nanoemulsions. PMID:19851556

  7. Formation and stability of nanoemulsions with mixed ionic-nonionic surfactants.

    Science.gov (United States)

    Wang, Lijuan; Tabor, Rico; Eastoe, Julian; Li, Xuefeng; Heenan, Richard K; Dong, Jinfeng

    2009-11-14

    A simple, low-energy two-step dilution process has been applied with binary mixtures of ionic-nonionic surfactants to prepare nanoemulsions. The systems consist of water/DDAB-C(12)E(5)/decane. Nanoemulsions were obtained by dilution of concentrates located in bicontinuous microemulsion or lamellar liquid crystal phase regions. The nanoemulsions generated were investigated both by contrast-variation small-angle neutron scattering (SANS) and dynamic light scattering (DLS). The SANS profiles show that C(12)E(5) nanodroplets suffer essentially no structural change on incorporation of the cationic DDAB surfactant, except for increased electrostatic repulsive interactions. Interestingly, SANS indicated that the preferred droplet sizes were hardly affected by the surfactant mixture composition (up to a DDAB molar ratio (m(DDAB)/(m(DDAB) + m(C(12)E(5))) of 0.40) and droplet volume fraction, phi, between 0.006 and 0.120. No notable changes in the structure or radius of nanoemulsion droplets were observed by SANS over the test period of 1 d, although the droplet number intensity decreased significantly in systems stabilized by C(12)E(5) only. However, the DLS sizing shows a marked increase with time, with higher droplet volume fractions giving rise to the largest changes. The discrepancy between apparent nanoemulsion droplet size determined by DLS and SANS data can be attributed to long-range droplet interactions occurring outside of the SANS sensitivity range. The combined SANS and DLS results suggest flocculation is the main mechanism of instability for these nanoemulsions. The flocculation rate is shown to be significantly retarded by addition of the charged DDAB, which may be due to enhanced electrostatic repulsive forces between droplets, leading to improved stability of the nanoemulsions.

  8. Transient exposure of pulmonary surfactant to hyaluronan promotes structural and compositional transformations into a highly active state.

    Science.gov (United States)

    Lopez-Rodriguez, Elena; Cruz, Antonio; Richter, Ralf P; Taeusch, H William; Pérez-Gil, Jesús

    2013-10-11

    Pulmonary surfactant is a lipid-protein complex that lowers surface tension at the respiratory air-liquid interface, stabilizing the lungs against physical forces tending to collapse alveoli. Dysfunction of surfactant is associated with respiratory pathologies such as acute respiratory distress syndrome or meconium aspiration syndrome where naturally occurring surfactant-inhibitory agents such as serum, meconium, or cholesterol reach the lung. We analyzed the effect of hyaluronan (HA) on the structure and surface behavior of pulmonary surfactant to understand the mechanism for HA-promoted surfactant protection in the presence of inhibitory agents. In particular, we found that HA affects structural properties such as the aggregation state of surfactant membranes and the size, distribution, and order/packing of phase-segregated lipid domains. These effects do not require a direct interaction between surfactant complexes and HA and are accompanied by a compositional reorganization of large surfactant complexes that become enriched with saturated phospholipid species. HA-exposed surfactant reaches very high efficiency in terms of rapid and spontaneous adsorption of surfactant phospholipids at the air-liquid interface and shows significantly improved resistance to inactivation by serum or cholesterol. We propose that physical effects pertaining to the formation of a meshwork of interpenetrating HA polymer chains are responsible for the changes in surfactant structure and composition that enhance surfactant function and, thus, resistance to inactivation. The higher resistance of HA-exposed surfactant to inactivation persists even after removal of the polymer, suggesting that transient exposure of surfactant to polymers like HA could be a promising strategy for the production of more efficient therapeutic surfactant preparations. PMID:23983120

  9. A conductometric investigation of hydroxypropylmethyl cellulose/sodium dodecyl sulfate/nonionic surfactant systems

    Directory of Open Access Journals (Sweden)

    Petrović Lidija B.

    2014-01-01

    Full Text Available Surfactant mixtures are very often used in various cosmetic and pharmaceutical products because they commonly act in synergism and provide more favorable properties than the single surfactants. At the same time, the 9 presence of polymers in mixtures of surfactants may lead to molecular interactions thereby affecting product stability and activity. For these reasons it is very important to determine the surfactant interactions influence on 1micellization and mixed micellization, as well as polymer-surfactants mixed micelles interactions. In this work we examined self-aggregation of nonionic surfactants, polysorbate 20 (Tween 20, polyoxyethylene octylphenyl ether (Triton X100 and polyoxyethylene-polyoxypropylene block copolymer (Pluronic F68 with ionic surfactant, sodium dodecylsulfate, in aqueous solution at 40ºC using conductometric titration method. It was found that concentration region for mixed micelle formation depends on nonionic surfactant characteristics and its concentration. Formation of surfactants mixed micelles in the presence of nonionic polymer, hydroxypropylmethyl cellulose, and their binding to polymer hydrophobic sites, were investigated too. Analysis of obtained results points to different kinds of interactions in investigated systems, which are crucial for their application. [Projekat Ministarstva nauke Republike Srbije, br. III 46010

  10. Treatment with exogenous surfactant stimulates endogenous surfactant synthesis in premature infants with respiratory distress syndrome

    NARCIS (Netherlands)

    Bunt, JEH; Carnielli, VP; Janssen, DJ; Wattimena, JLD; Hop, WC; Sauer, PJ; Zimmermann, LJI

    2000-01-01

    Objective: Treatment of preterm infants with respiratory distress syndrome (RDS) with exogenous surfactant has greatly improved clinical outcome. Some infants require multiple doses, and it has not been studied whether these large amounts of exogenous surfactant disturb endogenous surfactant metabol

  11. Biodegradation of surfactant bearing wastes

    International Nuclear Information System (INIS)

    In nuclear industry, during decontamination of protective wears and contaminated materials, detergents are employed to bring down the level of radioactive contamination within safe limits. However, the surfactant present in these wastes interferes in the chemical treatment process, reducing the decontamination factor. Biodegradation is an efficient and ecologically safe method for surfactant removal. A surfactant degrading culture was isolated and inoculated separately into simulated effluents containing 1% yeast extract and 5-100 ppm sodium lauryl sulphate (SLS) and 1% yeast extract and 5-100 ppm of commercial detergent respectively. The growth of the bacterial culture and the degradation characteristics of the surfactant in the above effluents were monitored under both dynamic and static conditions. (author). 6 refs., 6 figs., 1 tab

  12. Electrochemical Oscillations Induced by Surfactants

    Institute of Scientific and Technical Information of China (English)

    翟俊红; 贺占博

    2003-01-01

    A new type of electrochemical oscillation induced by surfactant was observed in experiments. The electrochemical system is a Daniell cell with a copper rod in CuSO4 aqueous and an aluminum rod in Al(NO3)3 aqueous as electrodes. The surfactants are CTAB, TX-100, SLS. The addition of trace surfactant solution by a micro-syringe made the original monotonously changing electrochemical system produce obvious periodic phenomena. At the mean time, the copper ion selective electrode and Hg2SO4 reference electrode were used to monitor the copper electrode reaction and determine its rate constant k of first order reaction. According to the experimental results of electrode reaction kinetics, the possible mechanism was found to be the polarization induced from the directional adsorption of trace surfactant on the electrode surface. That is the electrochemical oscillations.

  13. Rheological response of methylcellulose toward alkanediyl-α,ω-bis(dimethylcetylammonium bromide) surfactants with varying spacer length.

    Science.gov (United States)

    Shah, Rais Ahmad; Chat, Oyais Ahmad; Maswal, Masrat; Rather, Ghulam Mohammad; Dar, Aijaz Ahmad

    2016-06-25

    The modulation of properties of methylcellulose (MC) by cationic gemini surfactants with varying spacer lengths was studied employing tensiometry, rheometry and turbidimetry. Surface tension measurements anticipate that the gemini surfactant with longer spacer chain length saturates MC at lower concentrations owing to its greater hydrophobicity compared to shorter spacer analogues. Rheometric and turbidimetric measurements suggest that at very low concentrations of gemini surfactants, ion-dipole type of interactions between MC and gemini surfactants promote the extension of polymer chains which is manifested by an initial increase in the low shear viscosity and gelation temperature of MC-gemini surfactant systems, and lowering of turbidity. Such interactions were found to be stronger in case of 16-4-16 than 16-5-16, and almost absent in case of 16-6-16 surfactant system. However at concentrations above CAC, hydrophobic forces operative between MC and gemini surfactants were found to be more for 16-6-16 than that of 16-5-16 and 16-4-16. The final levelling of MC viscosity in presence of all the three gemini surfactants and the variation of gelation temperature suggests the solubilization of network junctions in the surfactant micelles. Moreover, the presence of gemini surfactant strongly affects the interaction of MC with a model hydrophobic drug rifampicin.The results highlight the importance of gemini surfactants and their spacer length in controlling the structural dynamics of MC and its effective use in pharmaceutical and food industry. PMID:27083805

  14. Persurf, a New Method to Improve Surfactant Delivery: A Study in Surfactant Depleted Rats

    OpenAIRE

    Burkhardt, Wolfram; Kraft, Stephan; Ochs, Matthias; Proquitté, Hans; Mense, Lars; Rüdiger, Mario

    2012-01-01

    Purpose Exogenous surfactant is not very effective in adults with ARDS, since surfactant does not reach atelectatic alveoli. Perfluorocarbons (PFC) can recruit atelectatic areas but do not replace impaired endogenous surfactant. A surfactant-PFC-mixture could combine benefits of both therapies. The aim of the proof-of-principal-study was to produce a PFC-in-surfactant emulsion (Persurf) and to test in surfactant depleted Wistar rats whether Persurf achieves I.) a more homogenous pulmonary dis...

  15. Surfactant damages on coastal vegetation in southern Italy

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available Coastal vegetation decline caused by seaspray has been reported to affect a variety of species in several countries: Australia, South of France, along the Italian Tyrrhenian coast, Spain and Tunisia. The most serious injury is due to the interaction between sea salt and surfactants, even if surfactants may cause direct damage on cell membranes. The salt uptake is enhanced by the durfactant-induced erosion of the epicuticular wax, which reduces the water surface tension. The symptoms are non-specific and consist in leaf discoloration and necrosis. In needles, necrosis begins from the apex; in leaves, from the edges. Directionality of crown damage is the main symptom for diagnosing the involvement of polluted seaspray. If an obstacle is placed between trees and sea wind, the trees do not show appreciable damage. In Italy, the tree decline caused by seaspray and surfactants has been investigated with special reference to the pinewoods of the San Rossore (Tuscany, Central Italy, or on the Tyrrhenian coastlands of Central Italy, such as the area around Castelporziano in Lazio. This research is aimed at a preliminary assessment of the extent of surfactant damage to the coastal vegetation in four regions in Southern Italy by: i field surveys and mapping of damage caused by surfactants; ii detecting the presence of surfactants on the tree crowns. The damages have been observed in a lot of zones in Apulia, Basilicata, Campania and Calabria, within 500 m inland from the sea, for a maximum length of 5500 m coastline, near the mouth of a river or stream, near the outlet of sewage canals and in any other coastal areas where the surface currents carry a surfactant load.

  16. Severe adverse effects related to dermal exposure to a glyphosate-surfactant herbicide

    DEFF Research Database (Denmark)

    Mariager, T P; Madsen, P V; Ebbehøj, N E;

    2013-01-01

    This is a case of severe chemical burns following prolonged accidental exposure to a glyphosate-surfactant herbicide. The patient developed local swelling, bullae and exuding wounds. Neurological impairment followed affecting finger flexion and sensation with reduced nerve conduction. Imaging...

  17. Improvement of lung mechanics by exogenous surfactant: effect of prior application of high positive end-expiratory pressure

    OpenAIRE

    Hartog, Anneke; Gommers, Diederik; Haitsma, J.J.; Lachmann, Burkhard

    2000-01-01

    textabstractThe use of a ventilation strategy with high positive end-expiratory pressure (PEEP) that is intended to recruit collapsed alveoli and to prevent recurrent collapse can reduce alveolar protein influx in experimental acute lung injury (ALI). This could affect the pulmonary response to treatment with surfactant, since plasma proteins inhibit surfactant function. We studied the effect of exogenous surfactant on lung mechanics after 4 h of mechanical ventilation with high or low PEEP. ...

  18. [Adsorption of phenol chemicals by surfactant-modified zeolites].

    Science.gov (United States)

    Xie, Jie; Wang, Zhe; Wu, De-Yi; Li, Chun-Jie

    2012-12-01

    Two kinds of zeolites were prepared from fly ash and modified by surfactant subsequently. Surfactant-modified zeolites were studied for adsorption of phenol chemicals (phenol, p-chlorphenol, bisphenol A). It showed that the adsorption affinity of zeolite to phenol chemicals was significantly improved after surfactant modification. The adsorption isotherms of phenol chemicals were well fitted by the Langmuir isotherm. For the two surfactant-surfactant modified zeolites, the maximum adsorption amounts of phenol, p-chlorphenol, and bisphenol A calculated from the Langmuir equation were 37.7, 52.36, 90.9 mg x g(-1) and 10.7, 22.83, 56.8 mg x g(-1), respectively. When pH values of solutions were higher than the pK(a) values of phenol chemicals, the removal efficiencies were getting higher with the increase of pH values. The octanol/water partition coefficient (K(ow)) was also found to be an important factor affecting adsorption of phenol chemicals by the modified zeolites. Higher K(ow) value, which means the greater hydrophobicity of the chemicals, resulted in a higher removal.

  19. The detection of surfactant proteins A, B, C and D in the human brain and their regulation in cerebral infarction, autoimmune conditions and infections of the CNS.

    Directory of Open Access Journals (Sweden)

    Stefan Schob

    Full Text Available Surfactant proteins (SP have been studied intensively in the respiratory system. Surfactant protein A and surfactant protein D are proteins belonging to the family of collectins each playing a major role in the innate immune system. The ability of surfactant protein A and surfactant protein D to bind various pathogens and facilitate their elimination has been described in a vast number of studies. Surfactant proteins are very important in modulating the host's inflammatory response and participate in the clearance of apoptotic cells. Surfactant protein B and surfactant protein C are proteins responsible for lowering the surface tension in the lungs. The aim of this study was an investigation of expression of surfactant proteins in the central nervous system to assess their specific distribution patterns. The second aim was to quantify surfactant proteins in cerebrospinal fluid of healthy subjects compared to patients suffering from different neuropathologies. The expression of mRNA for the surfactant proteins was analyzed with RT-PCR done with samples from different parts of the human brain. The production of the surfactant proteins in the brain was verified using immunohistochemistry and Western blot. The concentrations of the surfactant proteins in cerebrospinal fluid from healthy subjects and patients suffering from neuropathologic conditions were quantified using ELISA. Our results revealed that surfactant proteins are present in the central nervous system and that the concentrations of one or more surfactant proteins in healthy subjects differed significantly from those of patients affected by central autoimmune processes, CNS infections or cerebral infarction. Based on the localization of the surfactant proteins in the brain, their different levels in normal versus pathologic samples of cerebrospinal fluid and their well-known functions in the lungs, it appears that the surfactant proteins may play roles in host defense of the brain

  20. Evaporation of Sessile Droplets Laden with Particles and Insoluble Surfactants.

    Science.gov (United States)

    Karapetsas, George; Chandra Sahu, Kirti; Matar, Omar K

    2016-07-12

    We consider the flow dynamics of a thin evaporating droplet in the presence of an insoluble surfactant and noninteracting particles in the bulk. On the basis of lubrication theory, we derive a set of evolution equations for the film height, the interfacial surfactant, and bulk particle concentrations, taking into account the dependence of liquid viscosity on the local particle concentration. An important ingredient of our model is that it takes into account the fact that the surfactant adsorbed at the interface hinders evaporation. We perform a parametric study to investigate how the presence of surfactants affects the evaporation process as well as the flow dynamics with and without the presence of particles in the bulk. Our numerical calculations show that the droplet lifetime is affected significantly by the balance between the ability of the surfactant to enhance spreading, suppressing the effect of thermal Marangoni stresses-induced motion, and to hinder the evaporation flux through the reduction of the effective interfacial area of evaporation, which tend to accelerate and decelerate the evaporation process, respectively. For particle-laden droplets and in the case of dilute solutions, the droplet lifetime is found to be weakly dependent on the initial particle concentration. We also show that the particle deposition patterns are influenced strongly by the direct effect of the surfactant on the evaporative flux; in certain cases, the "coffee-stain" effect is enhanced significantly. A discussion of the delicate interplay between the effects of capillary pressure and solutal and thermal Marangoni stresses, which drive the liquid flow inside of the evaporating droplet giving rise to the observed results, is provided herein.

  1. Evaporation of Sessile Droplets Laden with Particles and Insoluble Surfactants.

    Science.gov (United States)

    Karapetsas, George; Chandra Sahu, Kirti; Matar, Omar K

    2016-07-12

    We consider the flow dynamics of a thin evaporating droplet in the presence of an insoluble surfactant and noninteracting particles in the bulk. On the basis of lubrication theory, we derive a set of evolution equations for the film height, the interfacial surfactant, and bulk particle concentrations, taking into account the dependence of liquid viscosity on the local particle concentration. An important ingredient of our model is that it takes into account the fact that the surfactant adsorbed at the interface hinders evaporation. We perform a parametric study to investigate how the presence of surfactants affects the evaporation process as well as the flow dynamics with and without the presence of particles in the bulk. Our numerical calculations show that the droplet lifetime is affected significantly by the balance between the ability of the surfactant to enhance spreading, suppressing the effect of thermal Marangoni stresses-induced motion, and to hinder the evaporation flux through the reduction of the effective interfacial area of evaporation, which tend to accelerate and decelerate the evaporation process, respectively. For particle-laden droplets and in the case of dilute solutions, the droplet lifetime is found to be weakly dependent on the initial particle concentration. We also show that the particle deposition patterns are influenced strongly by the direct effect of the surfactant on the evaporative flux; in certain cases, the "coffee-stain" effect is enhanced significantly. A discussion of the delicate interplay between the effects of capillary pressure and solutal and thermal Marangoni stresses, which drive the liquid flow inside of the evaporating droplet giving rise to the observed results, is provided herein. PMID:27300638

  2. Influence of polymer-surfactant aggregates on fluid flow.

    Science.gov (United States)

    Malcher, Tadeusz; Gzyl-Malcher, Barbara

    2012-10-01

    This paper describes the influence of interactions of poly(ethylene oxide) (PEO) with cationic cetyltrimethylammonium bromide (CTAB) micelles on drag reduction. Since the interactions between PEO and CTAB micelles alone are weak, salicylate ions were used as CTAB counterions. They facilitate formation of polymer-micelle aggregates by screening the electrostatic repulsions between the charged surfactant headgroups. The influence of polymer-surfactant interactions on drag reduction is of biomedical engineering importance. Drag reducing additives introduced to blood produce beneficial effects on blood circulation, representing a novel way to treat cardiovascular disorders. PEO is a blood-compatible polymer. However, it quickly mechanically degrades when subjected to high shear stresses. Thus, there is a need to search for other additives able to reduce drag, which would be more mechanically stable, e.g. polymer-surfactant aggregates. Numerical simulations of the flow were performed using the CFX software. Based on the internal structure of the polymer-surfactant solution, a hypothesis explaining the reason of increase of drag reduction and decrease in dynamic viscosity with increasing shear rate was proposed. It was suggested that the probable reason for the abrupt increase in friction factor, observed when the critical Reynolds number was exceeded, was the disappearance of the difference in the dynamic viscosity.

  3. Specific interactions within micelle microenvironment in different charged dye/surfa

    Directory of Open Access Journals (Sweden)

    Adina Roxana Petcu

    2016-01-01

    Full Text Available The interactions of two ionic dyes, Crystal Violet and Methyl Orange, with different charged surfactants and also with a nonionic surfactant were investigated using surface tension measurements and visible spectroscopy in pre-micellar and post-micellar regions. It was found that for the water dominant phase systems the dye was localized between the polar heads, at the exterior of the direct micelle shells for all the systems. For the oil dominant phase systems, in case of the same charged dye/surfactant couples, the dye was localized in the micelle shell between the hydrocarbon chain of the surfactant nearby the hydrophilic head groups while for nonionic surfactant and oppositely charged dye/surfactant, localization of dye was between the oxyethylenic head groups towards the interior of the micelle core. Mixed aggregates of the dye and surfactant (below the critical micellar concentration of cationic surfactant, dye-surfactant ion pair and surfactant-micelles were present. The values of equilibrium constants (for TX-114/MO and TX-114/CV systems were 0.97 and 0.98, respectively, partition coefficients between the micellar and bulk water phases and standard free energy (for the nonionic systems were −12.59 kJ/mol for MO and −10.97 kJ/mol for CV were calculated for all the studied systems. The partition processes were exothermic and occurred spontaneously.

  4. Investigating the adsorption of the gemini surfactant "12-2-12" onto mica using atomic force microscopy and surface force apparatus measurements

    NARCIS (Netherlands)

    Fielden, ML; Claesson, PM; Verrall, RE

    1999-01-01

    The adsorption of the cationic gemini surfactant 1,2-bis(n-dodecyldimethylammonium)ethane dibromide on mica was followed by measuring forces between mica surfaces and by atomic force microscopy (AFM) imaging. The surface charge was found to be neutralized at total surfactant concentrations between 8

  5. Theoretical modeling of cationic surfactant aggregation at the silica/aqueous solution interface: Effects of pH and ionic strength

    NARCIS (Netherlands)

    Drach, M.; Andrzejewska, A.; Narkiewicz-Michalek, J.; Rudzinski, W.; Koopal, L.K.

    2002-01-01

    A theory of ionic surfactant aggregation on oppositely charged surfaces is presented. In the proposed model the adsorbed phase is considered as a mixture of singly dispersed surfactant molecules, monolayered and bilayered aggregates of various sizes and the ions of simple electrolyte added to the aq

  6. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties.

    Science.gov (United States)

    Stephansen, Karen; García-Díaz, María; Jessen, Flemming; Chronakis, Ioannis S; Nielsen, Hanne M

    2016-03-01

    Intermolecular interaction phenomena occurring between endogenous compounds, such as proteins and bile salts, and electrospun compounds are so far unreported, despite the exposure of fibers to such biorelevant compounds when applied for biomedical purposes, e.g., tissue engineering, wound healing, and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate), a cationic surfactant (benzalkonium chloride), and a neutral surfactant (Triton X-100) were studied. The anionic surfactants increased the insulin release in a concentration-dependent manner, whereas the neutral surfactant had no significant effect on the release. Interestingly, only minute amounts of insulin were released from the fibers when benzalkonium chloride was present. The FSP-Ins fibers appeared dense after incubation with this cationic surfactant, whereas high fiber porosity was observed after incubation with anionic or neutral surfactants. Contact angle measurements and staining with the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid indicated that the FSP-Ins fibers were hydrophobic, and showed that the fiber surface properties were affected differently by the surfactants. Bovine serum albumin also affected insulin release in vitro, indicating that also proteins may affect the fiber performance in an in vivo setting. PMID:26389817

  7. Effect of surfactants and temperature on the hyperfiltration performance of poly(ether/urea) membranes

    Science.gov (United States)

    Leban, M. I.; Wydeven, T. J.

    1984-01-01

    The individual and combined effects of pasteurization temperature (347 K) and surfactants (anionic, cationic, and neutral) on a poly(ether/urea) thin-film hyperfiltration membrane were studied. Performance of this positively charged membrane was measured in terms of sodium chloride rejection and water flux. The observed effect was mostly on water flux and minimal on salt rejection. Pasteurization temperature caused an irreversible flux decline (flux decline slope of 0.09). The gradual flux reduction caused by neutral and cationic surfactants was reversible, whereas the flux reduction caused by anionic surfactant was irreversible and of similar magnitude to flux reduction caused by pasteurization temperature. The effects of anionic surfactant and pasteurization temperature were additive. Because of flux decline at elevated temperatures the poly(ether/urea) membrane is not very attractive for long-term spaceflight use.

  8. Biophysicochemical interaction of a clinical pulmonary surfactant with nano-alumina

    CERN Document Server

    Mousseau, F; Seyrek, E; Berret, J -F

    2015-01-01

    We report on the interaction of pulmonary surfactant composed of phospholipids and proteins with nanometric alumina (Al2O3) in the context of lung exposure and nanotoxicity. We study the bulk properties of phospholipid/nanoparticle dispersions and determine the nature of their interactions. The clinical surfactant Curosurf, both native and extruded, and a protein-free surfactant are investigated. The phase behavior of mixed surfactant/particle dispersions was determined by optical and electron microscopy, light scattering and zeta potential measurements. It exhibits broad similarities with that of strongly interacting nanosystems such as polymers, proteins or particles, and supports the hypothesis of electrostatic complexation. At a critical stoichiometry, micron sized aggregates arising from the association between oppositely charged vesicles and nanoparticles are formed. Contrary to the models of lipoprotein corona or of particle wrapping, our work shows that vesicles maintain their structural integrity and...

  9. Neonatal varicella pneumonia, surfactant replacement therapy

    Directory of Open Access Journals (Sweden)

    Mousa Ahmadpour-kacho

    2015-12-01

    Full Text Available Background: Chickenpox is a very contagious viral disease that caused by varicella-zoster virus, which appears in the first week of life secondary to transplacental transmission of infection from the affected mother. When mother catches the disease five days before and up to two days after the delivery, the chance of varicella in neonate in first week of life is 17%. A generalized papulovesicular lesion is the most common clinical feature. Respiratory involvement may lead to giant cell pneumonia and respiratory failure. The mortality rate is up to 30% in the case of no treatment, often due to pneumonia. Treatment includes hospitalization, isolation and administration of intravenous acyclovir. The aim of this case report is to introduce the exogenous surfactant replacement therapy after intubation and mechanical ventilation for respiratory failure in neonatal chickenpox pneumonia and respiratory distress. Case Presentation: A seven-day-old neonate boy was admitted to the Neonatal Intensive Care Unit at Amirkola Children’s Hospital, Babol, north of Iran, with generalized papulovesicular lesions and respiratory distress. His mother has had a history of Varicella 4 days before delivery. He was isolated and given supportive care, intravenous acyclovir and antibiotics. On the second day, he was intubated and connected to mechanical ventilator due to severe pneumonia and respiratory failure. Because of sever pulmonary involvement evidenced by Chest X-Ray and high ventilators set-up requirement, intratracheal surfactant was administered in two doses separated by 12 hours. He was discharged after 14 days without any complication with good general condition. Conclusion: Exogenous surfactant replacement therapy can be useful as an adjunctive therapy for the treatment of respiratory failure due to neonatal chickenpox.

  10. Adsorption Behavior and Mechanisms of Surfactants by Farmland Soils in Northeast China

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The adsorption of two nonionic surfactants polyethylene glycol tert-octylphenyl ether Triton X-100 (TX-100), polyoxyethylene lauryl ether(Brij35) and an anionic surfactant sodium dodecyl benzene sulfonate(SDBS) by two soils(S1, S2) of different natures and their respective organic-matter-extracted samples(S3, S4) were investigated. These adsorption isotherms show different adsorption stages of different types of surfactants by soils. The data fitted Langmuir equation very well. The adsorption maximum capacity(Q0) indicates that TX-100 and SDBS were in the sequence of S3〉S4〉S1〉S2 in adsorption, however, Brij35 was in the sequence of S4〉S3〉S1〉S2 in adsorption. And the adsorption amounts of the different surfactants by soils followed the order of TX-100〉Brij35〉SDBS. Meanwhile, the adsorption of the nonionic surfactants TX-100 and Brij35 decreased with the increase of their ethylene oxide(EO) numbers. The results indicate that both soil organic matter and mineral played important roles in the adsorption of surfactants, and the adsorption of the surfactants by soils was affected by the physicochemical properties and structures of the soils and surfactants, especially the mineral type and content of soil.

  11. Functional significance and control of release of pulmonary surfactant in the lizard lung.

    Science.gov (United States)

    Wood, P G; Daniels, C B; Orgeig, S

    1995-10-01

    The amount of pulmonary surfactant in the lungs of the bearded dragon (Pogona vitticeps) increases with increasing body temperature. This increase coincides with a decrease in lung compliance. The relationship between surfactant and lung compliance and the principal stimuli for surfactant release and composition (temperature, ventilatory pattern, and autonomic neurotransmitters) were investigated. We chose to investigate ventilatory pattern (which causes mechanical deformation of the type II cells) and adrenergic agents, because they are the major stimuli for surfactant release in mammals. To examine the effects of body temperature and ventilatory pattern, isolated lungs were ventilated at either 18 or 37 degrees C at different ventilatory regimens. An isolated perfused lung preparation at 27 degrees C was used to analyze the effects of autonomic neurotransmitters. Ventilatory pattern did not affect surfactant release, composition, or lung compliance at either 18 or 37 degrees C. An increase in temperature increased phospholipid reuptake and disproportionately increased cholesterol degradation/uptake. Epinephrine and acetylcholine stimulated phospholipid but not cholesterol release. Removal of surfactant caused a decrease in compliance, regardless of the experimental temperature. Temperature appears to be the principal determinant of lung compliance in the bearded dragon, acting directly to increase the tone of the smooth muscle. Increasing the ambient temperature may result in greater surfactant turnover by increasing cholesterol reuptake/degradation directly and by increasing circulating epinephrine, thereby indirectly increasing phospholipid secretion. We suggest that changing ventilatory pattern may be inadequate as a mechanism for maintaining surfactant homeostasis, given the discontinuous, highly variable reptilian breathing pattern. PMID:7485601

  12. The effect of surfactants on the dissolution behavior of amorphous formulations.

    Science.gov (United States)

    Mah, Pei T; Peltonen, Leena; Novakovic, Dunja; Rades, Thomas; Strachan, Clare J; Laaksonen, Timo

    2016-06-01

    The optimal design of oral amorphous formulations benefits from the use of excipients to maintain drug supersaturation and thus ensures adequate absorption during intestinal transit. The use of surfactants for the maintenance of supersaturation in amorphous formulations has not been investigated in detail. The main aim of this study was to investigate the effect of surfactant on the dissolution behavior of neat amorphous drug and binary polymer based solid dispersion. Indomethacin was used as the model drug and the surfactants studied were polysorbate 80 and poloxamer 407. The presence of surfactants (alone or in combination with polymers) in the buffer was detrimental to the dissolution of neat amorphous indomethacin, suggesting that the surfactants promoted the crystallization of neat amorphous indomethacin. In contrast, the presence of surfactants (0.01% w/v) in the buffer resulted in a significant improvement on the dissolution behavior of binary polymer based solid dispersion. Incorporating the surfactant to the formulation to form ternary solid dispersion adversely affected the dissolution behavior. In conclusion, the use of surfactants (as wetting or solubilization agents) in dissolution studies of neat amorphous drugs requires prudent consideration. The design of amorphous formulations with optimal dissolution performance requires the appropriate selection of a combination of excipients and consideration of the method of introducing the excipients. PMID:26955750

  13. Electrochemical properties and diffusion of a redox active surfactant incorporated in bicontinuous cubic and lamellar phase

    International Nuclear Information System (INIS)

    The objective of this study was to investigate the electrochemical behaviour of the divalent redox active surfactant, N-cetyl-N'-methylviologen (CMV), in bicontinuous cubic and lamellar phases. The liquid crystalline phases were prepared from the system glycerolmonooleate (GMO)-water (and brine)-cationic surfactant. A comparison of the phase behaviour of GMO with the monovalent cetyltrimethylammonium bromide (CTAB) and the divalent CMV surfactant showed that the surfactants gave about the same effect at the same surface charge density. The electrochemical measurements were made with a mixture of CTAB and CMV as the surfactant. Cyclic voltammetry was used to study the electrochemistry of CMV incorporated in the cubic and lamellar phases that were spread on a gold electrode. The E 0-values in the cubic samples were more negative (-0.55 V versus SCE) than in the lamellar samples (-0.53 V versus SCE). This can be explained by the higher charge density in the lamellar phase. The diffusion coefficients were also measured in the cubic phase. The mass transport is slowed down about fifty times in the cubic phase compared to in the pure electrolyte. The concentration dependence on the diffusion coefficient was also investigated. No electron hopping could be observed, which suggest that diffusional movement of the redox probe is the main source of charge transport. By placing the samples on a conducting glass slide, spectroelectrochemical investigations were performed. In the lamellar phase strong dimerization was detected at high concentration of viologen, but much less in the cubic phase

  14. Inactivation of pulmonary surfactant and its prevention

    OpenAIRE

    Stichtenoth, Guido

    2009-01-01

    Pulmonary surfactant is a lipoprotein complex coating the conducting airways down to the terminal airspaces. Its main function is to lower surface tension at the air liquid interface thus preventing alveolar collapse at end expiration. Primary surfactant deficiency is the main cause of neonatal respiratory distress syndrome (RDS) and treatment with exogenous pulmonary surfactant improves the course of the disease significantly. Furthermore, secondary surfactant deficiency ca...

  15. Antigenicity of low molecular weight surfactant species.

    OpenAIRE

    Strayer, D. S.; Merritt, T A; Makunike, C.; Hallman, M

    1989-01-01

    The authors tested the antigenicity of human lung surfactant isolated from amniotic fluid. Mice and rabbits were immunized. Rabbit polyclonal antisera to these surfactant preparations were absorbed with normal human plasma proteins. Polyclonal antisera reacted with both high molecular weight (35 kd) surfactant apoprotein and to lower molecular weight species, both 18 kd and 9 kd. Mice were used to generate monoclonal antibodies to surfactant. Enzyme-linked immunosorbant assay was used to iden...

  16. Thin film dynamics with surfactant phase transition

    OpenAIRE

    Köpf, M. H.; Gurevich, S. V.; Friedrich, R.

    2009-01-01

    A thin liquid film covered with an insoluble surfactant in the vicinity of a first-order phase transition is discussed. Within the lubrication approximation we derive two coupled equations to describe the height profile of the film and the surfactant density. Thermodynamics of the surfactant is incorporated via a Cahn-Hilliard type free-energy functional which can be chosen to describe a transition between two stable phases of different surfactant density. Within this model, a linear stabilit...

  17. Surfactant Therapy of ALI and ARDS

    OpenAIRE

    Raghavendran, K; Willson, D; Notter, RH

    2011-01-01

    This article examines exogenous lung surfactant replacement therapy and its utility in mitigating clinical acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS). Biophysical research has documented that lung surfactant dysfunction can be reversed or mitigated by increasing surfactant concentration, and multiple studies in animals with ALI/ARDS have shown that respiratory function and pulmonary mechanics in vivo can be improved by exogenous surfactant administration. Exoge...

  18. Aerosol delivery of synthetic lung surfactant

    OpenAIRE

    Walther, Frans J.; José M. Hernández-Juviel; Waring, Alan J.

    2014-01-01

    Background. Nasal continuous positive airway pressure (nCPAP) is a widely accepted technique of non-invasive respiratory support in premature infants with respiratory distress syndrome due to lack of lung surfactant. If this approach fails, the next step is often intubation, mechanical ventilation (MV) and intratracheal instillation of clinical lung surfactant. Objective. To investigate whether aerosol delivery of advanced synthetic lung surfactant, consisting of peptide mimics of surfact...

  19. Interaction between cationic surfactant of 1-methyl-3-tetradecylimidazolium bromide and anionic polymer of sodium polystyrene sulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian [College of Chemistry and Chemical Engineering, Liaocheng University, Shandong Province, VIC 252059 (China); School of Chemistry and Chemical Engineering, Engineering Research Center for Fine Chemicals of Ministry of Education, Shanxi University, Shanxi Province, VIC 030006 (China); Kang, Wenpei [Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Shandong Province, VIC 250100 (China); Sun, Dezhi [College of Chemistry and Chemical Engineering, Liaocheng University, Shandong Province, VIC 252059 (China); Liu, Jie, E-mail: liujie@lcu.edu.cn [College of Chemistry and Chemical Engineering, Liaocheng University, Shandong Province, VIC 252059 (China); Wei, Xilian, E-mail: weixilian@126.com [College of Chemistry and Chemical Engineering, Liaocheng University, Shandong Province, VIC 252059 (China)

    2013-08-15

    The interaction between long-chain imidazolium ionic liquid (C{sub 14}mimBr) and anionic polyelectrolyte of sodium polystyrene sulfonate (NaPSS) has been studied using surface tension, isothermal titration microcalorimetry (ITC), dynamic light scatting (DLS) and conductance methods. The result shows that the surface tension plots have a pronounced hump in the surface tension at surfactant concentrations below the critical micelle concentration (cmc) of the surfactant. The cooperative adsorption of surfactant and polymer on the surface (PS{sub S}) and the formation of polymer/surfactant aggregate in bulk solution (PS{sub M}) provide a rational explanation about it. The formation of surfactant/polymer complexes is affected by the concentration of the surfactant or NaPSS, which is also ascertained by ITC and DLS measurements. Further, the thermodynamic parameters are derived from calorimetric titration and conductance curves, and the effects of polymer concentration and temperature on the parameters are evaluated in detail.

  20. Interaction between cationic surfactant of 1-methyl-3-tetradecylimidazolium bromide and anionic polymer of sodium polystyrene sulfonate

    International Nuclear Information System (INIS)

    The interaction between long-chain imidazolium ionic liquid (C14mimBr) and anionic polyelectrolyte of sodium polystyrene sulfonate (NaPSS) has been studied using surface tension, isothermal titration microcalorimetry (ITC), dynamic light scatting (DLS) and conductance methods. The result shows that the surface tension plots have a pronounced hump in the surface tension at surfactant concentrations below the critical micelle concentration (cmc) of the surfactant. The cooperative adsorption of surfactant and polymer on the surface (PSS) and the formation of polymer/surfactant aggregate in bulk solution (PSM) provide a rational explanation about it. The formation of surfactant/polymer complexes is affected by the concentration of the surfactant or NaPSS, which is also ascertained by ITC and DLS measurements. Further, the thermodynamic parameters are derived from calorimetric titration and conductance curves, and the effects of polymer concentration and temperature on the parameters are evaluated in detail.

  1. Understanding How Isotopes Affect Charge Transfer in P3HT/PCBM: A Quantum Trajectory-Electronic Structure Study with Nonlinear Quantum Corrections.

    Science.gov (United States)

    Wang, Lei; Jakowski, Jacek; Garashchuk, Sophya; Sumpter, Bobby G

    2016-09-13

    The experimentally observed effect of selective deuterium substitution on the open circuit voltage for a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM; Nat. Commun. 2014, 5, 3180) is explored using a 221-atom model of a polymer-wrapped PCBM molecule. The protonic and deuteronic wave functions for the H/D isotopologues of the hexyl side chains are described within a quantum trajectory/electronic structure approach where the dynamics is performed with newly developed nonlinear corrections to the quantum forces, necessary to describe the nuclear wave functions; the classical forces are generated with a density functional tight binding method. The resulting protonic and deuteronic time-dependent wave functions are used to assess the effects of isotopic substitution (deuteration) on the energy gaps relevant to the charge transfer for the donor and acceptor electronic states. While the isotope effect on the electronic energy levels is found negligible, the quantum-induced fluctuations of the energy gap between the charge transfer and charge separated states due to nuclear wave functions may account for experimental trends by promoting charge transfer in P3HT:PCBM and increasing charge recombination on the donor in the deuterium substituted P3HT:PCBM.

  2. Understanding How Isotopes Affect Charge Transfer in P3HT/PCBM: A Quantum Trajectory-Electronic Structure Study with Nonlinear Quantum Corrections.

    Science.gov (United States)

    Wang, Lei; Jakowski, Jacek; Garashchuk, Sophya; Sumpter, Bobby G

    2016-09-13

    The experimentally observed effect of selective deuterium substitution on the open circuit voltage for a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM; Nat. Commun. 2014, 5, 3180) is explored using a 221-atom model of a polymer-wrapped PCBM molecule. The protonic and deuteronic wave functions for the H/D isotopologues of the hexyl side chains are described within a quantum trajectory/electronic structure approach where the dynamics is performed with newly developed nonlinear corrections to the quantum forces, necessary to describe the nuclear wave functions; the classical forces are generated with a density functional tight binding method. The resulting protonic and deuteronic time-dependent wave functions are used to assess the effects of isotopic substitution (deuteration) on the energy gaps relevant to the charge transfer for the donor and acceptor electronic states. While the isotope effect on the electronic energy levels is found negligible, the quantum-induced fluctuations of the energy gap between the charge transfer and charge separated states due to nuclear wave functions may account for experimental trends by promoting charge transfer in P3HT:PCBM and increasing charge recombination on the donor in the deuterium substituted P3HT:PCBM. PMID:27504981

  3. Surfactant analysis in oil-containing fluids

    Energy Technology Data Exchange (ETDEWEB)

    Gronsveld, J.; Faber, M.J. (Koninklijke Shell Exploratie en Produktie Laboratorium, Rijswijk (Netherlands))

    The total surfactant concentration in aqueous phase samples can be analysed with a potentiometric titration. In enhanced oil recovery research, however, the surfactant is produced not only in aqueous phase samples but also in oleic phase samples. The oleic constituents in the oliec phase samples interfere in the surfactant analysis and, therefore, the titration method has been adapted. (orig.).

  4. Surfactant adsorption to soil components and soils

    NARCIS (Netherlands)

    Ishiguro, Munehide; Koopal, Luuk K.

    2016-01-01

    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on

  5. Parallel Pool Analysis of Transient Spectroscopy Reveals Origins of and Perspectives for ZnO Hybrid Solar Cell Performance Enhancement Using Semiconducting Surfactants.

    Science.gov (United States)

    Meister, Michael; Amsden, Jason J; Howard, Ian A; Park, Insun; Lee, Changhee; Yoon, Do Y; Laquai, Frédéric

    2012-09-20

    Recently, the performance of ZnO nanocrystals as an electron acceptor in a solar cell device was significantly increased by a semiconducting surfactant. Here we show, using transient absorption spectroscopy and a parallel pool analysis, that changes in the quantum efficiency of charge generation account for the performance variation among semiconducting-surfactant-coated, surfactant-coated, and uncoated ZnO nanoparticles. We demonstrate that even better surfactant design to suppress fast recombination could still lead to a further doubling of device efficiency. PMID:26295889

  6. Removal of organic pollutants by surfactant modified zeolite: Comparison between ionizable phenolic compounds and non-ionizable organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jie; Meng, Wenna [School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd., Shanghai 200240 (China); Wu, Deyi, E-mail: dywu@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd., Shanghai 200240 (China); Zhang, Zhenjia; Kong, Hainan [School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd., Shanghai 200240 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Surfactant modified zeolite could greatly retain organic pollutants. Black-Right-Pointing-Pointer Uptake of organic compounds was due to the loaded surfactant. Black-Right-Pointing-Pointer k{sub ow} is crucial for the uptake of both ionizable and non-ionizable organic solutes. Black-Right-Pointing-Pointer pK{sub a} is another factor affecting adsorption process of ionizable organic pollutants. Black-Right-Pointing-Pointer Adsorption mechanisms of the two kinds of organic pollutants were proposed. - Abstract: The aim of this study was to examine the adsorption capability and mechanism of hexadecyltrimethylammonium modified zeolite, which was synthesized from coal fly ash, for the removal of ionizable phenolic compounds (phenol, p-chlorophenol and bisphenol A, with different pK{sub a}) and non-ionizable organic compounds (aniline, nitrobenzene, and naphthalene, with different hydrophobicity). The obtained zeolite was identified as type Na-P1 (Na{sub 6}Al{sub 6}Si{sub 10}O{sub 32}{center_dot}12H{sub 2}O, JCPDS code 39-0219), which is classified into the gismondine group with a pore size of 3.1 Angstrom-Sign Multiplication-Sign 4.5 Angstrom-Sign [1 0 0] and 2.8 Angstrom-Sign Multiplication-Sign 4.8 Angstrom-Sign [1 0 1]. The adsorption of the two kinds of organic compounds was due to loaded surfactant bilayer because modified zeolite showed great ability for the removal of organic chemicals while little adsorption by zeolite was observed. The isotherm data of ionizable compounds fitted well to the Langmuir model but those of non-ionizable chemicals followed a linear equation. Uptake of ionizable compounds depended greatly on pH, increasing at alkaline pH conditions. In contrary, adsorption of non-ionizable chemicals was essentially the same at all pH levels studied. The adsorption of both kinds of organic compounds correlated well to k{sub ow} value, suggesting that more hydrophobic organic contaminants are more easily retained

  7. Carrier mobility characterization of DNA-surfactant complexes

    Science.gov (United States)

    Lin, Ting-Yu; Hung, Yu-Chueh

    2012-02-01

    Deoxyribonucleic acid (DNA) biopolymer has been emerging as a promising material for photonic applications. As many optoelectronic devices rely on carrier transportation to achieve desired functionality, carrier mobility is important for the exploitation of these biopolymer-based materials for practical implementation. In this study, we present the mobility measurement by employing time-of-flight technique and characterize the current-voltage (I-V) properties based on DNA-surfactant complexes. An additional NPB layer was introduced in the fabricated structure to serve as a charge generation layer (CGL). The dependency of hole mobility with respect to the applied electric field was characterized and a linear correlation was exhibited. Hole transport was found to be dispersive, indicating a high degree energetic disorder in these DNA-surfactant complexes. The characterization results show promises for the employment of DNA complexes in the applications of organic light-emitting devices and organic field-effect transistors.

  8. Metal ion coordination, conditional stability constants, and solution behavior of chelating surfactant metal complexes.

    Science.gov (United States)

    Svanedal, Ida; Boija, Susanne; Almesåker, Ann; Persson, Gerd; Andersson, Fredrik; Hedenström, Erik; Bylund, Dan; Norgren, Magnus; Edlund, Håkan

    2014-04-29

    Coordination complexes of some divalent metal ions with the DTPA (diethylenetriaminepentaacetic acid)-based chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) have been examined in terms of chelation and solution behavior. The headgroup of 4-C12-DTPA contains eight donor atoms that can participate in the coordination of a metal ion. Conditional stability constants for five transition metal complexes with 4-C12-DTPA were determined by competition measurements between 4-C12-DTPA and DTPA, using electrospray ionization mass spectrometry (ESI-MS). Small differences in the relative strength between the coordination complexes of DTPA and 4-C12-DTPA indicated that the hydrocarbon tail only affected the chelating ability of the headgroup to a limited extent. The coordination of Cu(2+) ions was investigated in particular, using UV-visible spectroscopy. By constructing Job's plots, it was found that 4-C12-DTPA could coordinate up to two Cu(2+) ions. Surface tension measurements and NMR diffusometry showed that the coordination of metal ions affected the solution behavior of 4-C12-DTPA, but there were no specific trends between the studied divalent metal complexes. Generally, the effects of the metal ion coordination could be linked to the neutralization of the headgroup charge of 4-C12-DTPA, and the resulting reduced electrostatic repulsions between adjacent surfactants in micelles and monolayers. The pH vs concentration plots, on the other hand, showed a distinct difference between 4-C12-DTPA complexes of the alkaline earth metals and the transition metals. This was explained by the difference in coordination between the two groups of metal ions, as predicted by the hard and soft acid and base (HSAB) theory.

  9. Persurf, a new method to improve surfactant delivery: a study in surfactant depleted rats.

    Directory of Open Access Journals (Sweden)

    Wolfram Burkhardt

    Full Text Available PURPOSE: Exogenous surfactant is not very effective in adults with ARDS, since surfactant does not reach atelectatic alveoli. Perfluorocarbons (PFC can recruit atelectatic areas but do not replace impaired endogenous surfactant. A surfactant-PFC-mixture could combine benefits of both therapies. The aim of the proof-of-principal-study was to produce a PFC-in-surfactant emulsion (Persurf and to test in surfactant depleted Wistar rats whether Persurf achieves I. a more homogenous pulmonary distribution and II. a more homogenous recruitment of alveoli when compared with surfactant or PFC alone. METHODS: Three different PFC were mixed with surfactant and phospholipid concentration in the emulsion was measured. After surfactant depletion, animals either received 30 ml/kg of PF5080, 100 mg/kg of stained (green dye Curosurf™ or 30 ml/kg of Persurf. Lungs were fixated after 1 hour of ventilation and alveolar aeration and surfactant distribution was estimated by a stereological approach. RESULTS: Persurf contained 3 mg/ml phospholipids and was stable for more than 48 hours. Persurf-administration improved oxygenation. Histological evaluation revealed a more homogenous surfactant distribution and alveolar inflation when compared with surfactant treated animals. CONCLUSIONS: In surfactant depleted rats administration of PFC-in-surfactant emulsion leads to a more homogenous distribution and aeration of the lung than surfactant alone.

  10. Nanofiltration: ion exchange system for effective surfactant removal from water solutions

    Directory of Open Access Journals (Sweden)

    I. Kowalska

    2014-12-01

    Full Text Available A system combining nanofiltration and ion exchange for highly effective separation of anionic surfactant from water solutions was proposed. The subjects of the study were nanofiltration polyethersulfone membranes and ion-exchange resins differing in type and structure. The quality of the treated solution was affected by numerous parameters, such as quality of the feed solution, membrane cut-off, resin type, dose and the solution contact time with the resin. A properly designed purification system made it possible to reduce the concentration of anionic surfactant below 1 mg L-1 from feed solutions containing surfactant in concentrations above the CMC value.

  11. Effect of Different Surfactants on the Interfacial Behavior of the n-Hexane-Water System in the Presence of Silica Nanoparticles.

    Science.gov (United States)

    Biswal, Nihar Ranjan; Rangera, Naveen; Singh, Jayant K

    2016-07-28

    This paper presents the effect of negatively charged silica nanoparticles (NPs) on the interfacial tension of the n-hexane-water system at variable concentrations of four different surfactants, viz., an anionic surfactant, sodium dodecyl sulfate (SDS), a cationic surfactant, cetyltrimethylammonium bromide (CTAB), and two nonionic surfactants, Tween 20 and Triton X-100 (TX-100). The presence of negatively charged silica nanoparticles is found to have a different effect depending on the type of surfactant. In the case of ionic surfactants, SDS and CTAB, silica NPs reduce the interfacial tension of the system. On the contrary, for nonionic surfactants, Tween 20 and TX-100, silica NPs increase the interfacial tension. The increasing/decreasing nature of the interfacial tension in the presence of NPs is well supported by the calculated surface excess concentrations. The diffusion kinetic control (DKC) and statistical rate theory (SRT) models are used to understand the behavior of dynamic interfacial tension of the surfactant-NP-oil-water system. The DKC model is found to describe the studied surfactant-NP-oil-water systems more aptly. PMID:27367433

  12. Surfactant gene polymorphisms and interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    Pantelidis Panagiotis

    2001-11-01

    Full Text Available Abstract Pulmonary surfactant is a complex mixture of phospholipids and proteins, which is present in the alveolar lining fluid and is essential for normal lung function. Alterations in surfactant composition have been reported in several interstitial lung diseases (ILDs. Furthermore, a mutation in the surfactant protein C gene that results in complete absence of the protein has been shown to be associated with familial ILD. The role of surfactant in lung disease is therefore drawing increasing attention following the elucidation of the genetic basis underlying its surface expression and the proof of surfactant abnormalities in ILD.

  13. Interactions of Ovalbumin with Ionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    GUO Xia; YAN Hui; GUO Rong

    2008-01-01

    The interactions of ovalbumin (OVA) with one anionic surfactant,sodium dodecyl sulfate (SDS),and two cationic surfactants,dodecyl trimethylammonium bromide (DTAB) and cetyl trimethylammonium bromide (CTAB),in water have been studied through fluorescence and UV-Vis spectroscopies and transmission electronic microscopy,combined with the measurement of conductivity.OVA can increase the critical micelle concentrations (cmc) of SDS and CTAB but has little effect on that of DTAB.The interaction between surfactant monomer and OVA is greater than that between surfactant micelles and OVA.Moreover,SDS can make OVA unfolded while cationic surfactants cannot.

  14. Surfactant and allergic airway inflammation.

    Science.gov (United States)

    Winkler, Carla; Hohlfeld, Jens M

    2013-01-01

    Pulmonary surfactant is a complex mixture of unique proteins and lipids that covers the airway lumen. Surfactant prevents alveolar collapse and maintains airway patency by reducing surface tension at the air-liquid interface. Furthermore, it provides a defence against antigen uptake by binding foreign particles and enhancing cellular immune responses. Allergic asthma is associated with chronic airway inflammation and presents with episodes of airway narrowing. The pulmonary inflammation and bronchoconstriction can be triggered by exposure to allergens or pathogens present in the inhaled air. Pulmonary surfactant has the potential to interact with various immune cells which orchestrate allergen- or pathogen-driven episodes of airway inflammation. The complex nature of surfactant allows multiple sites of interaction, but also makes it susceptible to external alterations, which potentially impair its function. This duality of modulating airway physiology and immunology during inflammatory conditions, while at the same time being prone to alterations accompanied by restricted function, has stimulated numerous studies in recent decades, which are reviewed in this article. PMID:23896983

  15. Effect of Counterion and Configurational Entropy on the Surface Tension of Aqueous Solutions of Ionic Surfactant and Electrolyte Mixtures

    OpenAIRE

    Youichi Takata; Hiroaki Tagashira; Atsushi Hyono; Hiroyuki Ohshima

    2010-01-01

    In order to clarify the adsorption behavior of cationic surfactants on the air/aqueous electrolyte solution surface, we derived the theoretical equation for the surface tension. The equation includes the electrical work required for charging the air/water surface and the work attributable to the configurational entropy in the adsorbed film. By fitting the equation to the experimental data, we determined the binding constant between adsorbed surfactant ion and counterion, and found that the br...

  16. Modeling of confinement-induced phase transitions for surfactant layers on amphiphilic surfaces

    NARCIS (Netherlands)

    Leermakers, F.A.M.; Koopal, L.K.; Lokar, W.J.; Ducker, W.A.

    2005-01-01

    A self-consistent field model is used to consider a solution of positively charged surfactants up to its critical micellization concentration adsorbing onto two surfaces in close proximity. Each surface mimics a polystyrene sulfonate interface; that is, hydrophobic properties are combined with a (fi

  17. The Weak Interaction of Surfactants with Polymer Brushes and Its Impact on Lubricating Behavior

    NARCIS (Netherlands)

    Zhang, Ran; Ma, Shuanhong; Wei, Qiangbing; Ye, Qian; Yu, Bo; Gucht, Van Der Jasper; Zhou, Feng

    2015-01-01

    We study the weak interaction between polymers and oppositely charged surfactants and its effect on the lubricating behavior and wettability of polymer brush-covered surfaces. For cationic (PMETAC) and anionic (PSPMA) brushes, a gradual transition from ultralow friction to ultrahigh friction was

  18. Stabilization of diketo tautomer of curcumin by premicellar anionic surfactants: UV-Visible, fluorescence, tensiometric and TD-DFT evidences

    Science.gov (United States)

    Dutta, Anisha; Boruah, Bornali; Manna, Arun K.; Gohain, Biren; Saikia, Palash M.; Dutta, Robin K.

    2013-03-01

    A newly observed UV band of aqueous curcumin, a biologically important molecule, in presence of anionic surfactants, viz., sodium dodecylsulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), and sodium dodecylsulfonate (SDSN) in buffered aqueous solutions has been studied experimentally and theoretically. The 425 nm absorption band of curcumin disappears and a new UV-band is observed at 355 nm on addition of the surfactants in the submicellar concentration range which is reversed as the surfactant concentration approaches the critical micelle concentration (CMC). The observed spectral absorption, fluorescence intensity and surface tension behavior, under optimal experimental conditions of submicellar concentration ranges of the surfactants in the pH range of 2.00-7.00, indicate that the new band is due to the β-diketo tautomer of curcumin stabilized by interactions between curcumin and the anionic surfactants. The stabilization of the diketo tautomer by submicellar anionic surfactants described here as well as by submicellar cationic surfactant, reported recently, is unique as this is the only such behavior observed in presence of submicellar surfactants of both charge types. The experimental results are in good agreement with the theoretical calculations using ab initio density functional theory combined with time dependent density functional theory (TD-DFT) calculations.

  19. Sorption behavior and acute toxicity of cationic surfactants in the aquatic environment

    OpenAIRE

    Chen, Y.

    2014-01-01

    Cationic surfactants are widely used as detergents, fabric softeners and disinfectants. Due to the charged nitrogen atoms, they have a high potential to sorb to negatively charged sediments, soils and sludge. That is also the reason why they are frequently detected in sediment and sludge. Sorption to relevant environmental phases is one of the key factors that controls the toxicity and bioavailability of organic chemicals. The equilibrium partitioning (EqP) theory assumes that toxicity and bi...

  20. Effect of surfactant and surfactant blends on pseudoternary phase diagram behavior of newly synthesized palm kernel oil esters

    Directory of Open Access Journals (Sweden)

    Mahdi ES

    2011-06-01

    Full Text Available Elrashid Saleh Mahdi1, Mohamed HF Sakeena1, Muthanna F Abdulkarim1, Ghassan Z Abdullah1,3, Munavvar Abdul Sattar2, Azmin Mohd Noor11Department of Pharmaceutical Technology, 2Department of Physiology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia; 3Department of Pharmaceutical Technology, International Medical University, Bukit Jalil, Kuala Lumpur, MalaysiaBackground: The purpose of this study was to select appropriate surfactants or blends of surfactants to study the ternary phase diagram behavior of newly introduced palm kernel oil esters.Methods: Nonionic surfactant blends of Tween® and Tween®/Span® series were screened based on their solubilization capacity with water for palm kernel oil esters. Tween® 80 and five blends of Tween® 80/Span® 80 and Tween® 80/Span® 85 in the hydrophilic-lipophilic balance (HLB value range of 10.7–14.0 were selected to study the phase diagram behavior of palm kernel oil esters using the water titration method at room temperature.Results: High solubilization capacity was obtained by Tween® 80 compared with other surfactants of Tween® series. High HLB blends of Tween® 80/Span® 85 and Tween® 80/Span® 80 at HLB 13.7 and 13.9, respectively, have better solubilization capacity compared with the lower HLB values of Tween® 80/Span® 80. All the selected blends of surfactants were formed as water-in-oil microemulsions, and other dispersion systems varied in size and geometrical layout in the triangles. The high solubilization capacity and larger areas of the water-in-oil microemulsion systems were due to the structural similarity between the lipophilic tail of Tween® 80 and the oleyl group of the palm kernel oil esters.Conclusion: This study suggests that the phase diagram behavior of palm kernel oil esters, water, and nonionic surfactants is not only affected by the HLB value, but also by the structural similarity between palm kernel oil esters and the surfactant

  1. Cholesterol rules: direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures

    DEFF Research Database (Denmark)

    Bernardino de la Serna, Jorge; Perez-Gil, Jesus; Simonsen, Adam C;

    2004-01-01

    of this material is naturally designed to be at the "edge" of a lateral structure transition under physiological conditions, likely providing particular structural and dynamic properties for its mechanical function. The observed lateral structure in native pulmonary surfactant membranes is dramatically affected...... by the extraction of cholesterol, an effect not observed upon extraction of the surfactant proteins. Furthermore, the spreading properties of the native surfactant material at the air-liquid interface were also greatly affected by cholesterol extraction, suggesting a connection between the observed lateral...... structure and a physiologically relevant function of the material. We suggest that the particular lipid composition of surfactant could be finely tuned to provide, under physiological conditions, a structural scaffold for surfactant proteins to act at appropriate local densities and lipid composition....

  2. Photocatalytic Degradation of Diethyl Phthalate with Surfactant Addition

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tianyong; HU Juan; ZHANG Youlan; LI Bin; FEI Xuening

    2006-01-01

    This paper studies the adsorption of diethyl phthalate (DEP,an environmental hormone) on the surface of nanoscale TiO2, effects of pH value of solutions, initial concentrations of DEP and additive surfactant on photocatalytic degradation and dynamics of DEP. Under ultra violet illumination, the interaction between DEP and surfactants including DBS (sodium dodecylbenzenesulfonate), CTAB (cetyltrimethylammonium bromide), and OP-10 (nonylphenol polyoxyethylene ether)was exploited from the perspective of degradation speed calculated by the data of high pressure liquid chromatography (HPLC) and UV-Vis spectra, respectively. Photocatalytic degradation of DEP followed pseudo first-order reaction kinetics. DEP as substrate degraded fast when its initial concentration was 130 mg/L. TiO2 had certain adsorption ability of DEP. TiO2 could adsorb the most DEP at the approximately neutral pH of 6.91. Degradation of DEP was not affected obviously by ad ditives OP-10 and JBS. Degradation rate of DEP was not enhanced greatly in the presence of surfactants, but degradation of DBS was sped up. Degradation rate of DEP was depressed in the presence of additive CTAB. The more CTAB was added, the less DEP was degraded. Degradation rate of CTAB became slow with the increase of initial CTAB concentration. The possible adsorption models among TiO2, DEP and surfactants were given.

  3. Surfactants and Superhydrophobic Surfaces

    OpenAIRE

    Ferrari, Michele; Ravera, Francesca; Liggieri, Libero

    2006-01-01

    On superhydrophobic surfaces (contact angle with water greater than 150?), liquid drainage is enhanced with inhibition of adhesion phenomena: the small area shown when in contact with water make interactions in this environment usually strongly limited. The extreme hydrophobicity of a solid substrate is governed by chemical composition and geometrical structure of the surface including physico-chemical conditions acting from micro to nanoscale affecting the organisation of material at the int...

  4. Physicochemical properties of nanoparticles regulate translocation across pulmonary surfactant monolayer and formation of lipoprotein corona.

    Science.gov (United States)

    Hu, Guoqing; Jiao, Bao; Shi, Xinghua; Valle, Russell P; Fan, Qihui; Zuo, Yi Y

    2013-12-23

    Interaction with the pulmonary surfactant film, being the first line of host defense, represents the initial bio-nano interaction in the lungs. Such interaction determines the fate of the inhaled nanoparticles and their potential therapeutic or toxicological effect. Despite considerable progress in optimizing physicochemical properties of nanoparticles for improved delivery and targeting, the mechanisms by which inhaled nanoparticles interact with the pulmonary surfactant film are still largely unknown. Here, using combined in vitro and in silico methods, we show how hydrophobicity and surface charge of nanoparticles differentially regulate the translocation and interaction with the pulmonary surfactant film. While hydrophilic nanoparticles generally translocate quickly across the pulmonary surfactant film, a significant portion of hydrophobic nanoparticles are trapped by the surfactant film and encapsulated in lipid protrusions upon film compression. Our results support a novel model of pulmonary surfactant lipoprotein corona associated with inhaled nanoparticles of different physicochemical properties. Our data suggest that the study of pulmonary nanotoxicology and nanoparticle-based pulmonary drug delivery should consider this lipoprotein corona.

  5. Interaction of Sodium Hyaluronate with a Biocompatible Cationic Surfactant from Lysine: A Binding Study.

    Science.gov (United States)

    Bračič, Matej; Hansson, Per; Pérez, Lourdes; Zemljič, Lidija F; Kogej, Ksenija

    2015-11-10

    Mixtures of natural and biodegradable surfactants and ionic polysaccharides have attracted considerable research interest in recent years because they prosper as antimicrobial materials for medical applications. In the present work, interactions between the lysine-derived biocompatible cationic surfactant N(ε)-myristoyl-lysine methyl ester, abbreviated as MKM, and the sodium salt of hyaluronic acid (NaHA) are investigated in aqueous media by potentiometric titrations using the surfactant-sensitive electrode and pyrene-based fluorescence spectroscopy. The critical micelle concentration in pure surfactant solutions and the critical association concentration in the presence of NaHA are determined based on their dependence on the added electrolyte (NaCl) concentration. The equilibrium between the protonated (charged) and deprotonated (neutral) forms of MKM is proposed to explain the anomalous binding isotherms observed in the presence of the polyelectrolyte. The explanation is supported by theoretical model calculations of the mixed-micelle equilibrium and the competitive binding of the two MKM forms to the surface of the electrode membrane. It is suggested that the presence of even small amounts of the deprotonated form can strongly influence the measured electrode response. Such ionic-nonionic surfactant mixtures are a special case of mixed surfactant systems where the amount of the nonionic component cannot be varied independently as was the case for some of the earlier studies.

  6. Effect of anionic surfactant concentration on the variable range hopping conduction in polypyrrole nanoparticles

    Science.gov (United States)

    Rawal, Ishpal; Kaur, Amarjeet

    2014-01-01

    The mechanism of charge transport in polypyrrole (PPy) nanoparticles prepared with different concentrations (5 to 30 mM) of anionic surfactant (sodium dodecyl sulfate) is reported. Transmission electron microscopy technique confirms the formation of PPy nanoparticles of sizes ˜52 to 28 nm under surfactant directed approach. The room temperature electrical conductivity of the prepared nanoparticles found to increase from 3 to 22 S/cm with surfactant concentration. The temperature dependent activation energy rules out the possibility of band conduction mechanism in the prepared PPy nanoparticles and thus the synthesized nanoparticles are analyzed under variable range hopping (VRH) model for conduction mechanism. The PPy nanoparticles, reduced with liquid ammonia, hold 3D VRH conduction mechanism for the charge transport. However, in the doped samples, some deviation from 3D VRH conduction behavior at higher temperatures (>150 K) has been observed. This may be attributed to the presence of anionic surfactant in these samples. The doping of anionic surfactant causes rise in conducting islands, which may lead to the change in the shape/distribution of density of states governed by Gaussian or exponential type near Fermi level.

  7. On relationships between surfactant type and globular proteins interactions in solution.

    Science.gov (United States)

    Blanco, Elena; Ruso, Juan M; Prieto, Gerardo; Sarmiento, Félix

    2007-12-01

    The binding of sodium perfluorooctanoate (C8FONa), sodium octanoate (C8HONa), lithium perfluorooctanoate (C8FOLi), and sodium dodecanoate (C12HONa) onto myoglobin, ovalbumin, and catalase in water has been characterized using electrophoretic mobility. The tendency of the protein-surfactant complexes to change their charge in the order catalase < ovalbumin < myoglobin was observed which was related to the contents of alpha-helices in the proteins. alpha-Helices are more hydrophobic than beta-sheets. The effect of surfactant on the zeta potentials follows C8HONa < C8FONa < C8FOLi < C12HONa for catalase and ovalbumin; and C8HONa < C8FOLi < C8FONa < C12HONa for myoglobin. The numbers of binding sites on the proteins were determined from the observed increases of the zeta-potential as a function of surfactant concentration in the regions where the binding was a consequence of the hydrophobic effect. The Gibbs energies of binding of the surfactants onto the proteins were evaluated. For all systems, Gibbs energies are negative and large at low concentrations (where binding to the high energy sites takes place) and become less negative at higher ones. This fact suggests a saturation process. Changes in Gibbs energies with the different proteins and surfactants under study have been found to follow same sequence than that found for the charge. The role of hydrophobic interactions in these systems has been demonstrated to be the predominant.

  8. Practical Considerations and Challenges Involved in Surfactant Enhanced Bioremediation of Oil

    Directory of Open Access Journals (Sweden)

    Sagarika Mohanty

    2013-01-01

    Full Text Available Surfactant enhanced bioremediation (SEB of oil is an approach adopted to overcome the bioavailability constraints encountered in biotransformation of nonaqueous phase liquid (NAPL pollutants. Fuel oils contain n-alkanes and other aliphatic hydrocarbons, monoaromatics, and polynuclear aromatic hydrocarbons (PAHs. Although hydrocarbon degrading cultures are abundant in nature, complete biodegradation of oil is rarely achieved even under favorable environmental conditions due to the structural complexity of oil and culture specificities. Moreover, the interaction among cultures in a consortium, substrate interaction effects during the degradation and ability of specific cultures to alter the bioavailability of oil invariably affect the process. Although SEB has the potential to increase the degradation rate of oil and its constituents, there are numerous challenges in the successful application of this technology. Success is dependent on the choice of appropriate surfactant type and dose since the surfactant-hydrocarbon-microorganism interaction may be unique to each scenario. Surfactants not only enhance the uptake of constituents through micellar solubilization and emulsification but can also alter microbial cell surface characteristics. Moreover, hydrocarbons partitioned in micelles may not be readily bioavailable depending on the microorganism-surfactant interactions. Surfactant toxicity and inherent biodegradability of surfactants may pose additional challenges as discussed in this review.

  9. Foam, emulsion and wetting films stabilized by polyoxyalkylated diethylenetriamine (DETA) polymeric surfactants.

    Science.gov (United States)

    Khristov, Khr; Petkova, H; Alexandrova, L; Nedyalkov, M; Platikanov, D; Exerowa, D; Beetge, J

    2011-10-14

    This review explores three (A, B, C) polyoxyalkylated diethylenetriamine (DETA) polymeric surfactants belonging to the group of star-like polymers. They have a similar structure, differing only in the number of polymeric branches (4, 6 and 9 in the mentioned order). The differences in these surfactants' ability to stabilize foam, o/w/o and w/o/w emulsion and wetting films are evaluated by a number of methods summarized in Section 2. Results from the studies indicate that differences in polymeric surfactants' molecular structure affect the properties exhibited at air/water, oil/water and water/solid interfaces, such as the value of surface tension, interfacial tension, critical micelle concentration, degree of hydrophobicity of solid surface, etc. Foam, emulsion and wetting films stabilized by such surfactants also show different behavior regarding some specific parameters, such as critical electrolyte concentration, surfactant concentration for obtaining a stable film, film thickness value, etc. These observations give reasons to believe that model studies can support a comprehensive understanding of how the change in polymeric surfactant structure can impact thin liquid films properties. This may enable a targeted design of the macromolecular architecture depending on the polymeric surfactants application purpose. PMID:21807358

  10. Surfactants in the management of rhinopathologies

    Science.gov (United States)

    Rosen, Philip L.; Palmer, James N.; O'Malley, Bert W.

    2013-01-01

    Background: Surfactants are a class of amphiphilic surface active compounds that show several unique physical properties at liquid–liquid or liquid–solid surface interfaces including the ability to increase the solubility of substances, lower the surface tension of a liquid, and decrease friction between two mediums. Because of these unique physical properties several in vitro, ex vivo, and human trials have examined the role of surfactants as stand-alone or adjunct therapy in recalcitrant chronic rhinosinusitis (CRS). Methods: A review of the literature was performed. Results: The data from three different surfactants have been examined in this review: citric acid zwitterionic surfactant (CAZS; Medtronic ENT, Jacksonville FL), Johnson's Baby Shampoo (Johnson & Johnson, New Brunswick NJ), and SinuSurf (NeilMed Pharmaceuticals, Santa Rosa, CA). Dilute surfactant therapy shows in vitro antimicrobial effects with modest inhibition of bacterial biofilm formation. In patients with CRS, surfactants may improve symptoms, most likely through its mucolytic effects. In addition, surfactants have several distinct potential benefits including their ability to improve an irrigant's penetration of the nonoperated sinus and their synergistic effects with antibiotics. However, surfactants potential for nasal irritation and possible transient ciliotoxicity may limit their use. Conclusion: Recent data suggest a possible therapeutic role of surfactants in treating rhinopathologies associated with mucostasis. Further investigation, including a standardization of surfactant formulations, is warranted to further elucidate the potential benefits and drawbacks of this therapy. PMID:23710951

  11. Structure-property relationship of quinuclidinium surfactants--Towards multifunctional biologically active molecules.

    Science.gov (United States)

    Skočibušić, Mirjana; Odžak, Renata; Štefanić, Zoran; Križić, Ivana; Krišto, Lucija; Jović, Ozren; Hrenar, Tomica; Primožič, Ines; Jurašin, Darija

    2016-04-01

    Motivated by diverse biological and pharmacological activity of quinuclidine and oxime compounds we have synthesized and characterized novel class of surfactants, 3-hydroxyimino quinuclidinium bromides with different alkyl chains lengths (CnQNOH; n=12, 14 and 16). The incorporation of non conventional hydroxyimino quinuclidinium headgroup and variation in alkyl chain length affects hydrophilic-hydrophobic balance of surfactant molecule and thereby physicochemical properties important for its application. Therefore, newly synthesized surfactants were characterized by the combination of different experimental techniques: X-ray analysis, potentiometry, electrical conductivity, surface tension and dynamic light scattering measurements, as well as antimicrobial susceptibility tests. Comprehensive investigation of CnQNOH surfactants enabled insight into structure-property relationship i.e., way in which the arrangement of surfactant molecules in the crystal phase correlates with their solution behavior and biologically activity. The synthesized CnQNOH surfactants exhibited high adsorption efficiency and relatively low critical micelle concentrations. In addition, all investigated compounds showed very potent and promising activity against Gram-positive and clinically relevant Gram-negative bacterial strains compared to conventional antimicrobial agents: tetracycline and gentamicin. The overall results indicate that bicyclic headgroup with oxime moiety, which affects both hydrophilicity and hydrophobicity of CnQNOH molecule in addition to enabling hydrogen bonding, has dominant effect on crystal packing and physicochemical properties. The unique structural features of cationic surfactants with hydroxyimino quinuclidine headgroup along with diverse biological activity have made them promising structures in novel drug discovery. Obtained fundamental understanding how combination of different functionalities in a single surfactant molecule affects its physicochemical

  12. Surfactant-Triggered Fluorescence Turn "on/off" Behavior of a Polythiophene-graft-Polyampholyte.

    Science.gov (United States)

    Ghosh, Radhakanta; Das, Sandip; Chatterjee, Dhruba P; Nandi, Arun K

    2016-08-23

    Polythiophene-graft-polyampholyte (PTP) is synthesized using N,N-dimethylaminoethyl methacrylate and tert-butyl methacrylate monomers by grafting from polythiophene backbone, followed by hydrolysis. The resulting polymer exhibits aqueous solubility via formation of small-sized miceller aggregates with hydrophobic polythiophene at the center and radiating polyionic side chains (cationic or anionic depending on the pH of the medium) at the outer periphery. The critical micelle concentration of PTP in acidic solution (0.025 mg/mL, pH = 2.7) is determined from fluorescence spectroscopy. PTP exhibits reversible fluorescence on and off response in both acidic and basic medium with the sequential addition of differently charged ionic surfactants, repeatedly. The fluorescence intensity of PTP at pH 2.7 increases with the addition of an anionic surfactant, sodium dodecyl benzenesulfonate (SDBS), due to the self-aggregation forming compound micelles. The fluorescence intensity of these solutions again decreases on addition of a cationic surfactant, cetyltrimethylammonium bromide (CTAB), because of assembling of SDBS with CTAB, thus deassembling the PTP-SDBS aggregates. At pH 9.2, these turn on and turn off responses are also shown by PTP with the sequential addition of cationic surfactant (CTAB) and anionic surfactant (SDBS), respectively. This result shows that PTP has potential for surfactant-induced reversible fluorescence turn on and off using ionic surfactant (SDBS and CTAB) through self-assembling and deassembling of the ionic aggregates. The reversible aggregation and disaggregation process of PTP with the surfactants at both acidic and basic pH is supported from dynamic light scattering and Fourier transform infrared spectroscopy. The morphology of the above systems studied by transmission and scanning electron microscopy also supports the above aggregation and disaggregation process. PMID:27465928

  13. Dimeric Surfactants: Promising Ingredients of Cosmetics and Toiletries

    OpenAIRE

    Naveen Kumar; Rashmi Tyagi

    2013-01-01

    Surfactants are an essential ingredient for cosmetic, toiletries and personal care products for enhancing their performance. Dimeric surfactants demonstrate superiority compared to conventional surfactants in all areas of application. Dimeric surfactants are extremely promising for utilization in various cosmetic formulations viz. shampoo, lotions, creams, conditioners etc. These surfactants possess extremely unique surface properties viz. lower surface tension, unique micellization, low crit...

  14. MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSORPTION FOR IMPROVED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    P. Somasundaran

    2005-04-30

    The aim of this project is to delineate the role of mineralogy of reservoir rocks in determining interactions between reservoir minerals and externally added reagents (surfactants/polymers) and its effect on critical solid-liquid and liquid-liquid interfacial properties such as adsorption, wettability and interfacial tension in systems relevant to reservoir conditions. Previous studies have suggested that significant surfactant loss by precipitation or adsorption on reservoir minerals can cause chemical schemes to be less than satisfactory for enhanced oil recovery. Both macroscopic adsorption, wettability and microscopic orientation and conformation studies for various surfactant/polymer mixtures/reservoir rocks systems were conducted to explore the cause of chemical loss by means of precipitation or adsorption, and the effect of rock mineralogy on the chemical loss. During this period, the adsorption of mixed system of n-dodecyl-{beta}-D-maltoside (DM) and dodecyl sulfonate (C{sub 12}SO{sub 3}Na) has been studied. The effects of solution pH, surfactant mixing ratio and different salts on surfactant adsorption on alumina have been investigated in detail. Along with these adsorption studies, changes in mineral wettability due to the adsorption of the mixtures were determined under relevant conditions to identify the nano-structure of the adsorbed layers. Solution properties of C{sub 12}SO{sub 3}Na/DM mixtures were also studied to identify surfactant interactions that affect the mixed aggregate formation in solution. Adsorption of SDS on gypsum and limestone suggested stronger surfactant/mineral interaction than on alumina, due to the precipitation of surfactant by dissolved calcium ions. The effects of different salts such as sodium nitrate, sodium sulfite and sodium chloride on DM adsorption on alumina have also been determined. As surfactant hemimicelles at interface and micelles in solution have drastic effects on oil recovery processes, their microstructures in

  15. MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSORPTION FOR IMPROVED OIL RECOVERY

    International Nuclear Information System (INIS)

    The aim of this project is to delineate the role of mineralogy of reservoir rocks in determining interactions between reservoir minerals and externally added reagents (surfactants/polymers) and its effect on critical solid-liquid and liquid-liquid interfacial properties such as adsorption, wettability and interfacial tension in systems relevant to reservoir conditions. Previous studies have suggested that significant surfactant loss by precipitation or adsorption on reservoir minerals can cause chemical schemes to be less than satisfactory for enhanced oil recovery. Both macroscopic adsorption, wettability and microscopic orientation and conformation studies for various surfactant/polymer mixtures/reservoir rocks systems were conducted to explore the cause of chemical loss by means of precipitation or adsorption, and the effect of rock mineralogy on the chemical loss. During this period, the adsorption of mixed system of n-dodecyl-β-D-maltoside (DM) and dodecyl sulfonate (C12SO3Na) has been studied. The effects of solution pH, surfactant mixing ratio and different salts on surfactant adsorption on alumina have been investigated in detail. Along with these adsorption studies, changes in mineral wettability due to the adsorption of the mixtures were determined under relevant conditions to identify the nano-structure of the adsorbed layers. Solution properties of C12SO3Na/DM mixtures were also studied to identify surfactant interactions that affect the mixed aggregate formation in solution. Adsorption of SDS on gypsum and limestone suggested stronger surfactant/mineral interaction than on alumina, due to the precipitation of surfactant by dissolved calcium ions. The effects of different salts such as sodium nitrate, sodium sulfite and sodium chloride on DM adsorption on alumina have also been determined. As surfactant hemimicelles at interface and micelles in solution have drastic effects on oil recovery processes, their microstructures in solutions and at mineral

  16. Surfactants in tribology, v.3

    CERN Document Server

    Biresaw, Girma

    2013-01-01

    The manufacture and use of almost every consumer and industrial product rely on application of advanced knowledge in surface science and tribology. These two disciplines are of critical importance in major economic sectors, such as mining, agriculture, manufacturing (including metals, plastics, wood, computers, MEMS, NEMS, appliances), construction, transportation, and medical instruments, transplants, and diagnostic devices. An up-to-date reference with contributions by experts in surface science and tribology, Surfactants in Tribology, Volume 3 discusses some of the underlying tribological a

  17. Enhanced Oil Recovery with Surfactant Flooding

    DEFF Research Database (Denmark)

    Sandersen, Sara Bülow

    Enhanced oil recovery (EOR) is being increasingly applied in the oil industry and several different technologies have emerged during, the last decades in order to optimize oil recovery after conventional recovery methods have been applied. Surfactant flooding is an EOR technique in which the phase...... behavior inside the reservoir can be manipulated by the injection of surfactants and co-surfactants, creating advantageous conditions in order to mobilize trapped oil. Correctly designed surfactant systems together with the crude oil can create microemulsions at the interface between crude oil and water......, thus reducing the interfacial tension (IFT) to ultra low (0.001 mN/m), which consequently will mobilize the residual oil and result in improved oil recovery. This EOR technology is, however, made challenging by a number of factors, such as the adsorption of surfactant and co-surfactant to the rock...

  18. The effect of surfactants on the instability of a rotating liquid jet

    International Nuclear Information System (INIS)

    It has long been known that the presence of surfactants on the free surface of a liquid jet can create surface tension gradients along the interface. The resulting formation of tangential stresses along the surface lead to Marangoni type flows and greatly affect the resulting dynamics of rupture. In this way surfactants can be used to manipulate the breakup of a liquid jet and control the size of droplets produced. In this paper we investigate the effects of insoluble surfactants on the breakup of rotating liquid jets with applications to industrial prilling. Using a long wavelength approximation we reduce the governing equations into a set of one-dimensional equations. We use an asymptotic theory to find steady solutions and then carry out a linear instability analysis on these solutions. We show that steady state centreline solutions are independent of viscosity to leading order and that the most unstable wavenumber and growth rate of disturbances decrease as the effectiveness of surfactants is increased. We also numerically solve these equations using a finite difference scheme to investigate the effects of changing the initial surfactant concentration and other fluid parameters. Our results show that differences in breakup lengths between rotating surfactant-laden jets and surfactant-free jets increase with the rate of rotation. Moreover, we find that satellite droplet sizes decrease as the rate of rotation is decreased with the effect of surfactants amplifying the reduction in sizes. Furthermore, the presence of surfactants at fixed rotation rates is shown to produce larger main droplets at low disturbance wavenumbers whilst satellite droplets are smaller for moderate disturbance wavenumbers κ ∼ 0.7.

  19. Alterations of alveolar type II cells and intraalveolar surfactant after bronchoalveolar lavage and perfluorocarbon ventilation. An electron microscopical and stereological study in the rat lung

    OpenAIRE

    Burkhardt Wolfram; Köthe Lars; Wendt Sebastian; Rüdiger Mario; Wauer Roland R; Ochs Matthias

    2007-01-01

    Abstract Background Repeated bronchoalveolar lavage (BAL) has been used in animals to induce surfactant depletion and to study therapeutical interventions of subsequent respiratory insufficiency. Intratracheal administration of surface active agents such as perfluorocarbons (PFC) can prevent the alveolar collapse in surfactant depleted lungs. However, it is not known how BAL or subsequent PFC administration affect the intracellular and intraalveolar surfactant pool. Methods Male wistar rats w...

  20. Alterations of alveolar type II cells and intraalveolar surfactant after bronchoalveolar lavage and perfluorocarbon ventilation; an electron microscopical and stereological study in the rat lung ; Research

    OpenAIRE

    Rüdiger, Mario; Wendt, Sebastian; Köthe, Lars; Burkhardt, Wolfram; Wauer, Roland R.; Ochs, Matthias

    2007-01-01

    Background: Repeated bronchoalveolar lavage (BAL) has been used in animals to induce surfactant depletion and to study therapeutical interventions of subsequent respiratory insufficiency. Intratracheal administration of surface active agents such as perfluorocarbons (PFC) can prevent the alveolar collapse in surfactant depleted lungs. However, it is not known how BAL or subsequent PFC administration affect the intracellular and intraalveolar surfactant pool. Methods: Male wistar rats were sur...

  1. Exogenous pulmonary surfactant as a drug delivering agent: influence of antibiotics on surfactant activity.

    OpenAIRE

    van 't Veen, A; Gommers, D.; Mouton, J. W.; Kluytmans, J.A.; Krijt, E. J.; Lachmann, B.

    1996-01-01

    1. It has been proposed to use exogenous pulmonary surfactant as a drug delivery system for antibiotics to the alveolar compartment of the lung. Little, however, is known about interactions between pulmonary surfactant and antimicrobial agents. This study investigated the activity of a bovine pulmonary surfactant after mixture with amphotericin B, amoxicillin, ceftazidime, pentamidine or tobramycin. 2. Surfactant (1 mg ml-1 in vitro and 40 mg ml-1 in vivo) was mixed with 0.375 mg ml-1 amphote...

  2. Synthetic pulmonary surfactant : Effects of surfactant proteins B and C and their analogues

    OpenAIRE

    Almlén, Andreas

    2010-01-01

    Pulmonary surfactant is a lipid/protein mixture lining the air-liquid interface in the alveoli. Its main function is to lower surface tension during respiration and thereby prevent alveolar collapse at end-expiration. Surfactant deficiency, especially common in prematurely born babies, is the main cause of respiratory distress syndrome (RDS). This disease is treated with exogenous surfactant replacement using animal-derived modified natural surfactants. Production of these i...

  3. Surfactant inhibition in acute respiratory failure : consequences for exogenous surfactant therapy

    OpenAIRE

    Eijking, Eric

    1993-01-01

    textabstractThe neonatal respiratory distress syndrome (RDS) is characterized by immaturity of the lung, resulting in relative or absolute absence of pulmonary surfactant. Worldwide, neonates suffering from RDS have been treated successfully with exogenous surfactant preparations. Currently, exogenous surfactant administration has been accepted as a valuable treatment for this syndrome. Nevertheless, many questions on exogenous surfactant treatment remain unanswered. It has been observed that...

  4. Interactions between ionic liquid surfactant [C12mim]Br and DNA in dilute brine.

    Science.gov (United States)

    He, Yunfei; Shang, Yazhuo; Liu, Zhenhai; Shao, Shuang; Liu, Honglai; Hu, Ying

    2013-01-01

    Interactions between ionic liquid surfactant [C(12)mim]Br and DNA in dilute brine were investigated in terms of various experimental methods and molecular dynamics (MD) simulation. It was shown that the aggregation of [C(12)mim]Br on DNA chains is motivated not only by electrostatic attractions between DNA phosphate groups and [C(12)mim]Br headgroups but also by hydrophobic interactions among [C(12)mim]Br alkyl chains. Isothermal titration calorimetry analysis indicated that the [C(12)mim]Br aggregation in the presence and absence of DNA are both thermodynamically favored driven by enthalpy and entropy. DNA undergoes size transition and conformational change induced by [C(12)mim]Br, and the charges of DNA are neutralized by the added [C(12)mim]Br. Various microstructures were observed such as DNA with loose coil conformation in nature state, necklace-like structures, and compact spherical aggregates. MD simulation showed that the polyelectrolyte collapses upon the addition of oppositely charged surfactants and the aggregation of surfactants around the polyelectrolyte was reaffirmed. The simulation predicted the gradual neutralization of the negatively charged polyelectrolyte by the surfactant, consistent with the experimental results. PMID:23010047

  5. Self-aggregation and liquid crystalline behavior of new ester-functionalized quinuclidinolium surfactants.

    Science.gov (United States)

    Bhadani, Avinash; Endo, Takeshi; Koura, Setsuko; Sakai, Kenichi; Abe, Masahiko; Sakai, Hideki

    2014-08-01

    A new type of ester-based cationic surfactant having a quinuclidinolium headgroup has been synthesized starting from linear fatty alcohols and has been characterized using spectroscopic techniques. The self-aggregation and thermodynamic properties of these surfactants have been investigated by pendant-drop surface tensiometry and conductivity measurements. The liquid crystalline behaviors of these surfactants were investigated by small-angle X-ray scattering (SAXS) technique. The quinuclidinolium headgroup demonstrated a unique ability to interlock among themselves thus affecting the physicochemical properties of surfactants in aqueous solution. The current research finding supports the new concept of headgroup interlocking which is supported by 1D and 2D NMR studies. PMID:25058797

  6. The Biophysical Function of Pulmonary Surfactant

    OpenAIRE

    Rugonyi, Sandra; Biswas, Samares C.; Hall, Stephen B.

    2008-01-01

    Pulmonary surfactant lowers surface tension in the lungs. Physiological studies indicate two key aspects of this function: that the surfactant film forms rapidly; and that when compressed by the shrinking alveolar area during exhalation, the film reduces surface tension to very low values. These observations suggest that surfactant vesicles adsorb quickly, and that during compression, the adsorbed film resists the tendency to collapse from the interface to form a three-dimensional bulk phase....

  7. A route to simple nonionic surfactants

    Directory of Open Access Journals (Sweden)

    Sindija Brica

    2016-12-01

    Full Text Available A method for the synthesis of nonionic surfactants – N-alkyl-O-(2-hydroxyethyl carbamates is proposed by acylation of fatty amines with ethylene carbonate without any solvent or catalyst. The surface tension of the prepared surfactants was measured, toxicity and biodegradability were determined for the surfactant with n-dodecyl as a hydrophobic group and N-monosubstituted amide and hydroxyl groups for their hydrophilic part.

  8. Nonionic and ionic surfactants at an interface

    OpenAIRE

    Onuki, Akira

    2008-01-01

    A Ginzburg-Landau theory is presented on surfactants in polar binary mixtures, which aggregate at an interface due to the amphiphilic interaction. They can be ionic surfactants coexisting with counterions. Including the solvation and image interactions and accounting for a finite volume fraction of the surfactant, we obtain their distributions and the electric potential around an interface in equilibrium. The surface tension is also calculated. The distribution of the adsorbed ionic surfactan...

  9. Surfactant-Templated Mesoporous Metal Oxide Nanowires

    OpenAIRE

    Hongmei Luo; Qianglu Lin; Stacy Baber; Mahesh Naalla

    2010-01-01

    We demonstrate two approaches to prepare mesoporous metal oxide nanowires by surfactant assembly and nanoconfinement via sol-gel or electrochemical deposition. For example, mesoporous Ta2O5 and zeolite nanowires are prepared by block copolymer Pluronic 123-templated sol-gel method, and mesoporous ZnO nanowires are prepared by electrodeposition in presence of anionic surfactant sodium dodecyl sulfate (SDS) surfactant, in porous membranes. The morphologies of porous nanowires are studied by sca...

  10. Surfactant use outside the tertiary care centre

    OpenAIRE

    Stuart, Shelagh; McMillan, Doug

    2005-01-01

    Early administration of surfactant to preterm babies with respiratory distress syndrome saves lives and decreases morbidity such as pneumothorax. Surfactant administration shortly after birth to intubated babies less than 30 weeks gestation decreases pulmonary air leak, chronic lung disease and mortality. Some preterm babies may be born in hospitals with a transport team hours away. Surfactant administration may cause transient bradycardia or hypoxemia and may rapidly improve lung function. A...

  11. Using dissipative particle dynamics for modeling surfactants

    OpenAIRE

    ZHANG, YUCHEN; Ardekani, Arezoo M.

    2015-01-01

    Oil recovery is an industrial process that injects aqueous solutions into an oil reservoir to pump out crude oil and promote the oil production. The aqueous solution contains surfactants for reducing the interfacial tension (IFT) between aqueous phase and oil. The critical micelle concentration (CMC) is the concentration of surfactant above which micelles form and the interfacial tension reaches a plateau. Our research seeks to measure IFT and CMC for surfactants using dissipative particle dy...

  12. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.

    Science.gov (United States)

    Hu, Zhen; Ballinger, Sarah; Pelton, Robert; Cranston, Emily D

    2015-02-01

    The effect of surfactants on the properties of Pickering emulsions stabilized by cellulose nanocrystals (CNCs) was investigated. Electrophoretic mobility, interfacial tension, confocal microscopy and three-phase contact angle measurements were used to elucidate the interactions between anionic CNCs and cationic alkyl ammonium surfactants didecyldimethylammonium bromide (DMAB) and cetyltrimethylammonium bromide (CTAB). Both surfactants were found to adsorb onto CNCs with concentration-dependent morphology. At low concentrations, individual surfactant molecules adsorbed with alkyl tails pointing outward leading to hydrophobic CNCs. At higher concentrations, above the surfactant's apparent critical micelle concentration, surfactant aggregate morphologies on CNCs were inferred and the hydrophobicity of CNCs decreased. DMAB, which has two alkyl tails, rendered the CNCs more hydrophobic than CTAB which has only a single alkyl tail, at all surfactant concentrations. The change in CNC wettability from surfactant adsorption was directly linked to emulsion properties; adding surfactant increased the emulsion stability, decreased the droplet size, and controlled the internal phase of CNC Pickering emulsions. More specifically, a double transitional phase inversion, from oil-in-water to water-in-oil and back to oil-in-water, was observed for emulsions with CNCs and increasing amounts of DMAB (the more hydrophobic surfactant). With CNCs and CTAB, no phase inversion was induced. This work represents the first report of CNC Pickering emulsions with surfactants as well as the first CNC Pickering emulsions that can be phase inverted. The ability to surface modify CNCs in situ and tailor emulsions by adding surfactants may extend the potential of CNCs to new liquid formulations and extruded/spray-dried materials.

  13. Lung surfactant in subacute pulmonary disease

    OpenAIRE

    Spragg Roger G; Devendra Gehan

    2002-01-01

    Abstract Pulmonary surfactant is a surface active material composed of both lipids and proteins that is produced by alveolar type II pneumocytes. Abnormalities of surfactant in the immature lung or in the acutely inflamed mature lung are well described. However, in a variety of subacute diseases of the mature lung, abnormalities of lung surfactant may also be of importance. These diseases include chronic obstructive pulmonary disease, asthma, cystic fibrosis, interstitial lung disease, pneumo...

  14. Cytotoxicity of single-walled carbon nanotubes suspended in various surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Dong Lifeng [Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO 65897 (United States); Joseph, Katherine L; Witkowski, Colette M; Craig, Michael M [Department of Biomedical Sciences, Missouri State University, Springfield, MO 65897 (United States)], E-mail: LifengDong@MissouriState.edu

    2008-06-25

    The cytotoxicity of single-walled carbon nanotubes (SWCNTs) suspended in various surfactants was investigated by phase contrast light microscopy characterization in combination with an absorbance spectroscopy cytotoxicity analysis. Our data indicate that individual SWCNTs suspended in the surfactants, sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS), were toxic to 1321N1 human astrocytoma cells due to the toxicity of SDS and SDBS on the nanotube surfaces. This toxicity was observed when cells were exposed to an SDS or SDBS solution having a concentration as low as 0.05 mg ml{sup -1} for 30 min. The proliferation and viability of the cells were not affected by SWCNTs alone or by conjugates of SWCNTs with various concentrations of sodium cholate (SC) or single-stranded DNA. The cells proliferated similarly to untreated cells when surrounded by SWCNTs as they grow, which indicated that the nanotubes did not affect cells adversely. The cytotoxicity of the nanotube-surfactant conjugates was controlled in these experiments by the toxicity of the surfactants. Consequently, when evaluating a surfactant to be used for the dispersion of nanoscale materials in applications such as nanoscale electronics or non-viral biomolecular transporters, the cytotoxicity needs to be evaluated. The methodology proposed in this study can be used to investigate the cytotoxicity of other nanoscale materials suspended in a variety of surfactants.

  15. Cholesterol-mediated surfactant dysfunction is mitigated by surfactant protein A.

    Science.gov (United States)

    Hiansen, Joshua Qua; Keating, Eleonora; Aspros, Alex; Yao, Li-Juan; Bosma, Karen J; Yamashita, Cory M; Lewis, James F; Veldhuizen, Ruud A W

    2015-03-01

    The ability of pulmonary surfactant to reduce surface tension at the alveolar surface is impaired in various lung diseases. Recent animal studies indicate that elevated levels of cholesterol within surfactant may contribute to its inhibition. It was hypothesized that elevated cholesterol levels within surfactant inhibit human surfactant biophysical function and that these effects can be reversed by surfactant protein A (SP-A). The initial experiment examined the function of surfactant from mechanically ventilated trauma patients in the presence and absence of a cholesterol sequestering agent, methyl-β-cyclodextrin. The results demonstrated improved surface activity when cholesterol was sequestered in vitro using a captive bubble surfactometer (CBS). These results were explored further by reconstitution of surfactant with various concentrations of cholesterol with and without SP-A, and testing of the functionality of these samples in vitro with the CBS and in vivo using surfactant depleted rats. Overall, the results consistently demonstrated that surfactant function was inhibited by levels of cholesterol of 10% (w/w phospholipid) but this inhibition was mitigated by the presence of SP-A. It is concluded that cholesterol-induced surfactant inhibition can actively contribute to physiological impairment of the lungs in mechanically ventilated patients and that SP-A levels may be important to maintain surfactant function in the presence of high cholesterol within surfactant. PMID:25522687

  16. Surfactant nebulisation : lung function, surfactant distribution and pulmonary blood flow distribution in lung lavaged rabbits

    NARCIS (Netherlands)

    Dijk, PH; Heikamp, A; Oetomo, SB

    1997-01-01

    Objective: Surfactant nebulisation is a promising alternative to surfactant instillation in newborns with the respiratory distress syndrome. Although less surfactant is deposited in the lung, it improves gas exchange, probably due to a superior distribution. We hypothesize that a more uniform distri

  17. Biophysical inhibition of pulmonary surfactant function by polymeric nanoparticles: role of surfactant protein B and C.

    Science.gov (United States)

    Beck-Broichsitter, Moritz; Ruppert, Clemens; Schmehl, Thomas; Günther, Andreas; Seeger, Werner

    2014-11-01

    The current study investigated the mechanisms involved in the process of biophysical inhibition of pulmonary surfactant by polymeric nanoparticles (NP). The minimal surface tension of diverse synthetic surfactants was monitored in the presence of bare and surface-decorated (i.e. poloxamer 407) sub-100 nm poly(lactide) NP. Moreover, the influence of NP on surfactant composition (i.e. surfactant protein (SP) content) was studied. Dose-elevations of SP advanced the biophysical activity of the tested surfactant preparation. Surfactant-associated protein C supplemented phospholipid mixtures (PLM-C) were shown to be more susceptible to biophysical inactivation by bare NP than phospholipid mixture supplemented with surfactant protein B (PLM-B) and PLM-B/C. Surfactant function was hindered owing to a drastic depletion of the SP content upon contact with bare NP. By contrast, surface-modified NP were capable of circumventing unwanted surfactant inhibition. Surfactant constitution influences the extent of biophysical inhibition by polymeric NP. Steric shielding of the NP surface minimizes unwanted NP-surfactant interactions, which represents an option for the development of surfactant-compatible nanomedicines.

  18. Solubilization of Hydrophobic Dyes in Surfactant Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Tehrani-Bagha

    2013-02-01

    Full Text Available In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs—the critical micelle concentration (CMC—there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.

  19. Lung surfactant in subacute pulmonary disease

    Directory of Open Access Journals (Sweden)

    Spragg Roger G

    2002-04-01

    Full Text Available Abstract Pulmonary surfactant is a surface active material composed of both lipids and proteins that is produced by alveolar type II pneumocytes. Abnormalities of surfactant in the immature lung or in the acutely inflamed mature lung are well described. However, in a variety of subacute diseases of the mature lung, abnormalities of lung surfactant may also be of importance. These diseases include chronic obstructive pulmonary disease, asthma, cystic fibrosis, interstitial lung disease, pneumonia, and alveolar proteinosis. Understanding of the mechanisms that disturb the lung surfactant system may lead to novel rational therapies for these diseases.

  20. Using biologically soft surfactants for dust suppression

    Energy Technology Data Exchange (ETDEWEB)

    Tkachenko, N.G.; Kolodiichak, V.K.; Motrii, A.E.; Severin, V.D.

    1982-07-01

    This article discusses environmental aspects of using surfactants in coal mines for dust suppression. Surfactants for underground black coal mines in the USSR are divided into three classes: so-called soft surfactants with a decomposition period from 1 to 3 days, hard surfactants with decomposition exceeding a month and an intermediary group. The decomposition process is analyzed; the role played by fermentation is stressed. Environmental effects of surfactant decomposition are evaluated. Selected surfactants tested in Soviet laboratories are described. The results of experimental use of diethanolamide as a surfactant for water injection in coal seams are evaluated. Wetting time amounts to 1 s when a 0.2% concentration is used. When surfactant concentration in water is reduced to 0.05% wetting time does not change; when concentration decreases to 0.025% wetting time increases to 3 s. Surfactant efficiency is investigated under operational conditions in a Donbass mine. Specifications of the working face, mining system and air pollution caused by a shearer loader are discussed. When diethanolamide is used dust suppression efficiency ranges from 86.4 to 90.4%. During the tests diethanolamide concentration in water was 0.05%.

  1. Synthesis and properties of differently charged chemiluminescent acridinium ester labels.

    Science.gov (United States)

    Natrajan, Anand; Sharpe, David

    2013-02-14

    Chemiluminescent acridinium dimethylphenyl esters containing N-sulfopropyl groups in the acridinium ring are highly sensitive, hydrophilic labels that are used in automated immunoassays for clinical diagnostics. Light emission from these labels is triggered with alkaline peroxide in the presence of a cationic surfactant. At physiological pH, N-sulfopropyl acridinium esters exist as water adducts that are commonly referred to as pseudobases. Pseudobase formation, which results from addition of water to the zwitterionic N-sulfopropyl acridinium ring, neutralizes the positive charge on the acridinium nitrogen and imparts a net negative charge to the label due to the sulfonate moiety. As a consequence, N-sulfopropyl acridinium ester conjugates of small molecule haptens as well as large molecules such as proteins gain negative charges at neutral pH. In the current study, we describe the synthesis and properties of two new hydrophilic acridinium dimethylphenyl ester labels where the net charge in the labels was altered. In one label, the structure of the hydrophilic N-alkyl group attached to the acridinium ring was changed so that the pseudobase of the label contains no net charge. In the second acridinium ester, two additional negative charges in the form of sulfopropyl groups were added to the acridinium ring to make this label's pseudobase strongly anionic. Chemiluminescence measurements of these labels, as well as their conjugates of an antibody with a neutral pI, indicate that acridinium ester charge while having a modest effect on emission kinetics has little influence on light output. However, our results demonstrate that acridinium ester charge can affect protein pI, apparent chemiluminescence stability and non-specific binding of protein conjugates to microparticles. These results emphasize the need for careful consideration of acridinium ester charge in order to optimize reagent stability and performance in immunoassays. In the current study, we observed that

  2. Surfactant-assisted dispersion of carbon nanotubes: mechanism of stabilization and biocompatibility of the surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Raman Preet, E-mail: ramanpreetsingh@hotmail.com [Evalueserve SEZ (Gurgaon) Pvt. Ltd. (India); Jain, Sanyog [National Institute of Pharmaceutical Education and Research, Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics (India); Ramarao, Poduri, E-mail: ramaraop@yahoo.com [Central University of Punjab, School of Basic and Applied Sciences (India)

    2013-10-15

    Nanoparticles (NPs) are thermodynamically unstable system and tend to aggregate to reduce free energy. The aggregation property of NPs results in inhomogeneous exposure of cells to NPs resulting in variable cellular responses. Several types of surfactants are used to stabilize NP dispersions and obtain homogenous dispersions. However, the effects of these surfactants, per se, on cellular responses are not completely known. The present study investigated the application of Pluronic F68 (PF68) for obtaining stable dispersion of NPs using carbon nanotubes as model NPs. PF68-stabilized NP suspensions are stable for long durations and do not show signs of aggregation or settling during storage or after autoclaving. The polyethylene oxide blocks in PF68 provide steric hindrance between adjacent NPs leading to stable NP dispersions. Further, PF68 is biocompatible in nature and does not affect integrity of mitochondria, lysosomes, DNA, and nuclei. Also, PF68 neither induce free radical or cytokine production nor does it interfere with cellular uptake mechanisms. The results of the present study suggest that PF68-assisted dispersion of NPs produced suspensions, which are stable after autoclaving. Further, PF68 does not interfere with normal physiological functions suggesting its application in nanomedicine and nanotoxicity evaluation.

  3. Surfactant-assisted dispersion of carbon nanotubes: mechanism of stabilization and biocompatibility of the surfactant

    International Nuclear Information System (INIS)

    Nanoparticles (NPs) are thermodynamically unstable system and tend to aggregate to reduce free energy. The aggregation property of NPs results in inhomogeneous exposure of cells to NPs resulting in variable cellular responses. Several types of surfactants are used to stabilize NP dispersions and obtain homogenous dispersions. However, the effects of these surfactants, per se, on cellular responses are not completely known. The present study investigated the application of Pluronic F68 (PF68) for obtaining stable dispersion of NPs using carbon nanotubes as model NPs. PF68-stabilized NP suspensions are stable for long durations and do not show signs of aggregation or settling during storage or after autoclaving. The polyethylene oxide blocks in PF68 provide steric hindrance between adjacent NPs leading to stable NP dispersions. Further, PF68 is biocompatible in nature and does not affect integrity of mitochondria, lysosomes, DNA, and nuclei. Also, PF68 neither induce free radical or cytokine production nor does it interfere with cellular uptake mechanisms. The results of the present study suggest that PF68-assisted dispersion of NPs produced suspensions, which are stable after autoclaving. Further, PF68 does not interfere with normal physiological functions suggesting its application in nanomedicine and nanotoxicity evaluation

  4. Chain architecture and micellization: A mean-field coarse-grained model for poly(ethylene oxide) alkyl ether surfactants

    Science.gov (United States)

    García Daza, Fabián A.; Colville, Alexander J.; Mackie, Allan D.

    2015-03-01

    Microscopic modeling of surfactant systems is expected to be an important tool to describe, understand, and take full advantage of the micellization process for different molecular architectures. Here, we implement a single chain mean field theory to study the relevant equilibrium properties such as the critical micelle concentration (CMC) and aggregation number for three sets of surfactants with different geometries maintaining constant the number of hydrophobic and hydrophilic monomers. The results demonstrate the direct effect of the block organization for the surfactants under study by means of an analysis of the excess energy and entropy which can be accurately determined from the mean-field scheme. Our analysis reveals that the CMC values are sensitive to branching in the hydrophilic head part of the surfactant and can be observed in the entropy-enthalpy balance, while aggregation numbers are also affected by splitting the hydrophobic tail of the surfactant and are manifested by slight changes in the packing entropy.

  5. Chain architecture and micellization: A mean-field coarse-grained model for poly(ethylene oxide) alkyl ether surfactants

    Energy Technology Data Exchange (ETDEWEB)

    García Daza, Fabián A.; Mackie, Allan D., E-mail: allan.mackie@urv.cat [Department d’Enginyeria Química, ETSEQ, Universitat Rovira i Virgili, Avinguda dels Països Catalans 26, 43007 Tarragona (Spain); Colville, Alexander J. [Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115-5000 (United States)

    2015-03-21

    Microscopic modeling of surfactant systems is expected to be an important tool to describe, understand, and take full advantage of the micellization process for different molecular architectures. Here, we implement a single chain mean field theory to study the relevant equilibrium properties such as the critical micelle concentration (CMC) and aggregation number for three sets of surfactants with different geometries maintaining constant the number of hydrophobic and hydrophilic monomers. The results demonstrate the direct effect of the block organization for the surfactants under study by means of an analysis of the excess energy and entropy which can be accurately determined from the mean-field scheme. Our analysis reveals that the CMC values are sensitive to branching in the hydrophilic head part of the surfactant and can be observed in the entropy-enthalpy balance, while aggregation numbers are also affected by splitting the hydrophobic tail of the surfactant and are manifested by slight changes in the packing entropy.

  6. Surfactant phosphatidylcholine metabolism in preterm infants studied with stable isotopes

    OpenAIRE

    Bunt, Jan Erik

    2000-01-01

    textabstractAIM OF THE STUDIES 1. To develop and use a novel method to study surfactant metabolism in preterm and older infants. (chapters 3 and 4). 2. To study endogenous surfactant synthesis in relation to prenatal glucocorticosteroids. (chapters 5 and 6). 3. To study the influence of surfactant therapy on endogenous surfactant metabolism. (chapters 7 and 8). 4. To study surfactant composition and concentration after surfactant therapy. (chapter 8).

  7. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion

    Science.gov (United States)

    Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao

    2016-04-01

    Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification.

  8. The structure of micelles of mixed anionic surfactants and their complexes with cationic starch studied by SANS

    International Nuclear Information System (INIS)

    Complete text of publication follows. The aim of this study was to determine the composition and structure of mixed micelles of different chain length alkanoates (sodium octanoate - sodium hexadecanoate) and the structure of cationic starch/mixed surfactant complexes. The cationic starch (CS) was a potato starch having 2-hydroxy-3-trimethylammoniumpropyl groups as substituents. It was partly depolymerized by oxidizing with sodium hypochlorite. Its molecular mass is 104 - 106 and the degree of substitution is 0.80. The small-angle neutron scattering experiments were perform on solutions of different alkanoate mixtures. The complexation of cationic starch with surfactant mixtures was studied by using different CS/surfactant ratios as well as using surfactant mixtures of different chain-length difference. Deuterated and protonated surfactants were used. The formation of mixed micelles and cationic starch/surfactant complexes is observed. The structure, composition, and electrical charge of mixed micelles versus chain length difference and molar ratio of alkanoates are determined. Structural parameters of cationic starch/surfactant complexes are evaluated. (author)

  9. Second Law Analysis of Adiabatic and Non-Adiabatic Pipeline Flows of Unstable and Surfactant-Stabilized Emulsions

    Directory of Open Access Journals (Sweden)

    Rajinder Pal

    2016-03-01

    Full Text Available Entropy generation, and hence exergy destruction, in adiabatic flow of unstable and surfactant-stabilized emulsions was investigated experimentally in different diameter pipes. Four types of emulsion systems are investigated covering a broad range of the dispersed-phase concentration: (a unstable oil-in-water (O/W emulsions without surfactant; (b surfactant-stabilized O/W emulsions; (c unstable water-in-oil (W/O emulsions without surfactant; and (d surfactant-stabilized W/O emulsions. The entropy generation rate per unit pipe length is affected by the type of the emulsion as well as its stability. Unstable emulsions without any surfactant present at the interface generate less entropy in the turbulent regime as compared with the surfactant-stabilized emulsions of the same viscosity and density. The effect of surfactant is particularly severe in the case of W/O emulsions. In the turbulent regime, the rate of entropy generation in unstable W/O emulsions is much lower in comparison with that observed in the stable W/O emulsions. A significant delay in the transition from laminar to turbulent regime is also observed in the case of unstable W/O emulsion. Finally, the analysis and simulation results are presented on non-adiabatic pipeline flow of emulsions.

  10. Coupled Effects of Vadose Zone Hydrodynamics and Anionic Surfactant Aerosol-22 on the Transport of Cryptosporidium parvum in Soil

    Science.gov (United States)

    Darnault, C. J.; Jacobson, A. R.; Powelson, D.; Baveye, P.; Peng, Z.; Yu, C.

    2013-12-01

    Cryptosporidium parvum is a microbial pathogen that may be found in soil, surface and groundwater resources. We studied their transport behavior under conditions where both C. parvum oocysts and chemicals that may affect their mobility are present in soils. Surfactants occur widely in soils due to agricultural practices such as wastewater irrigation and application of agrichemicals. Surfactants decrease the surface tension of the soil solution, which may reduce the ability of C. parvum oocysts to be retained at gas-water interfaces. Understanding the fate and transport of C. parvum oocysts following land application of manure and use of surfactants in rural and agricultural watersheds is critical to assess the threat to water resources. We investigated the coupled effects of vadose zone hydrodynamics and an anionic surfactant Aerosol-22 on the transport of C. parvum oocysts in natural structured and non-structured agricultural or range soils from Illinois and Utah. Column transport experiments consisted of unsaturated flow subject to macropore and fingered flows resulting from simulated rainfall with and without surfactant. To assess the behavior of C. parvum oocysts in soils, the breakthrough and distribution of C. parvum oocysts in soil profiles were obtained using qPCR. We observed that surfactant enhanced the transport of C. parvum oocysts when preferential flow paths are present. However, when the interconnection between macropores is not established in the soils, surfactant limited the transport of C. parvum oocysts through the soil matrix by forming oocyst-surfactant-Ca flocs.

  11. Structured fluids polymers, colloids, surfactants

    CERN Document Server

    Witten, Thomas A

    2010-01-01

    Over the last thirty years, the study of liquids containing polymers, surfactants, or colloidal particles has developed from a loose assembly of facts into a coherent discipline with substantial predictive power. These liquids expand our conception of what condensed matter can do. Such structured-fluid phenomena dominate the physical environment within living cells. This book teaches how to think of these fluids from a unified point of view showing the far-reaching effects ofthermal fluctuations in producing forces and motions. Keeping mathematics to a minimum, the book seeks the simplest expl

  12. Surfactant Adsorption: A Revised Physical Chemistry Lab

    Science.gov (United States)

    Bresler, Marc R.; Hagen, John P.

    2008-01-01

    Many physical chemistry lab courses include an experiment in which students measure surface tension as a function of surfactant concentration. In the traditional experiment, the data are fit to the Gibbs isotherm to determine the molar area for the surfactant, and the critical micelle concentration is used to calculate the Gibbs energy of micelle…

  13. Sequential adsorption of an irreversibly adsorbed nonionic surfactant and an anionic surfactant at an oil/aqueous interface.

    Science.gov (United States)

    Kirby, Stephanie M; Anna, Shelley L; Walker, Lynn M

    2015-04-14

    Aerosol-OT (AOT) and Tween 80 are two of the main surfactants in commercial dispersants used in response to oil spills. Understanding how multicomponent surfactant systems interact at oil/aqueous interfaces is crucial for improving both dispersant design and application efficacy. This is true of many multicomponent formulations; a lack of understanding of competition for the oil/water interface hinders formulation optimization. In this study, we have characterized the sequential adsorption behavior of AOT on squalane/aqueous interfaces that have been precoated with Tween 80. A microtensiometer is used to measure the dynamic interfacial tension of the system. Tween 80 either partially or completely irreversibly adsorbs to squalane/aqueous interfaces when rinsed with deionized water. These Tween 80 coated interfaces are then exposed to AOT. AOT adsorption increases with AOT concentration for all Tween 80 coverages, and the resulting steady-state interfacial tension values are interpreted using a Langmuir isotherm model. In the presence of 0.5 M NaCl, AOT adsorption significantly increases due to counterion charge screening of the negatively charged head groups. The presence of Tween 80 on the interface inhibits AOT adsorption, reducing the maximum surface coverage as compared to a clean interface. Tween 80 persists on the interface even after exposure to high concentrations of AOT.

  14. On the mesoscopic origins of high viscosities in some polyelectrolyte-surfactant mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Ingo, E-mail: ingo.hoffmann@tu-berlin.de [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Farago, Bela; Schweins, Ralf; Falus, Peter; Sharp, Melissa [Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Prévost, Sylvain [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Helmholtz-Zentrum Berlin, D-14109 Berlin (Germany); Gradzielski, Michael, E-mail: michael.gradzielski@tu-berlin.de [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany)

    2015-08-21

    Oppositely charged polyelectrolyte (PE) surfactant mixtures allow the control of rheological parameters of a solution even at fairly low concentrations. For example, addition of 0.3 wt. % of anionic surfactant to a 1 wt. % solution of the polycation JR 400 increases the viscosity by 4 orders of magnitude. Recently, we could show that this increase is related to the formation of mixed, rod-like PE/surfactant aggregates which interconnect several polyelectrolyte chains [Hoffmann et al., Europhys. Lett. 104, 28001 (2013)]. In this paper, we refine our structural model of the aggregates to obtain a more consistent picture of their internal structure for different anionic surfactants. Combining small angle neutron scattering (SANS) and neutron spin-echo (NSE) allows us to determine the size of the aggregates. By comparing different contrasts, the internal structure of the aggregates can be elucidated and it is seen that the PE in the aggregates retains a relatively high freedom of movement. We proceeded to investigate the influence of the surfactant concentration and the surfactant type on structure and dynamics of the mixed aggregates. It is seen that the structural parameters of the aggregates depend very little on the surfactant concentration and headgroup. However, it is crucial to incorporate a sufficient amount of PE in the aggregates to increase the viscosity of the aggregates. By comparing viscous samples at 1 wt. % PE concentration with samples at a PE concentration of 0.3 wt. %, where no significant increase in viscosity is observed, we find that similar aggregates are formed already at this lower PE concentrations. However, the amount of PE incorporated in them is insufficient to interconnect several PE chains and therefore, they do not increase viscosity. So, our detailed investigation combining contrast variation SANS and NSE does not only allow to explain the viscosity behavior but also to deduced detailed information regarding the structures and

  15. On the mesoscopic origins of high viscosities in some polyelectrolyte-surfactant mixtures

    International Nuclear Information System (INIS)

    Oppositely charged polyelectrolyte (PE) surfactant mixtures allow the control of rheological parameters of a solution even at fairly low concentrations. For example, addition of 0.3 wt. % of anionic surfactant to a 1 wt. % solution of the polycation JR 400 increases the viscosity by 4 orders of magnitude. Recently, we could show that this increase is related to the formation of mixed, rod-like PE/surfactant aggregates which interconnect several polyelectrolyte chains [Hoffmann et al., Europhys. Lett. 104, 28001 (2013)]. In this paper, we refine our structural model of the aggregates to obtain a more consistent picture of their internal structure for different anionic surfactants. Combining small angle neutron scattering (SANS) and neutron spin-echo (NSE) allows us to determine the size of the aggregates. By comparing different contrasts, the internal structure of the aggregates can be elucidated and it is seen that the PE in the aggregates retains a relatively high freedom of movement. We proceeded to investigate the influence of the surfactant concentration and the surfactant type on structure and dynamics of the mixed aggregates. It is seen that the structural parameters of the aggregates depend very little on the surfactant concentration and headgroup. However, it is crucial to incorporate a sufficient amount of PE in the aggregates to increase the viscosity of the aggregates. By comparing viscous samples at 1 wt. % PE concentration with samples at a PE concentration of 0.3 wt. %, where no significant increase in viscosity is observed, we find that similar aggregates are formed already at this lower PE concentrations. However, the amount of PE incorporated in them is insufficient to interconnect several PE chains and therefore, they do not increase viscosity. So, our detailed investigation combining contrast variation SANS and NSE does not only allow to explain the viscosity behavior but also to deduced detailed information regarding the structures and

  16. Effect of cholesterol and amyloid-β peptide on structure and function of mixed-lipid films and pulmonary surfactant BLES: an atomic force microscopy study.

    Science.gov (United States)

    Hane, Francis; Drolle, Elizabeth; Leonenko, Zoya

    2010-12-01

    Pulmonary surfactant forms a thin molecular film inside mammalian lung alveoli and lowers the surface tension of the air/fluid interface to reduce the work of breathing. Upon compression functional surfactant forms characteristic multilayer structures, which indicate surfactant surface activity. We showed that cholesterol adversely affects both structural and surface-active properties of BLES surfactant and DPPC/DOPG lipid films. Incorporation of small concentrations of fibril-forming peptide amyloid-β 1-40 helps to counteract the distractive effect of cholesterol by improving characteristic multilayer formation that occurs upon compression. In contrast to many negative effects of amyloid-forming peptides reported earlier, we report a positive effect of amyloid-β peptide on surfactant function, which may aid in the designing of novel surfactant formulations. PMID:20493966

  17. Viscosity and yield stress reduction in non-colloidal concentrated suspensions by surface modification with polymers and surfactants and/or nanoparticle addition.

    Science.gov (United States)

    Marquez, Maricel; Robben, Amanda; Grady, Brian P; Robb, Ian

    2006-03-15

    A custom-designed apparatus termed the yield stress adaptor (YSA) has been used to evaluate the effect of polymer-surfactant coatings, and the addition of nanoparticles of different size, shape and surface chemistry, on the rheological properties of large hydrophilic particulates, sand, with the aim of reducing interparticle friction forces. Experimental results show that the flow properties of sand slurries at high volume fractions of sand (>50%) can be significantly enhanced by adding nanoparticles, and by surface modification with polymer/surfactant mixtures. A lesser effect is observed for polymer-only and surfactant-only coated samples. X-ray photoelectron spectroscopy was used to determine the concentration of organic species at the surface. The effect of polymer/surfactant concentration, adsorption time, polymer molecular weight, as well as surfactant charge and chemical structure were also addressed. PMID:16289129

  18. Effects of Perfluorocarbons on surfactant exocytosis and membrane properties in isolated alveolar type II cells

    Directory of Open Access Journals (Sweden)

    Ravasio Andrea

    2010-05-01

    Full Text Available Abstract Background Perfluorocarbons (PFC are used to improve gas exchange in diseased lungs. PFC have been shown to affect various cell types. Thus, effects on alveolar type II (ATII cells and surfactant metabolism can be expected, data, however, are controversial. Objective The study was performed to test two hypotheses: (I the effects of PFC on surfactant exocytosis depend on their respective vapor pressures; (II different pathways of surfactant exocytosis are affected differently by PFC. Methods Isolated ATII cells were exposed to two PFC with different vapor pressures and spontaneous surfactant exocytosis was measured. Furthermore, surfactant exocytosis was stimulated by either ATP, PMA or Ionomycin. The effects of PFC on cell morphology, cellular viability, endocytosis, membrane permeability and fluidity were determined. Results The spontaneous exocytosis was reduced by PFC, however, the ATP and PMA stimulated exocytosis was slightly increased by PFC with high vapor pressure. In contrast, Ionomycin-induced exocytosis was decreased by PFC with low vapor pressure. Cellular uptake of FM 1-43 - a marker of membrane integrity - was increased. However, membrane fluidity, endocytosis and viability were not affected by PFC incubation. Conclusions We conclude that PFC effects can be explained by modest, unspecific interactions with the plasma membrane rather than by specific interactions with intracellular targets.

  19. Electrically charged targets

    Science.gov (United States)

    Goodman, Ronald K.; Hunt, Angus L.

    1984-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  20. Structural organization of surfactant aggregates in vacuo: a molecular dynamics and well-tempered metadynamics study.

    Science.gov (United States)

    Longhi, Giovanna; Fornili, Sandro L; Turco Liveri, Vincenzo

    2015-07-01

    Experimental investigations using mass spectrometry have established that surfactant molecules are able to form aggregates in the gas phase. However, there is no general consensus on the organization of these aggregates and how it depends on the aggregation number and surfactant molecular structure. In the present paper we investigate the structural organization of some surfactants in vacuo by molecular dynamics and well-tempered metadynamics simulations to widely explore the space of their possible conformations in vacuo. To study how the specific molecular features of such compounds affect their organization, we have considered as paradigmatic surfactants, the anionic single-chain sodium dodecyl sulfate (SDS), the anionic double-chain sodium bis(2-ethylhexyl) sulfosuccinate (AOT) and the zwitterionic single-chain dodecyl phosphatidyl choline (DPC) within a wide aggregation number range (from 5 to 100). We observe that for low aggregation numbers the aggregates show in vacuo the typical structure of reverse micelles, while for large aggregation numbers a variety of globular aggregates occur that are characterized by the coexistence of interlaced domains formed by the polar or ionic heads and by the alkyl chains of the surfactants. Well-tempered metadynamics simulations allows us to confirm that the structural organizations obtained after 50 ns of molecular dynamics simulations are practically the equilibrium ones. Similarities and differences of surfactant aggregates in vacuo and in apolar media are also discussed. PMID:26050747

  1. Adsorption Behavior and Mechanisms of Surfactants by Farmland Soils in Northeast China

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei-wei; KANG Chun-li; WANG Ting-ting; LI Yue-ming; ZHANG Ying-xin; WEN Xin; GUO Ping

    2011-01-01

    The adsorption of two nonionic surfactants polyethylene glycol tert-octylphenyl ether Triton X-100 (TX-100), polyoxyethylene lauryl ether(Brij35) and an anionic surfactant sodium dodecyl benzene sulfonate(SDBS) by two soils(S1, S2) of different natures and their respective organic-matter-extracted samples(S3, S4) were investigated. These adsorption isotherms show different adsorption stages of different types of surfactants by soils. The data fitted Langmuir equation very well. The adsorption maximum capacity(Q0) indicates that TX-100 and SDBS were in the sequence of S3>S4>S1>S2 in adsorption, however, Brij35 was in the sequence of S4>S3>S1>S2 in adsorption. And the adsorption amounts of the different surfactants by soils followed the order of TX-1 00>Brij35>SDBS. Meanwhile,the adsorption of the nonionic surfactants TX-100 and Brij35 decreased with the increase of their ethylene oxide(EO) numbers. The results indicate that both soil organic matter and mineral played important roles in the adsorption of suffactants, and the adsorption of the surfactants by soils was affected by the physicochemical properties and structures of the soils and suffactants, especially the mineral type and content of soil.

  2. Templating route for mesostructured calcium phosphates with carboxylic acid- and amine-type surfactants.

    Science.gov (United States)

    Ikawa, Nobuaki; Hori, Hideki; Kimura, Tatsuo; Oumi, Yasunori; Sano, Tsuneji

    2008-11-18

    Mesostructured calcium phosphates constructed by ionic frameworks were synthesized using carboxylic acid- and amine-type surfactants in mixed solvent systems of ethanol and water. A lamellar mesostructured calcium phosphate was prepared using palmitic acid as an anionic surfactant, as in the case using n-alkylamines. A wormhole-like mesostructured calcium phosphate can be obtained using dicarboxyl N-lauroyl- l-glutamic acid, whose headgroup is larger than that of palmitic acid. Similar mesostructured product was obtained using 4-dodecyldiethylenetriamine with a large headgroup containing two primary amine groups. Interactions of carboxyl and primary amino groups in the surfactant molecules with inorganic species are quite important for the formation of mesostructured calcium phosphates. The Ca/P molar ratio of mesostructured calcium phosphates was strongly affected by the molecular structure of surfactants containing carboxyl and primary amino groups. Ca-rich materials can be obtained using carboxylic acid-type surfactants (Ca/P approximately 1.7) rather than amine-type surfactants (Ca/P approximately 1.0). PMID:18947246

  3. The significance of recurrent lung opacities in neonates on surfactant treatment for respiratory distress syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Odita, J.C. [Dept. of Radiology, Louisiana State Univ. Health Sciences Center, Shreveport (United States)

    2001-02-01

    Purpose. To determine the significance of recurrent opacities in chest radiographs of neonates on surfactant therapy for respiratory distress syndrome (RDS) after an initial period of improvement. Materials and methods. Serial pre- and post-surfactant chest radiographs on 94 preterm infants with RDS were analyzed and the pattern of chest radiographic response was classified as (a) clear, (b) recurrent opacities, and (c) no response. Their clinical characteristics were also recorded. Results. In 34 infants the RDS changes cleared within 3 days. 31 infants developed lung opacities within 10 days after an initial period of improvement. Twenty-nine infants failed to respond to the surfactant. The corresponding mean birth weights for the three groups were 1.74, 1.19, and 0.76 kg and the mean gestation ages 32.6, 27.7, and 25.4 weeks. The incidence of bronchopulmonary dysplasia (BPD) was highest among the slumping infants (72. % vs 50 % in no responders, P < 0.001) Conclusions. The pattern of chest radiographic response is primarily affected by gestation age and birth weight. Recurrent lung opacity after an initial positive response to surfactant therapy may be caused by such factors as edema from barotrauma and patent ductus arteriosus. Infants with intraventricular hemorrhage may demonstrate neurogenic edema. Other contributory factors include pneumonia and abnormal consumption of surfactant. Recurrent lung opacities after surfactant may be a predictor of chronic lung disease in the preterm infant. (orig.)

  4. Solubilization of octane in electrostatically-formed surfactant-polymer complexes.

    Science.gov (United States)

    Zhang, Hui; Zeeb, Benjamin; Salminen, Hanna; Feng, Fengqin; Weiss, Jochen

    2014-03-01

    Polymers can be used to modulate the stability and functionality of surfactant micelles. The purpose of this study was to investigate the solubilization of an octane oil-in-water emulsion in mixtures of an anionic polymer (carboxymethyl cellulose) and anionic sodium dodecylsulphate (SDS), nonionic polyoxyethylene sorbitan monooleate (Tween 80) and cationic cetyltrimethylammonium bromide (CTAB) surfactant micelles using dynamic light scattering, microelectrophoresis and turbidity measurements. The results showed that the addition of anionic carboxymethyl cellulose accelerated octane solubilization in cationic CTAB and CTAB-Tween 80 micelles, but did not affect the solubilization behaviors of micelles that were nonionic and anionic. The surfactant-polymer interactions were also studied using isothermal titration calorimetry (ITC) to characterize different physiochemical interaction regions depending on surfactant concentration in surfactant-polymer systems. Upon octane solubilization in CTAB-carboxymethyl cellulose mixtures, shape transitions of polymer-micelle complexes may have taken place that altered light scattering behavior. Based on these results, we suggest a mechanism for oil solubilization in electrostatically-formed surfactant-polymer complexes.

  5. Surfactant induced complex formation and their effects on the interfacial properties of seawater.

    Science.gov (United States)

    Guzmán, Eduardo; Santini, Eva; Benedetti, Alessandro; Ravera, Francesca; Ferrari, Michele; Liggieri, Libero

    2014-11-01

    The effect of a cationic surfactant, hexadecyltrimethylammonium bromide (CTAB), on the interfacial properties of seawater has been studied by dynamic and equilibrium surface tension and by dilational rheology essays. Important modifications of the surface tension and dilational rheology response have been observed already at the very low CTAB concentrations, where the effects due to the high ionic strength are negligible. The comparison with the effects of CTAB in different seawater models, or in natural seawater fractions, points out the establishment of strong interactions between the surfactant molecules and the lipophilic fraction of organic material dispersed/dissolved in seawater, affecting the interfacial activity of the molecules. Considering the biochemical richness of seawater, these results can be explained assuming interaction mechanisms and adsorption schemes similar to those speculated for protein and other macromolecules in the presence of surfactants, which in fact show similar features. Thus already at the low concentrations the surfactant molecules form highly surface-active complexes with part of the organic fraction of seawater. At the larger surfactant concentrations these complexes compete for adsorption with an excess of free CTAB molecules which, according to the thermodynamic conditions, are most favoured to occupy the liquid interface. The results of this study underline the important role of the sea organic content in enhancing the surface-activity of surfactants, which is relevant for a deeper understand of the direct and indirect effects of these types of pollutants on the physico-chemical environment in the sea coastal areas and develop mitigation strategies.

  6. The significance of recurrent lung opacities in neonates on surfactant treatment for respiratory distress syndrome

    International Nuclear Information System (INIS)

    Purpose. To determine the significance of recurrent opacities in chest radiographs of neonates on surfactant therapy for respiratory distress syndrome (RDS) after an initial period of improvement. Materials and methods. Serial pre- and post-surfactant chest radiographs on 94 preterm infants with RDS were analyzed and the pattern of chest radiographic response was classified as (a) clear, (b) recurrent opacities, and (c) no response. Their clinical characteristics were also recorded. Results. In 34 infants the RDS changes cleared within 3 days. 31 infants developed lung opacities within 10 days after an initial period of improvement. Twenty-nine infants failed to respond to the surfactant. The corresponding mean birth weights for the three groups were 1.74, 1.19, and 0.76 kg and the mean gestation ages 32.6, 27.7, and 25.4 weeks. The incidence of bronchopulmonary dysplasia (BPD) was highest among the slumping infants (72. % vs 50 % in no responders, P < 0.001) Conclusions. The pattern of chest radiographic response is primarily affected by gestation age and birth weight. Recurrent lung opacity after an initial positive response to surfactant therapy may be caused by such factors as edema from barotrauma and patent ductus arteriosus. Infants with intraventricular hemorrhage may demonstrate neurogenic edema. Other contributory factors include pneumonia and abnormal consumption of surfactant. Recurrent lung opacities after surfactant may be a predictor of chronic lung disease in the preterm infant. (orig.)

  7. The effect of surfactants on chemical development of ion track nanopores in polymer

    Science.gov (United States)

    Yamauchi, Y. U.; Apel, P. Y. U.

    2010-11-01

    The use of surfactants in etching of the track membranes (TMs) enables one to control the pore shape in TMs. This technique is useful to improve flow rate, and to optimize the retention and permeation properties of TMs. The addition of an anionic surfactant, sodium dodecyl diphenyloxide disulphonate (SDDD), to etching solutions leads to the highly tapered pore shape in TMs of the polyethylene terephthalate (PET). To understand the mechanism of the surfactant effect on track etching in the nanometer range, we study the diffusion and adsorption of SDDD on non-etched non-porous, etched non-porous and etched porous PET films. The comparison of non-etched non-porous and etched non-porous films shows the effect of negatively charged surface on the adsorption of surfactant. The comparison of etched non-porous and etched porous PET films shows the different adsorption on film surface and inner wall of nanopore, thus the influence of curvature of the surface on the adsorption of surfactant molecules.

  8. The effect of surfactants on chemical development of ion track nanopores in polymer

    International Nuclear Information System (INIS)

    The use of surfactants in etching of the track membranes (TMs) enables one to control the pore shape in TMs. This technique is useful to improve flow rate, and to optimize the retention and permeation properties of TMs. The addition of an anionic surfactant, sodium dodecyl diphenyloxide disulphonate (SDDD), to etching solutions leads to the highly tapered pore shape in TMs of the polyethylene terephthalate (PET). To understand the mechanism of the surfactant effect on track etching in the nanometer range, we study the diffusion and adsorption of SDDD on non-etched non-porous, etched non-porous and etched porous PET films. The comparison of non-etched non-porous and etched non-porous films shows the effect of negatively charged surface on the adsorption of surfactant. The comparison of etched non-porous and etched porous PET films shows the different adsorption on film surface and inner wall of nanopore, thus the influence of curvature of the surface on the adsorption of surfactant molecules.

  9. Small angle neutron scattering study of doxorubicin–surfactant complexes encapsulated in block copolymer micelles

    Indian Academy of Sciences (India)

    Jayita Bhattacharjee; Gunjan Verma; V K Aswal; P A Hassan

    2008-11-01

    Self-assembling behaviour of block copolymers and their ability to evade the immune system through polyethylene oxide stealth makes it an attractive candidate for drug encapsulation. Micelles formed by polyethylene oxide–polypropylene oxide–polyethylene oxide triblock copolymers (PEO–PPO–PEO), pluronic P123, have been employed for encapsulating the anti-cancer drug doxorubicin hydrochloride. The binding affinity of doxorubicin within the micelle carrier is enhanced through complex formation of drug and anionic surfactant, aerosol OT (AOT). Electrostatic binding of doxorubicin with negatively charged surfactants leads to the formation of hydrophobic drug–surfactant complexes. Surfactant-induced partitioning of the anti-cancer drug into nonpolar solvents such as chloroform is investigated. SANS measurements were performed on pluronic P123 mi-celles in the presence of drug–surfactant complex. No significant changes in the structure of the micelles are observed upon drug encapsulation. This demonstrates that surfactant–drug complexes can be encapsulated in block copolymer micelles without disrupting the structure of aggregates.

  10. Interactions of univalent counterions with headgroups of monomers and dimers of an anionic surfactant.

    Science.gov (United States)

    Jakubowska, Anna

    2015-03-24

    Specific ion effects in solution are related to the hydrated ion size and ion hydration, electrostatic interactions, dispersion forces, ion effects on water structure, and ion modification of surface tension. In this study, we tried to identify which factor determines the ion specificity observed. The preference and energy of metal cations binding with the headgroups of dodecylsulfate (DS) monomers and dimers were determined by mass spectrometry. In the gas phase, cation binding to DS dimer headgroups depends strongly on the cation radius. On the other hand, the interactions between DS monomer headgroups and chaotropic ions depend on the cation polarizability, and the binding of kosmotropic cations to DS monomer headgroups strongly depends on the Gibbs free energies of ion hydration. DS dimers are related to surfactants having doubly charged headgroups, and DS monomers are related to surfactants with singly charged headgroups. Our spectrometric study of the strength of counterion binding to free monomers of a surfactant provides insight into surfactant-counterion interactions at micellar interfaces in bulk solution.

  11. Surfactant replacement therapy--economic impact.

    Science.gov (United States)

    Pejaver, R K; al Hifzi, I; Aldussari, S

    2001-06-01

    Surfactant replacement is an effective treatment for neonatal respiratory distress syndrome. (RDS). As widespread use of surfactant is becoming a reality, it is important to assess the economic implications of this new form of therapy. A comparison study was carried out at the Neonatal Intensive Care Unit (NICU) of Northwest Armed Forces Hospital, Saudi Arabia. Among 75 infants who received surfactant for RDS and similar number who were managed during time period just before the surfactant was available, but by set criteria would have made them eligible for surfactant. All other management modalities except surfactant were the same for all these babies. Based on the intensity of monitoring and nursing care required by the baby, the level of care was divided as: Level IIIA, IIIB, Level II, Level I. The cost per day per bed for each level was calculated, taking into account the use of hospital immovable equipment, personal salaries of nursing, medical, ancillary staff, overheads and maintenance, depreciation and replacement costs. Medications used, procedures done, TPN, oxygen, were all added to individual patient's total expenditure. 75 infants in the Surfactant group had 62 survivors. They spent a total of 4300 days in hospital. (av 69.35) Out of which 970 d (av 15.65 per patient) were ventilated days. There were 56 survivors in the non-surfactant group of 75. They had spent a total of 5023 days in the hospital (av 89.69/patient) out of which 1490 were ventilated days (av 26.60 d). Including the cost of surfactant (two doses), cost of hospital stay for each infant taking the average figures of stay would be SR 118, 009.75 per surfactant treated baby and SR 164, 070.70 per non-surfactant treated baby. The difference of 46,061 SR is 39.03% more in non-surfactant group. One Saudi rial = 8 Rs (approx at the time study was carried out.) Medical care cost varies from place to place. However, it is definitely cost-effective where surfactant is concerned. Quality adjusted

  12. Exogenous Pulmonary Surfactant as a Vehicle for Antimicrobials: Assessment of Surfactant-Antibacterial Interactions In Vitro

    Directory of Open Access Journals (Sweden)

    Alexei Birkun

    2014-01-01

    Full Text Available Owing to its unique surface-active properties, an exogenous pulmonary surfactant may become a promising drug delivery agent, in particular, acting as a vehicle for antibiotics in topical treatment of pneumonia. The purpose of this study was to assess a mutual influence of natural surfactant preparation and three antibiotics (amikacin, cefepime, and colistimethate sodium in vitro and to identify appropriate combination(s for subsequent in vivo investigations of experimental surfactant/antibiotic mixtures. Influence of antibiotics on surface-active properties of exogenous surfactant was assessed using the modified Pattle method. Effects of exogenous surfactant on antibacterial activity of antimicrobials against Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa were evaluated using conventional microbiologic procedures. Addition of amikacin or cefepime to surfactant had no significant influence on surface-active properties of the latter. Obvious reduction of surface-active properties was confirmed for surfactant/colistimethate composition. When suspended with antibiotics, surfactant either had no impact on their antimicrobial activity (amikacin or exerted mild to moderate influence (reduction of cefepime bactericidal activity and increase of colistimethate bacteriostatic activity against S. aureus and P. aeruginosa. Considering favorable compatibility profile, the surfactant/amikacin combination is advisable for subsequent investigation of joint surfactant/antibacterial therapy in animals with bacterial pneumonia.

  13. Modulating enzyme activity using ionic liquids or surfactants.

    Science.gov (United States)

    Goldfeder, Mor; Fishman, Ayelet

    2014-01-01

    One of the important strategies for modulating enzyme activity is the use of additives to affect their microenvironment and subsequently make them suitable for use in different industrial processes. Ionic liquids (ILs) have been investigated extensively in recent years as such additives. They are a class of solvents with peculiar properties and a "green" reputation in comparison to classical organic solvents. ILs as co-solvents in aqueous systems have an effect on substrate solubility, enzyme structure and on enzyme-water interactions. These effects can lead to higher reaction yields, improved selectivity, and changes in substrate specificity, and thus there is great potential for IL incorporation in biocatalysis. The use of surfactants, which are usually denaturating agents, as additives in enzymatic reactions is less reviewed in recent years. However, interesting modulations in enzyme activity in their presence have been reported. In the case of surfactants there is a more pronounced effect on the enzyme structure, as can be observed in a number of crystal structures obtained in their presence. For each additive and enzymatic process, a specific optimization process is needed and there is no one-fits-all solution. Combining ILs and surfactants in either mixed micelles or water-in-IL microemulsions for use in enzymatic reaction systems is a promising direction which may further expand the range of enzyme applications in industrial processes. While many reviews exist on the use of ILs in biocatalysis, the present review centers on systems in which ILs or surfactants were able to modulate and improve the natural activity of enzymes in aqueous systems. PMID:24281758

  14. Rhamnolipids--next generation surfactants?

    Science.gov (United States)

    Müller, Markus Michael; Kügler, Johannes H; Henkel, Marius; Gerlitzki, Melanie; Hörmann, Barbara; Pöhnlein, Martin; Syldatk, Christoph; Hausmann, Rudolf

    2012-12-31

    The demand for bio-based processes and materials in the petrochemical industry has significantly increased during the last decade because of the expected running out of petroleum. This trend can be ascribed to three main causes: (1) the increased use of renewable resources for chemical synthesis of already established product classes, (2) the replacement of chemical synthesis of already established product classes by new biotechnological processes based on renewable resources, and (3) the biotechnological production of new molecules with new features or better performances than already established comparable chemically synthesized products. All three approaches are currently being pursued for surfactant production. Biosurfactants are a very promising and interesting substance class because they are based on renewable resources, sustainable, and biologically degradable. Alkyl polyglycosides are chemically synthesized biosurfactants established on the surfactant market. The first microbiological biosurfactants on the market were sophorolipids. Of all currently known biosurfactants, rhamnolipids have the highest potential for becoming the next generation of biosurfactants introduced on the market. Although the metabolic pathways and genetic regulation of biosynthesis are known qualitatively, the quantitative understanding relevant for bioreactor cultivation is still missing. Additionally, high product titers have been exclusively described with vegetable oil as sole carbon source in combination with Pseudomonas aeruginosa strains. Competitive productivity is still out of reach for heterologous hosts or non-pathogenic natural producer strains. Thus, on the one hand there is a need to gain a deeper understanding of the regulation of rhamnolipid production on process and cellular level during bioreactor cultivations. On the other hand, there is a need for metabolizable renewable substrates, which do not compete with food and feed. A sustainable bioeconomy approach should

  15. Tunable, antibacterial activity of silicone polyether surfactants.

    Science.gov (United States)

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity. PMID:26057244

  16. Aqueous Foam Stabilized by Tricationic Amphiphilic Surfactants

    Science.gov (United States)

    Heerschap, Seth; Marafino, John; McKenna, Kristin; Caran, Kevin; Feitosa, Klebert; Kevin Caran's Research Group Collaboration

    2015-03-01

    The unique surface properties of amphiphilic molecules have made them widely used in applications where foaming, emulsifying or coating processes are needed. The development of novel architectures with multi-cephalic/tailed molecules have enhanced their anti-bacterial activity in connection with tail length and the nature of the head group. Here we report on the foamability of two triple head double, tail cationic surfactants (M-1,14,14, M-P, 14,14) and a triple head single tail cationic surfactant (M-1,1,14) and compare them with commercially available single headed, single tailed anionic and cationic surfactants (SDS,CTAB and DTAB). The results show that bubble rupture rate decrease with the length of the carbon chain irrespective of head structure. The growth rate of bubbles with short tailed surfactants (SDS) and longer, single tailed tricationic surfactants (M-1,1,14) was shown to be twice as high as those with longer tailed surfactants (CTAB, M-P,14,14, M-1,14,14). This fact was related to the size variation of bubbles, where the foams made with short tail surfactants exhibited higher polydispersivity than those with short tails. This suggests that foams with tricationic amphiphilics are closed linked to their tail length and generally insensitive to their head structure.

  17. Surfactants tailored by the class Actinobacteria

    Directory of Open Access Journals (Sweden)

    Johannes H Kügler

    2015-03-01

    Full Text Available Gloablly, the drive towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application.

  18. Signal amplification in electrochemical detection of buckwheat allergenic protein using field effect transistor biosensor by introduction of anionic surfactant

    Directory of Open Access Journals (Sweden)

    Sho Hideshima

    2016-03-01

    Full Text Available Food allergens, especially buckwheat proteins, sometimes induce anaphylactic shock in patients after ingestion. Development of a simple and rapid screening method based on a field effect transistor (FET biosensor for food allergens in food facilities or products is in demand. In this study, we achieved the FET detection of a buckwheat allergenic protein (BWp16, which is not charged enough to be electrically detected by FET biosensors, by introducing additional negative charges from anionic surfactants to the target proteins. A change in the FET characteristics reflecting surface potential caused by the adsorption of target charged proteins was observed when the target sample was coupled with the anionic surfactant (sodium dodecyl sulfate; SDS, while no significant response was detected without any surfactant treatment. It was suggested that the surfactant conjugated with the protein could be useful for the charge amplification of the target proteins. The surface plasmon resonance analysis revealed that the SDS-coupled proteins were successfully captured by the receptors immobilized on the sensing surface. Additionally, we obtained the FET responses at various concentrations of BWp16 ranging from 1 ng/mL to 10 μg/mL. These results suggest that a signal amplification method for FET biosensing is useful for allergen detection in the food industry.

  19. Gemini Surfactants Based on Bis-Imidazolium Alkoxy Derivatives as Effective Agents for Delivery of Nucleic Acids: A Structural and Spectroscopic Study.

    Directory of Open Access Journals (Sweden)

    Zuzanna Pietralik

    Full Text Available The success rate of gene therapy depends on the efficient transfection of genetic material into cells. The golden mean between harmlessness and high effectiveness can be provided by synthetic lipid-like molecules that are similar to the components of biological membranes. Cationic gemini surfactants are one such moiety and because of their favourable physicochemical properties (double positive electric charge, reduced toxicity, low values of critical micelle concentration, they show great potential as delivery system components for genetic material in gene therapy. The aim of this study was to investigate the process of the complexation of cationic gemini surfactants with nucleic acids: double-stranded DNA of different sizes (21 bp, ~185 bp, ~20 kbp and siRNA (21 bp. The tested series of dicationic surfactants consists of bis-imidazolium quaternary salts with varying lengths of hydrophobic side chains (m = 5, 6, 7, 8, 9, 11, 12, 14, 16. On the basis of the data obtained by circular dichroism spectroscopy and electrophoresis, we concluded that the studied gemini surfactants with long side chains effectively bind nucleic acids at low concentrations, which leads to the formation of stable lipoplexes. Images obtained by atomic force microscopy also confirmed the formation of vesicular structures, i.e., complexes between DNA and surfactants. The cytotoxicity of selected surfactants was also tested on HeLa cells. The surfactant toxicity significantly depends on surfactant geometry (the length of hydrophobic chain.

  20. Fluorescent Ensemble Based on Bispyrene Fluorophore and Surfactant Assemblies: Sensing and Discriminating Proteins in Aqueous Solution.

    Science.gov (United States)

    Fan, Junmei; Ding, Liping; Bo, Yu; Fang, Yu

    2015-10-14

    A particular bispyrene fluorophore (1) with two pyrene moieties covalently linked via a hydrophilic spacer was synthesized. Fluorescence measurements reveal that the fluorescence emission of 1 could be well modulated by a cationic surfactant, dodecyltrimethylammonium bromide (DTAB). Protein sensing studies illustrate that the selected ensemble based on 1/DTAB assemblies exhibits ratiometric responses to nonmetalloproteins and turn-off responses to metalloproteins, which can be used to differentiate the two types of proteins. Moreover, negatively charged nonmetalloproteins can be discriminated from the positively charged ones according to the difference in ratiometric responses. Fluorescence sensing studies with control bispyrenes indicate that the polarity of the spacer connecting two pyrene moieties plays an important role in locating bispyrene fluorophore in DTAB assemblies, which further influences its sensing behaviors to noncovalent interacting proteins. This study sheds light on the influence of the probe structure on the sensing performance of a fluorescent ensemble based on probe and surfactant assemblies.

  1. Liquid-liquid extraction for surfactant-contaminant separation and surfactant reuse

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, M.A. [Surbec Environmental, Norman, OK (United States); Sabatini, D.A.; Harwell, J.H. [Univ. of Oklahoma, Norman, OK (United States)

    1997-07-01

    Liquid-liquid extraction was investigated for use with surfactant enhanced subsurface remediation. A surfactant liquid-liquid extraction model (SLLEM) was developed for batch equilibrium conditions based on contaminant partitioning between micellar, water, and solvent phases. The accuracy of this fundamental model was corroborated with experimental results (using naphthalene and phenanthrene as contaminants and squalane as the extracting solvent). The SLLEM model was then expanded to nonequilibrium conditions. The effectiveness of this nonequilibrium model was corroborated with experimental results from continuous flow hollow fiber membrane systems. The validated models were used to conduct a sensitivity analysis evaluating the effects of surfactants on the removal of the contaminants in liquid-liquid extraction systems. In addition, liquid-liquid extraction is compared to air stripping for surfactant-contaminant separation. Finally, conclusions are drawn as to the impact of surfactants on liquid-liquid extraction processes, and the significance of these impacts on the optimization of surfactant-enhanced subsurface remediation.

  2. Synthesis and Characterization of Zirconia Nanocrystallites by Cationic Surfactant and Anionic Surfactant

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Study on nanomaterials has attracted great interests in recent years. In this article,zirconia nanocrystallites of different structures have been successfully synthesized via hydrothermal methods with cationic surfactant (CTAB) and anionic surfactant (SDS), respectively. Differential Scanning Calorimeter (DSC-TG), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM), Ultraviolet-Visible (UV-vis) and N2 adsorption-desorption analyses are used for their structure characteristics. The results show that the cationic surfactant has a distinctive direction effect on the formation of zirconia nanocrystallites, while the anionic surfactant has a self-assembly synergistic effect on them. The sample synthesized with the cationic surfactant presents good dispersion with the main phase of tetragonal zirconia, and the average nanocryst al size is around 15nm after calcination at 500 ℃. While the sample synthesized with the anionic surfactant exhibits a worm-like mesoporous structure with pure tetragonal phase after calcination at 500 ℃ and with good thermal stability.

  3. Surfactant-Templated Mesoporous Metal Oxide Nanowires

    Directory of Open Access Journals (Sweden)

    Hongmei Luo

    2010-01-01

    Full Text Available We demonstrate two approaches to prepare mesoporous metal oxide nanowires by surfactant assembly and nanoconfinement via sol-gel or electrochemical deposition. For example, mesoporous Ta2O5 and zeolite nanowires are prepared by block copolymer Pluronic 123-templated sol-gel method, and mesoporous ZnO nanowires are prepared by electrodeposition in presence of anionic surfactant sodium dodecyl sulfate (SDS surfactant, in porous membranes. The morphologies of porous nanowires are studied by scanning electron microscopy (SEM and transmission electron microscopy (TEM analyses.

  4. Retinopathy of prematurity in surfactant treated infants.

    OpenAIRE

    Rankin, S. J.; Tubman, T. R.; Halliday, H. L.; Johnston, S S

    1992-01-01

    Seventy six babies of less than 1500 g birth weight who had surfactant replacement therapy for severe respiratory distress syndrome were studied to assess the presence and stage of subsequent retinopathy of prematurity (ROP). A control group of 90 babies, matched for birth weight and gestational age, who did not have surfactant therapy were also studied. Threshold ROP or greater was found in 1.7% of the surfactant group and 7.8% of the controls. For the babies of less than 1000 g birth weight...

  5. Fine tuning of magnetite nanoparticle size distribution using dissymmetric potential pulses in the presence of biocompatible surfactants and the electrochemical characterization of the nanoparticles.

    Science.gov (United States)

    Rodríguez-López, A; Cruz-Rivera, J J; Elías-Alfaro, C G; Betancourt, I; Ruiz-Silva, H; Antaño-López, R

    2015-01-01

    The effects of varying the surfactant concentration and the anodic pulse potential on the properties and electrochemical behaviors of magnetite nanoparticles were investigated. The nanoparticles were synthesized with an electrochemical method based on applying dissymmetric potential pulses, which offers the advantage that can be used to tune the particle size distribution very precisely in the range of 10 to 50 nm. Under the conditions studied, the surfactant concentration directly affects the size distribution, with higher concentrations producing narrower distributions. Linear voltammetry was used to characterize the electrochemical behavior of the synthesized nanoparticles in both the anodic and cathodic regions, which are attributed to the oxidation of Fe(2+) and the reduction of Fe(3+); these species are part of the spinel structure of magnetite. Electrochemical impedance spectroscopy data indicated that the reduction and oxidation reactions of the nanoparticles are not controlled by the mass transport step, but by the charge transfer step. The sample with the highest saturation magnetization was that synthesized in the presence of polyethylene glycol.

  6. Investigation of loss of surfactants during enhanced oil recovery applications - adsorption of surfactants onto clay materials

    OpenAIRE

    Behrens, Eivind Joo

    2013-01-01

    Chemical flooding, or surfactant flooding, is a well known EOR technique which has been used worldwide for decades. For this method to be economically feasible, it is crucial to minimize the loss of surfactant to the reservoir. Currently the industry is considering combining chemical flooding with the newer technique of low salinity waterflooding which also has proved to be an efficient method for increasing oil recovery from reservoirs. In this study the adsorption of the anionic surfactant ...

  7. Late administration of surfactant replacement therapy increases surfactant protein-B content: a randomized pilot study

    OpenAIRE

    Keller, Roberta L; MERRILL, JEFFREY D.; Black, Dennis M.; Steinhorn, Robin H.; Eichenwald, Eric C.; Durand, David J.; RYAN, RITA M.; Truog, William E; Courtney, Sherry E.; Ballard, Philip L.; Ballard, Roberta A.

    2012-01-01

    Background: Surfactant dysfunction may contribute to the development of bronchopulmonary dysplasia (BPD) in persistently ventilated preterm infants. We conducted a multicenter randomized, blinded, pilot study to assess the safety and efficacy of late administration of doses of a surfactant protein-B (SP-B)-containing surfactant (calfactant) in combination with prolonged inhaled nitric oxide (iNO) in infants ≤1,000 g birth weight (BW). Methods: We randomized 85 preterm infants ventilated at 7–...

  8. Artificial surfactant and natural surfactant. Comparative study of the effects on premature rabbit lungs.

    OpenAIRE

    Morley, C.; Robertson, B.; Lachmann, B; Nilsson, R.; Bangham, A; Grossmann, G.; Miller, N.

    1980-01-01

    Premature newborn rabbits, delivered on day 27 of gestation, were treated with tracheal deposition of dry artificial surfactant containing dipalmitoyl phosphatidylcholine and unsaturated phosphatidylglycerol (7:3), or crude natural surfactant prepared by centrifugation of lung wash from adult rabbits. Before receiving surfactant, the animals were allowed to breathe for 7--27 min; they were then subjected to artificial ventilation under standardised conditions. In comparison with littermate co...

  9. Pulmonary Surfactant Surface Tension Influences Alveolar Capillary Shape and Oxygenation

    OpenAIRE

    Ikegami, Machiko; Weaver, Timothy E.; Grant, Shawn N.; Whitsett, Jeffrey A.

    2009-01-01

    Alveolar capillaries are located in close proximity to the alveolar epithelium and beneath the surfactant film. We hypothesized that the shape of alveolar capillaries and accompanying oxygenation are influenced by surfactant surface tension in the alveolus. To prove our hypothesis, surfactant surface tension was regulated by conditional expression of surfactant protein (SP)-B in Sftpb−/− mice, thereby inhibiting surface tension–lowering properties of surfactant in vivo within 24 hours after d...

  10. Surfactant modified clays’ consistency limits and contact angles

    OpenAIRE

    Akbulut, S.; Nese, Z; Arasan, S

    2012-01-01

    This study was aimed at preparing a surfactant modified clay (SMC) and researching the effect of surfactants on clays' contact angles and consistency limits; clay was thus modified by surfactants formodifying their engineering properties. Seven surfactants (trimethylglycine, hydroxyethylcellulose  octyl phenol ethoxylate, linear alkylbenzene sulfonic acid, sodium lauryl ether sulfate, cetyl trimethylammonium chloride and quaternised ethoxylated fatty amine) were used as surfactants in this st...

  11. Stable isotope tracers to estimate lung surfactant metabolism in vivo

    OpenAIRE

    Lamonica, Giulia

    2013-01-01

    Aim of this thesis was to apply the stable isotopes technique to study pulmonary surfactant kinetics. Lung surfactant is essential to live, because it prevents the alveoli to collapse during normal breathing. Lung surfactant is composed of lipids and specific proteins, and nowadays it is well known that alterations on the composition and amount of surfactant are involved in acute and chronic lung diseases. This work presents two studies about lung surfactant kinetics. The first one i...

  12. Photo-transfer of electrons in direct micelles, polymerization of surfactants, characterization of mixed vesicles

    International Nuclear Information System (INIS)

    This research thesis reports the study of the relationship between structure and reactivity of different aggregates soluble in water. The main addressed issues are the separation of photo-induced charges comparatively in aqueous medium, micellar medium and in presence of micelles with polymerized counter-ions; the characterization of the aggregate after polymerization; the distribution of mixed surfactants building up a vesicle and its ability to promote the formation of small semiconductors

  13. Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D.

    Science.gov (United States)

    Fukuzawa, Taku; Ishida, Junji; Kato, Akira; Ichinose, Taro; Ariestanti, Donna Maretta; Takahashi, Tomoya; Ito, Kunitoshi; Abe, Jumpei; Suzuki, Tomohiro; Wakana, Shigeharu; Fukamizu, Akiyoshi; Nakamura, Nobuhiro; Hirose, Shigehisa

    2013-01-01

    Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta(+/+) and Ig-Hepta(-/-) mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i) balanced synthesis of surfactant lipids and proteins and (ii) surfactant secretion, and (iii) a stimulating effect on recycling (uptake) in response to elevated levels of Sp-D in alveolar space. PMID:23922714

  14. Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D.

    Directory of Open Access Journals (Sweden)

    Taku Fukuzawa

    Full Text Available Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta(+/+ and Ig-Hepta(-/- mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i balanced synthesis of surfactant lipids and proteins and (ii surfactant secretion, and (iii a stimulating effect on recycling (uptake in response to elevated levels of Sp-D in alveolar space.

  15. Effects of Interactions Among Surfactants,Water and Oil on Equilibrium Configuration of Surfactant-Water-Oil Systems

    Institute of Scientific and Technical Information of China (English)

    YUAN Yin-quan; SUN Zhi-bo; XIE Yun; ZOU Xian-wu

    2004-01-01

    The distribution and configuration of surfactants at interface in surfactant-water-oil systems have been investigated using discontinuous molecular dynamic simulations. There exists a certain equilibrium concentration of surfactants at interface for the systems with certain interactions among surfactant, water and oil. The interface length and equilibrium morphology of the systems are dependent on the equilibrium concentration of surfactants at interface and the total amount of surfactants. The interaction strengths among surfactant, water and oil determine the equilibrium concentration of surfactants at interface. Three typical configurations of surfactants at interface have been observed: ① surfactant molecules are perpendicular to the interface and arranged closely; ② perpendicular to the interface and arranged at interval of two particles; ③ lie down in the interface partly.

  16. Structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry and molecular dynamics simulations.

    Science.gov (United States)

    Borysik, Antoni J

    2015-09-01

    The structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry (IMS) and vacuum molecular dynamics (MD) simulations is reported. Direct evidence is provided for the ability of the surfactant dodecyl-β-D-maltoside (DDM) to prevent charge-induced unfolding of the membrane protein (PagP) in the gas-phase. Restraints obtained by IMS are used to map the surfactant positions onto the protein surface. Surfactants occupying more exposed positions at the apexes of the β-barrel structure are most in-line with the experimental observations. MD simulations provide additional evidence for this assembly organization through surfactant inversion and migration on the protein structure in the absence of solvent. Surfactant migration entails a net shift from apolar membrane spanning regions to more polar regions of the protein structure with the DDM molecule remaining attached to the protein via headgroup interactions. These data provide evidence for the role of protein-DDM headgroup interactions in stabilizing membrane protein structure from gas-phase unfolding.

  17. Analysis of pulmonary surfactant in rat lungs after inhalation of nanomaterials: Fullerenes, nickel oxide and multi-walled carbon nanotubes.

    Science.gov (United States)

    Kadoya, Chikara; Lee, Byeong-Woo; Ogami, Akira; Oyabu, Takako; Nishi, Ken-ichiro; Yamamoto, Makoto; Todoroki, Motoi; Morimoto, Yasuo; Tanaka, Isamu; Myojo, Toshihiko

    2016-01-01

    The health risks of inhalation exposure to engineered nanomaterials in the workplace are a major concern in recent years, and hazard assessments of these materials are being conducted. The pulmonary surfactant of lung alveoli is the first biological entity to have contact with airborne nanomaterials in inhaled air. In this study, we retrospectively evaluated the pulmonary surfactant components of rat lungs after a 4-week inhalation exposure to three different nanomaterials: fullerenes, nickel oxide (NiO) nanoparticles and multi-walled carbon nanotubes (MWCNT), with similar levels of average aerosol concentration (0.13-0.37 mg/m(3)). Bronchoalveolar lavage fluid (BALF) of the rat lungs stored after previous inhalation studies was analyzed, focusing on total protein and the surfactant components, such as phospholipids and surfactant-specific SP-D (surfactant protein D) and the BALF surface tension, which is affected by SP-B and SP-C. Compared with a control group, significant changes in the BALF surface tension and the concentrations of phospholipids, total protein and SP-D were observed in rats exposed to NiO nanoparticles, but not in those exposed to fullerenes. Surface tension and the levels of surfactant phospholipids and proteins were also significantly different in rats exposed to MWCNTs. The concentrations of phospholipids, total protein and SP-D and BALF surface tension were correlated significantly with the polymorphonuclear neutrophil counts in the BALF. These results suggest that pulmonary surfactant components can be used as measures of lung inflammation. PMID:25950198

  18. Functionalized lipids and surfactants for specific applications.

    Science.gov (United States)

    Kepczynski, Mariusz; Róg, Tomasz

    2016-10-01

    Synthetic lipids and surfactants that do not exist in biological systems have been used for the last few decades in both basic and applied science. The most notable applications for synthetic lipids and surfactants are drug delivery, gene transfection, as reporting molecules, and as support for structural lipid biology. In this review, we describe the potential of the synergistic combination of computational and experimental methodologies to study the behavior of synthetic lipids and surfactants embedded in lipid membranes and liposomes. We focused on select cases in which molecular dynamics simulations were used to complement experimental studies aiming to understand the structure and properties of new compounds at the atomistic level. We also describe cases in which molecular dynamics simulations were used to design new synthetic lipids and surfactants, as well as emerging fields for the application of these compounds. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26946243

  19. Aggregation of sulfosuccinate surfactants in water

    Energy Technology Data Exchange (ETDEWEB)

    Magid, L.J.; Daus, K.A.; Butler, P.D.; Quincy, R.B.

    1983-12-22

    The aggregation of sodium di-n-alkyl sulfosuccinates in water (H/sub 2/O and D/sub 2/O at 45/sup 0/C) has been investigated. A self-consistent picture of the dependence of sodium ion binding on surfactant concentration is obtained from emf measurements, conductimetry, and small-angle neutron scattering (SANS) measurements. The concentration dependence of the micellar agregation number for the sulfosuccinates and related double-tailed surfactants depends markedly on surfactant solubility. A sphere-to-disk transition in micellar shape, which might have been expected as a precursor to formation of a lamellar mesophase, was not observed as the surfactant concentration was increased. 8 figures, 2 tables.

  20. Autonomic control of the pulmonary surfactant system and lung compliance in the lizard.

    Science.gov (United States)

    Wood, P G; Andrew, L K; Daniels, C B; Orgeig, S; Roberts, C T

    1997-01-01

    An increase in body temperature in the bearded dragon, Pogona vitticeps, is accompanied by an increase in the amount of pulmonary surfactant, a mixture of proteins and lipids, with the latter consisting predominantly of phospholipid and cholesterol. This increase may result from a temperature-induced change in autonomic input to the lungs, as perfusing the isolated lungs of P. vitticeps with either acetylcholine or adrenaline increases surfactant phospholipid release. However, whether acetylcholine acts via intrapulmonary sympathetic ganglia or directly on alveolar Type II cells is unknown. Moreover, the relative importance of circulating catecholamines and pulmonary sympathetic nerves on the control of the surfactant system is also obscure. Here, we describe the mechanism of the modulation of the surfactant system and the effect of this modulation on lung compliance. The role of acetylcholine was determined by perfusing isolated lungs with acetylcholine, acetylcholine and the ganglionic antagonist hexamethonium, or acetylcholine, hexamethonium, and the muscarinic antagonist atropine. Perfusing with acetylcholine significantly increased phospholipid release but did not affect cholesterol release. While histological examination of the lung revealed the presence of a large autonomic ganglion at the apex, blocking sympathetic ganglia with hexamethonium did not prevent the acetylcholine-mediated increase in phospholipid. However, the increase was inhibited by blocking muscarinic receptors with atropine, which indicates that acetylcholine acts on muscarinic receptors to stimulate phospholipid release. By increasing pulmonary smooth muscle tone, acetylcholine decreased opening pressure and increased static inflation pressures. Plasma levels of noradrenaline and adrenaline increased with increasing temperature and were accompanied by a greater surfactant content in the lungs. While surfactant content was also higher in animals that exercised, plasma levels of adrenaline

  1. Polyelectrolyte/surfactant films spread from neutral aggregates.

    Science.gov (United States)

    Campbell, Richard A; Tummino, Andrea; Noskov, Boris A; Varga, Imre

    2016-06-28

    We describe a new methodology to prepare loaded polyelectrolyte/surfactant films at the air/water interface by exploiting Marangoni spreading resulting from the dynamic dissociation of hydrophobic neutral aggregates dispensed from an aqueous dispersion. The system studied is mixtures of poly(sodium styrene sulfonate) with dodecyl trimethylammonium bromide. Our approach results in the interfacial confinement of more than one third of the macromolecules in the system even though they are not even surface-active without the surfactant. The interfacial stoichiometry of the films was resolved during measurements of surface pressure isotherms in situ for the first time using a new implementation of neutron reflectometry. The interfacial coverage is determined by the minimum surface area reached when the films are compressed beyond a single complete surface layer. The films exhibit linear ripples on a length scale of hundreds of micrometers during the squeezing out of material, after which they behave as perfectly insoluble membranes with consistent stoichiometric charge binding. We discuss our findings in terms of scope for the preparation of loaded membranes for encapsulation applications and in deposition-based technologies. PMID:27221521

  2. Amphiphilic biopolymers (amphibiopols) as new surfactants for membrane protein solubilization

    Science.gov (United States)

    Duval-Terrié, Caroline; Cosette, Pascal; Molle, Gérard; Muller, Guy; Dé, Emmanuelle

    2003-01-01

    The aim of this study was to develop new surfactants for membrane protein solubilization, from a natural, biodegradable polymer: the polysaccharide pullulan. A set of amphiphilic pullulans (HMCMPs), differing in hydrophobic modification ratio, charge ratio, and the nature of the hydrophobic chains introduced, were synthesized and tested in solubilization experiments with outer membranes of Pseudomonas fluorescens. The membrane proteins were precipitated, and then resolubilized with various HMCMPs. The decyl alkyl chain (C10) was the hydrophobic graft that gave the highest level of solubilization. Decyl alkyl chain-bearing HMCMPs were also able to extract integral membrane proteins from their lipid environment. The best results were obtained with an amphiphilic pullulan bearing 18% decyl groups (18C10). Circular dichroism spectroscopy and membrane reconstitution experiments were used to test the structural and functional integrity of 18C10-solubilized proteins (OmpF from Escherichia coli and bacteriorhodopsin from Halobacterium halobium). Whatever their structure type (α or β), 18C10 did not alter either the structure or the function of the proteins analyzed. Thus, HMCMPs appear to constitute a promising new class of polymeric surfactants for membrane protein studies. PMID:12649425

  3. Hydrophobic surfactant proteins and their analogues.

    Science.gov (United States)

    Walther, Frans J; Waring, Alan J; Sherman, Mark A; Zasadzinski, Joseph A; Gordon, Larry M

    2007-01-01

    Lung surfactant is a complex mixture of phospholipids and four surfactant-associated proteins (SP-A, SP-B, SP-C and SP-D). Its major function in the lung alveolus is to reduce surface tension at the air-water interface in the terminal airways by the formation of a surface-active film enriched in surfactant lipids, hence preventing cellular collapse during respiration. Surfactant therapy using bovine or porcine lung surfactant extracts, which contain only polar lipids and native SP-B and SP-C, has dramatically improved the therapeutic outcomes of preterm infants with respiratory distress syndrome (RDS). One important goal of surfactant researchers is to replace animal-derived therapies with fully synthetic preparations based on SP-B and SP-C, produced by recombinant technology or peptide synthesis, and reconstituted with selected synthetic lipids. Here, we review recent research developments with peptide analogues of SP-B and SP-C, designed using either the known primary sequence and three-dimensional (3D) structure of the native proteins or, alternatively, the known 3D structures of closely homologous proteins. Such SP-B and SP-C mimics offer the possibility of studying the mechanisms of action of the respective native proteins, and may allow the design of optimized surfactant formulations for specific pulmonary diseases (e.g., acute lung injury (ALI) or acute respiratory distress syndrome (ARDS)). These synthetic surfactant preparations may also be a cost-saving therapeutic approach, with better quality control than may be obtained with animal-based treatments. PMID:17575474

  4. Surfactants in the management of rhinopathologies

    OpenAIRE

    Rosen, Philip L.; Palmer, James N.; O'Malley, Bert W.; Cohen, Noam A.

    2013-01-01

    Background: Surfactants are a class of amphiphilic surface active compounds that show several unique physical properties at liquid–liquid or liquid–solid surface interfaces including the ability to increase the solubility of substances, lower the surface tension of a liquid, and decrease friction between two mediums. Because of these unique physical properties several in vitro, ex vivo, and human trials have examined the role of surfactants as stand-alone or adjunct therapy in recalcitrant ch...

  5. Poly(ethylene oxide) surfactant polymers

    OpenAIRE

    VACHEETHASANEE, KATANCHALEE; WANG, SHUWU; QIU, YONGXING; Marchant, Roger E.

    2004-01-01

    We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly (ethyleneoxide) (PEO) were simultaneously att...

  6. Surfactant apoprotein in nonmalignant pulmonary disorders.

    OpenAIRE

    Singh, G.; Katyal, S. L.

    1980-01-01

    Formalin-fixed, paraffin-embedded lungs exhibiting a variety of nonmalignant disorders were studied by immunoperoxidase staining using antibodies specific for surfactant apoprotein, IgG, IgM, IgA, albumin, fibrinogen, and lysozyme. Normal Type II pneumocytes showed staining for surfactant apoprotein in the perinuclear region only. The extent and intensity of staining for apoprotein was markedly increased in reactive Type II pneumocytes. This increase appeared to be a nonspecific reaction to l...

  7. Serum-surfactant SP-D correlates inversely to lung function in cystic fibrosis

    DEFF Research Database (Denmark)

    Olesen, Hanne Vebert; Holmskov, Uffe; Schiøtz, Peter Oluf;

    2010-01-01

    BACKGROUND: Cystic fibrosis (CF) affects the lungs causing infections and inflammation. Surfactant protein D (SP-D) is an innate defense lectin primarily secreted in the lungs. We investigated the influence of the SP-D Met11Thr polymorphism on CF lung function; and serum SP-D as a marker for CF...

  8. Transport of fluorescently labeled hydroxyapatite nanoparticles in saturated granular media at environmentally relevant concentrations of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dengjun; Su, Chuming; Liu, Chongxuan; Zhou, Dongmei

    2014-05-01

    Hydroxyapatite nanoparticle (nHAP) is being used to remediate soils and aquifers contaminated with metals and radionuclides; however, the mobility of nHAP is still poorly understood in subsurface granular environments. In this study, transport and retention kinetics of alizarin red S (ARS)-labeled nHAP were investigated in water-saturated quartz sand at low concentrations of surfactants: sodium dodecyl benzene sulfonate (SDBS, an anionic surfactant, 0–50 mg L–1) and cetyltrimethylammonium bromide (CTAB, a cationic surfactant, 0–5 mg L–1). Both surfactants were found to have a marked effect on the electrokinetic properties of ARS-nHAP and, consequently, on their transport and retention behaviors. Transport of nanoparticles (NPs) increased significantly with increasing SDBS concentration, largely because of enhanced colloidal stability and reduced aggregate size arising from enhanced electrostatic, osmotic, and elastic-steric repulsions between ARS-nHAP and sand grains. Conversely, transport decreased significantly in the presence of increasing CTAB concentrations due to reduced surface charge and consequential enhanced aggregation of the NPs. Osmotic and elastic-steric repulsions played only a minor role in enhancing the colloidal stability of ARS-nHAP in the presence of CTAB. Retention profiles of ARS-nHAP exhibited hyperexponential-shapes (decreasing rates of retention with increasing distance) for all conditions tested, and became more pronounced as CTAB concentration increased. The phenomenon was attributed to the aggregation and ripening of ARS-nHAP in the presence of surfactants, particularly CTAB. Overall, the present study suggests that surfactants at environmentally relevant concentrations may be an important consideration in employing nHAP for engineered in-situ remediation of certain metals and radionuclides in contaminated soils and aquifers.

  9. Performance of some surfactants as wetting agents

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, M.N.; El-Shanny, O.A.A. [Egyptian Petroleum Research Institute (EPRI), Cairo (Egypt). Evaluation and Analysis Dept.

    2005-12-01

    The wetting power of anionic surfactant: sodium dodecyl sulfate (SDS), and nonionic surfactants: polyoxyethelene(14)monolaurate [La(EO){sub 14}] and polyoxyethelene(14)monoeleate [OI(EO){sub 14}] has been studied to determine their performance as wetting agents. The study reveals that the nonionic compound with a long hydrophobic chain exhibits higher wettability than the shorter one when used at very low cocentrations (below CMC) and the reverse is shown with high concentrations (above CMC). the wetting power of the investigated surfactants increases as the CMC values increases. In case of the nonionic compounds and at surfactant concentrations equal their CMC values, OI(EO){sub 14} shows a higher wetting power than La(EO){sub 14} while is possesses a lower HLB value. The anionic surfactant shows an optimum wetting in comparison with the tested nonionic one. The wettability of all the investigated samples increases as the surface tension of their solutions increases to the allowed limit that can be reached in the presence of surfactant. (orig.)

  10. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-10-01

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation high adsorption and viscous/heterogeneity fingering. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer has been selected to study micellar-polymer chemical flooding. The physical properties and phase behavior of this system have been determined. A surfactant-polymer slug has been designed to achieve high efficiency recovery by improving phase behavior and mobility control. Recovery experiments have been performed on linear cores and a quarter 5-spot. The same recovery experiments have been simulated using a commercially available simulator (UTCHEM). Good agreement between experimental data and simulation results has been achieved.

  11. Charge independence and charge symmetry

    CERN Document Server

    Miller, G A; Miller, Gerald A; van Oers, Willem T H

    1994-01-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed.

  12. BMP signaling is essential in neonatal surfactant production during respiratory adaptation.

    Science.gov (United States)

    Luo, Yongfeng; Chen, Hui; Ren, Siying; Li, Nan; Mishina, Yuji; Shi, Wei

    2016-07-01

    Deficiency in pulmonary surfactant results in neonatal respiratory distress, and the known genetic mutations in key components of surfactant only account for a small number of cases. Therefore, determining the regulatory mechanisms of surfactant production and secretion, particularly during the transition from prenatal to neonatal stages, is essential for better understanding of the pathogenesis of human neonatal respiratory distress. We have observed significant increase of bone morphogenetic protein (BMP) signaling in neonatal mouse lungs immediately after birth. Using genetically manipulated mice, we then studied the relationship between BMP signaling and surfactant production in neonates. Blockade of endogenous BMP signaling by deleting Bmpr1a (Alk3) or Smad1 in embryonic day 18.5 in perinatal lung epithelial cells resulted in severe neonatal respiratory distress and death, accompanied by atelectasis in histopathology and significant reductions of surfactant protein B and C, as well as Abca3, whereas prenatal lung development was not significantly affected. We then identified a new BMP-Smad1 downstream target, Nfatc3, which is known as an important transcription activator for surfactant proteins and Abca3. Furthermore, activation of BMP signaling in cultured lung epithelial cells was able to promote endogenous Nfatc3 expression and also stimulate the activity of an Nfatc3 promoter that contains a Smad1-binding site. Therefore, our study suggests that the BMP-Alk3-Smad1-Nfatc3 regulatory loop plays an important role in enhancing surfactant production in neonates, possibly helping neonatal respiratory adaptation from prenatal amniotic fluid environment to neonatal air breathing. PMID:27190064

  13. Thermodynamics of non-ionic surfactant Triton X-100-cationic surfactants mixtures at the cloud point

    International Nuclear Information System (INIS)

    Highlights: → Non-ionic surfactants are used as emulsifier and solubilizate in such as textile, detergent and cosmetic. → Non-ionic surfactants occur phase separation at temperature as named the cloud point in solution. → Dimeric surfactants have attracted increasing attention due to their superior surface activity. → The positive values of ΔGcp0 indicate that the process proceeds nonspontaneous. - Abstract: This study investigates the effects of gemini and conventional cationic surfactants on the cloud point (CP) of the non-ionic surfactant Triton X-100 (TX-100) in aqueous solutions. Instead of visual observation, a spectrophotometer was used for measurement of the cloud point temperatures. The thermodynamic parameters of these mixtures were calculated at different cationic surfactant concentrations. The gemini surfactants of the alkanediyl-α-ω-bis (alkyldimethylammonium) dibromide type, on the one hand, with different alkyl groups containing m carbon atoms and an ethanediyl spacer, referred to as 'm-2-m' (m = 10, 12, and 16) and, on the other hand, with -C16 alkyl groups and different spacers containing s carbon atoms, referred to as '16-s-16' (s = 6 and 10) were synthesized, purified and characterized. Additions of the cationic surfactants to the TX-100 solution increased the cloud point temperature of the TX-100 solution. It was accepted that the solubility of non-ionic surfactant containing polyoxyethylene (POE) hydrophilic chain was a maximum at the cloud point so that the thermodynamic parameters were calculated at this temperature. The results showed that the standard Gibbs free energy (ΔGcp0), the enthalpy (ΔHcp0) and the entropy (ΔScp0) of the clouding phenomenon were found positive in all cases. The standard free energy (ΔGcp0) increased with increasing hydrophobic alkyl chain for both gemini and conventional cationic surfactants; however, it decreased with increasing surfactant concentration.

  14. Interaction Study and Reactivity of Zr(IV) -Substituted Wells-Dawson Polyoxometalate towards Hydrolysis of Peptide Bonds in Surfactant Solutions.

    Science.gov (United States)

    Quanten, Thomas; Shestakova, Pavletta; Van Den Bulck, Dries; Kirschhock, Christine; Parac-Vogt, Tatjana N

    2016-03-01

    The interaction between the 1:2 Zr(IV) :Wells-Dawson complex, K15 H[Zr(α2 -P2 W17 O61 )2] (1), and a range of surfactants was studied in detail with the aim of developing metal-substituted POMs as potential artificial proteases for membrane proteins. The surfactants include the positively charged cetyl(trimethyl)ammonium bromide (CTAB), the negatively charged sodium dodecyl sulfate (SDS), the neutral Triton X-100 (TX-100), and zwitterionic 3-[dodecyl(dimethyl)ammonio]-1-propanesulfonate (Zw3-13) and 3-[dimethyl(3-{[(3α,5β,7α,12α)-3,7,12-trihydroxy-24-oxocholan-24-yl]amino}propyl)ammonio]-1-propanesulfonate (CHAPS). A combination of multinuclear (1)H, (13)C, and (31) P NMR spectroscopy, (1)H diffusion-ordered NMR spectroscopy ((1)H DOSY), and nuclear Overhauser effect spectroscopy (NOESY) was used to examine the interaction between 1 and each surfactant on the molecular level. Cationic surfactant CTAB caused precipitation of 1 due to strong electrostatic interactions, while the anionic SDS and neutral TX-100 surfactants did not exhibit any interaction at neutral pD. (1)H DOSY NMR spectroscopy indicated an interaction between 1 and zwitterionic surfactants Zw3-12 and CHAPS, which occurs via the positively charged ammonium group in the surfactant molecule. In the presence of anionic, neutral, and zwitterionic surfactants, 1 preserves its catalytic activity towards the hydrolysis of the peptide bond in the dipeptide glycyl-l-histidine (GH). The fastest hydrolysis was observed at pD 7.0 and could be rationalized by taking into account pD-dependent speciation of 1 and coordination properties of GH.

  15. Interactions of organic contaminants with mineral-adsorbed surfactants

    Science.gov (United States)

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  16. Aggregation behavior of a gemini surfactant with a tripeptide spacer.

    Science.gov (United States)

    Wang, Meina; Han, Yuchun; Qiao, Fulin; Wang, Yilin

    2015-02-28

    A peptide gemini surfactant, 12-G(NH2)LG(NH2)-12, has been constructed with two dodecyl chains separately attached to the two terminals of a glutamic acid-lysine-glutamic acid peptide and the aggregation behavior of the surfactant was studied in aqueous solution. The 12-G(NH2)LG(NH2)-12 molecules form fiber-like precipitates around pH 7.0, and the precipitation range is widened on increasing the concentration. At pHs 3.0 and 11.0, 12-G(NH2)LG(NH2)-12 forms soluble aggregates because each molecule carries two positively charged amino groups at the two ends of the peptide spacer at pH 3.0, while each molecule carries one negatively charged carboxyl group in the middle of the peptide spacer at pH 11.0. 12-G(NH2)LG(NH2)-12 displays a similar concentration-dependent process at these two pHs: forming small micelles above the critical micelle concentration and transferring to fibers at pH 3.0 or twisted ribbons at pH 11.0 above the second critical concentration. The fibers formed at pH 3.0 tend to aggregate into bundles with twisted structure. Both the twisted fibers at pH 3.0 and the twisted ribbons at pH 11.0 contain β-sheet structure formed by the peptide spacer. PMID:25588349

  17. Open lung ventilation preserves the response to delayed surfactant treatment in surfactant-deficient newborn piglets

    NARCIS (Netherlands)

    M.B. van Veenendaal; A.H. van Kaam; J.J. Haitsma; R. Lutter; B. Lachmann

    2006-01-01

    Objective: Delayed surfactant treatment (>2 hrs after birth) is less effective than early treatment in conventionally ventilated preterm infants with respiratory distress syndrome. The objective of this study was to evaluate if this time-dependent efficacy of surfactant treatment is also present dur

  18. Surfactant nebulization versus instillation during high frequency ventilation in surfactant-deficient rabbits

    NARCIS (Netherlands)

    Dijk, PH; Heikamp, A; Oetomo, SB

    1998-01-01

    Surfactant nebulization improves lung function at low alveolar doses of surfactant. However, efficiency of nebulization is low, and lung deposition seems to depend on lung aeration. High frequency ventilation (HFV) has been shown to improve lung aeration. We hypothesize that the combination of HFV a

  19. Anionic surfactant - Biogenic amine interactions: The role of surfactant headgroup geometry.

    Science.gov (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun

    2016-03-15

    Oligoamines and biogenic amines (naturally occurring oligoamines) are small flexible polycations. They interact strongly with anionic surfactants such as sodium dodecyl sulfate, SDS. This results in enhanced adsorption and the formation of layered structures and the formation of layered structures at the air-water interface which depends on surfactant concentration and solution pH. The effect of changing the surfactant headgroup geometry on that interaction and subsequent adsorption is reported here. Neutron reflectivity, NR, results for the surface adsorption of the anionic surfactant sodium diethylene glycol monododecyl ether sulfate, SLES, with the biogenic amine, spermine, are presented, and contrasted with previous data for SDS/spermine mixtures. The enhancement in the adsorption of the surfactant at the air-water interface where monolayer adsorption occurs is similar for both surfactants. However the regions of surfactant concentration and solution pH where surface multilayer adsorption occurs is less extensive for the SLES/spermine mixtures, and occurs only at low pH. The results show how changing the headgroup geometry by the introduction of the ethylene oxide linker group between the alkyl chain and sulfate headgroup modifies the polyamine - surfactant interaction. The increased steric constraint from the polyethylene oxide group disrupts the conditions for surface multilayer formation at the higher pH values. This has important consequences for applications where the modification or manipulation of the surface properties are required. PMID:26724704

  20. Charged Leptons

    CERN Document Server

    Albrecht, J; Babu, K; Bernstein, R H; Blum, T; Brown, D N; Casey, B C K; Cheng, C -h; Cirigliano, V; Cohen, A; Deshpande, A; Dukes, E C; Echenard, B; Gaponenko, A; Glenzinski, D; Gonzalez-Alonso, M; Grancagnolo, F; Grossman, Y; Harnik, R; Hitlin, D G; Kiburg, B; Knoepfe, K; Kumar, K; Lim, G; Lu, Z -T; McKeen, D; Miller, J P; Ramsey-Musolf, M; Ray, R; Roberts, B L; Rominsky, M; Semertzidis, Y; Stoeckinger, D; Talman, R; Van De Water, R; Winter, P

    2013-01-01

    This is the report of the Intensity Frontier Charged Lepton Working Group of the 2013 Community Summer Study "Snowmass on the Mississippi", summarizing the current status and future experimental opportunities in muon and tau lepton studies and their sensitivity to new physics. These include searches for charged lepton flavor violation, measurements of magnetic and electric dipole moments, and precision measurements of the decay spectrum and parity-violating asymmetries.

  1. Determination of anionic surfactants during wastewater recycling process by ion pair chromatography with suppressed conductivity detection

    Science.gov (United States)

    Levine, L. H.; Judkins, J. E.; Garland, J. L.; Sager, J. C. (Principal Investigator)

    2000-01-01

    A direct approach utilizing ion pairing reversed-phase chromatography coupled with suppressed conductivity detection was developed to monitor biodegradation of anionic surfactants during wastewater recycling through hydroponic plant growth systems and fixed-film bioreactors. Samples of hydroponic nutrient solution and bioreactor effluent with high concentrations (up to 120 mS electrical conductance) of inorganic ions can be analyzed without pretreatment or interference. The presence of non-ionic surfactants did not significantly affect the analysis. Dynamic linear ranges for tested surfactants [Igepon TC-42, ammonium lauryl sulfate, sodium laureth sulfate and sodium alkyl (C10-C16) ether sulfate] were 2 to approximately 500, 1 to approximately 500, 2.5 to approximately 550 and 3.0 to approximately 630 microg/ml, respectively.

  2. Characterization of surfactant/hydrotalcite-like clay/glassy carbon modified electrodes: Oxidation of phenol

    International Nuclear Information System (INIS)

    The characteristics of hydrotalcite (HT)-like clay films containing ionic and nonionic surfactants and their ability to oxidize phenol have been examined. The HT clay (Co/Al-NO3) was synthesized by coprecipitation techniques and then modified with surfactants such as sodium dodecylbenzenesulfonate (SDBS), octylphenoxypolyethoxyethanol (TX100) or cetylpyridinium bromide (CPB). X-ray diffraction analysis revealed that the interlayer basal spacing varied depending on the type of surfactant retained by the HT. The presence of SDBS and CPB expanded the HT interlayer, which in the presence of TX100 did not show an appreciable change. Phenol oxidation is favored at surfactant-HT-GC modified electrodes, after a preconcentration time, compared to phenol oxidation at HT-GC or GC electrodes. Surfactant-HT-GC modified electrodes display good stability in continuous electrochemical phenol oxidation. At pH values between 6 and 10.8, both SDBS-HT-GC and TX100-HT-GC modified electrodes seem to be promising electrodes for the detection of phenol in water; while the CPB-HT-GC modified electrode should be affected by the inorganic anions

  3. Derecruitment Test and Surfactant Therapy in Patients with Acute Lung Injury

    Directory of Open Access Journals (Sweden)

    Alexey A. Smetkin

    2012-01-01

    Full Text Available Introduction. A recruitment maneuver (RM may improve gas exchange in acute lung injury (ALI. The aim of our study was to assess the predictive value of a derecruitment test in relation to RM and to evaluate the efficacy of RM combined with surfactant instillation in patients with ALI. Materials and Methods. Thirteen adult mechanically ventilated patients with ALI were enrolled into a prospective pilot study. The patients received protective ventilation and underwent RM followed by a derecruitment test. After a repeat RM, bovine surfactant (surfactant group, n=6 or vehicle only (conventional therapy group, n=7 was instilled endobronchially. We registered respiratory and hemodynamic parameters, including extravascular lung water index (EVLWI. Results. The derecruitment test decreased the oxygenation in 62% of the patients. We found no significant correlation between the responses to the RM and to the derecruitment tests. The baseline EVLWI correlated with changes in SpO2 following the derecruitment test. The surfactant did not affect gas exchange and lung mechanics but increased EVLWI at 24 and 32 hrs. Conclusions. Our study demonstrated no predictive value of the derecruitment test regarding the effects of RM. Surfactant instillation was not superior to conventional therapy and might even promote pulmonary edema in ALI.

  4. Effect of surfactants and temperature on germination and vegetative growth of Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    Lizzy A. Mwamburi

    2015-03-01

    Full Text Available Three non-ionic surfactants: Tween20, Tween80 and Breakthru® were screened for their effects on spore germination and mycelial growth rates and for their influence on three isolates of Beauveria bassianaspore germination at various temperatures. Tween20 and Tween80 were compatible with all the B. bassiana isolates in the germination studies, but inhibited germination at higher surfactant concentrations, irrespective of the conidial concentrations. Breakthru® had an inhibitory effect on germination even at the lowest concentration of 0.1% on all the B. bassiana isolates. The effects of the surfactants on spore germination did not correspond with their effects on colony growth. Conidial viability within the same formulation declined significantly with increases in temperature, irrespective of the surfactant. The optimal temperature for conidial germination of B. bassiana isolates was approximately 25 °C with an upper limit at 30 °C. Isolate 7320 was identified as the least affected by the different surfactants. This isolate was able to germinate rapidly in a broad temperature range of 25–30 °C after 24 h, this characteristic being an essential factor in controlling house fly populations in poultry houses.

  5. A study of the microstructural and diffusion properties of poly(vinyl alcohol) cryogels containing surfactant supramolecular aggregates.

    Science.gov (United States)

    Tedeschi, Annamaria; Auriemma, Finizia; Ricciardi, Rosa; Mangiapia, Gaetano; Trifuoggi, Marco; Franco, Lorenzo; Rosa, Claudio De; Heenan, Richard K; Paduano, Luigi; D'Errico, Gerardino

    2006-11-23

    Surfactant-containing poly(vinyl alcohol) (PVA) cryogels have been prepared by drying and reswelling hydrogel patches, previously obtained by the freeze/thaw procedure, in decyltrimethylammonium bromide (C10TAB) aqueous solutions. The microstructural and diffusive properties of the resulting material have been characterized by a combined experimental strategy. Gravimetric measurements show that the cryogel maximum swelling is not affected by the surfactant. The surfactant concentration within the cryogel, measured by ion chromatography, is the same as that in the rehydrating surfactant solution. Electron paramagnetic resonance (EPR) spin-probe and small-angle neutron scattering (SANS) measurements show that surfactant self-aggregation in the gel is similar to that in water, occurring at the same critical concentration and resulting in the formation of micellar aggregates whose structure is not affected by the cryogel polymeric scaffold. However, both the micelle intradiffusion coefficients, measured by PGSE-NMR, and the spin-probe correlation times, measured by EPR, indicate that dynamic processes in the hydrogel are much slower than in bulk water. A quantitative analysis of these results suggests that the cryogel polymer-poor domains, in which surfactant molecules are solubilized, have an average dimension of approximately 0.1 microm. Interestingly the experimental data also show that the polymer-poor phase contains more polymer than expected, suggesting that the spinodal decomposition, which occurs during the freezing step of cryogel preparation, is not complete or prevented by ice formation. PMID:17107141

  6. The Effect of the Anionic Surfactant Aerosol-80 on the Transport of Cryptosporidium parvum Oocysts through Soil

    Science.gov (United States)

    Jacobson, A. R.; Powelson, D.; Darnault, C.

    2012-12-01

    Transport of the pathogenic protozoan Cryptosporidium parvum through soils threatens ground and surface waters. C. parvum may be introduced into soils in the manure of infected calves. The presence of other chemicals in the soil applied as or with amendments, may affect the transport of the C. parvum oocysts. Surfactants, which are used in many herbicide formulations, decrease water tension and may disrupt the air-water interface where oocysts are thought to accumulate. We investigate the effect of the anionic surfactant Aerosol-80, at two concentrations, on the transport of C. parvum oocysts by unsaturated flow through "undisturbed" soil columns from Illinois and Utah. Following each experiment oocysts in the leachate and distributed throughout the soil profile are quantified by real time PCR. We find that the presence of the surfactant accelerates the transport of the oocysts through preferential flow paths. On the other hand, when connected macropores are not present in the soils, the presence of the surfactant retards the transport of the oocysts through the soil matrix by straining oocyst-surfactant-Ca flocs. Surfactant efficacy is affected by soil type.

  7. Surfactant Enhanced Electroremediation of Phenanthrene

    Institute of Scientific and Technical Information of China (English)

    佘鹏; 杨建刚; 等

    2003-01-01

    Removal of hydrophobic organic contaminants(HOCs) form soil of low permeability by electroremediation was investigated by using phenanthrene and kaolinite as a model system.Tween 80 was added into the purging solution in order to enhance the solubility of phenanthrene.The effects of pH on the adsorption of phenanthrene and Tween 80 on kaolinite and the magnitude of ζ-potential of kaolinite were examined,respectively.The effects of electric field strength indicated by electric current on the electroremediation behavior,including the pH of purging solution,the conductivity,phenanthrene concentration and flow rate of effluent,were experimentally investigated,repectively,In case of an electric field of 25mA applied for 72 hours,over 90% of phenanthrene was removed from 424g(dry mass)of kaolinite at an energy consumption of 0.148kW.h.The experimental results described in present study show that the addition of surfactant into purging solution greatly enhances the removel of HOCs by electroremediation.

  8. Effects of Ionic Surfactants on Bacterial Luciferase and α-Amylase%离子型表面活性剂对荧光素酶和α-脂肪酶的影响

    Institute of Scientific and Technical Information of China (English)

    闫桑田; 李安; 郑浩; 罗明芳; 邢新会

    2009-01-01

    In order to study the effects of ionic surfactants on bacterial luciferase, the cationic surfactant dodecyl-trimethylammonium biomide (DTAB) and anionic surfactant sodium dodecylsulfate (SDS) were chosen. For comparison with bacterial luciferase, α-amylase was used since these two enzymes have similar electrostatic potential and charged active sites. After the enzymes were treated with the surfactants, the catalytic properties of bacterial luciferase and a-amylase were assayed, and fluorescence spectroscopy and circular dichroism (CD) were used to analyze the alteration of the protein structure. The results showed that when the DTAB concentration was low, the cationic surfactant DTAB enhanced the enzymatic activities of bacterial luciferase and a-amylase. On the other hand, the anionic surfactant SDS did not alter the enzymatic activity. The main interaction of cationic surfactant DTAB and the negatively charged surface of the proteins was the ionic interaction, which could alter the environment for the enzyme to work when the DTAB/enzyme molar ratio was low. However, at high cationic surfactant concentration, the ionic interaction and hydrophobic interaction might destroy the secondary and tertiary structures of the proteins, leading to the loss of enzymatic activities.

  9. Microemulsion-based lycopene extraction: Effect of surfactants, co-surfactants and pretreatments.

    Science.gov (United States)

    Amiri-Rigi, Atefeh; Abbasi, Soleiman

    2016-04-15

    Lycopene is a potent antioxidant that has received extensive attention recently. Due to the challenges encountered with current methods of lycopene extraction using hazardous solvents, industry calls for a greener, safer and more efficient process. The main purpose of present study was application of microemulsion technique to extract lycopene from tomato pomace. In this respect, the effect of eight different surfactants, four different co-surfactants, and ultrasound and enzyme pretreatments on lycopene extraction efficiency was examined. Experimental results revealed that application of combined ultrasound and enzyme pretreatments, saponin as a natural surfactant, and glycerol as a co-surfactant, in the bicontinuous region of microemulsion was the optimal experimental conditions resulting in a microemulsion containing 409.68±0.68 μg/glycopene. The high lycopene concentration achieved, indicates that microemulsion technique, using a low-cost natural surfactant could be promising for a simple and safe separation of lycopene from tomato pomace and possibly from tomato industrial wastes.

  10. Oscillations of Bubble Shape Cause Anomalous Surfactant Diffusion: Experiments, Theory, and Simulations.

    Science.gov (United States)

    Raudino, Antonio; Raciti, Domenica; Grassi, Antonio; Pannuzzo, Martina; Corti, Mario

    2016-08-30

    We investigate, both theoretically and experimentally, the role played by the oscillations of the cell membrane on the capture rate of substances freely diffusing around the cell. To obtain quantitative results, we propose and build up a reproducible and tunable biomimetic experimental model system to simulate the phenomenon of an oscillation-enhanced (or depressed) capture rate (chemoreception) of a diffusant. The main advantage compared to real biological systems is that the different oscillation parameters (type of deformation, frequencies, and amplitudes) can be finely tuned. The model system that we use is an anchored gas drop submitted to a diffusive flow of charged surfactants. When the surfactant meets the surface of the bubble, it is reversibly adsorbed. Bubble oscillations of the order of a few nanometers are selectively excited, and surfactant transport is accurately measured. The surfactant concentration past the oscillating bubbles was detected by conductivity measurements. The results highlight the role of surface oscillations on the diffusant capture rate. Particularly unexpected is the onset of intense overshoots during the adsorption process. The phenomenon is particularly relevant when the bubbles are exposed to intense forced oscillations near resonance. PMID:27509197

  11. MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSOPTION FOR IMPROVED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    P. Somasundaran

    2004-04-30

    The aim of the project is to delineate the role of mineralogy of reservoir rocks in determining interactions between reservoir minerals and externally added reagents (surfactants/polymers) and its effect on the solid-liquid and liquid-liquid interfacial properties such as adsorption, wettability and interfacial tension in systems relevant to reservoir conditions. Previous studies have suggested that significant surfactant loss by precipitation or adsorption on reservoir minerals can cause chemical schemes to be less than satisfactory for enhanced oil recovery. Both macroscopic adsorption, wettability and microscopic orientation and conformation studies for various surfactant/polymer mixtures/reservoir rocks systems will be conducted to explore the cause of chemical loss by means of precipitation or adsorption, and the effect of rock mineralogy on the chemical loss. During this reporting period, the minerals used have been characterized, for particle size distribution and surface area. Also a series of novel cationic Gemini surfactants: butane-1,4-bis(quaternary ammonium chloride), has been synthesized. The solution and adsorption behavior of individual surfactants, the highly surface-active Gemini surfactant C{sub 12}-C{sub 4}-C{sub 12}, the sugar-based nonionic surfactant n-dodecyl-{beta}-D-maltoside (DM) and their mixture has been studied. DM alone shows low adsorption on silica because of the lack of any electrostatic attraction between the surfactant and the silica particle. On the other hand, the cationic Gemini adsorbs markedly on the oppositely charged silica surface. Marked synergism has been observed in the case of DM/C{sub 12}-C{sub 4}-C{sub 12} mixture adsorption on silica. Adsorption of DM from the mixtures increases dramatically in both the rising part and the plateau regions. Adsorption of the cationic Gemini C{sub 12}-C{sub 4}-C{sub 12} from the mixture on the other hand increases in the rising part, but decreases in the plateau regions due to the

  12. Alterations of alveolar type II cells and intraalveolar surfactant after bronchoalveolar lavage and perfluorocarbon ventilation. An electron microscopical and stereological study in the rat lung

    Directory of Open Access Journals (Sweden)

    Burkhardt Wolfram

    2007-06-01

    Full Text Available Abstract Background Repeated bronchoalveolar lavage (BAL has been used in animals to induce surfactant depletion and to study therapeutical interventions of subsequent respiratory insufficiency. Intratracheal administration of surface active agents such as perfluorocarbons (PFC can prevent the alveolar collapse in surfactant depleted lungs. However, it is not known how BAL or subsequent PFC administration affect the intracellular and intraalveolar surfactant pool. Methods Male wistar rats were surfactant depleted by BAL and treated for 1 hour by conventional mechanical ventilation (Lavaged-Gas, n = 5 or partial liquid ventilation with PF 5080 (Lavaged-PF5080, n = 5. For control, 10 healthy animals with gas (Healthy-Gas, n = 5 or PF5080 filled lungs (Healthy-PF5080, n = 5 were studied. A design-based stereological approach was used for quantification of lung parenchyma and the intracellular and intraalveolar surfactant pool at the light and electron microscopic level. Results Compared to Healthy-lungs, Lavaged-animals had more type II cells with lamellar bodies in the process of secretion and freshly secreted lamellar body-like surfactant forms in the alveoli. The fraction of alveolar epithelial surface area covered with surfactant and total intraalveolar surfactant content were significantly smaller in Lavaged-animals. Compared with Gas-filled lungs, both PF5080-groups had a significantly higher total lung volume, but no other differences. Conclusion After BAL-induced alveolar surfactant depletion the amount of intracellularly stored surfactant is about half as high as in healthy animals. In lavaged animals short time liquid ventilation with PF5080 did not alter intra- or extracellular surfactant content or subtype composition.

  13. Exogenous surfactant application in a rat lung ischemia reperfusion injury model: effects on edema formation and alveolar type II cells

    Directory of Open Access Journals (Sweden)

    Richter Joachim

    2008-01-01

    peribronchovascular edema. Morphological changes of alveolar type II cells due to I/R are not affected by surfactant treatment. The beneficial effects of exogenous surfactant therapy are related to the intraalveolar activity of the exogenous surfactant.

  14. Charge transport in polymeric transistors

    Directory of Open Access Journals (Sweden)

    Alberto Salleo

    2007-03-01

    Full Text Available Polymeric semiconductors have attracted much attention because of their possible use as active materials in printed electronics. Thin-film transistors (TFTs are a convenient tool for studying charge-transport physics in conjugated polymers. Two families of materials are reviewed here: fluorene copolymers and polythiophenes. Because charge transport is highly anisotropic in molecular conductors, the electrical properties of conjugated polymers are strongly dependent on microstructure. Molecular weight, polydispersity, and regioregularity all affect morphology and charge-transport in these materials. Charge transport models based on microstructure are instrumental in identifying the electrical bottlenecks in these materials.

  15. Butterflies with rotation and charge

    CERN Document Server

    Reynolds, Alan P

    2016-01-01

    We explore the butterfly effect for black holes with rotation or charge. We perturb rotating BTZ and charged black holes in 2+1 dimensions by adding a small perturbation on one asymptotic region, described by a shock wave in the spacetime, and explore the effect of this shock wave on the length of geodesics through the wormhole and hence on correlation functions. We find the effect of the perturbation grows exponentially at a rate controlled by the temperature; dependence on the angular momentum or charge does not appear explicitly. We comment on issues affecting the extension to higher-dimensional charged black holes.

  16. Recovering hydrocarbons with surfactants from lignin

    Energy Technology Data Exchange (ETDEWEB)

    Naae, D.G.; Whittington, L.E.; Ledoux, W.A.; Debons, F.E.

    1988-11-29

    This patent describes a method of recovering hydrocarbons from an underground hydrocarbon formation penetrated by at least one injection well and at least one production well, which comprises: injecting into the formation through an injection well a surfactant slug comprising about 0.1% to about 10% by weight of surfactants produced from lignin, the surfactants produced by placing lignin in contact with water, converting the lignin into low molecular weight lignin phenols by reducing the lignin in the presence of a reducing agent of carbon monoxide or hydrogen creating a reduction reaction mixture comprising oil soluble lignin phenols, the reduction occurring at a temperature greater than about 200/sup 0/C and a pressure greater than about 100 psi, recovering the oil soluble lignin phenols from the reduction mixture, and converting the lignin phenols into lignin surfactants by a reaction selected from the group consisting of alkoxylation, sulfonation, sulfation, aklylation, sulfomethylation, and alkoxysulfation; injecting into the formation through the injection well a drive fluid to push the surfactant slug towards a production well; and recovering hydrocarbons at the production well.

  17. History of surfactant up to 1980.

    Science.gov (United States)

    Obladen, Michael

    2005-01-01

    Remarkable insight into disturbed lung mechanics of preterm infants was gained in the 18th and 19th century by the founders of obstetrics and neonatology who not only observed respiratory failure but also designed devices to treat it. Surfactant research followed a splendid and largely logical growth curve. Pathological changes in the immature lung were characterized in Germany by Virchow in 1854 and by Hochheim in 1903. The Swiss physiologist von Neergard fully understood surfactant function in 1929, but his paper was ignored for 25 years. The physical properties of surfactant were recognized in the early 1950s from research on warfare chemicals by Pattle in Britain and by Radford and Clements in the United States. The causal relationship of respiratory distress syndrome (RDS) and surfactant deficiency was established in the USA by Avery and Mead in 1959. The Australian obstetrician Liggins induced lung maturity with glucocorticoids in 1972, but his discovery was not fully believed for another 20 years. A century of basic research was rewarded when Fujiwara introduced surfactant substitution in Japan in 1980 for treatment and prevention of RDS.

  18. Rheology of Natural Lung Surfactant Films

    Science.gov (United States)

    Alonso, Coralie; Waring, Alan; Zsadzinski, Joseph

    2004-03-01

    The lung surfactant (LS) is a lipoprotein mixture lining the inside of the pulmonary alveoli which has the ability to lower the surface tension of the air-liquid hypophase interface to value near zero thus reducing the work of breathing and which also prevents the alveolar collapse. A lack or malfunction of lung surfactant, as it is often the case for premature infants, leads to respiratory distress syndrome. RDS can be treated by supplying replacement LS to the infants and several medications derived from natural sources, are now widely used. The lung surfactant is adsorbed at the air-liquid interface and is subjected to incessant compression expansion cycles therefore Langmuir monolayers provide a suitable model to investigate the physical properties of lung surfactant films. Using a magnetic needle rheometer, we measured the shear viscosity of natural lung surfactant spread at the air-liquid interface upon compression and expansion cycles for three different formulations. The shear viscosity of Survanta changes by orders of magnitude along one cycle while for Curosurf samples it changes only slightly and for Infasurf films it remains constant. These different behaviors can be explained by differences in composition between the three formulations leading to different organizations on the molecular scale.

  19. Foaming behaviour of polymer-surfactant solutions

    International Nuclear Information System (INIS)

    We study the effect of a non-ionic amphiphilic polymer (PEG-100 stearate also called Myrj 59) on the foaming behaviour of aqueous solutions of an anionic surfactant (sodium dodecyl sulfate or SDS). The SDS concentration was kept fixed while the Myrj 59 concentration was varied. Measurements of foamability, surface tension and electrical conductivity were carried out. The results show two opposite effects depending on the polymer concentration: foamability is higher when the Myrj 59 concentration is low; however, it decreases considerably when the polymer concentration is increased. This behaviour is due to the polymer adsorption at the air/liquid interface at lower polymer concentrations, and to the formation of a polymer-surfactant complex in the bulk at higher concentrations. The results are confirmed by surface tension and electrical conductivity measurements, which are interpreted in terms of the microstructure of the polymer-surfactant solutions. The observed behaviour is due to the amphiphilic nature of the studied polymer. The increased hydrophobicity of Myrj 59, compared to that of water-soluble polymers like PEG or PEO, increases its 'reactivity' towards SDS, i.e. the strength of its interaction with this anionic surfactant. Our results show that hydrophobically modified polymers have potential applications as additives in order to control the foaming properties of surfactant solutions

  20. Syntheses of surfactants from oleochemical epoxides

    Directory of Open Access Journals (Sweden)

    Warwel Siegfried

    2001-01-01

    Full Text Available Sugar-based surfactants were obtained in good yields (up to 100% under mild conditions (70°C, methanol or mixtures of methanol and water by ring-opening of terminal epoxides with aminopolyols, derived from glucose. Reaction of N-methyl glucamine with epoxides from even-numbered C4-C18 alpha-olefins or from terminal unsaturated fatty acid methyl esters leads to linear products, while corresponding reactions with N-dodecyl glucamine or glucamine yield surfactants with different Y-structures. Products obtained by conversion of omega-epoxy fatty acid methyl esters were saponificated with NaOH or hydrolyzed enzymatically to sodium salts or free acids respectively, which are amphoteric surfactants. Studies of the surfactants at different pH-values demonstrate different surface active properties in aqueous solutions. Critical micelle concentrations (c.m.c. in a range between 2 and 500mg/l and surface tensions of 25-40mN/m were measured for several of the synthesized sugar-based surfactants. The ring-opening products are rather poor foamers, whereas some of the corresponding hydrobromides show good foaming properties.

  1. Analysis of supercooling activities of surfactants.

    Science.gov (United States)

    Kuwabara, Chikako; Terauchi, Ryuji; Tochigi, Hiroshi; Takaoka, Hisao; Arakawa, Keita; Fujikawa, Seizo

    2014-08-01

    Supercooling-promoting activities (SCAs) of 25 kinds of surfactants including non-ionic, anionic, cationic and amphoteric types were examined in solutions (buffered Milli-Q water, BMQW) containing the ice nucleation bacterium (INB) Erwinia ananas, silver iodide (AgI) or BMQW alone, which unintentionally contained unidentified ice nucleators, by a droplet freezing assay. Most of the surfactants exhibited SCA in solutions containing AgI but not in solutions containing the INB E. ananas or BMQW alone. SCAs of many surfactants in solutions containing AgI were very high compared with those of previously reported supercooling-promoting substances. Cationic surfactants, hexadecyltrimethylammonium bromide (C16TAB) and hexadecyltrimethylammonium chloride (C16TAC), at concentrations of 0.01% (w/v) exhibited SCA of 11.8 °C, which is the highest SCA so far reported. These surfactants also showed high SCAs at very low concentrations in solutions containing AgI. C16TAB exhibited SCA of 5.7 °C at a concentration of 0.0005% (w/v). PMID:24792543

  2. Neutron reflectometry of anionic surfactants on sapphire: A strong maximum in the adsorption near the critical micelle concentration.

    Science.gov (United States)

    Li, Ning Ning; Thomas, Robert K; Rennie, Adrian R

    2016-06-01

    The adsorption of the anionic surfactants, lithium, sodium and cesium dodecylsulfates, and sodium decylsulfonate, on the positively charged C-plane (0001) of sapphire (alumina) has been measured using neutron reflection. For each of the four surfactants there is a strong maximum in the adsorption at about the critical micelle concentration. The maximum becomes more marked from lithium to cesium. The measurements were reproduced over a range of different physical conditions and could not be accounted for in terms of impurities. The maximum is explained quantitatively by using the combination of a mass action model to calculate the mean activity of the surfactant, and a cooperative model of the adsorption (Frumkin), in which saturation of the layer is not attained until well above the critical micelle concentration. PMID:26990955

  3. Effect of Counterion and Configurational Entropy on the Surface Tension of Aqueous Solutions of Ionic Surfactant and Electrolyte Mixtures

    Directory of Open Access Journals (Sweden)

    Youichi Takata

    2010-04-01

    Full Text Available In order to clarify the adsorption behavior of cationic surfactants on the air/aqueous electrolyte solution surface, we derived the theoretical equation for the surface tension. The equation includes the electrical work required for charging the air/water surface and the work attributable to the configurational entropy in the adsorbed film. By fitting the equation to the experimental data, we determined the binding constant between adsorbed surfactant ion and counterion, and found that the bromide ions, rather than the chloride ions, are preferentially adsorbed by the air/water surface. Furthermore, it was suggested that the contribution of configurational entropy to the surface tension is predominant in the presence of electrolytes because of the increase in the surface density of surfactant molecules associated with decreasing the repulsive interaction between their hydrophilic groups.

  4. The role of surfactants in Köhler theory reconsidered

    Directory of Open Access Journals (Sweden)

    R. Sorjamaa

    2004-05-01

    Full Text Available Atmospheric aerosol particles typically consist of inorganic salts and organic material. The inorganic compounds as well as their hygroscopic properties are well defined, but the effect of organic compounds on cloud droplet activation is still poorly characterized. The focus of the present study is in the organic compounds that are surface active i.e. they concentrate on droplet surface and decrease droplet surface tension. Gibbsian surface thermodynamics were used to find out how partitioning in binary and ternary aqueous solutions affects the droplet surface tension and the droplet bulk concentration in droplets large enough to act as cloud condensation nuclei. Sodium dodecyl sulfate was used as a model compound together with sodium chloride to find out the effect the correct evaluation of surfactant partitioning has on the solute effect (Raoult effect. While the partitioning is known to lead to higher surface tension compared to a case in which partitioning is neglected, the present results show that the partitioning also alters the solute effect, and that the change is large enough to further increase the critical supersaturation and hence decrease the droplet activation. The fraction of surfactant partitioned to droplet surface increases with decreasing droplet size, which suggests that surfactants might enhance the activation of larger particles relatively more thus leading to less dense clouds. Cis-pinonic acid-ammonium sulfate aqueous solution was studied in order to relate the partitioning to more realistic atmospheric situation and to find out the combined effects of dissolution and partitioning behaviour. The results show that correct partitioning consideration alters the shape of the Köhler curve when compared to a situation in which the partitioning is neglected either completely or in the Raoult effect.

  5. Alkanediyl-α, ω-bis (dimethyl cetylammonium bromide gemini surfactants as novel corrosion inhibitors for mild steel in formic acid

    Directory of Open Access Journals (Sweden)

    Mohammad Mobin

    2012-12-01

    Full Text Available Gemini surfactants, butanediyl 1,4-bis(dimethyl cetylammonium bromide, pentanediyl 1,5 - bis (dimethyl cetylammonium bromide and hexanediyl 1,6 - bis (dimethyl cetylammonium bromide from Alkanediyl-α, ω-bis (dimethyl cetylammonium bromide series were synthesized in laboratory and were characterized by using Nuclear Magnetic Resonance (NMR spectroscopy. The surfactants were tested as corrosion inhibitors for mild steel in 20% formic acid. The influence of surfactants on mild steel corrosion inhibition was investigated by measuring the corrosion rate of mild steel in their absence and presence by weight loss measurements, solvent analysis of iron ions into the test solution and potentiodynamic polarization measurements. The surface morphology of the corroded steel samples in presence and absence of surfactants was evaluated by using Scanning Electron Microscopy (SEM. The synthesized gemini surfactants performed as excellent corrosion inhibitor, the inhibition efficiency (IE being in the range of 76.66-97.41%. The IE of surfactants is slightly affected by the spacer length. The IE increased with increase in surfactant concentration and temperature. The adsorption of gemini surfactants on the steel surface was found to obey Langmuir adsorption isotherm. The results of the potentiodynamic polarization studies are consistent with the results of weight loss studies.

  6. Interaction of Fluorocarbon Containing Hydrophobically Modified Polyelectrolyte with Nonionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    GUO,Jin-Feng(郭金峰); ZHUANG,Dong-Qing(庄东青); ZHOU,Hui(周晖); ZHANG,Yun-Xiang(章云祥)

    2002-01-01

    The interaction of fluorocarbon containing hydrophobically modified polyelectrolyte (FMPAANa) with two kinds of nonionic surfactants (hydrogenated and fluorinated) in a semidilute (0.5 wt% ) aqueous solution had been studied by rheological measurements. Association behavior was found in both systems. The hydrophobic interaction of FMPAANa with fluorinated surfactant (FC171) is much stronger than that with hydrogenated surfactant (NP7.5) at low surfactant concentrations. The interaction is strengthened by surfactants being added for the density of active junctions increased. Whereas distinct phenomena for FC171 and NP7. 5 start to be found as the surfactants added over their respective certain concentration. The interaction of polyelectrolyte with fluorinated surfactant increases dramatical ly while that with hydrogenated surfactant decreases.

  7. Fullerene surfactants and their use in polymer solar cells

    Science.gov (United States)

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  8. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes.

    Science.gov (United States)

    Cuylen, Sara; Blaukopf, Claudia; Politi, Antonio Z; Müller-Reichert, Thomas; Neumann, Beate; Poser, Ina; Ellenberg, Jan; Hyman, Anthony A; Gerlich, Daniel W

    2016-07-14

    Eukaryotic genomes are partitioned into chromosomes that form compact and spatially well-separated mechanical bodies during mitosis. This enables chromosomes to move independently of each other for segregation of precisely one copy of the genome to each of the nascent daughter cells. Despite insights into the spatial organization of mitotic chromosomes and the discovery of proteins at the chromosome surface, the molecular and biophysical bases of mitotic chromosome structural individuality have remained unclear. Here we report that the proliferation marker protein Ki-67 (encoded by the MKI67 gene), a component of the mitotic chromosome periphery, prevents chromosomes from collapsing into a single chromatin mass after nuclear envelope disassembly, thus enabling independent chromosome motility and efficient interactions with the mitotic spindle. The chromosome separation function of human Ki-67 is not confined within a specific protein domain, but correlates with size and net charge of truncation mutants that apparently lack secondary structure. This suggests that Ki-67 forms a steric and electrostatic charge barrier, similar to surface-active agents (surfactants) that disperse particles or phase-separated liquid droplets in solvents. Fluorescence correlation spectroscopy showed a high surface density of Ki-67 and dual-colour labelling of both protein termini revealed an extended molecular conformation, indicating brush-like arrangements that are characteristic of polymeric surfactants. Our study thus elucidates a biomechanical role of the mitotic chromosome periphery in mammalian cells and suggests that natural proteins can function as surfactants in intracellular compartmentalization. PMID:27362226

  9. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes.

    Science.gov (United States)

    Cuylen, Sara; Blaukopf, Claudia; Politi, Antonio Z; Müller-Reichert, Thomas; Neumann, Beate; Poser, Ina; Ellenberg, Jan; Hyman, Anthony A; Gerlich, Daniel W

    2016-06-29

    Eukaryotic genomes are partitioned into chromosomes that form compact and spatially well-separated mechanical bodies during mitosis. This enables chromosomes to move independently of each other for segregation of precisely one copy of the genome to each of the nascent daughter cells. Despite insights into the spatial organization of mitotic chromosomes and the discovery of proteins at the chromosome surface, the molecular and biophysical bases of mitotic chromosome structural individuality have remained unclear. Here we report that the proliferation marker protein Ki-67 (encoded by the MKI67 gene), a component of the mitotic chromosome periphery, prevents chromosomes from collapsing into a single chromatin mass after nuclear envelope disassembly, thus enabling independent chromosome motility and efficient interactions with the mitotic spindle. The chromosome separation function of human Ki-67 is not confined within a specific protein domain, but correlates with size and net charge of truncation mutants that apparently lack secondary structure. This suggests that Ki-67 forms a steric and electrostatic charge barrier, similar to surface-active agents (surfactants) that disperse particles or phase-separated liquid droplets in solvents. Fluorescence correlation spectroscopy showed a high surface density of Ki-67 and dual-colour labelling of both protein termini revealed an extended molecular conformation, indicating brush-like arrangements that are characteristic of polymeric surfactants. Our study thus elucidates a biomechanical role of the mitotic chromosome periphery in mammalian cells and suggests that natural proteins can function as surfactants in intracellular compartmentalization.

  10. Natural surfactants used in cosmetics: glycolipids.

    Science.gov (United States)

    Lourith, N; Kanlayavattanakul, M

    2009-08-01

    Cosmetic surfactant performs detergency, wetting, emulsifying, solubilizing, dispersing and foaming effects. Adverse reactions of chemical synthesis surfactant have an effect on environment and humans, particularly severe in long term. Biodegradability, low toxicity and ecological acceptability which are the benefits of naturally derived surfactant that promises cosmetic safety are, therefore, highly on demand. Biosurfactant producible from microorganisms exhibiting potential surface properties suitable for cosmetic applications especially incorporate with their biological activities. Sophorolipids, rhamnolipids and mannosylerythritol lipids are the most widely used glycolipids biosurfactant in cosmetics. Literatures and patents relevant to these three glycolipids reviewed were emphasizing on the cosmetic applications including personal care products presenting the cosmetic efficiency, efficacy and economy benefits of glycolipids biosurfactant. PMID:19496839

  11. When do water-insoluble polyion-surfactant ion complex salts "redissolve" by added excess surfactant?

    Science.gov (United States)

    dos Santos, Salomé; Gustavsson, Charlotte; Gudmundsson, Christian; Linse, Per; Piculell, Lennart

    2011-01-18

    The redissolution of water-insoluble polyion-surfactant ion complexes by added excess of surfactant has systematically been investigated in experimental and theoretical phase equilibrium studies. A number of stoichiometric polyion-surfactant ion "complex salts" were synthesized and they consisted of akyltrimethylammonium surfactant ions of two different alkyl chain lengths (C(12)TA(+) and C(16)TA(+)) combined with homopolyions of polyacrylate of two different lengths (PA(-)(25) and PA(-)(6000)) or copolyions of acrylate and the slightly hydrophobic nonionic comonomers N-isopropylacrylamide (PA(-)-co-NIPAM) or N,N-dimethylacrylamide (PA(-)-co-DAM). The complex salts were mixed with water and excess alkyltrimethylammonium surfactant with either bromide or acetate counterions (C(n)TABr or C(n)TAAc). Factors promoting efficient redissolution were (i) very short polyions, (ii) a large fraction of NIPAM or DAM comonomers, and (iii) acetate, rather than bromide, as the surfactant counterion. Added C(12)TAAc gave an efficient redissolution of C(12)TAPA(25) but virtually no redissolution of C(12)TAPA(6000). A very efficient redissolution by added C(12)TAAc was obtained for PA(-)-co-NIPAM with 82 mol % of NIPAM. The C(12)TAPA-co-NIPAM/C(12)TAAc/H(2)O ternary phase diagram closely resembled the corresponding diagram for the much-studied pair cationic hydroxyethyl cellulose-(sodium) dodecyl sulfate. The simple Flory-Huggins theory adopted for polyelectrolyte systems successfully reproduced the main features of the experimental phase diagrams for the homopolyion systems, including the effect of the surfactant counterion. The efficient redissolution found for certain copolyion systems was explained by the formation of soluble polyion-surfactant ion complexes carrying an excess of surfactant ions through an additional hydrophobic attraction. PMID:21166446

  12. Identification of a cell membrane protein that binds alveolar surfactant.

    OpenAIRE

    Strayer, D. S.

    1991-01-01

    Alveolar surfactants are complex mixtures of proteins and phospholipids produced by type II alveolar cells and responsible for lowering pulmonary surface tension. The process by which surfactant is produced and exported and by which its production by pulmonary cells is regulated are not well understood. This study was designed to identify a cellular receptor for surfactant constituents. To do so, monoclonal anti-idiotypic antibodies directed against antibodies to porcine and rabbit surfactant...

  13. Surfactant-Polymer Interaction for Improved Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gabitto, Jorge; Mohanty, Kishore K.

    2002-01-07

    The goal of this research was to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, oil solubility in the displacing fluid and mobility control. Surfactant-polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation and viscous/heterogeneity fingering.

  14. A simplified treatment of surfactant effects on cloud drop activation

    OpenAIRE

    T. Raatikainen; Laaksonen, A.

    2011-01-01

    Dissolved surface active species, or surfactants, have a tendency to partition to solution surface and thereby decrease solution surface tension. Activating cloud droplets have large surface-to-volume ratios, and the amount of surfactant molecules in them is limited. Therefore, unlike with macroscopic solutions, partitioning to the surface can effectively deplete the droplet interior of surfactant molecules.

    Surfactant partitioning equilibrium for activating cloud droplet...

  15. Surfactant abnormalities in infants with severe viral bronchiolitis.

    OpenAIRE

    Dargaville, P A; South, M; McDougall, P N

    1996-01-01

    To determine whether abnormalities of pulmonary surfactant occur in infants with acute viral bronchiolitis, surfactant indices were measured in lung lavage fluid from 12 infants with severe bronchiolitis and eight infants without lung disease. Compared with controls, the bronchiolitis group showed deficiency of surfactant protein A (1.02 v 14.4 micrograms/ml) and disaturated phosphatidylcholine (35 v 1060 micrograms/ml) which resolved as the disease improved. Surfactant functional activity wa...

  16. A simplified treatment of surfactant effects on cloud drop activation

    OpenAIRE

    T. Raatikainen; Laaksonen, A.

    2010-01-01

    Dissolved surface active species, or surfactants, have a tendency to partition to solution surface and thereby decrease solution surface tension. Activating cloud droplets have large surface-to-volume ratios, and the amount of surfactant molecules in them is limited. Therefore, unlike with macroscopic solutions, partitioning to the surface can effectively deplete the droplet interior of surfactant molecules.

    Surfactant partitioning equilibrium for activating cloud droplet...

  17. Diluted porcine surfactant lung lavages in children with severe ARDS

    OpenAIRE

    2009-01-01

    Acute respiratory distress syndrome (ARDS) is characterized by damage to the arteriolar-capillary endothelium and alveolar epithelium that leads to surfactant deficiency and atelectasis. Alveolar collapse and pulmonary edema will further induce surfactant inactivation. Surfactant supplementation has been suggested but results are unpredictable. Poor response may be due to inhibition of administered surfactant by plasma components filling the alveolar space, severity of lung injury, time of su...

  18. Well-defined hollow nanochanneled-silica nanospheres prepared with the aid of sacrificial copolymer nanospheres and surfactant nanocylinders

    Science.gov (United States)

    Kim, Young Yong; Hwang, Bora; Song, Sungjin; Ree, Brian J.; Kim, Yongjin; Cho, Seo Yeon; Heo, Kyuyoung; Kwon, Yong Ku; Ree, Moonhor

    2015-08-01

    A new approach for synthesizing well-defined hollow nanochanneled-silica nanosphere particles is demonstrated, and the structural details of these particles are described for the first time. Positively charged styrene copolymer nanospheres with a clean, smooth surface and a very narrow size distribution are synthesized by surfactant-free emulsion copolymerization and used as a thermal sacrificial core template for the production of core-shell nanoparticles. A surfactant/silica composite shell with a uniform thickness is successfully produced and deposited onto the polymeric core template by charge density matching between the polymer nanosphere template surface and the negatively charged silica precursors and then followed by selective thermal decomposition of the polymeric core and the surfactant cylinder domains in the shell, producing the hollow nanochanneled-silica nanospheres. Comprehensive, quantitative structural analyses collectively confirm that the obtained nanoparticles are structurally well defined with a hollow core and a shell composed of cylindrical nanochannels that provide facile accessibility to the hollow interior space. Overall, the hollow nanochanneled-silica nanoparticles have great potential for applications in various fields.A new approach for synthesizing well-defined hollow nanochanneled-silica nanosphere particles is demonstrated, and the structural details of these particles are described for the first time. Positively charged styrene copolymer nanospheres with a clean, smooth surface and a very narrow size distribution are synthesized by surfactant-free emulsion copolymerization and used as a thermal sacrificial core template for the production of core-shell nanoparticles. A surfactant/silica composite shell with a uniform thickness is successfully produced and deposited onto the polymeric core template by charge density matching between the polymer nanosphere template surface and the negatively charged silica precursors and then

  19. Sequential treatments of premature lambs with an artificial surfactant and natural surfactant.

    OpenAIRE

    Ikegami, M; Jobe, A; Jacobs, H.; Jones, S. J.

    1981-01-01

    To test an artificial surfactant in vivo, six 120-d gestational age lambs were treated at birth with a mixture of a 9:1 M ratio of [14C]dipalmitoyl phosphatidylcholine (DPC) and phosphatidylglycerol at a dose of 100 mg DPC/kg. Nine other lambs were not treated. The mean PO2 values of the lambs treated with artificial surfactant were 65.7 +/- 11 mm Hg vs. 24.8 +/- 1.6 mm Hg for the untreated lambs (P less than 0.001). All lambs then were treated with 50 mg/natural surfactant lipid per kg, whic...

  20. Dynamic Study of Gemini Surfactant and Single-chain Surfactant at Air/Water Interface

    Institute of Scientific and Technical Information of China (English)

    Yi Jian CHEN; Gui Ying XU; Shi Ling YUAN; Hai Ying SUN

    2005-01-01

    Molecular dynamics (MD) simulation are used to study the properties of gemini surfactant of ethyl-α,ω-bis(dodecyldimethylammonium bromide) (C12C2C12) and dodecyltrimethylammonium bromide (DTAB) at the air/water interface, respectively. In the two systems,the surfactant concentrations are both 28 wt. %, and other conditions are also the same. After reaching the thermodynamic equilibrium, the concentration profiles, the radial distributions functions (RDF) and the mean squared displacement (MSD) are investigated. Theresults reveal that the surface activity of C12C2C12 suffactant is higher than DTAB surfactant.

  1. FORMULATION AND EVALUATION OF POSITIVELY CHARGED SELF-EMULSIFYING DRUG DELIVERY SYSTEM CONTAINING IBUPROFEN

    OpenAIRE

    Kulkarni. P. Parthasarathi; Dixit Mudit; R. Prudhvi; D.Lavanya; L. Naga Vamsi Krishna

    2011-01-01

    One of the most persistent problems faced by the formulation scientists has been to find methods of improving the oral bioavailability of poorly water-soluble drugs. This positively charged SEDDS gives several fold increase in the bioavailability than the negatively charged one. The present study was undertaken to formulate and evaluate a positively charged SEDDS containing Ibuprofen. Fifteen formulations were prepared and optimized for the concentration of surfactants, cationic lipid oleylam...

  2. Surfactant therapy in late preterm infants

    Directory of Open Access Journals (Sweden)

    Murat Yurdakök

    2013-06-01

    Full Text Available Late preterm (LPT neonates are at a high risk for respiratory distress soon after birth due to respiratory distress syndrome (RDS, transient tachypnea of the newborn, persistent pulmonary hypertension, and pneumonia along with an increased need for surfactant replacement therapy, continuous positive airway pressure, and ventilator support when compared with the term neonates. In the past, studies on outcomes of infants with respiratory distress have primarily focused on extremely premature infants, leading to a gap in knowledge and understanding of the developmental biology and mechanism of pulmonary diseases in LPT neonates. Surfactant deficiency is the most frequent etiology of RDS in very preterm and moderately preterm infants, while cesarean section and lung infection play major roles in RDS development in LPT infants. The clinical presentation and the response to surfactant therapy in LPT infants may be different than that seen in very preterm infants. Incidence of pneumonia and occurrence of pneumothorax are significantly higher in LPT and term infants. High rates of pneumonia in these infants may result in direct injury to the type II alveolar cells of the lung with decreasing synthesis, release, and processing of surfactant. Increased permeability of the alveolar capillary membrane to both fluid and solutes is known to result in entry of plasma proteins into the alveolar hypophase, further inhibiting the surface properties of surfactant. However, the oxygenation index value do not change dramatically after ventilation or surfactant administration in LPT infants with RDS compared to very preterm infants. These finding may indicate a different pathogenesis of RDS in late preterm and term infants. In conclusion, surfactant therapy may be of significant benefit in LPT infants with serious respiratory failure secondary to a number of insults. However, optimal timing and dose of administration are not so clear in this group. Additional

  3. Influence of surfactant concentration on nanohydroxyapatite growth

    Indian Academy of Sciences (India)

    D Gopi; J Indira; S Nithiya; L Kavitha; U Kamachi Mudali; K Kanimozhi

    2013-10-01

    Nanohydroxyapatite particles with different morphologies were synthesized through a microwave coupled hydrothermal method using CTAB as a template. A successful synthesis of nanosized HAP spheres, rods and fibres is achieved through this method by controlling the concentration of the surfactant. The concentration of the surfactant was tuned in such a way that the desired HAP nanostructures were obtained. The resultant powders were sintered at 900 °C in order to obtain phase pure HAP particles. The results obtained by Fourier transform infrared spectroscopy (FT–IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques have substantiated the formation of nanosized HAP spheres and fibres.

  4. VESICLE-SURFACTANT INTERACTIONS - EFFECTS OF ADDED SURFACTANTS ON THE GEL TO LIQUID-CRYSTAL TRANSITION FOR 2 VESICULAR SYSTEMS

    NARCIS (Netherlands)

    Blandamer, M.J; Briggs, B.; Cullis, P.M.; Engberts, J.B.F.N.; Kacperska, A.

    1995-01-01

    Interactions of both cationic and anionic surfactants with vesicles formed by dimethyldioctadecylammonium bromide (DOAB) and by sodium didodecylphosphate (DDP) have been probed using differential scanning microcalorimetry. The scans show that the surfactants are incorporated into the vesicle bilayer

  5. Vesicle-Surfactant Interactions : Effects of Added Surfactants on the Gel to Liquid-crystal Transition for Two Vesicular Systems

    NARCIS (Netherlands)

    Blandamer, Michael J.; Briggs, Barbara; Cullis, Paul M.; Engberts, Jan B.F.N.; Kacperska, Anna

    1995-01-01

    Interactions of both cationic and anionic surfactants with vesicles formed by dimethyldioctadecylammonium bromide (DOAB) and by sodium didodecylphosphate (DDP) have been probed using differential scanning microcalorimetry. The scans show that the surfactants are incorporated into the vesicle bilayer

  6. Surfactant phosphatidylcholine metabolism in preterm infants studied with stable isotopes

    NARCIS (Netherlands)

    J.E.H. Bunt (Jan Erik)

    2000-01-01

    textabstractAIM OF THE STUDIES 1. To develop and use a novel method to study surfactant metabolism in preterm and older infants. (chapters 3 and 4). 2. To study endogenous surfactant synthesis in relation to prenatal glucocorticosteroids. (chapters 5 and 6). 3. To study the influence of surfactant t

  7. Secondary oil recovery process. [two separate surfactant slugs

    Energy Technology Data Exchange (ETDEWEB)

    Fallgatter, W.S.

    1969-01-14

    Oil recovery by two separate surfactant slugs is greater than for either one alone. One slug contains a surfactant(s) in either oil or water. The other slug contains surfactant(s) in thickened water. The surfactants are sodium petroleum sulfonate (Promor SS20), polyoxyethylene sorbitan trioleate (Tween 85), lauric acid diethanolamide (Trepoline L), and sodium tridecyl sulfate polyglycol ether (Trepenol S30T). The thickener is carboxymethyl cellulose (Hercules CMC 70-S Medium thickener) or polyvinyl alcohol (Du Pont Elvanol 50-42). Consolidated sandstone cores were flooded with water, followed with Hawes crude, and finally salt water (5 percent sodium chloride) which recovered about 67 percent of the crude. A maximum of 27.5 percent of the residual oil was recovered by surfactant(s) in oil or water followed by fresh water, then surfactant(s) plus thickener in water followed by fresh water. Either surfactant slug may be injected first. Individually, each of the surfactant slugs can recover from about 3 to 11 percent less residual oil than their total recovery when used consecutively.

  8. The influence of surfactant on the propagation of a semi-infinite bubble through a liquid- filled compliant channel

    Science.gov (United States)

    Halpern, David; Gaver, Donald

    2011-11-01

    Pulmonary airway closure may occur as a result of fluid accumulation and surfactant insufficiency. This results in ``compliant collapse'' with the airway walls buckled and held in apposition by a liquid plug that blocks the passage of air. Airway reopening is vital to the recovery of adequate ventilation, but has been associated with ventilator- induced injury because of the exposure of airway epithelial cells to large pressure gradients. Surfactant replacement is helpful in modulating this harmful stimulus, but is limited in its effectiveness due to slow surfactant adsorption. We investigate the effect of surfactant on reopening by considering the steady two-dimensional motion of a semi-infinite bubble propagating through a liquid-filled compliant channel doped with soluble surfactant. Many parameters affect reopening, but we primarily investigate the capillary number Ca (the ratio of viscous to surface tension forces), the reopening (bubble) pressure pb, the adsorption depth parameter λ (a bulk concentration parameter) and the bulk Peclet number Peb (the ratio of bulk convection to diffusion). The behavior of this system, and the impact of the flow field on surfactant transport and the applied stresses on the wall will be discussed. Funded by NIH R01-HL81266.

  9. The adsorption of biomolecules to multi-walled carbon nanotubes is influenced by both pulmonary surfactant lipids and surface chemistry

    Directory of Open Access Journals (Sweden)

    Yan Bing

    2010-12-01

    Full Text Available Abstract Background During production and processing of multi-walled carbon nanotubes (MWCNTs, they may be inhaled and may enter the pulmonary circulation. It is essential that interactions with involved body fluids like the pulmonary surfactant, the blood and others are investigated, particularly as these interactions could lead to coating of the tubes and may affect their chemical and physical characteristics. The aim of this study was to characterize the possible coatings of different functionalized MWCNTs in a cell free environment. Results To simulate the first contact in the lung, the tubes were coated with pulmonary surfactant and subsequently bound lipids were characterized. The further coating in the blood circulation was simulated by incubating the tubes in blood plasma. MWCNTs were amino (NH2- and carboxyl (-COOH-modified, in order to investigate the influence on the bound lipid and protein patterns. It was shown that surfactant lipids bind unspecifically to different functionalized MWCNTs, in contrast to the blood plasma proteins which showed characteristic binding patterns. Patterns of bound surfactant lipids were altered after a subsequent incubation in blood plasma. In addition, it was found that bound plasma protein patterns were altered when MWCNTs were previously coated with pulmonary surfactant. Conclusions A pulmonary surfactant coating and the functionalization of MWCNTs have both the potential to alter the MWCNTs blood plasma protein coating and to determine their properties and behaviour in biological systems.

  10. Infant formula alters surfactant protein A (SP-A) and SP-B expression in pulmonary epithelial cells.

    Science.gov (United States)

    Chen, Maurice G; Atkins, Constance L; Bruce, Shirley R; Khan, Amir M; Liu, Yuying; Alcorn, Joseph L

    2011-09-01

    Surfactant proteins A (SP-A) and SP-B are critical in the ability of pulmonary surfactant to reduce alveolar surface tension and provide innate immunity. Aspiration of infant milk formula can lead to lung dysfunction, but direct effects of aspirated formula on surfactant protein expression in pulmonary cells have not been described. The hypothesis that infant formula alters surfactant protein homeostasis was tested in vitro by assessing surfactant protein gene expression in cultured pulmonary epithelial cell lines expressing SP-A and SP-B that were transiently exposed (6 hr) to infant formula. Steady-state levels of SP-A protein and mRNA and SP-B mRNA in human bronchiolar (NCI-H441) and mouse alveolar (MLE15) epithelial cells were reduced in a dose-dependent manner 18 hr after exposure to infant formula. SP-A mRNA levels remained reduced 42 hr after exposure, but SP-B mRNA levels increased 10-fold. Neither soy formula nor non-fat dry milk affected steady-state SP-A and SP-B mRNA levels; suggesting a role of a component of infant formula derived from cow milk. These results indicate that infant formula has a direct, dose-dependent effect to reduce surfactant protein gene expression. Ultimately, milk aspiration may potentially result in a reduced capacity of the lung to defend against environmental insults. PMID:21520433

  11. Highly Charged Ion Sources

    International Nuclear Information System (INIS)

    In this work a study is made for the factors affecting the production and extraction of highly charged ion beams. Discussion is made for the production of highly charged ions from: the conventional vacuum are ion sources (Pinning PIG and Duoplasmatron DP) and the recent trends type which are (Electron Beam Ion Sources EBIS, Electron Cyclotron Resonance Ion Sources ECRIS and Laser Ion source LIS). The highly charged ions with charge state +7 , O+8 ,Ne+10 , Ar+18 have been extracted from the ECRIS while fully stripped Xe+54 has been extracted from EBIS. Improving the capabilities of the conventional RF ion source to produce multiply charged ions is achieved through the use of electron injection into the plasma or with the use of RF driven ion source. The later is based on coupling the RF power to the discharge through an internal antenna in vacuum are ion source. The argon ion species extracted from these upgraded RF ion sources could reach Ar+5

  12. Evaluation the thermodynamic behavior of nonionic polyoxyethylene surfactants against temperature changes.

    Science.gov (United States)

    Moghaddam, Hadi Mahmoudi; Dehghannoudeh, Gholamreza; Basir, Mohammad Zaman

    2016-03-01

    Micellization is the most important property of surface agents. It plays an important role in the manufacture of pharmaceutical products. The surfactants have many applications in industry, agriculture, mining and oil recovery with functional properties as wetting, foaming and emulsifier in pharmaceutical and cosmetic products. The micellization parameters of surfactants help the manufacture of pharmaceutical products to be appropriate and stable. Therefore, in this study, Polyoxyethylene lauryl ether (C12E23), Polyoxyethylene (10) cetyl ether (C16E10) and Polyoxyethylene (20) cetyl ether (C16E20) were chosen as the nonionic surfactants to examine the effect of temperature variation (10-80(°)C) on the Critical Micelle Concentration (CMC). The measurement of surface tension was done by a Du Nöuys ring method. The value of CMC was obtained from the surface tension vs. surfactant concentration curve. Since the temperature was increased, the CMC initially decreased and then increased for each surfactant because the formation of the hydrogen bond is harder in the high temperatures. The surface tension γCMC for all three surfactant solutions decreased monotonically as the temperature increased. δG(°)m, ΔH(°)m and ΔS°m as the thermodynamic parameters of micellization, were also estimated and analyzed. The ΔG(°)m was decreased (10-80(°)C) if the temperature was increased. The entropy and enthalpy correlation of micellization showed a significant linearity. For C12E23, C16E20 and C16 E10, the compensation temperature (Tc) was obtained 309.5, 313.2 and 314.4 K, respectively. The calculated thermodynamic parameters showed that the entropy influenced on the micellization process at lower temperature, but it affected by enthalpy when temperature was increased. PMID:27087077

  13. Surfactant effects on the coalescence of a drop in a Hele-Shaw cell

    Science.gov (United States)

    Chinaud, Maxime; Voulgaropoulos, Victor; Angeli, Panagiota

    2016-09-01

    In this work the coalescence of an aqueous drop with a flat aqueous-organic interface was investigated in a thin gap Hele-Shaw cell. Different concentrations of a nonionic surfactant (Span 80) dissolved in the organic phase were studied. We present experimental results on the velocity field inside a coalescing droplet in the presence of surfactants. The evolution of the neck between the drop and the interface was studied with high-speed imaging. It was found that the time evolution of the neck at the initial stages of coalescence follows a linear trend, which suggests that the local surfactant concentration at the neck region for this stage of coalescence can be considered quasiconstant in time. This neck expansion can be described by the linear law developed for pure systems when the surfactant concentration at the neck is assumed higher than in the bulk solution. In addition, velocity and vorticity fields were computed inside the coalescing droplet and the bulk homophase using a high-speed shadowgraphy technique. The significant wall effects in the Hele-Shaw cell in the transverse axis cause the two vertical velocity components towards the singularity rupture point, from the drop and from the bulk homophase, to be of the same order of magnitude. This movement together with the neck expansion creates two pairs of counteracting vortices in the drop and in the bulk phase. The neck velocity is the average of the advection velocities of the two counteracting vortex pairs on each side of the neck. The presence of the surfactant slows down the dynamics of the coalescence, affects the propagation direction of the pair of vortices in the bulk phase, and reduces their size faster compared to the system without surfactant.

  14. Searching for life on Mars: degradation of surfactant solutions used in organic extraction experiments.

    Science.gov (United States)

    Court, Richard W; Sims, Mark R; Cullen, David C; Sephton, Mark A

    2014-09-01

    Life-detection instruments on future Mars missions may use surfactant solutions to extract organic matter from samples of martian rocks. The thermal and radiation environments of space and Mars are capable of degrading these solutions, thereby reducing their ability to dissolve organic species. Successful extraction and detection of biosignatures on Mars requires an understanding of how degradation in extraterrestrial environments can affect surfactant performance. We exposed solutions of the surfactants polysorbate 80 (PS80), Zonyl FS-300, and poly[dimethylsiloxane-co-[3-(2-(2-hydroxyethoxy)ethoxy)propyl]methylsiloxane] (PDMSHEPMS) to elevated radiation and heat levels, combined with prolonged storage. Degradation was investigated by measuring changes in pH and electrical conductivity and by using the degraded solutions to extract a suite of organic compounds spiked onto grains of the martian soil simulant JSC Mars-1. Results indicate that the proton fluences expected during a mission to Mars do not cause significant degradation of surfactant compounds. Solutions of PS80 or PDMSHEPMS stored at -20 °C are able to extract the spiked standards with acceptable recovery efficiencies. Extraction efficiencies for spiked standards decrease progressively with increasing temperature, and prolonged storage at 60°C renders the surfactant solutions ineffective. Neither the presence of ascorbic acid nor the choice of solvent unequivocally alters the efficiency of extraction of the spiked standards. Since degradation of polysorbates has the potential to produce organic compounds that could be mistaken for indigenous martian organic matter, the polysiloxane PDMSHEPMS may be a superior choice of surfactant for the exploration of Mars. PMID:25192400

  15. Searching for life on Mars: degradation of surfactant solutions used in organic extraction experiments.

    Science.gov (United States)

    Court, Richard W; Sims, Mark R; Cullen, David C; Sephton, Mark A

    2014-09-01

    Life-detection instruments on future Mars missions may use surfactant solutions to extract organic matter from samples of martian rocks. The thermal and radiation environments of space and Mars are capable of degrading these solutions, thereby reducing their ability to dissolve organic species. Successful extraction and detection of biosignatures on Mars requires an understanding of how degradation in extraterrestrial environments can affect surfactant performance. We exposed solutions of the surfactants polysorbate 80 (PS80), Zonyl FS-300, and poly[dimethylsiloxane-co-[3-(2-(2-hydroxyethoxy)ethoxy)propyl]methylsiloxane] (PDMSHEPMS) to elevated radiation and heat levels, combined with prolonged storage. Degradation was investigated by measuring changes in pH and electrical conductivity and by using the degraded solutions to extract a suite of organic compounds spiked onto grains of the martian soil simulant JSC Mars-1. Results indicate that the proton fluences expected during a mission to Mars do not cause significant degradation of surfactant compounds. Solutions of PS80 or PDMSHEPMS stored at -20 °C are able to extract the spiked standards with acceptable recovery efficiencies. Extraction efficiencies for spiked standards decrease progressively with increasing temperature, and prolonged storage at 60°C renders the surfactant solutions ineffective. Neither the presence of ascorbic acid nor the choice of solvent unequivocally alters the efficiency of extraction of the spiked standards. Since degradation of polysorbates has the potential to produce organic compounds that could be mistaken for indigenous martian organic matter, the polysiloxane PDMSHEPMS may be a superior choice of surfactant for the exploration of Mars.

  16. Influence of ionic surfactants on the flocculation and sorption of palladium and mercury in the aquatic environment.

    Science.gov (United States)

    Turner, Andrew; Xu, Jing

    2008-01-01

    The influence of sub-micellar concentrations of an anionic surfactant (sodium dodecyl sulphate; SDS) and a cationic surfactant (hexadecyl trimethylammonium bromide; HDTMA) on the aquatic behaviour of the strongly complexing metals, Pd(II) and Hg(II), has been investigated. In river water, flocculation of organic complexes of metal was suppressed by SDS but accentuated by HDTMA, effects that are consistent with electrostatic and hydrophobic interactions between ionic surfactants and natural polyelectrolytes. In sea water, flocculation of metal complexes was enhanced by both surfactants because of the shielding and salting effects of inorganic ions on these interactions. Particle surface modification engendered by sorbed surfactant strongly influenced the sorption of Pd and Hg to estuarine particles. Thus, hydrophobically bound SDS enhances the negative charge at the particle surface and favours specific sorption of metal, while specifically sorbed HDTMA enhances the solvency of the particle surface, favouring non-specific sorption of metal complexes. Given the relatively short environmental half-life of SDS, its impacts on strongly complexing metals are predicted to be localised. However, greater stability of HDTMA suggests that its effects on such metals, including enhanced flocculation and sorption, are likely to be more pervasive.

  17. Occurrence, distribution and partitioning of nonionic surfactants and pharmaceuticals in the urbanized Long Island Sound Estuary (NY)

    International Nuclear Information System (INIS)

    Highlights: • Surfactant levels were one order of magnitude higher than those for pharmaceuticals. • Concentrations of analytes in seawater were influenced by tides and sampling depth. • Surfactants were found in all suspended solids samples at more than 1 μg g−1. • Presence of pharmaceuticals in sewage impacted surface sediments was minimal. • Among all analytes, polyethylene glycols show highest concentrations in sediments. - Abstract: This work deals with the environmental distribution of nonionic surfactants (nonylphenol and alcohol ethoxylates), their metabolites (NP, nonylphenol; NPEC, nonylphenol ethoxycarboxylates; and PEG, polyethylene glycols) and a selection of 64 pharmaceuticals in the Long Island Sound (LIS) Estuary which receives important sewage discharges from New York City (NYC). Most target compounds were efficiently removed (>95%) in one wastewater treatment plant monitored, with the exception of NPEC and some specific drugs (e.g., hydrochlorothiazide). Concentrations of surfactants (1.4–4.5 μg L−1) and pharmaceuticals (0.1–0.3 μg L−1) in seawater were influenced by tides and sampling depth, consistent with salinity differences. Surfactants levels in suspended solids samples were higher than 1 μg g−1, whereas only most hydrophobic or positively charged pharmaceuticals could be found (e.g., tamoxifen, clarithromycin). Maximum levels of target compounds in LIS sediments (PEG at highest concentrations, 2.8 μg g−1) were measured nearest NYC, sharply decreasing with distance from major sewage inputs

  18. Rosin Surfactant QRMAE Can Be Utilized as an Amorphous Aggregate Inducer: A Case Study of Mammalian Serum Albumin.

    Directory of Open Access Journals (Sweden)

    Mohd Ishtikhar

    Full Text Available Quaternary amine of diethylaminoethyl rosin ester (QRMAE, chemically synthesized biocompatible rosin based cationic surfactant, has various biological applications including its use as a food product additive. In this study, we examined the amorphous aggregation behavior of mammalian serum albumins at pH 7.5, i.e., two units above their isoelectric points (pI ~5.5, and the roles played by positive charge and hydrophobicity of exogenously added rosin surfactant QRMAE. The study was carried out on five mammalian serum albumins, using various spectroscopic methods, dye binding assay, circular dichroism and electron microscopy. The thermodynamics of the binding of mammalian serum albumins to cationic rosin modified surfactant were established using isothermal titration calorimetry (ITC. It was observed that a suitable molar ratio of protein to QRMAE surfactant enthusiastically induces amorphous aggregate formation at a pH above two units of pI. Rosin surfactant QRMAE-albumins interactions revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions that play an important role towards the formation of hydrophobic interactions-driven amorphous aggregate. Amorphous aggregation of proteins is associated with varying diseases, from the formation of protein wine haze to the expansion of the eye lenses in cataract, during the expression and purification of recombinant proteins. This study can be used for the design of novel biomolecules or drugs with the ability to neutralize factor(s responsible for the aggregate formation, in addition to various other industrial applications.

  19. Rosin Surfactant QRMAE Can Be Utilized as an Amorphous Aggregate Inducer: A Case Study of Mammalian Serum Albumin.

    Science.gov (United States)

    Ishtikhar, Mohd; Chandel, Tajjali Ilm; Ahmad, Aamir; Ali, Mohd Sajid; Al-Lohadan, Hamad A; Atta, Ayman M; Khan, Rizwan Hasan

    2015-01-01

    Quaternary amine of diethylaminoethyl rosin ester (QRMAE), chemically synthesized biocompatible rosin based cationic surfactant, has various biological applications including its use as a food product additive. In this study, we examined the amorphous aggregation behavior of mammalian serum albumins at pH 7.5, i.e., two units above their isoelectric points (pI ~5.5), and the roles played by positive charge and hydrophobicity of exogenously added rosin surfactant QRMAE. The study was carried out on five mammalian serum albumins, using various spectroscopic methods, dye binding assay, circular dichroism and electron microscopy. The thermodynamics of the binding of mammalian serum albumins to cationic rosin modified surfactant were established using isothermal titration calorimetry (ITC). It was observed that a suitable molar ratio of protein to QRMAE surfactant enthusiastically induces amorphous aggregate formation at a pH above two units of pI. Rosin surfactant QRMAE-albumins interactions revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions that play an important role towards the formation of hydrophobic interactions-driven amorphous aggregate. Amorphous aggregation of proteins is associated with varying diseases, from the formation of protein wine haze to the expansion of the eye lenses in cataract, during the expression and purification of recombinant proteins. This study can be used for the design of novel biomolecules or drugs with the ability to neutralize factor(s) responsible for the aggregate formation, in addition to various other industrial applications.

  20. Tungsten Oxide and Polyaniline Composite Fabricated by Surfactant-Templated Electrodeposition and Its Use in Supercapacitors

    Directory of Open Access Journals (Sweden)

    Benxue Zou

    2014-01-01

    Full Text Available Composite nanostructures of tungsten oxide and polyaniline (PANI were fabricated on carbon electrode by electrocodeposition using sodium dodecylbenzene sulfonate (SDBS as the template. The morphology of the composite can be controlled by changing SDBS surfactant and aniline monomer concentrations in solution. With increasing concentration of aniline in surfactant solution, the morphological change from nanoparticles to nanofibers was observed. The nanostructured WO3/PANI composite exhibited enhanced capacitive charge storage with the specific capacitance of 201 F g−1 at 1.28 mA cm−2 in large potential window of -0.5~ 0.65 V versus SCE compared to the bulk composite film. The capacitance retained about 78% when the sweeping potential rate increased from 10 to 150 mV/s.

  1. Surfactant Dynamics: Spreading and Wave Induced Dynamics of a Monolayer

    Science.gov (United States)

    Strickland, Stephen Lee

    Material adsorbed to the surface of a fluid - for instance crude oil in the ocean, biological surfactant on ocular or pulmonary mucous, or emulsions - can form a 2-dimensional mono-molecular layer. These materials, called surfactants, can behave like a compressible viscous 2-dimensional fluid, and can generate surface stresses that influence the sub-fluid's bulk flow. Additionally, the sub-fluid's flow can advect the surfactant and generate gradients in the surfactant distribution and thereby generate gradients in the interfacial properties. Due to the difficulty of non-invasive measurements of the spatial distribution of a molecular monolayer at the surface, little is known about the dynamics that couple the surface motion and the evolving density field. In this dissertation, I will present a novel method for measuring the spatiotemporal dynamics of the surfactant surface density through the fluorescence emission of NBD-tagged phosphatidylcholine, a lipid, and we will compare the surfactant dynamics to the dynamics of the surface morphology.With this method, we will consider the inward and outward spreading of a surfactant on a thin fluid film as well as the advection of a surfactant by linear and non-linear gravity-capillary waves. These two types of surfactant coupled fluid flows will allow us to probe well-accepted assumptions about the coupled fluid-surfactant dynamics. In chapter 1, we review the models used for understanding the spreading of a surfactant on a thin fluid film and the motion of surfactant on a linear gravity-capillary wave. In chapter 2, we will present the experimental methods used in this dissertation. In chapter 3, we will study the outward spreading of a localized region of surfactant and show that the spreading of a monolayer is considerably different from the spreading of thicker-layered surfactant. In chapter 4, we will investigate the inward spreading of a surfactant into a circular surfactant-free region and show that hole closure and

  2. Thermal stability and hot-stage Raman spectroscopic study of Ca-montmorillonite modified with different surfactants: A comparative study

    International Nuclear Information System (INIS)

    Highlights: • A typical Ca-montmorillonite was modified with three surfactants through ion exchange. • The organoclays were characterized by XRD, TG and hot stage Raman. • The structural geometry and thermal properties of organoclays were analyzed. • The prepared organoclays show potential prospects in the environmental remediation. - Abstract: Three long chain cationic surfactants were intercalated into Ca-montmorillonite through ion exchange and the obtained organoclays were characterized by X-ray diffraction (XRD), high resolution thermogravimetric analysis (TG) and Raman spectroscopy. The intercalation of surfactants not only changes the surface properties of clay from hydrophilic to hydrophobic but also greatly increases the basal spacing of the interlayers based on XRD analysis. The thermal stability of organoclays intercalated with three surfactants (TTAB, DTAB and CTAB) and the different arrangements of the surfactant molecules intercalated into Ca-montmorillonite were determined by TG-DTG analysis. A Raman spectroscopic study on the Ca-montmorillonite modified by three surfactants prepared at different concentrations provided the detailed conformational ordering of different intercalated long-chain surfactants under different conditions. The wavenumber of the antisymmetric stretching mode is more sensitive than that of the symmetric stretching mode to the mobility of the tail of the amine chain. At room temperature, the conformational ordering is more easily affected by the packing density in the lateral model. With the increase of the temperature, the positions of both the antisymmetric and symmetric stretching bands shift to higher wavenumbers, which indicates a decrease of conformational ordering. This study offers new insights into the structure and properties of Ca-montmorillonite modified with different long chain surfactants. Moreover, the experimental results confirm the potential applications of organic Ca-montmorillonites for the removal

  3. Multidimensional Mass Spectrometry Coupled with Separation by Polarity or Shape for the Characterization of Sugar-Based Nonionic Surfactants.

    Science.gov (United States)

    Katzenmeyer, Bryan C; Hague, Shayna F; Wesdemiotis, Chrys

    2016-01-01

    Mass spectrometry (MS) and tandem mass spectrometry (MS/MS) were interfaced with ultra-performance liquid chromatography (UPLC) and ion mobility (IM) separation to characterize a complex nonionic surfactant, consisting of a methylated glucose core (glucam) conjugated with poly(ethylene oxide) (PEO(n)) branches that were partially esterified with stearic acid to form ethoxylated glucam (PEO(n)-glucam) stearates. Reverse-phase LC-MS afforded fast separation according to polarity into five major fractions. Accurate mass measurements of the ions in the mass spectra extracted from these fractions enabled conclusive identification of six components in the surfactant, including PEO(n)-glucam mono-, di-, and tristearates as well as free and esterified PEO(n) as byproducts. MS/MS experiments provided corroborating evidence for the fatty acid content in each fraction based on the number of stearic acid losses observed. With IM-MS, the total surfactant ions were separated according to charge and shape into four distinct bands. Extracted mass spectra confirmed the presence of two disaccharide stearates in the surfactant, which were undetectable by LC-MS. PEO(n)-glucam tristearates were, however, not observed upon IM-MS. Hence, LC-MS and IM-MS unveiled complementary compositional insight. With each method, certain components were particularly well separated from other ingredients (by either polarity or shape), to be detected with confidence. Consequently, combined LC-MS and IM-MS offer a superior approach for the characterization of surfactants and other amphiphilic polymers and for the differentiation of similarly composed amphiphilic blends. It is finally noteworthy that NH4(+) charges minimized chemical noise in MS mode and Li(+) charges maximized the fragmentation efficiency in MS/MS mode. PMID:26642239

  4. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: Roles played by stabilization surfactants of oil droplets

    KAUST Repository

    Lu, Dongwei

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater. © 2015 American Chemical Society.

  5. Adsorption, Ordering, and Local Environments of Surfactant-Encapsulated Polyoxometalate Ions Probed at the Air-Water Interface.

    Science.gov (United States)

    Doughty, Benjamin; Yin, Panchao; Ma, Ying-Zhong

    2016-08-16

    The continued development and application of surfactant-encapsulated polyoxometalates (SEPs) relies on understanding the ordering and organization of species at their interface and how these are impacted by the various local environments to which they are exposed. Here, we report on the equilibrium properties of two common SEPs adsorbed to the air-water interface and probed with surface-specific vibrational sum-frequency generation (SFG) spectroscopy. These results reveal clear shifts in vibrational band positions, the magnitude of which scales with the charge of the SEP core, which is indicative of a static field effect on the surfactant coating and the associated local chemical environment. This static field also induces ordering in surrounding water molecules that is mediated by charge screening via the surface-bound surfactants. From these SFG measurements, we are able to show that Mo132-based SEPs are more polar than Mo72V30 SEPs. Disorder in the surfactant chain packing at the highly curved SEP surfaces is attributed to large conic volumes that can be sampled without interactions with neighboring chains. Measurements of adsorption isotherms yield free energies of adsorption to the air-water interface of -46.8 ± 0.4 and -44.8 ± 1.2 kJ/mol for the Mo132 and Mo72V30 SEPs, respectively, indicating a strong propensity for the fluid surface. The influence of intermolecular interactions on the surface adsorption energies is discussed. PMID:27452922

  6. Thermodynamics of non-ionic surfactant Triton X-100-cationic surfactants mixtures at the cloud point

    Energy Technology Data Exchange (ETDEWEB)

    Batigoec, Cigdem [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey); Akbas, Halide, E-mail: hakbas34@yahoo.com [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey); Boz, Mesut [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey)

    2011-12-15

    Highlights: > Non-ionic surfactants are used as emulsifier and solubilizate in such as textile, detergent and cosmetic. > Non-ionic surfactants occur phase separation at temperature as named the cloud point in solution. > Dimeric surfactants have attracted increasing attention due to their superior surface activity. > The positive values of {Delta}G{sub cp}{sup 0} indicate that the process proceeds nonspontaneous. - Abstract: This study investigates the effects of gemini and conventional cationic surfactants on the cloud point (CP) of the non-ionic surfactant Triton X-100 (TX-100) in aqueous solutions. Instead of visual observation, a spectrophotometer was used for measurement of the cloud point temperatures. The thermodynamic parameters of these mixtures were calculated at different cationic surfactant concentrations. The gemini surfactants of the alkanediyl-{alpha}-{omega}-bis (alkyldimethylammonium) dibromide type, on the one hand, with different alkyl groups containing m carbon atoms and an ethanediyl spacer, referred to as 'm-2-m' (m = 10, 12, and 16) and, on the other hand, with -C{sub 16} alkyl groups and different spacers containing s carbon atoms, referred to as '16-s-16' (s = 6 and 10) were synthesized, purified and characterized. Additions of the cationic surfactants to the TX-100 solution increased the cloud point temperature of the TX-100 solution. It was accepted that the solubility of non-ionic surfactant containing polyoxyethylene (POE) hydrophilic chain was a maximum at the cloud point so that the thermodynamic parameters were calculated at this temperature. The results showed that the standard Gibbs free energy ({Delta}G{sub cp}{sup 0}), the enthalpy ({Delta}H{sub cp}{sup 0}) and the entropy ({Delta}S{sub cp}{sup 0}) of the clouding phenomenon were found positive in all cases. The standard free energy ({Delta}G{sub cp}{sup 0}) increased with increasing hydrophobic alkyl chain for both gemini and conventional cationic

  7. Surfactant deficiency in rats without a decreased amount of extracellular surfactant.

    OpenAIRE

    Massaro, D; Clerch, L; Temple, D.; Baier, H.

    1983-01-01

    Low volume ventilation without periodic large inflations leads to diminished alveolar stability and to the accumulation of increased amounts of airway disaturated phosphatidylcholine (DSPC) in large aggregates that sediment at 1,000 g; surfactant in this form lowers surface tension less rapidly than surfactant present in the 1,000-g supernatant fraction. These observations led to the present work in which we tested the notion that alveolar instability may develop in the presence of an undimin...

  8. Lung Surfactant Levels are Regulated by Ig-Hepta/GPR116 by Monitoring Surfactant Protein D

    OpenAIRE

    Fukuzawa, Taku; Ishida, Junji; Kato, Akira; Ichinose, Taro; Ariestanti, Donna Maretta; Takahashi, Tomoya; Ito, Kunitoshi; Abe, Jumpei; Suzuki, Tomohiro; Wakana, Shigeharu; Fukamizu, Akiyoshi; Nakamura, Nobuhiro; Hirose, Shigehisa

    2013-01-01

    Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known...

  9. Thermodynamic effects of the hydrophobic surfactant proteins on the early adsorption of pulmonary surfactant.

    OpenAIRE

    Schram, V.; Hall, S B

    2001-01-01

    We determined the influence of the two hydrophobic proteins, SP-B and SP-C, on the thermodynamic barriers that limit adsorption of pulmonary surfactant to the air-water interface. We compared the temperature and concentration dependence of adsorption, measured by monitoring surface tension, between calf lung surfactant extract (CLSE) and the complete set of neutral and phospholipids (N&PL) without the proteins. Three stages generally characterized the various adsorption isotherms: an initial ...

  10. Surfactant-anti-surfactant immune complexes in infants with respiratory distress syndrome.

    OpenAIRE

    Strayer, D. S.; Merritt, T. A.; Lwebuga-Mukasa, J.; Hallman, M

    1986-01-01

    The authors sought to determine whether treatment of respiratory distress syndrome (RDS) with human surfactant resulted in the formation of detectable circulating immune complexes. Preterm infants with severe RDS were divided into two groups: one group received human surfactant by intratracheal instillation and the other group did not. Both groups received ventilatory management involving intermittent mandatory ventilation. Plasma samples were drawn from these babies prior to treatment and at...

  11. Surfactant and pulmonary blood flow distributions following treatment of premature lambs with natural surfactant.

    OpenAIRE

    Jobe, A; Ikegami, M; Jacobs, H.; Jones, S

    1984-01-01

    Prematurely delivered lambs were treated with radiolabeled natural surfactant by either tracheal instillation at birth and before the onset of mechanical ventilation, or after 23 +/- 1 (+/- SE) min of mechanical ventilation. Right ventricular blood flow distributions, left ventricular outputs, and left-to-right ductal shunts were measured with radiolabeled microspheres. After sacrifice, the lungs of lambs receiving surfactant at birth inflated uniformly with constant distending pressure while...

  12. Structural study of surfactant-dependent interaction with protein

    Energy Technology Data Exchange (ETDEWEB)

    Mehan, Sumit; Aswal, Vinod K., E-mail: vkaswal@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, Joachim [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  13. Physicochemical characteristics of PFC surfactants for dry decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Jin; Lee, Chi Woo [Korea University, Seoul (Korea)

    2001-04-01

    Even the trace amount of the used nuclear fuels of high radioactivity are hazardous to the earth and humans. Perfluorocarbons and perfluorocarbon surfactants are emerging to be efficient chemicals in the dry decontamination process of the used fuels of high radioactivity. The theme was undertaken to increase the knowledge on perfluorocarbon surfactants to develop the perfluorocarbon system in the dry decontamination process in Korea. Several cationic and anionic pfc surfactants were synthesized. Effects of pfc surfactants on electrochemical etching of silicon were investigated to form porous silicons. Forces were measured between silicon surfaces and AFM tip in the absence and presence of pfc surfactants. 7 refs., 10 figs. (Author)

  14. Dimeric Surfactants: Promising Ingredients of Cosmetics and Toiletries

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    2013-11-01

    Full Text Available Surfactants are an essential ingredient for cosmetic, toiletries and personal care products for enhancing their performance. Dimeric surfactants demonstrate superiority compared to conventional surfactants in all areas of application. Dimeric surfactants are extremely promising for utilization in various cosmetic formulations viz. shampoo, lotions, creams, conditioners etc. These surfactants possess extremely unique surface properties viz. lower surface tension, unique micellization, low critical micelle concentration (CMC and antimicrobial activity, higher solubilization etc. Dimerics enhance the performances of cosmetics in an extraordinary manner and provide eco-friendly preparations for human epidermis.

  15. Structural study of surfactant-dependent interaction with protein

    International Nuclear Information System (INIS)

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes

  16. Titration procedure for low ethoxylated nonionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Buschmann, N. [Anorganisch-Chemisches Inst., Lehrstuhl fuer Analytische Chemie, Muenster Univ. (Germany); Huelskoetter, F. [Anorganisch-Chemisches Inst., Lehrstuhl fuer Analytische Chemie, Muenster Univ. (Germany)

    1997-01-01

    Highly lipophilic surfactants are frequently used as emulsifiers for preparing oil-in-water emulsions (e.g. coolants lubricants). Typical surfactants used for this purpose are low ethoxylated alcohols and ethoxylated alkylphenols. Due to the low degree of ethoxylation they cannot be analysed by conventional methods. The method described in this article is based on the introduction of an anionic group into the molecule by a derivatization reaction. The reaction product can be determined by conventional titration methods for anionic surfactants without any modification. The use of the new method for other nonionic surfactants like sorbitan esters, (ethoxylated) fatty acid amides or glycerol fatty acid partial esters is also described as well as the sample preparation for coolants lubricants. (orig.) [Deutsch] Lipophile Tenside werden haeufig zur Herstellung von Oel-in-Wasser-Emulsionen verwandt, wie sie beispielsweise in Kuehlschmiermitteln eingesetzt werden. Typische Vertreter dieser Tenside sind niedrig ethoxylierte Fettalkohole und Alkylphenole. Wegen ihres geringen Ethoxylierungsgrades koennen sie mit den konventionellen Methoden nicht analytisch bestimmt werden. Die hier beschriebene Analysenmethode beruht auf der Derivatisierung der Ethoxylate zu entsprechenden anionischen Tensiden (Ethersulfate). Diese koennen ohne weiteres mit den etablierten Titrationsverfahren bestimmt werden. Die Anwendung dieses neuen Verfahrens auf die Bestimmung anderer nichtionischer Tenside - Sorbitanester, (ethoxylierte) Fettsaeureamide und Partialglyceride - wird ebenso beschrieben wie die Probenvorbereitung fuer die Analyse von Kuehlschmiermitteln. (orig.)

  17. A facile surfactant critical micelle concentration determination

    OpenAIRE

    Cai, Lifeng; Gochin, Miriam; Liu, Keliang

    2011-01-01

    Liquid surface curvature variations in microplate wells due to different liquid surface tension cause significant signal change in spectroscopic measurement using a plate reader with a vertical detecting light beam. The signals have been quantitated and used to develop a method for facile surfactant critical micelle concentration determination.

  18. Surfactant protein D is proatherogenic in mice

    DEFF Research Database (Denmark)

    Sorensen, Grith L; Madsen, Jens; Kejling, Karin;

    2006-01-01

    Surfactant protein D (SP-D) is an important innate immune defense molecule that mediates clearance of pathogens and modulates the inflammatory response. Moreover, SP-D is involved in lipid homeostasis, and pulmonary accumulation of phospholipids has previously been observed in SP-D-deficient (Spd...

  19. Surfactants, interfaces and pores: a theoretical study.

    NARCIS (Netherlands)

    Huinink, H.P.

    1998-01-01

    The aim of this study was to investigate the behavior of surfactants in porous media by theoretical means. The influence of curvature of a surface on the adsorption has been studied with a mean field lattice (MFL) model, as developed by Scheutjens and Fleer. An analytical theory has been developed t

  20. Porcine lung surfactant protein B gene (SFTPB)

    DEFF Research Database (Denmark)

    Cirera Salicio, Susanna; Fredholm, Merete

    2008-01-01

    The porcine surfactant protein B (SFTPB) is a single copy gene on chromosome 3. Three different cDNAs for the SFTPB have been isolated and sequenced. Nucleotide sequence comparison revealed six nonsynonymous single nucleotide polymorphisms (SNPs), four synonymous SNPs and an in-frame deletion of 69...

  1. Mitoxantrone-Surfactant Interactions: A Physicochemical Overview

    Directory of Open Access Journals (Sweden)

    Mirela Enache

    2016-10-01

    Full Text Available Mitoxantrone is a synthetic anticancer drug used clinically in the treatment of different types of cancer. It was developed as a doxorubicin analogue in a program to find drugs with improved antitumor activity and decreased cardiotoxicity compared with the anthracyclines. As the cell membrane is the first barrier encountered by anticancer drugs before reaching the DNA sites inside the cells and as surfactant micelles are known as simple model systems for biological membranes, the drugs-surfactant interaction has been the subject of great research interest. Further, quantitative understanding of the interactions of drugs with biomimicking structures like surfactant micelles may provide helpful information for the control of physicochemical properties and bioactivities of encapsulated drugs in order to design better delivery systems with possible biomedical applications. The present review describes the physicochemical aspects of the interactions between the anticancer drug mitoxantrone and different surfactants. Mitoxantrone-micelle binding constants, partitions coefficient of the drug between aqueous and micellar phases and the corresponding Gibbs free energy for the above processes, and the probable location of drug molecules in the micelles are discussed.

  2. Use of two-surfactants mixtures to attain specific HLB values for assisted TPH-diesel biodegradation

    Institute of Scientific and Technical Information of China (English)

    Luis G. Torres; Neftalí Rojas; Rosario Iturbe

    2004-01-01

    In a surfactant assisted biodegradation process, the choice of surfactant(s) is of crucial importance. The question is: does the type of surfactant (i.e. chemical family) affect the biodegradation process at fixed hidrophillic-lypofillic balance HLB values? Microcosm assessments were developed using contaminated soil, with around of 5000 mg/kg of hydrocarbons as TPH-diesel. Mixtures of three nonionic surfactants were employed to get a wide range of specific HLB values. Tween20 and Span20 were mixed in the appropriate proportions to get HLB values between 8.6 and 16.7. Tween/Span60 mixtures reached HLB values between 4.7 and 14.9. Finally, Tween/Span80 combinations yielded HLB values between 4.3 and 15. TPH-diesel biodegradation was measured at the beginning, and after 8 weeks, as well as the FCU/grsoil, as a measure of microorganisms′ development during the biodegradation period. A second aim of this work was to assess the use of guar gum as a biodegradation enhancer instead of synthetic products. The conclusions of this work are that surfactant chemical family, and not only the HLB value clearly affects the assisted biodegradation rate. Surfactant's synergism was clearly observed. Regarding the use of guar gum, no biodegradation enhancement was observed for the three assessed concentrations i.e., 2, 20, and 200 mg/kg, respectively. On the contrary, TPH-diesel removal was lower as the gum concentration increased. It is quite possible that guar gum was used as a microbial substrate.

  3. Molecular Dynamics Simulation for the Effect of Chain Length of Spacer and Tail of Cationic Gemini Surfactant on the Complex with Anionic Polyelectrolyte%连接基团与尾链长度对阳离子Gemini表面活性剂与阴离子聚电解质复合物影响的分子动力学模拟

    Institute of Scientific and Technical Information of China (English)

    徐毅; 冯剑; 尚亚卓; 刘洪来

    2007-01-01

    Interaction of anionic polyelectrolyte with cationic gemini surfactant has been investigated by coarse-grained molecular dynamics simulation. Polyelectrolyte facilitates the oppositely charged ionic surfactants to aggregate by suppressing the electrostatic repulsion between ionic head groups leading to the formation of micellar complex. With addition of surfactant, the conformation of polyion chain changes from stretched to random coiled to spherical, and at the same time more free micelles are formed by surfactants in mixtures. Increasing the length of spacer or tail chain in gemini surfactant will weaken its interaction with polyelectrolyte and simultaneously strengthen its tendency to self-assemble. The simulation results are consistent with experimental observations and reveal that the electrostatic interaction plays an important role in the interaction of polyelectrolyte with gemini surfactant.

  4. Degradation of pulmonary surfactant disaturated phosphatidylcholines by alveolar macrophages

    International Nuclear Information System (INIS)

    Experiments were performed to determine whether rat pulmonary surfactant disaturated phosphatidylcholines (DSPC) are degraded by alveolar macrophages in vitro. When [3H]choline-labeled surfactant materials are incubated with unlabeled alveolar macrophages, approximately 40% of the labeled DSPC is broken down in 6 h. There is just a slight decrease in the specific activity of DSPC, which suggests that most products of degradation are not reincorporated into DSPC, at least during the 6-h incubation period. There is a time- and temperature-dependent association of surfactant DSPC with alveolar macrophages, and some of the cell-associated materials are released from the cell fragments after sonication. Association of surfactant with the cells precedes degradation. The breakdown of surfactant DSPC by intact alveolar macrophages lags behind that produced by sonicated cell preparations with disrupted cell membranes. These data and other information suggest that the surfactant materials are internalized by the cells, before the breakdown. The products of degradation probably include free choline and fatty acids, most of which appear in the extracellular fluid. The breakdown processes do not seem to depend on the physical form of the surfactant or on the presence of surfactant apoproteins. Incubation of the cells alone also results in disappearance of intracellular DSPC, some of which may be surfactant phospholipid taken up by the cells in vivo. These results indicate that alveolar macrophages can degrade surfactant DSPC and suggest that these cells may be involved in catabolism of pulmonary surfactant materials

  5. Pulmonary surfactants and their role in pathophysiology of lung disorders.

    Science.gov (United States)

    Akella, Aparna; Deshpande, Shripad B

    2013-01-01

    Surfactant is an agent that decreases the surface tension between two media. The surface tension between gaseous-aqueous interphase in the lungs is decreased by the presence of a thin layer of fluid known as pulmonary surfactant. The pulmonary surfactant is produced by the alveolar type-II (AT-II) cells of the lungs. It is essential for efficient exchange of gases and for maintaining the structural integrity of alveoli. Surfactant is a secretory product, composed of lipids and proteins. Phosphatidylcholine and phosphatidylglycerol are the major lipid constituents and SP-A, SP-B, SP-C, SP-D are four types of surfactant associated proteins. The lipid and protein components are synthesized separately and are packaged into the lamellar bodies in the AT-II cells. Lamellar bodies are the main organelle for the synthesis and metabolism of surfactants. The synthesis, secretion and recycling of the surfactant lipids and proteins is regulated by complex genetic and metabolic mechanisms. The lipid-protein interaction is very important for the structural organization of surfactant monolayer and its functioning. Alterations in surfactant homeostasis or biophysical properties can result in surfactant insufficiency which may be responsible for diseases like respiratory distress syndrome, lung proteinosis, interstitial lung diseases and chronic lung diseases. The biochemical, physiological, developmental and clinical aspects of pulmonary surfactant are presented in this article to understand the pathophysiological mechanisms of these diseases. PMID:23441475

  6. Atomic force microscopy analysis of rat pulmonary surfactant films.

    Science.gov (United States)

    Jiao, Xiujun; Keating, Eleonora; Tadayyon, Seyed; Possmayer, Fred; Zuo, Yi Y; Veldhuizen, Ruud A W

    2011-10-01

    Pulmonary surfactant facilitates breathing by forming a surface tension reducing film at the air-liquid interface of the alveoli. The objective was to characterize the structure of surfactant films using endogenous rat surfactant. Solid-support surfactant films, at different surface pressures, were obtained using a Langmuir balance and were analyzed using atomic force microscopy. The results showed a lipid film structure with three distinct phases: liquid expanded, liquid ordered and liquid condensed. The area covered by the liquid condensed domains increased as surface pressure increased. The presence of liquid ordered phase within these structures correlated with the cholesterol content. At a surface pressure of 50 mN/m, stacks of bilayers appeared. Several structural details of these films differ from previous observations made with goat and exogenous surfactants. Overall, the data indicate that surfactant films demonstrate phase separation at low surface pressures and multilayer formation at higher pressure, features likely important for normal surfactant function. PMID:21704443

  7. Status of surfactants as penetration enhancers in transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Iti Som

    2012-01-01

    Full Text Available Surfactants are found in many existing therapeutic, cosmetic, and agro-chemical preparations. In recent years, surfactants have been employed to enhance the permeation rates of several drugs via transdermal route. The application of transdermal route to a wider range of drugs is limited due to significant barrier to penetration across the skin which is associated with the outermost stratum corneum layer. Surfactants have effects on the permeability characteristics of several biological membranes including skin. They have the potential to solubilize lipids within the stratum corneum. The penetration of the surfactant molecule into the lipid lamellae of the stratum corneum is strongly dependent on the partitioning behavior and solubility of surfactant. Surfactants ranging from hydrophobic agents such as oleic acid to hydrophilic sodium lauryl sulfate have been tested as permeation enhancer to improve drug delivery. This article reviews the status of surfactants as permeation enhancer in transdermal drug delivery of various drugs.

  8. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-02-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine.

  9. Polyethoxylated carboxylic surfactant for ion foam flotation: fundamental study from solution to foam

    International Nuclear Information System (INIS)

    Ion foam flotation allows to concentrate ions in a foam phase formed by a soap. For classical systems, the strong interaction between ions and surfactant generally leads to the formation of precipitates and of froth. When the froth collapses, the solid residue thus recovered requires a recycling or conversion. In order to remedy this, the present work uses as collector a polyethoxylated carboxylic surfactant, AKYPO RO 90 VG, which forms soluble ion/surfactant complexes, even with multi-charge ions. This work presents a detailed study of the fundamental mechanisms that govern the extraction of ions by foaming. In the first part, surface activity and acid/base properties of the surfactant in solution are determined by combining numerous independent techniques which are pH-metric dosage, tensiometry and small angle scattering. The evolution of these properties in the presence of different nitrate salts (Nd, Eu, Ca, Sr, Cu, Li, Na, Cs) coupled with electrophoretic measurements give a first approach to selectivity. Finally, all of these data combined with a study of the formation of surfactant/ion complexes allow us to determine the speciation of Nd/AKYPO system as a function of pH. In the second part, the analysis of the foam by conductivity and neutron scattering provides information on the wetness and foam film thickness, parameters governing foam stability. The pH and the nature of the added ions, their number of charge and also their chemical nature thus appear to be major parameters that governed wetness and foam film thickness. The last part is devoted to the understanding of the ion extraction/separation experiments by flotation based on all previous results. It is shown that the flotation of neodymium is strongly related to its speciation, which could lead to its re-extraction or its flotation in precipitated form. It is shown that, neodymium induces a phenomenon of mono-charge ion depletion in the foam. This ionic specificity allows to consider the studied

  10. Enhance transdermal delivery of flurbiprofen via microemulsions: Effects of different types of surfactants and cosurfactants

    Science.gov (United States)

    Idrees, MA.; Rahman, NU.; Ahmad, S.; Ali, MY.; Ahmad, I.

    2011-01-01

    Background and the purpose of the study Microemulsions are thermodynamically stable, clear dispersions of water, oil, surfactant, and cosurfactant. This study was aimed to develop flurbiprofen microemulsion for enhanced transdermal delivery and investigate the effects of different surfactants and cosurfactants on its delivery and phase behavior. Method Various surfactant-cosurfactant mixtures in ratio of 2:1 (Smix) along with oleic acid (oil) were selected and phase diagrams were constructed. Six microemulsions each containing 5% drug, 5% oil, 56% Smix and 34% water, were prepared and compared for their permeation and phase behaviors to determine the effects of the type of Smix. Results In vitro transdermal permeation through rabbit skin of all microemulsions was high than saturated aqueous drug solution. Tween 20 and ethanol as Smix produced the highest flux amongst all the Smix, and were used to prepare formulations with different values of oil and Smix. While the type of surfactant did not affect the droplet size, propylene glycol as cosurfactant produced the largest droplets and highest viscosity. Decrease in oil or Smix concentration resulted in decrease of the droplet size and increase in permeation flux while decrease in viscosity also increased the permeation flux of microemulsions. Finally the selected microemulsion formulation comprising 5% flurbiprofen, 5% oleic acid, 46% Tween 20:ethanol (2:1) and 44% water, showed the highest transdermal flux and caused no skin irritation. Conclusion Type of surfactant and cosurfactant affect both the phase behavior and transdermal drug delivery of microemulsion; and results of this study showed that they are promising vehicles for improved transdermal delivery and sustained action of flurbiprofen. PMID:23008689

  11. Enhance Transdermal Delivery of Flurbiprofen Via Microemulsions: Effects of Different Types of Surfactants and Cosurfactants

    Directory of Open Access Journals (Sweden)

    S. Ahmad

    2011-12-01

    Full Text Available Background and the purpose of the study: Microemulsions are thermodynamically stable, clear dispersions of water, oil, surfactant, and cosurfactant. This study was aimed to develop flurbiprofen microemulsion for enhanced transdermal delivery and investigate the effects of different surfactants and cosurfactants on its delivery and phase behavior.Method: Various surfactant-cosurfactant mixtures in ratio of 2:1 (Smix along with oleic acid (oil were selected and phase diagrams were constructed. Six microemulsions each containing 5% drug, 5% oil, 56% Smix and 34% water, were prepared and compared for their permeation and phase behaviors to determine the effects of the type of Smix.Results: In vitro transdermal permeation through rabbit skin of all microemulsions was high than saturated aqueous drug solution. Tween 20 and ethanol as Smix produced the highest flux amongst all the Smix, and were used to prepare formulations with different values of oil and Smix. While the type of surfactant did not affect the droplet size, propylene glycol as cosurfactant produced the largest droplets and highest viscosity. Decrease in oil or Smix concentration resulted in decrease of the droplet size and increase in permeation flux while decrease in viscosity also increased the permeation flux of microemulsions. Finally the selected microemulsion formulation comprising 5% flurbiprofen, 5% oleic acid, 46% Tween 20:ethanol (2:1 and 44% water, showed the highest transdermal flux and caused no skin irritation.Conclusion: Type of surfactant and cosurfactant affect both the phase behavior and transdermal drug delivery of microemulsion; and results of this study showed that they are promising vehicles for improved transdermal delivery and sustained action of flurbiprofen.

  12. An overview of pulmonary surfactant in the neonate: genetics, metabolism, and the role of surfactant in health and disease.

    Science.gov (United States)

    Nkadi, Paul O; Merritt, T Allen; Pillers, De-Ann M

    2009-06-01

    Pulmonary surfactant is a complex mixture of phospholipids (PL) and proteins (SP) that reduce surface tension at the air-liquid interface of the alveolus. It is made up of about 70-80% PL, mainly dipalmitoylphosphatidylcholine (DPPC), 10% SP-A, B, C and D, and 10% neutral lipids, mainly cholesterol. Surfactant is synthesized, assembled, transported and secreted into the alveolus where it is degraded and then recycled. Metabolism of surfactant is slower in newborns, especially preterm, than in adults. Defective pulmonary surfactant metabolism results in respiratory distress with attendant morbidity and mortality. This occurs due to accelerated breakdown by oxidation, proteolytic degradation, inhibition or inherited defects of surfactant metabolism. Prenatal corticosteroids, surfactant replacement, whole lung lavage and lung transplantation have yielded results in managing some of these defects. Gene therapy could prove valuable in treating inherited defects of surfactant metabolism. PMID:19299177

  13. Structure and Conformational Dynamics of DMPC/Dicationic Surfactant and DMPC/Dicationic Surfactant/DNA Systems

    Science.gov (United States)

    Pietralik, Zuzanna; Krzysztoń, Rafał; Kida, Wojciech; Andrzejewska, Weronika; Kozak, Maciej

    2013-01-01

    Amphiphilic dicationic surfactants, known as gemini surfactants, are currently studied for gene delivery purposes. The gemini surfactant molecule is composed of two hydrophilic “head” groups attached to hydrophobic chains and connected via molecular linker between them. The influence of different concentrations of 1,5-bis (1-imidazolilo-3- decyloxymethyl) pentane chloride (gemini surfactant) on the thermotropic phase behaviour of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers with and without the presence of DNA was investigated using Fourier transformed infrared (FTIR) and circular dichroism (CD) spectroscopies, small angle scattering of synchrotron radiation and differential scanning calorimetry. With increasing concentration of surfactant in DMPC/DNA systems, a disappearance of pretransition and a decrease in the main phase transition enthalpy and temperature were observed. The increasing intensity of diffraction peaks as a function of surfactant concentration also clearly shows the ability of the surfactant to promote the organisation of lipid bilayers in the multilayer lamellar phase. PMID:23571492

  14. "The effects of polysorbate surfactants on the structure of mucus Glycoproteins "

    Directory of Open Access Journals (Sweden)

    Sajadi Tabassi A

    2001-07-01

    Full Text Available A dynamic oscillatory technique was used to assess the effect of polysorbate non-ionic surfactants on mucus rheology. Adherent mucus gel was scraped from the surface mucosa of pig stomachs and purified by gel exclusion chromatography followed by ultrafiltration and gelation. Rheological measurements of this gel were carried out on a Carri-Med Controlled Stress Rheometer. Appropriate volumes of surfactant solution were added to weighed samples of mucus gel so that a final concentration of 20 mM surfactant was achieved in a gel containing 8% w/w solids content. Polysorbate 20 (PS20, polysorbate 40 (PS40, polysorbate 60 (PS60 and polysorbate 80 (PS80 all decreased both storage (elastic modulus G’ and loss (viscous modulus G’’ significantly at 10 Hz (PPS20>PS60>PS40. The mechanisms by which surfactants disturb the mucus structure are not fully understood, nonetheless, they could possibly affect the mucus gel properties by causing depletion of the glycoprotein constituents such as non-mucin proteins and mucin associated lipids. This might lead to the conclusion that polysorbates, by reducing the viscoelasticity of mucus gel could alleviate its barrier properties and facilitate the diffusion of concomitantly administered drugs via mucus gel.

  15. A Proposed In Vitro Method to Assess Effects of Inhaled Particles on Lung Surfactant Function.

    Science.gov (United States)

    Sørli, Jorid B; Da Silva, Emilie; Bäckman, Per; Levin, Marcus; Thomsen, Birthe L; Koponen, Ismo K; Larsen, Søren T

    2016-03-01

    The lung surfactant (LS) lining is a thin liquid film covering the air-liquid interface of the respiratory tract. LS reduces surface tension, enabling lung surface expansion and contraction with minimal work during respiration. Disruption of surface tension is believed to play a key role in severe lung conditions. Inhalation of aerosols that interfere with the LS may induce a toxic response and, as a part of the safety assessment of chemicals and inhaled medicines, it may be relevant to study their impact on LS function. Here, we present a novel in vitro method, based on the constrained drop surfactometer, to study LS functionality after aerosol exposure. The applicability of the method was investigated using three inhaled asthma medicines, micronized lactose, a pharmaceutical excipient used in inhaled medication, and micronized albumin, a known inhibitor of surfactant function. The surfactometer was modified to allow particles mixed in air to flow through the chamber holding the surfactant drop. The deposited dose was measured with a custom-built quartz crystal microbalance. The alterations allowed the study of continuously increasing quantified doses of particles, allowing determination of the dose of particles that affects the LS function. The tested pharmaceuticals did not inhibit the function of a model LS even at extreme doses--neither did lactose. Micronized albumin, however, impaired surfactant function. The method can discriminate between safe inhaled aerosols--as exemplified by the approved inhaled medicines and the pharmaceutical excipient lactose--and albumin known to impair lung functionality by inhibiting LS function. PMID:26524226

  16. The Influence of Soluble Surfactant on Bubble Progression in Rigid Capillaries

    Science.gov (United States)

    Ghadiali, Samir; Gaver, Donald P.

    1999-11-01

    The displacement of a viscous fluid by a semi-infinite air bubble models the continual interfacial expansion aspects of opening collapsed pulmonary airways. The mechanics of this system, especially the interfacial pressure drop Δ P, is affected by the local surface tension γ. Surfactant in the bulk fluid can be transported to the interface, where it adsorbs with a concentration Γ and alters γ via a non-linear equation of state γ=f(Γ). The ability to lower γ and therefore Δ P is a function of several physicochemical parameters: Pe, relating convection and diffusion in the bulk; Sta and St_d, comparing adsorptive and desorptive rates to interfacial creation rates; λ, the dimensionless adsorption depth; and El, representing the surfactant strength. To investigate the influence of these parameters, we develop a theoretical model of semi-infinite bubble progression in rigid capillaries under the influence of surfactant. The coupled governing equations for Stokes flow, interfacial transport, and bulk convection-diffusion are solved with the Boundary Element Method, finite differences, and a novel technique known as the Dual Reciprocity Boundary Element Method. This model may be used to determine optimal physicochemical properties and therefore may be useful in the development of clinical surfactant.

  17. Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells

    Science.gov (United States)

    Dong, Lifeng; Witkowski, Colette M.; Craig, Michael M.; Greenwade, Molly M.; Joseph, Katherine L.

    2009-12-01

    Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT) conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL) for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC) and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood-brain barrier to the brain and the central nervous system.

  18. Manipulating perfume delivery to the interface using polymer-surfactant interactions.

    Science.gov (United States)

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig

    2016-03-15

    Enhanced delivery of perfumes to interfaces is an important element of their effectiveness in a range of home and personal care products. The role of polyelectrolyte-surfactant mixtures to promote perfume adsorption at interfaces is explored here. Neutron reflectivity, NR, was used to quantify the adsorption of the model perfumes phenylethanol, PE, and linalool, LL, at the air-water interface in the presence of the anionic surfactant sodium dodecylsulfate, SDS, and the cationic polyelectrolytes, poly(dimethyldiallyl ammonium chloride), polydmdaac, and poly(ethyleneimine), PEI. The strong SDS-polydmdaac interaction dominates the surface adsorption in SDS-polymer-perfume (PE, LL) mixtures, such that the PE and LL adsorption is greatly suppressed. For PEI-SDS-perfume mixtures the PEI-LL interaction competes with the SDS-PEI interaction at all pH at the surface and significant LL adsorption occurs, whereas for PE the PEI-SDS interaction dominates and the PE adsorption is greatly reduced. The use of the strong surface polyelectrolyte-ionic surfactant interaction to manipulate perfume adsorption at the air-water interface has been demonstrated. In particular the results show how the competition between polyelectrolyte, surfactant and perfume interactions at the surface and in solution affect the partitioning of perfumes to the surface.

  19. Washing-resistant surfactant coated surface is able to inhibit pathogenic bacteria adhesion

    Science.gov (United States)

    Treter, Janine; Bonatto, Fernando; Krug, Cristiano; Soares, Gabriel Vieira; Baumvol, Israel Jacob Rabin; Macedo, Alexandre José

    2014-06-01

    Surface-active substances, which are able to organize themselves spontaneously on surfaces, triggering changes in the nature of the solid-liquid interface, are likely to influence microorganism adhesion and biofilm formation. Therefore, this study aimed to evaluate chemical non-ionic surfactants activity against pathogenic microbial biofilms and to cover biomaterial surfaces in order to obtain an anti-infective surface. After testing 11 different surfactants, Pluronic F127 was selected for further studies due to its non-biocidal properties and capability to inhibit up to 90% of biofilm formation of Gram-positive pathogen and its clinical isolates. The coating technique using direct impregnation on the surface showed important antibiofilm formation characteristics, even after extensive washes. Surface roughness and bacterial surface polarity does not influence the adhesion of Staphylococcus epidermidis, however, the material coated surface became extremely hydrophilic. The phenotype of S. epidermidis does not seem to have been affected by the contact with surfactant, reinforcing the evidence that a physical phenomenon is responsible for the activity. This paper presents a simple method of surface coating employing a synthetic surfactant to prevent S. epidermidis biofilm formation.

  20. Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells

    Directory of Open Access Journals (Sweden)

    Witkowski Colette

    2009-01-01

    Full Text Available Abstract Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS and sodium dodecylbenzene sulfonate (SDBS are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood–brain barrier to the brain and the central nervous system.

  1. Micellization and microstructural studies between amphiphilic drug ibuprofen with non-ionic surfactant in aqueous urea solution

    International Nuclear Information System (INIS)

    Highlights: • Micellization behavior of (ibuprofen + non-ionic surfactant) mixtures has been investigated. • Ion–dipole type of interaction between ibuprofen drug and non-ionic surfactant. • The negative β values propose attractive interactions between the components. • Stern–Volmer binding constants (Ksv) and dielectric constant of mixed systems have also been evaluated. • The results have applicability in drug delivery. - Abstract: Herein, we have accounted for the interaction between a non-steroidal anti-inflammatory drug ibuprofen (IBF) and non-ionic surfactant polyethoxyglycol t-octylphenyl ether (TX-100 (4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol) and TX-114 ((1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol)), in aqueous urea solutions using tensiometric and fluorimetric techniques at T = 298.15 K. Surface tension measurements were carried out to evaluate the critical micelle concentrations (cmc) of the drug and surfactant as well as their mixtures of varying compositions. An increase in the surface charge of the micelles was observed with the addition of urea followed by halt of micelles formation. Various physicochemical parameters, such as, cmc values of the mixture, micellar mass fraction (X1Rub) of surfactants (TX-100/TX-114), interaction parameters (β) at the monolayer air–water interface and in bulk solutions, different thermodynamic parameters and activity coefficients (f1m,f2m) for the non-ionic surfactant and drug in the mixed micelles, were determined by using the approach of Clint, of Rubingh, and of Rosen. All results identified synergism and attractive interactions in the mixed systems of (drug–surfactant) mixtures and showed effective involvement of the non-ionic surfactant (TX-100/TX-114) component in the mixture. Micelle aggregation numbers (Nagg), evaluated by using steady-state fluorescence quenching studies, suggest that the contribution of non-ionic surfactant was always more than that of the drug

  2. Effect of Polyelectrolyte Stiffness and Solution pH on the Nanostructure of Complexes Formed by Cationic Amphiphiles and Negatively Charged Polyelectrolytes.

    Science.gov (United States)

    Ram-On, Maor; Cohen, Yachin; Talmon, Yeshayahu

    2016-07-01

    The interaction between amphiphiles and polyelectrolytes has been widely investigated in recent years due to their potential application in industry and medicine, with special focus on gene therapy. The cationic lipid dioleoyl trimethylammonium propane, DOTAP, and the oppositely charged polyelectrolytes, sodium poly(acrylic acid) and sodium poly(styrenesulfonate), form multilamellar complexes in water. Because of the different molecular stiffness of the two polyelectrolytes, they form different nanostructured complexes. Also, because of the different ionization behavior of the two polyelectrolytes, pH differently affects the complexation of the polyelectrolytes with didodecyldimethylammonium bromide (DDAB), another cationic surfactant. We used cryogenic temperature transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS) to compare the nanostructures formed. Our results show that although the basic nanostructures of the complexes are always lamellar (multilamellar or unilamellar) the morphology of the complexes is affected by the polyelectrolyte rigidity and the solution pH. PMID:27049758

  3. A quantitative appraisal of the binding interactions between an anionic dye, Alizarin Red S, and alkyloxypyridinium surfactants: a detailed micellization, spectroscopic and electrochemical study.

    Science.gov (United States)

    Sharma, Renu; Kamal, Ajar; Mahajan, Rakesh Kumar

    2016-02-14

    The interactions of an anionic redox-active dye Alizarin Red S (ARS) with novel N-hydroxyethyl-3-alkyloxypyridinium surfactants 1-(2-hydroxyethyl)-3-(tetradecyloxy)pyridinium bromide, [HEC14OPyBr], and 1-(2-hydroxyethyl)-3-(hexadecyloxy)pyridinium bromide, [HEC16OPyBr], were investigated in an aqueous solution for the first time with an attempt to obtain comprehensive knowledge of oppositely charged dye-surfactant mixed systems. Different state-of-the-art techniques viz. conductivity, surface tension (ST), UV-visible spectroscopy, cyclic voltammetry (CV), linear sweep voltammetry (LSV), potentiometry, dynamic light scattering (DLS) and (1)H-NMR analysis have been employed. The presence of ARS decreases the critical micelle concentration (cmc) of alkyloxypyridinium surfactants as the ARS monomers behave as aromatic counterions. A combined analysis of the techniques revealed the existence of cation-π, π-π stacking, H-bonding, electrostatic and hydrophobic interactions among ARS and alkyloxypyridinium surfactants. A quantitative appraisal of the process of interaction among ARS and alkyloxypyridinium surfactants has been made in terms of various micellar, binding and electrochemical parameters evaluated using ST, UV-visible and voltammetric measurements. Also, the results extracted from (1)H-NMR and voltammetric measurements indicate that the catechol moiety of ARS is involved in the binding mechanism among ARS and alkyloxypyridinium surfactants. PMID:26727388

  4. Activity, stability and kinetic parameters for -chymotrypsin catalysed reactions in AOT/isooctane reverse micelles with nonionic and zwitterionic mixed surfactants

    Indian Academy of Sciences (India)

    Santosh Kumar Verma; Kallol K Ghosh

    2013-07-01

    Reverse micelles (RMs) of sodium 1,4-bis(2-ethylhexyl)sulphosuccinate (AOT) in nonpolar organic solvents are widely known to have very high solubilization power for water. The method is applied to the hydrolysis of -nitrophenyl acetate (PNPA) catalysed by -chymotrypsin (-CT) in AOT/isooctane/buffer RMs. The increase in -CT activity and stability was an optimum at wo ([H2O]/[AOT]) = 10, z [Isooctane]/[AOT]) = 5. Three typical surfactants were selected based on their head group charges: a non-ionic surfactant Triton-X 100 and two zwitterionic sulphobetaine surfactants of the type CH2+1N+Me2 (CH2)3 SO$^{−}_{3}$ (n = 10; SB3-10, n = 16; SB3-16). The kinetic parameters (such as cat and M) of the -CT at 27°C were determined and compared in the absence and presence of three surfactants. The effect of chain length of zwitterionic surfactant (SB3-10 and SB3-16) on the enzymatic efficacy of -CT as a function of mixed surfactant addition has been investigated in AOT/isooctane RMs at pH 7.75.

  5. The structure of normal ionic micelles by interpretation of small-angle neutron scattering data from selectively labeled (2H, 19F) surfactant solutions

    International Nuclear Information System (INIS)

    We have determined the structure of micelles formed in water by several classes of ionic surfactants under a variety of experimental conditions using small-angle neutron scattering (SANS) techniques. Contrast between the micelles and the solvent was achieved through either selective deuteration or fluorination of the surfactant, or through the use of D2O. Interpretation of SANS data was facilitated by the use of Hayter, Penfold, and Hansen's rescaled Mean Spherical Approximation theory to calculate the scattering due to interparticle interactions. We have devised a number of micelle models, both spherical and ellipsoidal, to account for the scattering due to single micelles. It was found that changing the solvent from H2O to D2O results in the formation of larger micelles due to changes in the solvent-surfactant hydrocarbon interactions. This solvent isotope effect increased as the length of the alkyl chain increased. The fractional micellar charge did not change with respect to isotopic composition of solvent. We found that alkyltrimethylammonium bromide surfactants form drier micelles than do the sodium alkyl sulfate surfactants of equal chain length. Also, all micelles studied were found to be dry near the critical micelle concentration (cmc) and to become increasingly wetter as the concentration increased. The increase in aggregation number with respect to the square root of surfactant concentration was found to be linear for all systems studied. 80 figs

  6. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller

    2006-09-09

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase. A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as well as a

  7. Mass Stranding of Marine Birds Caused by a Surfactant-Producing Red Tide

    OpenAIRE

    Jessup, David A.; Miller, Melissa A.; Ryan, John P.; Nevins, Hannah M.; Kerkering, Heather A.; Abdou Mekebri; Crane, David B.; Tyler A Johnson; Kudela, Raphael M.

    2009-01-01

    In November-December 2007 a widespread seabird mortality event occurred in Monterey Bay, California, USA, coincident with a massive red tide caused by the dinoflagellate Akashiwo sanguinea. Affected birds had a slimy yellow-green material on their feathers, which were saturated with water, and they were severely hypothermic. We determined that foam containing surfactant-like proteins, derived from organic matter of the red tide, coated their feathers and neutralized natural water repellency a...

  8. Use of polymers and a surfactant in the treatment of Kraft process wastewater

    OpenAIRE

    Seyffert, Hans J.

    1988-01-01

    This study-investigated the use of cationic polymers, and a surfactant, EHDABr, in the color removal treatment of Kraft pulp and paper wastewater. Four polymers were evaluated for their color removal performance by jar test procedures. The polymers removed between 77 and 87% of the wastewater color. The affect of pH upon polymer performance varied with the polymer tested. Powdered activated carbon addition improved the performance of the polymers. The color removal abili...

  9. Surfactant maturation is not delayed in human fetuses with diaphragmatic hernia.

    OpenAIRE

    Olivier Boucherat; Alexandra Benachi; Bernadette Chailley-Heu; Marie-Laure Franco-Montoya; Caroline Elie; Jelena Martinovic; Bourbon, Jacques R

    2007-01-01

    Editors' Summary Background. Congenital diaphragmatic hernia (CDH), a fetal malformation in which the abdominal organs are displaced into the chest cavity, occurs in approximately one out of 3,000 live births and accounts for approximately 8% of major birth defects. The displaced lungs tend to be underdeveloped at birth, and decreased lung function is a major cause of sickness and death in affected babies. Pulmonary surfactant, a substance naturally produced by cells in the lungs in the weeks...

  10. Nanofiltration: ion exchange system for effective surfactant removal from water solutions

    OpenAIRE

    Kowalska, I

    2014-01-01

    A system combining nanofiltration and ion exchange for highly effective separation of anionic surfactant from water solutions was proposed. The subjects of the study were nanofiltration polyethersulfone membranes and ion-exchange resins differing in type and structure. The quality of the treated solution was affected by numerous parameters, such as quality of the feed solution, membrane cut-off, resin type, dose and the solution contact time with the resin. A properly designed purification sy...

  11. A theoretical study of diffusional transport over the alveolar surfactant layer

    OpenAIRE

    Åberg, Christoffer; Sparr, Emma; Larsson, Marcus; Wennerström, Håkan

    2010-01-01

    In this communication, we analyse the passage of oxygen and carbon dioxide over the respiratory membrane. The lung surfactant membrane at the alveolar interface can have a very special arrangement, which affects the diffusional transport. We present a theoretical model for the diffusion of small molecules in membranes with a complex structure, and we specifically compare a membrane composed of a tubular bilayer network with a membrane consisting of a stack of bilayers. Oxygen and carbon dioxi...

  12. Alcohol--Induced Polyelectrolyte-Surfactant Complex Coacervate Systems: Characterization and Applications in Enzyme and Protein Extraction

    Science.gov (United States)

    Nejati Moshtaghin, Mahboubeh

    The focus of this thesis is to achieve a better understanding of the newly discovered surfactant-polyelectrolyte complex coacervate (SPCC) systems induced by fluoroalcohol/acid as well as short chain aliphatic alcohol; and to elucidate their applications in extraction and enrichment of proteins and enzyme. We have discovered that fluoroalcohols and --acids induce complex coacervation and phase separation in the aqueous mixtures of oppositely charged anionic polyelectrolytes; specifically, sodium salts of polyacrylic acid and polymethacrylic acid and cationic surfactant (cetyltrimethylammonium bromide, CTAB) over a broad range of concentrations of mole fractions of the oppositely charged amphiphiles. Accordingly, these new classes of coacervators will significantly broaden the scope and facilitate engineering of new coacervate phases. Toward these goals, we have inspected the formation of surfactant-polyelectrolyte complex coacervates in the presence of fluoroalcohols namely hexafluoroisopropanol (HFIP) and Trifluoroethanol (TFE). Furthermore, the extent of coacervation as a function of concentrations the system components, and charge ratios of the oppositely charged amphiphiles has been investigated. Polyelectrolytes are considered to be milder reagents, as compared to surfactants, regarding proteins denaturation. This highlights the importance of a detailed investigation of the efficiency of our coacervate systems for extraction and preconcentration of proteins and enzymes, especially, when the biological activity of the extracted proteins needs to be maintained based on the objectives mentioned above, the results of the investigations have been organized in four chapters. In Chapter II, the phase behavior of the FA-SPCC will be investigated. The objective is to examine the phase behavior and phase properties with respect to the extent of coacervation in different solution conditions. In particular, the effects of different solution variables such as concentration

  13. Cycle-Induced Flow and Surfactant Transport in an Alveolus

    Science.gov (United States)

    Wei, H. H.

    2002-11-01

    The flow and transport in an alveolus are of fundamental importance to partial liquid ventilation, surfactant transport, pulmonary drug administration, cell-cell signaling pathways and gene therapy. We model the system in which an alveolus is partially filled with liquid in the presence of surfactants. Assuming a circular interface due to sufficiently strong surface tension, we can apply two-dimensional bipolar coordinates to describe the system. We then combine analytical and numerical techniques to solve the Stokes flow and the surfactant concentration. In the absence of surfactants, there is no steady streaming because of reversibility of the Stokes flow. The presence of surfactants however induces a non-trivial cycle-averaged surfactant concentration gradient along the interface that generates steady streaming. The steady streaming patterns (e.g., number of vortices) depend on the parameters, especially on the ratio of inspiration to expiration periods (I:E ratio). Either smaller or larger I:E ratio exhibits two primary vortices but the direction of primary vortices for small I:E is opposite to large I:E. Extension to soluble surfactants is also discussed. For sufficiently high surfactant bulk concentration, the surfactant transport is sorption-controlled and soluble surfactants diminish the size of steady vortices near the alveolar opening. For the estimated steady velocity u 10-5 cm/s, the corresponding Peclet number is 10-7/ D_m. Therefore, for Dm <= 10-7 cm^2/s, the convective transport dominates.

  14. Surfactant-enhanced spreading: Experimental achievements and possible mechanisms.

    Science.gov (United States)

    Kovalchuk, N M; Trybala, A; Arjmandi-Tash, O; Starov, V

    2016-07-01

    Surfactants are broadly used to improve wetting properties of aqueous formulations. The improvement is achieved by essential reduction of liquid/air and solid/liquid interfacial tensions resulting in the decrease of contact angle. For moderately hydrophobic substrates, there is a range of surfactants providing complete wetting of substrate. With the decrease of substrate surface energy, this range of surfactants reduces very quickly and only trisiloxane surfactant solutions are capable to wet completely such highly hydrophobic substrates as polypropylene and parafilm. That is why these surfactants are referred to as superspreaders. The most intriguing feature of wetting surfactant solutions is their ability to spread much faster than pure liquids with spread area, S, being proportional to time, t, S~t, as compared to S~t(0.2) for pure liquids, which wet completely the solid substrate. Trisiloxane surfactant solutions spread faster than other aqueous surfactant solutions, which also provide complete wetting, being superspreaders in the sense of spreading rate as well. The mechanism of fast spreading of surfactant solutions on hydrophobic substrates and much higher spreading rates for trisiloxane solutions are to be explained. Below the available experimental data on superspreading and surfactant-enhanced spreading are analysed/summarised, and possible mechanisms governing the fast spreading are discussed. PMID:26282600

  15. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.

  16. Modeling of surfactant transport and adsorption in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Chung, F.T.H.

    1991-04-01

    When surfactant solution is flowing in a reservoir formation, surfactants will be diluted by flow dispersion, retained in dead-end pores, adsorbed on rock surfaces, or precipitated due to ion exchange. The loss of surfactant will be detrimental to the performance of gas foam. Information of surfactant concentration profiles in reservoir formations is essential for gas foaming technique development. The major objective of this research is to investigate with mathematical models the transport and dynamic adsorption of surfactants in porous media. The mathematical models have taken into account the convection, dispersion, capacitance, and adsorption effects on concentrations of surfactants. Numerical methods and computer programs have been developed which can be used to match experimental results and to determine the characterization parameters in the models. The models can be included in foam simulation programs to calculate surfactant concentration profiles in porous media. A flow experimental method was developed to measure the effluent surfactant concentration, which will be used to determine the model parameters. Commercial foaming agent Alipal CD-128 was used in this study. Equilibrium adsorption and surfactant precipitation have been tested. Tracer solutions with a nonadsorbing solute such as dextrose and sucrose were used to determine the dispersion parameters for the experimental sandpack; thus, the adsorption of the surfactant in the test sand can be identified with an adequate model. 49 refs., 21 figs.

  17. A high-resolution study of surfactant partitioning and kinetic limitations for two-component internally mixed aerosols

    Science.gov (United States)

    Suda, S. R.; Petters, M. D.

    2013-12-01

    Atmospheric aerosols serve as cloud condensation nuclei (CCN), altering cloud properties and ultimately affecting climate through their effect on the radiative balance. Aerosol CCN activity depends in part on aerosol composition and surfactant compounds are of particular interest because surfactants are enriched at the water/air interface, resulting in a radial concentration gradient within the aqueous droplet. Accurate treatment of the surfactant concentration gradient complicates the otherwise straightforward predictions of CCN activity for aerosols of known composition. To accurately evaluate predictions made by theory, laboratory studies investigating the relationship between critical supersaturation and dry diameter of particles that include surfactants require significant reduction in measurement uncertainty for both water-uptake and CCN measurements. Furthermore, uncertainties remain regarding kinetic limitations to surfactant partitioning that could result in deviation from predictions based on equilibrium thermodynamics. This study attempts to address some of these issues through high-resolution analysis of CCN activity of two-component mixed surfactant/non-surfactant aerosols at different internal mixing ratios performed with and without a water-uptake time delay to ascertain whether or not the observed effects are kinetically limited. We present new data for the aerosols consisting of 1) the ionic surfactant sodium dodecyl sulfate (SDS) with ammonium sulfate, 2) SDS with sodium chloride and 3) the strong non-ionic fluorosurfactant Zonyl with an organic proxy glucose. As a point of reference we also evaluated the mixture of ammonium sulfate with glucose. Aerosol activation diameters were determined using CCN analysis in conjunction with scanning mobility size classification and high sheath-to-aerosol flow ratios. This resulted in CCN-derived kappa values that could be determined within +/-5% relative error. To test whether dynamic surfactant partitioning

  18. The surfactant system protects both fetus and newborn.

    Science.gov (United States)

    Hallman, Mikko

    2013-01-01

    Surfactant complex and its individual components decrease surface tension, silence inflammatory responses, bind and destroy air-borne microbes, facilitate phagocytosis by alveolar macrophages and bind endogenous and exogenous molecules. Surfactant components generally decrease harmful inflammatory responses. New exogenous surfactants and new indications for surfactant therapy remain to be studied. At term the pool of human surfactant from developing airways extends to the amniotic cavity and to the gastrointestinal tract. Preterm labor-inducing inflammatory ligands (interleukin-1 or lipopolysaccharide) cause a robust induction of surfactant complex and lower the risk of respiratory distress syndrome (RDS). The effect of antenatal glucocorticoid therapy is complementary. According to transgenic experiments or genetic evidence in humans, surfactant proteins A, D or C (SP-A, SP-D, SP-C), expressed in fetal tissue, influence the onset of term or preterm labor. After birth, the surface tension-reducing and the inflammation-silencing effects of exogenous and endogenous surfactant are complementary. Surfactant proteins influence the genetic predisposition of RDS, bronchopulmonary dysplasia (BPD) and airway infections in early infancy. Moderate to severe BPD has a strong genetic predisposition. Deleterious mutations of SP-B, ABCA3 or SP-C cause congenital interstitial lung disease that mimics the phenotype of established severe BPD. I propose that lung surfactant protects both the fetus and the newborn. Surfactant ameliorates inflammatory responses that are harmful to the mother, fetus and infant. In chorioamnionitis, inflammatory ligands are carried from the fetal membranes to the alveolar space via amniotic fluid and developing airways. They induce surfactant synthesis and secretion. Surfactant ameliorates severe inflammatory responses in fetal compartments and promotes spontaneous preterm birth. PMID:23736009

  19. Next Generation Surfactants for Improved Chemical Flooding Technology

    Energy Technology Data Exchange (ETDEWEB)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies

  20. Lipid Polymorphism Induced by Surfactant Peptide SP-B1-25

    OpenAIRE

    Farver, R. Suzanne; Mills, Frank D.; Antharam, Vijay C.; Chebukati, Janetricks N.; Fanucci, Gail E.; Long, Joanna R.

    2010-01-01

    Pulmonary surfactant protein B (SP-B) is an essential protein for lowering surface tension in the alveoli. SP-B1-25, a peptide comprised of the N-terminal 25 amino-acid residues of SP-B, is known to retain much of the biological activity of SP-B. Circular dichroism has shown that when SP-B1-25 interacts with negatively charged lipid vesicles, it contains significant helical structure for the lipid compositions and peptide/lipid ratios studied here. The effect of SP-B1-25 on lipid organization...

  1. Uniform biodegradable hydrogel microspheres fabricated by a surfactant-free electric-field-assisted method.

    Science.gov (United States)

    Choy, Young Bin; Choi, Hyungsoo; Kim, Kyekyoon Kevin

    2007-04-10

    Uniform biodegradable hydrogel microspheres (HMS) with precisely controlled size have been fabricated using an electric-field-assisted precision particle fabrication technique. Particle agglomeration was prevented by charging the hydrogel drops and allowing Coulomb repulsion to separate them. As a result, surfactant-free and non-toxic particle fabrication was possible and the resulting microspheres were most suitable for biomedical and food-related applications. Due to the size uniformity, the present HMS may serve as a convenient yet most accurate vehicle for controlled delivery of therapeutic agents and other active ingredients.

  2. Identification of novel fluorinated surfactants in aqueous film forming foams and commercial surfactant concentrates.

    Science.gov (United States)

    D'Agostino, Lisa A; Mabury, Scott A

    2014-01-01

    Recent studies comparing the results of total organofluorine-combustion ion chromatography (TOF-CIC) to targeted analysis of perfluoroalkyl and polyfluoroalkyl substances (PFASs) by liquid chromatography tandem mass spectrometry (LC-MS/MS) have shown that a significant yet variable portion of the total organofluorine in environmental and biological samples is in the form of unknown PFASs. A portion of this unknown organofluorine likely originates in proprietary fluorinated surfactants not included in LC-MS/MS analyses and not fully characterized by the environmental science community, which may enter the environment through use in aqueous film forming foams (AFFFs) for firefighting. Contamination of water, biota, and soils with various PFASs due to AFFF deployment has been documented. Ten fluorinated AFFF concentrates, 9 of which were obtained from fire sites in Ontario, Canada, and two commercial fluorinated surfactant concentrates were characterized in order to identify novel fluorinated surfactants. Mixed-mode ion exchange solid phase extraction (SPE) fractionated fluorinated surfactants based on ionic character. High resolution mass spectrometry assigned molecular formulas to fluorinated surfactant ions, while collision induced dissociation (CID) spectra assisted structural elucidation. LC-MS/MS detected isomers and low abundance fluorinated chain lengths. In total, 12 novel and 10 infrequently reported PFAS classes were identified in fluorinated chain lengths from C3 to C15 for a total of 103 compounds. Further research should examine the environmental fate and toxicology of these PFASs, especially their potential as perfluoroalkyl acid (PFAA) precursors. PMID:24256061

  3. Moving liquid surfactant as a way of assessing the properties of surfactant, liquids and surfaces

    International Nuclear Information System (INIS)

    In the study of surface phenomena of the main and only instrumentally-defined parameters are surface tension and wetting angle, including in the field of nanotechnology. These indicators were introduced more than 200 years ago, and any new inventions in this field was no more. The university developed a new method and device for determining the surface activity. The basis of the method and device is the use of video cameras to record the droplet size and changes on the surface of the liquid layer of known thickness from the impact of drops of surfactant (surfactant). Committed changes are then processed using computer software and calculated parameters, which can be characterized by a surfactant and surface properties, which is fluid and very liquid. Determine the surface tension or contact angle is not necessary. Measures of surface activity using the method and device are: 1. The amount of fluid that can move one kilogram of surfactant. The value of this index varies from tens of nanometers to hundreds of thousands of units. The indicator can be converted to energy units, joules. 2. The amount of fluid confined by a surface per unit time is calculated based on the first indicator, complements the characterization of surfactant and may be an indicator of surface characteristics and fluid. 3. Propagation speed of the capillary and microwaves. This indicator complements the first two.

  4. Microemulsion-based lycopene extraction: Effect of surfactants, co-surfactants and pretreatments.

    Science.gov (United States)

    Amiri-Rigi, Atefeh; Abbasi, Soleiman

    2016-04-15

    Lycopene is a potent antioxidant that has received extensive attention recently. Due to the challenges encountered with current methods of lycopene extraction using hazardous solvents, industry calls for a greener, safer and more efficient process. The main purpose of present study was application of microemulsion technique to extract lycopene from tomato pomace. In this respect, the effect of eight different surfactants, four different co-surfactants, and ultrasound and enzyme pretreatments on lycopene extraction efficiency was examined. Experimental results revealed that application of combined ultrasound and enzyme pretreatments, saponin as a natural surfactant, and glycerol as a co-surfactant, in the bicontinuous region of microemulsion was the optimal experimental conditions resulting in a microemulsion containing 409.68±0.68 μg/glycopene. The high lycopene concentration achieved, indicates that microemulsion technique, using a low-cost natural surfactant could be promising for a simple and safe separation of lycopene from tomato pomace and possibly from tomato industrial wastes. PMID:26617046

  5. Hydrogels of sodium alginate in cationic surfactants: Surfactant dependent modulation of encapsulation/release toward Ibuprofen.

    Science.gov (United States)

    Jabeen, Suraya; Chat, Oyais Ahmad; Maswal, Masrat; Ashraf, Uzma; Rather, Ghulam Mohammad; Dar, Aijaz Ahmad

    2015-11-20

    The interaction of cetyltrimethylammoium bromide (CTAB) and its gemini homologue (butanediyl-1,4-bis (dimethylcetylammonium bromide), 16-4-16 with biocompatible polymer sodium alginate (SA) has been investigated in aqueous medium. Addition of K2CO3 influences viscoelastic properties of surfactant impregnated SA via competition between electrostatic and hydrophobic interactions. Viscosity of these polymer-surfactant systems increases with increase in concentration of K2CO3, and a cryogel is formed at about 0.5M K2CO3 concentration. The thermal stability of gel (5% SA+0.5M K2CO3) decreases with increase in surfactant concentration, a minimum is observed with increase in 16-4-16 concentration. The impact of surfactant addition on the alginate structure vis-à-vis its drug loading capability and release thereof was studied using Ibuprofen (IBU) as the model drug. The hydrogel with 16-4-16 exhibits higher IBU encapsulation and faster release in comparison to the one containing CTAB. This higher encapsulation-cum-faster release capability has been related to micelle mediated solubilization and greater porosity of the hydrogel with gemini surfactant. PMID:26344266

  6. Hydrogels of sodium alginate in cationic surfactants: Surfactant dependent modulation of encapsulation/release toward Ibuprofen.

    Science.gov (United States)

    Jabeen, Suraya; Chat, Oyais Ahmad; Maswal, Masrat; Ashraf, Uzma; Rather, Ghulam Mohammad; Dar, Aijaz Ahmad

    2015-11-20

    The interaction of cetyltrimethylammoium bromide (CTAB) and its gemini homologue (butanediyl-1,4-bis (dimethylcetylammonium bromide), 16-4-16 with biocompatible polymer sodium alginate (SA) has been investigated in aqueous medium. Addition of K2CO3 influences viscoelastic properties of surfactant impregnated SA via competition between electrostatic and hydrophobic interactions. Viscosity of these polymer-surfactant systems increases with increase in concentration of K2CO3, and a cryogel is formed at about 0.5M K2CO3 concentration. The thermal stability of gel (5% SA+0.5M K2CO3) decreases with increase in surfactant concentration, a minimum is observed with increase in 16-4-16 concentration. The impact of surfactant addition on the alginate structure vis-à-vis its drug loading capability and release thereof was studied using Ibuprofen (IBU) as the model drug. The hydrogel with 16-4-16 exhibits higher IBU encapsulation and faster release in comparison to the one containing CTAB. This higher encapsulation-cum-faster release capability has been related to micelle mediated solubilization and greater porosity of the hydrogel with gemini surfactant.

  7. The Equilibrium Spreading Tension of Pulmonary Surfactant.

    Science.gov (United States)

    Dagan, Maayan P; Hall, Stephen B

    2015-12-01

    Monomolecular films at an air/water interface coexist at the equilibrium spreading tension (γ(e)) with the bulk phase from which they form. For individual phospholipids, γ(e) is single-valued, and separates conditions at which hydrated vesicles adsorb from tensions at which overcompressed monolayers collapse. With pulmonary surfactant, isotherms show that monolayers compressed on the surface of bubbles coexist with the three-dimensional collapsed phase over a range of surface tensions. γ(e) therefore represents a range rather than a single value of surface tension. Between the upper and lower ends of this range, rates of collapse for spread and adsorbed films decrease substantially. Changes during adsorption across this narrow region of coexistence between the two- and three-dimensional structures at least partially explain how alveolar films of pulmonary surfactant become resistant to collapse. PMID:26583569

  8. Surfactant-driven fracture of gels: Growth

    Science.gov (United States)

    Daniels, Karen; Schillaci, Mark; Bostwick, Joshua

    2012-11-01

    A droplet of surfactant spreading on a gel substrate can produce fractures on the gel surface, which originate at the contact-line and propagate outwards in a star-burst pattern. Fractures have previously been observed to initiate through a thermal process, with the number of fractures controlled by the ratio of surface tension differential to gel shear modulus. After the onset of fracture, experiments show the arm length grows with universal power law L =t 3 / 4 that does not scale with any material parameters (Daniels et al. 2007, PRL), including super-spreading surfactants (Spandangos et al. 2012, Langmuir). We develop a model for crack growth controlled by the transport of an inviscid fluid into the fracture tip. While treating the gel as a linear material correctly predicts power-law growth, we find that only by considering a Neo-Hookean (incompressible) material do we obtain agreement with the experiments.

  9. Multi-scale simulation studies on interaction between anionic surfactants and cations

    Directory of Open Access Journals (Sweden)

    Siwei Meng

    2014-12-01

    Full Text Available In this paper, a dissipative particle dynamics (DPD simulation method was used to investigate the impact of cations on the rheological properties of dodecyl sulfonate surfactant solutions. In order to obtain reasonable interaction between head groups of the surfactant, the geometric structure and interaction between dodecyl sulfonate and cations are optimized using density function theory (DFT at the B3LYP/6-31G level. The DFT calculated results indicate that α-methylene nearest the head group can be classified as a part of the polar head. After binding, the charge on polar head decreases, thus greatly reduces the repulsion between the head groups. It is found that the presence of counterions is one of induction factors on the formation of wormlike micelles, thus greatly enhances the viscosity of surfactant solution. With the increasing in shear strengthen, the wormlike micelles are gradually oriented in the x direction and then broken up into small spherical micelles. This process is also shown by the decrease of viscosity, which decreases quickly at the low shear rates, then keeps almost a constant at the moderate shear rates and at last decreases again at the shear rates larger than a critical value. Compared with monovalent cations, divalent cations have a stronger effect on the rheological properties of dodecyl sulfonate solutions.

  10. Study on metal nanoparticles synthesis and orientation of gemini surfactant molecules used as stabilizer.

    Science.gov (United States)

    Tiwari, Amit Kumar; Gangopadhyay, Subhashis; Chang, Chien-Hsiang; Pande, Surojit; Saha, Subit Kumar

    2015-05-01

    In the present study, we report the synthesis of gold (Au), silver (Ag), and gold-silver alloy (Au-Ag) nanoparticles (NPs) by seed-mediated method using gemini surfactant, containing diethyl ether spacer group as a stabilizer. As-synthesized NPs are found very much stable and have been characterized using UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and zeta potential techniques. The orientation of gemini surfactant molecules surrounding the metal NPs has been investigated exploiting twisted intramolecular charge transfer (TICT) fluorescence properties of a probe 4-(N,N-dimethylamino) cinnamaldehyde (DMACA). The quenching efficiencies of different NPs have been performed in the fluorescence of DMACA and are found to be different. This effect can be related to the location of DMACA as well as the electro-negativity of the metals as the extent of orientation of the surfactant molecules around NPs controls the location of DMACA in a bilayer. To support the location of DMACA, fluorescence quenching studies with cetylpyridinium chloride (CPC) as an external quencher have also been carried out. PMID:25596371

  11. Adsorption of surfactant micelles and Cd2+/Zn2+ in micellar-enhanced ultrafiltration

    International Nuclear Information System (INIS)

    Micellar-enhanced ultrafiltration (MEUF) is a powerful treatment developed to remove heavy metals from wastewater. Efficient removal of Cd2+/Zn2+ from wastewater was performed by MEUF using a polysulfone hollow ultrafiltration membrane, with sodium dodecyl sulfate (SDS) as the surfactant. The adsorption of surfactant micelles and Cd2+/Zn2+ in MEUF was studied by changing the surfactant dosage and the Cd2+/Zn2+ concentration in the feed. In addition, kinetics, adsorption isotherms, and thermodynamic rules were analyzed, and X-ray photoelectron spectroscopy (XPS) was conducted. It was found that when the Cd2+/Zn2+ feed concentration was 50 mg/L, and the SDS dosage reached 2.15 g/L, the concentration of heavy metal ions in the permeate stabilized at around 1-4 mg/L, and the adsorption of Cd2+/Zn2+ on SDS micelles followed second-order kinetics and the Langmuir isotherm laws. Adsorption is a spontaneous endothermic process in which the adsorption force is principally the attraction of opposite electrical charges.

  12. Effect of polyelectrolyte-surfactant complexation on Marangoni transport at a liquid-liquid interface.

    Science.gov (United States)

    Dunér, Gunnar; Kim, Michelle; Tilton, Robert D; Garoff, Stephen; Przybycien, Todd M

    2016-04-01

    Complexation of surfactants and oppositely charged polyelectrolytes is expected to alter Marangoni transport at a fluid interface compared to either single component system due to altered interfacial tension isotherms and mass transfer rates as well as adsorption irreversibility effects. We investigate Marangoni transport at the oil/water interface by passing mixtures of the anionic surfactant sodium dodecyl sulfate (SDS) and cationic polyelectrolyte poly(3-(2-methylpropionamide)propyl) trimethylammonium chloride-acrylamide (poly[AM-MAPTAC]), or rinsing solutions, over an oil/water interface in a radial, stagnation point flow. The displacements of adsorbed tracer particles are recorded through optical microscopy. The net displacement, defined as the sum of the displacements occurring during the adsorption and desorption stages of one application and rinsing cycle, is up to 10 times greater for complexing surfactant/polymer mixtures compared to either single component system. The enhanced net displacement is largely determined by the enhanced transport upon adsorption, while the reverse displacement that would normally occur upon rinsing is partially suppressed by partially irreversible polymer adsorption at the oil/water interface. In addition to effects of complexation on interfacial tension gradient induced flow, complexation effects on the bulk, and possibly interfacial, viscosity also influence the interfacial transport. PMID:26775240

  13. Biosurfactants: a sustainable replacement for chemical surfactants?

    Science.gov (United States)

    Marchant, Roger; Banat, Ibrahim M

    2012-09-01

    Glycolipid biosurfactants produced by bacteria and yeasts provide significant opportunities to replace chemical surfactants with sustainable biologically produced alternatives in bulk commercial products such as laundry detergents and surface cleaners. Sophorolipids are already available in sufficient yield to make their use feasible while rhamnolipids and mannosylerythritol lipids require further development. The ability to tailor the biosurfactant produced to the specific needs of the product formulation will be an important future step. PMID:22618240

  14. Coming Phase to Phase with Surfactants

    OpenAIRE

    Bartlett, Stuart; Bullock, Seth

    2011-01-01

    We introduce a fast cellular automata model for the simula- tion of surfactant dynamics based on a previous model by Ono and Ikegami (2001). Here, individual lipid-like par- ticles undergo stochastic movement and rotation on a two- dimensional lattice in response to potential energy gradi- ents. The particles are endowed with an internal structure that reflects their amphiphilic character. Their head groups are weakly repelled by water whereas their hydrophobic tails cannot be readily hydrate...

  15. Therapeutic surfactant-stripped frozen micelles

    OpenAIRE

    Zhang, Yumiao; Song, Wentao; Geng, Jumin; Chitgupi, Upendra; Unsal, Hande; Federizon, Jasmin; Rzayev, Javid; Sukumaran, Dinesh K.; Alexandridis, Paschalis; Lovell, Jonathan F.

    2016-01-01

    Injectable hydrophobic drugs are typically dissolved in surfactants and non-aqueous solvents which can induce negative side-effects. Alternatives like ‘top-down' fine milling of excipient-free injectable drug suspensions are not yet clinically viable and ‘bottom-up' self-assembled delivery systems usually substitute one solubilizing excipient for another, bringing new issues to consider. Here, we show that Pluronic (Poloxamer) block copolymers are amenable to low-temperature processing to str...

  16. Topological transformation of a surfactant bilayer

    DEFF Research Database (Denmark)

    Le, T.D.; Olsson, U.; Mortensen, K.

    2000-01-01

    Surfactant lamellar phases are often complicated by the formation of multilamellar (onions) under shear, which can originate simply by shaking the sample. A systematic study has been performed on the C10E3-D2O system in which different bilayer structures under a steady shear flow were investigate......>(b), in the transformation from onion to plane to multiply connected bilayer structure as a function of temperature. (C) 2000 Elsevier Science B.V. All rights reserved....

  17. Surfactant administration in premature infants with RDS

    OpenAIRE

    Kalkan, Ismeta; Heljic, Suada; Cengic, Amra; Misanovic, Verica; Anic, Dusko; Jonuzi, Fedzat; Maksic, Hajrija

    2007-01-01

    Background. The significant advancement in the treatment of respiratory distress syndrome can be attributed to prenatal identification of high risk pregnancies, prevention of illness through antenatal care, prenatal administration of glucocorticoids, advancement in respiratory support and surfactant therapy. These measures resulted in the reduction of mortality and morbidity rates in preterm infants. Patients and methods. We analyzed data of 78 preterm babies with respiratory distress synd...

  18. More and earlier surfactant for preterm infants

    OpenAIRE

    Hughes, J L; McCall, E; Alderdice, F.; Jenkins, J.

    2006-01-01

    Surfactant administration to infants born at less than 32 weeks gestation was compared between two time periods (1 April 1994 to 31 March 1996 and 1 April 1999 to 31 March 2001). Overall administration increased significantly from 41% to 54%, and within one hour of birth from 13% to 60%. Regional data collection and feedback helps promote quality improvement and implementation of published evidence and guidelines.

  19. Surfactant therapy in late preterm infants

    OpenAIRE

    Murat Yurdakök

    2013-01-01

    Late preterm (LPT) neonates are at a high risk for respiratory distress soon after birth due to respiratory distress syndrome (RDS), transient tachypnea of the newborn, persistent pulmonary hypertension, and pneumonia along with an increased need for surfactant replacement therapy, continuous positive airway pressure, and ventilator support when compared with the term neonates. In the past, studies on outcomes of infants with respiratory distress have primarily focused on extremely premature ...

  20. Foams Stabilized by Tricationic Amphiphilic Surfactants

    OpenAIRE

    Heerschap, Seth; Marafino, John N.; McKenna, Kristin; Caran, Kevin L.; Feitosa, Klebert

    2015-01-01

    The unique surface properties of amphiphilic molecules have made them widely used in applications where foaming, emulsifying or coating processes are needed. Novel surfactant architectures with multi-cephalic and multi-tailed molecules have reportedly enhanced their anti-bacterial activity in connection with tail length and the nature of the head group, but their ability to produce and stabilize foam is mostly unknown. Here we report on experiments with tris-cationic, triple-headed, double- a...