WorldWideScience

Sample records for charcoal filters water

  1. Charcoal filter testing

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J. [Nuclear Regulatory Commission, Washington, DC (United States)

    1997-08-01

    In this very brief, informal presentation, a representative of the US Nuclear Regulatory Commission outlines some problems with charcoal filter testing procedures and actions being taken to correct the problems. Two primary concerns are addressed: (1) the process to find the test method is confusing, and (2) the requirements of the reference test procedures result in condensation on the charcoal and causes the test to fail. To address these problems, emergency technical specifications were processed for three nuclear plants. A generic or an administrative letter is proposed as a more permanent solution. 1 fig.

  2. 3D-nuclear heat generation in PCC-charcoal filter in TAPP-3 and 4

    International Nuclear Information System (INIS)

    Kaushal, Manish; Pradhan, A.S.; Kumar, A.N.

    2006-01-01

    This paper deals with the calculations of 3D nuclear heat generation profile in the charcoal filter and subsequently the commencement time of Primary Containment Cleanup (PCC) system of 540MWe Pressurized Heavy Water Reactor (PHWR). Fuel failure is predicted due to overheating of the fuel under loss of Coolant Accident (LOCA) without Emergency Core Cooling System (LOCA without ECCS). Subsequently fission product gasses along with water vapours are released to Reactor Building (RB) atmosphere. Plate-out and water trapping mechanism stabilizes the concentration of significant fission products i.e. radioiodines in about 4 hours before being circulated through charcoal filters of Containment Cleanup system. After cleaning up the RB atmosphere, it is discharged to outside atmosphere through stack. The isotopes of radioiodine emit beta and gamma radiations. Gamma radiations are partly stopped within the charcoal and heat is generated. The part of gamma radiations escaping the bed produce heat in the adjacent beds also. PCC system can be operated, after 4 hours of LOCA, based on radioiodine concentration in RB atmosphere. During iodine removal, the iodine concentration in the charcoal filter goes through a peak value. Maximum heat is generated in the filter if PCC fans stops eventually when iodine concentration in the filter is maximum. Analysis done by TRAFIC code indicates that the system can be commenced after 7 hrs of LOCA so that desorption temperature of charcoal is not reached. Accuracy in estimating heat generation rates in charcoal helps in deciding commencement of the system after LOCA

  3. Fabrication of Activated Rice Husk Charcoal by Slip Casting as a Hybrid Material for Water Filter Aid

    International Nuclear Information System (INIS)

    Tuaprakone, T; Wongphaet, N; Wasanapiarnpong, T

    2011-01-01

    Activated charcoal has been widely used as an odor absorbent in household and water purification industry. Filtration equipment for drinking water generally consists of four parts, which are microporous membrane (porous alumina ceramic or diatomite, or porous polymer), odor absorbent (activated carbon), hard water treatment (ion exchange resin), and UV irradiation. Ceramic filter aid is usually prepared by slip casting of alumina or diatomite. The membrane offers high flux, high porosity and maximum pore size does not exceed 0.3 μm. This study investigated the fabrication of hybrid activated charcoal tube for water filtration and odor absorption by slip casting. The suitable rice husk charcoal and water ratio was 48 to 52 wt% by weight with 1.5wt% (by dry basis) of CMC binder. The green rice husk charcoal bodies were dried and fired between 700-900 deg. C in reduction atmosphere. The resulting prepared slip in high speed porcelain pot for 60 min and sintered at 700 deg. C for 1 h showed the highest specific surface area as 174.95 m 2 /g. The characterizations of microstructure and pore size distribution as a function of particle size were investigated.

  4. Fabrication of Activated Rice Husk Charcoal by Slip Casting as a Hybrid Material for Water Filter Aid

    Science.gov (United States)

    Tuaprakone, T.; Wongphaet, N.; Wasanapiarnpong, T.

    2011-04-01

    Activated charcoal has been widely used as an odor absorbent in household and water purification industry. Filtration equipment for drinking water generally consists of four parts, which are microporous membrane (porous alumina ceramic or diatomite, or porous polymer), odor absorbent (activated carbon), hard water treatment (ion exchange resin), and UV irradiation. Ceramic filter aid is usually prepared by slip casting of alumina or diatomite. The membrane offers high flux, high porosity and maximum pore size does not exceed 0.3 μm. This study investigated the fabrication of hybrid activated charcoal tube for water filtration and odor absorption by slip casting. The suitable rice husk charcoal and water ratio was 48 to 52 wt% by weight with 1.5wt% (by dry basis) of CMC binder. The green rice husk charcoal bodies were dried and fired between 700-900 °C in reduction atmosphere. The resulting prepared slip in high speed porcelain pot for 60 min and sintered at 700 °C for 1 h showed the highest specific surface area as 174.95 m2/g. The characterizations of microstructure and pore size distribution as a function of particle size were investigated.

  5. Fabrication of Activated Rice Husk Charcoal by Slip Casting as a Hybrid Material for Water Filter Aid

    Energy Technology Data Exchange (ETDEWEB)

    Tuaprakone, T; Wongphaet, N; Wasanapiarnpong, T, E-mail: tonggogo@hotmail.com [Research Unit of Advanced Ceramic, Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok (Thailand)

    2011-04-15

    Activated charcoal has been widely used as an odor absorbent in household and water purification industry. Filtration equipment for drinking water generally consists of four parts, which are microporous membrane (porous alumina ceramic or diatomite, or porous polymer), odor absorbent (activated carbon), hard water treatment (ion exchange resin), and UV irradiation. Ceramic filter aid is usually prepared by slip casting of alumina or diatomite. The membrane offers high flux, high porosity and maximum pore size does not exceed 0.3 {mu}m. This study investigated the fabrication of hybrid activated charcoal tube for water filtration and odor absorption by slip casting. The suitable rice husk charcoal and water ratio was 48 to 52 wt% by weight with 1.5wt% (by dry basis) of CMC binder. The green rice husk charcoal bodies were dried and fired between 700-900 deg. C in reduction atmosphere. The resulting prepared slip in high speed porcelain pot for 60 min and sintered at 700 deg. C for 1 h showed the highest specific surface area as 174.95 m{sup 2}/g. The characterizations of microstructure and pore size distribution as a function of particle size were investigated.

  6. Design, Fabrication and Installation of the Charcoal Filter Housing in RIPF

    International Nuclear Information System (INIS)

    Kim, Min Jin; Lim, I. C.; Bang, H. S.

    2008-05-01

    In the Hot Cell Bank 3 of the Radioisotope Production Facility, production and dispense of I-131 solution and capsule that are used for the diagnosis and treatment of thyroid cancer are made. The original charcoal filter housings installed in 1994 and were utilized until the leakage of a very small amount of radio-iodine was found due to the erroneous installation of the charcoal filter in the filter housing. Thus the production of I-131 was discontinued until the repair and performance testing of the filter housing and the inspection by the regulatory body were finished. Although the production of I-131 was resumed, there was a desire for installing the brand-new charcoal filter housing which has an intrinsically safe design and no possibility of leakage. This report describes the design, fabrication and installation of brand-new charcoal filter housing. And also were described the dismantlement of the old housings, the assessment of the structural integrity of the shielding concrete wall and the installation of the shielding doors

  7. Comparing charcoal and zeolite reflection filters for volatile anaesthetics: A laboratory evaluation.

    Science.gov (United States)

    Sturesson, Louise W; Frennström, Jan O; Ilardi, Marcella; Reinstrup, Peter

    2015-08-01

    A modified heat-moisture exchanger that incorporates a reflecting filter for use with partial rebreathing of exhaled volatile anaesthetics has been commercially available since the 1990 s. The main advantages of the device are efficient delivery of inhaled sedation to intensive care patients and reduced anaesthetic consumption during anaesthesia. However, elevated arterial CO2 values have been observed with an anaesthetic conserving device compared with a conventional heat and moisture exchanger, despite compensation for larger apparatus dead space. The objective of this study is to thoroughly explore the properties of two reflecting materials (charcoal and zeolites). A controlled, prospective, observational laboratory study. Lund University Hospital, Sweden, from December 2011 to December 2012. None. Three filters, with identical volumes, were compared using different volatile anaesthetics at different conditions of temperature and moisture. The filtering materials were charcoal or zeolite. Glass spheres were used as an inert control. Consumption of volatile anaesthetics using different reflecting materials in filters at different conditions regarding temperature and moisture. CO2 reflection by the filtering materials: glass spheres, charcoal or zeolite. Isoflurane consumption in an open system was 60.8 g h(-1). The isoflurane consumption in dry, warm air was 39.8 g h(-1) with glass spheres. Changing to charcoal and zeolite had a profound effect on isoflurane consumption, 11.8 and 10.7 g h(-1), respectively. Heating and humidifying the air as well as the addition of N2O created only minor changes in consumption. The percentage of isoflurane conserved by the charcoal filter was independent of the isoflurane concentration (0.5 to 4.5%). Reflection of sevoflurane, desflurane and halothane by the charcoal filter was similar to reflection of isoflurane. Both charcoal and zeolite filters had CO2 reflecting properties and end-tidal CO2 increased by 3 to 3.7% compared

  8. Methyl iodide trapping efficiency of aged charcoal samples from Bruce-A emergency filtered air discharge systems

    International Nuclear Information System (INIS)

    Wren, J.C.; Moore, C.J.; Rasmussenn, M.T.; Weaver, K.R.

    1999-01-01

    Charcoal filters are installed in the emergency filtered air discharge system (EFADS) of multiunit stations to control the release of airborne radioiodine in the event of a reactor accident. These filters use highly activated charcoal impregnated with triethylenediamine (TEDA). The TEDA-impregnated charcoal is highly efficient in removing radioiodine from flowing airstreams. The iodine-removal efficiency of the charcoal is presumed to deteriorate slowly with age, but current knowledge of this effect is insufficient to predict with confidence the performance of aged charcoal following an accident. Experiments were performed to determine the methyl iodide removal efficiency of aged charcoal samples taken from the EFADS of Ontario Hydro's Bruce-A nuclear generating station. The charcoal had been in service for ∼4 yr. The adsorption rate constant and capacity were measured under post-loss-of-coolant accident conditions to determine the efficiency of the aged charcoal. The adsorption rate constants of the aged charcoal samples were observed to be extremely high, yielding a decontamination factor (DF) for a 20-cm-deep bed of the aged charcoal >1 X 10 15 . The results show that essentially no CH 3 I would escape from a 20-cm-deep bed of the aged charcoal and that the requirement for a DF of 1000 for organic iodides in the EFADS filters would be exceeded by a tremendous margin. With such high DFs, the release of iodine from a 20-cm-deep bed would be virtually impossible to detect. The adsorption capacities observed for the aged charcoal samples approach the theoretical chemisorption capacity of 5 wt% TEDA charcoal, indicating that aging in the EFADS for 4 yr has had a negligible impact on the adsorption capacity. The results indicate that the short- and long-term performances of the aged charcoal in the EFADS of Bruce-A following an accident would still far exceed performance requirements. (author)

  9. Radioactive gas standby treatment apparatus with high efficiency rechargeable charcoal filter

    International Nuclear Information System (INIS)

    Hickey, T.N.; Spulgis, I.S.

    1975-01-01

    Described is a standby gas treatment system for removal of radioactive release from a nuclear containment structure not only during normal purge operations but also in the event of a design basis accident. Ventiduct trains arranged in parallel so that one is redundant are each operative to extract dust in excess of 0.3 microns and adsorb radioactive iodine and compounds thereof at 99.9 percent plus efficiency. A rechargeable gasketless charcoal filter in each train can be filled or emptied without removing the filter enclosures per se. Laminar flow filter beds entirely encapsulate the gas stream to provide low gas velocity and even distribution across the charcoal cage without channeling, thereby securing long residence time

  10. Commercial Charcoal Characterisation For Water Purification

    International Nuclear Information System (INIS)

    Saryati; Sumardjo; Sutisna; Handayani, Ari; Suprapti, Siti

    2001-01-01

    In order to provide a drinking water purification substance, has been studied the charcoal characterisation that based on a porous profile and an adsorption properties of the charcoal. There were using the commercial charcoal like wood charcoals, coconut shell charcoals and activated charcoals. The porous profile was studied by using an electron microscope SEM-EDX and the adsorption properties was studied by using the water sample simulation that contains several metal ions. The concentration of all ions was ten times greater that the maximum ions concentration that permissible in the drinking water. From the grain surface microscopic analysis was shown that the pore structure of the wood charcoal was more regular than the coconut shell charcoal. Mean while the activated charcoal has pore more than wood and coconut shell charcoal. Grains size was not an adsorption parameter. The absorptivitas charcoal was affected by pH solution, but this effect was not linear proportion. There are no significant deference in the adsorptivitas among the tree charcoals that has been studied for Al 3 + , Cr 3+ , Ag 1 +, and Pb 2+ ions the adsorption was large enough (> 60%), for Mn 2+ , Fe 3+ , Se 4+ , Cd 2+ and Ba 2+ ions was 20%-60% dan for Mg 2+ , Na 1+ , Ca 2+ , and Zn 2+ ions was less than 20 %. Generally the wood and coconut shell charcoal absorptivity in the pH 4 solutions was lower than in the pH 5-7 solutions

  11. Radioactive gas standby treatment apparatus with high efficiency rechargeable charcoal filter

    International Nuclear Information System (INIS)

    Hickey, T.N.; Spulgis, I.S.

    1976-01-01

    A description is given of a standby gas treatment system for removal of radioactive release from a nuclear containment structure not only during normal purge operations but also in the event of a design basis accident. Ventiduct trains arranged in parallel so that one is redundant are each operative to extract dust in excess of 0.3 microns and adsorb radioactive iodine and compounds thereof at 99.9 percent plus efficiency. A rechargeable gasketless charcoal filter in each train can be filled or emptied without removing the filter enclosures per se. Laminar flow filter beds entirely encapsulate the gas stream to provide low gas velocity and even distribution across the charcoal cage without channeling, thereby securing long residence time. 2 claims, 9 drawing figures

  12. Review of light water reactor regulatory requirements: Assessment of selected regulatory requirements that may have marginal importance to risk: Postaccident sampling system, Turbine missiles, Combustible gas control, Charcoal filters

    International Nuclear Information System (INIS)

    Scott, W.B.; Jamison, J.D.; Stoetzel, G.A.; Tabatabai, A.S.; Vo, T.V.

    1987-05-01

    In a study commissioned by the Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory (PNL) evaluated the costs and benefits of modifying regulatory requirements in the areas of the postaccident sampling system, turbine rotor design reviews and inspections, combustible gas control for inerted Boiling Water Reactor (BWR) containments, and impregnated charcoal filters in certain plant ventilation systems. The basic framework for the analyses was that presented in the Regulatory Analysis Guidelines (NUREG/BR-0058) and in the Handbook for Value-Impact Assessment (NUREG/CR-3568). The effects of selected modifications to regulations were evaluated in terms of such factors as public risk and costs to industry and NRC. The results indicate that potential modifications of the regulatory requirements in three of the four areas would have little impact on public risk. In the fourth area, impregnated charcoal filters in building ventilation systems do appear to limit risks to the public and plant staff. Revisions in the severe accident source term assumptions, however, may reduce the theoretical value of charcoal filters. The cost analysis indicated that substantial savings in operating costs may be realized by changing the interval of turbine rotor inspections. Small to moderate operating cost savings may be realized through postulated modifications to the postaccident sampling system requirements and to the requirements for combustible gas control in inerted BWR containments. Finally, the use of impregnated charcoal filters in ventilation systems appears to be the most cost-effective method of reducing radioiodine concentrations

  13. Utilization of Bamboo Charcoal as Additives in Cakes

    Directory of Open Access Journals (Sweden)

    Ronald O. Ocampo

    2015-12-01

    Full Text Available Charcoal has been used for healing various diseases, as antidote to poisoning and as purifying agent to filtered water. This study is conducted to utilize charcoal as additives in making cakes. Specifically, it is intended to determine the acceptable level of charcoal when used as additives in the production of brownies, dark brown chocolate, and chiffon cakes. It can be concluded that an addition of 1 tablespoon of bamboo charcoal gave the highest sensory evaluation to brownies and 3 tablespoon to dark brown chocolate .The control ( no charcoal added is still the best treatment for chiffon cake.

  14. Turbidity removal: Gravel and charcoal as roughing filtration media

    Directory of Open Access Journals (Sweden)

    Josiah A. Adeyemo

    2010-10-01

    Full Text Available Roughing filtration is an important pre-treatment process for wastewater, because it efficiently separates fine solid particles over prolonged periods, without the addition of chemicals. For this study, a pilot plant was designed at Delmas Coal Mine in the Mpumalanga province of South Africa. The design and sizing of the pilot plant was guided by Wegelin’s design criteria. Gravel was used as a control medium because it is one of the most commonly used roughing filter media and because it was used in developing the criteria. We compared the performance of gravel as a filter medium to that of another locally available material, charcoal, for the removal of turbidity in wastewater. The pilot plant was monitored continuously for 90 days from commissioning until the end of the project. The overall performance of the roughing filter in turbidity removal, using gravel or charcoal, was considered efficient for the pre-treatment of waste water. Charcoal performed slightly better than gravel as a filter medium for the removal of turbidity, possibly because charcoal has a slightly higher specific surface area and porosity than gravel, which could enhance sedimentation and other filtration processes, such as adsorption, respectively.

  15. Development of activated charcoal impregnated air sampling filter media : their characteristics and use

    International Nuclear Information System (INIS)

    Khan, A.A.; Ramarathinam, K.; Gupta, S.K.; Deshingkar, D.S.; Kishore, A.G.

    1975-01-01

    Because of its low maximum permissible concentration in air, air-borne radioiodine must be accurately monitored in contaminated air streams, in the working environment and handling facilities, before release to the environment from the nuclear facilities. Activated charcoal impregnated air sampling filter media are found to be most suitable for monitoring airborne iodine-131. Because of its simplicity and reproducible nature in assessment of air-borne radioactive iodine, the work on the development of such media was undertaken in order to find a suitable substitute for imported activated charcoal impregnated air sampling filter media. Eight different media of such type were developed, evaluated and compared with two imported media. Best suitable medium is recommended for its use in air-borne iodine sampling which was found to be even better suited than imported media of such type. (author)

  16. Effect of charcoal on water purification

    OpenAIRE

    Suzuki, Hirotaka; Kawahigashi, Tatsuo

    2014-01-01

    [Abstract] A natural basin system purifies water through self-purification, but the water pollution load of a river might exceed its self-purification capacity. Charcoal, which is used for other uses aside from heating, such as air purification, was evaluated experimentally for water quality purification. The experiment described herein is based on simple water quality measurements. Some experimentally obtained results are discussed.

  17. Retrofitting of activated charcoal filters in the iodine removal system of Cirus reactor

    International Nuclear Information System (INIS)

    Arora, M.K.; Thomas, Shibu; Ullas, O.P.; Sharma, V.K.; Singh, Kapil Deo S.

    2002-01-01

    Full text: The emergency exhaust system for removal of iodine in the 40 MWt Cirus reactor consisted of a caustic scrubber followed by a bank of silver-coated copper mesh filters. The latter filter elements are no longer commercially available, and moreover, there is need to upgrade the system to meet the current safety norms. An iodine removal system based on activated charcoal adsorbers has been selected for this purpose. The design of the system ensures high iodine removal efficiency and thermal safety of the filters for a postulated accident condition beyond design basis accident. The new iodine removal system has been retrofitted during the current refurbishing programme of Cirus and it has been commissioned and tested satisfactorily

  18. Comparison of the adsorption capacities of an activated-charcoal--yogurt mixture versus activated-charcoal--water slurry in vivo and in vitro

    DEFF Research Database (Denmark)

    Høgberg, Lotte Christine Groth; Christophersen, Anne-Bolette; Christensen, Hanne Rolighed

    2005-01-01

    BACKGROUND: An activated charcoal--yogurt mixture was evaluated in vivo to determine the effect on the gastrointestinal absorption of paracetamol, as compared to activated-charcoal--water slurry. The potential advantage of the activated-charcoal--yogurt mixture is a better palatability and general...... acceptance by the patients without loss of efficacy. In addition, paracetamol adsorption studies were carried out in vitro to calculate the maximum adsorption capacity of paracetamol to activated-charcoal--yogurt mixture. METHODS: In vivo: A randomized crossover study on 15 adult volunteers, using...... paracetamol 50 mg/kg as a simulated overdose. Each study day volunteers were given a standard meal 1 h before paracetamol, then 50 g activated charcoal 1 h later in either of two preparations: standard water slurry or mixed with 400 mL yogurt. Paracetamol serum concentrations were measured using HPLC...

  19. Nexusing Charcoal in South Mozambique: A Proposal To Integrate the Nexus Charcoal-Food-Water Analysis With a Participatory Analytical and Systemic Tool

    Directory of Open Access Journals (Sweden)

    Ricardo Martins

    2018-06-01

    Full Text Available Nexus analysis identifies and explores the synergies and trade-offs between energy, food and water systems, considered as interdependent systems interacting with contextual drivers (e.g., climate change, poverty. The nexus is, thus, a valuable analytical and policy design supporting tool to address the widely discussed links between bioenergy, food and water. In fact, the Nexus provides a more integrative and broad approach in relation to the single isolated system approach that characterizes many bioenergy analysis and policies of the last decades. In particular, for the South of Mozambique, charcoal production, food insecurity and water scarcity have been related in separated studies and, thus, it would be expected that Nexus analysis has the potential to provide the basis for integrated policies and strategies focused on charcoal as a development factor. However, to date there is no Nexus analysis focused on charcoal in Mozambique, neither is there an assessment of the comprehensiveness and relevance of Nexus analysis when applied to charcoal energy systems. To address these gaps, this work applies the Nexus to the charcoal-food-water system in Mozambique, integrating national, regional and international studies analysing the isolated, or pairs of, systems. This integration results in a novel Nexus analysis graphic for charcoal-food-water relationship. Then, to access the comprehensiveness and depth of analysis, this Nexus analysis is critically compared with the 2MBio-A, a systems analytical and design framework based on a design tool specifically developed for Bioenergy (the 2MBio. The results reveal that Nexus analysis is “blind” to specific fundamental social, ecological and socio-historical dynamics of charcoal energy systems. The critical comparison also suggests the need to integrate the high level systems analysis of Nexus with non-deterministic, non-prescriptive participatory analysis tools, like the 2MBio-A, as a means to

  20. Activated charcoal-alum-zeolite improve the water quality

    International Nuclear Information System (INIS)

    Saryati; Sutisna; Sumarjo; ZL, Wildan; Wahyuningsih; Suprapti, Siti

    2002-01-01

    The composite of charcoal-tawas-zeolite has been studied to improve a drinking water quality. This study was doing to find the optimum composition in preparation of a simple technology og bath and small volume drinking treatment this treatment consist of coagulation, floculation, precipitation, ion exchange and adsorption. The improvement of water quality has been observed from a turbidity, a permanganate number and a quality of Cu, Cd, Pb, Al ions and coli bactery containing in the water after processing. It has been concluded that the composite materials has an ability to decrease the turbidity more than its components. The starch addition in the composite can be accelerate water clarity process. By this composite the turbidity, the permanganate number and the coli bacteria in the water can be decreased significantly. The optimum composite composition is 1000 mg activated charcoal, 1000 mg zeolite, 60 mg tawas, 40 mg natrium bicarbonate and 50 mg starch with grains size less than 80 mesh

  1. Effect of service aging on iodine retention of activated charcoals

    International Nuclear Information System (INIS)

    Evans, A.G.

    1976-01-01

    The Savannah River reactor confinement systems are continuously operated offgas cleanup systems whose components include moisture separators, HEPA filters, and halogen adsorber beds of activated charcoal. Charcoal is removed from the system periodically and subjected to a variety of physical, chemical, and iodine penetration tests to ensure that the system will perform within specification in the event of an accidental release of activity from the reactor. Tests performed on the charcoals include pH measurement of water extracts, particle size distribution, ignition temperature, high-temperature (180 0 C) iodine penetration, and iodine penetration in an intense radiation field at high humidity. Charcoals used in the systems include carbon Types 416 (unimpregnated), G-615 (impregnated with 2 percent TEDA and 2 percent KI), and GX-176 (impregnated with 1 percent TEDA and 2 percent KI). Performance data are presented and compared

  2. Charcoal as a capture material for silver nanoparticles in the aquatic environment

    Science.gov (United States)

    McGillicuddy, Eoin; Morrison, Liam; Cormican, Martin; Morris, Dearbháile

    2017-04-01

    Background: The reported antibacterial activity of silver nanoparticles (AgNPs) has led to their incorporation into numerous consumer products including; textiles, domestic appliances, food containers, cosmetics, paints, medical and medicinal products. The AgNPs incorporated into these products can be released into the environment and aquatic system during their production, use and end of life disposal. In the aquatic environment, uncertainties surround the concentration, fate and effects of AgNPs. The aim of this project is to examine charcoal as a potential material for capture of silver nanoparticles from the aquatic environment. Material/methods: Activated charcoal is a commonly used filter material and was selected for this project to determine its suitability as a capture material for AgNPs in water samples. Activated charcoal (Norit® CA1 (Sigma-Aldrich)) was exposed to 100 ppb, 25 nm PVP coated AgNPs (nanoComposix) prepared in Milli-Q water. These solutions were exposed to unaltered charcoal granules for 20 hours after which the decrease of silver in the solution was measured using ICP-MS. In order to improve the removal, the surface area of the charcoal was increased firstly by grinding with a pestle and mortar and secondly by milling the charcoal. The milled charcoal was prepared using an agate ball mill running at 500 rpm for 5 minutes. The activated charcoal was then exposed to samples containing 10 ppb AgNPs. Results: In the initial tests, approximately 10% of the silver was removed from the water samples using the unaltered activated charcoal granules. Further experiments were carried out to compare the unaltered granules with the ground and milled charcoal. These tests were carried out similarly to the previous test however lower concentration of 10 ppb was used. After 20 hours of exposure the granule samples, as previously, showed approximately a 10% reduction in silver content with the ground charcoal giving approximately 30% reduction in silver

  3. [Hygienic study of an activated fibrous charcoal material as a sorbing filtering element for drinking water afterpurification].

    Science.gov (United States)

    Prokopov, V A; Mironets, N V; Gakal, R K; Maktaz, E D; Dugan, A M; Teteneva, I A; Tarabarova, S B; Martyshchenko, N V; Nadvornaia, Zh D

    1993-01-01

    The results of complex toxicological and hygienic study showed that the quality of pipe water filtered through the activated carbonic fibrous material (ACFM) "Dnepr-F" forming a part of absorptive filtering element improved markedly. The content of organic substances decreased drastically as well as that of nitrates and iron. Microbiological indices did not suffer appreciable changes and were within permissible limits. The water filtered through the absorptive element with ACFM had no adverse influence on the organisms of warm-blooded animals. Proceeding from foregoing one can conclude that the "Dnepr-F" may be recommended as a part of absorptive filtering element for the final refinement of drinking water.

  4. Quantitative measurement of 222Rn in water by the activated charcoal passive collector method: 1. The effect of water in a collector

    International Nuclear Information System (INIS)

    Yoneda, Minoru; Inoue, Yoriteru; Yoshimoto, Keizo

    1994-01-01

    The activated charcoal passive collector method can be applied to measure the concentration of 222 Rn in river water. The 222 Rn collector is composed of dry activated charcoal sealed in a polyethylene bag. However, we found it very difficult to keep activated charcoal in a collector dry during the period the collector was left in a river. The degree of dampness and the time lapsed when activated charcoal became wet were thought to affect the quantity of 222 Rn collected. First, we studied the effect of some parameters in the activated charcoal passive collector method qualitatively in three experiments. We found that the quantity of 222 Rn collected in a collector was not so sensitive to the quantity of activated charcoal in the collector or the thickness of polyethylene film under the condition of wet activated charcoal, and that wet activated charcoal accumulated less 222 Rn than dry activated charcoal. We present some equations which could explain how much 222 Rn was collected in a collector when activated charcoal was submerged directly in water and when activated charcoal was packed in a polyethylene bag but completely wet. These equations were proved effective by being compared with the results of the other experiments. Finally, we recommended some conditions which proved useful when measuring at an actual river

  5. Effects of weathering on impregnated charcoal performance

    International Nuclear Information System (INIS)

    Deitz, V.R.

    1977-10-01

    Commercial activated charcoals have been exposed to known contaminants under controlled laboratory conditions and also to large volumes of outdoor air and each sample then evaluated for methyl iodide penetration. There is strong evidence that the interaction of water vapor and the charcoal is a significant factor in the degradation of the charcoals when the relative humidity is 70% and greater. The laboratory air mixtures studied were water vapor, water vapor and sulfur dioxide, water vapor and ozone, and water vapor and carbon monoxide. The charcoal in each of the four 0.5-in. layers making up the 2-in. test bed was degraded by the contaminants, but the first layer was influenced most. For the same charcoal the cumulative effect during one, two, and three months of weathering with outdoor air led to a progressive increase in methyl iodide penetration. The experimentation is being extended to additional commercial charcoals and to additional contaminant species in the laboratory experiments

  6. A comparative study of reverse osmosis and activated charcoal, two inexpensive and very effective ways to remove waterborne radon

    International Nuclear Information System (INIS)

    Sullivan, K.T.; Mose, D.G.; Mushrush, G.W.

    1994-01-01

    A two year comparative study of waterborne radon removal reveals that reverse osmosis is consistently more effective than the use of activated charcoal. Reverse osmosis is a process by which water is forced under a pressure sufficient to overcome osmotic pressure through a semipermeable membrane, leaving behind impurities. Removal effectiveness for dissolved organic, dissolved ionic and suspended impurities are typically above 90%. Systems designed for home use to remove impurities from water dispensed at a convenient tap cost about $2000 and commonly consist of a sediment filter, a carbon prefilter, and a reverse osmosis container. A tank of activated charcoal can work equally well, and cost $500-$1000. However, the tank of charcoal becomes measurably enriched in gamma-emitters

  7. Determination of gold in natural waters by neutron activation-#betta#-spectrometry after preconcentration on activated charcoal

    International Nuclear Information System (INIS)

    Hamilton, T.W.; Ellis, J.; Florence, T.M.

    1983-01-01

    A method for the determination of gold at very low levels in waters is presented. The method involves batchwise pre-concentration of gold from 1 l of water at pH 3-4 onto 0.1 g of activated charcoal by shaking for 5 min and subsequent treatment of the activated charcoal by instrumental neutron activation-#betta#-spectrometry. Activated charcoal quantitatively adsorbs ionic and colloidal gold from solutions prepared with distilled water and also from natural surface waters spiked and equilibrated with these two forms of gold. Three ion-exchange resins were evaluated for pre-concentration purposes; ionic gold removal was quantitative but colloidal gold removal was incomplete. Electrodeposition at a carbon fibre electrode gave similar results. The charcoal pre-concentration technique was tested on solutions containing 198 Au tracer and a total gold concentration of 1 μg l - 1 . The limit of detection of total gold (ionic and colloidal) for the carbon adsorption/neutron activation-#betta#-spectrometry procedure is 0.3 ng l - 1 . The method was used to determine gold in surface waters from auriferous regions. (Auth.)

  8. Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan.

    Science.gov (United States)

    Zhang, Hangjun; Zhu, Guoying; Jia, Xiuying; Ding, Ying; Zhang, Mi; Gao, Qing; Hu, Ciming; Xu, Shuying

    2011-01-01

    A new kind of low-cost syntactic adsorbent from bamboo charcoal and chitosan was developed for the removal of microcystin-LR from drinking water. Removal efficiency was higher for the syntactic adsorbent when the amount of bamboo charcoal was increased. The optimum dose ratio of bamboo charcoal to chitosan was 6:4, and the optimum amount was 15 mg/L; equilibrium time was 6 hr. The adsorption isotherm was non-linear and could be simulated by the Freundlich model (R2 = 0.9337). Adsorption efficiency was strongly affected by pH and natural organic matter (NOM). Removal efficiency was 16% higher at pH 3 than at pH 9. Efficiency rate was reduced by 15% with 25 mg/L NOM (UV254 = 0.089 cm(-1)) in drinking water. This study demonstrated that the bamboo charcoal modified with chitosan can effectively remove microcystin-LR from drinking water.

  9. Determination of the attrition resistance of granular charcoals

    International Nuclear Information System (INIS)

    Dietz, V.R.

    1979-01-01

    A laboratory procedure has been developed to evaluate the attrition of granular adsorbent charcoals on passing an air flow through the bed. Two factors observed in plant operations were selected as relevant: (1) the characteristic structural vibrations in plant scale equipment (motors, fans, etc.) that are transmitted to charcoal particles and cause the particles to move and rub each other, and (2) the rapid air flow that results in the movement of the attrited dust. In the test a container for charcoal [50 mm diameter and 50 mm high] was vibrated at a frequency of 60 Hz and at a constant energy input manually controlled using a vibration meter in the acceleration mode. Simultaneously, air was applied and exited through glass fiber filter paper. The quantity of dust trapped on the exit filter was then determined, either optically or gravimetrically. The dust formed per minute (attrition coefficient) was found to approach a constant value. The plateau-values from sequential determinations varied with the source of the charcoal; a 5-fold difference was found among a large variety of commercial products. The first testing of a sample released the excess dust accumulated in previous handling of the charcoal. The plateau values were then attained in the succeeding tests and these were characteristic of the material. The results were compared with those obtained for the same charcoals using older test methods such as the Ball and Pan Hardness Test described in RDTM16-1T

  10. Improving the palatability of activated charcoal in pediatric patients.

    Science.gov (United States)

    Cheng, Adam; Ratnapalan, Savithiri

    2007-06-01

    To compare the taste preference and ease of swallowing of activated charcoal among healthy teenagers when mixed separately with 3 different additives: chocolate milk, Coca-Cola, and water. Healthy volunteers between 14 to 19 years of age were selected for the study. Five grams of activated charcoal (25 mL of 0.2 g/mL of Charcodote [Pharma Science, Montreal, Canada]) was mixed with 25 mL of chocolate milk, Coca-Cola, or water individually to make up 50 mL. The volunteers drank the 3 cups of the charcoal-additive mixture separately and then rated taste and ease of swallowing on a 10-cm visual analogue scale. The subjects then indicated their preferred charcoal-additive mixture if he/she had to drink 9 more portions of charcoal (this would estimate the dose of charcoal for a 50-kg child). A total of 44 subjects were recruited (25 boys and 19 girls). The mean scores for taste preference for chocolate milk, Coca-Cola, and water mixtures of charcoal were 5.5, 6.3, and 2.0, respectively, on a 10-cm visual analogue scale. Thus, subjects preferred the taste of charcoal mixed with chocolate milk or Coca-Cola over charcoal mixed with water (P = 0.0003 for both comparisons). The subjects did not show a statistically significant difference for ease of swallowing between the 3 charcoal-additive mixtures. Overall, 48% preferred the chocolate milk mixture, 45% preferred the Coca-Cola mixture, and 7% preferred charcoal mixed with water. Healthy teenaged subjects identified that activated charcoal (Charcodote) mixed with chocolate milk or Coca-Cola (in a 1:1 ratio) improved taste but had no significant effect on improving ease of swallowing. Overall, the addition of chocolate milk or coke improves the palatability of charcoal and is favored over charcoal mixed with water alone.

  11. Effects of fresh gas flow, tidal volume, and charcoal filters on the washout of sevoflurane from the Datex Ohmeda (GE) Aisys, Aestiva/5, and Excel 210 SE Anesthesia Workstations.

    Science.gov (United States)

    Sabouri, A Sassan; Lerman, Jerrold; Heard, Christopher

    2014-10-01

    We investigated the effects of tidal volume (VT), fresh gas flow (FGF), and a charcoal filter in the inspiratory limb on the washout of sevoflurane from the following Datex Ohmeda (GE) Anesthesia Workstations (AWSs): Aisys, Aestiva/5, and Excel 210SE. After equilibrating the AWSs with 2% sevoflurane, the anesthetic was discontinued, and the absorbent anesthesia breathing circuit (ABC), reservoir bag, and test lung were changed. The lung was ventilated with 350 or 200 mL·breath(-1), 15 breaths·min(-1), and a FGF of 10 L·min(-1) while the washout of sevoflurane was performed in triplicate using a calibrated Datex Ohmeda Capnomac Ultima™ and a calibrated MIRAN SapphIRe XL ambient air analyzer until the concentration was ≤ 10 parts per million (ppm). The effects of decreasing the FGF to 5 and 2 L·min(-1) after the initial washout and of a charcoal filter in the ABC were recorded separately. The median washout times with the Aisys AWS (14 min, P Excel 210SE (32 min). The mean (95% confidence interval) washout time with the Aisys increased to 23.5 (21.5 to 25.5) min with VT 200 mL·breath(-1) (P < 0.01). Decreasing the FGF from 10 to 5 and 2 L·min(-1) with the Aisys caused a rebound in sevoflurane concentration to ≥ 50 ppm. Placement of a charcoal filter in the inspiratory limb reduced the sevoflurane concentration to < 2 ppm in the Aisys and Aestiva/5 AWSs within two minutes. The GE AWSs should be purged with large FGFs and VTs ~350 mL·breath(-1) for ~25 min to achieve 10 ppm sevoflurane. The FGF should be maintained to avoid a rebound in anesthetic concentration. Charcoal filters rapidly decrease the anesthetic concentration to < 2 ppm.

  12. Research report: Charcoal type used for hookah smoking influences CO production.

    Science.gov (United States)

    Medford, Marlon A; Gasier, Heath G; Hexdall, Eric; Moffat, Andrew D; Freiberger, John J; Moon, Richard E

    2015-01-01

    A hookah smoker who was treated for severe carbon monoxide poisoning with hyperbaric oxygen reported using a different type of charcoal prior to hospital admission, i.e., quick-light charcoal. This finding led to a study aimed at determining whether CO production differs between charcoals commonly used for hookah smoking, natural and quick-light. Our hypothesis was that quick-light charcoal produces significantly more CO than natural charcoal. A medium-sized hookah, activated charcoal filter, calibrated syringe, CO gas analyzer and infrared thermometer were assembled in series. A single 9-10 g briquette of either natural or quick-light charcoal was placed atop the hookah bowl and ignited. CO output (ppm) and temperature (degrees C) were measured in three-minute intervals over 90 minutes. The mean CO levels produced by quick-light charcoal over 90 minutes was significantly higher (3728 ± 2028) compared to natural charcoal (1730 ± 501 ppm, p = 0.016). However, the temperature was significantly greater when burning natural charcoal (292 ± 87) compared to quick-light charcoal (247 ± 92 degrees C, p = 0.013). The high levels of CO produced when using quick-light charcoals may be contributing to the increase in reported hospital admissions for severe CO poisoning.

  13. Charcoal and charcoal-based dentifrices: A literature review.

    Science.gov (United States)

    Brooks, John K; Bashirelahi, Nasir; Reynolds, Mark A

    2017-09-01

    Sales of charcoal dentifrices and powders have rapidly emerged into the Internet marketplace. The authors conducted a literature review to examine the efficacy and safety of charcoal and charcoal-based dentifrices. The authors searched the MEDLINE and Scopus databases for clinical studies on the use of charcoal and charcoal-based dentifrices and laboratory investigations on the bioactivity or toxicity of charcoal and charcoal-based dentifrices, published through February 2017. The authors used a defined search strategy to identify randomized, controlled clinical trials with a follow-up duration of 3 months or longer. In addition, the authors selected the first 50 consecutive charcoal dentifrices from Google.com and Amazon.com for ascertainment of product assortment and advertising promotions. The authors' literature search identified 118 potentially eligible articles. Thirteen studies reported brushing the teeth with raw charcoal or soot; however, none of these studies met the inclusion criteria. Two studies offered nonspecific caries reductions, 3 studies reported deleterious outcomes (increased caries, enamel abrasion, nonquantified negative impact), and 1 study indicated only that brushing with raw charcoal had no adverse effects on oral hygiene. Seven other studies reported only on the use of charcoal for oral hygiene. Internet advertisements included unsubstantiated therapeutic claims-such as antibacterial, antifungal, antiviral, and oral detoxification, as well as potentially misleading product assertions. One-third of the charcoal dentifrices contained bentonite clay, and 1 contained betel leaves. The results of this literature review showed insufficient clinical and laboratory data to substantiate the safety and efficacy claims of charcoal and charcoal-based dentifrices. Larger-scale and well-designed studies are needed to establish conclusive evidence. Dental clinicians should advise their patients to be cautious when using charcoal and charcoal

  14. Confirmatory research program: effects of atmospheric contaminants on commercial charcoals

    International Nuclear Information System (INIS)

    Bellamy, R.R.; Dietz, V.R.

    1979-01-01

    The increased use of activated charcoals in engineered-safety-feature and normal ventilation systems of nuclear power stations to continually remove radioiodine from flowing air prior to release to the environment has added importance to the question of the effect of atmospheric contaminants on the useful life of the charcoal. In January of 1977 the Naval Research Laboratory (NRL) began an investigation to determine the extent to which atmospheric contaminants in ambient concentrations degrade the efficiency of various commercially-available charcoals for removing methyl iodide. The approach employed by NRL is two-fold. First, charcoal samples are exposed to unmodified outdoor air for periods of one to nine months, then examined for methyl iodide retention, increase in weight, and the pH of water extract. The atmospheric contaminants are identified by the NRL Air Quality Monitoring Station, and concentrations of the various contaminants (ozone, SO 2 , NO 2 , CO 2 , methane and total hydrocarbons) are also available. Second, additional charcoal samples are exposed to the same pollutants under controlled laboratory conditions in various pollutant combinations. Results indicate that the water vapor-charcoal interaction is an important factor in the degradation of the commercial charcoals. Laboratory results indicate the pollutant sulfur dioxide plus water vapor can result in significant charcoal deterioration, as did ozone plus water vapor. Conversely, carbon monoxide did not appear to affect the charcoal. Also, differences were observed for various charcoals

  15. Validation of computer code TRAFIC used for estimation of charcoal heatup in containment ventilation systems

    International Nuclear Information System (INIS)

    Yadav, D.H.; Datta, D.; Malhotra, P.K.; Ghadge, S.G.; Bajaj, S.S.

    2005-01-01

    Full text of publication follows: Standard Indian PHWRs are provided with a Primary Containment Filtration and Pump-Back System (PCFPB) incorporating charcoal filters in the ventilation circuit to remove radioactive iodine that may be released from reactor core into the containment during LOCA+ECCS failure which is a Design Basis Accident for containment of radioactive release. This system is provided with two identical air circulation loops, each having 2 full capacity fans (1 operating and 1 standby) for a bank of four combined charcoal and High Efficiency Particulate Activity (HEPA) filters, in addition to other filters. While the filtration circuit is designed to operate under forced flow conditions, it is of interest to understand the performance of the charcoal filters, in the event of failure of the fans after operating for some time, i.e., when radio-iodine inventory is at its peak value. It is of interest to check whether the buoyancy driven natural circulation occurring in the filtration circuit is sufficient enough to keep the temperature in the charcoal under safe limits. A computer code TRAFIC (Transient Analysis of Filters in Containment) was developed using conservative one dimensional model to analyze the system. Suitable parametric studies were carried out to understand the problem and to identify the safety of existing system. TRAFIC Code has two important components. The first one estimates the heat generation in charcoal filter based on 'Source Term'; while the other one performs thermal-hydraulic computations. In an attempt validate the Code, experimental studies have been carried out. For this purpose, an experimental set up comprising of scaled down model of filtration circuit with heating coils embedded in charcoal for simulating the heating effect due to radio iodine has been constructed. The present work of validation consists of utilizing the results obtained from experiments conducted for different heat loads, elevations and adsorbent

  16. Investigations of 131I concentration in indoor air using charcoal filters and gamma spectroscopy

    International Nuclear Information System (INIS)

    Fischer, H.W.; Pittauerova, D.; Foschepoth, S.; Poppe, B.

    2008-01-01

    Full text: Radiation protection standards require the recording of staff radiation dose in nuclear medicine thyroid radiotherapy. A commonly used method measures the 131 I thyroid activity externally with a gamma detector, followed by calculation of the committed equivalent thyroid dose. The main disadvantages are the low sensitivity and the uncertainty of the time of uptake, which can only be compensated by long measurement times and short measurement intervals. The measurements have to be applied to all staff members. An alternative can be provided by the measurement of the cumulated concentration of 131 I in indoor air using charcoal filters. The filters are placed in patient rooms at representative locations, exposed for several days and then investigated for absorbed 131 I activity. Both above mentioned disadvantages can be overcome: the measurement records the cumulated concentration history of the room and the obtained value can be used for dose calculation for all staff members knowing their working history. Standard charcoal filters (PicoRad vials, Accustar Labs, normally used for indoor radon measurements) were placed into patient rooms in a thyroid therapy department and exposed to room air for 72 hours. The vials were then subjected to high resolution low level gamma spectroscopy using a high purity germanium (hpGe) detector (50% relative efficiency, 10 cm lead shielding). Absolute activity determination was based on the net count rate in the 364 keV gamma peak and absolute counting efficiency obtained mathematically from detector and vial geometry using the commercial Labsocs (Canberra Inc.) program. Using the mean air activity/vial activity calibration factor obtained in a similar study pioneering this application, but using liquid scintillation spectroscopy as detection method (F. Jimenez et al, 2nd. European IRPA Congress, Paris 2006), mean air concentrations between 0.09 and 2.01 Bq/m 3 were found. The data correlated well with patient administered

  17. THE USE OF SILICA SAND, ZEOLITE AND ACTIVE CHARCOAL TO REDUCE BOD, COD AND TSS OF LAUNDRY WASTE WATER AS A BIOLOGY LEARNING RESOURCES

    Directory of Open Access Journals (Sweden)

    Moch Assiddieq

    2017-11-01

    Full Text Available The aquatic environment contaminated with detergent waste in high concentrations can endanger the lives human and biota in the water. This study aimed to determine the decrease of BOD, COD and TSS content of laundry liquid waste by using filter media of silica sand, zeolite, and activated charcoal. Filter medium 1a can reduce BOD level from 98.6 mg/L to 58.80 mg/L (40.36%, while medium 1b can decrease BOD level to 21.20 mg/L (78.48%. It showed that media 1a had not fulfilled the quality standard of BOD of waste water that is 50 mg/L, while media 1b had fulfilled the standard of quality. Filter media 1a can decrease COD level from 210 mg/L to 78.80 mg/L (62.47%, whereas medium 1b can decrease COD to 25.60 mg/L (87.80%. This showed that media 1a and media 1b had met the quality standard of COD of waste water that is 100 mg/L. Filter media 1a can decrease TSS level from 465 mg/L to 122.5 mg/L (73.65%, whereas medium 1b can decrease TSS level to 52.3 mg/L (88.75%. This showed that media 1a and media 1b had met the quality standard of TSS of waste water that is 150 mg/L.

  18. Charcoal from paper sludge

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M

    1980-03-06

    Paper sludge containing less than or equal to 50% water is mixed with coffee shells and greater than or equal to 1 almond shells, orange skin, walnut shells, or bean jam waste, compacted, and dry distilled at 300-600 degrees to prepare charcoal. Thus, 1 ton of paper sludge was mixed with 100 kg each of coffee shells, almond shells, orange skin, and walnut shells; compacted and dry distilled 24 hours at approximately 450 degrees. The calorific value of the charcoal produced was approximately 7300 kcal/kg.

  19. The charcoal storage disaster. The Lusaka charcoal supply stabilization project

    International Nuclear Information System (INIS)

    Kalumiana, O.S.; Hibajene, S.H.; Ellegaard, A.

    1998-01-01

    The aims of the project were to study the charcoal price development and market structure, assess the possibility to purchase 'excess' charcoal during the dry season and finally to implement an experimental storage facility. While the experimental storage could never be large enough to actually affect the charcoal price structure other than very locally, several important aspects of charcoal storage could be learnt, for example: the structure of the market in which charcoal producers and traders operate; logistics of charcoal storage; commercial risks of charcoal storage; the role of government in charcoal storage; an update of the charcoal price structure and development in Lusaka; and an indication of daily charcoal trade in Lusaka's different markets. The experimental storage showed that there are several practical problems associated with storing charcoal. Storage involves more handling of the charcoal than common trade, which reduces the quality. Termites attacks the bags. Exposure to the sun and the (slight) rains that fell caused covering and packaging material to disintegrate, and the charcoal to become soft and friable. This type of charcoal was not in demand by the traders and urban consumers. Almost half of the charcoal stored was unsellable, causing the project to be a commercial disaster. Marketing costs were underestimated. The absence of a retail organization forced the project to sell to retailers to a large extent. These obviously needed a profit margin visavis the final customers, and so charcoal had to be sold below cost. Distribution of charcoal directly to the consumers in residential areas was tried but proved to be too costly. From the commercial point of view charcoal storage does not appear to be an activity which can attract free entrepreneurs, due to the impossibility of predicting the rains and thus the supply situation. This suggests that the only feasible actor to venture into storage would be the government, with the argument that the

  20. The charcoal storage disaster. The Lusaka charcoal supply stabilization project

    Energy Technology Data Exchange (ETDEWEB)

    Kalumiana, O.S. [Department of Energy (Zambia); Hibajene, S.H. [Ministry of Energy and Water Development (Zambia); Ellegaard, A. [Stockholm Environment Inst. (Sweden)

    1998-12-31

    The aims of the project were to study the charcoal price development and market structure, assess the possibility to purchase `excess` charcoal during the dry season and finally to implement an experimental storage facility. While the experimental storage could never be large enough to actually affect the charcoal price structure other than very locally, several important aspects of charcoal storage could be learnt, for example: the structure of the market in which charcoal producers and traders operate; logistics of charcoal storage; commercial risks of charcoal storage; the role of government in charcoal storage; an update of the charcoal price structure and development in Lusaka; and an indication of daily charcoal trade in Lusaka`s different markets. The experimental storage showed that there are several practical problems associated with storing charcoal. Storage involves more handling of the charcoal than common trade, which reduces the quality. Termites attacks the bags. Exposure to the sun and the (slight) rains that fell caused covering and packaging material to disintegrate, and the charcoal to become soft and friable. This type of charcoal was not in demand by the traders and urban consumers. Almost half of the charcoal stored was unsellable, causing the project to be a commercial disaster. Marketing costs were underestimated. The absence of a retail organization forced the project to sell to retailers to a large extent. These obviously needed a profit margin visavis the final customers, and so charcoal had to be sold below cost. Distribution of charcoal directly to the consumers in residential areas was tried but proved to be too costly. From the commercial point of view charcoal storage does not appear to be an activity which can attract free entrepreneurs, due to the impossibility of predicting the rains and thus the supply situation. This suggests that the only feasible actor to venture into storage would be the government, with the argument that the

  1. Determination of Pb2+ metal ion level in liquid waste from adsorption process by combination adsorbent of rice husk and water hyacinth charcoal using solid-phase spectrophotometry (sps)

    Science.gov (United States)

    Saputro, S.; Masykuri, M.; Mahardiani, L.; Hidayah, AN

    2018-03-01

    This research are to find out the influence of adsorbent composition between rice husk and water hyacinth in decreasing of Pb2+ ion in simulation liquid waste; the optimumcomposition of combination adsorbent of rice husk and water hyacinth charcoal on Pb2+ ion adsorption; and theeffectivenessof SPS as a method to determine the decreasing level of Pb2+ ion in simulation liquid waste by combination adsorbent of rice husk and water hyacinth charcoal in µg/L level. Rice husk and water hyacinth carbonization using muffle furnace at 350°C for 1 hour. Rice husk charcoal activation in a 2 N NaOH solution and water hyacinth charcoal activated in a 5 M HCl solution. Contacting the combination adsorbent of rice husk and water hyacinth charcoal with a Pb2+ solution with variation of mass composition, 1:0 ; 0:1 ; 1:1 ; 1:2 and 2:1. Analysis of the Pb2+ ion level using SPS method. Characterization of rice husk and water hyacinth charcoal using the FTIR. The results showed that the combination adsorbent composition of rice husk and water hyacinth charcoal have an impact on decreasing Pb2+ ion level. The optimum composition of combination adsorbent of rice husk and water hyacinth charcoal on the adsorption Pb2+ ion is 1:2. SPS is an effective method to determine the decreasing Pb2+ ion in simulation liquid waste from the adsorption process by combination adsorbent of rice husk and water hyacinth in µg/L, with Limit of Detection (LOD) was 0,06 µg/L.

  2. Activated Charcoal

    Science.gov (United States)

    Common charcoal is made from peat, coal, wood, coconut shell, or petroleum. “Activated charcoal” is similar to common charcoal, but is made especially for use as a medicine. To make activated charcoal, manufacturers heat common ...

  3. Feasibility for the medium efficiency filter as a postfilter in the air cleaning unit

    International Nuclear Information System (INIS)

    Lim, H. S.; Jung, D. Y.; Byun, S. C.; Kim, S. H.

    2002-01-01

    The Air Cleaning Unit (ACU) is provided in a nuclear facility to filter the radioactive materials in gaseous effluents released from the facility during normal operation and during a postulated accident. The Air Cleaning Unit (ACU) consists of pre-HEPA filters, charcoal adsorber, post HEPA filters, fans, etc. The charcoal filters keep on-site dose and off-site effluents ALARA, consistent with regulatory requirements. The function of HEPA filter downstream of charcoal(carbon) adsorber in ACU is to catch potential radioactive carbon dust and to be a backup in the event of failure of upstream HEPA. Previous Regulatory Guide use only post HEPA filter of charcoal adsorber downstream but the Regulatory Guide of current revisions allows use of 95% dust spot efficiency filters in lieu of HEPA at the downstream of the carbon adsorber. In this paper is described that the background information of filters, Current Regulatory Guide of revised by the United States Nuclear Regulatory Commission and the feasibility for the medium efficiency filter as a carbon adsorber post filter in the Air Cleaning Unit

  4. In-place testing of off-gas iodine filters

    International Nuclear Information System (INIS)

    Duce, S.W.; Tkachyk, J.W.; Motes, B.G.

    1980-01-01

    At the Idaho National Engineering Laboratory, both charcoal and silver zeolite (AgX) filters are used for radioactive iodine off-gas cleanup of reactor systems. These filters are used in facilities which are conducting research in the areas of reactor fuel failure, reactor fuel inspection, and loss of fluids from reactor vessels. Iodine retention efficiency testing of these filters is dictated by prudent safety practices and regulatory guidelines. A procedure for determining iodine off-gas filter efficiency in-place has been developed and tested on both AgX and charcoal filters. The procedure involves establishing sample points upstream and downstream of the filter to be tested. A step-by-step approach for filter efficiency testing is presented

  5. Performance improvements on passive activated charcoal 222Rn samplers

    International Nuclear Information System (INIS)

    Wei Suxia

    1996-01-01

    Improvements have been made on passive activated charcoal 222 Rn samplers with sintered metal filters. Based on the samplers of good adaptability to temperature and humidity developed before, better charcoal was selected to further improve their performance in radon absorption ability and moisture-resistance. And charcoal quantity in samplers was strictly controlled. The integration time constant of the improved samplers was about 4.3 days. As the sampler was combined with gamma spectrometer to measure radon concentration, the calibration factor was 0.518 min -1 ·Bq -1 ·m 3 for samplers of 7 days exposure time, and the minimum detectable concentration 0.28 Bq·m -3 if counting time for both background and sample is 1000 minutes. The improved samplers are suited to accurately determine the indoor and outdoor average radon concentration under conditions of great variation in temperature and humidity

  6. Different carbonization process of bamboo charcoal using Gigantochloa Albociliata

    Science.gov (United States)

    Isa, S. S. M.; Ramli, M. M.; Halin, D. S. C.; Anhar, N. A. M.; Hambali, N. A. M. A.

    2017-09-01

    Bamboo charcoal has attracted a lot of interests due to their microporous structure, high surface area and great adsorption properties. Some of the applications utilizing this material focused on these advantages such as water purification, electromagnetic wave absorber and blood purification. However, these advantages really depend on the carbonization and activation process of bamboo charcoal. The production must be carried out in properly control environment with precise temperatures and timing. This paper report the production of bamboo charcoal using Gigantochloa Albociliata in controlled environment at 500 °C for 1 hour (lab-prepared). Then the material was characterized for their dispersibility and adsorption behaviour. Furthermore, the bamboo charcoal that was produced commercially, by company, was also characterized and compared. The results show, bamboo charcoal produced by lab-prepared has similar qualities with the commercial bamboo charcoal.

  7. The synthesis of corncobs (zea mays) active charcoal and water hyacinth (eichornia crassipes) adsorbent to adsorb Pb(II) with it’s analysis using solid-phase spectrophotometry (sps)

    Science.gov (United States)

    Saputro, S.; Masykuri, M.; Mahardiani, L.; Kurniastuti, D.

    2018-03-01

    This research aim to examine the effect of the combination between corncobs and water hyacinth to adsorb lead (II), the most effective combination have determined by compared the ratio of corncobs adsorbent and water hyacinth to the increasing adsorption of the Pb(II), prove the effectiveness of the solid-phase spectrophotometry (sps) to determine the levels of Pb(II) as the result of the corncobs active charcoal adsorption and water hyacinth in the level of µg/L. The research method used is experimental method. The data collecting technique is carried out by several stages, which are carbonization using muffle furnace at a temperature of 350°C for 1.5 hours, activation of the corncobs charcoal and water hyacinth using HCl 1M and HCl 5M activator, contacting the adsorbent of corncobs active charcoal and water hyacinth with liquid waste simulation of Pb(II) using variation of corncobns and water hyacinth, 1:0; 0:1; 1:1; 2:1; 1:2, analysis of Pb(II) using an sps, characterization of corncobs active charcoal adsorbent and water hyacinth using FTIR. Research results show that the combined effect of activated charcoal corncobs and water hyacinth can increase the ability of the adsorbent to absorb Pb(II), the optimum adsorbent mass ratio of 1:1 with the absorption level of 90.33%, SPS is an effective method to analyze the decreasing level of Pb(II) as the adsorbtion result of the corncobs active charcoal and water hyacinth in the level of µg/L, with the limit of detection (LOD) of 0.06 µg/L.

  8. Pilot Scale Testing of Adsorbent Amended Filters under High Hydraulic Loads for Highway Runoff in Cold Climates

    Directory of Open Access Journals (Sweden)

    Carlos Monrabal-Martinez

    2017-03-01

    Full Text Available This paper presents an estimation of the service life of three filters composed of sand and three alternative adsorbents for stormwater treatment according to Norwegian water quality standards for receiving surface waters. The study conducted pilot scale column tests on three adsorbent amended filters for treatment of highway runoff in cold climates under high hydraulic loads. The objectives were to evaluate the effect of high hydraulic loads and the application of deicing salts on the performance of these filters. From previous theoretical and laboratory analysis granulated activated charcoal, pine bark, and granulated olivine were chosen as alternative adsorbent materials for the present test. Adsorption performance of the filters was evaluated vis-à-vis four commonly found hazardous metals (Cu, Pb, Ni and Zn in stormwater. The results showed that the filters were able to pass water at high inflow rates while achieving high removal. Among the filters, the filters amended with olivine or pine bark provided the best performance both in short and long-term tests. The addition of NaCl (1 g/L did not show any adverse impact on the desorption of already adsorbed metals, except for Ni removal by the charcoal amended filter, which was negatively impacted by the salt addition. The service life of the filters was found to be limited by zinc and copper, due to high concentrations observed in local urban runoff, combined with moderate affinity with the adsorbents. It was concluded that both the olivine and the pine bark amended filter should be tested in full-scale conditions.

  9. The Influence of Coconut Water and Activated Charcoal in MS Medium on In Vitro Callus Regeneration of Dendrobium sp. Cultivar Bertha Chong Orchids

    Directory of Open Access Journals (Sweden)

    Dessi Novita Sari

    2015-09-01

    Full Text Available Dendrobium is one of the most commercial orchids. In Vitro technique is one of solution to fulfill the market demand of Dendrobium. Organic matters, such as coconut water, and activated charcoal are often given to in vitro medium to regenerate orchids callus. The addition of activated charcoal is not only adsorbing toxic substances but also organic matters. The aimof this researchistofindthe best combination for callus regeneration medium. The research was conducted at the Biological Cell and Molecular Laboratory, Mathematics and Natural Science Faculty of Syiah Kuala University, Darussalam, Banda Aceh since March to November 2013. The method used is experimental with Completely Randomized Factorial Design with two factor; treatments of coconut water and activated charcoal. The result showed that the combinationof 150mL/Lcoconut waterand2,0g/Lactivated charcoal is the best resultbecauseit is the onlytreatment that have capability in producingplantletswithin60days.

  10. Sample preparation of waste water to determine metallic contaminants by X-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gonzalez Olivos, Javier.

    1987-01-01

    Trace X-ray fluorescence spectroscopy analysis in liquid samples is preceded by sample preparation, which usually consists in the precipitation of the metallic ions and concentration over a thin cellulose filter. The samples preparation of waste water by this method is not efficient, due to the great amount of organic and insoluble matter that they contain. The purpose of this work was to determine the optimal value of pH in order to adsorbe all the insoluble matter contained in a waste water sample in the activated charcoal, so that the metallic ions could be precipitated and concentrated on a thin filter and determinated by X-ray fluorescence spectroscopy. A survey about the adsorption of some ions in activated charcoal in function of the pH was made for the following: Cr 3+ , Fe 3+ , Ni 2+ , Cu 2+ , Zn 2+ , Se 2+ , Hg 2+ , and Pb 2+ . It was observed that at pH 0, the ions are not adsorbed, but Cu 2+ and Zn 2+ are adsorbed in small amount; at pH 14, the ions are adsorbed, excluding Se, which is not adsorbed at any value of pH. If a waste water sample is treated at pH 0 with activated charcoal to adsorbe the organic and insoluble matter, most of the metallic ions are not adsorbed by the activated charcoal and could be precipitated with APDC (ammonium 1-pirrolidine dithio carbamate salt) and concentrated on a thin filter. The analysis of the metallic ions contained on the filter and those adsorbed in the activated charcoal by X-ray fluorescence spectroscopy, gave the total amount of the ions in the sample. (author)

  11. Impact of a silver layer on the membrane of tap water filters on the microbiological quality of filtered water

    Directory of Open Access Journals (Sweden)

    Bruderek Juliane

    2008-10-01

    Full Text Available Abstract Background Bacteria in the hospital's drinking water system represent a risk for the acquisition of a nosocomial infection in the severely immunocompromised host. Terminal tap water filters may be used to prevent nosocomial Legionnaires' disease. We present data from water samples using an improved kind of tap water filters. Methods In a blinded study on an intermediate care unit of the thoracic surgery department, a modified type of the Germlyser water filter (Aqua-Free Membrane Technology with a newly-introduced silver layer on the filtration membrane was compared to its preceding type without such a layer on 15 water outlets. We determined growth of Legionella, other pathogenic bacteria, and the total heterotrophic plate count in unfiltered water and filtered water samples after filter usage intervals of 1 through 4 weeks. Results A total of 299 water samples were tested. Twenty-nine of the 60 unfiltered water samples contained Legionella of various serogroups (baseline value. In contrast, all samples filtered by the original water filter and all but one of the water samples filtered by the modified filter type remained Legionella-free. No other pathogenic bacteria were detected in any filtered sample. The total plate count in water samples increased during use of both kinds of filters over time. However, for the first 7 days of use, there were significantly fewer water samples containing >100 CFU per mL when using the new filter device compared with the older filters or taps with no filter. No advantage was seen thereafter. Conclusion The use of this type of terminal water filter is an appropriate method to protect immunocompromised patients from water-borne pathogens such as Legionella.

  12. Salts of the iodine oxyacids in the impregnation of adsorbent charcoal for trapping radioactive methyliodide

    International Nuclear Information System (INIS)

    Deitz, V.R.; Blachly, C.H.

    1977-01-01

    Radioactive iodine and radioactive methyliodide can be more than 99.7 percent removed from the air stream of a nuclear reactor by passing the air stream through a 2-inch thick filter which is made up of impregnated charcoal prepared by contacting the charcoal with a solution containing KOH, iodine or an iodide, and an oxyacid, followed by contacting with a solution containing a tertiary amine. 3 claims

  13. Preconcentration and Determination of Perfluoroalkyl Substances (PFASs in Water Samples by Bamboo Charcoal-Based Solid-Phase Extraction Prior to Liquid Chromatography–Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ze-Hui Deng

    2018-04-01

    Full Text Available In this work, bamboo charcoal was used as solid-phase extraction adsorbent for the enrichment of six perfluoroalkyl acids (PFAAs in environmental water samples before liquid chromatography–tandem mass spectrometry analysis. The specific porous structure, high specific surface area, high porosity, and stability of bamboo charcoal were characterized. Several experimental parameters which considerably affect extraction efficiency were investigated and optimized in detail. The experimental data exhibited low limits of detection (LODs (0.01–1.15 ng/L, wide linear range (2–3 orders of magnitude and R ≥ 0.993 within the concentration range of 0.1–1000 ng/L, and good repeatability (2.7–5.0%, n = 5 intraday and 4.8–8.3%, n = 5 interday and reproducibility (5.3–8.0%, n = 3. Bamboo charcoal was successfully used for the enrichment and determination of PFAAs in real environmental water samples. The bamboo charcoal-based solid-phase extraction coupled with liquid chromatography–tandem mass spectrometry analysis possessed great potential in the determination of trace PFAA levels in environmental water samples.

  14. Application of activated carbon fiber to a filter used for airborne radioiodine sampling

    International Nuclear Information System (INIS)

    Kato, Shohei; Murata, Mikio; Yoshikazu, Yoshida

    1988-01-01

    An airborne radioiodine sampling filter is required to have low pressure drop, mechanical strength enough to a practical use and high collection efficiency under high relative humidity(RH). To develop a filter to meet the requirements, the influences of impregnation amount of triethylenediamin(TEDA) on the collection efficiencies for methyl iodide and the reaction rates were investigated for several kinds of activated carbon fiber varied in specific surface area, pore diameter, etc. Silver silica gel(Sut Chemi, AC6120), silver zeolite(CTI Nuc., AgX Type III), silver alumina(Hitachi Co.) and granular activated charcoal were also examined for comparison. A new type filter made of activated carbon fiber (ACF filter) was developed based on the above experimental results. The ACF filter was examined for the pressure drop by the filter and collection efficiency for methyl iodide being compared with other types of filters such as an activated charcoal cartridge (ACC) and an activated charcoal filter paper (ACP)

  15. A granular refillable filter for glas-flows contaminated by radioactive impurities

    International Nuclear Information System (INIS)

    Bonn, J.W.

    1975-01-01

    Description is given of a granular charcoal refillable filter adapted to adsorb the radioactive impurities of a gaseous flow. That flow comprises a number of filtering layers, the consumed charcoal of which can be discharged by a pneumatic device without exposing the personnel to radioactivity. This can be applied to emergency devices in nuclear facilities [fr

  16. Potency of bio-charcoal briquette from leather cassava tubers and industrial sludge

    Science.gov (United States)

    Citrasari, Nita; Pinatih, Tety A.; Kuncoro, Eko P.; Soegianto, Agoes; Salamun, Irawan, Bambang

    2017-06-01

    The purpose of this study was to determine the quality of the bio-charcoal briquette with materials from leather cassava tubers and sludge of wastewater treatment plant. The first, bio-charcoal briquette analized stability test and compressive strength. Then, bio-charcoal briquette with best value analyzed for parameter including moisture content, ash content, calorific content, and burned test. The result briquette quality based on compressive strength for bio-charcoal briquettes carbonated water content between 3.8%-4.5% and non-carbonated bio-charcoal briquettes between 5.2%-7.6%. Bio-charcoal carbonation briquette ash content was between 5.30%-7.40% and non-carbonated bio-charcoal briquettes was between 6.86%-7.46%. Bio-charcoal carbonation levels briquettes heated between 578.2 calories/g-1837.7 calories/g and non carbonatedbio-charcoal briquettes between 858.1 calories/g-891.1 calories/g. Carbonated bio-charcoal burned test was between 48-63 minutes and non-carbonated bio-charcoal was between 22-42 minutes. Emissions resulted from the bio-charcoal briquettes for carbonated and non carbonated composition according to the government regulations ESDM No. 047 of 2006 which, at 128 mg/Nm3 and 139 mg/Nm3.

  17. Rotating Ceramic Water Filter Discs System for Water Filtration

    Directory of Open Access Journals (Sweden)

    Riyadh Z. Al Zubaidy

    2017-04-01

    Full Text Available This work aimed to design, construct and operate a new laboratory scale water filtration system. This system was used to examine the efficiency of two ceramic filter discs as a medium for water filtration. These filters were made from two different ceramic mixtures of local red clay, sawdust, and water. The filtration system was designed with two rotating interfered modules of these filters. Rotating these modules generates shear force between water and the surfaces of filter discs of the filtration modules that works to reduce thickness of layer of rejected materials on the filters surfaces. Each module consists of seven filtration units and each unit consists of two ceramic filter discs. The average measured hydraulic conductivity of the first module was 13.7mm/day and that for the second module was 50mm/day. Results showed that the water filtration system can be operated continuously with a constant flow rate and the filtration process was controlled by a skin thin layer of rejected materials. The ceramic water filters of both filtration modules have high removal efficiency of total suspended solids up to 100% and of turbidity up to 99.94%.

  18. Potential for HEPA filter damage from water spray systems in filter plenums

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W. [Lawrence Livermore National Lab., CA (United States); Fretthold, J.K. [Rocky Flats Safe Sites of Colorado, Golden, CO (United States); Slawski, J.W. [Department of Energy, Germantown, MD (United States)

    1997-08-01

    The water spray systems in high efficiency particulate air (HEPA) filter plenums that are used in nearly all Department of Energy (DOE) facilities for protection against fire was designed under the assumption that the HEPA filters would not be damaged by the water sprays. The most likely scenario for filter damage involves filter plugging by the water spray, followed by the fan blowing out the filter medium. A number of controlled laboratory tests that were previously conducted in the late 1980s are reviewed in this paper to provide a technical basis for the potential HEPA filter damage by the water spray system in HEPA filter plenums. In addition to the laboratory tests, the scenario for BEPA filter damage during fires has also occurred in the field. A fire in a four-stage, BEPA filter plenum at Rocky Flats in 1980 caused the first three stages of BEPA filters to blow out of their housing and the fourth stage to severely bow. Details of this recently declassified fire are presented in this paper. Although these previous findings suggest serious potential problems exist with the current water spray system in filter plenums, additional studies are required to confirm unequivocally that DOE`s critical facilities are at risk. 22 refs., 15 figs.

  19. Production of charcoal briquettes from biomass for community use

    Science.gov (United States)

    Suttibak, S.; Loengbudnark, W.

    2018-01-01

    This article reports of a study on the production of charcoal briquettes from biomass for community use. Manufacture of charcoal briquettes was done using a briquette machine with a screw compressor. The aim of this research was to investigate the effects of biomass type upon the properties and performance of charcoal briquettes. The biomass samples used in this work were sugarcane bagasse (SB), cassava rhizomes (CR) and water hyacinth (WH) harvested in Udon Thani, Thailand. The char from biomass samples was produced in a 200-liter biomass incinerator. The resulting charcoal briquettes were characterized by measuring their properties and performance including moisture content, volatile matter, fixed carbon and ash contents, elemental composition, heating value, density, compressive strength and extinguishing time. The results showed that the charcoal briquettes from CR had more favorable properties and performance than charcoal briquettes from either SB or WH. The lower heating values (LHV) of the charcoal briquettes from SB, CR and WH were 26.67, 26.84 and 16.76 MJ/kg, respectively. The compressive strengths of charcoal briquettes from SB, CR and WH were 54.74, 80.84 and 40.99 kg/cm2, respectively. The results of this research can contribute to the promotion and development of cost-effective uses of agricultural residues. Additionally, it can assist communities in achieving sustainable self-sufficiency, which is in line with our late King Bhumibol’s economic sufficiency philosophy.

  20. Zambian charcoal production

    International Nuclear Information System (INIS)

    Chidumayo, E.N.

    1993-01-01

    The recovery of miombo woodlands following clearance for woodfuel is being monitored at four sites in central Zambia. Charcoal production removes 50% of the total woody biomass and the woodland regenerates from a pool of stunted old seedlings and stumps of cut trees. Productivity is correlated to tree density before felling. Clearing of successive regrowth miombo does not appear to affect productivity. Annual wood biomass increment in unmanaged regrowth miombo is estimated at 2-3 t/ha pa of which about 1.1 t is cord wood suitable for charcoal production. However, the charcoal spots within the deforested area are severely impacted by the carbonization process which destroys soil structure, seedlings and root stocks. Woodland regeneration on such spots is protracted. Fortunately, charcoal spots only cover 2-3% of the deforested area. The concern about land degradation due to deforestation caused by woodfuel harvesting for urban charcoal in the miombo woodland region of central and southern Africa is not supported by the results of this study. (author)

  1. Comparative removal of congo red dye from water by adsorption on grewia asiatica leaves, raphanus sativus peels and activated charcoal

    International Nuclear Information System (INIS)

    Rehman, R.; Abbas, A.; Murtaza, S.; Mahmud, T.; Waheed-uz-Zaman; Salman, M.; Shafiq, U.

    2012-01-01

    Water treatment by adsorption methodology is being evolved in recent years. Various researchers are searching new adsorbents for water treatment which can replace activated charcoal. In the following study, the efficiency of removing Congo Red dye from water using two novel adsorbents, i.e. Raphanus sativus (Radish) peels and Grewia asiatica (Phalsa) leaves was evaluated and compared with activated charcoal. The adsorption process is carried out batch wise by using different concentrations of the aqueous dye solution with different adsorbent doses, agitation rate, varying contact time intervals, at a range of initial pH values and at different temperatures. Various chemicals were used for enhancing the adsorption capacity of adsorbents. The suitability of the adsorbent for using it is tested by fitting the adsorption data on Langmuir isotherm. The results showed that the Phalsa leaves powder is more effective adsorbent than Reddish peels for removing Congo Red dye from water. It can be used for removing Congo Red dye from waste water. (author)

  2. Cryptosporidium: A Guide to Water Filters

    Science.gov (United States)

    ... Tap Water Many but not all available home water filters remove Cryptosporidium . Some filter designs are more suitable for removal of Cryptosporidium than others. Filters that have the words "reverse osmosis" on the label protect against Cryptosporidium . Some other ...

  3. Adsorption of heavy metal ions by activated charcoal

    International Nuclear Information System (INIS)

    Fujikawa, Mitsuo

    1978-01-01

    The adsorption effect was measured for several kinds of heavy metal ions, Pb 2+ , Cd 2+ , Cu 2+ and Zn 2+ by passing them through activated charcoal beds and changing the pH values of solutions. The test procedure is to keep the pH value of solution more than 10 at first, filter heavy metal hydroxide deposit, measure the remaining ion concentration in filtrate, and also test the influence of the addition of alkali to each kind of ions. The individual test procedure for each kind of ions is explained. As for the Cd ions, after the detailed experimental procedure is explained, the adsorption characteristic line is shown as the relation between the adsorption quantity and the equilibrium concentration of Cd 2+ . The similar test procedure and the adsorption characteristic lines are shown and evaluated about Pb 2+ , Cu 2+ and Zn 2+ . These lines are all linear, but have different adsorption quantity and inclination in relation to heavy metal ion concentration. Concerning the influence of pH to adsorption, the characteristics of pH increase are presented, when alkali is added by various quantities to Zn 2+ , Cu 2+ , Pb 2+ and Cd 2+ . The pH of Pb 2+ increased to about 10 by adding 0.4 cc alkali and saturates, but the pH of the other ions did not saturate by adding less than 1.5 cc alkali. When the water containing heavy metals are treated, Cd 2+ , Pb 2+ , Cu 2+ and Zn 2+ are removed almost satisfactorily by passing them through active charcoal filters and keeping pH at 10. The experimental concentrations are 0.05 ppm at pH 10 in Cd, 0.86 ppm at 10.3 in Pb, 0 ppm at pH 9.6 in Cu, 0.06 ppm at pH 8.8 and 12.4 ppm at pH 9.8 in Zn. (Nakai, Y.)

  4. Clay Ceramic Filter for Water Treatment

    Directory of Open Access Journals (Sweden)

    Zereffa Enyew Amare

    2017-05-01

    Full Text Available Ceramic water filters were prepared from different proportions of kaolin and soft wood and sintered at 900 °C, 950 °C, and 1000 °C. The flow rate, conductivity, pH of filtered water and removal efficiency (microbial, water hardness agent’s, nitrite and turbidity were analysed. The ceramic filter with 15 % saw dust, 80 % clay and 5 % grog that was fired at temperature of 950 °C or 1000 °C showed the best removal efficiency. Statistical ANOVA tests showed a significant difference between ceramic filters with various compositions in their removal efficiencies.

  5. Producing charcoal from wastes

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelov, V.A.

    1983-01-01

    Experimental works to use wood wastes for producing charcoal are examined, which are being conducted in the Sverdlovsk assembly and adjustment administration of Soyuzorglestekhmontazh. A wasteless prototype installation for producing fine charcoal is described, along with its subsequent briqueting, which is made on the basis of units which are series produced by the factories of the country. The installation includes subassemblies for preparing and drying the raw material and for producing the charcoal briquets. In the opinion of specialists, the charcoal produced from the wastes may be effectively used in ferrous and nonferrous metallurgy and in the production of pipes.

  6. Behavior of highly radioactive iodine on charcoal in moist air

    International Nuclear Information System (INIS)

    Lorenz, R.A.; Manning, S.R.; Martin, W.J.

    1976-01-01

    The behavior of highly radioactive iodine adsorbed on charcoal exposed to moist air (110 torr water vapor partial pressure) was investigated in a series of six experiments. The amount of radioactive 130 I on the well-insulated 28-cm 3 bed ranged from 50 to 570 Ci, and the relative humidity was 47 percent at the bed inlet temperature of 70 0 C. Radioactive iodine was released from the test beds at a continuous fractional release rate of approximately 7 x 10 -6 /hr for all types of charcoal tested. The chemical form of the released iodine was such that it was very highly penetrating with respect to the nine different types of commercial impregnated charcoals tested in backup collection beds. Two types of silver-nitrate-coated adsorption materials behaved similarly to the charcoals. Silver-exchanged type 13-X molecular sieve adsorbers were 20 to 50 times more efficient for adsorbing the highly penetrating iodine, but not as efficient as normally found for collecting methyl iodide. The chemical form of the highly penetrating iodine was not determined. When the moist air velocity was decreased from 28.5 fpm (25 0 C) to as low as 0.71 fpm (25 0 C), the charcoal bed temperature rose slowly and reached the ignition temperature in three of the experiments. At 0.71 fpm (25 0 C) the ignited charcoal beds reached maximum temperatures of 430 to 470 0 C because of the limited oxygen supply. The charcoal exposed for four years at Oak Ridge ignited at 283 0 C compared with 368 0 C for unused charcoal from the same batch. Two of the experiments used charcoal containing 1 or 2 percent TEDA (triethylene-diamine) and a proprietary flame retardant. The oxidation and ignition behavior of these charcoals did not appear to be affected adversely by the presence of the TEDA

  7. Evaluating the Impact of Ambient Benzene Vapor Concentrations on Product Water of Condensation Water from Air Technology

    Science.gov (United States)

    2016-03-07

    by a sediment filter; or a combination of 8 water treatment technologies. Water treatment type is chosen by the manufacture and is diverse...the water treatment module was comprised of a sediment , charcoal and ultra-fine membrane and Halo Pure cartridge. Other components such as the... water was calculated. This study used the EPA site assessment calculator for the Office of Solid Waste and Emergency Response (OSWER) Method to

  8. Adsorption of 241Am and 226Ra from natural water by wood charcoal

    International Nuclear Information System (INIS)

    Miro, C.; Baeza, A.; Salas, A.; Pastor-Valle, J.F.; Pastor-Villegas, J.

    2008-01-01

    The adsorption of 241 Am and 226 Ra from natural water by a granulated wood charcoal was investigated as a function of the solution pH, in the range 4-10, and of the water flow, in the range 3.5-42 cm 3 /min. The percentage adsorption of 241 Am (fairly constant at >80% for all pHs) was greater than that of 226 Ra (which increased with increasing pH from ∼40% up to >80%). The results are explained by considering the different species of each radionuclide present at the pH values of the solution at the end of the adsorbent column, and the pH of the point of zero charge of the adsorbent. At pH 6, the elimination of 241 Am from natural water was independent of the water flow, while the elimination of 226 Ra declined linearly as the flow rate was increased

  9. Hydraulic modeling of clay ceramic water filters for point-of-use water treatment.

    Science.gov (United States)

    Schweitzer, Ryan W; Cunningham, Jeffrey A; Mihelcic, James R

    2013-01-02

    The acceptability of ceramic filters for point-of-use water treatment depends not only on the quality of the filtered water, but also on the quantity of water the filters can produce. This paper presents two mathematical models for the hydraulic performance of ceramic water filters under typical usage. A model is developed for two common filter geometries: paraboloid- and frustum-shaped. Both models are calibrated and evaluated by comparison to experimental data. The hydraulic models are able to predict the following parameters as functions of time: water level in the filter (h), instantaneous volumetric flow rate of filtrate (Q), and cumulative volume of water produced (V). The models' utility is demonstrated by applying them to estimate how the volume of water produced depends on factors such as the filter shape and the frequency of filling. Both models predict that the volume of water produced can be increased by about 45% if users refill the filter three times per day versus only once per day. Also, the models predict that filter geometry affects the volume of water produced: for two filters with equal volume, equal wall thickness, and equal hydraulic conductivity, a filter that is tall and thin will produce as much as 25% more water than one which is shallow and wide. We suggest that the models can be used as tools to help optimize filter performance.

  10. The Marginalization of Sustainable Charcoal Production in the Policies of a Modernizing African Nation

    Directory of Open Access Journals (Sweden)

    Nike Doggart

    2017-06-01

    Full Text Available Charcoal is the main cooking fuel for urban populations in many African countries. Urbanization and population growth are driving an increase in demand for charcoal, whilst deforestation reduces biomass stocks. Given increasing demand for charcoal, and decreasing availability of biomass, policies are urgently needed that ensure secure energy supplies for urban households and reduce deforestation. There is potential for charcoal to be produced sustainably in natural woodlands, but this requires supportive policies. Previous research has identified policy issues that have contributed to the charcoal sector remaining informal and environmentally destructive. In this paper, we describe how national policies in Tanzania on energy, forests, agriculture, land, and water, consider charcoal, and the degree to which they do, and do not, support sustainable charcoal production. The paper identifies policy gaps and a cross-sector tendency to marginalize natural forest management. By adopting a nexus approach, the paper highlights the inter-connections between sustainable charcoal production, ecosystem services, and trade-offs in the allocation of land, labor, and net primary production. In conclusion, sustainable charcoal production has been marginalized in multiple national policies. As a result, potential benefits of sustainable charcoal production are lost to multiple sectors.

  11. Calibration of filters for detection of airborne I-131 in the environment of nuclear power plant; Kalibracija filtrov za detekcijo I-131 v zraku okolja jedrske elektrarne

    Energy Technology Data Exchange (ETDEWEB)

    Zupan, M; Miklavzic, U; Pucelj, B [Institut Jozef Stefan, Ljubljana (Yugoslavia)

    1982-07-01

    A simple and clean method for efficiency calibration of filters for collection of airborne I and corresponding Ge(Li) spectrometer is described. As the calibrated source of gaseous I-131 the radiopharmaceutical water solution of NaI is used. As calibration example the absolute activity distribution of I-131 measured in a charcoal filter is shown. (author)

  12. Study on a charcoal-based monitor for Rn-220 in air

    International Nuclear Information System (INIS)

    Yu Yiqiao; Solomon, S.B.

    1993-01-01

    Activated charcoal has been used in both passive monitors (Cohen, Pondy et al. 1987) and active monitors (Solomon and Gan, 1989) for the measurements of 222 Rn in air. Cooled, charcoal-impregnated filters, viewed in-situ by a solid state alpha detector, have been used for 220 Rn-in-breath studies. In general, γ ray counting of 220 Rn samples collected on activated charcoal has not been used. This paper describes the development and calibration of a charcoal based monitor designed to measure 220 Rn levels down to a lower limit of 10 Bq m -3 over sampling periods of 4 to 15 h. The activity of 212 Pb (10.6 h) produced from 220 Rn (55.6 s) collected in an activated charcoal-based sampler is 1/700 the total 220 Rn activity. A typical Hp-Ge detector has a MDL for a two-hours count of approximately 0.1 Bq of 212 Pb for the 239 keV γ-ray. For a MDL of 10 Bq·m -3 of 220 Rn in air, a volume of at least 7 m 3 must be sampled, assuming no breakthrough. The present charcoal-based 220 Rn monitor is designed to maximize the path length through the activated charcoal while sufficient cross-sectional area is retained to allow flow rates up to 0.03 m 3 ·kg -1 is packed into a specially designed aluminum container. The container is modeled on a Marinelli beaker to maximize the counting efficiency, while the sample flow through the chambers of the monitor is optimized to maintain radial symmetry. experiments demonstrated that 94% of 220 Rn was adsorbed by the charcoal in the monitor under a flow rate of 0.03 m 3 ·min -1 at 25 degree C and 85%. RH in 15 h. The monitor is designed to fit over a 70 mm diameter Hp-Ge detector. Preliminary measurements of 220 Rn in two buildings and a cave, using the active monitors and 'grabing' samples under a flow rate of 0.03 m 3 ·min -1 and a period of 4 h, indicated concentrations of between 18.6 and 142.0 Bq·m 3

  13. Assessment of the irrigation feasibility of low-cost filtered municipal wastewater for red amaranth (Amaranthus tricolor L cv. Surma

    Directory of Open Access Journals (Sweden)

    Gokul Chandra Biswas

    2015-09-01

    Full Text Available Because of the scarcity of clean water, treated wastewater potentially provides an alternative source for irrigation. In the present experiment, the feasibility of using low-cost filtered municipal wastewater in the irrigation of red amaranth (Amaranthus tricolor L cv. Surma cultivation was assessed. The collected municipal wastewater from fish markets, hospitals, clinics, sewage, and kitchens of households in Sylhet City, Bangladesh were mixed and filtered with nylon mesh. Six filtration methods were applied using the following materials: sand (T1; sand and wood charcoal consecutively (T2; sand, wood charcoal and rice husks consecutively (T3; sand, wood charcoal, rice husks and sawdust consecutively (T4; sand, wood charcoal, rice husks, sawdust and brick chips consecutively (T5; and sand, wood charcoal, rice husks, sawdust, brick chips and gravel consecutively (T6. The water from ponds and rivers was considered as the control treatment (To. The chemical properties and heavy metals content of the water were determined before and after the low cost filtering, and the effects of the wastewater on seed germination, plant growth and the accumulation rate of heavy metals by plants were assessed. After filtration, the pH, EC and TDS ranged from 5.87 to 9.17, 292 to 691 µS cm−1 and 267 to 729 mg L−1, respectively. The EC and TDS were in an acceptable level for use in irrigation, satisfying the recommendations of the FAO. However, select pH values were unsuitable for irrigation. The metal concentrations decreased after applying each treatment. The reduction of Fe, Mn, Pb, Cu, As and Zn were 73.23%, 92.69%, 45.51%, 69.57%, 75.47% and 95.06%, respectively. When we considered the individual filtering material, the maximum amount of As and Pb was absorbed by sawdust; Cu and Zn by wood charcoal; Mn and Cu by sand and Fe by gravel. Among the six filtration treatments, T5 showed the highest seed germination (67.14%, similar to the control T0 (77

  14. Activated charcoal alone or after gastric lavage

    DEFF Research Database (Denmark)

    Christophersen, A B; Levin, D; Høgberg, Lotte Christine Groth

    2002-01-01

    AIMS: Activated charcoal is now being recommended for patients who have ingested potentially toxic amounts of a poison, where the ingested substance adsorbs to charcoal. Combination therapy with gastric lavage and activated charcoal is widely used, although clinical studies to date have not provi......AIMS: Activated charcoal is now being recommended for patients who have ingested potentially toxic amounts of a poison, where the ingested substance adsorbs to charcoal. Combination therapy with gastric lavage and activated charcoal is widely used, although clinical studies to date have...... kg(-1) in 125 mg tablets to mimic real-life, where several factors, such as food, interfere with gastric emptying and thus treatment. The interventions were activated charcoal after 1 h, combination therapy of gastric lavage followed by activated charcoal after 1 h, or activated charcoal after 2 h.......6--34.4). CONCLUSIONS: These results suggest that combination treatment may be no better than activated charcoal alone in patients presenting early after large overdoses. The effect of activated charcoal given 2 h post ingestion is substantially less than at 1 h, emphasizing the importance of early intervention....

  15. Charcoal anatomy of forest species

    Directory of Open Access Journals (Sweden)

    Graciela Inés Bolzon de Muñiz1

    2012-09-01

    Full Text Available Vegetal charcoal retains the anatomical structure of the wood and may permit its botanical identification, which depends on species characteristics, the charcoal fragments size and preservation state. Anatomical characterization of ten forest species charcoal was done envisaging the identification and control of illegal charcoal. Differences between gymnosperms and angiosperms are evident in carbonized wood. Vessel diameter was statistically different between wood and charcoal in Vatairea guianensis, Mezilaurus itauba, Calophyllum brasiliense e Qualea cf. acuminata, and vessel frequency in Vatairea guianensis, Manilkara huberi, Qualea cf. acuminata e Simarouba amara. The anatomical structure from wood, in general aspects, is constant during carbonization process using temperature of 450°C, being possible to identify the material by using its cellular components.

  16. ECONOMICAL PLANS EFFECTS ON CHARCOAL PRICES

    Directory of Open Access Journals (Sweden)

    José Luiz Pereira Rezende

    2007-06-01

    Full Text Available Energy is essential for human needs satisfaction. With the evolution of machinery, man becomes more and more dependent on the energy stocked in fossil fuels, comparatively to the primitive economy. Wood charcoal is a thermal-reducer used in Brazilian pig iron and steel industries, and its price is formed in an oligopsonic market. Over time, the charcoal prices have varied in function of endogenous and exogenous factors, needing, therefore, to be deflated so that they can be compared in two or more points in time. This work analyzed the variations of charcoal real prices, in national currency; compared and analyzed the real charcoal price in nominal and in real US Dollar and; analyzed the real prices of charcoal, comparatively to the real oil prices. The analyses were accomplished in the period from January 1975 to December 2002. The time series of charcoal prices, in domestic currency were deflated using IGP-DI, considering august, 1994=100, and charcoal prices were also converted to American dollar and deflated using CPI, considering the period 1982-84=100. It was compared, then, the real and nominal charcoal prices. It concluded that the real charcoal prices in Brazilian domestic currency, or in American dollar, presented a decreasing tendency along time. The inflationary disarray, in the 80´s and the first half of the 90 ´s, provoked a big price variation in the period; from the beginning the XXI century, charcoal prices were more influenced by the exchange rate; in the energy crisis period, charcoal prices suffered big changes that, however, did not persist along time.

  17. Bio-charcoal production from municipal organic solid wastes

    Science.gov (United States)

    AlKhayat, Z. Q.

    2017-08-01

    The economic and environmental problems of handling the increasingly huge amounts of urban and/or suburban organic municipal solid wastes MSW, from collection to end disposal, in addition to the big fluctuations in power supply and other energy form costs for the various civilian needs, is studied for Baghdad city, the ancient and glamorous capital of Iraq, and a simple control device is suggested, built and tested by carbonizing these dried organic wastes in simple environment friendly bio-reactor in order to produce low pollution potential, economical and local charcoal capsules that might be useful for heating, cooking and other municipal uses. That is in addition to the solve of solid wastes management problem which involves huge human and financial resources and causes many lethal health and environmental problems. Leftovers of different social level residential campuses were collected, classified for organic materials then dried in order to be supplied into the bio-reactor, in which it is burnt and then mixed with small amounts of sugar sucrose that is extracted from Iraqi planted sugar cane, to produce well shaped charcoal capsules. The burning process is smoke free as the closed burner’s exhaust pipe is buried 1m underground hole, in order to use the subsurface soil as natural gas filter. This process has proved an excellent performance of handling about 120kg/day of classified MSW, producing about 80-100 kg of charcoal capsules, by the use of 200 l reactor volume.

  18. Short-Term Changes in Physical and Chemical Properties of Soil Charcoal Support Enhanced Landscape Mobility

    Science.gov (United States)

    Pyle, Lacey A.; Magee, Kate L.; Gallagher, Morgan E.; Hockaday, William C.; Masiello, Caroline A.

    2017-11-01

    Charcoal is a major component of the stable soil organic carbon reservoir, and the physical and chemical properties of charcoal can sometimes significantly alter bulk soil properties (e.g., by increasing soil water holding capacity). However, our understanding of the residence time of soil charcoal remains uncertain, with old measured soil charcoal ages in apparent conflict with relatively short modeled and measured residence times. These discrepancies may exist because the fate of charcoal on the landscape is a function not just of its resistance to biological decomposition but also its physical mobility. Mobility may be important in controlling charcoal landscape residence time and may artificially inflate estimates of its degradability, but few studies have examined charcoal vulnerability to physical redistribution. Charcoal landscape redistribution is likely higher than other organic carbon fractions owing to charcoal's low bulk density, typically less than 1.0 g/cm3. Here we examine both the physical and chemical properties of soil and charcoal over a period of two years following a 2011 wildfire in Texas. We find little change in properties with time; however, we find evidence of enhanced mobility of charcoal relative to other forms of soil organic matter. These data add to a growing body of evidence that charcoal is preferentially eroded, offering another explanation for variations observed in its environmental residence times.

  19. Preparation Of Charcoal Using Agricultural Wastes | Bogale ...

    African Journals Online (AJOL)

    Conclusion: As compared to wood charcoal the charcoal briquette produced from agricultural wastes are economical, environmentally friendly, healthy (no smoke at all) and reduce impact of deforestation. Key words: Pollution, deforestation, extruder, carbonizer, wood charcoal, briquette charcoal, agricultural wastes, ...

  20. Avoiding the Use of Exhausted Drinking Water Filters: A Filter-Clock Based on Rusting Iron

    Directory of Open Access Journals (Sweden)

    Arnaud Igor Ndé-Tchoupé

    2018-05-01

    Full Text Available Efficient but affordable water treatment technologies are currently sought to solve the prevalent shortage of safe drinking water. Adsorption-based technologies are in the front-line of these efforts. Upon proper design, universally applied materials (e.g., activated carbons, bone chars, metal oxides are able to quantitatively remove inorganic and organic pollutants as well as pathogens from water. Each water filter has a defined removal capacity and must be replaced when this capacity is exhausted. Operational experience has shown that it may be difficult to convince some low-skilled users to buy new filters after a predicted service life. This communication describes the quest to develop a filter-clock to encourage all users to change their filters after the designed service life. A brief discussion on such a filter-clock based on rusting of metallic iron (Fe0 is presented. Integrating such filter-clocks in the design of water filters is regarded as essential for safeguarding public health.

  1. Lead Testing in Soil Contaminated with Pesticides and Reducing its Effects by the Activity of Activated Charcoal

    Directory of Open Access Journals (Sweden)

    Devesh Chand Thakur

    2014-07-01

    Full Text Available Background: Lead poisoning is classically defined as exposure to high levels of lead typically associated with severe health effects, but being a heavy metal which is potentially toxic, if present at even minor concentrations, it is of great concern to environmentalists and medical professionals alike. Activated charcoal has been known to adsorb heavy metals and thus, was used in this study as well. Aim: The main aim of this study was to decrease the lead content of agricultural soil which is attributed to the use of pesticides containing lead by using activated charcoal. Material and Methods: The lead contamination in agricultural soil and plant dry mass samples which increases due to the effect of pesticides was detected by using Field Portable X-Ray Fluroscence (FP-XRF spectrophotometer. Soil was taken in plastic trays and the plants were grown and watered daily. The collected ground water was also tested. For the estimation of lead in water samples, Graphite Furnace Atomic Absorption Spectroscopy (GFAAS was employed. Results: This study suggested the remediation of soil lead content by using activated charcoal. The study also revealed that activated charcoal not only adsorbs lead but also inhibits the accumulation of lead in ground water. Conclusion: This study promotes a cost effective process to treat agricultural lands polluted with leaded pesticides. Water purifiers, refrigerator etc. contain varying amounts of activated charcoal, after usage of these appliances it can be recycled and used as a source of activated charcoal. This can be applied in pesticide contaminated fields either in the form of slurry or by spraying.

  2. Adsorption Properties and Potential Applications of Bamboo Charcoal: A Review

    Directory of Open Access Journals (Sweden)

    Isa S.S.M.

    2016-01-01

    Full Text Available Bamboo charcoal was produced by pyrolysis or carbonization process with extraordinary properties such as high conductivity, large surface area and adsorption property. These properties can be improved by activation process that can be done thermally or chemically. In this paper, carbonization and activation process of bamboo, its structural and adsorption properties will be presented. Herein, the adsorption properties of bamboo charcoal that has fully utilized in solar cell as the electrode, adsorbent for water purification and electromagnetic wave absorber are reviewed.

  3. TAXATION IN CHARCOAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Christian Rainier Imaña

    2015-03-01

    Full Text Available In past decades, the Brazilian tax burden has been the subject of discussion and analysis in the academic, political and social arena. In 2008, Brazilian tax burden reached the tax level from OECD countries, although the social issue in Brazil is in lower level than those countries. This paper has analyzed the tax burden from charcoal production. Eleven kinds of taxes were analyzed: IRPJ, ITR, CSLL, COFINS, PIS, TF, TCFA, TFAMG, ECRRA, INSS and FGTS. The tax burden for the production of charcoal was 9.76%. There was no municipal tax for charcoal. State taxes accounted 10% of the tax burden, the rest are federal taxes. COFINS was responsible for the largest tax burden: 3%, which confirms the Brazilian tax system is very non progressive. In Minas Gerais, Brazilian tax on goods and services (ICMS is deferred, the charcoal buyer has the obligation to collect this tax. This means the steel company accounts for the total burden of ICMS.

  4. PERBAIKAN KUALITAS AIR DENGAN SISTEM PENYARINGAN DI PENAMBANGAN RAKYAT INTAN DAN EMAS DI KECAMATAN CEMPAKA KOTA BANJARBARU PROVINSI KALIMANTAN SELATAN

    Directory of Open Access Journals (Sweden)

    Tyas Astari

    2016-10-01

    Full Text Available Writing of this thesis is motivated by the declining water quality in rivers around the mining area due to mining of the people that do not meet clean water requirements. Purpose of this study was to determine the influence of the filtering system of physical and chemical water quality in the watershed are derived from the people of the diamond and gold mining areas as well as the assessment of water quality in producing water that meets the requirements of clean water in accordance with the requirements of Health Minister of Republic (PerMenKes RI No. 416/MenKes/Per/IX/90. The research method used was semi-experimental. What matters is whether a particular filtering technology can improve the quality of river water and can produce better water quality?. The results showed that there is a difference between before filtering with post filtering (sand filter and activated charcoal filter. By the two different filters (sand and activated charcoal, the finest and most effective sand filters in the improvement of physical and chemical quality of water. Sand filter has a high effectiveness of the reduction. By the ten parameters of the observed parameters of TSS, turbidity and reduction of Fe which has a high effectiveness. The results can be concluded that the filtration systems (sand filter and activated charcoal filter affects the physical and chemical quality of water. Filtering results with a sand filter and activated charcoal filters have improved physical and chemical quality of water that clean water has been qualified in accordance with the requirements of Health Minister of Republic (PerMenKes RI No. 416/MenKes/Per/1990.

  5. Manufacturing a low-cost ceramic water filter and filter system for the elimination of common pathogenic bacteria

    Science.gov (United States)

    Simonis, J. J.; Basson, A. K.

    Africa is one of the most water-scarce continents in the world but it is the lack of potable water which results in diarrhoea being the leading cause of death amongst children under the age of five in Africa (696 million children under 5 years old in Africa contract diarrhoea resulting in 2000 deaths per day: WHO and UNICEF, 2009). Most potable water treatment methods use bulk water treatment not suitable or available to the majority of rural poor in Sub-Saharan Africa. One simple but effective way of making sure that water is of good quality is by purifying it by means of a household ceramic water filter. The making and supply of water filters suitable for the removal of suspended solids, pathogenic bacteria and other toxins from drinking water is therefore critical. A micro-porous ceramic water filter with micron-sized pores was developed using the traditional slip casting process. This locally produced filter has the advantage of making use of less raw materials, cost, labour, energy and expertise and being more effective and efficient than other low cost produced filters. The filter is fitted with a silicone tube inserted into a collapsible bag that acts as container and protection for the filter. Enhanced flow is obtained through this filter system. The product was tested using water inoculated with high concentrations of different bacterial cultures as well as with locally polluted stream water. The filter is highly effective (log10 > 4 with 99.99% reduction efficiency) in providing protection from bacteria and suspended solids found in natural water. With correct cleaning and basic maintenance this filter technology can effectively provide drinking water to rural families affected by polluted surface water sources. This is an African solution for the more than 340 million people in Africa without access to clean drinking water (WHO and UNICEF, 2008).

  6. Nitrate Removal from Aqueous Solutions Using Almond Charcoal Activated with Zinc Chloride

    Directory of Open Access Journals (Sweden)

    Mohsen Arbabi

    2017-10-01

    Full Text Available Background & Aims of the Study: Nitrate is one of the most important contaminants in aquatic environments that can leached to water resources from various sources such as sewage, fertilizers and decomposition of organic waste. Reduction of nitrate to nitrite in infant’s blood stream can cause “blue baby” disease in infants. The aim of this study was to evaluate the nitrate removal from aqueous solutions using modified almond charcoal with zinc chloride. Materials &Methods: This study is an experimental survey. At the first charcoal almond skins were prepared in 5500C and then modified with ZnCl2. Morphologies and characterization of almond shell charcoal were evaluated by using FTIR, EDX, BET and FESEM. Adsorption experiments were conducted with 500 ml sample in Becker. The nitrate concentration removal, contact time, pH and charcoal dosage were investigated. The central composite design method was used to optimizing the nitrate removal process. The results analyzed with ANOVA test. Results: The best condition founded in 48 min, 1250 ppm, 125 mg/l and 3 for retention time, primary nitrate concentration, charcoal dosage and pH respectively. The results showed that the nitrate removal decreases with increasing pH. Modification of skin charcoal is show increasing of nitrate removal from aquatic solution. Conclusion: In this study, the maximum nitrate removal efficiency for raw charcoal and modified charcoal was determined 15.47% and 62.78%, respectively. The results showed that this method can be used as an effective method for removing nitrate from aqueous solutions.

  7. Baking sunflower hulls within an aluminum envelope in a common laboratory oven yields charcoal.

    Science.gov (United States)

    Arnal, Pablo Maximiliano

    2015-01-01

    Charcoals have been widely used by scientist to research the removal of contaminants from water and air. One key feature of charcoal is that it keeps macropores from the parent material - though anisotropically contracted - and can even develop meso- and micropores. However, the controlled thermochemical conversion of biomass into charcoal at laboratory scale normally requires special setups which involve either vacuum or inert gas. Those setups may not be affordable in research groups or educational institutions where the research of charcoals would be highly welcome. In this work, I propose a simple and effective method to steer the thermochemical process that converts sunflower hulls (SFH) into charcoal with basic laboratory resources. The carbonization method: •Place SFH in an airtight aluminum envelope.•Thermally treat SFH within the envelope in a common laboratory oven.•Open the envelope to obtain the carbonized sunflower hulls.

  8. Processing of combined domestic bath and laundry waste waters for reuse as commode flushing water

    Science.gov (United States)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1975-01-01

    An experimental investigation of processes and system configurations for reclaiming combined bath and laundry waste waters for reuse as commode flush water was conducted. A 90-min recycle flow was effective in removing particulates and in improving other physical characteristics to the extent that the filtered water was subjectively acceptable for reuse. The addition of a charcoal filter resulted in noticeable improvements in color, turbidity, and suds elimination. Heating and chlorination of the waste waters were investigated for reducing total organism counts and eliminating coliform organisms. A temperature of 335.9 K (145 F) for 30 min and chlorine concentrations of 20 mg/l in the collection tank followed by 10 mg/l in the storage tank were determined to be adequate for this purpose. Water volume relationships and energy-use rates for the waste water reuse systems are also discussed.

  9. Surface changes of enamel after brushing with charcoal toothpaste

    Science.gov (United States)

    Pertiwi, U. I.; Eriwati, Y. K.; Irawan, B.

    2017-08-01

    The aim of this study was to determine the surface roughness changes of tooth enamel after brushing with charcoal toothpaste. Thirty specimens were brushed using distilled water (the first group), Strong® Formula toothpaste (the second group), and Charcoal® Formula toothpaste for four minutes and 40 seconds (equivalent to one month) and for 14 minutes (equivalent to three months) using a soft fleece toothbrush with a mass of 150 gr. The roughness was measured using a surface roughness tester, and the results were tested with repeated ANOVA test and one-way ANOVA. The value of the surface roughness of tooth enamel was significantly different (penamel.

  10. Sampling problems and the determination of mercury in surface water, seawater, and air

    International Nuclear Information System (INIS)

    Das, H.A.; van der Sloot, H.A.

    1976-01-01

    Analysis of surface water for mercury comprises the determination of both ionic and organically bound mercury in solution and that of the total mercury content of the suspended matter. Eventually, metallic mercury has to be determined too. Requirements for the sampling procedure are given. A method for the routine determination of mercury in surface water and seawater was developed and applied to Dutch surface waters. The total sample volume is 2500 ml. About 500 ml is used for the determination of the content of suspended matter and the total amount of mercury in the water. The sample is filtered through a bed of previously purified active charcoal at a low flow-rate. The main portion ca. 2000 ml) passes a flow-through centrifuge to separate the solid fraction. One liter is used to separate ''inorganic'' mercury by reduction, volatilization in an airstream and adsorption on active charcoal. The other liter is led through a column of active charcoal to collect all mercury. The procedures were checked with 197 Hg radiotracer both as an ion and incorporated in organic compounds. The mercury is determined by thermal neutron activation, followed by volatilization in a tube furnace and adsorption on a fresh carbon bed. The limit of determination is approximately equal to 1 ng 1 -1 . The rate of desorption from and adsorption on suspended material has been measured as a function of a pH of the solution for Hg +2 and various other ions. It can be concluded that only the procedure mentioned above does not disturb the equilibrium. The separation of mercury from air is obtained by suction of 1 m 3 through a 0.22 μm filter and a charcoal bed. The determination is then performed as in the case of the water samples

  11. Environmental impact assessment of the charcoal production and utilization system in central Zambia

    International Nuclear Information System (INIS)

    Serenje, W.; Chidumayo, E.N.; Chipuwa, J.H.; Egneus, H.; Ellegaard, A.

    1994-01-01

    The present study is the outcome of the Zambia Charcoal Utilization Programme, which is based on cooperation that started in 1989 between the Department of Energy, Ministry of Energy and Water Development (then Ministry of Power, Transport and Communications) and the Stockholm Environmental Institute (SEI). The programme, which is funded by the Swedish International Development Authority (SIDA), consists of a number of studies focusing on different aspects of the wood and charcoal industry in Zambia. Selection of this energy system for detailed study was based on the fact that wood provides the largest contribution to total energy supply in Zambia, and the fact that wood is a renewable resource that could be exploited on a sustainable basis if properly managed. The studies therefore range from those that look at sustainability of the natural forests exploited for charcoal, to those that deal with transportation and health aspects of charcoal production and use. The present report focuses on the environmental and socio-economic effects of charcoal production and use. 72 refs., 20 figs., 38 tabs

  12. Modeling the Effects of Future Growing Demand for Charcoal in the Tropics

    Directory of Open Access Journals (Sweden)

    M. J. Santos

    2017-06-01

    Full Text Available Global demand for charcoal is increasing mainly due to urban population in developing countries. More than half the global population now lives in cities, and urban-dwellers are restricted to charcoal use because of easiness of production, access, transport, and tradition. Increasing demand for charcoal, however, may lead to increasing impacts on forests, food, and water resources, and may even create additional pressures on the climate system. Here we assess how different charcoal scenarios based on the Shared Socio-economic Pathways (SSP relate to potential biomass supply. For this, we use the energy model TIMER to project the demand for fuelwood and charcoal for different socio-economic pathways for urban and rural populations, globally, and for four tropical regions (Central America, South America, Africa and Indonesia. Second, we assess whether the biomass demands for each scenario can be met with current and projected forest biomass estimated with remote sensing and modeled Net Primary Productivity (NPP using a Dynamic Global Vegetation Model (LPJ-GUESS. Currently one third of residential energy use is based on traditional bioenergy, including charcoal. Globally, biomass needs by urban households by 2100 under the most sustainable scenario, SSP1, are of 14.4 mi ton biomass for charcoal plus 17.1 mi ton biomass for fuelwood (31.5 mi ton biomass in total. Under SSP3, the least sustainable scenario, we project a need of 205 mi tons biomass for charcoal plus 243.8 mi ton biomass for fuelwood by 2100 (total of 450 mi ton biomass. Africa and South America contribute the most for this biomass demand, however, all areas are able to meet the demand. We find that the future of the charcoal sector is not dire. Charcoal represents a small fraction of the energy requirements, but its biomass demands are disproportionate and in some regions require a large fraction of forest. This could be because of large growing populations moving to urban areas

  13. Filters for water purification from radionuclides

    International Nuclear Information System (INIS)

    Mironov, V.V.; Khaydarov, R.R.; Khaydarov, R.A.; Gapurova, O.U.

    2006-01-01

    Full text: At present purification of waste water and drinking water from radionuclides, heavy metal ions, and organic contaminants is one of the most important problems. One of widely used methods for solving this problem is the ion exchange method based on using of different types of resins and fibroid sorbents. This paper deals with new chemically modified polyester fibroid filters having satisfactory adsorption characteristics. The process of the filter production includes their treatment by acrylonitrilic emulsion for improving mechanical characteristics. An advantage of the fibroid ion-exchange sorbents over resin is in their high sorption rate, effective regeneration and small value of pressure drop of the sorbent layer for purified water. The specific surface of the fibroid sorbents is (2 - 3). 10 4 m 2 / kg, i.e. about 10 2 times greater than that of the resin (10 2 m 2 / kg). Owing to that fact the rate of the sorption process on the developed fibroid sorbents is much greater than that on the resin. The developed cation- and anion-exchange filters can be used for removing metal ions (Zn, Ni, Cu, Sb, Co, Cd, Cr, etc.) and organic compounds (M- 32 P, M- 131 I, M- 99 Mo+ 99m Tc, etc.) from water. Capacity of the cation-exchange sorbents is 0.25 meq/g (Cu 2+ ) and that of the anion - exchange is 0.45 meq/g (Cr 6+ ). The cation- and anion-exchange filters are also selective for removing radionuclides 134 , 137 Cs, 90 Sr, 60 Co and 129 I in presence of Na + , K + , Ca 2+ , Mg 2+ , Cl - ions in water at concentrations up to 500 mg/L. New developed ion-exchange sorbents have been used in drinking water filters and mini-systems for removing organic and inorganic contaminants, in the equipment for waste water purification from oil products (at atomic power stations, car-washing stations, etc), from heavy metal ions (in electronic industry, match fabrics, leather processing plants etc). (author)

  14. Dose-dependent adsorptive capacity of activated charcoal for gastrointestinal decontamination of a simulated paracetamol overdose in human volunteers

    DEFF Research Database (Denmark)

    Gude, Anne-Bolette Jill; Hoegberg, Lotte Christine Groth; Riis Angelo, Helle

    2010-01-01

    The amount of activated charcoal needed to treat drug overdoses has arbitrarily been set at a charcoal-drug ratio of 10:1. Recent in vitro studies have shown a larger adsorptive capacity for activated charcoal when used in a model of paracetamol overdose. In the present study, we investigated...... whether this reserve capacity exists in vivo. This is clinically relevant in cases of large overdoses or if the full standard dose of 50 g activated charcoal cannot be administered. We performed a randomized, cross-over study (n = 16). One hour after a standard breakfast, 50 mg/kg paracetamol...... was administered, followed 1 hr later by an activated charcoal-Water slurry containing 50 (control), 25 or 5 g activated charcoal. The areas under the serum concentration-time curve (AUC) for paracetamol were used to estimate the efficacy of each activated charcoal dose. The AUC of the 25-g dose was found...

  15. Bacterial treatment effectiveness of point-of-use ceramic water filters.

    Science.gov (United States)

    Bielefeldt, Angela R; Kowalski, Kate; Summers, R Scott

    2009-08-01

    Laboratory experiments were conducted on six point-of-use (POU) ceramic water filters that were manufactured in Nicaragua; two filters were used by families for ca. 4 years and the other filters had limited prior use in our lab. Water spiked with ca. 10(6)CFU/mL of Escherichia coli was dosed to the filters. Initial disinfection efficiencies ranged from 3 - 4.5 log, but the treatment efficiency decreased with subsequent batches of spiked water. Silver concentrations in the effluent water ranged from 0.04 - 1.75 ppb. Subsequent experiments that utilized feed water without a bacterial spike yielded 10(3)-10(5)CFU/mL bacteria in the effluent. Immediately after recoating four of the filters with a colloidal silver solution, the effluent silver concentrations increased to 36 - 45 ppb and bacterial disinfection efficiencies were 3.8-4.5 log. The treatment effectiveness decreased to 0.2 - 2.5 log after loading multiple batches of highly contaminated water. In subsequent loading of clean water, the effluent water contained filters. This indicates that the silver had some benefit to reducing bacterial contamination by the filter. In general these POU filters were found to be effective, but showed loss of effectiveness with time and indicated a release of microbes into subsequent volumes of water passed through the system.

  16. Evaluating the impact of water processing on wood charcoal remains: Tell Qarassa North, a case study

    DEFF Research Database (Denmark)

    Otaegui, Amaia Arranz; Zapata, Lydia; Colledge, Sue

    .5 l) were recovered. The aim of the work is to evaluate if water processing affects similarly all of taxa or instead, differences exists in the preservation of certain types of remains. To evaluate this, taxonomic and taphonomic analyses were carried out, including the recording of alterations...... the taxa present at the site. The results presented here warn against straightforward interpretations of wood charcoal frequencies in terms of original composition of past vegetation, and suggest that it would be advisable to use more than one recovery technique, along with recording of different types...

  17. Browns Ferry charcoal adsorber incident

    International Nuclear Information System (INIS)

    Mays, G.T.

    1979-01-01

    The article reviews the temperature excursion in the charcoal adsorber beds of the Browns Ferry Unit 3 off-gas system that occurred on July 17, 1977. Significant temperature increases were experienced in the charcoal adsorber beds when charcoal fines were ignited by the ignition of a combustible mixture of hydrogen and oxygen in the off-gas system. The Browns Ferry off-gas system is described, and events leading up to and surrounding the incident are discussed. The follow-up investigation by Tennessee Valley Authority and General Electric Company personnel and their recommendations for system and operational modifications are summarized

  18. Waste water purification using new porous ceramics prepared by recycling waste glass and bamboo charcoal

    Science.gov (United States)

    Nishida, Tetsuaki; Morimoto, Akane; Yamamoto, Yoshito; Kubuki, Shiro

    2017-12-01

    New porous ceramics (PC) prepared by recycling waste glass bottle of soft drinks (80 mass%) and bamboo charcoal (20 mass%) without any binder was applied to the waste water purification under aeration at 25 °C. Artificial waste water (15 L) containing 10 mL of milk was examined by combining 15 mL of activated sludge and 750 g of PC. Biochemical oxygen demand (BOD) showed a marked decrease from 178 to 4.0 (±0.1) mg L-1 in 5 days and to 2.0 (±0.1) mg L-1 in 7 days, which was equal to the Environmental Standard for the river water (class A) in Japan. Similarly, chemical oxygen demand (COD) decreased from 158 to 3.6 (±0.1) mg L-1 in 5 days and to 2.2 (±0.1) mg L-1 in 9 days, which was less than the Environmental Standard for the Seawater (class B) in Japan: 3.0 mg L-1. These results prove the high water purification ability of the PC, which will be effectively utilized for the purification of drinking water, fish preserve water, fish farm water, etc.

  19. The addition of salt in the water media containing zeolite and active charcoal on closed system transportation of gourami fish fry Osphronemus goramy Lac.

    Directory of Open Access Journals (Sweden)

    Kukuh Nirmala

    2013-11-01

    Full Text Available Transportation of fish fry with high density in closed system will reduce levels of O2, increasing CO2 and NH3, will also elevate the fish stress so that increase fish mortality. To reduce the effects of increased CO2 and NH3 can be applied by using zeolite and activated charcoal, while to reduce the fish stress is through the addition of salt. This study aims to determine the dose of salt added into the water containing zeolite and activated charcoal in a closed transportation system with a high fry density for 72 hours. The study was conducted two stages, namely the preliminary study and the primary study. The preliminary study involved the observation of the survival rate of fish fry during fasting, oxygen consumption rate of fish fry, the rate of total ammonia nitrogen (TAN excretion of fish fry, and the adsorption capacity of TAN by zeolite and activated charcoal. In the primary study, fry transport simulations was carried out for 72 hours in the laboratory. Gourami fry (body length of 4 cm and body weight of 1.7 g with the fry density of 50 fish/L were placed in the packing bag which has been filled with zeolite as much as 20 g/L and activated charcoal as much as 10 g/L. The study used a completely randomized design with five treatments and two replications: A: blank (without zeolite, activated charcoal, and salt, B: control (20 g/L zeolite+10 g/L activated charcoal, C: 20 g/L zeolite+10 g/L activated charcoal and 1 g/L salt, D: 20 g/L zeolite+10 g/L activated charcoal and 3 g/L of salt, and E: 20 g/ L zeolite+10 g/L activated charcoal and 5 g/L salt. The results of preliminary study showed that the survival rate of fish fry was 100% and active swimming for five days without food, the level of oxygen consumption as much as 1340.28 mgO2, produce NH3 as much as 22.64 mg/L, while zeolite and activated charcoal adsorbs >50% of TAN in time of 120 seconds. In the primary study, the survival rate of fish fry during the 72-hour transportation for

  20. Performance study of coal-base charcoals for removing radioiodine

    International Nuclear Information System (INIS)

    Huang Yuying; Wu Yanwei; Guo Liangtian; Jia Ming; Lu Xueshi; Zhang Hong

    1988-01-01

    In authos' laboratory sveral types of domestic coal-base charcoals are selected and impregnated and examined for their main physical and chemical performances. The results show that under the test conditions the iodine-removing efficiencies of these impregnated coal-base charcoals charcoals are not poorer than that of the impregnated fruit-shell base charcoals (such as coconut shell charcoal) and most of their physical properties can satisfy the requirements of the nuclear grade charcoals assigned in USA standards. More detailed studies will be made in the next programme

  1. Arsenic removal from drinking water by a household sand filter in Vietnam--effect of filter usage practices on arsenic removal efficiency and microbiological water quality.

    Science.gov (United States)

    Nitzsche, Katja Sonja; Lan, Vi Mai; Trang, Pham Thi Kim; Viet, Pham Hung; Berg, Michael; Voegelin, Andreas; Planer-Friedrich, Britta; Zahoransky, Jan; Müller, Stefanie-Katharina; Byrne, James Martin; Schröder, Christian; Behrens, Sebastian; Kappler, Andreas

    2015-01-01

    Household sand filters are applied to treat arsenic- and iron-containing anoxic groundwater that is used as drinking water in rural areas of North Vietnam. These filters immobilize poisonous arsenic (As) via co-oxidation with Fe(II) and sorption to or co-precipitation with the formed Fe(III) (oxyhydr)oxides. However, information is lacking regarding the effect of the frequency and duration of filter use as well as of filter sand replacement on the residual As concentrations in the filtered water and on the presence of potentially pathogenic bacteria in the filtered and stored water. We therefore scrutinized a household sand filter with respect to As removal efficiency and the presence of fecal indicator bacteria in treated water as a function of filter operation before and after sand replacement. Quantification of As in the filtered water showed that periods of intense daily use followed by periods of non-use and even sand replacement did not significantly (psand replacement, CFUs of Escherichia coli of sand filters regarding As removal, but indicate a potential risk for human health arising from the enrichment of coliform bacteria during filtration and from E. coli cells that are introduced by sand replacement. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. In vitro adsorption of sodium pentobarbital by SuperChar, USP and Darco G-60 activated charcoals

    International Nuclear Information System (INIS)

    Curd-Sneed, C.D.; Parks, K.S.; Bordelon, J.G.; Stewart, J.J.

    1987-01-01

    This study was designed to examine the in vitro adsorption of sodium pentobarbital by three activated charcoals. Solutions of sodium pentobarbital (20 mM) were prepared in distilled water and in 70% sorbitol (w/v). Radiolabeled ( 14 C) sodium pentobarbital was added to each solution to serve as a concentration marker. Two ml of each drug solution was added to test tubes containing 40 mg of either Darco G-60, USP, or SuperChar activated charcoal. The drug-charcoal mixtures were incubated at 37 degrees C for O, 2.5, 5, 7.5 or 10 min. Equilibrium, indicated by a constant percentage of drug bound for two consecutive time periods, was established immediately for the aqueous mixtures and for Darco G-60 in sorbitol. The time to equilibrium was prolonged for USP (2.5 min) and SuperChar (5 min) in the presence of sorbitol. In the second series of experiments, solutions of sodium pentobarbital (1.25 to 160 mM) were prepared in either distilled water or sorbitol. Amount of drug bound by 10 to 320 mg of activated charcoal within a 10 min incubation period was determined. Scatchard analysis determined maximum binding capacity (Bmax) and dissociation constants (Kd) for each activated charcoal. In water, Bmax (mumoles/gm) was greatest for SuperChar (1141), followed by USP (580) and Darco G-60 (381), while the Kd's did not differ. Sorbitol did not change the Bmax or Kd of USP or Darco G-60, but the additive significantly decreased the Bmax (717) and increased the Kd for SuperChar (3.3 to 10.1 mM). The results suggest that relative binding capacity of activated charcoal is directly proportional to surface area, and that sorbitol significantly reduces sodium pentobarbital binding to SuperChar

  3. REMOVING BIOMASS FROM WATER PONDS AND SMALL WATER RESERVOIRS BY USING NON-WOVEN FILTERS

    Directory of Open Access Journals (Sweden)

    Jakub Nieć

    2015-10-01

    Full Text Available Small water bodies, for example garden ponds, play many functions in the environment, including biocenotic, hydrological, climatic, sozological, landfill-creative, and aesthetic. Due to their small size, these reservoirs are sensitive to external and internal factors, they are also a common natural contaminants receivers. Nonwoven filters have been investigated for several years as a useful device for treatment of domestic wastewater pre-treated in a septic tank. The aim of this study was to verify the possibility of using this type of filters for water originating from small water body purification. The effectiveness of filters were tested on the water originating from the garden pond, contained high levels of nutrients and intensive algal bloom. Research was carried out on three filters (each filter consisted of four geotextile TS 20 layers. Basic water quality indicators: total suspended solids, turbidity, COD and BOD5, temperature, pH and dissolved oxygen were measured. The research results can be considered as satisfactory in terms of mechanical treatment (removal of turbidity and total suspended solids. An important positive effect of the filters was the oxygenation of the treated water, which is especially important for fish.

  4. Quantifying the Water Footprint of Manufactured Products: A Case Study of Pitcher Water Filters

    Directory of Open Access Journals (Sweden)

    Ashley Barker

    2012-01-01

    Full Text Available Fresh water is a finite resource that is critically needed bysociety for a variety of purposes. The demand for freshwater will grow as the world population and global livingstandard increase, and fresh water shortages will becomemore commonplace. This will put significant stress onsociety. It has been argued that fresh water may becomethe next oil, and efforts have to be made to better manageits fresh water consumption by agricultural and domesticusers. Industry also uses large amounts. Surprisingly, onlyrecently is serious attention being directed toward waterrelatedissues. This effort to quantify the water footprint ofa manufactured product represents one of the first initiativesto characterize the role of water in a discrete good.This study employed a life cycle assessment methodologyto determine the water footprint of a pitcher water filter.This particular product was selected because many waterintensivematerials and processes are needed to produceits major components: for example, agricultural processesused to produce activated carbon and petrochemicalprocesses used to produce the polypropylene casing. Inaddition, a large amount of water is consumed during theproduct’s use phase. Water data was obtained from theEcoinvent 2.1 database and categorized as either beingassociated with blue or green water.The blue water footprint (surface water consumption forthe pitcher water filter was 76 gallons per filter: 10 gallonsconsumed for materials extraction, 15 gallons for themanufacturing stage, and 50 gallons during the use phase.The green water footprint (precipitation was associatedwith the cultivation of the coconut tree; activated carbonis obtained from the coconut shells. The green waterfootprint was calculated to be 164 gallons per filter.The overall water footprint was 240 gallons per filter;the filter footprint is heavily dominated by green water(68% rather than blue water (32%. Future studies mayinvestigate how the production and

  5. Submerged Pond Sand Filter-A Novel Approach to Rural Water Supply

    DEFF Research Database (Denmark)

    Øhlenschlæger, Mia; Christensen, Sarah Christine Boesgaard; Bregnhøj, Henrik

    2016-01-01

    This study describes the new design and function of a modified version of a traditional slow sand filter. The Submerged Pond Sand Filter is built inside a pond and has a vertical as well as a horizontal flow of water through a sloped filter opening. The filter provides treated drinking water...... to a rural Indian village. The filter has functioned with minimal maintenance for five years without being subject to the typical scraping off and changing of sand as needed in traditional slow sand filters every few months. This five-year study showed bacterial removal efficiency of 97% on average...... to 10 CFU/100 mL on average compared to shorter pumping intervals (5 min). Though the treated water did not comply with the World Health Organization standards of 0 CFU/100 mL, the filter significantly improved water quality and provided one of the best sources of drinkable water in a water...

  6. Silver Nanoparticles (AgNP impregnated filters in drinking water disinfection

    Directory of Open Access Journals (Sweden)

    Rus Alexandru

    2017-01-01

    Full Text Available This paper describes how simple portable devices could eliminate water pathogens by using Silver Nanoparticles, based on their antimicrobial properties. Recent studies indicated that silver nanoparticles can achieve up to 100% antibacterial activity removal. Results are showing that Silver Nanoparticles retention in the filter structure, E. coli bacteria removal, water quality and water flow rate must be evaluated as main efficiency indicators of the designed filters, in order to obtain the optimal filter. To apply the antimicrobial property of Silver in drinking-water treatment, a filter is produced using Additive Manufacturing techniques and coated with different concentrations of silver solutions.

  7. Charcoal Increases Microbial Activity in Eastern Sierra Nevada Forest Soils

    Directory of Open Access Journals (Sweden)

    Zachary W. Carter

    2018-02-01

    Full Text Available Fire is an important component of forests in the western United States. Not only are forests subjected to wildfires, but fire is also an important management tool to reduce fuels loads. Charcoal, a product of fire, can have major impacts on carbon (C and nitrogen (N cycling in forest soils, but it is unclear how these effects vary by dominant vegetation. In this study, soils collected from Jeffrey pine (JP or lodgepole pine (LP dominated areas and amended with charcoal derived from JP or LP were incubated to assess the importance of charcoal on microbial respiration and potential nitrification. In addition, polyphenol sorption was measured in unamended and charcoal-amended soils. In general, microbial respiration was highest at the 1% and 2.5% charcoal additions, but charcoal amendment had limited effects on potential nitrification rates throughout the incubation. Microbial respiration rates decreased but potential nitrification rates increased over time across most treatments. Increased microbial respiration may have been caused by priming of native organic matter rather than the decomposition of charcoal itself. Charcoal had a larger stimulatory effect on microbial respiration in LP soils than JP soils. Charcoal type had little effect on microbial processes, but polyphenol sorption was higher on LP-derived than JP-derived charcoal at higher amendment levels despite surface area being similar for both charcoal types. The results from our study suggest that the presence of charcoal can increase microbial activity in soils, but the exact mechanisms are still unclear.

  8. Replicating the microbial community and water quality performance of full-scale slow sand filters in laboratory-scale filters.

    Science.gov (United States)

    Haig, Sarah-Jane; Quince, Christopher; Davies, Robert L; Dorea, Caetano C; Collins, Gavin

    2014-09-15

    Previous laboratory-scale studies to characterise the functional microbial ecology of slow sand filters have suffered from methodological limitations that could compromise their relevance to full-scale systems. Therefore, to ascertain if laboratory-scale slow sand filters (L-SSFs) can replicate the microbial community and water quality production of industrially operated full-scale slow sand filters (I-SSFs), eight cylindrical L-SSFs were constructed and were used to treat water from the same source as the I-SSFs. Half of the L-SSFs sand beds were composed of sterilized sand (sterile) from the industrial filters and the other half with sand taken directly from the same industrial filter (non-sterile). All filters were operated for 10 weeks, with the microbial community and water quality parameters sampled and analysed weekly. To characterize the microbial community phyla-specific qPCR assays and 454 pyrosequencing of the 16S rRNA gene were used in conjunction with an array of statistical techniques. The results demonstrate that it is possible to mimic both the water quality production and the structure of the microbial community of full-scale filters in the laboratory - at all levels of taxonomic classification except OTU - thus allowing comparison of LSSF experiments with full-scale units. Further, it was found that the sand type composing the filter bed (non-sterile or sterile), the water quality produced, the age of the filters and the depth of sand samples were all significant factors in explaining observed differences in the structure of the microbial consortia. This study is the first to the authors' knowledge that demonstrates that scaled-down slow sand filters can accurately reproduce the water quality and microbial consortia of full-scale slow sand filters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Device for filtering gaseous media

    International Nuclear Information System (INIS)

    Benzel, M.

    1978-01-01

    The air filter system for gaseous radioactive substances consists of a vertical chamber with filter material (charcoal, e.g. impregnated). On one side of the chamber there is an inlet compartment and an outlet compartment. On the other side a guiding compartment turns the gas flow coming from the natural-air side through the lower part of filter chamber to the upper part of the filter. The gas flow leaves the upper part through the outlet conpartment as cleaned-air flow. The filter material may be filled into the chamber from above and drawn off below. For better utilization of the filter material the filter chamber is separated by means of a wall between the inlet and outlet compartment. This partition wall consist of two sheets arranged one above the other provided with slots which may be superposed in alignment. In this case filter material is tickling from the upper part of the chamber into the lower part avoiding to form a crater in the filter bed. (DG) [de

  10. Applying the Water-Energy-Food Nexus to the Charcoal Value Chain

    Directory of Open Access Journals (Sweden)

    Harry K. Hoffmann

    2017-12-01

    Full Text Available Globally, natural resources are increasingly under pressure, especially due to population growth, economic growth and transformation as well as climate change. As a result, the water, energy, and food (WEF nexus approach has emerged to understand interdependencies and commonly manage resources within a multi-scale and multi-level framework. In Sub-Saharan Africa, the high and growing consumption of traditional biomass for cooking purposes - notably fuelwood and charcoal—is both a key source of energy and contributor for food security as well as a pressure on natural resources. Improving the bioenergy value chains is essential for limiting environmental degradation and for securing the livelihoods of millions of people. Although the WEF nexus approach entails large potential to address the complex problems arising along the bioenergy value chains, these are currently not considered. Based on the WEF nexus approach, we analyze the different steps within the charcoal value chain in Sub-Saharan Africa and highlight the respective interdependencies and the potential for improving overall socio-economic and environmental sustainability. We emphasize the water, energy and food related implications of vicious and virtuous production cycles, separated by value chain segments. We discuss the potential and major challenges for implementing more sustainable value chains. Furthermore, we underline the necessity of applying WEF nexus approaches to these value chains in order to optimize environmental and social outcomes.

  11. CHARCOAL-PRODUCING INDUSTRIES IN NORTHEASTERN BRAZIL

    Science.gov (United States)

    Charcoal workers in northeastern Brazil: Occupational risks and effects of exposure to wood smokeABSTRACTBrazil has the largest production of charcoal in the world, which is used mostly in the iron and steel industries. In most of the production sites, the process is ba...

  12. Passivation of fluorinated activated charcoal

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Trowbridge, L.D.; Simmons, D.W.; Williams, D.F.; Toth, L.M.

    1997-10-01

    The Molten Salt Reactor Experiment (MSRE), at the Oak Ridge National Laboratory has been shut down since 1969 when the fuel salt was drained from the core into two Hastelloy N tanks at the reactor site. In 1995, a multiyear project was launched to remediate the potentially hazardous conditions generated by the movement of fissile material and reactive gases from the storage tanks into the piping system and an auxiliary charcoal bed (ACB). The top 12 in. of the ACB is known by gamma scan and thermal analysis to contain about 2.6 kg U-233. According to the laboratory tests, a few feet of fluorinated charcoal are believed to extend beyond the uranium front. The remainder of the ACB should consist of unreacted charcoal. Fluorinated charcoal, when subjected to rapid heating, can decompose generating gaseous products. Under confined conditions, the sudden exothermic decomposition can produce high temperatures and pressures of near-explosive characteristics. Since it will be necessary to drill and tap the ACB to allow installation of piping and instrumentation for remediation and recovery activities, it is necessary to chemically convert the reactive fluorinated charcoal into a more stable material. Ammonia can be administered to the ACB as a volatile denaturing agent that results in the conversion of the C x F to carbon and ammonium fluoride, NH 4 F. The charcoal laden with NH 4 F can then be heated without risking any sudden decomposition. The only consequence of heating the treated material will be the volatilization of NH 4 F as a mixture of NH 3 and HF, which would primarily recombine as NH 4 F on surfaces below 200 C. The planned scheme for the ACB denaturing is to flow diluted ammonia gas in steps of increasing NH 3 concentration, 2% to 50%, followed by the injection of pure ammonia. This report summarizes the planned passivation treatment scheme to stabilize the ACB and remove the potential hazards. It also includes basic information, results of laboratory tests

  13. A Simple Slow-Sand Filter for Drinking Water Purification

    Directory of Open Access Journals (Sweden)

    K. O. Yusuf

    2017-04-01

    Full Text Available Water-borne diseases are commonly encountered when pathogen-contaminated water is consumed. In rural areas, water is usually obtained from ponds, open shallow wells, streams and rain water during rainy season. Rain water is often contaminated by pathogens due to unhygienic of physical and chemical conditions of the roofs thereby making it unsafe for consumption. A simple slow sand filter mechanism was designed and fabricated for purification of water in rural areas where electricity is not available to power water purification devices. Rain water samples were collected from aluminum roof, galvanized roof and thatched roof. The waters samples were allowed to flow through the slow sand filter. The values of turbidity, total dissolved solids, calcium, nitrite, faecal coliform and total coliform from unfiltered water through thatched roof were 0.92 NTU, 27.23 mg/l, 6 mg/l, 0.16 mg/l, 5cfu/100ml and 6.0 cfu/100ml, respectively while the corresponding values for slow sand filter from thatched roof were 0.01 NTU, 0.23 mg/l, 2.5 mg/l, 0.1 mg/l, 0 cfu/100ml and 0 cfu/100ml, respectively. The values of turbidity, total dissolved solid, nitrite, calcium, faecal coliform and total coliform from unfiltered water for aluminum roof were 0.82 NTU, 23.68 mg/l, 2.70 mg/l, 1.0 mg/l, 4 cfu/100ml and 4cfu/100ml, respectively while the corresponding values for slow sand filter were 0.01 NTU, 0.16 mg/l, 0.57 mg/l, 0.2 mg/l, 0 cfu/100ml and 0 cfu/100ml, respectively. The values obtained for galvanized roof were also satisfactory. The slow sand filter is recommended for used in rural areas for water purification to prevent risk of water-borne diseases.

  14. Charcoal from biomass residues of a Cryptomeria plantation and analysis of its carbon fixation benefit in Taiwan

    International Nuclear Information System (INIS)

    Lin, Yu-Jen; Hwang, Gwo-Shyong

    2009-01-01

    Charcoal production as an age-old industry not only supplies fuel in developing countries, in recent decades, it has also become a means of supplying new multifunctional materials for environmental improvement and agricultural applications in developed countries. These include air dehumidification and deodorization, water purification, and soil improvement due to charcoal's excellent adsorption capacity. Paradoxically, charcoal production might also help curb greenhouse gas emissions. In this study, we made charcoal from discarded branches and tops of wood from a Cryptomeria plantation after thinning using a still-operational earthen kiln. Woody biomass was used as the carbonization fuel. The effect of carbonization on carbon fixation was calculated and its benefits evaluated. The results showed that the recovered fixed carbon reached 33.2%, i.e., one-third of the biomass residual carbon was conserved as charcoal which if left on the forest ground would decompose and turn into carbon dioxide, and based on a net profit of US$1.13 kg -1 for charcoal, an annual net profit of US$14,665 could be realized. Charcoaling thus appears to be a feasible alternative to promote reutilization of woody resides which would not only reduce greenhouse gas emissions, but also provide potential benefits to regional economies in developing countries.

  15. Chemical analysis and potential health risks of hookah charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, Yehya, E-mail: yelsayed@aus.edu; Dalibalta, Sarah, E-mail: sdalibalta@aus.edu; Abu-Farha, Nedal

    2016-11-01

    Hookah (waterpipe) smoking is a very common practice that has spread globally. There is growing evidence on the hazardous consequences of smoking hookah, with studies indicating that its harmful effects are comparable to cigarette smoking if not worse. Charcoal is commonly used as a heating source for hookah smoke. Although charcoal briquettes are thought to be one of the major contributors to toxicity, their composition and impact on the smoke generated remains largely unidentified. This study aims to analyze the elemental composition of five different raw synthetic and natural charcoals by using Carbon-Hydrogen-Nitrogen (CHN) analysis, inductively coupled plasma (ICP), and scanning electron microscopy coupled with energy dispersive X-Ray spectrometry (SEM-EDS). Elemental analysis showed that the raw charcoals contain heavy metals such as zinc, iron, cadmium, vanadium, aluminum, lead, chromium, manganese and cobalt at concentrations similar, if not higher than, cigarettes. In addition, thermal desorption-gas chromatography–mass spectrometry (TD-GC–MS) was used to analyze the chemical composition of the smoke produced from burning the charcoal samples. The smoke emitted from charcoal was found to be the source of numerous compounds which could be hazardous to health. A total of seven carcinogens, 39 central nervous system depressants and 31 respiratory irritants were identified. - Highlights: • Hookah charcoals, mainly synthetic brands, contains trace/heavy metals in concentrations exceeding those in cigarettes. • The concentration of lead in synthetic charcoal briquettes may impose adverse effects on human health. • The amount of nitrogen in synthetic charcoal is comparable to that reported in cigarettes. • Chemical profiling of smoke emitted from hookah charcoal reveals many compounds associated with potential health risks.

  16. Chemical analysis and potential health risks of hookah charcoal

    International Nuclear Information System (INIS)

    Elsayed, Yehya; Dalibalta, Sarah; Abu-Farha, Nedal

    2016-01-01

    Hookah (waterpipe) smoking is a very common practice that has spread globally. There is growing evidence on the hazardous consequences of smoking hookah, with studies indicating that its harmful effects are comparable to cigarette smoking if not worse. Charcoal is commonly used as a heating source for hookah smoke. Although charcoal briquettes are thought to be one of the major contributors to toxicity, their composition and impact on the smoke generated remains largely unidentified. This study aims to analyze the elemental composition of five different raw synthetic and natural charcoals by using Carbon-Hydrogen-Nitrogen (CHN) analysis, inductively coupled plasma (ICP), and scanning electron microscopy coupled with energy dispersive X-Ray spectrometry (SEM-EDS). Elemental analysis showed that the raw charcoals contain heavy metals such as zinc, iron, cadmium, vanadium, aluminum, lead, chromium, manganese and cobalt at concentrations similar, if not higher than, cigarettes. In addition, thermal desorption-gas chromatography–mass spectrometry (TD-GC–MS) was used to analyze the chemical composition of the smoke produced from burning the charcoal samples. The smoke emitted from charcoal was found to be the source of numerous compounds which could be hazardous to health. A total of seven carcinogens, 39 central nervous system depressants and 31 respiratory irritants were identified. - Highlights: • Hookah charcoals, mainly synthetic brands, contains trace/heavy metals in concentrations exceeding those in cigarettes. • The concentration of lead in synthetic charcoal briquettes may impose adverse effects on human health. • The amount of nitrogen in synthetic charcoal is comparable to that reported in cigarettes. • Chemical profiling of smoke emitted from hookah charcoal reveals many compounds associated with potential health risks.

  17. [Adsorption mechanism of furfural onto modified rice husk charcoals].

    Science.gov (United States)

    Deng, Yong; Wang, Xianhua; Li, Yunchao; Shao, Jing'ai; Yang, Haiping; Chen, Hanping

    2015-10-01

    To evaluate the absorptive characteristics of furfural onto biomass charcoals derived from rice husk pyrolysis, we studied the information of the structure and surface chemistry properties of the rice husk charcoals modified by thermal treatment under nitrogen and carbon dioxide flow and adsorption mechanism of furfural. The modified samples are labeled as RH-N2 and RH-CO2. Fresh rice husk charcoal sample (RH-450) and modified samples were characterized by elemental analysis, nitrogen adsorption-desorption isotherms, Fourier-transform infrared spectroscopy and Boehm titration. The results show that fresh rice husk charcoal obtained at 450 degrees C had a large number of organic groups on its surface and poor pore structure. After the modification under nitrogen and carbon dioxide flow, oxygenic organics in rice husk charcoals decompose further, leading to the reduction of acidic functional groups on charcoals surface, and the increase of the pyrone structures of the basic groups. Meanwhile, pore structure was improved significantly and the surface area was increased, especially for the micropores. This resulted in the increase of π-π dispersion between the surfaces of rice husk charcoals and furfural molecular. With making comprehensive consideration of π-π dispersion and pore structure, the best removal efficiency of furfural was obtained by rice husk charcoal modified under carbon dioxide flow.

  18. Theory and practice of radon monitoring with charcoal adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B L; Cohen, E S

    1983-08-01

    Because of interest in charcoal adsorption as an inexpensive radon monitoring technique that may be suitable for mass data collection, the theory of radon adsorption from air by a charcoal bed is developed, giving numerical estimates at all stages. The method is practical down to air concentrations of about 0.1 pCi/l. A simple charcoal bed is limited by the fact that its response is highly sensitive to the time interval before termination of the exposure, but two simple methods of avoiding this problem are developed. Simple methods for determining the diffusion constant for the charcoal being used, and for optimizing the depth of the charcoal bed, are presented.

  19. Domestic fuel question and the charcoal solution

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Rao, E G

    1981-06-01

    Domestic fuel for cooking forms one of the basic needs of human society. In India, the pressure of this need has exceeded the regeneration potential of the growing forests which supply a large proportion of this basic need. The pressure can be greatly relieved by converting wood to charcoal before it reaches the consumer. The present paper examines this aspect and reviews the modern methods of charcoal production on fuelwood resources. Besides being a choice domestic fuel, charcoal is a valuable raw material in various industries. Charcoal making industry can be established as a rural based industry (as part of community forestry projects) and would generate much needed cash income at grassroot level. The strategy would be important in dealing with the problem of chronic poverty at this level. (Refs. 5).

  20. Lamp system with conditioned water coolant and diffuse reflector of polytetrafluorethylene(PTFE)

    Science.gov (United States)

    Zapata, Luis E.; Hackel, Lloyd

    1999-01-01

    A lamp system with a very soft high-intensity output is provided over a large area by water cooling a long-arc lamp inside a diffuse reflector of polytetrafluorethylene (PTFE) and titanium dioxide (TiO.sub.2) white pigment. The water is kept clean and pure by a one micron particulate filter and an activated charcoal/ultraviolet irradiation system that circulates and de-ionizes and biologically sterilizes the coolant water at all times, even when the long-arc lamp is off.

  1. Using date stone charcoal as a filtering medium for automobile exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Shahad, H.A.K.; Farhan, A.M. [University of Babylon (Iraq). College of Engineering; Saleh, H.A. [University of Babylon (Iraq). Dept. of Chemistry

    1998-12-31

    A thermal reactor was designed and built to produce coal from date stones by pyrolysis. Five specimens of coal have been prepared at different maximum charring temperatures. It was found that, as the temperature increases, the properties of coal are improved (the percentage of carbon content increases). It was also found that, at 700{sup o}C, the percentage of carbon content remains constant. The coal prepared at this temperature was used as a filtering medium in an adsorption filter to purify the exhaust gases of a two stroke spark ignition engine. The results showed that the filter has a high adsorption ability for CO and CO{sub 2} gases. An ORSAT apparatus was used to measure the concentration of CO and CO{sub 2} in the exhaust gases before and after the filter. The filter reduced the concentration of CO and CO{sub 2} by 62 and 59%, respectively. (author)

  2. Charcoal cuts the CO2-emissions

    International Nuclear Information System (INIS)

    Aakervik, Anne Lise.

    1999-01-01

    According to this article, bio carbon, or charcoal, may be the way out for the Norwegian processing industry in attempting to reduce the emission of carbon dioxide. Norwegian ferro-alloy plants emit 3 million ton carbon dioxide per year, which comes from the use of coal and coke as reducing agents in the smelting process. If the fraction of bio carbon is increased by 15%, the emission of CO 2 may be reduced by about 1/2 million tonne per year. But the price of charcoal is much greater than that of fix C from coal and coke. Research is in progress on trying to produce bio carbon cheaper. Charcoal can be produced from all types of forest by pyrolysis. Waste heat from the pyrolysis can be sold and used for district heating. The most expensive part in the use of bio carbon will be timber felling and transport to the log pile. Small-scale and large-scale tests will be made to see if it is possible to make adequate charcoal from subarctic timber

  3. Application of a Low Cost Ceramic Filter for Recycling Sand Filter Backwash Water

    Directory of Open Access Journals (Sweden)

    Md Shafiquzzaman

    2018-02-01

    Full Text Available The aim of this study is to examine the application of a low cost ceramic filter for the treatment of sand filter backwash water (SFBW. The treatment process is comprised of pre-coagulation of SFBW with aluminum sulfate (Alum followed by continuous filtration usinga low cost ceramic filter at different trans-membrane pressures (TMPs. Jar test results showed that 20 mg/L of alum is the optimum dose for maximum removal of turbidity, Fe, and Mn from SFBW. The filter can be operated at a TMP between 0.6 and 3 kPa as well as a corresponding flux of 480–2000 L/m2/d without any flux declination. Significant removal, up to 99%, was observed forturbidity, iron (Fe, and manganese (Mn. The flux started to decline at 4.5 kPa TMP (corresponding flux 3280 L/m2/d, thus indicated fouling of the filter. The complete pore blocking model was found as the most appropriate model to explain the insight mechanism of flux decline. The optimum operating pressure and the permeate flux were found to be 3 kPa and 2000 L/m2/d, respectively. Treated SFBW by a low cost ceramic filter was found to be suitable to recycle back to the water treatment plant. The ceramic filtration process would be a low cost and efficient option to recycle the SFBW.

  4. The filtering of raw water with partition system in pool row water for the process

    International Nuclear Information System (INIS)

    Harahap, Sentot Alibasya; Djunaidi

    2003-01-01

    The purpose of filtering raw water in the pool is decreasing soluble dirty in the water from Puspiptek PAM also the dirty from the environments. The monitoring of raw water since 1998 that the raw water is not so good in the quality. This partition system use tree type of screen a.i. the opened 10 mm, Mesh 60 and Mesh 100. The down position use a plat with 400 mm higher from the floor of the pool that given support frame from the L profile and strip plate by stainless steel (SS-304), use for deposited the impurities. The filter capability from the monitoring that the filtering result is a good quality, the TDS drop (Total Dissolved Solvent) is 2,5 gram/liter and the water filtering static type is (4 - 8,5) gram/liter

  5. Field investigation of arsenic in ceramic pot filter-treated drinking water.

    Science.gov (United States)

    Archer, A R; Elmore, A C; Bell, E; Rozycki, C

    2011-01-01

    Ceramic pot filters (CPFs) is one of several household water treatment technologies that is used to treat drinking water in developing areas. The filters have the advantage of being able to be manufactured using primarily locally available materials and local labor. However, naturally-occurring arsenic present in the clay used to make the filters has the potential to contaminate the water in excess of the World Health Organization drinking water standard of 0.01 mg/L. A manufacturing facility in Guatemala routinely rinses filters to reduce arsenic concentrations prior to distribution to consumers. A systemic study was performed to evaluate the change in arsenic concentrations with increasing volumes of rinse water. Arsenic field kit results were compared to standard method laboratory results, and dissolved versus suspended arsenic concentrations in CPF-treated water were evaluated. The results of the study suggest that rinsing is an effective means of mitigating arsenic leached from the filters, and that even in the absence of a formal rinsing program, routine consumer use may result in the rapid decline of arsenic concentrations. More importantly, the results indicate that filter manufacturers should give strong consideration to implementing an arsenic testing program.

  6. Passivation of fluorinated activated charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Del Cul, G.D.; Trowbridge, L.D.; Simmons, D.W.; Williams, D.F.; Toth, L.M.

    1997-10-01

    The Molten Salt Reactor Experiment (MSRE), at the Oak Ridge National Laboratory has been shut down since 1969 when the fuel salt was drained from the core into two Hastelloy N tanks at the reactor site. In 1995, a multiyear project was launched to remediate the potentially hazardous conditions generated by the movement of fissile material and reactive gases from the storage tanks into the piping system and an auxiliary charcoal bed (ACB). The top 12 in. of the ACB is known by gamma scan and thermal analysis to contain about 2.6 kg U-233. According to the laboratory tests, a few feet of fluorinated charcoal are believed to extend beyond the uranium front. The remainder of the ACB should consist of unreacted charcoal. Fluorinated charcoal, when subjected to rapid heating, can decompose generating gaseous products. Under confined conditions, the sudden exothermic decomposition can produce high temperatures and pressures of near-explosive characteristics. Since it will be necessary to drill and tap the ACB to allow installation of piping and instrumentation for remediation and recovery activities, it is necessary to chemically convert the reactive fluorinated charcoal into a more stable material. Ammonia can be administered to the ACB as a volatile denaturing agent that results in the conversion of the C{sub x}F to carbon and ammonium fluoride, NH{sub 4}F. The charcoal laden with NH{sub 4}F can then be heated without risking any sudden decomposition. The only consequence of heating the treated material will be the volatilization of NH{sub 4}F as a mixture of NH{sub 3} and HF, which would primarily recombine as NH{sub 4}F on surfaces below 200 C. The planned scheme for the ACB denaturing is to flow diluted ammonia gas in steps of increasing NH{sub 3} concentration, 2% to 50%, followed by the injection of pure ammonia. This report summarizes the planned passivation treatment scheme to stabilize the ACB and remove the potential hazards. It also includes basic information

  7. Effect of Chitosan Binder on Water Absorption of Empty Fruit Bunches Filter Media

    International Nuclear Information System (INIS)

    Aziatul Niza Sadikin; Mohd Ghazali Mohd Nawawi; Norasikin Othman

    2015-01-01

    The potential of chitosan as filter media binder was investigated in this study. Chitosan solution with different concentrations were applied to the empty fruit bunches using two different deposition techniques, namely, spray method and addition method. In this study, a water absorption test was used to study the sorption behaviour of empty fruit bunches filter media. The water absorption study showed that the water uptake for empty fruit bunches filter media without the chitosan binder increases with time, until the water sorption reaches the equilibrium state. It was observed that the water uptake decreased from 23 % to 14 % for the chitosan-filled filter media as compared to binder-less filter media, over the duration of 24 hours. For 1 % chitosan concentration, the water uptake is higher compared to 3 % chitosan-filled filter media. The water absorption is relatively lower for filter media with a higher concentration of chitosan due to the high compatibility achieved at this interfacial region between empty fruit bunches fibres and chitosan. Alkali-treated filter media showed the lowest water uptake compared to diethyl ether, ethanol and hot water pretreatment methods. (author)

  8. Granular filters for water treatment: heterogeneity and diagnostic tools

    DEFF Research Database (Denmark)

    Lopato, Laure Rose

    the last barrier against disinfection resistant protozoan pathogens and this has led to increased regulation of the filtration process. To be able to produce high-quality filtrate in a constant and reliable manner while meeting stricter drinking water guideline values, it is important to be able......Rapid granular filters are the most commonly used filters in drinking water treatment plants and are the focus of this PhD study. They are usually constructed with sand, anthracite, activated carbon, garnet sand, and ilmenite and have filtration rates ranging from 3 to 15 m/h. Filters are often...... options prescribed. The diagnostic tools are then used again to verify the efficiency of the solution applied. If the problem is not solved the whole process starts again. These tools are of significant interest for the development of the Water Safety Plans recommended by WHO to monitor filters...

  9. Penelitian Pembuatan Arang Bambu (Bamboo Charcoal pda Suhu Rendah untuk Produk Kerajinan

    Directory of Open Access Journals (Sweden)

    Dwi Suheryanto

    2016-04-01

    C, which are made from barrel with 35 cm of diameters. There are 3 tipes of bamboo used in this research, namely: Cendani, Petung, and Legi Bamboo, also semi-finished bamboo products. The procedures are: material preparation (cutting and selection, drying, and measurement of initial water content, charcoal formation process, observation of the process and success rate identification. The objective of this research is for to know the influence the factor of a charcoal formation process at low and medium temperature From the measurement, the initial water content of those 3 tipes of bamboo is under 15%. Meanwhile, from the observation and identification, it obtained that in the charcoal formation process using Furnace Tipe-1, the average highest  temperatures reached is 107,4°C during 5 hours, with success rate between 60% - 90%, or 73 in average. In Furnace Tipe-2, the average highest temperature is 112,8°C during 3,5 hours, with success rate between 50% - 90% or 81% in average. Keywords: bamboo charcoal (bamboo charcoal, charcoal formation process, temperature, furnace 

  10. Preliminary analysis on the water quality index (WQI) of irradiated basic filter elements

    Science.gov (United States)

    Arif Abu Bakar, Asyraf; Muhamad Pauzi, Anas; Aziz Mohamed, Abdul; Syima Sharifuddin, Syazrin; Mohamad Idris, Faridah

    2018-01-01

    Simple water filtration system is needed in times of extreme floods. Clean water for sanitation at evacuation centres is essential and its production is possible by using the famous simple filtration system consisting of empty bottle and filter elements (sands, gravels, cotton/coffee filter). This research intends to study the effects of irradiated filter elements on the filtration effectiveness through experiments. The filter elements will be irradiated with gamma and neutron radiation using the facilities available at Malaysia Nuclear Agency. The filtration effectiveness is measured using the water quality index (WQI) that is developed in this study to reflect the quality of filtered water. The WQI of the filtered water using the system with irradiated filter elements is then compared with that of the system with non-irradiated filter elements. This preliminary analysis only focus on filtration element of silica sand. Results shows very nominal variation in in WQI after filtered by non-irradiated, gamma and neutron filter element (silica sand), where the hypothesis could not be affirmed.

  11. Assessment of a membrane drinking water filter in an emergency setting.

    Science.gov (United States)

    Ensink, Jeroen H J; Bastable, Andy; Cairncross, Sandy

    2015-06-01

    The performance and acceptability of the Nerox(TM) membrane drinking water filter were evaluated among an internally displaced population in Pakistan. The membrane filter and a control ceramic candle filter were distributed to over 3,000 households. Following a 6-month period, 230 households were visited and filter performance and use were assessed. Only 6% of the visited households still had a functioning filter, and the removal performance ranged from 80 to 93%. High turbidity in source water (irrigation canals), together with high temperatures and large family size were likely to have contributed to poor performance and uptake of the filters.

  12. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent-Bamboo charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fayuan [State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Qinghuayuan, Haidian District, Beijing 100084 (China); Wang Hui, E-mail: wanghui@mail.tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Qinghuayuan, Haidian District, Beijing 100084 (China); Ma Jianwei [State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Qinghuayuan, Haidian District, Beijing 100084 (China)

    2010-05-15

    Batch adsorption experiments were conducted for the adsorption of Cd (II) ions from aqueous solution by bamboo charcoal. The results showed that the adsorption of Cd (II) ions was very fast initially and the equilibrium time was 6 h. High pH ({>=}8.0) was favorable for the adsorption and removal of Cd (II) ions. Higher initial Cd concentrations led to lower removal percentages but higher adsorption capacity. As the adsorbent dose increased, the removal of Cd increased, while the adsorption capacity decreased. Adsorption kinetics of Cd (II) ions onto bamboo charcoal could be best described by the pseudo-second-order model. The adsorption behavior of Cd (II) ions fitted Langmuir, Temkin and Freundlich isotherms well, but followed Langmuir isotherm most precisely, with a maximum adsorption capacity of 12.08 mg/g. EDS analysis confirmed that Cd (II) was adsorbed onto bamboo charcoal. This study demonstrated that bamboo charcoal could be used for the removal of Cd (II) ions in water treatment.

  13. Interaction of atomic hydrogen with charcoal at 77 K

    International Nuclear Information System (INIS)

    Gorodetsky, A.E.; Vnukov, S.P.; Zalavutdinov, R.Kh.; Zakharov, A.P.; Buryak, A.K.; Ulyanov, A.V.; Federici, G.; Day, Chr.

    2005-01-01

    Charcoal is a working material of sorption cryopumps in the ITER project. The interaction of thermal hydrogen molecules and atoms with charcoal has been analyzed by TDS (77-300 K) and sorption measurements at 77 K. A stream quartz reactor with an H 2 RF discharge was used for the production of H atoms. The ratio of H and H 2 in the gas mixture in the afterglow zone was ∼10 -4 , hydrogen flow and inlet pressure were 6.9 sccm and 30 Pa, respectively. After exposure in the H/H 2 mixture during 1 hour the marked change in the shape of the TD spectra and decrease of the charcoal sorption capacity for hydrogen and nitrogen were detected. A wide spectrum of hydrocarbon fragments formed at 77 K was registered by mass-spectrometry at charcoal heating up to 700 K. The specific adsorption volume of charcoal, which was measured by N 2 adsorption at 77 K, decreased directly as amount of H atoms passed through the section with charcoal. (author)

  14. Application of Self Cleaning Rapid Sand Filter in Water Treatment

    Directory of Open Access Journals (Sweden)

    Ali Reza Rahmani

    2005-08-01

    Full Text Available Rapid sand filter is one of the most important units in the water treatment plants. It has some difficulties in operation such as backwashing. For the solving of this problem a rapid sand filter has designed and built with the self-cleaning backwashing system. This system consist of 3 main constituents; one galvanized siphon and two galvanized steel tanks. One of them is used for filtration and the other used for the storage of filtrated water in elevation for backwashing the system. Water enter from upside of the filter through the inlet pipe, and collected from the under drainage pipe. Then filter water conduct to the storage tank and exit from outlet pipe. In the beginning, the head loss was low, but because of bed clogging by suspended solids, it increases gradually to the designed head loss (1.2m. Then the system is outed of the service automatically and the backwash is began. The main data for the design of system selected from the hydraulic rules of siphons and rapid sand filter criteria. After essential calculations it was constructed and was started operation. For the hydraulic studies a known volume of storage tank was selected and the time needed for the fill (in filtration stage and empty (in backwash stage of water volume with volumetric method were measured. In hydraulic studies the filter surface rate (SOR was selected about 5-7.5m3/m2/hr (1.39-2.08 lit/sec and the flow of water in siphon, during the backwashing was measured 8.7 lit/sec. It can be seen that the siphon passes 4-6 times the inlet raw water thus a negative pressure will created in the siphon which causes the water above the sand bed to be discharged automatically and rinse water from elevated tank flow under the sand bed and back wash it. So according to this study self cleaning rapid sand filter is very useful for water filtration, especially in small population community. The construction of system is rapid, simple and economic.

  15. Effects of Charcoal Addition on the Properties of Carbon Anodes

    Directory of Open Access Journals (Sweden)

    Asem Hussein

    2017-03-01

    Full Text Available Wood charcoal is an attractive alternative to petroleum coke in production of carbon anodes for the aluminum smelting process. Calcined petroleum coke is the major component in the anode recipe and its consumption results in a direct greenhouse gas (GHG footprint for the industry. Charcoal, on the other hand, is considered as a green and abundant source of sulfur-free carbon. However, its amorphous carbon structure and high contents of alkali and alkaline earth metals (e.g., Na and Ca make charcoal highly reactive to air and CO2. Acid washing and heat treatment were employed in order to reduce the reactivity of charcoal. The pre-treated charcoal was used to substitute up to 10% of coke in the anode recipe in an attempt to investigate the effect of this substitution on final anode properties. The results showed deterioration in the anode properties by increasing the charcoal content. However, by adjusting the anode recipe, this negative effect can be considerably mitigated. Increasing the pitch content was found to be helpful to improve the physical properties of the anodes containing charcoal.

  16. Back to charcoal?

    International Nuclear Information System (INIS)

    Areklett, Ivar

    2002-01-01

    The ferro-alloy industry is currently evaluating the feasibility of using charcoal rather than fossil coal and coke. This is to avoid the emission of climate gases. Ferro-alloys are used in a wide variety of important products. However, the climate gas carbon dioxide is formed during their production. Oxides are the raw material in the production of these alloys. For the Norwegian company Elkem, the starting point is quartz, SiO 2 . The only reducing agent strong enough to break the bond between silicon and oxygen is solid carbon, which reacts with oxygen to form carbon dioxide, the climate gas. Cleaning the waste gases is too expensive to be relevant, as they are very voluminous and have low concentration of CO 2 . The carbon source currently used by the ferro-alloy industry is fossil coal or coke, which can be replaced by charcoal by burning what is not carbon in the wood so that the result is coal with a high carbon fraction. Although the burning of charcoal is not free of CO 2 emission, biological material containing carbon will over time emit CO 2 to the atmosphere anyhow. Thus, CO 2 emission from biomass does not count in the climate accounts. With rational forest management, the use of biomass implies sustainable climate policy. The ferro-alloy industry is currently exempt from climate taxes, but this situation may not last long, which is why the sector is now considering biomass

  17. Trace metal contents in barbeque (BBQ) charcoal products

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, Ehsanul [Department of Environment and Energy, Sejong University, 98 Goon Ja Dong, Seoul 143-747 (Korea, Republic of); Kim, Ki-Hyun, E-mail: khkim@sejong.ac.kr [Department of Environment and Energy, Sejong University, 98 Goon Ja Dong, Seoul 143-747 (Korea, Republic of); Yoon, H.O. [Korea Basic Science Institute, Seoul Center, Seoul 136-701 (Korea, Republic of)

    2011-01-30

    In this study, the concentrations of trace elements contained in solid barbeque (BBQ) charcoal products have been investigated. Eleven brands of charcoal products were analyzed, consisting of both Korean (3 types) and imported products (eight types from three countries) commonly available in the Korean market places. The concentrations of trace metals in solid charcoal varied widely across metal types and between samples with the overall range of 5 {mu}g kg{sup -1} (As) to 118 mg kg{sup -1} (Zn). The patterns of metal distribution between different products appeared to be affected by the properties of raw materials and/or the processes involved in their production. Although concentrations of certain trace metals were significantly high in certain charcoal samples, their emission concentrations were below legislative guidelines (e.g., the permissible exposure limit (PEL) set by the Occupational Safety and Health Administration (OSHA)). In light of the potential harm of grilling activities, proper regulation should be considered to control the use of BBQ charcoal from a toxicological viewpoint to help reduce the potential health risks associated with its use.

  18. Trace metal contents in barbeque (BBQ) charcoal products

    International Nuclear Information System (INIS)

    Kabir, Ehsanul; Kim, Ki-Hyun; Yoon, H.O.

    2011-01-01

    In this study, the concentrations of trace elements contained in solid barbeque (BBQ) charcoal products have been investigated. Eleven brands of charcoal products were analyzed, consisting of both Korean (3 types) and imported products (eight types from three countries) commonly available in the Korean market places. The concentrations of trace metals in solid charcoal varied widely across metal types and between samples with the overall range of 5 μg kg -1 (As) to 118 mg kg -1 (Zn). The patterns of metal distribution between different products appeared to be affected by the properties of raw materials and/or the processes involved in their production. Although concentrations of certain trace metals were significantly high in certain charcoal samples, their emission concentrations were below legislative guidelines (e.g., the permissible exposure limit (PEL) set by the Occupational Safety and Health Administration (OSHA)). In light of the potential harm of grilling activities, proper regulation should be considered to control the use of BBQ charcoal from a toxicological viewpoint to help reduce the potential health risks associated with its use.

  19. Evaluation of the Effects of Lime-bassanite-charcoal Amendment on the Immobilization of Cadmium in Contaminated Soil.

    Science.gov (United States)

    Huang, Shunhong; Yang, Yi; Li, Qian; Su, Zhen; Yuan, Cuiyu; Ouyang, Kun

    2017-03-01

    The effects of amendments, such as lime, bassanite, sodium phosphate, steel slag and charcoal, and their compounds on the immobilization of cadmium (Cd) are investigated. The lime-bassanite-charcoal compound shows the best remediation performance compared to other agents in conducted experiments. The optimum condition for lime-bassanite-charcoal application in contaminated soil is lime-bassanite-charcoal with a mass ratio of 1:1/3:2/3, a dose of 2% of the soil weight, and a liquid-to-solid ratio of 35%-40%; additionally, the agents should be added before water addition. The highest Cd removal rate was 58.94% (±1.19%) with a ∆pH of 0.23, which is much higher than the rates reported in previous studies. The compound amendment was used in a field experiment, demonstrating a Cd removal efficiency of 48.78% (±4.23), further confirming its effectiveness.

  20. Water risk assessment in China based on the improved Water Risk Filter

    Science.gov (United States)

    Hong, G.; Yaqin, Q.; Qiong, L.; Cunwen, N.; Na, W.; Jiajia, L.; Jongde, G.; Na, Z.; Xiangyi, D.

    2014-09-01

    Finding an effective way to deal with the water crisis and the relationship between water and development is a major issue for all levels of government and different economic sectors across the world. Scientific understanding of water risk is the basis for achieving a scientific relationship between water and development, and water risk assessment is currently an important research focus. To effectively deal with the global water crisis, the World Wide Fund for Nature and German Investment and Development Company Limited proposed the concept of water risk and released an online Water Risk Filter in March 2012, which has been applied to at least 85 countries. To comprehensively and accurately reflect the situation of water risk in China, this study adjusts the water risk assessment indicators in the Water Risk Filter, taking the actual situation in China and the difficulty of obtaining the information about the indicators into account, and proposes an index system for water risk evaluation for China which consists of physical risk, regulatory risk and reputational risk. The improved Water Risk Filter is further used to assess the sources and causes of the water risks in 10 first-class and seven second-class water resource areas (WRAs). The results indicate that the water risk for the whole country is generally medium and low, while those for different regions in the country vary greatly, and those for southern regions are generally lower than those for northern regions. Government regulatory and policy implementation as well as media supervision in northern regions should be strengthened to reduce the water risk. The research results may provide decision support and references for both governments and industrial enterprises in identifying water risks, formulating prevention and control policies, and improving water resources management in China.

  1. Water risk assessment in China based on the improved Water Risk Filter

    Directory of Open Access Journals (Sweden)

    G. Hong

    2014-09-01

    Full Text Available Finding an effective way to deal with the water crisis and the relationship between water and development is a major issue for all levels of government and different economic sectors across the world. Scientific understanding of water risk is the basis for achieving a scientific relationship between water and development, and water risk assessment is currently an important research focus. To effectively deal with the global water crisis, the World Wide Fund for Nature and German Investment and Development Company Limited proposed the concept of water risk and released an online Water Risk Filter in March 2012, which has been applied to at least 85 countries. To comprehensively and accurately reflect the situation of water risk in China, this study adjusts the water risk assessment indicators in the Water Risk Filter, taking the actual situation in China and the difficulty of obtaining the information about the indicators into account, and proposes an index system for water risk evaluation for China which consists of physical risk, regulatory risk and reputational risk. The improved Water Risk Filter is further used to assess the sources and causes of the water risks in 10 first-class and seven second-class water resource areas (WRAs. The results indicate that the water risk for the whole country is generally medium and low, while those for different regions in the country vary greatly, and those for southern regions are generally lower than those for northern regions. Government regulatory and policy implementation as well as media supervision in northern regions should be strengthened to reduce the water risk. The research results may provide decision support and references for both governments and industrial enterprises in identifying water risks, formulating prevention and control policies, and improving water resources management in China.

  2. Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment.

    Science.gov (United States)

    Oyanedel-Craver, Vinka A; Smith, James A

    2008-02-01

    Cylindrical colloidal-silver-impregnated ceramic filters for household (point-of-use) water treatment were manufactured and tested for performance in the laboratory with respect to flow rate and bacteria transport. Filters were manufactured by combining clay-rich soil with water, grog (previously fired clay), and flour, pressing them into cylinders, and firing them at 900 degrees C for 8 h. The pore-size distribution of the resulting ceramic filters was quantified by mercury porosimetry. Colloidal silver was applied to filters in different quantities and ways (dipping and painting). Filters were also tested without any colloidal-silver application. Hydraulic conductivity of the filters was quantified using changing-head permeability tests. [3H]H2O water was used as a conservative tracer to quantify advection velocities and the coefficient of hydrodynamic dispersion. Escherichia coli (E. coli) was used to quantify bacterial transport through the filters. Hydraulic conductivity and pore-size distribution varied with filter composition; hydraulic conductivities were on the order of 10(-5) cm/s and more than 50% of the pores for each filter had diameters ranging from 0.02 to 15 microm. The filters removed between 97.8% and 100% of the applied bacteria; colloidal-silver treatments improved filter performance, presumably by deactivation of bacteria. The quantity of colloidal silver applied per filter was more important to bacteria removal than the method of application. Silver concentrations in effluent filter water were initially greater than 0.1 mg/L, but dropped below this value after 200 min of continuous operation. These results indicate that colloidal-silver-impregnated ceramic filters, which can be made using primarily local materials and labor, show promise as an effective and sustainable point-of-use water treatment technology for the world's poorest communities.

  3. Removal method of radium in mine water by filter sand

    International Nuclear Information System (INIS)

    Taki, Tomihiro; Naganuma, Masaki

    2003-01-01

    Trace radium is contained in mine water from the old mine road in Ningyo-Toge Environmental Engineering Center, JNC. We observed that filter sand with hydrated manganese oxide adsorbed radium in the mine water safely for long time. The removal method of radium by filter sand cladding with hydrated manganese oxide was studied. The results showed that radium was removed continuously and last for a long time from mine water with sodium hypochlorite solution by passing through the filter sand cladding with hydrated manganese. Only sodium hypochlorite solution was used. When excess of it was added, residue chlorine was used as chlorine disinfection. Filter sand cladding with hydrated manganese on the market can remove radium in the mine water. The removal efficiency of radium is the same as the radium coprecipitation method added with barium chloride. The cost is much lower than the ordinary methods. Amount of waste decreased to about 1/20 of the coprecipitation method. (S.Y.)

  4. Analysis of UV filters in tap water and other clean waters in Spain.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Gago-Ferrero, Pablo; Llorca, Marta; Barceló, Damià

    2012-03-01

    The present paper describes the development of a method for the simultaneous determination of five hormonally active UV filters namely benzophenone-3 (BP3), 3-(4-methylbenzylidene) camphor (4MBC), 2-ethylhexyl 4-(dimethylamino) benzoate (OD-PABA), 2-ethylhexyl 4-methoxycinnamate (EHMC) and octocrylene (OC) by means of solid-phase extraction and gas chromatography-electron impact ionization-mass spectrometry. Under optimized conditions, this methodology achieved low method limits of detection (needed for clean waters, especially drinking water analysis), between 0.02 and 8.42 ng/L, and quantitative recovery rates higher than 73% in all cases. Inter- and intraday precision for all compounds were lower than 7% and 11%, respectively. The optimized methodology was applied to perform the first survey of UV absorbing compounds in tap water from the metropolitan area and the city of Barcelona (Catalonia, Spain). In addition, other types of clean water matrices (mineral bottled water, well water and tap water treated with an ion-exchange resin) were investigated as well. Results evidenced that all the UV filters investigated were detected in the water samples analyzed. The compounds most frequently found were EHMC and OC. Maximum concentrations reached in tap water were 290 (BP3), 35 (4MBC), 110 (OD-PABA), 260 (EHMC), and 170 ng/L (OC). This study constitutes the first evidence of the presence of UV filter residues in tap water in Europe.

  5. Manufacture of mold of polymeric composite water pipe reinforced charcoal

    Science.gov (United States)

    Zulfikar; Misdawati; Idris, M.; Nasution, F. K.; Harahap, U. N.; Simanjuntak, R. K.; Jufrizal; Pranoto, S.

    2018-03-01

    In general, household wastewater pipelines currently use thermoplastic pipes of Polyvinyl Chloride (PVC). This material is known to be not high heat resistant, contains hazardous chemicals (toxins), relatively inhospitable, and relatively more expensive. Therefore, researchers make innovations utilizing natural materials in the form of wood charcoal as the basic material of making the water pipe. Making this pipe requires a simple mold design that can be worked in the scale of household and intermediate industries. This research aims to produce water pipe mold with simple design, easy to do, and making time relatively short. Some considerations for molding materials are weight of mold, ease of raw material, strong, sturdy, and able to cast. Pipe molds are grouped into 4 (four) main parts, including: outer diameter pipe molding, pipe inside diameter, pipe holder, and pipe alignment control. Some materials have been tested as raw materials for outer diameter of pipes, such as wood, iron / steel, cement, and thermoset. The best results are obtained on thermoset material, where the process of disassembling is easier and the resulting mold weight is relatively lighter. For the inside diameter of the pipe is used stainless steel, because in addition to be resistant to chemical processes that occur, in this part of the mold must hold the press load due to shrinkage of raw materials of the pipe during the process of hardening (polymerization). Therefore, it needs high pressure resistant material and does not blend with the raw material of the pipe. The base of the mold is made of stainless steel material because it must be resistant to corrosion due to chemical processes. As for the adjustment of the pipe is made of ST 37 carbon steel, because its function is only as a regulator of the alignment of the pipe structure.

  6. Clinical and Microbiologic Efficacy of a Water Filter Program in a Rural Honduran Community

    Directory of Open Access Journals (Sweden)

    Jaclyn Arquiette

    2014-01-01

    Full Text Available Water purification in the rural Honduras is a focus of the nonprofit organization Honduras Outreach Medical Brigade Relief Effort (HOMBRE. We assessed water filter use and tested filter microbiologic and clinical efficacy. A 22-item questionnaire assessed water sources, obtainment/storage, purification, and incidence of gastrointestinal disease. Samples from home clay-based filters in La Hicaca were obtained and paired with surveys from the same home. We counted bacterial colonies of four bacterial classifications from each sample. Sixty-five surveys were completed. Forty-five (69% individuals used a filter. Fifteen respondents reported diarrhea in their home in the last 30 days; this incidence was higher in homes not using a filter. Thirty-three paired water samples and surveys were available. Twenty-eight samples (85% demonstrated bacterial growth. A control sample was obtained from the local river, the principal water source; number and bacterial colony types were innumerable within 24 hours. Access to clean water, the use of filters, and other treatment methods differed within a geographically proximal region. Although the majority of the water samples failed to achieve bacterial eradication, water filters may sufficiently reduce bacterial coliform counts to levels below infectious inoculation. Clay water filters may be sustainable water treatment measures in resource poor settings.

  7. The influence of physical parameters on the adsorption of iodine 131 by activated charcoals

    International Nuclear Information System (INIS)

    Billard, F.; Chevalier, G.; Caron, J.; Van Der Meersch, J.

    1966-01-01

    Following an outline of the means of generating iodine 131 in the gas phase and a brief description of the apparatus used, the authors analyse the experimental results obtained on the trapping of iodine 131 by activated charcoal. The efficiency depends concurrently on the relative humidity and the iodine concentration of the air. While it is independent of this concentration in dry air, it does not exceed 50 in moist air, whatever the bed depth, when the concentration is less than 1 mCi/m 3 , then it increases with the concentrations to reach values close to those obtained in dry air for concentrations of around 1000 Ci/m 3 . At the same time the efficiency of a dust filter with respect to iodine remains very low in dry air whatever the iodine concentration; in moist air this efficiency, which is high at low concentrations, decreases when the latter increases. In addition if a charcoal bed is divided into several beds, separated by an amount corresponding to a passage time of about a second, it is found that the efficiency of the whole is appreciably higher than that of the initial bed. These results appear to establish the existence of at least two forms of iodine, one molecular form and one particulate form probably formed by clusters, the forms equilibrium being functions of the relative concentrations of iodine and water vapour in the air. The third form evidence, a gaseous form compound, remains hypothetical; the experimental curves can be explained either by the molecular and particular forms reversibility or by the increase of clusters size with the relative humidity of the air. (authors) [fr

  8. Prokaryotic communities in drinking water biofilters using alternative filter medium

    DEFF Research Database (Denmark)

    Breda, Inês Lousinha Ribeiro; Roslev, Peter; Ramsay, Loren

    in an alternative filter medium during the start-up of manganese removal. Filter media properties were measured using gravimetric methods and a photometric particle analyzer. Physical, chemical and microbial analyses were used to follow the manganese ripening. Microbial analyses of both inlet water and filter...

  9. Water flow exchange characteristics in coarse granular filter media

    DEFF Research Database (Denmark)

    Andreasen, Rune Røjgaard; Pugliese, Lorenzo; Poulsen, Tjalfe

    2013-01-01

    Elution of inhibitory metabolites is a key parameter controlling the efficiency of air cleaning bio- and biotrickling filters. To the authors knowledge no studies have yet considered the relationship between specific surface area related elution velocity and physical media characteristics, which...... in this study are performed at a concurrent airflow of 0.3 m s−1, water irrigation rates of 1–21 cm h−1 in materials with particle diameters ranging from 2 to 14 mm to represent media and operation conditions relevant for low flow biotrickling filter design. Specific surface area related elution velocity...... distribution was closely related to the filter water content, water irrigation rate, media specific surface area and particle size distribution. A predictive model linking the specific surface area related elution velocity distribution to irrigation rate, specific surface area and particle size distribution...

  10. Filters for water purification from oil products and radionuclides

    International Nuclear Information System (INIS)

    Khaydarov, R.R.; Khaydarov, R.A.; Gapurova, O.U.; Malikov, Sh.

    2006-01-01

    Full text: Purification of waste water and drinking water from radionuclides, heavy metal ions, and organic contaminants is one of the most important problems at present day. One of widely used methods for solving this problem is the ionic exchange method based on using different types of resins and fibroid sorbents. The paper deals with new chemically modified polyester fibroid filters having satisfactory adsorption characteristics. The process of the filter production includes their treatment by acrylo nitrilic emulsion for improving mechanical characteristics. An advantage of the fibroid ion-exchange sorbents over resin is in high rate of a sorption process, effective regeneration and small value of pressure drop of the sorbent layer for purified water. The specific surface of the fibroid sorbents is (2 - 3). 10'4 m 2 / kg, i.e. about 102 times greater than that of the resin (10 2 m 2 / kg). Owing to that fact the rate of the sorption process on the developed fibroid sorbents is much greater than that on the resin. The developed cation- and anion-exchange filters can be used for removing metal ions (Zn, Ni, Cu, Sb, Co, Cd, Cr, etc.) and organic compounds (M- P 32, M- I 131, M-Mo 99 mTc+99, etc.) from water. Capacity of the cation-exchange sorbents is 0.25 meq/g (Cu 2 +) and that of the anion - exchange is 0.45 meq/g (Cr 6 +). The cation- and anion-exchange filters are also selective for removing radionuclides Cs 134,137, Sr 90, Co 60 and I 129 in presence of Na + , K + , Ca 2 +, Mg 2 +, Cl - ions in water at concentrations up to 500 mg/L. New developed ionic-exchange sorbents have been used in drinking water filters and mini-systems for removing organic and inorganic contaminants, in the equipment for waste water purification from oil products (at atomic power stations, car-washing stations, etc), from heavy metal ions (in electronic industry, match fabrics, leather processing plants etc)

  11. Charcoal as an alternative energy carrier. Pt. 2: Conversion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Holstad, A

    1978-12-01

    Terrestrial biomass, residues from forestry, agriculture and farming can be converted by biochemical or thermochemical techniques to fuels. The charcoal yield depends on the raw materials, moisture contents, the temperature of carbonisation and the processing equipment. The yield is reduced by 2 - 3% when using softwood and furthermore with higher temperature of carbonisation. Generally charcoal contains 80 - 90% carbon, 0,5 - 10% ash and 7 - 30% volatile matter. Theoretically the following products are obtained when pyrolising wood: 34,7% Charcoal, 24,9% H/sub 2/O, 10,9% CO/sub 2/, 4,15 CO, 1,6% Methanol, 5,9% Acetic Acid and 17,9% Tar. Units for production of charcoal are large and small kilns, transportable Thomas retorts and Cornell retorts with a production of 1,3 - 6 tons charcoal/day, and the large Lambiotte retort, multiple-hearth furnaces and fluidized-bed reactors. Interesting is also the new equipment of Skogens Kol in Sweden. These large units have a production capacity of 16 - 80 tons charcoal/day. Important production parameters include charcoal yield, labour requirements, air pollution and cost. Based on these parameters the Cornell retort is considered the best unit for production of small quantities of charcoal and Skogens Kol seems to be the most interesting large unit. 17 drawings, 14 tables.

  12. Modeling the sustainability of a ceramic water filter intervention.

    Science.gov (United States)

    Mellor, Jonathan; Abebe, Lydia; Ehdaie, Beeta; Dillingham, Rebecca; Smith, James

    2014-02-01

    Ceramic water filters (CWFs) are a point-of-use water treatment technology that has shown promise in preventing early childhood diarrhea (ECD) in resource-limited settings. Despite this promise, some researchers have questioned their ability to reduce ECD incidences over the long term since most effectiveness trials conducted to date are less than one year in duration limiting their ability to assess long-term sustainability factors. Most trials also suffer from lack of blinding making them potentially biased. This study uses an agent-based model (ABM) to explore factors related to the long-term sustainability of CWFs in preventing ECD and was based on a three year longitudinal field study. Factors such as filter user compliance, microbial removal effectiveness, filter cleaning and compliance declines were explored. Modeled results indicate that broadly defined human behaviors like compliance and declining microbial effectiveness due to improper maintenance are primary drivers of the outcome metrics of household drinking water quality and ECD rates. The model predicts that a ceramic filter intervention can reduce ECD incidence amongst under two year old children by 41.3%. However, after three years, the average filter is almost entirely ineffective at reducing ECD incidence due to declining filter microbial removal effectiveness resulting from improper maintenance. The model predicts very low ECD rates are possible if compliance rates are 80-90%, filter log reduction efficiency is 3 or greater and there are minimal long-term compliance declines. Cleaning filters at least once every 4 months makes it more likely to achieve very low ECD rates as does the availability of replacement filters for purchase. These results help to understand the heterogeneity seen in previous intervention-control trials and reemphasize the need for researchers to accurately measure confounding variables and ensure that field trials are at least 2-3 years in duration. In summary, the CWF

  13. Microbiological effectiveness of locally produced ceramic filters for drinking water treatment in Cambodia.

    Science.gov (United States)

    Brown, Joe; Sobsey, Mark D

    2010-03-01

    Low-cost options for the treatment of drinking water at the household level are being explored by the Cambodian government and non-governmental organizations (NGOs) working in Cambodia, where many lack access to improved drinking water sources and diarrhoeal diseases are the most prevalent cause of death in children under 5 years of age. The ceramic water purifier (CWP), a locally produced, low-cost ceramic filter, is now being implemented by several NGOs, and an estimated 100,000+households in the country now use them for drinking water treatment. Two candidate filters were tested for the reduction of bacterial and viral surrogates for waterborne pathogens using representative Cambodian drinking water sources (rainwater and surface water) spiked with Escherichia coli and bacteriophage MS2. Results indicate that filters were capable of reducing key microbes in the laboratory with mean reductions of E. coli of approximately 99% and mean reduction of bacteriophages of 90-99% over >600 litres throughput. Increased effectiveness was not observed in filters with an AgNO3 amendment. At under US$10 per filter, locally produced ceramic filters may be a promising option for drinking water treatment and safe storage at the household level.

  14. Methods for in-place testing of HEPA and iodine filters used in nuclear power plants

    International Nuclear Information System (INIS)

    Holmberg, R.; Laine, J.

    1978-04-01

    The purpose of this work was a general investigation of existing in-place test methods and to build an equipment for in-place testing of HEPA and iodine sorption filters. In this work the discussion is limited to methods used in in-place testing of HEPA and iodine sorption filters used in light-water-cooled reactor plants. Dealy systems, built for the separation of noble gases, and testing of them is not discussed in the work. Contaminants present in the air of a reactor containment can roughly be diveded into three groups: aerosols, reactive gases, and noble gases. The aerosols are filtered with HEPA (High Efficiency Particulate Air) filters. The most important reactive gases are molecular iodine and its two compounds: hydrogen iodide and methyl iodide. Of gases to be removed by the filters methyl iodide is the gas most difficult to remove especially at high relative humidities. Impregnated activated charcoal is generally used as sorption material in the iodine filters. Experience gained from the use of nuclear power plants proves that the function of high efficiency air filter systems can not be considered safe until this is proved by in-place tests. In-place tests in use are basically equal. A known test agent is injected upstream of the filter to be tested. The efficiency is calculated from air samples taken from both sides of the filter. (author)

  15. Effectiveness of table top water pitcher filters to remove arsenic from drinking water.

    Science.gov (United States)

    Barnaby, Roxanna; Liefeld, Amanda; Jackson, Brian P; Hampton, Thomas H; Stanton, Bruce A

    2017-10-01

    Arsenic contamination of drinking water is a serious threat to the health of hundreds of millions of people worldwide. In the United States ~3 million individuals drink well water that contains arsenic levels above the Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 10μg/L. Several technologies are available to remove arsenic from well water including anion exchange, adsorptive media and reverse osmosis. In addition, bottled water is an alternative to drinking well water contaminated with arsenic. However, there are several drawbacks associated with these approaches including relatively high cost and, in the case of bottled water, the generation of plastic waste. In this study, we tested the ability of five tabletop water pitcher filters to remove arsenic from drinking water. We report that only one tabletop water pitcher filter tested, ZeroWater®, reduced the arsenic concentration, both As 3+ and As 5+ , from 1000μg/L to water and its use reduces plastic waste associated with bottled water. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Evaluating the impact of water flotation and the state of the wood in archaeological wood charcoal remains

    DEFF Research Database (Denmark)

    Otaegui, Amaia Arranz

    2016-01-01

    . The aim of this work is to evaluate the assemblage and to determine the factors that conditioned the preservation or disintegration of wood charcoal remains. In particular, attention is paid to the distribution of the alterations (e.g. vitrification, decayed wood) by taxa, and the proportions with which...... they are present before and after flotation. To test some of the patterns observed in the archaeological material a small-scale experiment on modern wood charcoal remains is carried out. The results enable a critic reconstruction of the type of vegetation and firewood gathering strategies at Tell Qarassa North...

  17. Environmentally friendly production of charcoal from empty fruit bunches using pilot plant

    International Nuclear Information System (INIS)

    Normah Mulop; Mohd Suffian Abdul Rahim

    2000-01-01

    Empty fruit bunches (EFB) from palm oil milling process are classified as palm oil waste. The EFB can be turned into valuable product such as charcoal, which can be processed further to activated carbon in order to solve some of the disposal problems. In this project, raw EFB was converted to charcoal by means of a pilot plant. A burner generating indirect heat controls the temperature of the process. The carbonization process was carried out in the absence of air at various temperatures and durations to find the optimum carbonization parameters. The study shows that the optimum operating, temperature for carbonization of EFB is 500 o C for the duration of 11/2 hours. The average fixed carbon content of the charcoal is 61.08. The high percentage of volatile matter is prevented from escaping into the air by trapping them in a series of cyclones. The double layered cyclones using water as the cooling medium, condense more volatile matter and reduces smoke exhaust. 50.7 % of ,gaseous product is condensed and 49.2 % is emitted to the atmosphere. The result is an environmental friendly pilot plant. (author)

  18. Guides to manufacturing and marketing charcoal in the Northeastern States

    Science.gov (United States)

    Fred C. Simmons

    1957-01-01

    Charcoal manufacture has become the subject of a tremendous new interest in the Northeast in the past few years. In many communities, retailers have been unable to find enough charcoal to fill the demands - even though in the same localities there are large supplies of surplus wood that could be used in making charcoal. As a result of this unfilled demand, we have...

  19. Bank filtered water quality characteristics in Okgog-Ri area of Youngsan-River, Korea

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee-Youl; Kim, Hyoung-Soo [Korea Water Resources Corp., Taejeon(Korea)

    2001-02-28

    Preliminary artificial recharge groundwater intake method using bank filtering had been conducted in Okgog-Ri of Youngsan-River to evaluate the possibility of substitution of surface water intake method in the area. In order to investigate the characteristics of bank filtered groundwater, we examined the hydrogeological properties of alluvium and water quality of stream and groundwater. It is observed that nitrate in stream water from synthetic fertilizer and poultry manure is almost consumed during bank filtering in this area. This implies that denitrification of organic carbon and the oxidation of pyrite present in the alluvium aquifer. Groundwater samples from bank filtering show high Mn concentration. This high Mn concentration may be resulted from decreasing redox potential due to denitrification and increasing mobility due to redox reaction of Mn-oxide. In the study area, there is a typical tendency that Al concentrations of water samples decrease according to increasing pH. This tendency is interpreted as forming of amorphous Al(OH){sub 3} precipitates by reducing the Al{sup 3+} solubilities. It is revealed that the bank filtered groundwater in the area is not edible because color, turbidity, heterotrophic bacteria, coliform and Mn of the groundwater exceed the guideline of drinking water. Even though the bank filtered groundwater without treatment does not satisfy the guideline of drinking water, the groundwater shows a good water quality compared with stream water. So, the water treatment method using bank filtered groundwater can be more economical and efficient than the treatment using direct intake of stream water in the aspect of water quality. (author). 15 refs., 2 tabs., 7 figs.

  20. Sorption and desorption behaviors of diuron in soils amended with charcoal.

    Science.gov (United States)

    Yu, Xiang-Yang; Ying, Guang-Guo; Kookana, Rai S

    2006-11-01

    Charcoal derived from the partial combustion of vegetation is ubiquitous in soils and sediments and can potentially sequester organic contaminants. To examine the role of charcoal in the sorption and desorption behaviors of diuron pesticide in soil, synthetic charcoals were produced through carbonization of red gum (Eucalyptus spp.) wood chips at 450 and 850 degrees C (referred to as charcoals BC450 and BC850, respectively, in this paper). Pore size distribution analyses revealed that BC850 contained mainly micropores (pores approximately 0.49 nm mean width), whereas BC450 was essentially not a microporous material. Short-term equilibration (diuron in a soil amended with various amounts of charcoals of both types. The sorption coefficients, isotherm nonlinearity, and apparent sorption-desorption hysteresis markedly increased with increasing content of charcoal in the soil, more prominently in the case of BC850, presumably due to the presence of micropores and its relatively higher specific surface area. The degree of apparent sorption-desorption hystersis (hysteresis index) showed a good correlation with the micropore volume of the charcoal-amended soils. This study indicates that the presence of small amounts of charcoal produced at high temperatures (e.g., interior of wood logs during a fire) in soil can have a marked effect on the release behavior of organic compounds. Mechanisms of this apparent hysteretic behavior need to be further investigated.

  1. Off-gas filter system of the SNR-300

    International Nuclear Information System (INIS)

    Boehm, L.; Jordan, S.; Schikarski, W.

    1975-01-01

    The Reventing-Exventing-System of the German Liquid Metal Fast Breeder Prototype SNR-300 is described. After an accident with major damage to the core the ventilation valves are quickly closed. At the same time the blower of the reventing system evacuates the reventing gap up to a pressure difference of 2 mbar between the containment and the outer atmosphere. This pressure difference prevents a leakage from the containment to the outside. The revented gas is recirculated into the outer-containment. Leaks from the atmosphere and possibly from the inner containment into the reventing gap increase the pressure in the outer-containment. Therefore depending on the pressure build-up which is determined by the course of the accident, it is necessary to exvent the containment after several days. The exvented gas is filtered by a filter combination consisting of pre-filters, charcoal-filters and HEPA-filters. Because accidental sodium fires produce high concentrations of sodium oxide-aerosols this filter system must resist chemical aggressive aerosols. (U.S.)

  2. Constructed wetland using corncob charcoal substrate: pollutants removal and intensification.

    Science.gov (United States)

    Liu, Mao; Li, Boyuan; Xue, Yingwen; Wang, Hongyu; Yang, Kai

    2017-09-01

    To investigate the feasibility of using corncob charcoal substrate in constructed wetlands, four laboratory-scale vertical flow constructed wetlands (VFCWs) were built. Effluent pollutant (chemical oxygen demand (COD), NH 4 + -N, total phosphorus (TP)) concentrations during the experiment were determined to reveal pollutant removal mechanisms and efficiencies at different stages. In the stable stage, a VFCW using clay ceramisite substrate under aeration attained higher COD (95.1%), and NH 4 + -N (95.1%) removal efficiencies than a VFCW using corncob charcoal substrate (91.5% COD, 91.3% NH 4 + -N) under aeration, but lower TP removal efficiency (clay ceramisite 32.0% and corncob charcoal 40.0%). The VFCW with raw corncob substrate showed stronger COD emissions (maximum concentration 3,108 mg/L) than the corncob charcoal substrate (COD was lower than influent). The VFCW using corncob charcoal substrate performed much better than the VFCW using clay ceramisite substrate under aeration when the C/N ratio was low (C/N = 1.5, TN removal efficiency 36.89%, 4.1% respectively). These results suggest that corncob charcoal is a potential substrate in VFCWs under aeration with a unique self -supplying carbon source property in the denitrification process.

  3. Charcoal kiln sites, associated landscape attributes and historic forest conditions: DTM-based investigations in Hesse (Germany

    Directory of Open Access Journals (Sweden)

    Marcus Schmidt

    2016-03-01

    Full Text Available Background An examination of the distribution of ancient charcoal kiln sites in the forest landscape seems to be worthwhile, since general trends in the selection of suitable kiln site locations in the past might become obvious. In this way forest landscape elements with a more intense usage by charcoal burning can be identified. By doing this, we can expect to gain information on the former condition and tree species composition of woodland. Investigations on the spatial distribution of charcoal kiln sites in relation to landscape attributes are sparse, however, probably due to the high on-site mapping effort. The outstanding suitability of LiDAR-derived digital terrain models (DTMs for the detection of charcoal kiln sites has been recently proved. Hence, DTM-based surveys of charcoal kiln sites represent a promising attempt to fill this research gap. Methods Based on DTM-based surveys, we analyzed the spatial distribution of charcoal kiln sites in two forest landscapes in the German federal state of Hesse: Reinhardswald and Kellerwald-Edersee National Park. In doing so, we considered the landscape attibutes "tree species composition", “water supply status”, “nutrient supply status”, “soil complex classes”, “altitude”, “exposition”, and “inclination”. Results We found that charcoal kiln sites were established preferably on hillside locations that provided optimal growing and regeneration conditions for European beech (Fagus sylvatica due to their acidic brown soils and sufficient water supply. These results are in line with instructions for the selection of appropriate kiln site locations, found in literature from the 18th to the 19th century. Conclusions We conclude that there were well-stocked, beech-dominated deciduous forest stands in northern Hesse before 1800, particularly at poorly accessible hillside locations. These large stocks of beech wood were utilized by the governments of the different Hessian territories

  4. Production of charcoal from woods and bamboo in a small natural draft carbonizer

    Energy Technology Data Exchange (ETDEWEB)

    Tippayawong, Nakorn; Saengow, Nakarin; Chaiya, Ekarin

    2010-07-01

    There is a strong domestic market for charcoal in Thailand and many developing countries. Charcoal is usually made from biomass materials in small scale, simple kilns. Traditional charcoal making kilns adopts a process that is very inefficient, and damaging to the environment. In this work, an alternative charcoal reactor based on natural draft, pyrolysis gas burning concept was proposed and demonstrated. Tests with longan woods and bamboo showed that good quality charcoal can be produced in shorter time with lower pollution emissions, compared with traditional kilns. The proposed carbonizer proved to be suitable for small scale, charcoal production in rural area.

  5. Assessment of household charcoal consumption in urban areas: the ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... respondents used charcoal as their main source of energy for cooking followed by gas (16.9%). ... sources of energy in order to reduce pressure on natural forests for the supply of charcoal.

  6. The efficiency of Whatman Type ACG/B filter papers for methyl iodine retention in air

    International Nuclear Information System (INIS)

    Davis, R.E.; Williams, J.M.E.

    1965-11-01

    Experiments are described in which charcoal impregnated glass fibre filter papers Type ACG/B were exposed to methyl iodide vapour and the penetration determined for iodide loadings ranging from 2 x 10 - 7 to 2x10 - 1 μg/cm 2 of filter area. Air was subsequently passed through the filters, and at intervals the amount of methyl iodide remaining on them was determined. Penetrations during loading varied from 30% to 80%, but after 10 minutes elution all filters retained less than 5% of the methyl iodide originally present. (author)

  7. Point-of-use water purification using clay pot water filters and copper ...

    African Journals Online (AJOL)

    All other critical parameters such as total hardness, turbidity, electrical conductivity and ions in the filtered water were also within acceptable levels for drinking water quality. The filtration rate of the pot was also measured as a function of grain size of the sawdust and height of the water column in it. The filtration rate was ...

  8. Physico-chemical characteristics and market potential of sawdust charcoal briquette

    Energy Technology Data Exchange (ETDEWEB)

    Akowuah, Joseph O.; Kemausuor, Francis [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Agricultural Engineering; Mitchual, Stephen J. [Univ. of Education, Winneba, Kumasi (Ghana). Dept. of Design and Technology Education

    2012-11-01

    In the absence of the widespread distribution of modern cooking fuels in developing countries, efforts are being made to utilise biomass residues which abound in most of these countries. This is intended to replace portions of firewood and charcoal and thereby reduce the cutting down of forests for fuel purposes. Briquettes from agro-residues have therefore been promoted as a better replacement to firewood and charcoals for heating, cooking and other industrial applications in both urban and rural communities. This study sought to assess the physico-chemical properties of charcoal briquettes produced in Ghana and also establish demand for and willingness of potential users to substitute charcoal and firewood with a charcoal briquette. A laboratory experiment was conducted to determine the physicochemical characteristics of the briquettes. This was done prior to the distribution of the briquette to potential users to collaborate their views or otherwise on the handling and burning characteristics of the charcoal briquette. A survey was undertaken a week later using questionnaires to access the willingness of the potential users to use the briquettes. Sixty respondents were purposively selected from households and the hospitality industry for the survey. Results of the physico-chemical assessment of the briquettes were as follows: length (75 to 120 mm), moisture content (5.7% dry basis), density (1.1 g/cm{sup 3}), ash content (2.6%), fixed carbon (20.7%), volatile matter (71%) and calorific value (4,820 kcal/kg). Responses from the survey indicated that the briquette is easy to ignite, has a long burning time and has good heat output. Respondents also observed that the briquettes did not give off sparks and had less smoke and ash content as compared to the regular charcoal they often used. Finally, 93% of the respondents indicated their willingness to use the briquettes if the price was comparable to charcoal. (orig.)

  9. Some Investigations of the Reaction of Activated Charcoal with Fluorine and Uranium Hexafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Del Cul, G.D.; Fiedor, J.N.; Simmons, D.W.; Toth, L.M.; Trowbridge, L.D.; Williams

    1998-09-01

    The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory has been shut down since 1969, when the fuel salt was drained from the core into two Hastelloy N drain tanks at the reactor site. Over time, fluorine (F{sub 2}) and uranium hexafluoride (UF{sub 6}) moved from the salt through the gas piping to a charcoal bed, where they reacted with the activated charcoal. Some of the immediate concerns related to the migration of F{sub 2} and UF{sub 6} to the charcoal bed were the possibility of explosive reactions between the charcoal and F{sub 2}, the existence of conditions that could induce a criticality accident, and the removal and recovery of the fissile uranium from the charcoal. This report addresses the reactions and reactivity of species produced by the reaction of fluorine and activated charcoal and between charcoal and F{sub 2}-UF{sub 6} gas mixtures in order to support remediation of the MSRE auxiliary charcoal bed (ACB) and the recovery of the fissile uranium. The chemical identity, stoichiometry, thermochemistry, and potential for explosive decomposition of the primary reaction product, fluorinated charcoal, was determined.

  10. Some Investigations of the Reaction of Activated Charcoal with Fluorine and Uranium Hexafluoride

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Fiedor, J.N.; Simmons, D.W.; Toth, L.M.; Trowbridge, L.D.; Williams

    1998-01-01

    The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory has been shut down since 1969, when the fuel salt was drained from the core into two Hastelloy N drain tanks at the reactor site. Over time, fluorine (F 2 ) and uranium hexafluoride (UF 6 ) moved from the salt through the gas piping to a charcoal bed, where they reacted with the activated charcoal. Some of the immediate concerns related to the migration of F 2 and UF 6 to the charcoal bed were the possibility of explosive reactions between the charcoal and F 2 , the existence of conditions that could induce a criticality accident, and the removal and recovery of the fissile uranium from the charcoal. This report addresses the reactions and reactivity of species produced by the reaction of fluorine and activated charcoal and between charcoal and F 2 -UF 6 gas mixtures in order to support remediation of the MSRE auxiliary charcoal bed (ACB) and the recovery of the fissile uranium. The chemical identity, stoichiometry, thermochemistry, and potential for explosive decomposition of the primary reaction product, fluorinated charcoal, was determined

  11. Evaluating the sustainability of ceramic filters for point-of-use drinking water treatment.

    Science.gov (United States)

    Ren, Dianjun; Colosi, Lisa M; Smith, James A

    2013-10-01

    This study evaluates the social, economic, and environmental sustainability of ceramic filters impregnated with silver nanoparticles for point-of-use (POU) drinking water treatment in developing countries. The functional unit for this analysis was the amount of water consumed by a typical household over ten years (37,960 L), as delivered by either the POU technology or a centralized water treatment and distribution system. Results indicate that the ceramic filters are 3-6 times more cost-effective than the centralized water system for reduction of waterborne diarrheal illness among the general population and children under five. The ceramic filters also exhibit better environmental performance for four of five evaluated life cycle impacts: energy use, water use, global warming potential, and particulate matter emissions (PM10). For smog formation potential, the centralized system is preferable to the ceramic filter POU technology. This convergence of social, economic, and environmental criteria offers clear indication that the ceramic filter POU technology is a more sustainable choice for drinking water treatment in developing countries than the centralized treatment systems that have been widely adopted in industrialized countries.

  12. Turbidity and microbes removal from water using an electrochemical filter

    International Nuclear Information System (INIS)

    Venkateswaran, G.; Gokhale, B.K.; Belapurkar, A.D.; Kumbhar, A.G.; Balaji, V.

    2004-01-01

    An in-house designed and fabricated Electrochemical fibrous graphite filter (ECF) was used to remove turbidity and microbes. The filter was found to be effective in removing sub micron size indium turbidity from RAPS-1 moderator water, iron turbidity from Active Process Cooling Water (APCW) of Kaiga Generating Station and microbial reduction from process cooling water RAPS-2. Unlike conventional turbidity removal by addition of coagulants and biocide chemical additions for purification, ECF is a clean way to remove the turbidity without contaminating the system and is best suited for close loop systems

  13. Charcoal production and environmental degradation

    International Nuclear Information System (INIS)

    Hosier, R.H.

    1993-01-01

    This paper examines the environmental impacts of continued tree harvesting for charcoal production to supply the urban areas in Tanzania. Woodlands appear to recover relatively well following harvesting for charcoal production. Selective harvesting, where the high quality, low cost fuel production species and specimens are culled first from a piece of land, serves to maintain the viability of the woodlands resource while providing charcoal. This recovery period can be prolonged through any number of human induced activities, such as heavy grazing, multiple burns and extended cultivation periods. At the same time, post-harvest management techniques, such as coppice management, sprout protection and fertilization, can also improve the ability of woodlands to recover following harvesting. The environmental history of a given area determines why certain areas continue to be strong suppliers of woodfuel while others are not. For example, Shinyanga started from a low productivity base and has been degraded by successive waves of tree harvesting compounded by heavy grazing pressure. It is this multiple complex of pressures over a long period of time on land which is intrinsically of low productivity, and not the harvesting of woodlands for fuels, which has led to the environmental degradation in these areas. (author)

  14. The pH-dependent adsorption of tributyltin to charcoals and soot

    International Nuclear Information System (INIS)

    Fang Liping; Borggaard, Ole K.; Marcussen, Helle; Holm, Peter E.; Bruun Hansen, Hans Christian

    2010-01-01

    Widespread use of tributyltin (TBT) poses a serious environmental problem. Adsorption by black carbon (BC) may strongly affect its behavior. The adsorption of TBT to well characterized soot and two charcoals with specific surface area in the range of 62-111 m 2 g -1 have been investigated with main focus on pH effects. The charcoals but not soot possess acidic functional groups. TBT adsorption reaches maximum at pH 6-7 for charcoals, and at pH > 6 for soot. Soot has between 1.5 and 15 times higher adsorption density (0.09-1.77 μmol m -2 ) than charcoals, but charcoals show up to 17 times higher sorption affinities than soot. TBT adsorption is successfully described by a new pH-dependent dual Langmuir model considering electrostatic and hydrophobic adsorption, and pH effects on TBT speciation and BC surface charge. It is inferred that strong sorption of the TBTOH species to BC may affect TBT toxicity. - Tributyltin adsorption to black carbon increases at increasing pH but charcoal exhibits electrostatic and hydrophobic adsorption, whereas soot only adsorbs hydrophobically.

  15. Evaluation of usher wood and karkadeh stem for charcoal in Sudan

    Energy Technology Data Exchange (ETDEWEB)

    Khristova, P. (Khartoum Univ. (Sudan)); Vergnet, L. (CTFT, 94 - Nogent s/Marne (France). Energie Div.)

    1993-01-01

    Two unusual biomass materials Hibiscus sabdariffa var. sabdariffa (karkadeh) stem and Calotropis procera (usher) wood were investigated in the laboratory as potential raw materials for charcoal making in Sudan. The materials were characterised physically and chemically and despite the low density and high bark-to-wood ratio by volume, good yields and quality of charcoal were predicted. The carbonization trials with a laboratory retort at conditions close to those of field metal kiln gave very good charcoal yields (35% for karkadeh and 38% for usher) with high energy transformation (58% and 62%, respectively). The karkadeh charcoal, except for a somewhat high ash content, was good for domestic uses (79% fixed carbon and 30.3 MJ kg[sup -1] heat value). The usher charcoal was better with respect to fixed carbon (86.5%) and gross heat value (32.4 MJ kg[sup -1]). Both charcoals were of low density (140-160 kg m[sup -3]) and further assessment of their economic suitability should be carried out under field conditions. The carbonization by-products were also collected and characterized by means of gas chromatography. (author)

  16. Behavior of gasketless deep bed charcoal filters for radioiodine removal in LWR power plants

    International Nuclear Information System (INIS)

    Wilhelm, J.G.; Deuber, H.; Furrer, J.; Gerlach, K.

    1981-01-01

    The removal efficiency of radioiodine filters can be affected by mechanical leakage, aging and poisoning, desorption of radioiodine originally removed by the activated carbon and also by the occurrence of penetrating iodine compounds. To provide high decontamination factors only the gasketless deep bed filter type seems to be appropriate. The experience gathered and the data given in this paper are based on the surveillance testing of radioiodine filters in all German nuclear power plants and on laboratory research work which has been done over years to evaluate the operating behavior of deep bed radioiodine filters and to prove their reliability

  17. Stratigraphic charcoal analysis on petrographic thin sections: Application to fire history in northwestern Minnesota

    Science.gov (United States)

    Clark, James S.

    1988-07-01

    Results of stratigraphic charcoal analysis from thin sections of varved lake sediments have been compared with fire scars on red pine trees in northwestern Minnesota to determine if charcoal data accurately reflect fire regimes. Pollen and opaque-spherule analyses were completed from a short core to confirm that laminations were annual over the last 350 yr. A good correspondence was found between fossil-charcoal and fire-scar data. Individual fires could be identified as specific peaks in the charcoal curves, and times of reduced fire frequency were reflected in the charcoal data. Charcoal was absent during the fire-suppression era from 1920 A.D. to the present. Distinct charcoal maxima from 1864 to 1920 occurred at times of fire within the lake catchment. Fire was less frequent during the 19th century, and charcoal was substantially less abundant. Fire was frequent from 1760 to 1815, and charcoal was abundant continuously. Fire scars and fossil charcoal indicate that fires did not occur during 1730-1750 and 1670-1700. Several fires occurred from 1640 to 1670 and 1700 to 1730. Charcoal counted from pollen preparations in the area generally do not show this changing fire regime. Simulated "sampling" of the thin-section data in a fashion comparable to pollen-slide methods suggests that sampling alone is not sufficient to account for differences between the two methods. Integrating annual charcoal values in this fashion still produced much higher resolution than the pollen-slide method, and the postfire suppression decline of charcoal characteristic of my method (but not of pollen slides) is still evident. Consideration of the differences in size of fragments counted by the two methods is necessary to explain charcoal representation in lake sediments.

  18. A post-implementation evaluation of ceramic water filters distributed to tsunami-affected communities in Sri Lanka.

    Science.gov (United States)

    Casanova, Lisa M; Walters, Adam; Naghawatte, Ajith; Sobsey, Mark D

    2012-06-01

    Sri Lanka was devastated by the 2004 Indian Ocean tsunami. During recovery, the Red Cross distributed approximately 12,000 free ceramic water filters. This cross-sectional study was an independent post-implementation assessment of 452 households that received filters, to determine the proportion still using filters, household characteristics associated with use, and quality of household drinking water. The proportion of continued users was high (76%). The most common household water sources were taps or shallow wells. The majority (82%) of users used filtered water for drinking only. Mean filter flow rate was 1.12 L/hr (0.80 L/hr for households with taps and 0.71 for those with wells). Water quality varied by source; households using tap water had source water of high microbial quality. Filters improved water quality, reducing Escherichia coli for households (largely well users) with high levels in their source water. Households were satisfied with filters and are potentially long-term users. To promote sustained use, recovery filter distribution efforts should try to identify households at greatest long-term risk, particularly those who have not moved to safer water sources during recovery. They should be joined with long-term commitment to building supply chains and local production capacity to ensure safe water access.

  19. Identification and simulation for steam generator water level based on Kalman Filter

    International Nuclear Information System (INIS)

    Deng Chen; Zhang Qinshun

    2008-01-01

    In order to effectively control the water level of the steam generator (SG), this paper has set about the state-observer theory in modern control and put forward a method to detect the 'false water level' based on Kalman Filter. Kalman Filter is a efficient tool to estimate state-variable by measured value including noise. For heavy measurement noise of steam flow, constructing a 'false water level' observer by Kalman Filter could availably obtain state variable of 'false water level'. The simulation computing for the dynamics characteristic of nuclear SG water level process under several typically running power was implemented by employing the simulation model. The result shows that the simulation model accurately identifies the 'false water level' produced in the reverse thermal-dynamic effects of nuclear SG water level process. The simulation model can realize the precise analysis of dynamics characteristic for the nuclear SG water level process. It can provide a kind of new ideas for the 'false water level' detecting of SG. (authors)

  20. Characterization of the relationship between ceramic pot filter water production and turbidity in source water.

    Science.gov (United States)

    Salvinelli, Carlo; Elmore, A Curt; Reidmeyer, Mary R; Drake, K David; Ahmad, Khaldoun I

    2016-11-01

    Ceramic pot filters represent a common and effective household water treatment technology in developing countries, but factors impacting water production rate are not well-known. Turbidity of source water may be principal indicator in characterizing the filter's lifetime in terms of water production capacity. A flow rate study was conducted by creating four controlled scenarios with different turbidities, and influent and effluent water samples were tested for total suspended solids and particle size distribution. A relationship between average flow rate and turbidity was identified with a negative linear trend of 50 mLh -1 /NTU. Also, a positive linear relationship was found between the initial flow rate of the filters and average flow rate calculated over the 23 day life of the experiment. Therefore, it was possible to establish a method to estimate the average flow rate given the initial flow rate and the turbidity in the influent water source, and to back calculate the maximum average turbidity that would need to be maintained in order to achieve a specific average flow rate. However, long-term investigations should be conducted to assess how these relationships change over the expected CPF lifetime. CPFs rejected fine suspended particles (below 75 μm), especially particles with diameters between 0.375 μm and 10 μm. The results confirmed that ceramic pot filters are able to effectively reduce turbidity, but pretreatment of influent water should be performed to avoid premature failure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Transport of nanoparticles with dispersant through biofilm coated drinking water sand filters.

    Science.gov (United States)

    Li, Zhen; Aly Hassan, Ashraf; Sahle-Demessie, Endalkachew; Sorial, George A

    2013-11-01

    This article characterizes, experimentally and theoretically, the transport and retention of engineered nanoparticles (NP) through sand filters at drinking water treatment plants (DWTPs) under realistic conditions. The transport of four commonly used NPs (ZnO, CeO2, TiO2, and Ag, with bare surfaces and coating agents) through filter beds filled with sands from either acid washed and calcined, freshly acquired filter media, and used filter media from active filter media, were investigated. The study was conducted using water obtained upstream of the sand filter at DWTP. The results have shown that capping agents have a determinant importance in the colloidal stability and transport of NPs through the different filter media. The presence of the biofilm in used filter media increased adsorption of NPs but its effects in retaining capped NPs was less significant. The data was used to build a mathematical model based on the advection-dispersion equation. The model was used to simulate the performance of a scale-up sand filter and the effects on filtration cycle of traditional sand filtration system used in DWTPs. Published by Elsevier Ltd.

  2. The ageing and poisoning of charcoal used in nuclear plant air cleaning systems

    International Nuclear Information System (INIS)

    Broadbent, D.

    1986-01-01

    Ageing and Poisoning are terms which are used to describe the in-service deterioration or weathering of activated charcoals used to remove radioiodine from air cleaning systems. This paper describes an investigation aimed at identifying the relative importance of the two effects and at comparing the resistance to weathering of potassium iodide (KI) impregnated charcoal with triethylene diamine (TEDA) impregnated charcoal. Some preliminary results are given on the rates of oxidative ageing of charcoals as a function of temperature and relative humidity. The effect on charcoal performance of organic poisons has been examined by measuring the index of performance (k-factor) of charcoals preloaded with a range of organic solvents. Finally the combined effect of oxidative ageing and organic poisoning has been measured using realistic operating conditions of temperature and relative humidity. The in-service deterioration of charcoal in air cleaning systems can be accounted for by a combination of oxidative ageing and poisoning by airborne organic solvents. (author)

  3. The analysis of charcoal in peat and organic sediments

    Directory of Open Access Journals (Sweden)

    S.D. Mooney

    2011-03-01

    Full Text Available The abundance of charcoal in sediments has been interpreted as a ‘fire history’ at about 1,000 sites across the globe. This research effort reflects the importance of fire in many ecosystems, and the diversity of processes that can be affected by fire in many landscapes. Fire appears to reflect climate through the intermediary of vegetation, but arguably responds faster than vegetation to climate change or variability. Fire and humans are also intricately linked, meaning that the activity of fire in the past is also of relevance to prehistoric and historic human transitions and to contemporary natural resource management. This article describes recent advances in the analysis of charcoal in peat and other sediments, and offers a simple method for the quantification of larger charcoal fragments (>100 µm and a standardised method for the quantification of microscopic charcoal on pollen slides. We also comment on the challenges that the discipline still faces.

  4. The pH-dependent adsorption of tributyltin to charcoals and soot

    Energy Technology Data Exchange (ETDEWEB)

    Fang Liping, E-mail: fang@life.ku.d [Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark); Borggaard, Ole K.; Marcussen, Helle; Holm, Peter E.; Bruun Hansen, Hans Christian [Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark)

    2010-12-15

    Widespread use of tributyltin (TBT) poses a serious environmental problem. Adsorption by black carbon (BC) may strongly affect its behavior. The adsorption of TBT to well characterized soot and two charcoals with specific surface area in the range of 62-111 m{sup 2} g{sup -1} have been investigated with main focus on pH effects. The charcoals but not soot possess acidic functional groups. TBT adsorption reaches maximum at pH 6-7 for charcoals, and at pH > 6 for soot. Soot has between 1.5 and 15 times higher adsorption density (0.09-1.77 {mu}mol m{sup -2}) than charcoals, but charcoals show up to 17 times higher sorption affinities than soot. TBT adsorption is successfully described by a new pH-dependent dual Langmuir model considering electrostatic and hydrophobic adsorption, and pH effects on TBT speciation and BC surface charge. It is inferred that strong sorption of the TBTOH species to BC may affect TBT toxicity. - Tributyltin adsorption to black carbon increases at increasing pH but charcoal exhibits electrostatic and hydrophobic adsorption, whereas soot only adsorbs hydrophobically.

  5. Evaluation of activated charcoal for dynamic adsorption of krypton and xenon

    International Nuclear Information System (INIS)

    Khan, A.A.; Deshingkar, D.S.; Ramarathinam, K.; Kishore, A.G.

    1975-01-01

    From the standpoint of radiation safety, the release of radioactive krypton and xenon from power reactors should be kept as low as practicable. The decay of shortlived isotopes of krypton and xenon by adsorptive delay on activated charcoal has shown promising results for this purpose. The delay provided by activated charcoal is proportional to the dynamic adsorption coefficients of these gases which are characteristic of the adsorbent. These coefficients were determined for krypton and xenon on indigenous gas-adsorbing activated charcoal at different moisture contents of carrier air stream and activated charcoal, concentrations of krypton around ambient temperatures, to find its suitability for designing adsorber columns. (author)

  6. Soil particles reworking evidences by AMS 14C dating of charcoal

    International Nuclear Information System (INIS)

    Carcaillet, C.

    2001-01-01

    Soil charcoal dating is a time proxy for soil pedogenesis. I test the stratification hypothesis by AMS 14 C dating of charcoal fragments from soil profiles between 1700 and 1900 m with respect to altitude within the Alps. The charcoal fragments are around 1 mm in size. There is no age/depth relationship for charcoal particles of the size millimeter. The results are discussed in light of the role of soil fauna, up-rooting and colluvial processes. Although biotic pedoturbation is poorly described in mountain and sub-alpine elevation, I hypothesize that this process is very active and plays a major role on the soil functioning. (author)

  7. Use of wood anatomy to identify poisonous plants: Charcoal of Spirostachys africana

    Directory of Open Access Journals (Sweden)

    Sandra J. Lennox

    2015-03-01

    Full Text Available Spirostachys africana Sond. (tamboti/tambotie is a woodland tree that is often found near water. It has a poisonous and purgative latex. The archaeological site of Sibudu, a rock shelter in KwaZulu-Natal, has evidence, from well-preserved charcoal and seeds, of past environments and wood use from approximately 77–38 thousand years ago (ka. As their uses and environmental indicators are different, it is critical to confidently distinguish among the three anatomically similar woods of the Euphorbiaceae: Spirostachys africana, Sclerocroton integerrimus and Shirakiopsis elliptica. A detailed anatomical study of reference and archaeological charcoal shows that xylem vessel width increases proportionally as vessel frequency decreases, from Spirostachys africana, Sclerocroton integerrimus to Shirakiopsis elliptica. Crystals of calcium oxalate are present in ray cells of Spirostachys africana, whereas silica bodies are present in ray cells of Sclerocroton integerrimus and Shirakiopsis elliptica. Using these features, the presence of Spirostachys africana was confirmed amongst hearth charcoal of the Spotty Camel layer, with an age of approximately 58 ka and of the Mottled Deposit occupational layer, with an age of approximately 49 ka. The presence of this charcoal, collected from ancient fireplaces or sieved from surrounding sediments, implies that people at Sibudu understood and used this poisonous tree to their advantage. We are encouraged in this view by the presence of many Cryptocarya woodii leaves found on the surface of 77-ka sedge bedding at Sibudu (Wadley L et al., Science. 2011;334:1388–1391. Cryptocarya woodii has insecticidal and larvacidal properties and members of the Laurel family are well known for their medicinal properties.

  8. Microbial degradation of pesticides in rapid sand filters for treatment of drinking water

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen; Albrechtsen, Hans-Jørgen

    2014-01-01

    In Denmark drinking water supply is based on groundwater which is treated by aeration followed by filtration in rapid sand filters. Unfortunately pesticide contamination of the groundwater poses a threat to the water supply, since the simple treatment process at the waterworks is not considered...... to remove pesticides from the water phase and pesticides are detected in 24% of the active Danish waterworks wells. This study aimed at investigating the potential of microbial pesticide removal in rapid sand filters for drinking water treatment. Removal of the pesticides MCPP, bentazone, glyphosate...... and the degradation compound p-nitrophenol was investigated in the rapid sand filters at Islevbro and Sjælsø waterworks plant I and II. Microcosms were set up with sand from rapid sand filters, water and an initial pesticide concentration of 0.03-0.38 μg/L. In all the investigated waterworks the concentration...

  9. Soil charcoal from the plains to tundra in the Colorado Front Range

    Science.gov (United States)

    Sanford, R. L.; Licata, C.

    2010-12-01

    Throughout the forests of the central Rockies, soil charcoal from Holocene wildfires has been produced in response to wildland natural fire regimes. The extent and spatial distribution of soil charcoal production is poorly documented in this region, especially with regard to forests and shrublands at different elevations. Soil charcoal is a super-passive C pool derived from woody biomass that can be sequestered for millennia in forest soils. Recent research indicates that soil charcoal may promote enhanced soil fertility. Additionally, soil charcoal is an often overlooked component of soil C mass and flux. We hypothesize that differences in forest and shrubland fire regimes over the millennia have resulted in different soil charcoal amounts. Geospatial data were used to locate random sample plots in foothills shrublands (Cercocarpus montanus), and four forest types; ponderosa pine (Pinus ponderosa), Douglas-fir (Pseudotsuga menziesii), lodgepole pine (Pinus contorta) and spruce-fir (Picea engelmannii - Abies lasiocarpa). Sample plots were stratified to occur with the mid 200 m elevation band of each vegetation type with east aspect, and 10-30% slope. Soils were sampled widely at 0-10 cm depth and analyzed for total soil C and soil charcoal C via chemical digestion and dry combustion techniques. Overall, soil charcoal is four times more abundant in spruce-fir forests than in foothills shrublands (1.9 +/- 0.92 Mg C/ha versus 0.54 +/- 0.44 Mg C/ha). Soil charcoal is also abundant in lodgepole pine and ponderosa pine soils (1.4 +/- 1.02 Mg C/ha and 1.4 +/- 0.54 Mg C/ha respectively) but is less plentiful in Douglas-fir soils (1.0 +/- 0.67). Spruce-fir forests have the most above ground biomass, slower decomposition rates and a less frequent mean fire return interval than the other four forests, hence it makes sense that high per-fire rates of charcoal production would occur in the spruce-fir zone, given large amounts of surface fuels at the time of fire. In contrast

  10. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans.

    Science.gov (United States)

    Jaffé, Rudolf; Ding, Yan; Niggemann, Jutta; Vähätalo, Anssi V; Stubbins, Aron; Spencer, Robert G M; Campbell, John; Dittmar, Thorsten

    2013-04-19

    Global biomass burning generates 40 million to 250 million tons of charcoal every year, part of which is preserved for millennia in soils and sediments. We have quantified dissolution products of charcoal in a wide range of rivers worldwide and show that globally, a major portion of the annual charcoal production is lost from soils via dissolution and subsequent transport to the ocean. The global flux of soluble charcoal accounts to 26.5 ± 1.8 million tons per year, which is ~10% of the global riverine flux of dissolved organic carbon (DOC). We suggest that the mobilization of charcoal and DOC out of soils is mechanistically coupled. This study closes a major gap in the global charcoal budget and provides critical information in the context of geoengineering.

  11. Forestry policy and charcoal production in Senegal

    International Nuclear Information System (INIS)

    Ribot, J.C.

    1993-01-01

    This paper examines the historical, social and political-economic dynamics of environmental policy implementation in Senegal's charcoal market. It explores the relationship between urban demand for charcoal and its rural environmental consequences. It focuses on the ways in which the social and political-economic relations within the market and between the market and state shape production, exchange, regulation, and ultimately the social and econological consequences of charcoal production and use. The article begins by characterizing the patterns of woodfuel supply and use in Senegal and by recounting the historical perception and response to environmental problems associated with the woodfuel trade. It describes the social and economic organization of production and exchange, followed by an analysis of policy implementation. It also shows that where social relations dominate production and exchange, environmental policy making and implementation will be an iterative process. Sustainable resource management is not implemented once and for ever, but will come and go. (author)

  12. Evaluation of the MF/UF Performance for the Reuse of Sand Filter Backwash Water from Drinking Water Treatment Plants

    Directory of Open Access Journals (Sweden)

    Neda Shirzadi

    2015-05-01

    Full Text Available The aim of this study was to investigate the application of micro-filtration and ultra-filtration membrane systems in order to improve the physical and microbial quality and the reuse of backwash water from the sand filter units in water treatment plants. The backwash water from filters makes up for 3 to 5 percent of the total water treated, which is disposed in most WTPs. However, the treatment and reuse of the backwash water is more admissible from technical and economic viewpoints, especially in view of the present water scarcity. For the purposes of this study, use was made of membrane modules of micro- and ultra-filters on a pilot scale. The micro-filter employed consisted of a polypropylene membrane module with a porosity of 1 micron in size and a fiberglass module with a porosity of 5 microns. The ultra-filter was made of PVC hollow fiber with a molecular weight of 100,000 Dalton. In order to feed the two pilots, backwash water from a sand filter was collected from one of the WTPs in Tehran. After samples were taken from the backwash water, the physical and microbial removal efficiency was periodically evaluated based on the standard method and the micro-filtration, ultra-filtration, and combined MF/UF processes were compared with respect to their performance. The results indicate that the combined MF/UF process is able to decrease turbidity, MPN, COD, TSS, and Fe with efficiency values of 99.9, 100, 61.5, 99.9 and 98.8 percent, respectively. Overall, the findings confirmed the technical capabilities of this method for the recovery and reuse of the effluent produced in the backwashing mechanism of sand filters in WTPs.

  13. Basis for and practical methods of controlling painting activities at the Sequoyah Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, R.R. [Tennessee Valley Authority, Chattanooga, TN (United States)

    1997-08-01

    Sequoyah Nuclear Plant (SQN) follows the guidance presented in Regulatory Guide (R.G.) 1.52, {open_quotes}Design, Testing, and Maintenance Criteria for Atmospheric Cleanup System Air Filtration and Adsorption System Units of Light-Water-Cooled Nuclear Power Plants{close_quotes} in protecting its charcoal filter trains from the effects of painting and other chemical releases. SQN, as well as other nuclear facilities around the country, have the problem of how to address the issue of protection of Engineered Safety Feature (ESF) filter systems from degradation due to communication with airborne hydrocarbons (i.e., primarily paints and solvents). R.G. 1.52 (and a similar statement from R.G. 1.140) states in part,{open_quotes}Testing should be performed ... following painting, fire, or chemical release in any ventilation zone communicating with the system...,{close_quotes} and requires that a test be performed upon any kind of painting or chemical release. This is considered overly restrictive if the activity is minor and in a location remote from the charcoal filters. Charcoal filters used in air cleaning systems are required to filter out radioactive iodine from an airstream before its release from the plant to the environment. Charcoal filters will age with time because of their ability to adsorb many different types of material. This aging affects the charcoal by lowering its iodine retention efficiency, and therefore the charcoal needs to be protected from the effects of chemicals such as paint fumes. 14 refs., 3 tabs.

  14. Measurement of Water Quality Parameters for Before and After Maintenance Service in Water Filter System

    Directory of Open Access Journals (Sweden)

    Shaharudin Nuraida

    2017-01-01

    Full Text Available An adequate supply of safe drinking water is one of major ways to obtain healthy life. Water filter system is one way to improve the water quality. However, to maintain the performance of the system, it need to undergo the maintenance service. This study evaluate the requirement of maintenance service in water filter system. Water quality was measured before and after maintenance service. Parameters measured were pH, turbidity, residual chlorine, nitrate and heavy metals and these parameters were compared with National Drinking Water Quality Standards. Collection of data were involved three housing areas in Johor. The quality of drinking water from water filter system were analysed using pH meter, turbidity meter, DR6000 and Inductively Coupled Plasma-Mass Spectrometer. pH value was increased from 16.4% for before maintenance services to 30.7% for after maintenance service. Increment of removal percentage for turbidity, residual chlorine and nitrate after maintenance were 21.5, 13.6 and 26.7, respectively. This result shows that maintenance service enhance the performance of the system. However, less significant of maintenance service for enhance the removal of heavy metals which the increment of removal percentage in range 0.3 to 9.8. Only aluminium shows percentage removal for after maintenance with 92.8% lower compared to before maintenance service with 95.5%.

  15. Durable superhydrophobic and superoleophilic filter paper for oil–water separation prepared by a colloidal deposition method

    International Nuclear Information System (INIS)

    Du, Chuan; Wang, Jiadao; Chen, Zhifu; Chen, Darong

    2014-01-01

    Graphical abstract: - Highlights: • A method for fabricating durable superhydrophobic filter paper was developed. • Oil–water separation efficiency exceeds 99% using the as-prepared filter paper. • The as-prepared filter paper has good recyclability and durability. • The method is easy, low cost and can be industrialized. - Abstract: A method for manufacturing durable superhydrophobic and superoleophilic filter paper for oil–water separation was developed via colloidal deposition. A porous film composed of PTFE nanoparticles was formed on filter paper, which was superhydrophobic with a water contact angle of 155.5° and superoleophilic with an oil contact angle of 0°. The obtained filter paper could separate a series of oil–water mixtures effectively with high separation efficiencies over 99%. Besides, the as-prepared filter paper kept stable superhydrophobicity and high separation efficiency even after 30 cycle times and could also work well under harsh environmental conditions like strong acidic or alkaline solutions, high temperature and ultraviolet irradiation. Compared with other approaches for fabricating oil–water materials, this approach is able to fabricate full-scale durable and practical oil–water materials easily and economically. The as-prepared filter paper is a promising candidate for oil–water separation

  16. Treatment of residual waters of slaughterhouses with filters

    International Nuclear Information System (INIS)

    Ortiz A, Jesus Mario

    1995-01-01

    For studying the anaerobic treatment of the residual waters coming from a slaughterhouse of bovine livestock, they were used a system of two filters in series and a third unique filter as witness. With values average of load organic volumetric and time of retention of 1.6 kg/(m 3 d) and 26 hours respectively, the efficiencies of removal of total DQO were similar in the unique filter and in the system in series, of the order of 64% on the average. Likewise, the retention and accumulation of biological solids in the channel were shown as the main road of removal of the DQO. The differentiation of the process achieved with the two filters in series allowed establishing that most of the accumulation happened in the primary filter, as long as the fundamental of the bioconversion in methane took place in the secondary filter of the system in series. The first relative level of methanegenization obtained could be explained by the limitations to the activity of the methanogenic biomass imposed by the low temperatures, although it could not discard a probable inhibition for the hydrolysis products of the accumulated fats

  17. Modeling Flow Rate to Estimate Hydraulic Conductivity in a Parabolic Ceramic Water Filter

    Directory of Open Access Journals (Sweden)

    Ileana Wald

    2012-01-01

    Full Text Available In this project we model volumetric flow rate through a parabolic ceramic water filter (CWF to determine how quickly it can process water while still improving its quality. The volumetric flow rate is dependent upon the pore size of the filter, the surface area, and the height of water in the filter (hydraulic head. We derive differential equations governing this flow from the conservation of mass principle and Darcy's Law and find the flow rate with respect to time. We then use methods of calculus to find optimal specifications for the filter. This work is related to the research conducted in Dr. James R. Mihelcic's Civil and Environmental Engineering Lab at USF.

  18. Facile Preparation of Nanostructured, Superhydrophobic Filter Paper for Efficient Water/Oil Separation.

    Directory of Open Access Journals (Sweden)

    Jianhua Wang

    Full Text Available In this paper, we present a facile and cost-effective method to obtain superhydrophobic filter paper and demonstrate its application for efficient water/oil separation. By coupling structurally distinct organosilane precursors (e.g., octadecyltrichlorosilane and methyltrichlorosilane to paper fibers under controlled reaction conditions, we have formulated a simple, inexpensive, and efficient protocol to achieve a desirable superhydrophobic and superoleophilic surface on conventional filter paper. The silanized superhydrophobic filter paper showed nanostructured morphology and demonstrated great separation efficiency (up to 99.4% for water/oil mixtures. The modified filter paper is stable in both aqueous solutions and organic solvents, and can be reused multiple times. The present study shows that our newly developed binary silanization is a promising method of modifying cellulose-based materials for practical applications, in particular the treatment of industrial waste water and ecosystem recovery.

  19. The protective role of ceramic filters against natural radioactivity of water

    International Nuclear Information System (INIS)

    Domanski, T.; Bakir, Y.Y.Y.; El-Zenki, S.; Bem, H.

    1992-01-01

    The paper presents results of measurements of the natural radioactivity of tap water where samples were taken in front of, and behind the ceramic filter commonly used in houses for the purification of tap water. Altogether, 289 samples were taken, processed and measured during 1985-1986 in Kuwait. Results reveal the fact that ceramic filters reduce substantially the natural radioactivity in water (the 'gross' alpha activity reduced by the factor 2.18 ± 18%; the 'gross' beta by 1.53 ± 1.6%. (author)

  20. Rapid spread of suicide by charcoal burning from 2007 to 2011 in Korea.

    Science.gov (United States)

    Lee, Ah-Rong; Ahn, Myung Hee; Lee, Tae Yeop; Park, Subin; Hong, Jin Pyo

    2014-11-30

    Despite rapid increase of suicide by charcoal burning within 5 years, little is known about the characteristics of charcoal burning suicide in Korea. This study aimed to examine the trends and risk factors in the spread of suicide using this method. We identified an association between media reporting of suicide by charcoal burning and its incidence. Data on suicide from 2007 to 2011 were obtained from the Korean National Statistical Office. Cross-correlation analysis was used. Increasing incidence of suicide by charcoal burning was correlated with higher education levels, male sex, and the latter half of the year. Victims of charcoal burning suicide were more likely to be young, male, single, highly educated, professional, urban-based, and to die between October and December. Internet reports of suicide via charcoal burning tended to precede the increased incidence of suicide using this method, but only during the early period of the suicide epidemic. Our findings suggest that one episode of heavy media coverage of a novel method, such as charcoal burning, is sufficient to increase the prevalence of suicide by that method even after media coverage decreases. These findings are expected to contribute to the prevention of increasing rates of suicide by charcoal burning. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Effect of charcoal amendment on adsorption, leaching and degradation of isoproturon in soils

    Science.gov (United States)

    Si, Youbin; Wang, Midao; Tian, Chao; Zhou, Jing; Zhou, Dongmei

    2011-04-01

    The effects of charcoal amendment on adsorption, leaching and degradation of the herbicide isoproturon in soils were studied under laboratory conditions. The adsorption data all fitted well with the Freundlich empirical equation. It was found that the adsorption of isoproturon in soils increased with the rate of charcoal amended (correlation coefficient r = 0.957 **, P isoproturon in leachate decreased with the increase of the amount of charcoal addition to soil column, while the retention of isoproturon in soils increased with an increase in the charcoal content of soil samples. Biodegradation was still the most significant mechanism for isoproturon dissipation from soil. Charcoal amendment greatly reduced the biodegradation of isoproturon in soils. The half-lives of isoproturon degradation ( DT50) in soils greatly extended when the rate of added charcoal inceased from 0 to 50 g kg - 1 (for Paddy soil, DT50 values increased from 54.6 to 71.4 days; for Alfisol, DT50 from 16.0 to 136 days; and for Vertisol, DT50 from 15.2 to 107 days). The degradation rate of isoproturon in soils was significantly negatively correlated with the amount of added charcoal. This research suggests that charcoal amendment may be an effective management practice for reducing pesticide leaching and enhancing its persistence in soils.

  2. Ranking filter methods for concentrating pathogens in lake water

    Science.gov (United States)

    Accurately comparing filtration methods for concentrating waterborne pathogens is difficult because of two important water matrix effects on recovery measurements, the effect on PCR quantification and the effect on filter performance. Regarding the first effect, we show how to create a control water...

  3. Assessment of crushed-recycled glass as filter media for drinking water treatment

    International Nuclear Information System (INIS)

    Rutledge, S.O.; Fahie, C.; Gagnon, G.A.

    2002-01-01

    The objective of this project was to evaluate the performance of a pressure filter utilizing crushed glass as the filter media. The performance of the crushed glass filter was compared to that of a sand filter. The research was conducted in Orangedale, Nova Scotia, which is a small community of with a population of approximately 500. Orangedale is located on the south shore of Bras d'Or Lakes and feeds into Miller Pond, which serves as the source the of drinking water. The Orangedale treatment plant produces an average daily flow of 35 m3/d (6.4-gpm). The treatment plant consists of coagulation (sodium aluminate and polyaluminum chloride), flocculation, dissolved air flotation (DAF), disinfection with sodium hypochlorite and dual-media filtration with anthracite and sand. In general, the particle removal capabilities of the crushed glass filter were slightly poorer than that of a sand filter, as quantified in a field application in the community of Orangedale, Nova Scotia. It was found that the crushed glass used in this project had a higher angularity and slightly higher uniformity coefficient. During initial start-up the performance of the crushed glass filter was more variable and appeared to improve as the glass began to wear. After six-months of use the crushed glass filter was able to produce a very consistent filter effluent that was only slightly greater than the silica sand filter. After six-months of use, the sand filter achieved a 1.6 log-removal of particles with diameters greater than 2 μm; whereas the crushed glass filter achieved a 1.4 log removal for the similar particle size range. The observed removal performance was particularly encouraging given that the sand used had properties that were consistent with the standards set by the American Water Works Association. The crushed glass filter media was initially sieved and washed, but had no other pre-treatment preparation. Thus the application of crushed glass shows considerable promise as filter

  4. High-level water purifying technology. Kodo josui shori gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Tsugura, H; Tsukiashi, K [Meidensha Corp., Tokyo (Japan)

    1993-07-01

    Research and development have been carried out on a high-level water purifying system using ozone and activated charcoals to supply drinking water free of carcinogenic matters and odors. This system comprises a system to utilize ozone by using silent discharge and oxygen enriching device, and a living organism/activated charcoal treatment system. The latter system utilizes living organisms deposited on activated charcoal surfaces to remove polluting substances including ammonia. The treatment experimenting equipment comprises an ozone generating system, an ozone treating column, an activated charcoal treating column, an ozone/activated charcoal control device, and a water amount and quality measuring system. An experiment was carried out using an experimental plant with a capacity of 20 m[sup 3]/day on water taken from the sedimentation process at an actual water purifying plant. As a result, trihalomethane formation potential was removed at about 40% in the ozone treatment, and at 70% in the whole treatment combining the ozone and living organism/activated charcoal treatments. For parameterization of palatability of water, a method is being studied that utilizes nuclear magnetic resonance to investigate degrees of water cluster. The method is regarded promising. 1 ref., 4 figs.

  5. Do low-cost ceramic water filters improve water security in rural South Africa?

    Science.gov (United States)

    Lange, Jens; Materne, Tineke; Grüner, Jörg

    2016-10-01

    This study examined the performance of a low-cost ceramic candle filter system (CCFS) for point of use (POU) drinking water treatment in the village of Hobeni, Eastern Cape Province, South Africa. CCFSs were distributed in Hobeni and a survey was carried out among their users. The performance of 51 CCFSs was evaluated by dip slides and related to human factors. Already after two-thirds of their specified lifetime, none of the distributed CCFSs produced water without distinct contamination, and more than one-third even deteriorated in hygienic water quality. Besides the water source (springs were preferable compared to river or rain water), a high water throughput was the dominant reason for poor CCFS performance. A stepwise laboratory test documented the negative effects of repeated loading and ambient field temperatures. These findings suggest that not every CCFS type per se guarantees improved drinking water security and that the efficiency of low-cost systems should continuously be monitored. For this purpose, dip slides were found to be a cost-efficient alternative to standard laboratory tests. They consistently underestimated microbial counts but can be used by laypersons and hence by the users themselves to assess critical contamination of their filter systems.

  6. Results from measurements of natural radiation in and from filters in some water treatment plants; Maetningar av naturlig radioaktivitet i och fraan filter vid naagra vattenverk

    Energy Technology Data Exchange (ETDEWEB)

    Oestergren, Inger; Aakerblom, Gustav [Swedish Radiation Protection Authority, Stockholm (Sweden); Ek, Britt-Marie [Geological Survey of Sweden, Uppsala (Sweden)

    2005-07-01

    Large water treatment plants often process surface water where the concentration of natural radionuclides is so low that treatment of the water produces no radiation dose or waste problem. The level of natural radionuclides in ground water is higher than in surface water and often so high that mitigation is needed to clean the water. Specific treatment of the filters and filter masses is needed in some cases because the natural radionuclides precipitate in the filters. The radiation doses received by personnel at the ground water treatment plants are often low because of the relatively short time the workers spend inside the treatment plant. The results presented here indicate no need for extra action to insure radiation protection with regard to radioactivity inside the treatment plant or during processing of the filters and waste. A comprehensive discussion of the problems associated with the concentrating of natural radionuclides in water filters is presented in this report.

  7. Ashes to ashes, charcoal to dust: micromorphological evidence for ash-induced disintegration of charcoal in Early Neolithic (LBK) soil features in Elsloo (The Netherlands)

    NARCIS (Netherlands)

    Huisman, D.J.; Braadbaart, F.; Wijk, I.M. van; Os, B.J.H. van

    2012-01-01

    Charcoal and other forms of charred organic material e an important part of the archaeological record e consist of benzenoids. Such components are unstable in basic or alkaline conditions. Since ashes are alkaline, this means that archaeological charcoal may have been disintegrated and lost if

  8. Processes of microbial pesticide degradation in rapid sand filters for treatment of drinking water

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen; Albrechtsen, Hans-Jørgen

    Aerobic rapid sand filters for treatment of groundwater at waterworks were investigated for the ability to remove pesticides. The potential, kinetics and mechanisms of microbial pesticide removal was investigated in microcosms consisting of filter sand, treated water and pesticides in initial...... concentrations of 0.04-2.4 μg/L. The pesticides were removed from the water in microcosms with filter sand from all three investigated sand filters. Within the experimental periode of six to 13 days, 65-85% of the bentazone, 86-93% of the glyphosate, 97-99% of the p-nitrophenol was removed from the water phase...

  9. Preventing diarrhoea with household ceramic water filters: assessment of a pilot project in Bolivia.

    Science.gov (United States)

    Clasen, Thomas F; Brown, Joseph; Collin, Simon M

    2006-06-01

    In an attempt to prevent diarrhoea in a rural community in central Bolivia, an international non-governmental organization implemented a pilot project to improve drinking water quality using gravity-fed, household-based, ceramic water filters. We assessed the performance of the filters by conducting a five-month randomized controlled trial among all 60 households in the pilot community. Water filters eliminated thermotolerant (faecal) coliforms from almost all intervention households and significantly reduced turbidity, thereby improving water aesthetics. Most importantly, the filters were associated with a 45.3% reduction in prevalence of diarrhoea among the study population (p = 0.02). After adjustment for household clustering and repeated episodes in individuals and controlling for age and baseline diarrhoea, prevalence of diarrhoea among the intervention group was 51% lower than controls, though the protective effect was only borderline significant (OR 0.49, 95% CI: 0.24, 1.01; p = 0.05). A follow-up survey conducted approximately 9 months after deployment of the filters found 67% being used regularly, 13% being used intermittently, and 21% not in use. Water samples from all regularly used filters were free of thermotolerant coliforms.

  10. Biocontrol of charcoal-rot of sorghum by actinomycetes isolated from ...

    African Journals Online (AJOL)

    use

    2011-12-12

    Dec 12, 2011 ... Streptomyces but with different species in BLAST analysis. This study indicates that the selected actinomycetes have the potential for PGP and control of charcoal-rot disease in sorghum. Key words: Antagonistic actinomycetes, biocontrol, charcoal-rot, Macrophomina phaseolina. INTRODUCTION.

  11. Performance test of filtering system for controlling the turbidity of secondary cooling water in HANARO

    International Nuclear Information System (INIS)

    Park, Y. C.; Woo, J. S.; Jo, Y. K.; Loo, J. S.; Lim, N. Y.

    2001-01-01

    There is about 80 m 3 /h loss of the secondary cooling water by evaporation, windage and blowdown during the operation of HANARO, 30 MW research reactor. When the secondary cooling water is treated by high Ca-hardness treatment program for minimizing the blowdown loss, only the trubidity exceeds the limit. By adding filtering system it was confirned, through the relation of turbidity and filtering rate of secondary cooling water, that the turbidity is reduced below the limit (5 deg.) by 2 % of filtering rate without blowdown. And it was verified, through the field performace test of filtering system under normal operation condition, that the circulation pumps get proper capacity and that filter units reduce the turbidity below the limit. Therefore, the secondary cooling water can be treated by the high Ca-hardness program and filter system without blowdown

  12. Local drinking water filters reduce diarrheal disease in Cambodia: a randomized, controlled trial of the ceramic water purifier.

    Science.gov (United States)

    Brown, Joe; Sobsey, Mark D; Loomis, Dana

    2008-09-01

    A randomized, controlled intervention trial of two household-scale drinking water filters was conducted in a rural village in Cambodia. After collecting four weeks of baseline data on household water quality, diarrheal disease, and other data related to water use and handling practices, households were randomly assigned to one of three groups of 60 households: those receiving a ceramic water purifier (CWP), those receiving a second filter employing an iron-rich ceramic (CWP-Fe), and a control group receiving no intervention. Households were followed for 18 weeks post-baseline with biweekly follow-up. Households using either filter reported significantly less diarrheal disease during the study compared with a control group of households without filters as indicated by longitudinal prevalence ratios CWP: 0.51 (95% confidence interval [CI]: 0.41-0.63); CWP-Fe: 0.58 (95% CI: 0.47-0.71), an effect that was observed in all age groups and both sexes after controlling for clustering within households and within individuals over time.

  13. Takano bamboo industry: The style material for the residence where bamboo charcoal was used; Takano chikuko: chikutan wo tsukatta jutakuyo choshitsuzai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-30

    Takano bamboo industry sold the style material 'Takebayashi, Saga' for the residence where bamboo charcoal was used. It is said that it can get equal effect in the amount of about 1 in three minutes even if it is compared with charcoal by the thing which it made use of the nature of the bamboo charcoal which it begins to vomit if water is inhaled and it is low for if humidity is pure. A back with the bamboo charcoal 1kg is laid 6 per 1m. It is laid under the floor of the house residence and the condominium, and it can be used easily in the errand, the existent residence as well. It was the space when the air humidity was 40-90%, and indoor humidity showed the numerical value, which faced though there was a change and which became stable in 60-70% as a result of actually doing an experiment in the house residence condominium. (translated by NEDO)

  14. Compressed air as a source of inhaled oxidants in intensive care units.

    Science.gov (United States)

    Thibeault, D W; Rezaiekhaligh, M H; Ekekezie, I; Truog, W E

    1999-01-01

    Exhaled gas from mechanically ventilated preterm infants was found to have similar oxidant concentrations, regardless of lung disease, leading to the hypothesis that wall outlet gases were an oxidant source. Oxidants in compressed room air and oxygen from wall outlets were assessed in three hospitals. Samples were collected by flowing wall outlet gas through a heated humidifier and an ice-packed condenser. Nitric oxide (NO) was measured in intensive care room air and in compressed air with and without a charcoal filter using a Sievers NOA280 nitric oxide analyzer (Boulder, CO). Oxidants were measured by spectrophotometry and expressed as nMol equivalents of H2O2/mL. The quantity of oxidant was also expressed as amount of Vitamin C (nMol/mL) added until the oxidant was nondetectable. This quantity of Vitamin C was also expressed in Trolox Equivalent Antioxidant Capacity (TEAC) units (mMol/L). Free and total chlorine were measured with a Chlorine Photometer. Oxidants were not found in compressed oxygen and were only found in compressed air when the compression method used tap water. At a compressed room air gas flow of 1.5 L/min, the total volume of condensate was 20.2 +/- 1 mL/hr. The oxidant concentration was 1.52 +/- 0.09 nMol/mL equivalents of H2O2/mL of sample and 30.8 +/- 1.2 nMol/hr; 17.9% of that found in tap water. Oxidant reduction required 2.05 +/-0.12 nMol/mL vitamin C, (1.78 +/- 0.1 x 10(-3) TEAC units). Free and total chlorine in tap water were 0.3 +/- 0.02 mg/mL and 2.9 +/- 0.002 mg/mL, respectively. Outlet gas contained 0.4 +/- 0.06 mg/mL and 0.07 + 0.01 mg/mL total and free chlorine, respectively; both 14% of tap water. When a charcoal filter was installed in the hospital with oxidants in compressed air, oxidants were completely removed. Nursery room air contained 12.4 +/- 0.5 ppb NO; compressed wall air without a charcoal filter, 8.1 +/- 0.1 ppb and compressed air with a charcoal filter 12.5 +/- 0.5 ppb. A charcoal filter does not remove NO. (Table

  15. Stratification of nitrification activity in rapid sand filters for drinking water treatment

    DEFF Research Database (Denmark)

    Tatari, Karolina; Smets, Barth F.; Musovic, Sanin

    2013-01-01

    Rapid sand filters used in groundwater treatment remove ammonium, iron and manganese from the water. Ammonium is removed biologically by nitrifying microorganisms attached on the sand surface. Nitrification kinetics and activity is strongly affected by filter design and operation, which are the key...... and maximum nitrification capacity are derived and used to quantify nitrification activity. Nitrification activity was concentrated at the top 10 cm of filter depth, and maximum nitrification capacity was 7 g NH4+-N/ m3 sand/h compared with 0.8-0.4 g NH4+-N/ m3 sand/h in the middle and bottom layers. A water...... of this study is to investigate nitrification activity in a rapid sand filter, with focus on its homogeneity and how it relates to filter performance. Two groundwater treatment plants in Denmark were selected for the experimental investigations. Plant 1 operates a single line of pre and after filters and has...

  16. Effect of humidity on thoron adsorption in activated charcoal bed

    International Nuclear Information System (INIS)

    Sudeep Kumara, K.; Karunakara, N.; Yashodhara, I.; Sapra, B.K.; Sahoo, B.K.; Gaware, J.J.; Kanse, S.D.; Mayya, Y.S.

    2014-01-01

    Activated charcoal is a well-known adsorber of 222 Rn and 220 Rn gases. This property can be effectively used for remediation of these gases in the workplaces of uranium and thorium processing facilities. However, the adsorption on charcoal is sensitive to variation in temperature and humidity. The successful designing and characterization of adsorption systems require an adequate understanding of these sensitivities. The study has been carried out towards this end, to delineate the effect of relative humidity on the efficacy of 220 Rn mitigations in a charcoal bed. Air carrying 220 Rn from a Pylon source was passed through a column filled with coconut shell-based granular activated charcoal. The relative humidity of the air was controlled, and the transmission characteristics were examined at relative humidity varying from 45% to 60%. The mitigation factor was found to decrease significantly with an increase of humidity in the air. (author)

  17. Dataset on the cost estimation for spent filter backwash water (SFBW treatment

    Directory of Open Access Journals (Sweden)

    Afshin Ebrahimi

    2017-12-01

    Full Text Available The dataset presented in this article are related to the research article entitled “Hybrid coagulation-UF processes for spent filter backwash water treatment: a comparison studies for PAFCl and FeCl3 as a pre-treatment” (Ebrahimi et al., 2017 [1]. This article reports the cost estimation for treating produced spent filter backwash water (SFBW during water treatment in Isfahan- Iran by various methods including primary sedimentation, coagulation & flocculation, second clarification, ultra filtration (UF and recirculation of settled SFBW to water treatment plant (WTP entrance. Coagulation conducted by PAFCl and FeCl3 as pre polymerized and traditional coagulants. Cost estimation showed that contrary to expectations, the recirculation of settled SFBW to WTP entrance is more expensive than other method and it costs about $ 37,814,817.6. Versus the cheapest option related to separate primary sedimentation, coagulation & flocculation in WTP. This option cost about $ 4,757,200 and $ 950,213 when FeCl3 and PAFCl used as coagulant, respectively. Keywords: Spent filter backwash water, Water treatment, Coat estimation, Water reuse

  18. Charcoal production technologies: Environmental and socio-economic impacts with Brazilian examples

    International Nuclear Information System (INIS)

    Paula Fernandes, M. de.

    1991-01-01

    The indirect use of solar energy through photosynthesis, wood and charcoal requires reforestation with fast-growing species to supply continuously charcoal for industrial and domestic needs. This concept, sometimes referred to as an energy farms, is the conversion of sunshine into food, fibre, furniture, paper and pulp products. It the charcoal production uses primitive, low-yield technologies, it endangers the economic viability of the wood energy source and causes negative environmental impacts. 19 refs, 4 figs, 3 tabs

  19. Experimental investigation of an optical water filter for Photovoltaic/Thermal conversion module

    International Nuclear Information System (INIS)

    Al-Shohani, Wisam A.M.; Sabouri, Aydin; Al-Dadah, Raya; Mahmoud, Saad; Butt, Haider

    2016-01-01

    Highlights: • New design of Photovoltaic/Thermal system is proposed. • Using the optical water layer as a spectrum splitter is tested experimentally. • Optical rig is developed to study the optical performance of water layer. • Energy conversion under different water layer thicknesses is determined. - Abstract: This paper presents an experimental investigation of a novel optical water filter used for Photovoltaic/Thermal and Concentrating Photovoltaic/Thermal modules. A water layer is used as a spectrum splitter of solar radiation placed above the photovoltaic cells and as a thermal working fluid simultaneously. The water layer absorbs the ultraviolet and part of infrared, which are not used by the photovoltaic, but transmits the visible and some of infrared to the solar cell surface which are used by the photovoltaic. In this work, the transmittance of the optical water filter was measured for different water thicknesses (1, 2, 3, 4, and 5 cm) and radiation wavelength ranging from 0.35 to 1 μm. Results show that there is a significant effect of the water layer thickness on the transmittance of the spectra where the transmittance decreases as the water layer increases. Moreover, energy conversion rate of photovoltaic with the optical water filter at different water layer thicknesses has been determined.

  20. On-site test of filters in nuclear facilities using radioactive sodium chloride (24Na)-aerosol and methyl iodide (131I)

    International Nuclear Information System (INIS)

    Heidam, N.Z.; Hansen, K.A.; Fenger, J.; Flyger, H.; Hedemann Jensen, P.

    1986-02-01

    The nuclar facilities at Risoe National Laboratory are equipped with high-efficiency filters to protect the environment from routine or accidental releases of radioactive material. The filter efficiency must be tested regularly and a method for on-site control is described. It is based on injection of a radioactive sample in the filter duct, followed by sampling before and after the filter. HEPA-filters are tested with a 24 NaCl-aerosol and charcoal filters with 131 ICH 3 . Normally samples of 1 mCi are used. Penetrations (1 - efficiency) can be determined with a relative uncertainty of 10-15%. (author)

  1. Briquetting of Charcoal from Sesame Stalk

    Directory of Open Access Journals (Sweden)

    Alula Gebresas

    2015-01-01

    Full Text Available Due to the easy availability of wood in Ethiopia, wood charcoal has been the main source fuel for cooking. This study has been started on sesame stalk biomass briquetting which can potentially solve the health problems and shortage of energy, which consequently can solve deforestation. The result of the data collection shows that, using 30% conversion efficiency of carbonizer, it was found that more than 150,000 tonnes of charcoal can be produced from the available sesame stalk in Humera, a place in north Ethiopia. The clay binders that are mixed with carbonized sesame stalk were found to have 69 liquid limits; thus, the optimum amount of clay that should be added as a binder is 15%, which results in better burning and heat holding capacity and better heating time. The developed briquetting machine has a capacity of producing 60 Kg/hr but the carbonization kiln can only carbonize 3.1 Kg in 2 : 40 hours; hence, it is a bottle neck for the briquette production. The hydrocarbon laboratory analysis showed that the calorific value of the charcoal produced with 15% clay content is 4647.75 Cal/gm and decreases as clay ratio increases and is found to be sufficient energy content for cooking.

  2. Point-of-use water purification using clay pot water filters and copper ...

    African Journals Online (AJOL)

    2011-11-24

    Nov 24, 2011 ... clay pot water filters (CPWFs) were fabricated using terracotta clay and sawdust. The sawdust was .... developed by educational initiatives and non-governmental .... est filtration rate, it had the disadvantage of not being able to.

  3. Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil.

    Directory of Open Access Journals (Sweden)

    Irene Criscuoli

    Full Text Available The addition of pyrogenic carbon (C in the soil is considered a potential strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil physico-chemical properties by studying a series of abandoned charcoal hearths in the Eastern Alps of Italy established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of pyrogenic C present in the hearths (23.3±4.7 kg C m(-2 with the estimated amount of charcoal that was left on the soil after the carbonization (29.3±5.1 kg C m(-2. After taking into account uncertainty associated with parameters' estimation, we were able to conclude that 80±21% of the C originally added to the soil via charcoal can still be found there and that charcoal has an overall Mean Residence Time of 650±139 years, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an overall change in the physical properties (hydrophobicity and bulk density of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. We caution, however, that our site-specific results should not be generalized without further study.

  4. Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil.

    Science.gov (United States)

    Criscuoli, Irene; Alberti, Giorgio; Baronti, Silvia; Favilli, Filippo; Martinez, Cristina; Calzolari, Costanza; Pusceddu, Emanuela; Rumpel, Cornelia; Viola, Roberto; Miglietta, Franco

    2014-01-01

    The addition of pyrogenic carbon (C) in the soil is considered a potential strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil physico-chemical properties by studying a series of abandoned charcoal hearths in the Eastern Alps of Italy established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of pyrogenic C present in the hearths (23.3±4.7 kg C m(-2)) with the estimated amount of charcoal that was left on the soil after the carbonization (29.3±5.1 kg C m(-2)). After taking into account uncertainty associated with parameters' estimation, we were able to conclude that 80±21% of the C originally added to the soil via charcoal can still be found there and that charcoal has an overall Mean Residence Time of 650±139 years, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an overall change in the physical properties (hydrophobicity and bulk density) of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. We caution, however, that our site-specific results should not be generalized without further study.

  5. A New Method for the Deposition of Metallic Silver on Porous Ceramic Water Filters

    Directory of Open Access Journals (Sweden)

    Kathryn N. Jackson

    2018-01-01

    Full Text Available A new method of silver application to a porous ceramic water filter used for point-of-use water treatment is developed. We evaluated filter performance for filters manufactured by the conventional method of painting an aqueous suspension of silver nanoparticles onto the filter and filters manufactured with a new method that applies silver nitrate to the clay-water-sawdust mixture prior to pressing and firing the filter. Filters were evaluated using miscible displacement flow-through experiments with pulse and continuous-feed injections of E. coli. Flow characteristics were quantified by tracer experiments using [3H]H2O. Experiments using pulse injections of E. coli showed similar performance in breakthrough curves between the two application methods. Long-term challenge tests performed with a continuous feed of E. coli and growth medium resulted in similar log removal rates, but the removal rate by nanosilver filters decreased over time. Silver nitrate filters provided consistent removal with lower silver levels in the effluent and effective bacterial disinfection. Results from continued use with synthetic groundwater over 4 weeks, with a pulse injection of E. coli at 2 and 4 weeks, support similar conclusions—nanosilver filters perform better initially, but after 4 weeks of use, nanosilver filters suffer larger decreases in performance. Results show that including silver nitrate in the mixing step may effectively reduce costs, improve silver retention in the filter, increase effective lifespan, and maintain effective pathogen removal while also eliminating the risk of exposure to inhalation of silver nanoparticles by workers in developing-world filter production facilities.

  6. The role of activated charcoal in plant tissue culture.

    Science.gov (United States)

    Thomas, T Dennis

    2008-01-01

    Activated charcoal has a very fine network of pores with large inner surface area on which many substances can be adsorbed. Activated charcoal is often used in tissue culture to improve cell growth and development. It plays a critical role in micropropagation, orchid seed germination, somatic embryogenesis, anther culture, synthetic seed production, protoplast culture, rooting, stem elongation, bulb formation etc. The promotary effects of AC on morphogenesis may be mainly due to its irreversible adsorption of inhibitory compounds in the culture medium and substancially decreasing the toxic metabolites, phenolic exudation and brown exudate accumulation. In addition to this activated charcoal is involved in a number of stimulatory and inhibitory activities including the release of substances naturally present in AC which promote growth, alteration and darkening of culture media, and adsorption of vitamins, metal ions and plant growth regulators, including abscisic acid and gaseous ethylene. The effect of AC on growth regulator uptake is still unclear but some workers believe that AC may gradually release certain adsorbed products, such as nutrients and growth regulators which become available to plants. This review focuses on the various roles of activated charcoal in plant tissue culture and the recent developments in this area.

  7. Effects of Carbonization Parameters of Moso-Bamboo-Based Porous Charcoal on Capturing Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Pei-Hsing Huang

    2014-01-01

    Full Text Available This study experimentally analyzed the carbon dioxide adsorption capacity of Moso-bamboo- (Phyllostachys edulis- based porous charcoal. The porous charcoal was prepared at various carbonization temperatures and ground into powders with 60, 100, and 170 meshes, respectively. In order to understand the adsorption characteristics of porous charcoal, its fundamental properties, namely, charcoal yield, ash content, pH value, Brunauer-Emmett-Teller (BET surface area, iodine number, pore volume, and powder size, were analyzed. The results show that when the carbonization temperature was increased, the charcoal yield decreased and the pH value increased. Moreover, the bamboo carbonized at a temperature of 1000°C for 2 h had the highest iodine sorption value and BET surface area. In the experiments, charcoal powders prepared at various carbonization temperatures were used to adsorb 1.854% CO2 for 120 h. The results show that the bamboo charcoal carbonized at 1000°C and ground with a 170 mesh had the best adsorption capacity, significantly decreasing the CO2 concentration to 0.836%. At room temperature and atmospheric pressure, the Moso-bamboo-based porous charcoal exhibited much better CO2 adsorption capacity compared to that of commercially available 350-mesh activated carbon.

  8. COMBUSTION OF BIOMASS AND CHARCOAL MADE FROM BABASSU NUTSHELL

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2017-03-01

    Full Text Available In recent years, studies have examined the use of lignocellulosic wastes for energy generation. However, there is a lack of information on the combustibility of the residual biomass, especially the bark and charcoal of babassu nut. In this study, thermogravimetric analysis (TGA, differential thermal analysis (DTA and differential scanning calorimetry (DSC were used to achieve the following objectives: to evaluate the combustion of the residual biomass from the babassu nut; to evaluate the combustion of charcoal produced from this biomass, considering different final carbonization temperatures; and to determine the effect of the final carbonization temperature on the thermal stability of charcoal and on its performance in combustion. Thermal analyses were performed in synthetic air. In order to evaluate the characteristics of charcoal combustion and fresh biomass, the ignition temperature (Ti, the burnout temperature (Tf, characteristic combustion index (S, ignition index (Di, time corresponding to the maximum combustion rate (tp, and ignition time (tig were considered. The combustion of the babassu nutshell occurred in three phases and it was observed that this lignocellulosic material is suitable for the direct generation of heat. The increase in the final carbonization temperature caused an increase in the ignition temperature, as well as in the burnout temperature, the ignition time and the time corresponding to the maximum combustion rate. The results indicate that the increase in the carbonization temperature causes a decrease in combustion reactivity and, consequently, the charcoals produced at lower temperatures are easier to ignite and exhibit better performance in ignition.

  9. Inhalation Exposure to PM-Bound Polycyclic Aromatic Hydrocarbons Released from Barbecue Grills Powered by Gas, Lump Charcoal, and Charcoal Briquettes.

    Science.gov (United States)

    Badyda, Artur J; Widziewicz, Kamila; Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Jureczko, Izabela

    2018-01-01

    The present study seeks to define the possible cancer risk arising from the inhalation exposure to particle (PM)-bound polycyclic aromatic hydrocarbons (PAHs) present in barbecue emission gases and to compare the risk depending on the type of fuel used for grill powering. Three types of fuel were compared: liquid propane gas, lump charcoal, and charcoal briquettes. PM 2.5 and PM 2.5-100 were collected during grilling. Subsequently, 16 PAHs congeners were extracted from the PM samples and measured quantitatively using gas chromatography. The content of PM-bound PAHs was used to calculate PAHs deposition in the respiratory tract using the multiple path particle dosimetry model. Finally, a probabilistic risk model was developed to assess the incremental lifetime cancer risk (ILCR) faced by people exposed to PAHs. We found a distinctly greater PAHs formation in case of grills powered by charcoal briquettes. The summary concentration of PAHs (Σ16PAH) ranged from inhale barbecue particles for 5 h a day, 40 days a year exceeds the acceptable level set by the U.S. Environmental Protection Agency. We conclude that the type of heat source used for grilling influences the PM-bound PAHs formation. The greatest concentration of PAHs is generated when grilling over charcoal briquettes. Loading grills with food generates conspicuously more PAHs emissions. Traditional grilling poses cancer risk much above the acceptable limit, as opposed to much less risk involving gas powered grills.

  10. A New Electropositive Filter for Concentrating Enterovirus and Norovirus from Large Volumes of Water - MCEARD

    Science.gov (United States)

    The detection of enteric viruses in environmental water usually requires the concentration of viruses from large volumes of water. The 1MDS electropositive filter is commonly used for concentrating enteric viruses from water but unfortunately these filters are not cost-effective...

  11. Respiratory health effects of occupational exposure to charcoal dust in Namibia

    Science.gov (United States)

    Kgabi, Nnenesi

    2016-01-01

    Background Charcoal processing activities can increase the risk of adverse respiratory outcomes. Objective To determine dose–response relationships between occupational exposure to charcoal dust, respiratory symptoms and lung function among charcoal-processing workers in Namibia. Methods A cross-sectional study was conducted with 307 workers from charcoal factories in Namibia. All respondents completed interviewer-administered questionnaires. Spirometry was performed, ambient and respirable dust levels were assessed in different work sections. Multiple logistic regression analysis estimated the overall effect of charcoal dust exposure on respiratory outcomes, while linear regression estimated the exposure-related effect on lung function. Workers were stratified according to cumulative dust exposure category. Results Exposure to respirable charcoal dust levels was above occupational exposure limits in most sectors, with packing and weighing having the highest dust exposure levels (median 27.7 mg/m3, range: 0.2–33.0 for the 8-h time-weighted average). The high cumulative dust exposure category was significantly associated with usual cough (OR: 2.1; 95% CI: 1.1–4.0), usual phlegm (OR: 2.1; 95% CI: 1.1–4.1), episodes of phlegm and cough (OR: 2.8; 95% CI: 1.1–6.1), and shortness of breath. A non-statistically significant lower adjusted mean-predicted % FEV1 was observed (98.1% for male and 95.5% for female) among workers with greater exposure. Conclusions Charcoal dust levels exceeded the US OSHA recommended limit of 3.5 mg/m3 for carbon-black-containing material and study participants presented with exposure-related adverse respiratory outcomes in a dose–response manner. Our findings suggest that the Namibian Ministry of Labour introduce stronger enforcement strategies of existing national health and safety regulations within the industry. PMID:27687528

  12. Effectiveness of ceramic filters in capturing Giardia duodenalis cysts in experimentally contaminated water

    Directory of Open Access Journals (Sweden)

    Larissa Imaculada da Costa Sobrinho

    2016-04-01

    Full Text Available Giardia duodenalis is the main water-transmitted protozoan in developing countries. This study evaluated the effectiveness of ceramic filters in capturing G. duodenalis cysts and verified the porosity size needed to remove cysts from contaminated water. The study was conducted in the Laboratory of Parasitology at the University of Taubaté, where each filter unit was made by joining two Pet gallons, latex hose and a ceramic filter. Two porosity sizes were selected: 0.5-1.0 μm and 5-15 μm with or without activated carbon, and the assays were run in triplicate. Approximately 60 μL (53 cysts of G. duodenalis cysts were placed in 2 liters of distilled water. After the preparation of the contaminated water, this solution was run through the filter until the completely filtered. Afterwards, the filtrate was processed according to the methodology described by De Faria (2006, in order to concentrate parasitic elements. The results were statistically evaluated using ANOVA and Tukey tests, showing that the 0.5- 1,0 μm porosity filter candles (with and without activated carbon were able to retain 100% of cysts of G. duodenalis. This is a result significantly superior to the results obtained in the control group (p<0.05. On the other hand, for the candles with porosity of 5 15 μm, total retention occurred only in candles with activated carbon. Based upon our results, it can be concluded that, in candles with both porosity sizes with activated carbon, all filters showed a satisfactory efficacy for filtration of G. duodenalis cysts.

  13. Treatment of radon rich well water

    International Nuclear Information System (INIS)

    Mose, D.; Mushrush, G.; Chrosniak, C.

    1991-01-01

    Private wells supply potable water to about 25% of the homes in northern Virginia, and almost all water wells contain radon, a carcinogenic radionuclide derived form uranium in rocks and soil. The average Virginia well provides about 2,000-3,000 pCi/l of dissolved radon; the US Environmental Protection Agency has proposed that 300 pCi/l of should be the allowed maximum for public water supplies. To estimate the ability of activated charcoal to remove radon from private well water, a home supplied by a water well carrying at sign 4,000 pCi/l was studied. Following 1 year of water measurements, an in-line tank containing 1 cubic foot of activated charcoal was installed, and a subsequent 6 month interval of radon measurements on untreated and on treated water was conducted. Although removal rates of more than 90% have been reported, this study home showed a 60-70% radiation removal in the tank. A high percentage removal rate was reached in less than a month after installation, and was maintained for about 4 months, but the removal rate declined to about 50% by the end of the testing interval. Additional studies are being conducted to determine the effect of using different charcoal volumes, different charcoal types; also being studied is the gamma emission of the charcoal tank

  14. Microbial pesticide removal in rapid sand filters for drinking water treatment – Potential and kinetics

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen; Albrechtsen, Hans-Jørgen

    2014-01-01

    Filter sand samples, taken from aerobic rapid sand filters used for treating groundwater at three Danish waterworks, were investigated for their pesticide removal potential and to assess the kinetics of the removal process. Microcosms were set up with filter sand, treated water, and the pesticides...... or metabolites mecoprop (MCPP), bentazone, glyphosate and p-nitrophenol were applied in initial concentrations of 0.03–2.4 μg/L. In all the investigated waterworks the concentration of pesticides in the water decreased – MCPP decreased to 42–85%, bentazone to 15–35%, glyphosate to 7–14% and p-nitrophenol 1....../L) increased from 0.21%/g filter sand to 0.75%/g filter sand, when oxygen availability was increased from 0.28 mg O2/g filter sand to 1.09 mg O2/g filter sand. Bentazone was initially cleaved in the removal process. A metabolite, which contained the carbonyl group, was removed rapidly from the water phase...

  15. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans

    Science.gov (United States)

    Rudolf Jaffe; Yan Ding; Jutta Niggemann; Anssi V. Vahatalo; Aron Stubbins; Robert G. M. Spencer; John Campbell; Thorsten Dittmar

    2013-01-01

    Global biomass burning generates 40 million to 250 million tons of charcoal every year, part of which is preserved for millennia in soils and sediments. We have quantified dissolution products of charcoal in a wide range of rivers worldwide and show that globally, a major portion of the annual charcoal production is lost from soils via dissolution and subsequent...

  16. An Improved Cambridge Filter Pad Extraction Methodology to Obtain More Accurate Water and “Tar” Values: In Situ Cambridge Filter Pad Extraction Methodology

    Directory of Open Access Journals (Sweden)

    Ghosh David

    2014-07-01

    Full Text Available Previous investigations by others and internal investigations at Philip Morris International (PMI have shown that the standard trapping and extraction procedure used for conventional cigarettes, defined in the International Standard ISO 4387 (Cigarettes -- Determination of total and nicotine-free dry particulate matter using a routine analytical smoking machine, is not suitable for high-water content aerosols. Errors occur because of water losses during the opening of the Cambridge filter pad holder to remove the filter pad as well as during the manual handling of the filter pad, and because the commercially available filter pad holder, which is constructed out of plastic, may adsorb water. This results in inaccurate values for the water content, and erroneous and overestimated values for Nicotine Free Dry Particulate Matter (NFDPM. A modified 44 mm Cambridge filter pad holder and extraction equipment which supports in situ extraction methodology has been developed and tested. The principle of the in situ extraction methodology is to avoid any of the above mentioned water losses by extracting the loaded filter pad while kept in the Cambridge filter pad holder which is hermetically sealed by two caps. This is achieved by flushing the extraction solvent numerous times through the hermetically sealed Cambridge filter pad holder by means of an in situ extractor. The in situ methodology showed a significantly more complete water recovery, resulting in more accurate NFDPM values for high-water content aerosols compared to the standard ISO methodology. The work presented in this publication demonstrates that the in situ extraction methodology applies to a wider range of smoking products and smoking regimens, whereas the standard ISO methodology only applies to a limited range of smoking products and smoking regimens, e.g., conventional cigarettes smoked under ISO smoking regimen. In cases where a comparison of yields between the PMI HTP and

  17. Copper deficiency can limit nitrification in biological rapid sand filters for drinking water production

    DEFF Research Database (Denmark)

    Wagner, Florian Benedikt; Nielsen, Peter Borch; Boe-Hansen, Rasmus

    2016-01-01

    Incomplete nitrification in biological filters during drinking water treatment is problematic, as it compromises drinking water quality. Nitrification problems can be caused by a lack of nutrients for the nitrifying microorganisms. Since copper is an important element in one of the essential...... enzymes in nitrification, we investigated the effect of copper dosing on nitrification in different biological rapid sand filters treating groundwater. A lab-scale column assay with filter material from a water works demonstrated that addition of a trace metal mixture, including copper, increased ammonium...... to the bulk phase. Overall, copper dosing to poorly performing biological rapid sand filters increased ammonium removal rates significantly, achieving effluent concentrations of below 0.01 mg NH4-N L-1, and had a long-term effect on nitrification performance....

  18. Development of hydroponic system using agriculture waste. 1. Characteristics of rice husk charcoal as growth medium and vegetable growth; Suiko saibai ni okeru haikibutsu riyo gijutsu no kaihatsu. 1. Momigara kutan no baichi to shite no tokucho to yasai no seiiku

    Energy Technology Data Exchange (ETDEWEB)

    Terazoe, H; Nakaya, K; Okano, T [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1994-06-01

    Experimental researches were made on rice husk charcoals processed to be used as culture media for hydroponics. Rice husk charcoals with a size of 1 mm or larger retaining the original shape of the rice husk, and with a size of smaller than 1 mm were made for use in the experiment. In the culture media made of these rice husk charcoals, the charcoal with a particle size greater than 1 mm had more air portion than water portion at 6 cm above the water level, and the charcoal with a particle size smaller than 1 mm had poor air permeability. According to the result of immersing the rice husk charcoal in a culture solution, phosphoric acid ion and manganese in the solution decreased by about 35% and calcium by about 10% in the duration of 120 minutes, as a result of having been adsorbed into the rice husk charcoal. On the other hand, chloride ion increased by about 80% and potassium and iron by about 30%, because of having been dissolved out from the charcoal. In cultivating spinach, butterhead lettuce and radish in the rice husk charcoal culture media, the culture medium with charcoal smaller than 1 mm resulted in harvest reduced by about 75% in spinach, and about 10% in butterhead lettuce. 15 refs., 13 figs., 11 tabs.

  19. Charcoal anatomy of Brazilian species. I. Anacardiaceae.

    Science.gov (United States)

    Gonçalves, Thaís A P; Scheel-Ybert, Rita

    2016-01-01

    Anthracological studies are firmly advancing in the tropics during the last decades. The theoretical and methodological bases of the discipline are well established. Yet, there is a strong demand for comparative reference material, seeking for an improvement in the precision of taxonomic determination, both in palaeoecological and palaeoethnobotanical studies and to help preventing illegal charcoal production. This work presents descriptions of charcoal anatomy of eleven Anacardiaceae species from six genera native to Brazil (Anacardium occidentale, Anacardium parvifolium, Astronium graveolens, Astronium lecointei, Lithrea molleoides, Schinus terebenthifolius, Spondias mombin, Spondias purpurea, Spondias tuberosa, Tapirira guianensis, and Tapirira obtusa). They are characterized by diffuse-porous wood, vessels solitary and in multiples, tyloses and spiral thickenings sometimes present; simple perforation plates, alternate intervessel pits, rounded vessel-ray pits with much reduced borders to apparently simple; parenchyma paratracheal scanty to vasicentric; heterocellular rays, some with radial canals and crystals; septate fibres with simple pits. These results are quite similar to previous wood anatomical descriptions of the same species or genera. Yet, charcoal identification is more effective when unknown samples are compared to charred extant equivalents, instead of to wood slides.

  20. Charcoal anatomy of Brazilian species. I. Anacardiaceae

    Directory of Open Access Journals (Sweden)

    THAÍS A.P. GONÇALVES

    Full Text Available ABSTRACT Anthracological studies are firmly advancing in the tropics during the last decades. The theoretical and methodological bases of the discipline are well established. Yet, there is a strong demand for comparative reference material, seeking for an improvement in the precision of taxonomic determination, both in palaeoecological and palaeoethnobotanical studies and to help preventing illegal charcoal production. This work presents descriptions of charcoal anatomy of eleven Anacardiaceae species from six genera native to Brazil (Anacardium occidentale, Anacardium parvifolium, Astronium graveolens, Astronium lecointei, Lithrea molleoides, Schinus terebenthifolius, Spondias mombin, Spondias purpurea, Spondias tuberosa, Tapirira guianensis, and Tapirira obtusa. They are characterized by diffuse-porous wood, vessels solitary and in multiples, tyloses and spiral thickenings sometimes present; simple perforation plates, alternate intervessel pits, rounded vessel-ray pits with much reduced borders to apparently simple; parenchyma paratracheal scanty to vasicentric; heterocellular rays, some with radial canals and crystals; septate fibres with simple pits. These results are quite similar to previous wood anatomical descriptions of the same species or genera. Yet, charcoal identification is more effective when unknown samples are compared to charred extant equivalents, instead of to wood slides.

  1. Implications of Charcoal Briquette Produced by Local Communities on Livelihoods and Environment in Nairobi- Kenya

    Directory of Open Access Journals (Sweden)

    M. Njenga

    2013-02-01

    Full Text Available The residents of Nairobi, Kenya, use 700 tonnes of charcoal per day, producing about88 tonnes of charcoal dust that is found in most of the charcoal retailing stalls that is disposed of inwater drainage systems or in black garbage heaps. The high costs of cooking fuel results in poorhouseholds using unhealthy materials such as plastic waste. Further, poor households are opting tocook foods that take a short time to prepare irrespective of their nutritional value. This articlepresents experiences with community self-help groups producing charcoal fuel briquettes fromcharcoal dust in poorer nieghbourhoods of Nairobi for home use and sale. Households thatproduced charcoal fuel briquettes for own use and those that bought them saved 70% and 30% ofmoney spent on cooking energy respectively. The charcoal fuel briquettes have been found to beenvironmentally beneficial since they produce less smoke and increase total cooking energy bymore than 15%, thereby saving an equivalent volume of trees that would be cut down for charcoal.Charcoal briquette production is a viable opportunity for good quality and affordable cooking fuel.Bioenergy and waste management initiatives should promote recovery of organic by-products forcharcoal briquette production.

  2. Measurement of radon-222 concentration in environment sampled within short time using charcoal detector

    International Nuclear Information System (INIS)

    Yamasaki, Tadashi; Sekiyama, Shigenobu; Tokin, Mina; Nakayasu, Yumiko; Watanabe, Tamaki.

    1994-01-01

    The concentration of 222 Rn in air sampled within a very short period of time was measured using activated charcoal as the adsorber. The detector is the plastic canister containing mixture of the activated charcoal and the silica gel. The radon gas was adsorbed in the charcoal in the radon chamber at the temperature of 25degC. A little amount of liquid scintillation cocktail was added into the vial of liquid scintillation counter with the canister. The radon in the charcoal was extracted in the liquid scintillation cocktail. Alpha particles emitted from radon and its daughter nuclei in the cocktail were detected using the liquid scintillation counter. Present method has advantages of not only short sampling time of air but also adsorption of radon in charcoal under a constant temperature. The concentration of radon in air down to 2 Bq/m 3 could be detected. A kinetic model for adsorption of radon in the charcoal is also presented. The ratio of radon concentration in the charcoal to that in air under the equilibrium state of adsorption was estimated to be from 6.1 to 6.8 m 3 /kg at the temperature of 25degC. (author)

  3. The Military Efficacy of Individual Water Purification Filters.

    Science.gov (United States)

    1990-12-01

    criteria. ’t *.;as a.Lso serv ea that the KPF units grew opportunistic Pseudomonas sp . on the oroduct water side of the filters, which could have a...small pathogenic protozoan cysts such as Cryptospor-dium parvum, Giardia lamblia, and Entamoeba coli, from water over the effective use life of the...of heterotrophic bacteria such as Pseudoronas sP , Flavobacterium Sp , and other potentially harmfui organisms inside of the units. Enteric viruses are

  4. Metal oxide/hydroxide-coated dual-media filter for simultaneous removal of bacteria and heavy metals from natural waters.

    Science.gov (United States)

    Ahammed, M Mansoor; Meera, V

    2010-09-15

    The present study was conducted to compare the performance of a dual-media filter consisting of manganese oxide-coated (MOCS) and iron hydroxide-coated sand (IOCS) with that of IOCS filter and uncoated sand filter in treating water contaminated by microorganisms, heavy metals and turbidity with a view to its use in simple household water purification devices in developing countries. Long-duration column tests were conducted using two natural waters namely, roof-harvested rainwater and canal water. Performance of the filters showed that dual-media filter was more efficient in removing bacteria and heavy metals compared to IOCS filter, while uncoated sand filter showed very poor performance. The average effluent levels for dual-media filter when tested with rainwater were: turbidity 1.0+/-0.1 NTU; total coliforms 3+/-2 MPN/100 mL; heterotrophic plate count 170+/-20 CFU/mL; zinc 0.06+/-0.01 mg/L, while that for IOCS filter were: turbidity 1.0+/-0.1 NTU; total coliforms 4+/-2 MPN/100 mL; heterotrophic plate count 181+/-37 CFU/mL; zinc 0.20+/-0.07 mg/L. Similar results were obtained for canal water also. Up to 900 bed volumes (BV) could be treated without affecting the efficiency in the case of rainwater, while the filter operation had to be terminated after 500 BV due to excessive headloss in the case of canal water. The study thus showed the potential of the dual-media for use in low-cost household water filters for purification of natural waters. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Fabrication and characterization of rice husk charcoal bio briquettes

    Science.gov (United States)

    Suryaningsih, S.; Nurhilal, O.; Yuliah, Y.; Salsabila, E.

    2018-02-01

    Rice husk is the outermost part of the rice seed which is a hard layer and a waste material from rice milling. Rice husk includes biomass that can be exploited for various requirements such as industrial raw materials as well as energy sources or fuel but only a small group of people use it. This research is conducted utilizing the rice husk as an alternative fuel by making it as a charcoal briquette. To make the treatment easy, firstly the rice husk biomass was converted into charcoal powder by carbonization method using two kinds of furnace which have different heating behavior. The best carbonization results are obtained from the furnace, which has a constant temperature heating behavior. The process of making briquettes is prepared by adding tapioca starch of 6% concentration by weight as charcoal adhesive and then printed with the aid of pressing tools using loads at 1,000 kg/cm2. The resulting briquette has a calorific value about 3.126 cal/g, mass density is 0.86 g/cm3 and compressive strength is about 2.02 kg/cm2, so that the bio-briquette of charcoal produced can be used as alternative energy to replace the fossil fuel for domestic or household purposes.

  6. Filter Membrane Effects on Water-Extractable Phosphorus Concentrations from Soil.

    Science.gov (United States)

    Norby, Jessica; Strawn, Daniel; Brooks, Erin

    2018-03-01

    To accurately assess P concentrations in soil extracts, standard laboratory practices for monitoring P concentrations are needed. Water-extractable P is a common analytical test to determine P availability for leaching from soils, and it is used to determine best management practices. Most P analytical tests require filtration through a filter membrane with 0.45-μm pore size to distinguish between particulate and dissolved P species. However, filter membrane type is rarely specified in method protocols, and many different types of membranes are available. In this study, three common filter membrane materials (polyether sulfone, nylon, and nitrocellulose), all with 0.45-μm pore sizes, were tested for analytical differences in total P concentrations and dissolved reactive P (DRP) concentrations in water extracts from six soils sampled from two regions. Three of the extracts from the six soil samples had different total P concentrations for all three membrane types. The other three soil extracts had significantly different total P results from at least one filter membrane type. Total P concentration differences were as great as 35%. The DRP concentrations in the extracts were dependent on filter type in five of the six soil types. Results from this research show that filter membrane type is an important parameter that affects concentrations of total P and DRP from soil extracts. Thus, membrane type should be specified in soil extraction protocols. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Bowtie filter and water calibration in the improvement of cone beam CT image quality

    International Nuclear Information System (INIS)

    Li Minghui; Dai Jianrong; Zhang Ke

    2010-01-01

    Objective: To evaluate the improvement of cone beam CT (CBCT) image quality by using bewtie filter (F 1 ) and water calibration. Methods: First the multi-level gain calibration of the detector panel with the method of Cal 2 calibration was performed, and the CT images of CATPHAN503 with F 0 and bowtie filter were collected, respectively. Then the detector panel using water calibration kit was calibrated, and images were acquired again. Finally, the change of image quality after using F 1 and (or) water calibration method was observed. The observed indexes included low contrast visibility, spatial uniformity, ring artifact, spatial resolution and geometric accuracy. Results: Comparing with the traditional combination of F 0 filter and Cal 2 calibration, the combination of bowtie filter F 1 and water calibration improves low contrast visibility by 13.71%, and spatial uniformity by 54. 42%. Water calibration removes ring artifacts effectively. However, none of them improves spatial resolution and geometric accuracy. Conclusions: The combination of F 1 and water calibration improves CBCT image quality effectively. This improvement is aid to the registration of CBCT images and localization images. (authors)

  8. Optimization of band-pass filtering parameters of a Raman lidar detecting atmospheric water vapor

    International Nuclear Information System (INIS)

    Cao, Kai-Fa; Hu, Shun-Xing; Wang, Ying-jian

    2012-01-01

    It is very important for daytime Raman lidar measurement of water vapor to determine the parameters of a band-pass filter, which are pertinent to the lidar signal to noise ratio (SNR). The simulated annealing (SA) algorithm method has an advantage in finding the extremum of a certain cost function. In this paper, the Raman spectrum of water vapor is simulated and then a first realization of a simulated annealing algorithm in the optimization of a band-pass filter of a Raman lidar system designed to detect daytime water vapor is presented. The simulated results indicate that the narrow band-pass filter has higher SNR than the wide filter does but there would be an increase in the temperature sensitivity of a narrowband Raman water vapor lidar in the upper troposphere. The numerical simulation indicates that the magnitude of the temperature dependent effect can reach 3.5% or more for narrow band-pass Raman water vapor measurements so it is necessary to consider a new water vapor Raman lidar equation that permits the temperature sensitivity of these equations to be confined to a single term. (paper)

  9. Reducing diarrhea through the use of household-based ceramic water filters: a randomized, controlled trial in rural Bolivia.

    Science.gov (United States)

    Clasen, Thomas F; Brown, Joseph; Collin, Simon; Suntura, Oscar; Cairncross, Sandy

    2004-06-01

    Ceramic water filters have been identified as one of the most promising and accessible technologies for treating water at the household level. In a six-month trial, water filters were distributed randomly to half of the 50 participating households in a rural community in Bolivia; the remaining households continued to use customary water handling practices and served as controls. In four rounds of sampling following distribution of the filters, 100% of the 96 water samples from the filter households were free of thermotolerant coliforms compared with 15.5% of the control household samples. Diarrheal disease risk for individuals in intervention households was 70% lower than for controls (95% confidence interval [CI] = 53-80%; P ceramic water filters enable low-income households to treat and maintain the microbiologic quality of their drinking water.

  10. Conversion of sand filters into activated carbon filters at the La Presa (Valencia) water works; Conversion de filtros de arena porcarbon activo en la ETAP de La Presa (Valencia)

    Energy Technology Data Exchange (ETDEWEB)

    Macian Cervera, V. J.; Monforte Monleon, L.; Ribera Orts, R.; Suris Jorda, J. I.; Klee, J. M.

    2007-07-01

    To improve the water quality at potable water treatment plant of La P esa (Valencia), the sand filters have been replaced for activated carbon filters. In the following review the results and conclusions of the direct sand filter conversion into activated carbon filters will be presented. The leads to a simple and fast solution to odour and taste removal, as well as dissolved organic matter, without investments in works at the water works. (Author)

  11. Dermal exposure assessment to benzene and toluene using charcoal cloth pads

    NARCIS (Netherlands)

    Wendel de Joode, B. van; Tielemans, E.; Vermeulen, R.; Wegh, H.; Kromhout, H.

    2005-01-01

    Charcoal cloth pads have been used to assess volatile chemicals on the skin in a laboratory setting; however, they have not yet been applied to measure dermal exposure in occupational settings. This study aimed at evaluating whether charcoal pads can be used to assess dermal exposure to benzene and

  12. Determination of the suitability of chips from selected hardwoods for the production of furfural and charcoal. [Birches, beeches, oaks, alders

    Energy Technology Data Exchange (ETDEWEB)

    Piotrowski, Z

    1979-01-01

    Debarked, cut beech, birch, alder, and oak residues from forestry and woodworking operations contain 16.56-19.73% pentosans and as such can be used for hydrolysis to furfural (I). The hydrolytic residue (mostly lignocellulose) can be carbonized at 400 degrees to charcoal. The hydrolysis is carried out continuously with steam at 250-300 degrees and 1.18 MPa. The residue chips are first soaked in water at 90 degrees for 4 hours and then fed into the hydrolyzer countercurrently to the steam. The yields of I are 5-6% and the yields of charcoal are approximately 20% on the chip weight.

  13. Filtering Water by Use of Ultrasonically Vibrated Nanotubes

    Science.gov (United States)

    Gavalas, Lillian Susan

    2009-01-01

    Devices that could be characterized as acoustically driven molecular sieves have been proposed for filtering water to remove all biological contaminants and all molecules larger than water molecules. Originally intended for purifying wastewater for reuse aboard spacecraft, these devices could also be attractive for use on Earth in numerous settings in which there are requirements to obtain potable, medical-grade, or otherwise pure water from contaminated water supplies. These devices could also serve as efficient means of removing some or all water from chemical products . for example, they might be useful as adjuncts or substitutes for stills in the removal of water from alcohols and alcoholic beverages. These devices may be constructed using various materials, such as ceramics, metallics, or polymers, depending on end-use requirements. A representative device of this type (see figure) would include a polymeric disk, about 1 mm in diameter and between 1 and 40 microns thick, within which would be embedded single-wall carbon nanotubes aligned along the thickness axis. The polymeric disk would be part of a unitary polymeric ring assembly. An acoustic transducer in the form of a piezoelectric-film-and-electrode subassembly - typically 9 microns thick and made of poly(vinylidene fluoride) coated with copper 150 nm thick -. would be affixed to the outside of the outer polymeric ring by means of an electrically nonconductive epoxy. The nanotubes would be chosen to have diameters between about 8 and about 13.5 A because water molecules could fit into the nanotubes, but larger molecules could not. Water to be purified would be placed in contact with one face (typically, the upper face) of the filter disk. The surface tension of water is low enough that water molecules should enter and travel along the nanotubes, and computational simulations of molecular dynamics and experimental measurements have shown that the water molecules inside the nanotubes in this size range can

  14. Rotating carbon nanotube membrane filter for water desalination

    Science.gov (United States)

    Tu, Qingsong; Yang, Qiang; Wang, Hualin; Li, Shaofan

    2016-01-01

    We have designed a porous nanofluidic desalination device, a rotating carbon nanotube membrane filter (RCNT-MF), for the reverse osmosis desalination that can turn salt water into fresh water. The concept as well as design strategy of RCNT-MF is modeled, and demonstrated by using molecular dynamics simulation. It has been shown that the RCNT-MF device may significantly improve desalination efficiency by combining the centrifugal force propelled reverse osmosis process and the porous CNT-based fine scale selective separation technology. PMID:27188982

  15. Filtered atmospheric venting of light water reactor containments

    International Nuclear Information System (INIS)

    Hedgran, A.; Ahlstroem, P.E.; Nilsson, L.; Persson, Aa.

    1982-11-01

    The aim of filtered venting is to improve the function of the reactor containment in connection with very severe accidents. By equipping the containment with a safety valve for pressure relief and allowing the released gases to pass through an effective filter, it should be possible to achieve a considerable protective effect. The work has involved detailed studies of the core meltdown sequence, how the molten core material runs out of the reactor vessel, what effect it has on concrete and other structures and how final cooling of the molten core material takes place. On the basis of previous Swedish studies, the project has chosen to study a filter concept that consists of a gravel bed of large volume. This filter plant shall not only retain the radioactive particles that escape from the containment through the vent line, but shall also condense the accompanying steam. After the government decided in 1981 that Barsebaeck was to be equipped with filtered venting and issued specifications regarding its performance, the project aimed at obtaining results that could be used to design and verify a plant for filtered venting at the Barsebaeck nuclear power station. As far as the other Swedish nuclear power plants at Oskarshamn, Ringhals and Forsmark are concerned, the results are only applicable to a limited extent. Additional studies are required for these nuclear power plants before the value of filtered venting can be assessed. Based on the results of experiments and analyses, the project has made a safety analysis with Barsebaeck as a reference plant in order to study how the introduction of filtered venting affects the safety level at a station. In summary, the venting function appears to entail a not insignificant reduction of risks for boiling water reactors of the Barsebaeck type. For a number of types of such very severe core accident cases, the filter design studied ensures a substantial reduction of the releases. However it has not been possible within the

  16. Performance Evaluation of Waste Heat Recovery in a Charcoal Stove using a Thermo-Electric Module

    Directory of Open Access Journals (Sweden)

    Nnamdi Judges Ajah

    2018-03-01

    Full Text Available Charcoal stoves have widespread use among the poorer households and outdoor food vendors in Nigeria. In order to improve the efficiency of charcoal stoves, various researches have tried integrating a thermoelectric module in the charcoal stove. The researches, however did not exploit the performance of the thermoelectric modules at different ambient temperatures. To evaluate the performance of thermoelectric integrated charcoal stoves in the sub-Saharan Africa, a self-powered, forced air induced thermoelectric charcoal stove experiment was carried out at five different ambient temperatures of 36ºC, 33ºC, 32ºC, 30ºC and 29ºC and an average fuel hotbed temperature of 1023.75ºC. The thermoelectric charcoal stove generated a maximum voltage of 5.25V at an ambient temperature of 29ºC. The least maximum voltage was generated at the highest ambient temperature of 36ºC. It was observed that the maximum voltage increased with decreasing ambient temperature, this could be attributed to the ambient air being used to cool the thermoelectric generator. Therefore, it could be said that the performance of a forced draft thermoelectric charcoal stove increases with decrease in ambient temperature.

  17. Bottled, filtered, and tap water use in Latino and non-Latino children.

    Science.gov (United States)

    Hobson, Wendy L; Knochel, Miguel L; Byington, Carrie L; Young, Paul C; Hoff, Charles J; Buchi, Karen F

    2007-05-01

    To describe bottled, filtered, and tap water consumption and fluoride use among pediatric patients; to analyze differences between ethnic and socioeconomic groups; and to describe the frequency of physician-parent discussions regarding water consumption. Convenience sample survey. An urban public health clinic. Parents attending a public health clinic. The primary outcome measure was the prevalence of tap, filtered, and bottled water use. The secondary outcome measures were supplemental fluoride use and the percentage of patients reporting discussions of water consumption with their physician. A total of 216 parents (80.5% Latino and 19.5% non-Latino) completed the survey. Of the parents, 30.1% never drank tap water and 41.2% never gave it to their children. Latino parents were less likely than non-Latino parents to drink tap water (odds ratio, 0.26; 95% confidence interval, 0.10-0.67) and less likely to give tap water to their children (odds ratio, 0.32; 95% confidence interval, 0.15-0.70). More Latinos believed that tap water would make them sick (odds ratio, 5.63; 95% confidence interval, 2.17-14.54). Approximately 40% of children who never drank tap water were not receiving fluoride supplements. Of the lowest-income families (water to their children. Of the parents surveyed, 82.5% reported that their child's physician had never discussed the type of water they should use. Many Latino families avoid drinking tap water because they fear it causes illness. Unnecessary use of bottled and filtered water is costly and may result in adverse dental health outcomes. Physicians should provide guidance to families regarding the safety, low cost, and dental health benefits of drinking tap water.

  18. The Impact of Charcoal Production on Forest Degradation: a Case Study in Tete, Mozambique

    Science.gov (United States)

    Sedano, F.; Silva. J. A.; Machoco, R.; Meque, C. H.; Sitoe, A.; Ribeiro, N.; Anderson, K.; Ombe, Z. A.; Baule, S. H.; Tucker, C. J.

    2016-01-01

    Charcoal production for urban energy consumption is a main driver of forest degradation in sub-Saharan Africa. Urban growth projections for the continent suggest that the relevance of this process will increase in the coming decades. Forest degradation associated to charcoal production is difficult to monitor and commonly overlooked and underrepresented in forest cover change and carbon emission estimates. We use a multi-temporal dataset of very high-resolution remote sensing images to map kiln locations in a representative study area of tropical woodlands in central Mozambique. The resulting maps provided a characterization of the spatial extent and temporal dynamics of charcoal production. Using an indirect approach we combine kiln maps and field information on charcoal making to describe the magnitude and intensity of forest degradation linked to charcoal production, including aboveground biomass and carbon emissions. Our findings reveal that forest degradation associated to charcoal production in the study area is largely independent from deforestation driven by agricultural expansion and that its impact on forest cover change is in the same order of magnitude as deforestation. Our work illustrates the feasibility of using estimates of urban charcoal consumption to establish a link between urban energy demands and forest degradation. This kind of approach has potential to reduce uncertainties in forest cover change and carbon emission assessments in sub-Saharan Africa.

  19. Macro-particle charcoal C content following prescribed burning in a mixed-conifer forest, Sierra Nevada, California.

    Science.gov (United States)

    Wiechmann, Morgan L; Hurteau, Matthew D; Kaye, Jason P; Miesel, Jessica R

    2015-01-01

    Fire suppression and changing climate have resulted in increased large wildfire frequency and severity in the western United States, causing carbon cycle impacts. Forest thinning and prescribed burning reduce high-severity fire risk, but require removal of biomass and emissions of carbon from burning. During each fire a fraction of the burning vegetation and soil organic matter is converted into charcoal, a relatively stable carbon form. We sought to quantify the effects of pre-fire fuel load and type on charcoal carbon produced by biomass combusted in a prescribed burn under different thinning treatments and to identify more easily measured predictors of charcoal carbon mass in a historically frequent-fire mixed-conifer forest. We hypothesized that charcoal carbon produced from coarse woody debris (CWD) during prescribed burning would be greater than that produced from fine woody debris (FWD). We visually quantified post-treatment charcoal carbon content in the O-horizon and the A-horizon beneath CWD (> 30 cm diameter) and up to 60 cm from CWD that was present prior to treatment. We found no difference in the size of charcoal carbon pools from CWD (treatment means ranged from 0.3-2.0 g m-2 of A-horizon and 0.0-1.7 g m-2 of O-horizon charcoal) and FWD (treatment means ranged from 0.2-1.7 g m-2 of A-horizon and 0.0-1.5 g m-2 of O-horizon charcoal). We also compared treatments and found that the burn-only, understory-thin and burn, and overstory-thin and burn treatments had significantly more charcoal carbon than the control. Charcoal carbon represented 0.29% of total ecosystem carbon. We found that char mass on CWD was an important predictor of charcoal carbon mass, but only explained 18-35% of the variation. Our results help improve our understanding of the effects forest restoration treatments have on ecosystem carbon by providing additional information about charcoal carbon content.

  20. A real-time tritium-in-water monitor for measurement of heavy water leak to the secondary coolant

    International Nuclear Information System (INIS)

    Rathnakaran, M.; Ravetkar, R.M.; Samant, R.K.; Abani, M.C.

    2000-01-01

    The paper describes the development and evaluation of on-line, real-time tritium in water monitor for detection and measurement of heavy water leak to the secondary coolant in a Pressurised Heavy Water Reactor. The detector used for this is a plastic scintillator film, made in the form of sponge and housed in a flow cell which is used for measurement of tritium activity present in heavy water. Two photomultiplier tubes are optically coupled on either face of the flow cell detector and measurement is done in coincidence mode. The sample water is continuously passed through the flow cell detector and a continuous measurement of tritium activity is carried out. It is observed that the impurities in the process water sample are gradually trapped in the flow cell, which affects the transparency of the detector with use. This reduces the sensitivity of the system. In addition, chlorine, which is added in the sample water, to arrest the fungus formation, creates chemiluminescence which interfere the measurement. To improve the sample quality as well as to eliminate the chemiluminescence created by chlorine, sample conditioner consisting of polypropylene candle, activated charcoal and glass fibre filter paper is developed. Polypropylene candle traps particulates above 5 μm pore size, activated charcoal absorbs organic compounds, free chlorine, fungus and turbidity and glass fibre filter paper stops submicron size particles. The measurement is also affected by the interference of dissolved argon-41 in the sample water. A bubbler system developed at BARC is used to strip the dissolved Ar-41 present in the sample which enables the system to measure tritium in presence of this interfering radioactive gas. The microprocessor based electronic system, used in the monitor provides the facility for selection of counting time and thereby improving the counting statistics. Alarm circuit is provided to give timely alarm when the tritium activity concentration exceeds the preset level

  1. Biodegradation of gasoline compounds (BTEX) in a water works sand filter

    DEFF Research Database (Denmark)

    Arvin, Erik; Engelsen, P.; Sebber, U.

    2004-01-01

    Various chemical compounds including aromatic gasoline compounds frequently contaminate drinking water wells in urban areas. Because ground water treatment is simple, usually consisting of aeration/stripping and sand-filtration, it is of significant interest to know the ability of the conventional...... treatment to remove the chemical contaminants. The removal of gasoline compounds was investigated in a two-stage pilot scale sand filter, each with a filter depth of 0.8-1 m and with a filtration rate of 7.6 m/h. The concentrations of aromatic compounds were in the range 7-15 mu g/L, which are realistically...... sand grains). Influent iron concentrations in the range 0-4 mg/L and backwashing did not adversely affect the biodegradation of hydrocarbons. This study has shown that a conventional biological active sand filter can act as an efficient barrier against gasoline compounds, thereby saving the consumer...

  2. Radiocarbon ages of soil charcoals from the southern Alps, Ticino, Switzerland

    International Nuclear Information System (INIS)

    Hajdas, Irka; Schlumpf, Nadia; Minikus-Stary, Nicole; Hagedorn, Frank; Eckmeier, Eileen; Schoch, Werner; Burga, Conradin; Bonani, Georges; Schmidt, Michael W.I.; Cherubini, Paolo

    2007-01-01

    Radiocarbon dating of macroscopic charcoal is a useful tool for paleoclimatic and paleoecologic reconstructions. Here we present results of 14 C dating of charcoals found in charcoal-rich soils of Ticino and the Misox Valley (southern Switzerland) which indicate that the Late Glacial and early Holocene fires coincided with warm phases in the North Atlantic region and low lake levels in the Central Europe. Late Holocene charcoals found in these soils document an earlier than believed presence of sweet chestnut (Castanea sativa Mill.) in southern Switzerland. Sweet chestnut trees play a key role in Mediterranean woodlands, and for longer than two millennia have been used as a food source. Based on palynological evidence it is commonly believed that in southern Switzerland C. sativa was first introduced 2000 years ago by the Romans, who cultivated it for wood and fruit production. Our results indicate that this tree species was present on the southern slopes of the Alps ∼1500 years earlier than previously assumed, and therefore was likely introduced independently from cultivation by the Romans

  3. Production of active charcoal and characteristic of volatile organic compounds in condensate

    International Nuclear Information System (INIS)

    Lalik, V.; Knoskova, L.

    2005-01-01

    In the last decade a production of charcoal and products from charcoal has been taking on an important position in a field of environmental technologies. Technological process of the production of charcoal is accompanied by formation of fluid and gaseous elements. These elements are ranked as pollutants from the legal point of view. There are mainly carbon dioxide and carbon monoxide and other oxide compounds from the chemical point of view. Particularly acetic acid, methanol, 2-furaldehyde. Then aliphatic alcohols, phenols, aldehydes, ketones, esters and other groups of substances. Law limits the quantity and concentration of these essentials emitted into the open air. This matter has to be taken care of during the production of charcoal. It is usually solved by condensation cooling and following burning gases and steams. Condensate is industrially processed or smaller technologies handle with it similar to taking care of wastewater. (authors)

  4. Micron-pore-sized metallic filter tube membranes for filtration of particulates and water purification.

    Science.gov (United States)

    Phelps, T J; Palumbo, A V; Bischoff, B L; Miller, C J; Fagan, L A; McNeilly, M S; Judkins, R R

    2008-07-01

    Robust filtering techniques capable of efficiently removing particulates and biological agents from water or air suffer from plugging, poor rejuvenation, low permeance, and high backpressure. Operational characteristics of pressure-driven separations are in part controlled by the membrane pore size, charge of particulates, transmembrane pressure and the requirement for sufficient water flux to overcome fouling. With long term use filters decline in permeance due to filter-cake plugging of pores, fouling, or filter deterioration. Though metallic filter tube development at ORNL has focused almost exclusively on gas separations, a small study examined the applicability of these membranes for tangential filtering of aqueous suspensions of bacterial-sized particles. A mixture of fluorescent polystyrene microspheres ranging in size from 0.5 to 6 microm in diameter simulated microorganisms in filtration studies. Compared to a commercial filter, the ORNL 0.6 microm filter averaged approximately 10-fold greater filtration efficiency of the small particles, several-fold greater permeance after considerable use and it returned to approximately 85% of the initial flow upon backflushing versus 30% for the commercial filter. After filtering several liters of the particle-containing suspension, the ORNL composite filter still exhibited greater than 50% of its initial permeance while the commercial filter had decreased to less than 20%. When considering a greater filtration efficiency, greater permeance per unit mass, greater percentage of rejuvenation upon backflushing (up to 3-fold), and likely greater performance with extended use, the ORNL 0.6 microm filters can potentially outperform the commercial filter by factors of 100-1,000 fold.

  5. Modeling the Effects of Future Growing Demand for Charcoal in the Tropics

    NARCIS (Netherlands)

    Ferreira Dos Santos, M.J.; Dekker, S.C.; Daioglou, Vasileios; Braakhekke, M.C.; van Vuuren, Detlef

    Global demand for charcoal is increasing mainly due to urban population in developing countries. More than half the global population now lives in cities, and urban-dwellers are restricted to charcoal use because of easiness of production, access, transport, and tradition. Increasing demand for

  6. Charcoal and activated carbon as adsorbate of phytotoxic compounds - a comparative study.

    NARCIS (Netherlands)

    Hille, M.G.; Ouden, den J.

    2005-01-01

    This study compares the potential of natural charcoal from Scots pine (Pinus sylvestris L.) and activated carbon to improve germination under the hypothesis that natural charcoal adsorbs phytotoxins produced by dwarf-shrubs, but due to it's chemical properties to a lesser extent than activated

  7. Activated charcoal and baking soda to reduce odor associated with extensive blistering disorders.

    Science.gov (United States)

    Chakravarthi, Arun; Srinivas, C R; Mathew, Anil C

    2008-01-01

    Skin disease leading to extensive blistering and loss of skin is associated with a characteristic smell. Odor can cause physiologic disturbances such as increase in heart rate and respiratory rate. It can also cause nausea and vomiting and is disturbing to bystanders. To test odor reducing capability of activated charcoal. In this blinded experimental study we used putrefied amniotic membrane to produce odor and studied the effectiveness of activated charcoal and soda-bi-carbonate to reduce odor. Statistical analysis with Kruskal Wall's Chi Square Test and Man Whitney U test showed significant reduction of odor using activated charcoal by itself or along with soda-bi-carbonate. We recommend the usage of activated charcoal with/without soda bicarbonate as an inexpensive practical measure to reduce foul odor associated with extensive skin loss.

  8. The charcoal trap: Miombo forests and the energy needs of people

    Directory of Open Access Journals (Sweden)

    Muchinda Maurice

    2011-08-01

    Full Text Available Abstract Background This study evaluates the carbon dioxide and other greenhouse gas fluxes to the atmosphere resulting from charcoal production in Zambia. It combines new biomass and flux data from a study, that was conducted in a miombo woodland within the Kataba Forest Reserve in the Western Province of Zambia, with data from other studies. Results The measurements at Kataba compared protected area (3 plots with a highly disturbed plot outside the forest reserve and showed considerably reduced biomass after logging for charcoal production. The average aboveground biomass content of the reserve (Plots 2-4 was around 150 t ha-1, while the disturbed plot only contained 24 t ha-1. Soil carbon was not reduced significantly in the disturbed plot. Two years of eddy covariance measurements resulted in net ecosystem exchange values of -17 ± 31 g C m-2 y-1, in the first and 90 ± 16 g C m-2 in the second year. Thus, on the basis of these two years of measurement, there is no evidence that the miombo woodland at Kataba represents a present-day carbon sink. At the country level, it is likely that deforestation for charcoal production currently leads to a per capita emission rate of 2 - 3 t CO2 y-1. This is due to poor forest regeneration, although the resilience of miombo woodlands is high. Better post-harvest management could change this situation. Conclusions We argue that protection of miombo woodlands has to account for the energy demands of the population. The production at national scale that we estimated converts into 10,000 - 15,000 GWh y-1 of energy in the charcoal. The term "Charcoal Trap" we introduce, describes the fact that this energy supply has to be substituted when woodlands are protected. One possible solution, a shift in energy supply from charcoal to electricity, would reduce the pressure of forests but requires high investments into grid and power generation. Since Zambia currently cannot generate this money by itself, the country

  9. The charcoal trap: Miombo forests and the energy needs of people.

    Science.gov (United States)

    Kutsch, Werner L; Merbold, Lutz; Ziegler, Waldemar; Mukelabai, Mukufute M; Muchinda, Maurice; Kolle, Olaf; Scholes, Robert J

    2011-08-19

    This study evaluates the carbon dioxide and other greenhouse gas fluxes to the atmosphere resulting from charcoal production in Zambia. It combines new biomass and flux data from a study, that was conducted in a miombo woodland within the Kataba Forest Reserve in the Western Province of Zambia, with data from other studies. The measurements at Kataba compared protected area (3 plots) with a highly disturbed plot outside the forest reserve and showed considerably reduced biomass after logging for charcoal production. The average aboveground biomass content of the reserve (Plots 2-4) was around 150 t ha-1, while the disturbed plot only contained 24 t ha-1. Soil carbon was not reduced significantly in the disturbed plot. Two years of eddy covariance measurements resulted in net ecosystem exchange values of -17 ± 31 g C m-2 y-1, in the first and 90 ± 16 g C m-2 in the second year. Thus, on the basis of these two years of measurement, there is no evidence that the miombo woodland at Kataba represents a present-day carbon sink. At the country level, it is likely that deforestation for charcoal production currently leads to a per capita emission rate of 2 - 3 t CO2 y-1. This is due to poor forest regeneration, although the resilience of miombo woodlands is high. Better post-harvest management could change this situation. We argue that protection of miombo woodlands has to account for the energy demands of the population. The production at national scale that we estimated converts into 10,000 - 15,000 GWh y-1 of energy in the charcoal. The term "Charcoal Trap" we introduce, describes the fact that this energy supply has to be substituted when woodlands are protected. One possible solution, a shift in energy supply from charcoal to electricity, would reduce the pressure of forests but requires high investments into grid and power generation. Since Zambia currently cannot generate this money by itself, the country will remain locked in the charcoal trap such as many other

  10. Safe household water treatment and storage using ceramic drip filters: a randomised controlled trial in Bolivia.

    Science.gov (United States)

    Clasen, T; Brown, J; Suntura, O; Collin, S

    2004-01-01

    A randomised controlled field trial was conducted to evaluate the effectiveness of ceramic drip filters to improve the microbiological quality of drinking water in a low-income community in rural Bolivia. In four rounds of water sampling over five months, 100% of the samples were free of thermotolerant (faecal) coliforms (TTC) compared to an arithmetic mean TTC count of 1517, 406, 167 and 245 among control households which continued to use their customary sources of drinking water. The filter systems produced water that consistently met WHO drinking-water standards despite levels of turbidity that presented a challenge to other low-cost POU treatment methods. The filter systems also demonstrated an ability to maintain the high quality of the treated water against subsequent re-contamination in the home.

  11. Comammox Nitrospira are key nitrifiers in diverse groundwater-fed drinking water filters

    DEFF Research Database (Denmark)

    Fowler, Jane; Palomo, Alejandro; Smets, Barth F.

    Nitrification is a dominant process in groundwater-fed rapid sand filters (RSFs) used for drinking water purification. Near complete removal of ammonium and nitrite is required in the EU and Denmark due to strict regulatory limits that enable high water stability in the distribution system. RSFs...... this work provides a new assay for the simultaneous detection of clade A and B comammox Nitrospira and expands our current knowledge of the diversity of comammox Nitrospira, while attempting to explain the success of comammox Nitrospira in these groundwater-fed filters....

  12. Behavior of the polygonal HEPA filter exposed to water droplets carried by the offgas flow

    International Nuclear Information System (INIS)

    Jannakos, K.; Potgeter, G.; Legner, W.

    1991-01-01

    A polygonal high-efficiency particulate air (HEPA) filter element has been developed and tested with a view to cleaning the dissolver offgas from reprocessing plants. It is likewise suited to filter process offgases generated in other plants. Due to its high dew point (about 30 degree C) the dissolver offgas, before being directed into the HEPA filter, is heated with a gas heater to approx. 100 degree C so that condensation in the pipework upstream of the filter and in the filter proper is avoided. In case of failure of the heater the offgas may undergo condensation upstream of the HEPA filter until it is bypassed to a standby heater or a standby filter system. Consequently, the filter may be loaded with water droplets. therefore, experiments have been performed with a view to estimating the behavior of the polygonal filter element when exposed to condensate droplets in a real plant. According to the experiments performed so far it can be anticipated that in case of failure of the heater the amount of condensate produced until bypassing to a standby system will not damage a new or little loaded polygonal filter element. The experiments will be carried on with the goal of investigating the behavior of a heavily loaded polygonal filter element exposed to water droplets

  13. Enteric virus removal from water by coal-based sorbents: development of low-cost water filters

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, M.; Sattar, S.A.

    1986-01-01

    Using poliovirus type 1 (Sabin) and dechlorinated tap water, several coal-based sorbents were tested for their capacity to remove viruses from water. The sorbents included bituminous coal from Giridih, India, pretreated/impregnated with either alum, ferric hydroxide, lime or manganese dioxide. Filtrasorb-400, commercially available active carbon, was used as a reference. In batch tests, with input virus concentration of 2.34-2.83x10/sup 6/ PFU/1 and sorbent concentration of 10 g/l, alum pretreated coal removed about 96% of the virus when pH of the water was between 6.3 and 8.9. Virus sorption was rapid and a plateau was reached in 30 min. Compared with the active carbon, alum pretreated coal exhibited greater sorption energy and about one log higher limiting poliovirus sorption capacity. Downflow column study indicated the potential of alum pretreated coal as a filter media for removing enteric viruses from water. A previous study showed this sorbent to be capable of removing enteric bacteria as well. Water filters prepared from such low-cost material may prove useful for domestic use in rural areas of India and other developing countries. 19 refs.

  14. Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars.

    Science.gov (United States)

    Santín, Cristina; Doerr, Stefan H; Merino, Agustin; Bucheli, Thomas D; Bryant, Rob; Ascough, Philippa; Gao, Xiaodong; Masiello, Caroline A

    2017-09-11

    Pyrogenic carbon (PyC), produced naturally (wildfire charcoal) and anthropogenically (biochar), is extensively studied due to its importance in several disciplines, including global climate dynamics, agronomy and paleosciences. Charcoal and biochar are commonly used as analogues for each other to infer respective carbon sequestration potentials, production conditions, and environmental roles and fates. The direct comparability of corresponding natural and anthropogenic PyC, however, has never been tested. Here we compared key physicochemical properties (elemental composition, δ 13 C and PAHs signatures, chemical recalcitrance, density and porosity) and carbon sequestration potentials of PyC materials formed from two identical feedstocks (pine forest floor and wood) under wildfire charring- and slow-pyrolysis conditions. Wildfire charcoals were formed under higher maximum temperatures and oxygen availabilities, but much shorter heating durations than slow-pyrolysis biochars, resulting in differing physicochemical properties. These differences are particularly relevant regarding their respective roles as carbon sinks, as even the wildfire charcoals formed at the highest temperatures had lower carbon sequestration potentials than most slow-pyrolysis biochars. Our results challenge the common notion that natural charcoal and biochar are well suited as proxies for each other, and suggest that biochar's environmental residence time may be underestimated when based on natural charcoal as a proxy, and vice versa.

  15. Socio-economic impacts of charcoal production in Oke-Ogun area of Oyo State, Nigeria

    Directory of Open Access Journals (Sweden)

    Olasimbo Olarinde

    2018-04-01

    Full Text Available Many households in developing countries experience low energy consumption and this make them depend upon wood fuels for their energy. This study examined socio-economic impacts of charcoal production in Oke-Ogun, Oyo State, Nigeria. Two Local Government Areas were selected based on the accessibility and the availability of charcoal farmers among ten Local Government Areas. Results show that 74% of the respondents were male while 26% were female that are into production of charcoal in the study area. 37.5% of the age range (41–50 of respondent produces more charcoal than other age range. The respondent did not go beyond primary school educationally and they are all married. However, respondents with over 11–20 years of experience in the production of charcoal have higher percentage of frequency. Some of the problem faced by the producers of charcoal in Oke Ogun area are scarcity of trees, wildfire, government disturbance and transportation. Trees commonly used for production are from inherited farms and most of the trees used are Butyrosopermum paradoxium, Dialium guineense, Terminalia glaucencens, Khaya ivorensis. Production is once in a month and later exported. Energy provision is a basic human need and consumption is closely related to the level of a country’s development.

  16. A Model-Based Approach to Infer Shifts in Regional Fire Regimes Over Time Using Sediment Charcoal Records

    Science.gov (United States)

    Itter, M.; Finley, A. O.; Hooten, M.; Higuera, P. E.; Marlon, J. R.; McLachlan, J. S.; Kelly, R.

    2016-12-01

    Sediment charcoal records are used in paleoecological analyses to identify individual local fire events and to estimate fire frequency and regional biomass burned at centennial to millenial time scales. Methods to identify local fire events based on sediment charcoal records have been well developed over the past 30 years, however, an integrated statistical framework for fire identification is still lacking. We build upon existing paleoecological methods to develop a hierarchical Bayesian point process model for local fire identification and estimation of fire return intervals. The model is unique in that it combines sediment charcoal records from multiple lakes across a region in a spatially-explicit fashion leading to estimation of a joint, regional fire return interval in addition to lake-specific local fire frequencies. Further, the model estimates a joint regional charcoal deposition rate free from the effects of local fires that can be used as a measure of regional biomass burned over time. Finally, the hierarchical Bayesian approach allows for tractable error propagation such that estimates of fire return intervals reflect the full range of uncertainty in sediment charcoal records. Specific sources of uncertainty addressed include sediment age models, the separation of local versus regional charcoal sources, and generation of a composite charcoal record The model is applied to sediment charcoal records from a dense network of lakes in the Yukon Flats region of Alaska. The multivariate joint modeling approach results in improved estimates of regional charcoal deposition with reduced uncertainty in the identification of individual fire events and local fire return intervals compared to individual lake approaches. Modeled individual-lake fire return intervals range from 100 to 500 years with a regional interval of roughly 200 years. Regional charcoal deposition to the network of lakes is correlated up to 50 kilometers. Finally, the joint regional charcoal

  17. Activated charcoal and baking soda to reduce odor associated with extensive blistering disorders

    Directory of Open Access Journals (Sweden)

    Chakravarthi Arun

    2008-01-01

    Full Text Available Background: Skin disease leading to extensive blistering and loss of skin is associated with a characteristic smell. Odor can cause physiologic disturbances such as increase in heart rate and respiratory rate. It can also cause nausea and vomiting and is disturbing to bystanders. Aims: To test odor reducing capability of activated charcoal. Methods: In this blinded experimental study we used putrefied amniotic membrane to produce odor and studied the effectiveness of activated charcoal and soda-bi-carbonate to reduce odor. Results: Statistical analysis with Kruskal Wall′s Chi Square Test and Man Whitney U test showed significant reduction of odor using activated charcoal by itself or along with soda-bi-carbonate. Conclusion: We recommend the usage of activated charcoal with/without soda bicarbonate as an inexpensive practical measure to reduce foul odor associated with extensive skin loss.

  18. Development and Evaluation of Charcoal-Powered Bread Baking Oven

    Directory of Open Access Journals (Sweden)

    Alimasunya E

    2016-10-01

    Full Text Available Charcoal-powered bread baking oven was developed and evaluated with functional efficiencies of 91.2% and 92.1% for baking dough of mass 0.5kg and 1.5 kg to bread at BP of 27.7minutes, 35.9 minutes with the baking temperature (BT of 153.8 oC and 165.9 oC respectively. Baking temperature-heating interval of the oven as computed at 100 oC at 20 minutes at charcoal emitted heat of 861000 KJ. The oven has the capacity of generating 455.9 oC at 270 minutes time interval. The oven has bread baking capacities of 56, 36, 28, 22 and 18 pieces of bread per batch operation using dough mass of 0.5kg, 0.75kg, 1.00kg, 1.250kg and 1.500kg respectively. It is sensitive to the baking time and temperature in relation to dough mass with resolution value of 0.22. Charcoal-powered oven, is cheap and efficient and can be used both in the rural and urban settlement for domestic consumption and smallscale business.

  19. Measurements of 222Rn flux with charcoal coanisters

    International Nuclear Information System (INIS)

    Countess, R.J.

    1977-01-01

    Methods used to measure the 222 Rn flux from the ground are discussed. The most common method is the direct accumulation of radon in a closed container resting on the soil surface. An aliquot of the air is transferred from the accumulator either to an ionization chamber or to an alpha scintillation flask for radon analysis. An alternate method consists of entraining the radon emanating from a small area of the ground in an airstream moving in a closed system through a charcoal trap or cold trap. At the end of the sampling period, the trap is sealed and returned to the laboratory where the radon is transferred into an evacuated scintillation flask for analysis. Still another method consists of adsorbing radon in a layer of granular, activated charcoal spread directly on the ground. For analysis, the charcoal is bagged and the 0.61-MeV gamma activity of 214 Bi (RaC) is measured in a gamma spectrometer. These last two methods have the disadvantage that some radon may be lost in transfer prior to analysis. In an improved method, which is simpler than the preceding methods and eliminates this transfer problem, a modified U.S. Army M11 gas mask canister containing activated charcoal is placed directly in contact with the emanating surface and after an exposure period from several hours to several days, depending on the anticipated flux density, the canister is removed from the surface and counted directly in a gamma spectrometer. In addition to precluding losses in sample transfer, a major advantage is that numerous measurements can be made inexpensively due to the low cost of the canisters and their ease of deployment and recovery

  20. The Challenge of Producing and Marketing Colloidal Silver Water Filters in Nepal

    Directory of Open Access Journals (Sweden)

    Anne Bogler

    2015-07-01

    Full Text Available Background: Obtaining safe drinking water can be a challenge in Nepal. By training potters and setting up production sites for Colloidal Silver Filters, several non-governmental organizations have tried to provide local people with a low-cost option for household water treatment. Out of 19 trained entrepreneurs, only four are currently producing filters. The goal of this evaluation was to find out what conditions lead to the successful continuation of the production and the reasons for failure. Methods: The evaluation of the potters was based on a Qualitative Comparative Analysis and the conditions looked at were: “Production”, “Collaboration”, “Market” and “Potter”. Results: Analysis showed that production problems and insufficient demand led to the termination of ceramic filter production and that both trouble-free production and high demand are necessary for a sustainable business.

  1. Theoretical and experimental study of radon measurement with designing and calibration domestic canister with active charcoal

    International Nuclear Information System (INIS)

    Urosevic, V.; Nikezic, D.; Zekic, R.

    2005-01-01

    Radon concentration in air may change significantly large variation due to atmospheric variation. Measurement with active charcoal can be inaccurate because the variation in radon concentration. We made model to simulate radon measurements with active charcoal in order to optimize and improve integration characteristic. A numerical method and computer code based on the method of finite elements is developed for the case of variable radon concentration in air. This program simulates radon adsorption by the activated charcoal bed, enabling determination of sensitivity. The dependence of sensitivity on different parameters, such as temperature, thickness of the charcoal, etc. was studied using this program. Using results of theoretical investigation we designed and calibrated our canister with active charcoal for radon measurements. (author)

  2. Rational synthesis of zerovalent iron/bamboo charcoal composites with high saturation magnetization

    Science.gov (United States)

    Mingshan Wu; Jianfeng Ma; Zhiyong Cai; Genlin Tian; Shumin Yang; Youhong Wang; Xing' e Liu

    2015-01-01

    The synthesis of magnetic biochar composites is a major new research area in advanced materials sciences. A series of magnetic bamboo charcoal composites (MBC800, MBC1000 and MBC1200) with high saturation magnetization (Ms) was fabricated in this work by mixing bamboo charcoal powder with an aqueous ferric chloride solution and subsequently...

  3. Effect of sorbitol, single, and multidose activated charcoal administration on carprofen absorption following experimental overdose in dogs.

    Science.gov (United States)

    Koenigshof, Amy M; Beal, Matthew W; Poppenga, Robert H; Jutkowitz, L Ari

    2015-01-01

    To compare the effectiveness of single dose activated charcoal, single dose activated charcoal with sorbitol, and multidose activated charcoal in reducing plasma carprofen concentrations following experimental overdose in dogs. Randomized, four period cross-over study. University research setting. Eight healthy Beagles. A 120 mg/kg of carprofen was administered orally to each dog followed by either (i) a single 2 g/kg activated charcoal administration 1 hour following carprofen ingestion (AC); (ii) 2 g/kg activated charcoal with 3.84 g/kg sorbitol 1 hour following carprofen ingestion (ACS); (iii) 2 g/kg activated charcoal 1 hour after carprofen ingestion and repeated every 6 hours for a total of 4 doses (MD); (iv) no treatment (control). Plasma carprofen concentrations were obtained over a 36-hour period following carprofen ingestion for each protocol. Pharmacokinetic modeling was performed and time versus concentration, area under the curve, maximum plasma concentration, time to maximum concentration, and elimination half-life were calculated and compared among the groups using ANOVA followed by Tukey's multiple comparisons test. Activated charcoal, activated charcoal with sorbitol (ACS), and multiple-dose activated charcoal (MD) significantly reduced the area under the curve compared to the control group. AC and MD significantly reduced the maximum concentration when compared to the control group. MD significantly reduced elimination half-life when compared to ACS and the control group. There were no other significant differences among the treatment groups. Activated charcoal and ACS are as effective as MD in reducing serum carprofen concentrations following experimental overdose in dogs. Prospective studies are warranted to evaluate the effectiveness of AC, ACS, and MD in the clinical setting. © Veterinary Emergency and Critical Care Society 2015.

  4. Highly stable rice-straw-derived charcoal in 3700-year-old ancient paddy soil: evidence for an effective pathway toward carbon sequestration.

    Science.gov (United States)

    Wu, Mengxiong; Yang, Min; Han, Xingguo; Zhong, Ting; Zheng, Yunfei; Ding, Pin; Wu, Weixiang

    2016-01-01

    Recalcitrant charcoal application is predicted to decelerate global warming through creating a long-term carbon sink in soil. Although many studies have showed high stability of charcoal derived from woody materials, few have focused on the dynamics of straw-derived charcoal in natural environment on a long timescale to evaluate its potential for agricultural carbon sequestration. Here, we examined straw-derived charcoal in an ancient paddy soil dated from ~3700 calendar year before present (cal. year BP). Analytical results showed that soil organic matter consisted of more than 25% of charcoal in charcoal-rich layer. Similarities in morphology and molecular structure between the ancient and the fresh rice-straw-derived charcoal indicated that ancient charcoal was derived from rice straw. The lower carbon content, higher oxygen content, and obvious carbonyl of the ancient charcoal compared with fresh rice straw charcoal implied that oxidation occurred in the scale of thousands years. However, the dominant aromatic C of ancient charcoal indicated that rice-straw-derived charcoal was highly stable in the buried paddy soil due to its intrinsic chemical structures and the physical protection of ancient paddy wetland. Therefore, it may suggest that straw charcoal application is a potential pathway for C sequestration considering its longevity.

  5. Microbial degradation of pesticides in rapid sand filters used for drinking water treatment

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen

    significantly with the maximum methane concentration in the raw water and did not correlate with other water quality parameters, such as the ammonium concentration. Furthermore, the connection between bentazone degradation and methane oxidation in filter sand was demonstrated by inhibition experiments, in which...... sustainable methods to remove pesticides from polluted water sources. Aeration of anaerobic groundwater, followed by biological rapid sand filtration is a widespread technology in drinking water treatment. Even though these systems are not designed for removal of trace contaminants, they have shown potential...... for microbial degradation of pesticides and their degradation products. If pesticides can be removed in rapid sand filters, it is of large commercial interest due to the importance in maintaining a simple, sustainable water treatment. To take advantage of the microbial pesticide degradation and identify...

  6. Batch Test Screening of Industrial Product/Byproduct Filter Materials for Agricultural Drainage Water Treatment

    Directory of Open Access Journals (Sweden)

    Barry J. Allred

    2017-10-01

    Full Text Available Filter treatment may be a viable means for removing the nitrate (NO3−, phosphate (PO43−, and pesticides discharged with agricultural drainage waters that cause adverse environmental impacts within the U.S. on local, regional, and national scales. Laboratory batch test screening for agricultural drainage water treatment potential was conducted on 58 industrial product/byproduct filter materials grouped into six categories: (1 high carbon content media; (2 high iron content media; (3 high aluminum content media; (4 surfactant modified clay/zeolite; (5 coal combustion residuals; and (6 spent foundry sands. Based on a percent contaminant removal criteria of 75% or greater, seven industrial products/byproducts were found to meet this standard for NO3− alone, 44 met this standard for PO43−, and 25 met this standard for the chlorinated triazine herbicide, atrazine. Using a 50% or greater contaminant removal criteria, five of the industrial product/byproduct filter materials exhibited potential for removing NO3−, PO43−, and atrazine together; eight showed capability for combined NO3− and PO43− removal; 21 showed capability for combined PO43− and atrazine removal; and nine showed capability for combined NO3− and atrazine removal. The results of this study delineated some potential industrial product/byproduct filter materials for drainage water treatment; however, a complete feasibility evaluation for drainage water treatment of any of these filter materials will require much more extensive testing.

  7. The influence of production conditions, starting material and deposition environment on charcoal alteration in a tropical biome.

    Science.gov (United States)

    Ascough, Philippa; Bird, Michael; Meredith, Will; Large, David; Snape, Colin; Manion, Corinne

    2014-05-01

    Natural and anthropogenic burning events are a key link in the global carbon cycle, substantially influencing atmospheric CO2 levels, and consuming c.8700 teragrams yr-1 of dry biomass [1,2,3]. An important result of this process is charcoal, when lignocellulosic structures in biomass (e.g. wood) are converted to aromatic domains with high chemical stability. Charcoal is therefore not readily re-oxidized to CO2, with estimates of 5-7 ky for the half-life of charcoal carbon in soils [3,4]. Charcoal's high carbon content coupled with high environmental resistance has led to the concept of biochar as a valuable means of global carbon sequestration, capable of carbon offsets comparable to annual anthropogenic fuel emissions [5,6,7]. Charcoal is not, however, an environmentally inert substance, and at least some components of charcoal are susceptible to alteration in depositional environments. Despite the importance of charcoal in global carbon cycling, the mechanisms by which charcoal is altered in the environment remain, as yet, poorly understood. This fact limits our ability to properly incorporate both natural environmental charcoal and biochar into global carbon budgets. This study aimed to improve understanding of charcoal alteration in the environment by examining the influence of production conditions, starting material and deposition environment on the physical and chemical characteristics of charcoal at a field site in the Daintree rainforest. These factors have been identified as critical in determining the dynamics of charcoal in depositional environments [8,9] and climatic conditions at the field site (in Tropical Queensland, Australia) are likely to result in extensive alteration of charcoal. Charcoal from wood (Nothofagus spp.), algae (Enteromorpha spp.), and sugarcane (Saccharum spp.) biomass was produced at temperatures over 300-500°C and exposed to conditions of varying pH and vegetation cover. The effect of these variables on charcoal chemistry

  8. Preparation and Photocatalytic Performance of Bamboo-Charcoal-Supported Nano-ZnO Composites

    Directory of Open Access Journals (Sweden)

    Yunlong ZHOU

    2018-02-01

    Full Text Available Nano-ZnO/bamboo charcoal composites were prepared by precipitation with bamboo charcoal as support. Nano-ZnO/bamboo charcoal composites were characterized by XRD, SEM and EDS. Photocatalytic degradation processes of methyl orange were studied. The results indicate that the structure of nano-ZnO is of the wurtzite type and the grain size is about 19-54 nm. The best preparation temperature for these composites is 500℃. The composites have better photocatalytic degradation ability than pure ZnO under UV irradiation. Photocatalytic degradation of methyl orange with the composites obeys first-order kinetics, and the composites can be recycled.DOI: http://dx.doi.org/10.5755/j01.ms.24.1.17397

  9. Quality and energetic evaluation of the charcoal made of babassu nut residues used in the steel industry

    OpenAIRE

    Protásio, Thiago de Paula; Trugilho, Paulo Fernando; Mirmehdi, Seyedmohammad; Silva, Marcela Gomes da

    2014-01-01

    Brazil is the only country in the world that uses large scale charcoal in steel-making blast furnaces. Meantime, the monoculture plantations of Eucalyptus are not able to meet the demand for charcoal from the steel industries.Therefore, research is necessary, in order to use lignocellulosic residues for the production of charcoal with technological properties which are suitable for the reduction of iron ore. Given the above, the objective of this study was to evaluate the quality of charcoal ...

  10. Study of adsorption properties of impregnated charcoal for airborne iodine and methyl iodide

    International Nuclear Information System (INIS)

    Qi-dong, L.; Sui-yuang, H.

    1985-01-01

    The adsorption characteristics of airborne radioiodine and methyl iodide on impregnated charcoal were investigated. The activated charcoal tested was made from home-made oil-palm shells, and KI and TEDA were used as impregnants. A new technique was used to plot the dynamic partial adsorption isotherm at challenge concentrations (concentration range of iodine: 1-20 ppm v/v). Some adsorption properties of the impregnated charcoal were estimated with the dynamic partial adsorption isotherm. The dependences of the adsorption capacity and penetration behavior for airborne iodine and methyl iodide on the ambient conditions (temperature, relative humidity, and superficial velocity) were studied

  11. Theoretical and experimental investigation on adaptability of charcoal beds to containment filter venting in Italian nuclear power plant

    International Nuclear Information System (INIS)

    Caropreso, G.; Leonardi, A.; Perna, W.; Sgalambro, G.

    1989-01-01

    The work has been divided into three parts. The first one gives a description of the facilities under investigation during some selected accidental conditions, also described. The second part, which consists of an experimental work, tries to identify the behavior of charcoal beds in terms of pressure drop vs the aerosol mass loading and of aerosol retention efficiency. On the basis of the experimental findings, the prediction of the behavior of the real beds is carried out in the third part, as regards the pressure drop through the beds, related to the selected accident scenarios. In addition in this last part the results of a preliminary evaluation of the maximum decay power picked up by the beds without reaching the carbon self-ignition temperature have been reported

  12. Tests of some methods to remove I-131 from contaminated tap water

    International Nuclear Information System (INIS)

    Tagami, Keiko; Uchida, Shigeo

    2011-01-01

    Following the Fukushima Daiichi Nuclear Power Plant accident, iodine-131 concentrations in tap water higher than 100 Bq L"-"1 were reported by several local governments in the Kanto Plain in March 2011. To remove iodine-131 from tap water, five methods were tested in this study, that is, (1) boiling, (2) adding charcoals from oak or bamboo, (3) activated charcoals, (4) water purifiers, and (5) reverse osmosis (RO) treatments. Boiling was shown to be not effective in removing iodine-131 from tap water; indeed even higher concentrations may result from the liquid-volume reduction accompanying this process. Adding charcoals and activated charcoal treatment could not remove iodine-131, because no reduction of iodine-131 was observed in tap water samples after these treatments. Only limited effect was found with water purifiers with first several portions; no effect was expected with further water treatment. On the other hand, the RO showed high iodine-131 removal percentage of more than 95%, although the method needs about 5-10 L water to obtain 1 L of RO treated water. (author)

  13. Filterability of corrosion products formed between carbon steel and water. Influence of temperature and oxygen content

    International Nuclear Information System (INIS)

    Kelen, T.; Falk, I.

    1975-09-01

    A laboratory investigation has been made for the purpose of studying the influence of temperature and oxygen content on the filterability of corrosion products formed between carbon-steel and water. The experiments were performed in a high temperature loop where the water is initially heated in a pre-heater, then cooled and finally filtered. The corrosion products were transferred to thewater from a carbon-steel surface that had previously been neutron activated and the amount of iron present was determined from measurements of the γ-radiation emitted by Fe-59. Filterability was then computed as the ratio between the total amount of iron in the water phase and the amount of iron retained on the filter. The investigation covers a series of experiments at filtering temperatures of 20, 90 and 160 dec G, pre-heater temperatures up to 300 deg C and oxygen contents of 10 and 300 ppb O 2 . In addition the extent of iron deposition in the pre-heater and heat regulator has been determined after each series of experiments. Filterability exhibited a pronounced dependence upon both the filter and pre-heater temperatures and also upon the oxygen content. Among the conclusions to which the results lead is the observation that a strict comparison of filterability values for the fraction of corrosion products in cooled water samples is impossible when these are taken from 1) different sections of a high temperature system 2) a single sampling point while the system is being run up 3) two separate systems (e.g. steam boilers) operated at different temperatures 4) two separate systems operated at different oxygen contents. It accordingly appears advizable to restrict the use of cold-filtered samples from conventional steam-raising plants to the comparison of values relating to a single sampling point under constant operating conditions. (author)

  14. Long and Short-Term Effects of Fire on Soil Charcoal of a Conifer Forest in Southwest Oregon

    Directory of Open Access Journals (Sweden)

    Brett Morrissette

    2012-06-01

    Full Text Available In 2002, the Biscuit Wildfire burned a portion of the previously established, replicated conifer unthinned and thinned experimental units of the Siskiyou Long-Term Ecosystem Productivity (LTEP experiment, southwest Oregon. Charcoal C in pre and post-fire O horizon and mineral soil was quantified by physical separation and a peroxide-acid digestion method. The abrupt, short-term fire event caused O horizon charcoal C to increase by a factor of ten to >200 kg C ha−1. The thinned wildfire treatment produced less charcoal C than unthinned wildfire and thinned prescribed fire treatments. The charcoal formation rate was 1 to 8% of woody fuels consumed, and this percentage was negatively related to woody fuels consumed, resulting in less charcoal formation with greater fire severity. Charcoal C averaged 2000 kg ha−1 in 0–3 cm mineral soil and may have decreased as a result of fire, coincident with convective or erosive loss of mineral soil. Charcoal C in 3–15 cm mineral soil was stable at 5500 kg C ha−1. Long-term soil C sequestration in the Siskiyou LTEP soils is greatly influenced by the contribution of charcoal C, which makes up 20% of mineral soil organic C. This research reiterates the importance of fire to soil C in a southwestern Oregon coniferous forest ecosystem.

  15. The Charcoal Trap: Miombo woodlands versus the energy needs of people

    Science.gov (United States)

    Merbold, Lutz; Maurice, Muchinda; Mukufute M, Mukelabai; J, Scholes Robert; Waldemar, Ziegler; L, Kutsch Werner

    2010-05-01

    Miombo woodlands cover the transition zone between the dry open savannas and the moist forests in Southern Africa and occupy the vast area of 2.7 Mio km2. These ecosystems are highly disturbed by deforestation, mostly for charcoal production. Charcoal has become the largest source to satisfy urban energy demands. Even though when charcoal is a less energy-efficient fuel compared to firewood but by having higher energy densities and thus being cheaper to transport. Over the last decades, charcoal production has become a full-time employment for migrant workers, resulting in very different and no longer sustainable deforestation patterns. Strategies to reduce the pressure on the miombo woodlands have to take aspects of employment and energy demand into account. The objectives of the study were to examine above- and belowground carbon losses from an intact miombo woodland (protected forest reserve) in comparison to a highly disturbed surrounding area due to charcoal production. Detection of changes in carbon concentrations and stocks were made possible by applying biomass- and soil inventories as well as the eddy-covariance method. These local results were up-scaled to countrywide estimates of carbon lost to the atmosphere by deforestation in addition to carbon losses fossil fuel combustion. The results show, that in the worst case scenario which does not assume any regeneration, a developing country as Zambia, can easily emit as much carbon per capita as a developed Western world country such as France, when deforestation is included in the national inventory (up to 9.1 t of CO2 per capita). However, regeneration is very probably when post-harvest disturbance is low. Further studies on miombo regeneration are highly demanded.

  16. Apparatus for producing charcoal from fine lignocellulose wastes

    Energy Technology Data Exchange (ETDEWEB)

    Babicki, R; Perzynski, B

    1979-05-15

    A continuous retort for the production of charcoal from sawdust, nut shells, wood chips, etc. consists of a cylindrical tower separated from the top into the drying, pyrolyzing, and cooling sections. Dry feed is introduced at the top where it is spread by stirrer blades on 2 trays kept at 120 degrees and 160 degrees by external heating. The feed falls through discharge slots into a 2nd section where it is contacted with a limited supply of hot air while the temperature rises to about 600 degrees. Hot charcoal is swept by stirrer blades toward discharge slots and falls into a 3rd section where it is cooled and discharged. Off gases are used for predrying the incoming feed, scrubbed, and vented through a stack.

  17. Pollution patterns and underlying relationships of benzophenone-type UV-filters in wastewater treatment plants and their receiving surface water.

    Science.gov (United States)

    Wu, Ming-Hong; Li, Jian; Xu, Gang; Ma, Luo-Dan; Li, Jia-Jun; Li, Jin-Song; Tang, Liang

    2018-05-15

    The environmental behaviors of emerging pollutants, benzophenone-type UV filters (BP-UV filters) and their derivatives were investigated in four wastewater treatment plants (WWTPs), and their receiving surface waters in Shanghai. The concentration level of selected BP-UV filters in the WWTPs was detected from ngL -1 to μgL -1 . BP (621-951ngL -1 ) and BP-3 (841-1.32 × 10 3 ngL -1 ) were the most abundant and highest detection frequency individuals among the target BP-UV filters in influents, whereas BP (198-400ngL -1 ), BP-4 (93.3-288ngL -1 ) and BP-3 (146-258ngL -1 ) were predominant in effluents. BP-UV filters cannot be completely removed and the total removal efficiency varied widely (-456% to 100%) during the treatment process. It can be inferred that the usage of BP and BP-3 are higher than other BP-UV filters in the study area. The lowest and highest levels were BP-2 (ND-7.66ngL -1 ) and BP-3 (68.5-5.01 × 10 3 ng L -1 ) in the receiving surface water, respectively. Interestingly, the seasonal variation of BP-3 is larger than those of other BP-UV filters in surface water from Shanghai. There is no obvious pollution pattern of BP-UV filters in the surface water from the cosmetic factory area. The correlation analysis of BP-UV filters between WWTPs effluents and nearby downstream water samples suggested that BP-UV filters emitted from some WWTPs might be the main source of receiving surface water. Preliminary risk assessment indicated that the levels of BP-UV filters detected by the effluent posed medium to high risk to fish as well as other aquatic organisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Explaining low rates of sustained use of siphon water filter: evidence from follow-up of a randomised controlled trial in Bangladesh.

    Science.gov (United States)

    Najnin, Nusrat; Arman, Shaila; Abedin, Jaynal; Unicomb, Leanne; Levine, David I; Mahmud, Minhaj; Leder, Karin; Yeasmin, Farzana; Luoto, Jill E; Albert, Jeff; Luby, Stephen P

    2015-04-01

    To assess sustained siphon filter usage among a low-income population in Bangladesh and study relevant motivators and barriers. After a randomised control trial in Bangladesh during 2009, 191 households received a siphon water filter along with educational messages. Researchers revisited households after 3 and 6 months to assess filter usage and determine relevant motivators and barriers. Regular users were defined as those who reported using the filter most of the time and were observed to be using the filter at follow-up visits. Integrated behavioural model for water, sanitation and hygiene (IBM-WASH) was used to explain factors associated with regular filter use. Regular filter usage was 28% at the 3-month follow-up and 21% at the 6-month follow-up. Regular filter users had better quality water at the 6-month, but not at the 3-month visit. Positive predictors of regular filter usage explained through IBM-WASH at both times were willingness to pay >US$1 for filters, and positive attitude towards filter use (technology dimension at individual level); reporting boiling drinking water at baseline (psychosocial dimension at habitual level); and Bengali ethnicity (contextual dimension at individual level). Frequently reported barriers to regular filter use were as follows: considering filter use an additional task, filter breakage and time required for water filtering (technology dimension at individual level). The technological, psychosocial and contextual dimensions of IBM-WASH contributed to understanding the factors related to sustained use of siphon filter. Given the low regular usage rate and the hardware-related problems reported, the contribution of siphon filters to improving water quality in low-income urban communities in Bangladesh is likely to be minimal. © 2014 John Wiley & Sons Ltd.

  19. Conceptual Analysis: The Charcoal-Agriculture Nexus to Understand the Socio-Ecological Contexts Underlying Varied Sustainability Outcomes in African Landscapes

    Directory of Open Access Journals (Sweden)

    Miyuki Iiyama

    2017-06-01

    Full Text Available The production of charcoal is an important socio-economic activity in sub-Saharan Africa (SSA. Charcoal production is one of the leading drivers of rural land-use changes in SSA, although the intensity of impacts on the multi-functionality of landscapes varies considerably. Within a given landscape, charcoal production is closely interconnected to agriculture production both as major livelihoods, while both critically depend on the same ecosystem services. The interactions between charcoal and agricultural production systems can lead to positive synergies of impacts, but will more often result in trade-offs and even vicious cycles. Such sustainability outcomes vary from one site to another due to the heterogeneity of contexts, including agricultural production systems that affect the adoption of technologies and practices. Trade-offs or cases of vicious cycles occur when one-off resource exploitation of natural trees for charcoal production for short-term economic gains permanently impairs ecosystem functions. Given the fact that charcoal, as an important energy source for the growing urban populations and an essential livelihood for the rural populations, cannot be readily substituted in SSA, there must be policies to support charcoal production. Policies should encourage sustainable technologies and practices, either by establishing plantations or by encouraging regeneration, whichever is more suitable for the local environment. To guide context-specific interventions, this paper presents a new perspective—the charcoal-agriculture nexus—aimed at facilitating the understanding of the socio-economic and ecological interactions of charcoal and agricultural production. The nexus especially highlights two dimensions of the socio-ecological contexts: charcoal value chains and tenure systems. Combinations of the two are assumed to underlie varied socio-economic and ecological sustainability outcomes by conditioning incentive mechanisms to affect

  20. Review of the adsorption of radioactive krypton and xenon on activated charcoal

    International Nuclear Information System (INIS)

    Underhill, D.W.; Moeller, D.W.

    1981-01-01

    This report summarizes the results of a critical review of the published literature on the adsorption of radioactive krypton and xenon on activated charcoal. This review, which was supported by the Advisory Committee on Reactor Safeguards, US Nuclear Regulatory Commission, showed that (a) individual charcoals have a wide range of adsoprtion coefficients and therefore the performance of a given bed is heavily dependent on the quality of the charcoal it contains; (b) because of the detrimental effects of mass transfer on noble gas adsorption, consideration should be given to including this factor in developing technical specifications for adsorption beds; and (c) additional research is needed on the determination of the inter-relationship of moisture and temperature and their effects on adsorption bed performance

  1. Development of the charcoal adsorption technique for determination of radon content in natural gas

    International Nuclear Information System (INIS)

    Paewpanchon, P.; Chanyotha, S.

    2017-01-01

    A technique for the determination of the radon concentration in natural gas using charcoal adsorption has been developed to study the effects of parameters that influence the adsorption efficiency of radon onto activated charcoal. Several sets of experiments were conducted both in the laboratory and in an actual natural gas field for comparison. The results show that the adsorption capability of radon onto activated charcoal varies inversely with temperature, hydrocarbon concentration and the humidity contained within the natural gas. A technique utilizing dry ice as a coolant was found to be the most effective for trapping radon in natural gas samples at the production site. A desiccant can be used to remove moisture from the sampling gas. The technique described here increases the adsorption efficiency of activated charcoal by 10-20% compared to our previous study. (authors)

  2. Effects of insulin-free plasma on the charcoal-separation method for radioimmunoassay of insulin

    Energy Technology Data Exchange (ETDEWEB)

    Frayn, K N [Medical Research Council, Carshalton (UK). Toxicology Unit

    1976-03-01

    Radioimmunoassay of insulin in rat plasma using a popular method involving charcoal-separation of free and antibody-bound insulin was found to be unsatisfactory despite inclusion in standard tubes of insulin-free plasma prepared in either of two ways. Insulin-free plasma and untreated plasma had different effects on adsorption of free insulin to the charcoal. It was concluded that separation with charcoal is very sensitive to any prior treatment of the plasma. Particular care must be taken to ensure that hormone-free plasma is identical in all other respects to untreated plasma.

  3. Study of properties of active charcoal used for measuring of low radon activities

    International Nuclear Information System (INIS)

    Muellerova, M.; Holy, K.

    2011-01-01

    We used the German charcoal Silicarbon for adsorption of radon from the air. From the column with activated carbon arranged in a row, we obtain cut-off dependence of radon on activated carbon at various temperatures, cooling and also at different speeds, drawing radon air through activated charcoal. From information we have chosen the most appropriate combination of temperature and cooling flow in order to maximize capture efficiency of radon in the first column of active charcoal. To change active carbon and optimization of operation allows us to measure the radon exhalation rate from various materials up to the level of 3·10 -9 Bq/s. (authors)

  4. Impact of management strategies in the basal rot, charcoal rots epidemiology and Phaseolus vulgaris L. yield.

    Directory of Open Access Journals (Sweden)

    Ulacio Osorio Dilcia

    2013-02-01

    Full Text Available The effect of chemical, physical, biologycal and cultural strategies individually or combinated were evaluated in the epidemiology of the basal rot (Sclerotium rolfsii, charcoal rot (Macrophomina phaseolina and the Phaseolus vulgaris cv Tacarigua yield at Barinas state from Venezuela. In the experiment, Tebuconazole (Teb was applicated at seed (1 L/Ton and at soil, a los 30 y 60 days after of the sow (1 L/ha; Trichoderma harzianum (Tri was applicated at seed (15 g for each 1.5 k and to 15, 30, 45 y 60 days after of the sow (30 g/10 L of water. On the other hand, soil was solarizated (Sol during 15 days and calcium nitrate (Ca (60 g/10 L of water was applicated each 15 days until 60 days of growth of cultivated plants. Basal rot was registered as far as 42 days after of the sow, showing less of 5.3% in Teb y the combination SolTeb. The hightest incidence of this disease was observed in the treatment Tri with 28.5%, being highter that control (14.5%. Last to 42 days predominated the charcoal rot in the rest of the plants for a total of 100% of incidente in everything the treatments. Nevertheless, Teb showed the hightest yield with 555 k/ha, being different estatistically at treatment TriCa, which showed the lowest yield with 31 k/ha, however, the roots not formed nodules nitrogen uptake in these replications with the fungicide and Ca. It is concluded that S. rolfsii was sensible at action of some of the treatments; but not M. phaseolina; nevertheless, the plants were capables to produce seeds health apparently in treatments in which observed less severity of charcoal rot.

  5. Removal of virus to protozoan sized particles in point-of-use ceramic water filters.

    Science.gov (United States)

    Bielefeldt, Angela R; Kowalski, Kate; Schilling, Cherylynn; Schreier, Simon; Kohler, Amanda; Scott Summers, R

    2010-03-01

    The particle removal performance of point-of-use ceramic water filters (CWFs) was characterized in the size range of 0.02-100 microm using carboxylate-coated polystyrene fluorescent microspheres, natural particles and clay. Particles were spiked into dechlorinated tap water, and three successive water batches treated in each of six different CWFs. Particle removal generally increased with increasing size. The removal of virus-sized 0.02 and 0.1 microm spheres were highly variable between the six filters, ranging from 63 to 99.6%. For the 0.5 microm spheres removal was less variable and in the range of 95.1-99.6%, while for the 1, 2, 4.5, and 10 microm spheres removal was >99.6%. Recoating four of the CWFs with colloidal silver solution improved removal of the 0.02 microm spheres, but had no significant effects on the other particle sizes. Log removals of 1.8-3.2 were found for natural turbidity and spiked kaolin clay particles; however, particles as large as 95 microm were detected in filtered water. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Nanofiber Filters Eliminate Contaminants

    Science.gov (United States)

    2009-01-01

    With support from Phase I and II SBIR funding from Johnson Space Center, Argonide Corporation of Sanford, Florida tested and developed its proprietary nanofiber water filter media. Capable of removing more than 99.99 percent of dangerous particles like bacteria, viruses, and parasites, the media was incorporated into the company's commercial NanoCeram water filter, an inductee into the Space Foundation's Space Technology Hall of Fame. In addition to its drinking water filters, Argonide now produces large-scale nanofiber filters used as part of the reverse osmosis process for industrial water purification.

  7. Biogas from mesophilic digestion of cow dung using charcoal and gelatin as additives

    Science.gov (United States)

    Islam, Md Rashedul; Salam, Bodius; Rahman, Md Mizanur; Mamun, Abdullah Al

    2017-06-01

    Biogas, a source of renewable energy is produced from bacteria in the process of biodegradation of organic matter under anaerobic conditions. A research work was performed to find out the production of biogas from cow dung using charcoal and gelatin as additives. Five laboatory scale experimental set-up were constructed using 0, 0.2, 0.4, 0.6 and 0.8% gelatin with cow dung as additive to perform the research work. For all the set-up 0.5% charcoal was also added. All the set-ups were made from 1-liter capacity conical flask. The amount of water and cow dung was used respectively 382 gm. and 318 gm. in every set-up. Total solid content was maintained 8% throughout all set-ups. The digesters were operated at ambient temperature of 26°-32°C. The total gas yield without using gelatin additive was found to be 12 L/kg cow dung. The maximum gas yield was found from 0.2% gelatin additive and 23% more as compared to without gelatin gas production. The retention time varied from 28 to 79 days for the experiments.

  8. Use of remotely reporting electronic sensors for assessing use of water filters and cookstoves in Rwanda.

    Science.gov (United States)

    Thomas, Evan A; Barstow, Christina K; Rosa, Ghislaine; Majorin, Fiona; Clasen, Thomas

    2013-01-01

    Remotely reporting electronic sensors offer the potential to reduce bias in monitoring use of environmental health interventions. In the context of a five-month randomized controlled trial of household water filters and improved cookstoves in rural Rwanda, we collected data from intervention households on product compliance using (i) monthly surveys and direct observations by community health workers and environmental health officers, and (ii) sensor-equipped filters and cookstoves deployed for about two weeks in each household. The adoption rate interpreted by the sensors varied from the household reporting: 90.5% of households reported primarily using the intervention stove, while the sensors interpreted 73.2% use, and 96.5% of households reported using the intervention filter regularly, while the sensors interpreted no more than 90.2%. The sensor-collected data estimated use to be lower than conventionally collected data both for water filters (approximately 36% less water volume per day) and cookstoves (approximately 40% fewer uses per week). An evaluation of intrahousehold consistency in use suggests that households are not using their filters or stoves on an exclusive basis, and may be both drinking untreated water at times and using other stoves ("stove-stacking"). These results provide additional evidence that surveys and direct observation may exaggerate compliance with household-based environmental interventions.

  9. Lack of beneficial effect of activated charcoal in lead induced testicular toxicity in male albino rats

    Directory of Open Access Journals (Sweden)

    Samuel James Offor

    2017-09-01

    Full Text Available Objective: Lead is a multi-organ toxicant implicated in various diseases including testicular toxicity. In search of cheap and readily available antidote this study has investigated a beneficial role of activated charcoal in lead induced testicular toxicity in male albino rats. Materials and Method: Eighteen male albino rats were divided into three groups of six rats per group. Group 1 (control rats received deionised water (10 ml/kg, group 2 was given lead acetate solution 60 mg/kg and group 3 rats were given lead acetate (60 mg/kg followed by Activated charcoal, AC (1000 mg/kg by oral gavage daily for 28 days. Absolute and relative weights of testis, epididymal sperm reserve, testicular sperm count, percent sperm motility and percent sperm viability were monitored. Results: AC failed to show any significant beneficial effect in ameliorating lead induced testicular toxicity. Conclusions: There seem to be a poor adsorption on lead onto AC in vivo.

  10. Designing metallic iron based water filters: Light from methylene blue discoloration.

    Science.gov (United States)

    Btatkeu-K, B D; Tchatchueng, J B; Noubactep, C; Caré, S

    2016-01-15

    Available water filtration systems containing metallic iron (Fe(0) filters) are pragmatically designed. There is a lack of sound design criteria to exploit the full potential of Fe(0) filters. A science-based design relies on valuable information on processes within a Fe(0) filter, including chemical reactions, hydrodynamics and their relation to the performance of the filter. The aim of this study was to establish a simple method to evaluate the initial performance of Fe(0) filters. The differential adsorptive affinity of methylene blue (MB) onto sand and iron oxide is exploited to characterize the evolution of a Fe(0)/sand system using the pure sand system as operational reference. Five systems were investigated for more than 70 days: pure sand, pure Fe(0), Fe(0)/sand, Fe(0)/pumice and Fe(0)/sand/pumice. Individual systems were characterized by the extent of changes in pH value, iron breakthrough, MB breakthrough and hydraulic conductivity. Results showed that for MB discoloration (i) pure sand was the most efficient system, (ii) hybrid systems were more sustainable than the pure Fe(0) system, and (iii) the pores of used pumice are poorly interconnected. Characterizing the initial reactivity of Fe(0) filters using MB discoloration has introduced a powerful tool for the exploration of various aspects of filter design. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Organic/inorganic hybrid filters based on dendritic and cyclodextrin "nanosponges" for the removal of organic pollutants from water.

    Science.gov (United States)

    Arkas, Michael; Allabashi, Roza; Tsiourvas, Dimitris; Mattausch, Eva-Maria; Perfler, Reinhard

    2006-04-15

    Long-alkyl chain functionalized poly(propylene imine) dendrimer, poly(ethylene imine) hyperbranched polymer, and beta-cyclodextrin derivatives, which are completely insoluble in water, have the property of encapsulating organic pollutants from water. Ceramic porous filters can be impregnated with these compounds resulting in hybrid organic/ inorganic filter modules. These hybrid filter modules were tested for the effective purification of water, by continuous filtration experiments, employing a variety of water pollutants. It has been established that polycyclic aromatic hydrocarbons (PAHs) can be removed very efficiently (more than 95%), and final concentrations of several ppb (microg/ L) are easily obtained. Representatives of the pollutant group of trihalogen methanes (THMs), monoaromatic hydrocarbons (BTX), and pesticides (simazine) can also be removed (>80%), although the filters are saturated considerably faster in these cases.

  12. Has the woodfuel crisis returned? Urban charcoal consumption in Tanzania and its implications to present and future forest availability

    International Nuclear Information System (INIS)

    Mwampamba, Tuyeni Heita

    2007-01-01

    By lumping together charcoal and firewood consumption to determine the threats to forests from widespread use of woodfuel energy in sub-Sahara African, studies have greatly underestimated the individual impact of charcoal. Where high consumption levels are coupled with poor forest management and negligible regulation of the charcoal trade, the threat of an impending crisis caused by charcoal alone needs to be revisited. This study uses a survey of 244 households in six Tanzanian cities to determine whether current consumption levels, charcoal production techniques and forest management practices are sufficient to meet present and future charcoal demand. Projections to year 2100 were made to determine whether forests can continue to meet future demand under 24 scenarios that capture the numerous uncertainties that exist of converting charcoal consumption into forest needed. The findings suggest that the scenarios containing median consumption levels, low kiln efficiencies and low replenishment of harvested forests could deplete forests on public land by 2028. Best-case scenarios occurred when the opposite conditions existed. The study concludes that charcoal consumption is a real threat to the long-term persistence of forests in Tanzania and proposes policy interventions for alleviating forest loss

  13. Does Management Matter?: Using MISR to Assess the Effects of Charcoal Production and Management on Woodland Regeneration

    Science.gov (United States)

    Wurster, K.

    2008-12-01

    In much of Sub-Saharan Africa, more than 75 percent of a rapidly growing urban population depends on charcoal as their primary source of energy for cooking. The high demand for charcoal has led many to believe that charcoal harvesting catalyzes widespread deforestation. The Senegalese government and international donors have initiated projects within protected areas to combat deforestation and created land management plans to sustainably harvest charcoal. To date, the effects of forest management techniques on forest sustainability are still in question. This research uses a multiphase approach integrating satellite analysis with field surveys to assess the effect of varying forest management strategies on forest regeneration and sustainability after charcoal harvesting. Phase I involved testing the Multiangle Imaging SpectroRadiometer (MISR) satellites capability in detecting structural changes in vegetative cover caused by charcoal harvesting and production. Analysis of the MISR derived k(red) parameter showed MISR can consistently differentiate between forest cover types and successfully differentiates between sites at pre- and post-charcoal harvest stages. Phase II conducted forestry and social surveys comparing and contrasting local effects of land management, land use, and charcoal production on forest regeneration. Phase III uses the local surveys to validate and train the regional remote sensing data to assess the effectiveness of land management in promoting forest regeneration and sustainability after charcoal harvesting. Combining detailed local knowledge with the regional capabilities of MISR provide valuable insight into the factors that control woodland regeneration and sustainability. Preliminary results from phases II and III indicate that both field and remotely sensed variations in forest cover, tree regeneration, and land use change does not vary when compared against land management type. Final results will provide managers with additional

  14. Backflushable filter insert

    International Nuclear Information System (INIS)

    Keith, R.C.; Vandenberg, T.; Randolph, M.C.; Lewis, T.B.; Gillis, P.J. Jr.

    1988-01-01

    Filter elements are mounted on a tube plate beneath an accumulator chamber whose wall is extended by skirt and flange to form a closure for the top of pressure vessel. The accumulator chamber is annular around a central pipe which serves as the outlet for filtered water passing from the filter elements. The chamber contains filtered compressed air from supply. Periodically the filtration of water is stopped and vessel is drained. Then a valve is opened, allowing the accumulated air to flow from chamber up a pipe and down pipe, pushing the filtered water from pipe back through the filter elements to clean them. The accumulator chamber is so proportioned, relative to the volume of the system communicating therewith during backflushing, that the equilibrium pressure during backflushing cannot exceed the pressure rating of the vessel. However a line monitors the pressure at the top of the vessel, and if it rises too far a bleed valve is automatically opened to depressurise the system. The chamber is intended to replace the lid of an existing vessel to convert a filter using filter aid to one using permanent filter elements. (author)

  15. Airborne radioiodine species sampler and it's application for measuring removal efficiencies of large charcoal adsorbers for ventilation exhaust air

    International Nuclear Information System (INIS)

    Emel, D.; Hetzer, D.; Pelletier, C.A.; Barefoot, E.D.; Cline, J.E.

    1976-01-01

    A program, sponsored by the Electric Power Research Institute, is underway to determine the chemical species of radioiodine coming from LWR power plants and their persistence in the nearby environment. In support of this program, an airborne radioiodine sampler, developed and used by the AEC was modified and tested. This sampler consists of five components. The components are: (1) a particulate filter, (2) CdI 2 on a matrix of chromosorb-P to retain I 2 , (3) 4-Iodophenol on a matrix of activated alumina to retain HOI, (4) silver exchanged molecular sieve-13X to retain organic iodides, and (5) impregnated charcoal to serve as a control. The AEC sampler has not been proof-tested for periods over 48 hours or for flow rates above 0.10 l/s. For maximum sensitivity, a sampler is required to be used for periods of one to two weeks and at a flow rate giving a bed residence time of 0.1 sec. The AEC sampler was scaled up in size to attain an air sampling rate of 0.9 l/s. Each media for this sampler (except the particulate filter) was tested in the laboratory for retention of the iodine species; I 2 , Organic, and HOI. The tests were conducted at typical conditions observed at the main iodine release points at nuclear power plants. Confirmatory tests were run at operating nuclear power plants. The test results showed that under normal plant conditions the sampler could be operated at flow rates up to 0.80 l/s and differentiate the iodine species I 2 , HOI, and CH 3 I. The retention efficiencies of each media for its specie of radioiodine were found to be: I 2 on CdI 2 - 87 +- 5%, HOI on IPH 94 +- 4%, and CH 3 I on Ag 13-X or KI charcoal 99 +- 1%

  16. Adsorption of Acid Yellow-73 and Direct Violet-51 Dyes from Textile Wastewater by Using Iron Doped Corncob Charcoal

    Directory of Open Access Journals (Sweden)

    Mujtaba Baqar

    2015-06-01

    Full Text Available The presence of synthetic dyes in textile industry wastewater lead to deterioration of precious fresh water resources, making the need to remove dyes crucial for environmental protection. Recently, different techniques have been employed to remove these dyes from water resources. Among them, biosorption has gained tremendous popularity due to its eco-friendly nature and inexpensive method. In this study, the removal potential of two acid dyes, i.e. yellow-73 and direct violet-51, was assessed from textile effluent samples using iron modified corncob charcoal. The adsorption efficiency ranged between 93.93 ­ 97.96 % and 92.2 - 95.4 % for acid yellow-73 and direct violet-51, respectively. Furthermore, study highlights optimum parameters for successful adsorption of these dyes, such as stirring time (numbers, pH (numbers, temperature (numbers, and adsorbent dosage (numbers. Keeping in consideration these findings, we recommend the use of Iron Doped Corncob Charcoal (IDCC as a low-cost, efficient alternative for wastewater treatment, primarily minimizing the detrimental effects of hazardous dyes.

  17. Adsorptive removal of SO{sub 2} from coal burning by bamboo charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zengqiang; Qiu, Jianrong; Xiang, Jun; Zeng, Hancai [Huazhong Univ. of Science and Technology, Wuhan (China). Key Lab. of Coal Combustion

    2013-07-01

    Bamboo charcoal (BC) is an environmentally friendly, low-cost and renewable bioresource with porous structure. The adsorption property of bamboo charcoal for sulfur dioxide was investigated through a parametric study conducted with a bench-scale bed and mechanism study by BET, XPS, and temperature pro-grammed desorption (TPD). The varying parameters investigated include particle size of BC, moisture, oxygen, nitric oxide. The experimental data suggest that BC has a good adsorption potential for SO{sub 2}, which removal efficiency is greatly dependent upon the operation conditions. This study provides a good reference for BC to be used for SO{sub 2} removal in the actual flue gas over a wide range of conditions and further provided the preliminary experimental studies and theoretical discussion for bamboo charcoal to be used in multiple pollutants removing.

  18. Newspaper reporting and the emergence of charcoal burning suicide in Taiwan: A mixed methods approach.

    Science.gov (United States)

    Chen, Ying-Yeh; Tsai, Chi-Wei; Biddle, Lucy; Niederkrotenthaler, Thomas; Wu, Kevin Chien-Chang; Gunnell, David

    2016-03-15

    It has been suggested that extensive media reporting of charcoal burning suicide was a key factor in the rapid spread of this novel method in many East Asian countries. But very few empirical studies have explored the relationship between media reporting and the emergence of this new method of suicide. We investigated the changing pattern of media reporting of charcoal burning suicides in Taiwan during 1998-2002 when this method of suicide increased most rapidly, assessing whether the characteristics of media reporting were associated with the changing incidence of suicide using this method. A mixed method approach, combining quantitative and qualitative analysis of newspaper content during 1998-2002 was used. We compared differences in reporting characteristics before and after the rapid increase in charcoal burning suicide. Point-biserial and Pearson correlation coefficients were calculated to quantify the associations between the media item content and changes in suicide rates. During the period when charcoal burning suicide increased rapidly, the number of reports per suicide was considerably higher than during the early stage (0.31 vs. 0.10). Detailed reporting of this new method was associated with a post-reporting increase in suicides using the method. Qualitative analysis of news items revealed that the content of reports of suicide by charcoal burning changed gradually; in the early stages of the epidemic (1999-2000) there was convergence in the terminology used to report charcoal burning deaths, later reports gave detailed descriptions of the setting in which the death occurred (2001) and finally the method was glamourized and widely publicized (2001-2002). Our analysis was restricted to newspaper reports and did not include TV or the Internet. Newspaper reporting was associated with the evolution and establishment of charcoal burning suicide. Working with media and close monitoring of changes in the incidence of suicide using a new method might help

  19. Nickel removal from nickel plating waste water using a biologically active moving-bed sand filter.

    Science.gov (United States)

    Pümpel, Thomas; Macaskie, Lynne E; Finlay, John A; Diels, Ludo; Tsezos, Marios

    2003-12-01

    Efficient removal of dissolved nickel was observed in a biologically active moving-bed 'MERESAFIN' sand filter treating rinsing water from an electroless nickel plating plant. Although nickel is fully soluble in this waste water, its passage through the sand filter promoted rapid removal of approximately 1 mg Ni/l. The speciation of Ni in the waste water was modelled; the most probable precipitates forming under the conditions in the filter were predicted using PHREEQC. Analyses of the Ni-containing biosludge using chemical, electron microscopical and X-ray spectroscopic techniques confirmed crystallisation of nickel phosphate as arupite (Ni3(PO4)2 x 8H2O), together with hydroxyapatite within the bacterial biofilm on the filter sand grains. Biosorption contributed less than 1% of the overall sequestered nickel. Metabolising bacteria are essential for the process; the definitive role of specific components of the mixed population is undefined but the increase in pH promoted by metabolic activity of some microbial components is likely to promote nickel desolubilisation by others.

  20. Quality and energetic evaluation of the charcoal made of babassu nut residues used in the steel industry

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2014-10-01

    Full Text Available Brazil is the only country in the world that uses large scale charcoal in steel-making blast furnaces. Meantime, the monoculture plantations of Eucalyptus are not able to meet the demand for charcoal from the steel industries.Therefore, research is necessary, in order to use lignocellulosic residues for the production of charcoal with technological properties which are suitable for the reduction of iron ore. Given the above, the objective of this study was to evaluate the quality of charcoal which was made with babassu nut shell and designed for utilization in the steel industry in the function of the final carbonization temperature. All three layers of babassu nut shell (epicarp, mesocarp and endocarp were used together. The initial temperature of the test was 100ºC and the final temperatures were: 450ºC, 550ºC, 650ºC, 750ºC and 850ºC. For the charcoals produced, the following properties were determined: apparent relative density, energy density and fixed carbon stock, in addition to chemical compositions (immediate and elemental and heating values (higher and lower. Charcoal made of babassu nut shell showed high values of apparent density and energy density, and has a potential to replace coal and wood charcoal in the steel industry. The effect of the final carbonization temperature was expressed for all characteristics evaluated, except for the nitrogen content. Babassu nut shell must be carbonized at temperatures higher than 550ºC, so that the charcoal produced can be used in steel-making blast furnaces.

  1. Analysis for iodide in groundwater by x-ray fluorescence spectrometry after collection as silver iodide on activated charcoal

    International Nuclear Information System (INIS)

    Howe, P.T.

    1980-01-01

    The report describes the determination of microgram quantities of iodide in water by X-ray fluorescence spectrometry. The iodide is concentrated by precipitation as silver iodide on activated charcoal. If a 60-mL sample is available, a concentration of 0.12 mg/L can be detected. Precision (2σ) at the 1-mg/L level is +- 0.08 mg/L. (auth)

  2. Preparation of affordable and multifunctional clay-based ceramic filter matrix for treatment of drinking water.

    Science.gov (United States)

    Shivaraju, H Puttaiah; Egumbo, Henok; Madhusudan, P; Anil Kumar, K M; Midhun, G

    2018-02-01

    Affordable clay-based ceramic filters with multifunctional properties were prepared using low-cost and active ingredients. The characterization results clearly revealed well crystallinity, structural elucidation, extensive porosity, higher surface area, higher stability, and durability which apparently enhance the treatment efficiency. The filtration rates of ceramic filter were evaluated under gravity and the results obtained were compared with a typical gravity slow sand filter (GSSF). All ceramic filters showed significant filtration rates of about 50-180 m/h, which is comparatively higher than the typical GSSF. Further, purification efficiency of clay-based ceramic filters was evaluated by considering important drinking water parameters and contaminants. A significant removal potential was achieved by the clay-based ceramic filter with 25% and 30% activated carbon along with active agents. Desired drinking water quality parameters were achieved by potential removal of nitrite (98.5%), nitrate (80.5%), total dissolved solids (62%), total hardness (55%), total organic pollutants (89%), and pathogenic microorganisms (100%) using ceramic filters within a short duration. The remarkable purification and disinfection efficiencies were attributed to the extensive porosity (0.202 cm 3  g -1 ), surface area (124.61 m 2  g -1 ), stability, and presence of active nanoparticles such as Cu, TiO 2 , and Ag within the porous matrix of the ceramic filter.

  3. Liquid phase adsorption behavior of inulin-type fructan onto activated charcoal.

    Science.gov (United States)

    Li, Kecheng; Liu, Song; Xing, Ronge; Yu, Huahua; Qin, Yukun; Li, Pengcheng

    2015-05-20

    This study describes liquid phase adsorption characteristics of inulin-type fructan onto activated charcoal. Batch mode experiments were conducted to study the effects of pH, contact time, temperature and initial concentration of inulin. Nearly neutral solution (pH 6-8) was favorable to the adsorption and the equilibrium was attained after 40 min with the maximum adsorption Qmax 0.182 g/g (adsorbate/adsorbent) at 298 K. The experimental data analysis indicated that the adsorption process fitted well with the pseudo-second-order kinetic model (R(2) = 1) and Langmuir isotherms model (R(2) > 0.99). Thermodynamic parameters revealed that the adsorption process was spontaneous and exothermic with a physical nature. Inulin desorption could reach 95.9% using 50% ethanol solution and activated charcoal could be reused without significant losses in adsorption capacity. These results are of practical significance for the application of activated charcoal in the production and purification of inulin-type fructan. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Analysis of the thermal profiles and the charcoal gravimetric yield in three variations of rectangular brick

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Rogerio Lima Mota de; Alves Junior, Edson; Mulina, Bruno Henrique Oliveira; Borges, Valerio Luiz; Carvalho, Solidonio Rodrigues de [Federal University of Uberlandia - UFU, MG (Brazil). School of Mechanical Engineering - FEMEC], e-mails: rogerio@mecanica.ufu.br, edson@mec.ufu.br, vlborges@mecanica.ufu.br, srcarvalho@mecanica.ufu.br

    2010-07-01

    Charcoal assumes a major role in Brazilian economic scenario. The procedure for obtaining charcoal consists in carbonization of wood at certain specific temperatures in kilns. This ancient process has a few joined technologies and the kilns for such practice do not have any control instruments, in their great majority, becoming dependent on the ability of its operators. However, in recent decades several studies have been developed to improve the practice as well as the equipment that involve and control the stages of charcoal production. In this sense, this work proposes the analysis of the thermal profiles and the gravimetric yield in three variations of a rectangular brick kiln called RAC220: traditional (without any type of instrumentation), instrumented with thermal sensors (RTD PT100) and adapted with gasifier. The goal is to correlate temperature, gravimetric yield and quality of the produced charcoal. Immediate analyses were performed to determine the amount of fixed carbon, volatile gases and ashes contents in charcoal. Through such measurement procedures, together with statistical analysis, the aim is to identify an important tool to reduce the time of charcoal production and also contributes to minimize losses and to increase the thermal efficiency of the production process. (author)

  5. DEVELOPMENT OF THE CHARCOAL ADSORPTION TECHNIQUE FOR DETERMINATION OF RADON CONTENT IN NATURAL GAS.

    Science.gov (United States)

    Paewpanchon, P; Chanyotha, S

    2017-11-01

    A technique for the determination of the radon concentration in natural gas using charcoal adsorption has been developed to study the effects of parameters that influence the adsorption efficiency of radon onto activated charcoal. Several sets of experiments were conducted both in the laboratory and in an actual natural gas field for comparison. The results show that the adsorption capability of radon onto activated charcoal varies inversely with temperature, hydrocarbon concentration and the humidity contained within the natural gas. A technique utilizing dry ice as a coolant was found to be the most effective for trapping radon in natural gas samples at the production site. A desiccant can be used to remove moisture from the sampling gas. The technique described here increases the adsorption efficiency of activated charcoal by 10-20% compared to our previous study. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Determination of the suitability of certain deciduous species for production of furfural and charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Piotrowski, P.

    1979-01-01

    Determination of the suitability of chips of certain deciduous species for production of furfural and charcoal is discussed. The results of determination of suitability of unpeeled chips from cut branches (beech, birch, alder) and oak chips from wastes of production of furfural and also the suitability of cellolignin obtained from these chips for the production of charcoal are cited. An industrial unit of Swedish make equipped with a continuous hydrolyzer was used in hydrolysis tests of the deciduous chips. Unstripped birch, beech, and alder chips and oak chips from the wastes of wood processing contained 17-20 percent pentozanes and are suitable for industrial production of furfural. The content of substances soluble in an alcohol-benzene mixture in cellolignin from this feedstock was 21.1-30.5 percent. The amount of cellolignin obtained from chips of these species satisfied the demands of charcoal production. The charcoal yield was approximately 20 percent relative to the dry mass of carbonized cellolignin.

  7. [Effect of bio-charcoal on the trans of polycyclic aromatic hydrocarbons in soil-plant system with composted sludge application].

    Science.gov (United States)

    Hua, Li; Chen, Ying-xu; Wu, Wei-xiang; Ma, Hong-rui

    2009-08-15

    The effects of bio-charcoal acted as sludge-composting additive on soil characteristics and plant growth were studied. Compared with the treatment of composted sludge without bio-charcoal, soil cation exchange capacity in treatment of composted sludge with bio-charcoal increased over 5% and 10% respectively and soil nitrogen content increased 13% and 18% respectively for two kind soils. The composted sludge with bio-charcoal also resulted in 23% higher enhancement on ryegrass biomass and 8%-10% higher enhancement on ryegrass chlorophyll content. In addition, with the amendment of bio-charcoal, the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in composted sludge was decreased, which resulted in the lower absorption and accumulation of ryegrass to PAHs. Compared with the control, the PAHs concentration in ryegrass amended composted sludge with bio-charcoal decreased 27%-34%. The results indicated that composted sludge with bio-charcoal resulted in much more improvement on the plant growth as well as less negative effect on environment. Therefore, biocharcoal was in favor of the safe land application of sewage sludge.

  8. DEMONSTRATION BULLETIN: COLLOID POLISHING FILTER METHOD - FILTER FLOW TECHNOLOGY, INC.

    Science.gov (United States)

    The Filter Flow Technology, Inc. (FFT) Colloid Polishing Filter Method (CPFM) was tested as a transportable, trailer mounted, system that uses sorption and chemical complexing phenomena to remove heavy metals and nontritium radionuclides from water. Contaminated waters can be pro...

  9. Refinement of the charcoal meal study by reduction of the fasting period.

    Science.gov (United States)

    Prior, Helen; Ewart, Lorna; Bright, Jonathan; Valentin, Jean-Pierre

    2012-05-01

    The aim of this investigation was to determine whether a shorter fasting period than the one historically employed for the charcoal meal test, could be used when measuring gastric emptying and intestinal transit within the same animal, and to ascertain whether the scientific outcome would be affected by this benefit to animal welfare. Rats and mice were fasted for 0, 3, 6 or 18 hours before the oral administration of vehicle or atropine. One hour later, the animals were orally administered a charcoal meal, then 20 minutes later, they were killed and the stomach and small intestine were removed. Intestinal transit time (the position of the charcoal front as a percentage of the total length of the small intestine) and relative gastric emptying (weight of stomach contents) were measured. Rats and mice fasted for six hours showed results for gastric emptying and intestinal transit which were similar to those obtained in animals fasted for 18 hours. Reducing the fasting period reduced the body weight loss in both species, and mice on shorter fasts could be group-housed, as hunger-induced fighting was lessened. Therefore, a fasting period of six hours was subsequently adopted for charcoal meal studies at our institution. 2011 FRAME.

  10. Noninvasive mapping of water diffusional exchange in the human brain using filter-exchange imaging.

    Science.gov (United States)

    Nilsson, Markus; Lätt, Jimmy; van Westen, Danielle; Brockstedt, Sara; Lasič, Samo; Ståhlberg, Freddy; Topgaard, Daniel

    2013-06-01

    We present the first in vivo application of the filter-exchange imaging protocol for diffusion MRI. The protocol allows noninvasive mapping of the rate of water exchange between microenvironments with different self-diffusivities, such as the intracellular and extracellular spaces in tissue. Since diffusional water exchange across the cell membrane is a fundamental process in human physiology and pathophysiology, clinically feasible and noninvasive imaging of the water exchange rate would offer new means to diagnose disease and monitor treatment response in conditions such as cancer and edema. The in vivo use of filter-exchange imaging was demonstrated by studying the brain of five healthy volunteers and one intracranial tumor (meningioma). Apparent exchange rates in white matter range from 0.8±0.08 s(-1) in the internal capsule, to 1.6±0.11 s(-1) for frontal white matter, indicating that low values are associated with high myelination. Solid tumor displayed values of up to 2.9±0.8 s(-1). In white matter, the apparent exchange rate values suggest intra-axonal exchange times in the order of seconds, confirming the slow exchange assumption in the analysis of diffusion MRI data. We propose that filter-exchange imaging could be used clinically to map the water exchange rate in pathologies. Filter-exchange imaging may also be valuable for evaluating novel therapies targeting the function of aquaporins. Copyright © 2012 Wiley Periodicals, Inc.

  11. Importance of copper for nitrification in biological rapid sand filters for drinking water production

    DEFF Research Database (Denmark)

    Wagner, Florian Benedikt

    When anoxic groundwater is treated to produce drinking water, ammonium is commonly removed through nitrification in rapid sand filters. Nitrification is a biological process, and is mediated by chemoautotrophic microorganisms. Ammonia oxidizing bacteria (AOB) and archaea (AOA) oxidize ammonium...... to remove ammonium to below the national drinking water quality standard of 0.05 mg NH4+/L. A better process understanding of nitrifying biofilters is needed to optimize treatment performance, remediate existing filters, and to prevent future nitrification problems. The frequent incidents of insufficient...... in the oxidation of ammonia to hydroxylamine. Thus, slow and incomplete nitrification could be caused by a lack of sufficient amounts of copper. The overall aim of this PhD project was therefore to determine whether copper supplementation could enhance nitrification in rapid sand filters with incomplete...

  12. Salts of the iodine oxyacids in the impregnation of adsorbent charcoal for trapping radioactive methyliodide

    International Nuclear Information System (INIS)

    1980-01-01

    A method of removing methyliodide 131 gas from the effluent of a reactor, comprises passing the effluent gas through a charcoal sorbent formed by first contacting charcoal with a liquid containing a hypoiodite obtained when an aqueous mixture of a first component comprising a salt of an iodine oxyacid selected from periodate, iodate and hypoiodite and a second component selected from iodine and/or an iodide salt is adjusted to a pH of about 10 by the addition of an inorganic base, and then contacting the resulting impregnated charcoal with a tertiary amine. (author)

  13. Characterization of filters cartridges from the water polishing system of IEA-R1 reactor: radiometric methods

    International Nuclear Information System (INIS)

    Tessaro, Ana Paula G.; Vicente, Roberto

    2015-01-01

    The acceptance of radioactive waste in a repository depends primarily on knowledge of the radioisotopic inventory of the material, according to regulations established by regulatory agencies. The primary characterization is also a fundamental action to determine further steps in the management of the radioactive wastes. The aim of this work is to report the development of non-destructive methods for primary characterization of filters cartridges discarded as radioactive waste. The filters cartridges are used in the water polishing system of the IEA-R1 reactor retaining the particles in suspension in the reactor cooling water. The IEA-R1 is a pool type reactor with a thermal power of 5 MW, moderated and cooled with light water. It is located in the Energy and Nuclear Research Institute (IPEN-CNEN), in São Paulo, Brazil. The cartridge filters become radioactive waste when they are saturated and do not meet the required flow for the proper operation of the water polishing system. The activities of gamma emitters present in the filters are determined using gamma spectrometry, dose rate measurements and the Point Kernel Method to correlate results from both measurements. For the primary characterization, one alternative method is the radiochemical analysis of slices taken from each filter, what presents the disadvantage of higher exposures personnel and contamination risks. Another alternative method is the calibration of the measurement geometry of a gamma spectrometer, which requires the production of a standard filter. Both methods are necessary but can not be used in operational routine of radioactive waste management owing to cost and complexity. The method described can be used to determine routinely the radioactive inventory of these filters and other radioactive wastes, avoiding the necessity of destructive radiochemical analysis, or the necessity of calibrating the geometry of measurement. (author)

  14. Methyl iodide retention on charcoal sorbents at parts-per-million concentrations

    International Nuclear Information System (INIS)

    Wood, G.O.; Vogt, G.J.; Kasunic, C.A.

    1978-01-01

    Breakthrough curves for charcoal beds challenged by air containing parts-per-million methyl iodide ( 127 I) vapor concentrations were obtained and analyzed. A goal of this research is to determine if sorbent tests at relatively high vapor concentrations give data that can be extrapolated many orders of magnitude to the region of interest for radioiodine retention and removal. Another objective is to identify and characterize parameters that are critical to the performance of a charcoal bed in a respirator cartridge application. Towards these ends, a sorbent test system was built that allows experimental variations of the parameters of challenge vapor concentration, volumetric flow rate, bed depth, bed diameter, and relative humidity. Methyl iodide breakthrough was measured at a limit of 0.002 ppM using a gas chromatograph equipped with a linearized electron capture detector. Several models that have been proposed to describe breakthrough curves were tested against experimental data. A variety of charcoals used or proposed for use in radioiodine air filtration systems have been tested against 25.7 ppM methyl iodide to obtain these parameters and protection (decomtamination) factors. Effects of challenge concentration, relative humidity, and bed diameter were also investigated. Significant challenge concentration dependence was measured (more efficiency at lower concentration) for two types of charcoals. Increased relative humidity greatly decreased breakthrough times for a given protection factor. Increased bed diameter greatly increased breakthrough times for a given protection factor. Implications of these effects for a test method are discussed

  15. Thoron Mitigation System based on charcoal bed for applications in thorium fuel cycle facilities (part 2): Development, characterization, and performance evaluation.

    Science.gov (United States)

    Sudeep Kumara, K; Sahoo, B K; Gaware, J J; Sapra, B K; Mayya, Y S; Karunakara, N

    2017-06-01

    Exposure due to thoron ( 220 Rn) gas and its decay products in a thorium fuel cycle facility handling thorium or 232 U/ 233 U mixture compounds is an important issue of radiological concern requiring control and mitigation. Adsorption in a flow-through charcoal bed offers an excellent method of alleviating the release of 220 Rn into occupational and public domain. In this paper, we present the design, development, and characterization of a Thoron Mitigation System (TMS) for industrial application. Systematic experiments were conducted in the TMS for examining the 220 Rn mitigation characteristics with respect to a host of parameters such as flow rate, pressure drop, charcoal grain size, charcoal mass and bed depth, water content, and heat of the carrier gas. An analysis of the experimental data shows that 220 Rn attenuation in a flow through charcoal bed is not exponential with respect to the residence time, L/U a (L: bed depth; U a : superficial velocity), but follows a power law behaviour, which can be attributed to the occurrence of large voids due to wall channeling in a flow through bed. The study demonstrates the regeneration of charcoal adsorption capacity degraded due to moisture adsorption, by hot air blowing technique. It is found that the mitigation factor (MF), which is the ratio of the inlet 220 Rn concentration (C in ) to the outlet 220 Rn concentration (C out ), of more than 10 4 for the TMS is easily achievable during continuous operation (>1000 h) at a flow rate of 40 L min -1 with negligible (evaluated for its long-term performance and overall effectiveness in mitigating 220 Rn levels in the workplace. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The charcoal-degradation nexus: contested 'fuelscapes' in the sub-Saharan drylands of northern Kenya

    Science.gov (United States)

    Bergmann, Christoph; Petersen, Maike; Roden, Paul; Nüsser, Marcus

    2017-04-01

    Charcoal ranks amongst the most commercialized but least regulated commodities in sub-Saharan Africa. Despite its prevalence as an energy source for cooking and heating, localized environmental and livelihood impacts of charcoal production are poorly understood so far. The identified research deficit is amplified by widespread negative views of this activity as a poverty-driven cause of deforestation and land degradation. However, the charcoal-degradation nexus is apparently more complicated, not least because the extraction of biomass from already degraded woodlands can also be interpreted as an appropriate option under given management regimes. In order to better calibrate existing research agendas to site-specific geographies of charcoal production, we propose a re-conceptualization of such energy landscapes as 'fuelscapes' with complex material and social dimensions. The concept is tested with reference to a case study in Central Pokot, northern Kenya, where charcoal production only began in the early 1990's. Based on the assumption that the fine line between sustainable land management and degradation in dryland energy landscapes is not only highly variable but also increasingly contested, our study combines the knowledge input of different stakeholders with longitudinal time series of remote sensing data. Based on the results of our interdisciplinary analyses, we outline an integrated tool for the co-operative monitoring and management of prevailing degradation processes against the background of diversified livelihood activities in sub-Saharan drylands.

  17. Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal

    International Nuclear Information System (INIS)

    Qian Junmin; Wang Jiping; Jin Zhihao

    2004-01-01

    Highly porous silicon carbide (SiC) ceramic with woodlike microstructure has been prepared at 1400-1600 deg. C by carbothermal reduction reaction of charcoal/silica composites in static argon atmosphere. These composites were fabricated by infiltrating silica sol into a porous biocarbon template from oak wood using a vacuum/pressure infiltration process. The morphology of resulting porous SiC ceramic, as well as the conversion mechanism of wood to porous SiC ceramic, have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. Experimental results show that the biomorphic cellular morphology of oak wood charcoal is remained in the porous SiC ceramic with high precision that consists of β-SiC with traces of α-SiC. Silica in the charcoal/silica composites exists in the cellular pores in form of fibers and rods. The SiC strut material is formed by gas-solid reaction between SiO (g) and C (s) during the charcoal-to-ceramic conversion. The densification of SiC strut material may occur at moderate temperatures and holding time

  18. Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Qian Junmin; Wang Jiping; Jin Zhihao

    2004-04-25

    Highly porous silicon carbide (SiC) ceramic with woodlike microstructure has been prepared at 1400-1600 deg. C by carbothermal reduction reaction of charcoal/silica composites in static argon atmosphere. These composites were fabricated by infiltrating silica sol into a porous biocarbon template from oak wood using a vacuum/pressure infiltration process. The morphology of resulting porous SiC ceramic, as well as the conversion mechanism of wood to porous SiC ceramic, have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. Experimental results show that the biomorphic cellular morphology of oak wood charcoal is remained in the porous SiC ceramic with high precision that consists of {beta}-SiC with traces of {alpha}-SiC. Silica in the charcoal/silica composites exists in the cellular pores in form of fibers and rods. The SiC strut material is formed by gas-solid reaction between SiO (g) and C (s) during the charcoal-to-ceramic conversion. The densification of SiC strut material may occur at moderate temperatures and holding time.

  19. Sub-micron filter

    Science.gov (United States)

    Tepper, Frederick [Sanford, FL; Kaledin, Leonid [Port Orange, FL

    2009-10-13

    Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2/g have been found to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of microbes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolecules such as proteins may be separated from each other based on their electronegative charges.

  20. Design, construction and operation of a new filter approach for treatment of surface waters in Southeast Asia

    Science.gov (United States)

    Frankel, R. J.

    1981-05-01

    A simple, inexpensive, and efficient method of water treatment for rural communities in Southeast Asia was developed using local materials as filter media. The filter utilizes coconut fiber and burnt rice husks in a two-stage filtering process designed as a gravityfed system without the need for backwashing, and eliminates in most cases the need of any chemicals. The first-stage filter with coconut fiber acts essentially as a substitute for the coagulation and sedimentation phases of conventional water-treatment plants. The second-stage filter, using burnt rice husks, is similar to slow sand filtration with the additional benefits of taste, color and odor removals through the absorption properties of the activated carbon in the medium. This paper reports on the design, construction costs, and operating results of several village size units in Thailand and in the Philippines.

  1. Compatibility between Hydraulic and Mechanical Properties of Ceramic Water Filters

    Directory of Open Access Journals (Sweden)

    Riyadh Z. Al Zubaidy

    2017-05-01

    Full Text Available In this paper, ceramic water filters were produced by using ten mixtures of different ratios of red clay and sawdust under different production conditions. The physical properties of these filters were tested. The production conditions include five press pressures ranged from 10 to 50MPa and a firing schedule having three different final temperatures of 1000, 1070, and 1100˚C. The tests results of the physical properties were used to obtain best compatibility between the hydraulic and the mechanical properties of these filters. Results showed that as the press pressure and the firing temperature are increased, the bulk density and the compressive and bending strengths of the produced filters are increased, while, the porosity and absorption are decreased. As the sawdust content is increased the bulk density and the compressive and bending strengths are decreased, while, the porosity and absorption are increased. High hydraulic conductivity is obtained at a firing temperature of 1070˚C when the sawdust content is less than 10%. Otherwise, it is increased as sawdust content and the firing temperature are increased. Filters made of mixture 92.5% red clay and 7.5% sawdust formed . under a press pressure of 20MPa and a firing temperature of 1070˚C gave the best compatibility between hydraulic and mechanical properties. In this case, the hydraulic conductivity was 50mm/day, the compressive strength was 14MPa, and the bending strength was 10.8MPa.

  2. Depth investigation of rapid sand filters for drinking water production reveals strong stratification in nitrification biokinetic behavior

    DEFF Research Database (Denmark)

    Tatari, Karolina; Smets, Barth F.; Albrechtsen, Hans-Jørgen

    2016-01-01

    The biokinetic behavior of NH4 + removal was investigated at different depths of a rapid sand filter treating groundwater for drinking water preparation. Filter materials from the top, middle and bottom layers of a full-scale filter were exposed to various controlled NH4 + loadings in a continuous...

  3. Microbial activity in granular activated carbon filters in drinking water treatment

    NARCIS (Netherlands)

    Knezev, A.

    2015-01-01

    The investigations described are carried out to analyse the microbiological processes in relation to the GAC characteristics and the removal of natural organic matter (NOM) in Granular Activated Carbon filters (GACFs) in water treatment. The main goal of the study was to obtain a qualitative

  4. Adsorption–photodegradation of humic acid in water by using ZnO coupled TiO{sub 2}/bamboo charcoal under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuejiang, E-mail: wangxj@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Wu, Zhen [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Wang, Yin [Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, Shanghai 200092 (China); Wang, Wei; Wang, Xin; Bu, Yunjie; Zhao, Jianfu [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2013-11-15

    Highlights: • ZnO coupled TiO{sub 2}/bamboo charcoal is prepared using a microwave-assisted sol–gel method. • HA degradation is achieved through synergistic BC adsorption and ZnO-TiO{sub 2} photocatalysis. • ZnO-TiO{sub 2}/BC has high photodegradation efficiency for HA under visible-light irradiation. • ZnO-TiO{sub 2}/BC is an effective photocatalyst for the removal of organic pollutants from water. -- Abstract: ZnO coupled TiO{sub 2}/bamboo charcoal (ZnO-TiO{sub 2}/BC) was prepared using the sol–gel method combined with microwave irradiation. The ZnO-TiO{sub 2}/BC and TiO{sub 2}/BC were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), N{sub 2} adsorption (BET), and UV–vis diffuse reflectance spectroscopy (UV–vis-DRS). The ZnO dopant promoted the transformation of anatase TiO{sub 2} to rutile phase, and a significant red shift of absorption edge was brought out due to the interfacial coupling effect between ZnO and TiO{sub 2} particles. The BET specific surface area and total pore volume decreased with ZnO doping, indicating that some micropores were blocked. SEM studies indicated that ZnO was almost uniformly deposited on the surface of the ZnO-TiO{sub 2}/BC. The adsorption and photocatalytic degradation experiments showed that the photo-degrade efficiency for Zno-TiO{sub 2}/BC was higher than that of TiO{sub 2}/BC, and for both composites, the removal efficiency of HA increased as pH decreased from 10.0 to 2.0. The degradation of HA by ZnO-TiO{sub 2}/BC and TiO{sub 2}/BC fitted well with the Langmuir–Hinshelwood kinetics model, and HA degradation was achieved through a synergistic mechanism of adsorption and photocatalysis. ZnO-TiO{sub 2}/BC could be used as an effective and alternative photocatalyst for the treatment of water contaminated by organic pollutants.

  5. Field application of farmstead runoff to vegetated filter strips: surface and subsurface water quality assessment.

    Science.gov (United States)

    Larson, Rebecca A; Safferman, Steven I

    2012-01-01

    Farmstead runoff poses significant environmental impacts to ground and surface waters. Three vegetated filter strips were assessed for the treatment of dairy farmstead runoff at the soil surface and subsurface at 0.3- or 0. 46-m and 0. 76-m depths for numerous storm events. A medium-sized Michigan dairy was retrofitted with two filter strips on sandy loam soil and a third filter strip was implemented on a small Michigan dairy with sandy soil to collect and treat runoff from feed storage, manure storage, and other impervious farmstead areas. All filter strips were able to eliminate surface runoff via infiltration for all storm events over the duration of the study, eliminating pollutant contributions to surface water. Subsurface effluent was monitored to determine the contributing groundwater concentrations of numerous pollutants including chemical oxygen demand (COD), metals, and nitrates. Subsurface samples have an average reduction of COD concentrations of 20, 11, and 85% for the medium dairy Filter Strip 1 (FS1), medium dairy Filter Strip 2 (FS2), and the small Michigan dairy respectively, resulting in average subsurface concentrations of 355, 3960, and 718 mg L COD. Similar reductions were noted for ammonia and total Kjeldahl nitrogen (TKN) in the subsurface effluent. The small Michigan dairy was able to reduce the pollutant leachate concentrations of COD, TKN, and ammonia over a range of influent concentrations. Increased influent concentrations in the medium Michigan dairy filter strips resulted in an increase in COD, TKN, and ammonia concentrations in the leachate. Manganese was leached from the native soils at all filter strips as evidenced by the increase in manganese concentrations in the leachate. Nitrate concentrations were above standard drinking water limits (10 mg L), averaging subsurface concentrations of 11, 45, and 25 mg L NO-N for FS1, FS2, and the small Michigan dairy, respectively. Copyright © by the American Society of Agronomy, Crop Science

  6. SUPPLEMENTAL ACTIVATED CHARCOAL AND ENERGY INCREASE INTAKE OF MEDITERRANEAN SHRUBS BY SHEEP AND GOATS

    Directory of Open Access Journals (Sweden)

    Jozo Rogošić

    2008-07-01

    Full Text Available Utilization of the Mediterranean shrubby vegetation is often limited by secondary compounds, such as terpenes, which at too high concentrations can adversely affect forage intake and animal health. Ingesting compounds such as activated charcoal and energy can ameliorate the negative effects of secondary compounds and enable animals to eat more shrubs. Thus, our objectives were to determine if supplemental charcoal, energy and numbers of shrub species offered influenced intake of shrubs by sheep and goats. We conducted three experiments each with 12 lambs and 12 kids (6 activated charcoal vs. 6 controls. In the first experiment, we initially offered three shrubs (Juniperus phoenicea, Helichrysum italicum and Juniperus oxicedrus, then in the second one, two shrubs (Juniperus phoenicea and Helichrysum italicum, and finally one shrub (Juniperus phoenicea in the third experiment. In all three experiments (Exp. 1, P<0.001; Exp. 2, P < 0.0003 and Exp. 3, P < 0.03, supplemental charcoal and energy had a positive effect on total shrub intake for both lambs and kids. Kids ate more shrubs than lambs did in all three experiments (P<0.01. Regardless of experiment, both species of animals showed a numerical decrease in total shrub intake, with or without supplemental charcoal and energy, as the number of shrub species on offer decreased. Our findings support the hypothesis that biochemical diversity plays an important role in diet selection, thus enabling animals to better meet their nutritional needs and avoid toxicity.

  7. Molecular and structural properties of polymer composites filled with activated charcoal particles

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Dahlang, E-mail: dtahir@fmipa.unhas.ac.id; Bakri, Fahrul [Department of Physics, Hasanuddin University, Makassar 90245 Indonesia (Indonesia); Liong, Syarifuddin [Department of Chemistry, Hasanuddin University, Makassar 90245 Indonesia (Indonesia)

    2016-03-11

    We have studied the molecular properties, structural properties, and chemical composition of composites by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and X-ray fluorescence (XRF) spectroscopy, respectively. FTIR spectra shows absorption band of hydroxyl group (-OH), methyl group (-CH{sub 3}) and aromatic group (C-C). The absorption band for aromatic group (C-C) shows the formation of carbonaceous in composites. XRF shows chemical composition of composites, which the main chemicals are SO{sub 3}, Cl, and ZnO. The loss on ignition value (LOI) of activated charcoal indicates high carbonaceous matter. The crystallite size for diffraction pattern from hydrogel polymer is about 17 nm and for activated charcoal are about 19 nm. The crystallite size of the polymer is lower than that of activated charcoal, which make possible of the particle from filler in contact with each other to form continuous conducting polymer through polymer matrix.

  8. ECOLO-HOUSE in the heavy snow-fall region. Purification of sewerage water; Yukiguni ekoro house. Gesui shorisui no joka

    Energy Technology Data Exchange (ETDEWEB)

    Umemiya, H; Kitamura, K [Yamagata University, Yamagata (Japan)

    1997-11-25

    In a local town like Yonezawa city, a large city type sewerage system has not yet been spread. Most houses use septic tanks treating waste water from both toilet and kitchen/bath. The treated water from them is discharged directly into surface water of side ditches, etc., which produces environmental problems such as water pollution and eutrophication. Enhancement of purification effects was studied by putting walnut charcoal and bacilli into the aeration tank circulating air in the septic tank to secure bacteria and improve work of them in the aeration tank. The treated water is further reused as drinking water using peat layer. Walnut charcoal can be a nest of bacteria. By this, it became possible to cope also with environmental changes such as water quality and temperature in the septic tank. It is possible to always keep water quality in the purifying tank and quality of the treated water in a stabilized condition. Moreover, existence of bacteria can be confirmed even inside the pores of walnut charcoal can be confirmed. Porosity of walnut charcoal is made use of, and it is useful to use walnut charcoal as a nest of bacteria in the septic tank. 5 refs., 12 figs.

  9. A Study of Polishing Feature of Ultrasonic-Assisted Vibration Method in Bamboo Charcoal

    Directory of Open Access Journals (Sweden)

    Hsin-Min Lee

    2017-01-01

    Full Text Available Focusing on the feature of porosity in bamboo charcoal, this study applies the ultrasonic-assisted vibration method to perform surface polishing of the silicon wafer workpiece. The self-developed bamboo charcoal polishing spindle and ultrasonic- assisted vibration mechanism are attached to a single lapping machine. In the machining process, ultrasonic vibration enables the diamond slurry to smoothly pass through the microscopic holes of bamboo charcoal; the end of the bamboo charcoalis able to continue machining on the surface of the workpiece through the grasping force which exists in the microscopic holes. Under the polishing and machining parameters of ultrasonic-assisted vibration, with a diamond slurry concentration of 0.3%, the experimental results show a polishing time of 20 min, a loading of 25 N on the workpiece surface, a spindle speed of 1200 rpm, a vibration frequency of 30 kHz and the original surface roughness value of Ra 0.252 μm equals that of a mirror-like surface at Ra 0.017 μm. These research results prove that by using bamboo charcoal and ultrasonic-assisted vibration for polishing, a very good improvement can be achieved on the workpiece surface.

  10. Radon removal from gaseous xenon with activated charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Hieda, K.; Hiraide, K.; Hirano, S.; Kishimoto, Y.; Kobayashi, K.; Koshio, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Liu, J.; Martens, K. [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Moriyama, S. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Nakahata, M. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nishiie, H.; Ogawa, H.; Sekiya, H.; Shinozaki, A. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Suzuki, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Takachio, O.; Takeda, A.; Ueshima, K.; Umemoto, D. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); and others

    2012-01-01

    Many low background experiments using xenon need to remove radioactive radon to improve their sensitivities. However, no method of continually removing radon from xenon has been described in the literature. We studied a method to remove radon from xenon gas through an activated charcoal trap. From our measurements we infer a linear relationship between the mean propagation velocity v{sub Rn} of radon and v{sub Xe} of xenon in the trap with v{sub Rn}/v{sub Xe}=(0.96{+-}0.10) Multiplication-Sign 10{sup -3} at -85 Degree-Sign C. As the mechanism for radon removal in this charcoal trap is its decay, knowledge of this parameter allows us to design an efficient radon removal system for the XMASS experiment. The verification of this system found that it reduces radon by a factor of 0.07, which is in line with its expected average retention time of 14.8 days for radon.

  11. The segregation of silver nanoparticles in low-cost ceramic water filters

    International Nuclear Information System (INIS)

    Larimer, Curtis; Ostrowski, Nicole; Speakman, Jacquelyn; Nettleship, Ian

    2010-01-01

    As an impregnated constituent in low-cost ceramic water filters, silver nanoparticles have a demonstrated antibacterial effect. The bactericidal mechanism is believed to be based on direct contact between silver and the cell wall of a contaminant organism. In this study microstructural analysis was used to examine the effect of the processing method on the distribution of silver nanoparticles in the filter material. Silver nanofluid was impregnated into fired clay ceramic samples by a low-cost soak-and-dry method. Analyses of filter samples by scanning electron microscopy, energy dispersive spectroscopy, and digital optical topological mapping showed that silver was concentrated in near surface pores, a condition that is not optimal for highest probability of silver contact. A simple experiment showed that segregation of silver occurs during the drying phase of impregnation. Drying curves showed that 90% of contained liquid evaporates from the external surface.

  12. Development and application of charcoal sorbents for cryopumping fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Sedgley, D.W. (Grumman Corp., Bethpage, NY (USA). Space Systems Div.)

    1989-06-01

    Progress has been made in defining the capabilities of charcoal as the most promising absorbent to be used in cryopumps for fusion power application. The capabilities of alternative methods of cryopumping helium have been examined in a literature survey and by test, and the results are described here. Considerations include pumping speed, capacity to accumulate pumped gas, ease of reconditioning, use of alternative materials and tolerance to the fusion environment. Vacuum pumps for future fusion devices must handle large quantities of helium/hydrogen isotopes and other impurities. Cryopumps or turbomolecular pumps have demonstrated the capability on a small scale, and each has an important advantage: TMPs do not accumulate gases; cryopumps can separate helium from other effluents. This paper includes a review of a method for selecting charcoals for helium cryopumping, testing of a continuously operating cryopump system, and definition of a design that is based on the requirements of the Next European Torus. Tritium limits are satisfied. The pump design incorporates the charcoal sorbent system that has been recently developed and is based on a reasonable extrapolation of current state-of-the-art. Evaluation of alternative methods of separating helium and other gases led to selection of a movable barrier as the preferred solution. (orig.).

  13. Calibration of diffusion barrier charcoal detectors and application to radon sampling in dwellings

    International Nuclear Information System (INIS)

    Montero C, M.E.; Colmenero S, L.; Villalba, L.; Saenz P, J.; Cano J, A.; Moreno B, A.; Renteria V, M.; Herrera P, E.F.; Cruz G, S. De la; Lopez M, A.

    2003-01-01

    Some calibration conditions of diffusion barrier charcoal canister (DBCC) detectors for measuring radon concentration in air were studied. A series of functional expressions and graphs were developed to describe relationship between radon concentration in air and the activity adsorbed in DBCC, when placed in small chambers. A semi-empirical expression for the DBCC calibration was obtained, based on the detector integration time and the adsorption coefficient of radon on activated charcoal. Both, the integration time for 10 % of DBCC of the same batch, and the adsorption coefficient of radon for the activated charcoal used in these detectors, were experimentally determined. Using these values as the calibration parameters, a semi-empirical calibration function was used for the interpretation of the radon activities in the detectors used for sampling more than 200 dwellings in the major cities of the state of Chihuahua, Mexico. (Author)

  14. Study on radon concentration monitoring using activated charcoal canisters in high humidity environments

    International Nuclear Information System (INIS)

    Wang Yuexing; Wang Haijun; Yang Yifang; Qin Sichang; Wang Zhentao; Zhang Zhenjiang

    2009-01-01

    The effects of humidity on the sensitivity using activated charcoal canisters for measuring radon concentrations in high humidity environments were studied. Every canister filled with 80 g of activated charcoal, and they were exposed to 48 h or 72 h in the relative humidity of 68%, 80%, 88% and 96% (28 degree C), respectively. The amount of radon absorbed in the canisters was determined by counting the gamma rays from 214 Pb and 214 Bi (radon progeny). The results showed that counts decreased with the increase of relative humidity. There was a negative linear relationship between count and humidity. In the relative humidity range of 68%-96%, the sensitivity of radon absorption decreased about 2.4% for every 1% (degree)rise in humidity. The results also showed that the exposure time of the activated charcoal canisters should be less than 3 days. (authors)

  15. Calibration of diffusion barrier charcoal detectors and application to radon sampling in dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Montero C, M.E.; Colmenero S, L.; Villalba, L.; Saenz P, J.; Cano J, A.; Moreno B, A.; Renteria V, M.; Herrera P, E.F. [Cento de Investigacion en Materiales Avanzados, S. C. Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, (Mexico); Cruz G, S. De la [Facultad de Enfermeria y Nutriologia, Universidad Autonoma de Chihuahua, Av. Politecnico Nacional 2714, Chihuahua, (Mexico); Lopez M, A. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, 11801 Mexico D.F. (Mexico)

    2003-07-01

    Some calibration conditions of diffusion barrier charcoal canister (DBCC) detectors for measuring radon concentration in air were studied. A series of functional expressions and graphs were developed to describe relationship between radon concentration in air and the activity adsorbed in DBCC, when placed in small chambers. A semi-empirical expression for the DBCC calibration was obtained, based on the detector integration time and the adsorption coefficient of radon on activated charcoal. Both, the integration time for 10 % of DBCC of the same batch, and the adsorption coefficient of radon for the activated charcoal used in these detectors, were experimentally determined. Using these values as the calibration parameters, a semi-empirical calibration function was used for the interpretation of the radon activities in the detectors used for sampling more than 200 dwellings in the major cities of the state of Chihuahua, Mexico. (Author)

  16. A case of recurrence-mimicking charcoal granuloma in a breast cancer patient: Ultrasound,CT, PET/CT and breast-specific gamma imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dae Woong; Park, Ji Yeon; Park, Noh Hyuck; Kim, Seon Jeong; Shin, Hyuck Jai; Lee, Jeong Ju [Myongji Hospital, Seonam University College of Medicine, Goyang (Korea, Republic of); Yi, Seong Yoon [Div. of Hematology-Oncology, Dept. of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang (Korea, Republic of)

    2016-07-15

    Charcoal remains stable without causing a foreign body reaction and it may be used for preoperative localization of a non-palpable breast mass. However, cases of post-charcoal-marking granuloma have only rarely been reported in the breast, and a charcoal granuloma can be misdiagnosed as malignancy. Herein, we report the ultrasound, computed tomography (CT), 18F-fluorodeoxyglucose-positron emission tomography/CT, and breast-specific gamma imaging findings of recurrence-mimicking charcoal granuloma after breast conserving surgery, following localization with charcoal in a breast cancer patient.

  17. Endocrine disruptors in water filters used in the Rio dos Sinos Basin region, Southern Brazil

    Directory of Open Access Journals (Sweden)

    CM Furtado

    Full Text Available The activated carbon filter is used in residences as another step in the treatment of drinking water, based on a physical-chemical process to absorb pollutants that are not removed in conventional treatment. Endocrine disruptors (EDCs are exogenous substances or mixtures of substances that acts on the endocrine system similarly to the endogenously produced hormones, triggering malfunctions and harmful changes to human and animal health. The objective of the present work was to study EDCs through semi-quantitative analysis of residential water filters collected in the region of Rio dos Sinos basin, focusing on two specific classes: hormones and phenols. The solid phase extraction principle was used for the extraction of compounds and gas chromatography coupled with mass spectrometry for the separation and characterization of EDCs. Four samples of residential filters collected from public water distribution and artesian wells, from the cities of Novo Hamburgo and São Leopoldo were analysed. Using the developed methodology, it was possible to detect and comparatively quantify selected EDCs in all studied samples, which indicates the presence of these contaminants in drinking water from different sources.

  18. A comparison study of the start-up of a MnOx filter for catalytic oxidative removal of ammonium from groundwater and surface water.

    Science.gov (United States)

    Cheng, Ya; Li, Ye; Huang, Tinglin; Sun, Yuankui; Shi, Xinxin; Shao, Yuezong

    2018-03-01

    As an efficient method for ammonium (NH 4 + ) removal, contact catalytic oxidation technology has drawn much attention recently, due to its good low temperature resistance and short start-up period. Two identical filters were employed to compare the process for ammonium removal during the start-up period for ammonium removal in groundwater (Filter-N) and surface water (Filter-S) treatment. Two types of source water (groundwater and surface water) were used as the feed waters for the filtration trials. Although the same initiating method was used, Filter-N exhibited much better ammonium removal performance than Filter-S. The differences in catalytic activity among these two filters were probed using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and compositional analysis. XRD results indicated that different manganese oxide species were formed in Filter-N and Filter-S. Furthermore, the Mn3p XPS spectra taken on the surface of the filter films revealed that the average manganese valence of the inactive manganese oxide film collected from Filter-S (FS-MnO x ) was higher than in the film collected from Filter-N (FN-MnO x ). Mn(IV) was identified as the predominant oxidation state in FS-MnO x and Mn(III) was identified as the predominant oxidation state in FN-MnO x . The results of compositional analyses suggested that polyaluminum ferric chloride (PAFC) used during the surface water treatment was an important factor in the mineralogy and reactivity of MnO x . This study provides the theoretical basis for promoting the wide application of the technology and has great practical significance. Copyright © 2017. Published by Elsevier B.V.

  19. Conductive Cotton Filters for Affordable and Efficient Water Purification

    Directory of Open Access Journals (Sweden)

    Fang Li

    2017-09-01

    Full Text Available It is highly desirable to develop affordable, energy-saving, and highly-effective technologies to alleviate the current water crisis. In this work, we reported a low-cost electrochemical filtration device composing of a conductive cotton filter anode and a Ti foil cathode. The device was operated by gravity feed. The conductive cotton filter anodes were fabricated by a facile dying method to incorporate carbon nanotubes (CNTs as fillers. The CNTs could serve as adsorbents for pollutants adsorption, as electrocatalysts for pollutants electrooxidation, and as conductive additives to render the cotton filters highly conductive. Cellulose-based cotton could serve as low-cost support to ‘host’ these CNTs. Upon application of external potential, the developed filtration device could not only achieve physically adsorption of organic compounds, but also chemically oxide these compounds on site. Three model organic compounds were employed to evaluate the oxidative capability of the device, i.e., ferrocyanide (a model single-electron-transfer electron donor, methyl orange (MO, a common recalcitrant azo-dye found in aqueous environments, and antibiotic tetracycline (TC, a common antibiotic released from the wastewater treatment plants. The devices exhibited a maximum electrooxidation flux of 0.37 mol/h/m2 for 5.0 mmol/L ferrocyanide, of 0.26 mol/h/m2 for 0.06 mmol/L MO, and of 0.9 mol/h/m2 for 0.2 mmol/L TC under given experimental conditions. The effects of several key operational parameters (e.g., total cell potential, CNT amount, and compound concentration on the device performance were also studied. This study could shed some light on the good design of effective and affordable water purification devices for point-of-use applications.

  20. Gallium-67 activated charcoal: a new method for preparation of radioactive capsules for colonic transit study

    International Nuclear Information System (INIS)

    Cheng, Kai-Yuan; Tsai, Shih-Chuan; Lin, Wan-Yu.

    2003-01-01

    Indium-111 is currently the radionuclide of choice for colonic transit study. However, it is expensive and not available in many hospitals. Technetium-99m has been proposed for colonic transit study but the short half-life has limited its use. Gallium-67 citrate is inexpensive and available in most countries. Most importantly, it has a suitable half-life for colonic transit study. Attempts have been made in some studies to use 67 Ga citrate to label activated charcoal, but the results have not been good because of poor stability. In this study, we successfully labelled activated charcoal with 67 Ga citrate by adding alcohol and 5% glucose solution. To evaluate the in vitro stability, the 67 Ga-activated charcoal was incubated in a milieu mimicking the intestinal content, containing lipase, trypsin and glycochenodeoxycholate at different pH values (6.0, 7.0, 7.4 and 8.0) and for different durations (0 h, 24 h, 48 h, 72 h and 96 h). For the in vivo study, the 67 Ga-activated charcoal was loaded into a commercial empty enteric capsule. Colonic transit scintigraphy was performed in five volunteers, including three healthy people and two constipated patients, after intake of the radioactive capsule. Images were obtained at 2 h, 4 h, 6 h, 8 h, 24h, 48 h, 72 h etc. until no radioactivity was detected in the bowel. Our data show that the in vitro stability of 67 Ga-activated charcoal was good. The labelling efficiency still exceeded 91% at 96 h at pH values of 6.0, 7.0 and 7.4. In the group with a pH value of 8.0, the labelling efficiency gradually fell during the 4-day incubation but was still higher than 88% at the end of the fourth day. In the in vivo study, most capsules disintegrated in the caecum/colon region, and the 67 Ga-activated charcoal mixed very well with bowel content. In addition, the radioactive charcoal could be detected clearly on the 72-h image, which is very important for the evaluation of colonic transit time in patients with constipation. In

  1. Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems

    DEFF Research Database (Denmark)

    Ibrom, Andreas; Dellwik, Ebba; Flyvbjerg, Henrik K.

    2007-01-01

    datasets for this substantial measurement error. In contrast to earlier studies, a large number of spectra and raw data have been used in the analysis to define the low-pass filtering characteristic of the EC system. This revealed that the cut-off frequency of the closed-path EC system for water vapour......Turbulent water vapour fluxes measured with closed-path eddy correlation (EC) systems are unintentionally low-pass filtered by the system in a manner that varies with environmental conditions. Why and how is described here. So is the practical method that systematically corrects long-term flux...... concentration measurements decreases exponentially with increasing relative humidity. After correction for this unintended filtering, the fluxes are consistent with CO2 and H2O fluxes that were measured with an open-path sensor at the same time. The correction of water vapour flux measurements over a Beech...

  2. Use, microbiological effectiveness and health impact of a household water filter intervention in rural Rwanda-A matched cohort study.

    Science.gov (United States)

    Kirby, Miles A; Nagel, Corey L; Rosa, Ghislaine; Umupfasoni, Marie Mediatrice; Iyakaremye, Laurien; Thomas, Evan A; Clasen, Thomas F

    2017-08-01

    Unsafe drinking water is a substantial health risk contributing to child diarrhoea. We investigated impacts of a program that provided a water filter to households in rural Rwandan villages. We assessed drinking water quality and reported diarrhoea 12-24 months after intervention delivery among 269 households in the poorest tertile with a child under 5 from 9 intervention villages and 9 matched control villages. We also documented filter coverage and use. In Round 1 (12-18 months after delivery), 97.4% of intervention households reported receiving the filter, 84.5% were working, and 86.0% of working filters contained water. Sensors confirmed half of households with working filters filled them at least once every other day on average. Coverage and usage was similar in Round 2 (19-24 months after delivery). The odds of detecting faecal indicator bacteria in drinking water were 78% lower in the intervention arm than the control arm (odds ratio (OR) 0.22, 95% credible interval (CrI) 0.10-0.39, p<0.001). The intervention arm also had 50% lower odds of reported diarrhoea among children <5 than the control arm (OR=0.50, 95% CrI 0.23-0.90, p=0.03). The protective effect of the filter is also suggested by reduced odds of reported diarrhoea-related visits to community health workers or clinics, although these did not reach statistical significance. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Impact of temperature on nitrification in biological activated carbon (BAC) filters used for drinking water treatment.

    Science.gov (United States)

    Andersson, A; Laurent, P; Kihn, A; Prévost, M; Servais, P

    2001-08-01

    The impact of temperature on nitrification in biological granular activated carbon (GAC) filters was evaluated in order to improve the understanding of the nitrification process in drinking water treatment. The study was conducted in a northern climate where very cold water temperatures (below 2 degrees C) prevail for extended periods and rapid shifts of temperature are frequent in the spring and fall. Ammonia removals were monitored and the fixed nitrifying biomass was measured using a method of potential nitrifying activity. The impact of temperature was evaluated on two different filter media: an opened superstructure wood-based activated carbon and a closed superstructure activated carbon-based on bituminous coal. The study was conducted at two levels: pilot scale (first-stage filters) and full-scale (second-stage filters) and the results indicate a strong temperature impact on nitrification activity. Ammonia removal capacities ranged from 40 to 90% in pilot filters, at temperatures above 10 degrees C, while more than 90% ammonia was removed in the full-scale filters for the same temperature range. At moderate temperatures (4-10 degrees C), the first stage pilot filters removed 10-40% of incoming ammonia for both media (opened and closed superstructure). In the full-scale filters, a difference between the two media in nitrification performances was observed at moderate temperatures: the ammonia removal rate in the opened superstructure support (more than 90%) was higher than in the closed superstructure support (45%). At low temperatures (below 4 degrees C) both media performed poorly. Ammonia removal capacities were below 30% in both pilot- and full-scale filters.

  4. The addition of charcoals to broiler diets did not alter the recovery of Salmonella Typhimurium during grow-out.

    Science.gov (United States)

    Wilson, K M; Bourassa, D V; Davis, A J; Freeman, M E; Buhr, R J

    2016-03-01

    Two experiments evaluated prebiotics added to feed on the recovery of Salmonella in broilers during grow-out and processing. In Experiment 1, "seeder" chicks were inoculated with Salmonella Typhimurium and placed with penmates. Treatments were: basal control diet, added 0.3% bamboo charcoal, 0.6% bamboo charcoal, or 0.12% Aromabiotic (medium chain fatty acids). The ceca from seeders and penmates were sampled to confirm Salmonella colonization at 3, 4, and 6 wk, and pen litter was sampled weekly. At 3 wk, charcoal fed chicks had significantly lower cecal recovery (37% lower) of Salmonella via direct plating but no differences at wk 4 or 6. At 6 wk, broilers fed Aromabiotic had no recovery of Salmonella from ceca with direct plating and significantly, 18%, lower recovery with enrichment. In Experiment 2, the treatments were: basal control diet, added 0.3% bamboo charcoal, 0.3% activated bamboo charcoal, or 0.3% pine charcoal. At placement, 2 seeders were challenged with Salmonella and commingled with penmates and ceca sampled at 1 and 2 wk, and ceca from 5 penmates/pen at 3 to 6 wk. Weekly, the pH of the crop and duodenum was measured from 1 penmate/pen and the litter surface sampled. At the end of grow-out broilers were processed. Results showed that penmates had colonized at 1 and 2 wk. Cecal Salmonella showed no differences except at 4 wk, when activated bamboo charcoal had a 18% lower recovery of Salmonella (enrichment) compared to the control (88%). Similar to Experiment 1, the recovery of Salmonella from the litter was not significantly different among treatments, however an overall decrease in recovery by 4 wk with direct plating reoccurred. The pH of the duodenum and the crop were not different among treatments. Crop pH (6.0) for all treatments were significantly higher at wk 1 compared to wk 2 to 6. Charcoals had minimal effect on Salmonella recovery in the ceca, but following defeathering, broilers fed charcoals had significantly lower Salmonella

  5. Dataset on the spent filter backwash water treatment by sedimentation, coagulation and ultra filtration

    OpenAIRE

    Mokhtar Mahdavi; Afshin Ebrahimi; Hossein Azarpira; Hamid Reza Tashauoei; Amir Hossein Mahvi

    2017-01-01

    During operation of most water treatment plants, spent filter backwash water (SFBW) is generated, which accounts about 2â10% of the total plant production. By increasing world population and water shortage in many countries, SFBW can be used as a permanent water source until the water treatment plant is working. This data article reports the practical method being used for water reuse from SFBW through different method including pre-sedimentation, coagulation and flocculation, second clarific...

  6. The determination, by x-ray-fluorescence spectrometry, of gold in activated charcoal

    International Nuclear Information System (INIS)

    Austen, C.E.

    1977-01-01

    A rapid method is described for the determination of gold in activated charcoal by X-ray-fluorescence spectrometry. Compensation for matrix effects is achieved by means of platinum that is added for use as an internal standard. Calibration is achieved by use of a series of synthetic standards that are made by the spiking of barren charcoal with gold and platinum. The limit of determination is about 8 p.p.m. of gold, and the relative standard deviation is 1,2 per cent at a concentration level of 2300 p.p.m

  7. Low-cost domestic water filter: The case for a process-based ...

    African Journals Online (AJOL)

    Low-cost domestic water filter: The case for a process-based approach for the development of a rural technology product. ... Since the project aims at technology transfer to the rural poor for generating rural livelihoods, appropriate financial models and the general sustainability issues for such an activity are briefly discussed ...

  8. Effect of production variables on microbiological removal in locally-produced ceramic filters for household water treatment.

    Science.gov (United States)

    Lantagne, Daniele; Klarman, Molly; Mayer, Ally; Preston, Kelsey; Napotnik, Julie; Jellison, Kristen

    2010-06-01

    Diarrhoeal diseases cause an estimated 1.87 million child deaths per year. Point-of-use filtration using locally made ceramic filters improves microbiological quality of stored drinking water and prevents diarrhoeal disease. Scaling-up ceramic filtration is inhibited by lack of universal quality control standards. We investigated filter production variables to determine their affect on microbiological removal during 5-6 weeks of simulated normal use. Decreases in the clay:sawdust ratio and changes in the burnable decreased effectiveness of the filter. Method of silver application and shape of filter did not impact filter effectiveness. A maximum flow rate of 1.7 l(-hr) was established as a potential quality control measure for one particular filter to ensure 99% (2- log(10)) removal of total coliforms. Further research is indicated to determine additional production variables associated with filter effectiveness and develop standardized filter production procedures prior to scaling-up.

  9. Assessing the Efficacy of Restricting Access to Barbecue Charcoal for Suicide Prevention in Taiwan: A Community-Based Intervention Trial

    Science.gov (United States)

    Chen, Ying-Yeh; Chen, Feng; Chang, Shu-Sen; Wong, Jacky; Yip, Paul S F

    2015-01-01

    Objective Charcoal-burning suicide has recently been spreading to many Asian countries. There have also been several cases involving this new method of suicide in Western countries. Restricting access to suicide means is one of the few suicide-prevention measures that have been supported by empirical evidence. The current study aims to assess the effectiveness of a community intervention program that restricts access to charcoal to prevent suicide in Taiwan. Methods and Findings A quasi-experimental design is used to compare method-specific (charcoal-burning suicide, non-charcoal-burning suicide) and overall suicide rates in New Taipei City (the intervention site, with a population of 3.9 million) with two other cities (Taipei City and Kaohsiung City, the control sites, each with 2.7 million residents) before (Jan 1st 2009- April 30th 2012) and after (May 1st 2012-Dec. 31st 2013) the initiation of a charcoal-restriction program on May 1st 2012. The program mandates the removal of barbecue charcoal from open shelves to locked storage in major retail stores in New Taipei City. No such restriction measure was implemented in the two control sites. Generalized linear regression models incorporating secular trends were used to compare the changes in method-specific and overall suicide rates before and after the initiation of the restriction measure. A simulation approach was used to estimate the number of lives saved by the intervention. Compared with the pre-intervention period, the estimated rate reduction of charcoal-burning suicide in New Taipei City was 37% (95% CI: 17%, 50%) after the intervention. Taking secular trends into account, the reduction was 30% (95% CI: 14%, 44%). No compensatory rise in non-charcoal-burning suicide was observed in New Taipei City. No significant reduction in charcoal-burning suicide was observed in the other two control sites. The simulation approach estimated that 91 (95%CI [55, 128]) lives in New Taipei City were saved during the 20

  10. Vertical flow soil filter for the elimination of micro pollutants from storm and waste water

    DEFF Research Database (Denmark)

    Janzen, Niklas; Banzhaf, Stefan; Scheytt, Traugott

    2009-01-01

    A technical scale activated soil filter has been used to study the elimination rates of diverse environmentally relevant micro pollutants from storm and waste water. The filter was made of layers of peat, sand and gravel. The upper (organic) layer was planted with reed (phragmites australis......) to prevent clogging and was spiked with activated sludge to enhance microbial biomass and biodegradation potential. Compounds used as UV filters, antioxidants or plasticizers, namely 4-methylbenzylidene camphor (4-MBC), benzophenone-3 (BP-3), butylated hydroxytoluene (BHT), N-butylbenzenesulfonamide (NBBS...

  11. Peatlands as Filters for Polluted Mine Water?—A Case Study from an Uranium-Contaminated Karst System in South Africa—Part III: Quantifying the Hydraulic Filter Component

    Directory of Open Access Journals (Sweden)

    Frank Winde

    2011-03-01

    Full Text Available As Part III of a four-part series on the filter function of peat for uranium (U, this paper focuses on the hydraulic component of a conceptual filter model introduced in Part II. This includes the quantification of water flow through the wetland as a whole, which was largely unknown and found to be significantly higher that anticipated. Apart from subaquatic artesian springs associated with the underlying karst aquifer the higher flow volumes were also caused by plumes of polluted groundwater moving laterally into the wetland. Real-time, quasi-continuous in situ measurements of porewater in peat and non-peat sediments indicate that rising stream levels (e.g., during flood conditions lead to the infiltration of stream water into adjacent peat deposits and thus allow for a certain proportion of flood water to be filtered. However, changes in porewater quality triggered by spring rains may promote the remobilization of possibly sorbed U.

  12. Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures.

    Science.gov (United States)

    Kaarela, Outi E; Härkki, Heli A; Palmroth, Marja R T; Tuhkanen, Tuula A

    2015-01-01

    Granular activated carbon (GAC) filtration enhances the removal of natural organic matter and micropollutants in drinking water treatment. Microbial communities in GAC filters contribute to the removal of the biodegradable part of organic matter, and thus help to control microbial regrowth in the distribution system. Our objectives were to investigate bacterial community dynamics, identify the major bacterial groups, and determine the concentration of active bacterial biomass in full-scale GAC filters treating cold (3.7-9.5°C), physicochemically pretreated, and ozonated lake water. Three sampling rounds were conducted to study six GAC filters of different operation times and flow modes in winter, spring, and summer. Total organic carbon results indicated that both the first-step and second-step filters contributed to the removal of organic matter. Length heterogeneity analysis of amplified 16S rRNA genes illustrated that bacterial communities were diverse and considerably stable over time. α-Proteobacteria, β-Proteobacteria, and Nitrospira dominated in all of the GAC filters, although the relative proportion of dominant phylogenetic groups in individual filters differed. The active bacterial biomass accumulation, measured as adenosine triphosphate, was limited due to low temperature, low flux of nutrients, and frequent backwashing. The concentration of active bacterial biomass was not affected by the moderate seasonal temperature variation. In summary, the results provided an insight into the biological component of GAC filtration in cold water temperatures and the operational parameters affecting it.

  13. Determinants of Charcoal Production Efficiency in Ibarapa North ...

    African Journals Online (AJOL)

    The data obtained were analyzed using descriptive statistics (percentage and frequency and stochastic frontier production function. The study revealed that mean age of producers was 36 years; 96.9% were males and 3.1 were females. Majority of the producers (76.9%) had no formal training on how to produce charcoal, ...

  14. Dose Determination of Activated Charcoal in Management of ...

    African Journals Online (AJOL)

    Purpose: To assess the doses of activated charcoal currently used in the management of acute amitriptyline-induced drug poisoning and explore the possibility of using lower doses. Methods: Albino male Wistar rats, weighing 200 ± 20 g, were used for the study. The animals were divided into four groups of eight animals ...

  15. Wildfire Activity Across the Triassic-Jurassic Boundary in the Polish Basin: Evidence from New Fossil Charcoal & Carbon-isotope Data

    Science.gov (United States)

    Pointer, R.; Belcher, C.; Hesselbo, S. P.; Hodbod, M.; Pieńkowski, G.

    2017-12-01

    New fossil charcoal abundance and carbon-isotope data from two sedimentary cores provide new evidence of extreme environmental conditions in the Polish Basin during the Latest Triassic to Earliest Jurassic. Sedimentary cores from the Polish Basin provide an excellent record of terrestrial environmental conditions across the Triassic-Jurassic Boundary, a time of climatic extremes. Previous work has shown that the marine realm was affected by a large perturbation to the carbon cycle across the Triassic-Jurassic Boundary (manifested by large negative and positive carbon-isotope excursions) and limited records of charcoal abundance and organic geochemistry have indicated important changes in fire regime in the coeval ecosystems. Here we present two new carbon-isotope records generated from fossil plant matter across the Triassic-Jurassic boundary, and present new charcoal records. The charcoal abundance data confirm that there was variation in wildfire activity during the Late Triassic-Early Jurassic in the Polish Basin. Peaks in the number of fossil charcoal fragments present occur in both sedimentary cores, and increases in fossil charcoal abundance are linked to wildfires, signalling a short-lived rise in wildfire activity. Fossil charcoal abundance does not appear to be fully controlled by total organic matter content, depositional environment or bioturbation. We argue that increased wildfire activity is likely caused by an increase in ignition of plant material as a result of an elevated number of lightning strikes. Global warming (caused by a massive input of carbon into the atmosphere, as indicated by carbon-isotope data) can increase storm activity, leading to increased numbers of lightning strikes. Previous Triassic-Jurassic Boundary wildfire studies have found fossil charcoal abundance peaks at other northern hemisphere sites (Denmark & Greenland), and concluded that they represent increases in wildfire activity in the earliest Jurassic. Our new charcoal and

  16. Charcoal records reveal past occurrences of disturbances in the forests of the Kisangani region, Democratic Republic of the Congo

    Science.gov (United States)

    Tshibamba Mukendi, John; Hubau, Wannes; Ntahobavuka, Honorine; Boyemba Bosela, Faustin; De Cannière, Charles; Beeckman, Hans

    2014-05-01

    Past disturbances have modified local density, structure and floristic composition of Central African rainforests. As such, these perturbations represent a driving force for forest dynamics and they were presumably at the origin of present-day forest mosaics. One of the most prominent disturbances within the forest is fire, leaving behind charcoal as a witness of past forest dynamics. Quantification and identification of ancient charcoal fragments found in soil layers (= pedoanthracology) allows a detailed reconstruction of forest history, including the possible occurrence of past perturbations. The primary objective of this study is to present palaeoenvironmental evidence for the existence of past disturbances in the forests of the Kisangani region (Democratic Republic of the Congo) using a pedoanthracological approach. We quantified and identified charcoal fragments from pedoanthracological excavations in the Yangambi, Yoko, Masako and Kole forest regions. Charcoal sampling was conducted in pit intervals of 10 cm, whereby pottery fragments were also registered and quantified. Floristic identifications were conducted using former protocols based on wood anatomy, which is largely preserved after charcoalification. 14 excavations were conducted and charcoal was found in most pit intervals. Specifically, 52 out of 56 sampled intervals from the Yangambi forest contained charcoal, along with 47 pit intervals from the Yoko forest reserve, 34 pit intervals from the Masako forest and 16 from the Kole forest. Highest specific anthracomasses were recorded in Yoko (167 mg charcoal per kg soil), followed by Yangambi (133 mg/kg), Masako (71,89 mg/kg) and finally Kole (42,4 mg/kg). Charcoal identifications point at a manifest presence of the family of Fabaceae (Caesalpinioideae). This family is characteristic for the tropical humid rainforest. The presence of charcoal fragments from these taxa, associated with pottery sherds on different depths within the profiles, suggests

  17. Pressurized water reactor monitoring. Study of detection, diagnostic and estimation (least squares and filtering) methods

    International Nuclear Information System (INIS)

    Gillet, M.

    1986-07-01

    This thesis presents a study for the surveillance of the Primary circuit water inventory of a pressurized water reactor. A reference model is developed for the development of an automatic system ensuring detection and real-time diagnostic. The methods to our application are statistical tests and adapted a pattern recognition method. The estimation of the detected anomalies is treated by the least square fit method, and by filtering. A new projected optimization method with superlinear convergence is developed in this framework, and a segmented linearization of the model is introduced, in view of a multiple filtering. 46 refs [fr

  18. Remediation of cadmium contaminated vertisol mediated by Prosopis charcoal and coir pith

    Directory of Open Access Journals (Sweden)

    Palaninaicker Senthilkumar

    2015-01-01

    Full Text Available Metal contamination of soil due to industrial and agricultural activities is increasingly becoming a global problem, thereby affecting animal and human life, thus rendering soil unsuitable for agricultural purposes. Remediation of cadmium (Cd contaminated soil (Vertisol using agricultural by products as source of organic amendments, Coir pith- a by-product of the coir industry and Prosopis charcoal- prepared by burning Prosopis plant wood (Prosopis juliflora L. was investigated. The alleviation potential of Prosopis charcoal and Coir pith on the negative effects of Cd in soil was evaluated in pot culture experiments with Vigna radiata as the test plant, a Cd accumulator. Cadmium addition to soil resulted in accumulation of Cd in all plant parts of V. radiata predominantly in roots. The influence of Cd in the presence and absence of organic amendments on the various biological and chemical parameters of the soil, on the levels of Cd accumulation and on the growth attributes of V. radiata has been assessed. Among the organic amendments, Prosopis charcoal was found to be more effective in reducing the bioavailable levels of Cd in the soil artificially spiked with Cd in graded concentrations of 0, 5, 10, 20, 40, 60, 80 and 100 µg g-1 and its accumulation in V. radiata, thus resulting in an increase in the root, leaf and stem biomass. Coir pith, however, was effective in increasing the total mycorrhizal colonization of roots and second in reducing Cd levels in plants. Therefore, Prosopis charcoal was considered best for stabilization of Cd in soil.

  19. Gallium-67 activated charcoal: a new method for preparation of radioactive capsules for colonic transit study

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kai-Yuan [Department of Radiological Technology, ChungTai Institute of Health Sciences and Technology, Taichung (Taiwan); Tsai, Shih-Chuan [Department of Nuclear Medicine, Show Chwan Memorial Hospital, Changhua (Taiwan); Lin, Wan-Yu. [Department of Nuclear Medicine, Taichung Veterans General Hospital, 160 Taichung Harbor Road, Section 3, 40705, Taichung (Taiwan)

    2003-06-01

    Indium-111 is currently the radionuclide of choice for colonic transit study. However, it is expensive and not available in many hospitals. Technetium-99m has been proposed for colonic transit study but the short half-life has limited its use. Gallium-67 citrate is inexpensive and available in most countries. Most importantly, it has a suitable half-life for colonic transit study. Attempts have been made in some studies to use {sup 67}Ga citrate to label activated charcoal, but the results have not been good because of poor stability. In this study, we successfully labelled activated charcoal with {sup 67}Ga citrate by adding alcohol and 5% glucose solution. To evaluate the in vitro stability, the {sup 67}Ga-activated charcoal was incubated in a milieu mimicking the intestinal content, containing lipase, trypsin and glycochenodeoxycholate at different pH values (6.0, 7.0, 7.4 and 8.0) and for different durations (0 h, 24 h, 48 h, 72 h and 96 h). For the in vivo study, the {sup 67}Ga-activated charcoal was loaded into a commercial empty enteric capsule. Colonic transit scintigraphy was performed in five volunteers, including three healthy people and two constipated patients, after intake of the radioactive capsule. Images were obtained at 2 h, 4 h, 6 h, 8 h, 24h, 48 h, 72 h etc. until no radioactivity was detected in the bowel. Our data show that the in vitro stability of {sup 67}Ga-activated charcoal was good. The labelling efficiency still exceeded 91% at 96 h at pH values of 6.0, 7.0 and 7.4. In the group with a pH value of 8.0, the labelling efficiency gradually fell during the 4-day incubation but was still higher than 88% at the end of the fourth day. In the in vivo study, most capsules disintegrated in the caecum/colon region, and the {sup 67}Ga-activated charcoal mixed very well with bowel content. In addition, the radioactive charcoal could be detected clearly on the 72-h image, which is very important for the evaluation of colonic transit time in patients

  20. Analysis of pharmaceutical and other organic wastewater compounds in filtered and unfiltered water samples by gas chromatography/mass spectrometry

    Science.gov (United States)

    Zaugg, Steven D.; Phillips, Patrick J.; Smith, Steven G.

    2014-01-01

    Research on the effects of exposure of stream biota to complex mixtures of pharmaceuticals and other organic compounds associated with wastewater requires the development of additional analytical capabilities for these compounds in water samples. Two gas chromatography/mass spectrometry (GC/MS) analytical methods used at the U.S. Geological Survey National Water Quality Laboratory (NWQL) to analyze organic compounds associated with wastewater were adapted to include additional pharmaceutical and other organic compounds beginning in 2009. This report includes a description of method performance for 42 additional compounds for the filtered-water method (hereafter referred to as the filtered method) and 46 additional compounds for the unfiltered-water method (hereafter referred to as the unfiltered method). The method performance for the filtered method described in this report has been published for seven of these compounds; however, the addition of several other compounds to the filtered method and the addition of the compounds to the unfiltered method resulted in the need to document method performance for both of the modified methods. Most of these added compounds are pharmaceuticals or pharmaceutical degradates, although two nonpharmaceutical compounds are included in each method. The main pharmaceutical compound classes added to the two modified methods include muscle relaxants, opiates, analgesics, and sedatives. These types of compounds were added to the original filtered and unfiltered methods largely in response to the tentative identification of a wide range of pharmaceutical and other organic compounds in samples collected from wastewater-treatment plants. Filtered water samples are extracted by vacuum through disposable solid-phase cartridges that contain modified polystyrene-divinylbenzene resin. Unfiltered samples are extracted by using continuous liquid-liquid extraction with dichloromethane. The compounds of interest for filtered and unfiltered sample

  1. The Effect of Different Boiling and Filtering Devices on the Concentration of Disinfection By-Products in Tap Water

    Directory of Open Access Journals (Sweden)

    Glòria Carrasco-Turigas

    2013-01-01

    Full Text Available Disinfection by-products (DBPs are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4 (chloroform (TCM, bromodichloromethane (BDCM, dibromochloromethane (DBCM, and bromoform (TBM, MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97% and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies.

  2. Studies on entrained DNPPA separation by charcoal adsorption from aqueous solutions generated during uranium recovery from strong phosphoric acid

    International Nuclear Information System (INIS)

    Singh, D.K.; Vijayalakshmi, R.; Singh, H.

    2010-01-01

    During the separation of metal ions by solvent extraction technique in hydrometallurgical operations, organic solvents either get entrained or dissolved in various types of aqueous streams, which need to be separated out to prevent environmental pollution and solvent loss. Generally entrained solvents are separated on plant scale by parallel plate separators or by froth floatation cells, while the dissolved solvents are recovered either by organic diluent wash or by charcoal adsorption. A novel process has been developed to recover uranium from merchant grade phosphoric acid (MGA) employing synergistic mixture of DNPPA (di-nonyl phenyl phosphoric acid ) and TOPO (tri-n-octyl phosphine oxide) dissolved in petrofin. After recovery of uranium, MGA has to be returned to the host company for the production of fertilizer. This MGA has to be free from any contamination due to DNPPA and TOPO. Separation of DNPPA and TOPO from MGA by diluent wash method has been reported. There is no information available in literature for the separation of DNPPA and TOPO from such aqueous streams by carbon adsorption. The present investigation describes the methodology based on charcoal adsorption study (batch and continuous column operation) to separate DNPPA from MGA. Three different types of charcoal namely coconut shell based, coal based and pelletized charcoal were evaluated for DNPPA separation from MGA containing 100 mg/L DNPPA. It was found that the % DNPPA adsorptions in single contact (0.5g C/50 ml) were 57, 34 and 10 in coconut shell, coal based and pelletised charcoal respectively. Based on the results, the coconut shell based charcoal was selected for further study. Adsorption of DNPPA by coconut shell based charcoal was investigated by carrying out the experiments with 50 ml MGA containing 770 mg/L DNPPA by adding 1 to 7 g charcoal respectively in separate beakers

  3. Emissions of air toxics from a simulated charcoal kiln. Final report, October 1997--September 1998

    International Nuclear Information System (INIS)

    Lemieux, P.M.

    1999-06-01

    The report gives results of experiments in a laboratory-scale charcoal kiln simulator to evaluate emissions of hazardous air pollutants from the production of charcoal in Missouri-type kilns. Fixed combustion gases were measured using continuous monitors. In addition, other pollutants, including methanol, volatile organic compounds, semivolatile organic compounds, and particle emission rates and size distributions were measured using various techniques. Emissions of all pollutants are reported in units of grams emitted per unit mass of initial wood converted to charcoal. Two burn conditions--slow and fast--were examined. High levels of methanol, benzene, and fine particulate were emitted in all tests. The estimated emissions from the fast burn conditions were significantly higher than those from the slow burn conditions

  4. Charcoal and siderurgy in Brazilian Amazonia: what environmental improvement paths? Example of the Carajas pole

    International Nuclear Information System (INIS)

    Piketty, Marie-Gabrielle; Fonseca Morello, Thiago; Bouillet, Jean-Pierre; Laclau, Jean-Paul; Behling, Maurel; Caldeira Pires, Armando; Oliveira Rodrigues, Thiago; Rousset, Patrick; Dufour, Thomas; Durieux, Laurent; Sist, Plinio; Vieira, Paulo; Lemenager, Tiphaine; Ernst, Guillaume

    2011-05-01

    The pig iron sector of Carajas, in the Brazilian Amazon, uses charcoal which is strongly criticized because of the charcoal production direct and indirect impacts on deforestation and forests degradation. This publication identifies and analyzes some alternatives to decrease the charcoal production environmental negative externalities and the main technical, economic and institutional factors that may limit their adoption. Several alternatives are possible, based on more efficient carbonization technologies, reforestation or afforestation of degraded lands, and, to a lesser extent, the use of reduced impact logging residues. Some of the alternatives are cost-efficient in the long term and financing support is available to promote their adoption. Land tenure and environmental regularization is a necessary pre-requisite for their expansion. (authors)

  5. Conductometric Studies Of Adsorption Of Sulfide On Charcoal From Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Md. Rezwan Miah

    2017-03-01

    Full Text Available Adsorption of sulfide S2- from aqueous solution on commercial charcoal was studied using conductometric technique. A proportionally constant for concentration of S2- and its conductance was obtained by measuring conductance of S2- solution over a concentration range of 0.0005amp614850.02 M. The time-dependent measured conductance of S2- solution was converted to concentration using the obtained constant. The adsorption data were analyzed by both Freundlich and Langmuir isotherms. A surface coverage equal to 2.5 mg per gram of charcoal was obtained. The adsorption was found to follow first-order kinetics having rate constant equal to 2.65 amp61620 10amp614853 s-1.

  6. Anatomy Of Archaeological Wood Charcoals From Yenibademli Mound (Imbros), Western Turkey

    Science.gov (United States)

    Yaman, B.

    In this study, the qualitative and quantitative anatomy of six wood charcoals from an early Bronze Age settlement in the island Imbros (Gökçeada) were presented. Taxonomic identification on the basis of wood anatomy showed that two of them belong to the genus Quercus (section Ilex and cf Quercus), and four of them belong to the genus Pinus. Any fireplace is absent at the location of wood charcoals in G9 plan square. It appears that the woody branches on the horizontal roof of the building fell down to the floor after a big fire. It is most likely that the woody genera identified in the study were used for roof construction.

  7. Binding affinities of cationic dyes in the presence of activated charcoal and anionic surfactant in the premicellar region

    Science.gov (United States)

    Ali, Farman; Ibrahim, Muhammad; Khan, Fawad; Bibi, Iram; Shah, Syed W. H.

    2018-03-01

    Binding preferences of cationic dyes malachite green and methylene blue in a mixed charcoal-sodium dodecyl sulfate system have been investigated using UV-visible absorption spectroscopy. The dye adsorption shows surfactant-dependent patterns, indicating diverse modes of interactions. At low surfactant concentration, a direct binding to charcoal is preferred. Comparatively greater quantities of surfactant lead to attachment of dye-surfactant complex to charcoal through hydrophobic interactions. A simple model was employed for determination of equilibrium constant K eq and concentration of dye-surfactant ion pair N DS for both dyes. The values of binding parameters revealed that malachite green was directly adsorbed onto charcoal, whereas methylene blue was bound through surfactant monomers. The model is valid for low surfactant concentrations in the premicellar region. These findings have significance for material and environmental sciences.

  8. Hygienic safety of reusable tap water filters (Germlyser® with an operating time of 4 or 8 weeks in a haematological oncology transplantation unit

    Directory of Open Access Journals (Sweden)

    Rochow Markus

    2007-05-01

    Full Text Available Abstract Background Microbial safe tap water is crucial for the safety of immunosuppressed patients. Methods To evaluate the suitability of new, reusable point-of-use filters (Germlyser®, Aquafree GmbH, Hamburg, Germany, three variations of a reusable filter with the same filter principle but with different outlets (with and without silver and inner surface coating of the filter encasements (with and without nano-crystalline silver were tested. The filter efficacy was monitored over 1, 4 and 8 weeks operating time in a haematological oncology transplantation unit equipped with 18 water outlets (12 taps, 6 showers. Results The filtered water fulfilled the requirements of absence of pathogens over time. From 348 samples, 8 samples (2.3% exceeded 100 cfu/ml (no sample ≥ 500 cfu/ml. As no reprocessed filter exhibited 100% filter efficacy in the final quality control after each reprocessing, these contaminations could be explained by retrograde contamination during use. Conclusion As a consequence of the study, the manufacturer recommends changing filters after 4 weeks in high risk areas and after 8 weeks in moderate infectious risk areas, together with routine weekly alcohol-based surface disinfection and additionally in case of visible contamination. The filter efficacy of the 3 filters types did not differ significantly regarding total bacterial counts. Manual reprocessing proved to be insufficient. Using a validated reprocessing in a washer/disinfector with alkaline, acid treatment and thermic disinfection, the filters were effectively reprocessable and now provide tap water meeting the German drinking water regulations as well as the WHO guidelines, including absence of pathogens.

  9. A biological oil adsorption filter

    International Nuclear Information System (INIS)

    Pasila, A.

    2005-01-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore. (author)

  10. A biological oil adsorption filter

    Energy Technology Data Exchange (ETDEWEB)

    Pasila, A [University of Helsinki (Finland). Dept. of Agricultural Engineering and Household Technology

    2005-12-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore. (author)

  11. Impact of charcoal waste application on the soil organic matter content and composition of an Haplic Cambisol from South Brazil

    Science.gov (United States)

    dos Anjos Leal, Otávio; Pinheiro Dick, Deborah; Cylene Lombardi, Kátia; Gonçalves Maciel, Vanessa

    2014-05-01

    In some regions in Brazil, charcoal is usually applied to the soil with the purpose to improve its fertility and its organic carbon (SOC) content. In Brazil, the use of charcoal waste from steel industry with agronomic purposes represents also an alternative and sustainable fate for this material. In this context, the objective of this work was to evaluate the impact of Eucalyptus charcoal waste application on the SOC content and on the soil organic matter (SOM) composition. Increasing doses of charcoal (0, 10, 20 and 40 Mg ha-1) were applied to an Haplic Cambisol, in Irati, South-Brazil. Charcoal was initially applied on the soil surface, and then it was incorporated at 10 cm with a harrow. Soil undisturbed and disturbed samples (four replicates) were collected in September 2011 (1 y and 9 months) after charcoal incorporation. Four soil depths were evaluated (0-5, 5-10, 10-20 and 20-30 cm) and each replicate was composed by three subsamples collected within each plot. The soil samples were air dried, passed through a 9.51 mm sieve and thereafter through a 2.00 mm sieve. The SOC content and total N were quantified by dry combustion. The SOM was concentrated with fluoridric acid 10% and then the SOM composition was evaluated by thermogravimetric analysis along the soil profile. The main impact of charcoal application occurred at the 0-5 cm layer of the area treated with the highest dose: SOC content increased in 15.5 g kg-1 in comparison to the soil without charcoal application. The intermediary doses also increased the SOC content, but the differences were not significant. No differences for N content were found in this soil depth. Further results were observed in the 10-20 cm soil depth, where the highest dose increased the SOC content and N content. Furthermore, this treatment increased the recalcitrance of the SOM, mainly at the 0-5 cm and 10-20 cm soil layers. No differences between doses of charcoal application were found in the 20-30 cm soil depth, suggesting

  12. Unsustainable charcoal production as a contributing factor to woodland fragmentation in southeast Kenya

    Directory of Open Access Journals (Sweden)

    Ruuska, Eeva

    2013-06-01

    Full Text Available Drawing from a holistic research approach, this paper contributes to the studies of land cover change and sustainable development in Kenya, and to the planning of sustainable future in Dakatcha Woodland, SE Kenya. As an un-protected global hotspot for biodiversity, Dakatcha Woodland has suffered from unsustainable forest resource use. The relation of charcoal production to land cover change and its socio-economic impact are studied in detail. A supervised land cover classification formed using four SPOT satellite images from 2005/06 and 2011 revealed that the woodland is fragmenting and the Important Bird Area (IBA demarcation should be reconsidered. Through in-situ observation, household questionnaires and semi-structured expert interviews it was found that more than half of the 90 households assessed are involved in charcoal production which is higher figure than peer studies have suggested, and that the charcoal network offers income to many, but bears an negative impact on the environment. It was discovered that, like in Kenya, in Dakatcha Woodland, too, the demand for woodfuels (charcoal and fuelwood is one of the key drivers of deforestation and land degradation. As such, woodfuel energy is a cross cutting issue, tying together forest resources, livelihoods and sustainable development, and thus demands further research. Forest management of Dakatcha Woodland must be planned in accordance with all stakeholders in a sustainable manner, drawing from agroforestry and participatory forest management systems, and keeping environmental factors in mind for the maintenance of ecosystem services.

  13. Development of biomass in a drinking water granular active carbon (GAC) filter.

    Science.gov (United States)

    Velten, Silvana; Boller, Markus; Köster, Oliver; Helbing, Jakob; Weilenmann, Hans-Ulrich; Hammes, Frederik

    2011-12-01

    Indigenous bacteria are essential for the performance of drinking water biofilters, yet this biological component remains poorly characterized. In the present study we followed biofilm formation and development in a granular activated carbon (GAC) filter on pilot-scale during the first six months of operation. GAC particles were sampled from four different depths (10, 45, 80 and 115 cm) and attached biomass was measured with adenosine tri-phosphate (ATP) analysis. The attached biomass accumulated rapidly on the GAC particles throughout all levels in the filter during the first 90 days of operation and maintained a steady state afterward. Vertical gradients of biomass density and growth rates were observed during start-up and also in steady state. During steady state, biomass concentrations ranged between 0.8-1.83 x 10(-6) g ATP/g GAC in the filter, and 22% of the influent dissolved organic carbon (DOC) was removed. Concomitant biomass production was about 1.8 × 10(12) cells/m(2)h, which represents a yield of 1.26 × 10(6) cells/μg. The bacteria assimilated only about 3% of the removed carbon as biomass. At one point during the operational period, a natural 5-fold increase in the influent phytoplankton concentration occurred. As a result, influent assimilable organic carbon concentrations increased and suspended bacteria in the filter effluent increased 3-fold as the direct consequence of increased growth in the biofilter. This study shows that the combination of different analytical methods allows detailed quantification of the microbiological activity in drinking water biofilters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Predation and transport of persistent pathogens in GAC and slow sand filters: a threat to drinking water safety?

    Science.gov (United States)

    Bichai, Françoise; Dullemont, Yolanda; Hijnen, Wim; Barbeau, Benoit

    2014-11-01

    Zooplankton has been shown to transport internalized pathogens throughout engineered drinking water systems. In this study, experimental measurements from GAC and SSF filtration tests using high influent concentrations of Cryptosporidium (1.3 × 10(6) and 3.3 × 10(4) oocysts L(-1)) and Giardia (4.8 × 10(4) cysts L(-1)) are presented and compared. A predation and transport conceptual model was developed to extrapolate these results to environmental conditions of typical (oo)cyst concentrations in surface water in order to predict concentrations of internalized (oo)cysts in filtered water. Pilot test results were used to estimate transport and survival ratios of internalized (oo)cysts following predation by rotifers in the filter beds. Preliminary indications of lower transport and survival ratios in SSF were found as compared with GAC filters. A probability of infection due to internalized (oo)cysts in filtered water was calculated under likeliest environmental conditions and under a worst-case scenario. Estimated risks under the likeliest environmental scenario were found to fall below the tolerable risk target of 10(-4) infections per person per year. A discussion is presented on the health significance of persistent pathogens that are internalized by zooplankton during granular filtration processes and released into treated water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Research of process of filtration of salt water by bulk filters with the use of vibration

    Directory of Open Access Journals (Sweden)

    A. I. Krikun

    2018-01-01

    Full Text Available For the purification of process water from impurities at fish processing plants, a large number of filtering devices are currently used, differing in their design parameters (mesh, woven, disco, etc.. However, in practice, these filtering devices are mainly used as the first stage of water treatment, since they can not provide sufficient quality of the filtrate. The most effective, as numerous studies of scientists of our country and the world show, are bulk granular filters. Their main advantages over other devices of similar designation are: they have a simple and reliable design; resistant to aggressive operating conditions; they are capable of effectively purifying seawater from mechanical impurities at relatively low pressure; most economical; have a filtering load capable of a long time to work without regeneration (the approximate service life of a grain-loading is 3 to 5 years etc. In this article, the influence of vibration effects on the filtration of sea water in a designed and fabricated filter unit with bulk granular materials of natural and artificial origin, the design of which is protected by two patents for the utility model. The results of the study are presented, revealing the degree of influence of the intensity of vibration of the perforated partitioning wall on the state of bulk granular materials located on it (segregation by size, stratified vibro-packing, compacting or loosening of a layer of granular material. The dependences of the capacity of the filtration unit on the amplitude, frequency and the vibration intensity factor have been experimentally established, which made it possible to establish rational vibration parameters of the perforated septum, under which the filtering layer becomes denser, the porosity of the loading decreases, and the precipitate does not break into the filtrate.

  16. Pharmacokinetics of digoxin cross-reacting substances in patients with acute yellow oleander (Thevetia peruviana) poisoning, including the effect of activated charcoal.

    Science.gov (United States)

    Roberts, Darren M; Southcott, Emma; Potter, Julia M; Roberts, Michael S; Eddleston, Michael; Buckley, Nick A

    2008-01-01

    Intentional self-poisonings with seeds from the yellow oleander tree (Thevetia peruviana) are widely reported. Activated charcoal has been suggested to benefit patients with yellow oleander poisoning by reducing absorption and/or facilitating elimination. Two recent randomised controlled trials (RCTs) assessing the efficacy of activated charcoal reported conflicting outcomes in terms of mortality. The effect of activated charcoal on the pharmacokinetics of Thevetia cardenolides has not been assessed. This information may be useful for determining whether further studies are necessary. Serial blood samples were obtained from patients enrolled in a RCT assessing the relative efficacy of single dose (SDAC) and multiple doses (MDAC) of activated charcoal compared to no activated charcoal (NoAC). The concentration of Thevetia cardenolides was estimated using a digoxin immunoassay. The effect of activated charcoal on cardenolide pharmacokinetics was compared between treatment groups using the AUC24, the 24h Mean Residence Time (MRT24), and regression lines obtained from serial concentration points adjusted for exposure. Erratic and prolonged absorption patterns were noted in each patient group. The apparent terminal half-life was highly variable, with a median time of 42.9h. There was a reduction in MRT24 and the apparent terminal half-life estimated from linear regression in patients administered activated charcoal compared to the control group (NoAC). This effect was approximately equal in patients administered MDAC or SDAC. Activated charcoal appears to favourably influence the pharmacokinetic profile of Thevetia cardenolides in patients with acute self-poisoning, which may have clinical benefits. Given the conflicting clinical outcomes noted in previous RCTs, this mechanistic data supports the need for further studies to determine whether a subgroup of patients (eg. those presenting soon after poisoning) will benefit from activated charcoal. PMID:17164695

  17. Radiation processing applications in the Czechoslovak water treatment technologies

    Science.gov (United States)

    Vacek, K.; Pastuszek, F.; Sedláček, M.

    The regeneration of biologically clogged water wells by radiation proved to be a successful and economically beneficial process among other promising applications of ionizing radiation in the water supply technology. The application conditions and experience are mentioned. The potential pathogenic Mycobacteria occuring in the warm washing and bathing water are resistant against usual chlorine and ozone concentrations. The radiation sensitivity of Mycobacteria allowed to suggest a device for their destroying by radiation. Some toxic substances in the underground water can be efficiently degraded by gamma radiation directly in the wells drilled as a hydraulic barrier surrounding the contaminated land area. Substantial decrease of CN - concentration and C.O.D. value was observed in water pumped from such well equipped with cobalt sources and charcoal. The removing of pathogenic contamination remains to be the main goal of radiation processing in the water purification technologies. The decrease of liquid sludge specific filter resistance and sedimentation acceleration by irradiation have a minor technological importance. The hygienization of sludge cake from the mechanical belt filter press by electron beam appears to be the optimum application in the Czechoslovak conditions. The potatoes and barley crop yields from experimental plots treated with sludge were higher in comparison with using the manure. Biological sludge from the municipal and food industry water purification plants contains nutritive components. The proper hygienization is a necessary condition for using them as a livestock feed supplement. Feeding experiments with broilers and pigs confirmed the possibility of partial (e.g. 50%) replacement of soya-, bone- or fish flour in feed mixtures by dried sludge hygienized either by heat or by the irradiation.

  18. Radiation processing applications in the Czechoslovak water treatment technologies

    International Nuclear Information System (INIS)

    Vacek, K.; Pastuszek, F.; Sedlacek, M.

    1986-01-01

    The regeneration of biologically clogged water wells by radiation proved to be a successful and economically beneficial process among other promising applications of ionizing radiation in the water supply technology. The application conditions and experience are mentioned. The potential pathogenic Mycobacteria occuring in the warm washing and bathing water are resistant against usual chlorine and ozone concentrations. The radiation sensitivity of Mycobacteria allowed to suggest a device for their destroying by radiation. Some toxic substances in the underground water can be efficiently degraded by gamma radiation directly in the wells drilled as a hydraulic barrier surrounding the contaminated land area. Substantial decrease of CN - concentration and C.O.D. value was observed in water pumped from such well equipped with cobalt sources and charcoal. The removing of pathogenic contamination remains to be the main goal of radiation processing in the water purification technologies. The decrease of liquid sludge specific filter resistance and sedimentation acceleration by irradiation have a minor technological importance. The hygienization of sludge cake from the mechanical belt filter press by electron beam appears to be the optimum application in the Czechoslovak conditions. The potatoes and barley crop yields from experimental plots treated with sludge were higher in comparison with using the manure. Biological sludge from the municipal and food industry water purification plants contains nutritive components. The proper hygienization is a necessary condition for using them as a livestock feed supplement. Feeding experiments with broilers and pigs confirmed the possibility of partial (e.g. 50%) replacement of soya-, bone, or fish flour in feed mixtures by dried sludge hygienized either by heat or by the irradiation. (author)

  19. The contribution of charcoal burning to the rise and decline of suicides in Hong Kong from 1997-2007.

    Science.gov (United States)

    Law, C K; Yip, Paul S F; Caine, Eric D

    2011-09-01

    There has been scant research exploring the relationship between choice of method (means) of self-inflicted death, and broader social or contextual factors. The recent emergence and growth of suicide using carbon monoxide poisoning resulting from burning charcoal in an enclosed space (hereafter, "charcoal burning") was related to an increase in the overall suicide rate in Hong Kong. The growth of this method coincided with changing economic conditions. This paper expands upon previous work to explore possible relationships further. This study aims to discern the role of charcoal burning in overall suicide rate transition during times of both economic recession and expansion, as captured in the unemployment rate of Hong Kong, and to examine whether there was evidence of an effect from means-substitution. Age and gender specific suicide rates in Hong Kong by suicide methods from 1997 to 2007 were calculated. To model the transition of suicide rate by different methods, Poisson regression analyses were employed. Charcoal burning constituted 18.3% of all suicides, 88% of which involved individuals drawn from the middle years (25-59) of life. During both periods of rising and declining unemployment, charcoal burning played an important role in the changing suicide rates, and this effect was most prominent among for those in their middle years. Means-substitution was found among the married women during the period of rate advancement (1997-2003). Compared to others, working-age adults preferentially selected carbon monoxide poisoning from charcoal burning.

  20. Fabrication of antibacterial water filter by coating silver nanoparticles on flexible polyurethane foams

    International Nuclear Information System (INIS)

    Nguyen Thi Phuong Phong; Ngo Vo Ke Thanh; Phan Hue Phuong

    2009-01-01

    In this paper, we fabricated silver-coated polyurethane foams and used it as a bacterial filter for contaminated drinking water. Flexible PU foams were soaked in silver colloidal solutions for 10 h, then washed and air-dried at room temperature. The prepared silver colloidal solutions and silver-coated PU materials were characterized by several techniques including TEM, FESEM/EDS, UV-VIS, ICP-AAS, and Raman spectroscopy. The TEM images showed that the size of silver nanoparticles in colloidal solutions varies from 6 to 12nm. The Raman, FE-SEM/EDS and ICP-AAS data illustrated that silver nanoparticles were stable on the PU foam and were not washed away by water. Furthermore, the microbiological tests (tube tests and flow test) were carried out on silver-coated PU materials with the Coliforms, E. coli, and B. subtilis. The obtained results showed that the bacteria was killed completely with antibacterial efficiency of 100% being observed. Our research suggests that silver-coated polyurethane foams can be used as excellent antibacterial water filters and would have several applications in other sectors.

  1. Designing Programme Implementation Strategies to Increase the Adoption and Use of Biosand Water Filters in Rural India

    OpenAIRE

    Tommy K.K. Ngai; Richard A. Fenner

    2014-01-01

    Low-cost household water treatment systems are innovations designed to improve the quality of drinking water at the point of use. This study investigates how an NGO can design appropriate programme strategies in order to increase the adoption and sustained use of household sand filters in rural India. A system dynamics computer model was developed and used to assess 18 potential programme strategies for their effectiveness in increasing filter use at two and ten years into the future, under s...

  2. Soil charcoal as long-term pyrogenic carbon storage in Amazonian seasonal forests.

    Science.gov (United States)

    Turcios, Maryory M; Jaramillo, Margarita M A; do Vale, José F; Fearnside, Philip M; Barbosa, Reinaldo Imbrozio

    2016-01-01

    Forest fires (paleo + modern) have caused charcoal particles to accumulate in the soil vertical profile in Amazonia. This forest compartment is a long-term carbon reservoir with an important role in global carbon balance. Estimates of stocks remain uncertain in forests that have not been altered by deforestation but that have been impacted by understory fires and selective logging. We estimated the stock of pyrogenic carbon derived from charcoal accumulated in the soil profile of seasonal forest fragments impacted by fire and selective logging in the northern portion of Brazilian Amazonia. Sixty-nine soil cores to 1-m depth were collected in 12 forest fragments of different sizes. Charcoal stocks averaged 3.45 ± 2.17 Mg ha(-1) (2.24 ± 1.41 Mg C ha(-1) ). Pyrogenic carbon was not directly related to the size of the forest fragments. This carbon is equivalent to 1.40% (0.25% to 4.04%) of the carbon stocked in aboveground live tree biomass in these fragments. The vertical distribution of pyrogenic carbon indicates an exponential model, where the 0-30 cm depth range has 60% of the total stored. The total area of Brazil's Amazonian seasonal forests and ecotones not altered by deforestation implies 65-286 Tg of pyrogenic carbon accumulated along the soil vertical profile. This is 1.2-2.3 times the total amount of residual pyrogenic carbon formed by biomass burning worldwide in 1 year. Our analysis suggests that the accumulated charcoal in the soil vertical profile in Amazonian forests is a substantial pyrogenic carbon pool that needs to be considered in global carbon models. © 2015 John Wiley & Sons Ltd.

  3. The effect of food and ice cream on the adsorption capacity of paracetamol to high surface activated charcoal

    DEFF Research Database (Denmark)

    Høgberg, Lotte Christine Groth; Angelo, Helle Riis; Christophersen, Anne Bolette

    2003-01-01

    , the reductions compared to control (Hoegberg et al. 2002) varied between 11% and 26%. Even though a reduction in drug adsorption to activated charcoal was observed when food mixture or ice cream was added, the remaining adsorption capacity of both types of activated charcoal theoretically was still able......The effect of added food mixture (as if food was present in the stomach of an intoxicated patient) or 4 different types of ice cream (added as a flavouring and lubricating agent) on the adsorption of paracetamol (acetaminophen) to 2 formulations of activated charcoal was determined in vitro......, and paracetamol were mixed with either food mixture or ice cream followed by one hr incubation. The maximum adsorption capacity of paracetamol to activated charcoal was calculated using Langmuirs adsorption isotherm. Paracetamol concentration was analyzed using high pressure liquid chromatography. In the presence...

  4. Quality of charcoal produced using micro gasification and how the new cook stove works in rural Kenya

    Science.gov (United States)

    Njenga, Mary; Mahmoud, Yahia; Mendum, Ruth; Iiyama, Muyiki; Jamnadass, Ramni; Roing de Nowina, Kristina; Sundberg, Cecilia

    2016-09-01

    Wood based energy is the main source of cooking and heating fuel in Sub-Saharan Africa. Its use rises as the population increases. Inefficient cook stoves result in fuel wastage and health issues associated with smoke in the kitchen. As users are poor women, they tend not to be consulted on cook stove development, hence the need for participatory development of efficient woodfuel cooking systems. This paper presents the findings of a study carried out in Embu, Kenya to assess energy use efficiency and concentrations of carbon monoxide and fine particulate matter from charcoal produced using gasifier cook stoves, compared to conventional wood charcoal. Charcoal made from Grevillea robusta prunings, Zea mays cob (maize cob) and Cocos nucifera (coconut shells) had calorific values of 26.5 kJ g-1, 28.7 kJ g-1 and 31.7 kJ g-1 respectively, which are comparable to conventional wood charcoal with calorific values of 33.1 kJ g-1. Cooking with firewood in a gasifier cook stove and use of the resultant charcoal as by-product to cook another meal in a conventional charcoal stove saved 41% of the amount of fuel compared to cooking with firewood in the traditional three stone open fire. Cooking with firewood based on G. robusta prunings in the traditional open fire resulted in a concentration of fine particulate matter of 2600 μg m-3, which is more than 100 times greater than from cooking with charcoal made from G. robusta prunings in a gasifier. Thirty five percent of households used the gasifier for cooking dinner and lunch, and cooks preferred using it for food that took a short time to prepare. Although the gasifier cook stove is energy and emission efficient there is a need for it to be developed further to better suit local cooking preferences. The energy transition in Africa will have to include cleaner and more sustainable wood based cooking systems.

  5. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 1: nonuniform infiltration and soil water redistribution

    OpenAIRE

    Munoz Carpena, R.; Lauvernet, C.; Carluer, N.

    2018-01-01

    Vegetation buffers like vegetative filter strips (VFSs) are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT) that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To si...

  6. Projects on filter testing in Sweden

    International Nuclear Information System (INIS)

    Normann, B.; Wiktorsson, C.

    1985-01-01

    The Swedish nuclear power program comprises twelve light water reactors. Nine are boiling water reactors of ASEA-ATOM design and three are pressurized water reactors of Westinghouse design. Of these, ten are in operation and two are under construction and planned to go into operation during late 1984 and early 1985, respectively. Frequent tests on the penetration of particles through HEPA filters, regular tests on the adsorption of methyl iodide in the stand-by carbon filter units by laboratory testing are discussed. The proposed new regulations are based on many years of experience of filter system operation and of tests in-situ and in the laboratory. Moisture and water are factors that affect the functioning of filters. In addition, high loading of dust can give rise to increased penetration through HEPA filters, however pinholes could have less influence on the total penetration. Laboratory tests show that DOP particles retain 30-40% in 90 mm carbon filters (8-12 mesh). However no effect on the ability of carbon to adsorb methyl iodide after DOP contamination in combined carbon/HEPA filters has been observed. Leakage from ventilation ducts can cause radioactive contamination problems during filter testing with radioiodine. In-situ testing of control-room filters has been performed using inactive methyl iodide. A type of carbon bed not previously used in Sweden has been introduced. Testing of this filter type is discussed

  7. Development of a Metal Kiln for the Production of Charcoal from ...

    African Journals Online (AJOL)

    African Journal of Sustainable Development ... The study established that the design upon modification would be environmentally safe, viable and an economic alternative for ... Keywords: Production, Smoking, Charcoal, Kiln, Design ...

  8. The occurrence of UV filters in natural and drinking water in São Paulo State (Brazil).

    Science.gov (United States)

    da Silva, Claudia Pereira; Emídio, Elissandro Soares; de Marchi, Mary Rosa Rodrigues

    2015-12-01

    Ultraviolet (UV) filters are widely used in the formulation of personal care products (PCPs) to prevent damage to the skin, lips, and hair caused by excessive UV radiation. Therefore, large amounts of these substances are released daily into the aquatic environment through either recreational activities or the release of domestic sewage. The concern regarding the presence of such substances in the environment and the exposure of aquatic organisms is based on their potential for bioaccumulation and their potential as endocrine disruptors. Although there are several reports regarding the occurrence and fate of UV filters in the aquatic environment, these compounds are still overlooked in tropical areas. In this study, we investigated the occurrence of the organic UV filters benzophenone-3 (BP-3), ethylhexyl salicylate (ES), ethylhexyl methoxycinnamate (EHMC), and octocrylene (OC) in six water treatment plants in various cities in Southeast Brazil over a period of 6 months to 1 year. All of the UV filters studied were detected at some time during the sampling period; however, only EHMC and BP-3 were found in quantifiable concentrations, ranging from 55 to 101 and 18 to 115 ng L(-1), respectively. Seasonal variation of BP-3 was most clearly noticed in the water treatment plant in Araraquara, São Paulo, where sampling was performed for 12 months. BP-3 was not quantifiable in winter but was quantifiable in summer. The levels of BP-3 were in the same range in raw, treated and chlorinated water, indicating that the compound was not removed by the water treatment process.

  9. Cationic polymers in water treatment: Part 2: Filterability of CPE-formed suspension

    Czech Academy of Sciences Publication Activity Database

    Polášek, P.; Mutl, Silvestr

    2002-01-01

    Roč. 28, č. 1 (2002), s. 83-88 ISSN 0378-4738 R&D Projects: GA AV ČR KSK2067107 Institutional research plan: CEZ:AV0Z2060917 Keywords : cationic polymers * water treatment * filterability of CPE-formed suspension Subject RIV: BK - Fluid Dynamics Impact factor: 0.481, year: 2002

  10. High flow ceramic pot filters.

    Science.gov (United States)

    van Halem, D; van der Laan, H; Soppe, A I A; Heijman, S G J

    2017-11-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more water without sacrificing their microbial removal efficacy. High flow pot filters, produced by increasing the rice husk content, had a higher initial flow rate (6-19 L h -1 ), but initial LRVs for E. coli of high flow filters was slightly lower than for regular ceramic pot filters. This disadvantage was, however, only temporarily as the clogging in high flow filters had a positive effect on the LRV for E. coli (from below 1 to 2-3 after clogging). Therefore, it can be carefully concluded that regular ceramic pot filters perform better initially, but after clogging, the high flow filters have a higher flow rate as well as a higher LRV for E. coli. To improve the initial performance of new high flow filters, it is recommended to further utilize residence time of the water in the receptacle, since additional E. coli inactivation was observed during overnight storage. Although a relationship was observed between flow rate and LRV of MS2 bacteriophages, both regular and high flow filters were unable to reach over 2 LRV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effects of dynamic operating conditions on nitrification in biological rapid sand filters for drinking water treatment

    DEFF Research Database (Denmark)

    Lee, Carson Odell; Boe-Hansen, Rasmus; Musovic, Sanin

    2014-01-01

    Biological rapid sand filters are often used to remove ammonium from groundwater for drinking water supply. They often operate under dynamic substrate and hydraulic loading conditions, which can lead to increased levels of ammonium and nitrite in the effluent. To determine the maximum nitrification...... operating conditions. The ammonium removal rate of the filter was determined by the ammonium loading rate, but was independent of both the flow and influent ammonium concentration individually. Ammonia-oxidizing bacteria and archaea were almost equally abundant in the filter. Both ammonium removal...... rates and safe operating windows of rapid sand filters, a pilot scale rapid sand filter was used to test short-term increased ammonium loads, set by varying either influent ammonium concentrations or hydraulic loading rates. Ammonium and iron (flock) removal were consistent between the pilot...

  12. Effect of carbon black on thermal properties of charcoal and salacca leafstalk briquettes

    Science.gov (United States)

    Thassana, Chewa; Nuleg, Witoon

    2017-08-01

    In this work, the effect of a carbon black (CB) on the thermal properties of briquettes produced from the charcoal and the salacca leafstalk with and without CB have been investigated. Four thermal properties of a briquettes compose of the burning time, the calorific value, the percentage moisture (PMC) and an percentage ash content (PAC) were analyzed using standard laboratory methods. Our results were indicated that the sallacca leafstalk mix a carbon black is the long burning times, high heating but a few ash content. Results shown that the burning time and the calorific value of a charcoal, a charcoal with CB, the salacca leafstalk and the salacca leafstalk with carbon black particles is about 58, 63, 76, 81 minutes, and 10.33, 12.96, 13.12, 14.63 MJ/kg, respectively. In addition, the PMC and PAC were in range of 11.6 - 8.14% and 9.33 - 5.42%. So, we can conclude that a cabon black affect on the thermal properties of a briquettes and salacca leaftstalk mixed CB has been most suited for briquetting.

  13. Effect of water-to-cement ratio and curing method on the strength, shrinkage and slump of the biosand filter concrete body.

    Science.gov (United States)

    Chan, Nicole; Young-Rojanschi, Candice; Li, Simon

    2018-03-01

    The biosand filter is a household-level water treatment technology used globally in low-resource settings. As of December 2016, over 900,000 biosand filters had been implemented in 60 countries around the world. Local, decentralized production is one of the main advantages of this technology, but it also creates challenges, especially in regards to quality control. Using the current recommended proportions for the biosand filter concrete mix, slump was measured at water-to-cement ratios of 0.51, 0.64 and 0.76, with two replicates for each level. Twenty-eight-day strength was tested on four replicate cylinders, each at water-to-cement ratios of 0.51, 0.59, 0.67 and 0.76. Wet curing and dry curing were compared for 28-day strength and for their effect on shrinkage. Maximum strength occurred at water-to-cement ratios of 0.51-0.59, equivalent to 8-9.3 L water for a full-scale filter assuming saturated media, corresponding to a slump class of S1 (10-40 mm). Wet curing significantly improved strength of the concrete mix and reduced shrinkage. Quality control measures such as the slump test can significantly improve the quality within decentralized production of biosand filters, despite localized differences in production conditions.

  14. Production of charcoal briquettes from cotton stalk in malawi: methodology for feasibility studies using experiences in Sudan

    NARCIS (Netherlands)

    Onaji, P.B.; Siemons, R.V.

    1993-01-01

    The feasibility of charcoal production from cotton stalks in Malawi was studied based on experience from Sudan. The country relies considerably on biomass fuels. Of the total energy consumption in Malawi of 2.376 MTOE in 1989, 92% was met by biomass (fuelwood: 83.6% and charcoal: 8.3% Petroleum

  15. USE OF POWDERED COCONUT CHARCOAL AS A TOXICITY IDENTIFICATION AND EVALUATION MANIPULATION FOR ORGANIC TOXICANTS IN MARINE SEDIMENTS

    Science.gov (United States)

    We report on a procedure using powdered coconut charcoal to sequester organic contaminants and reduce toxicity in sediments as part of a series of toxicity identification and evaluation (TIE) methods. Powdered coconut charcoal (PCC) was effective in reducing the toxicity of endos...

  16. Influence of the particle size of activated charcoal on labeling efficiency with 67Ga-citrate for colonic transit study

    International Nuclear Information System (INIS)

    Wan-Yu Lin; Shih-Chuan Tsai; Kai-Yuan Cheng; Bor-Tsung Hsieh

    2008-01-01

    Indium-111 and 99m Tc have been proposed for colonic transit study, but 111 In is expensive and the half-life of 99m Tc is too short for the study. Gallium-67 citrate is inexpensive and has a suitable half-life. In our previous study, we successfully labeled 67 Ga-citrate activated charcoal, and the labeling efficiency exceeded 91% after a 96 hour incubation period. In this work, we evaluated the influence of the size of activated charcoal particles on the labeling efficiency with 67 Ga-citrate. The data showed that the influence of particle size on the labeling efficiency of activated charcoal with 67 Ga was insignificant. Both sizes of activated charcoal particles can be used for labeling with 67 Ga in colonic transit study. (author)

  17. Filter apparatus

    International Nuclear Information System (INIS)

    Butterworth, D.J.

    1980-01-01

    This invention relates to liquid filters, precoated by replaceable powders, which are used in the production of ultra pure water required for steam generation of electricity. The filter elements are capable of being installed and removed by remote control so that they can be used in nuclear power reactors. (UK)

  18. Emissions from street vendor cooking devices (charcoal grilling). Final report, January 1998--March 1999

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1999-06-01

    The report discusses a joint US/Mexican program to establish a reliable emissions inventory for street vendor cooking devices (charcoal grilling), a significant source of air pollutants in the Mexicali-Imperial Valley area of Mexico. Emissions from these devices, prevalent in the streets of Mexicali, Mexico, were investigated experimentally by measuring levels of particulate matter, particle size distributions, volatile and semivolatile organic compounds, aldehydes, and oxides of nitrogen and sulfur, emitted when meat is cooked on a grill over a charcoal fire. To investigate the emission rate, both beef and chicken were tested. Furthermore, both meats were marinated with a mixture similar to that used by the street vendors. Some tests were conducted with non-marinated beef for comparison. Two blank runs were performed sampling charcoal fires without meat. Finally, a simple control device, normally used in an exhaust fan to trap grease over a kitchen stove, was evaluated for its effectiveness in reducing emissions

  19. Efficiency and emissions of charcoal use in the improved Mbaula cookstove

    International Nuclear Information System (INIS)

    Kaoma, J.; Kasali, G.B.; Ellegaard, A.

    1994-01-01

    An improved chamber method was used to evaluate the thermal performance and emission characteristics of charcoal in an unvented cookstove known as the Improved Mbaula. Emission factors and rates for pollutants, burn rate and stove efficiency were determined. The pollutants that were continuously monitored were carbon monoxide (CO), sulphur dioxide (SO 2 ), nitric oxide (NO), nitrogen dioxide (NO 2 ), and respirable suspended particulates (RSP). Concentrations of CO, nitrogen oxides and RSP in the test chamber (a simulated kitchen) reached levels in excess of guidelines recommended in industrialized countries. Concentrations of SO 2 did not exceed known levels. If the test chamber actually is a good simulation of a common kitchen, the levels reached warrant concern for the health of people exposed, mostly women and children. Levels of pollution in actual kitchens will be assessed in a later study. The adjustable opening of the stove proved effective in regulating the burn rate. At half air input, burn rate decreased by about 40%, while emissions increased by about 60% compared to operation at full air input. Emissions of CO were 340 g/kg charcoal at full air input, which was taken to be the normal mode of operation. The average thermal efficiency (PHU) of the improved mbaula was 25% compared to 29% for the traditional charcoal stove. 16 refs, 4 figs, 12 tabs

  20. Efficiency and emissions of charcoal use in the improved Mbaula cookstove

    Energy Technology Data Exchange (ETDEWEB)

    Kaoma, J; Kasali, G B [Building and Industrial Minerals Research Unit, National Council for Scientific Research, (Zambia); Ellegaard, A [Stockholm Environment Inst. (Sweden)

    1994-12-31

    An improved chamber method was used to evaluate the thermal performance and emission characteristics of charcoal in an unvented cookstove known as the Improved Mbaula. Emission factors and rates for pollutants, burn rate and stove efficiency were determined. The pollutants that were continuously monitored were carbon monoxide (CO), sulphur dioxide (SO{sub 2}), nitric oxide (NO), nitrogen dioxide (NO{sub 2}), and respirable suspended particulates (RSP). Concentrations of CO, nitrogen oxides and RSP in the test chamber (a simulated kitchen) reached levels in excess of guidelines recommended in industrialized countries. Concentrations of SO{sub 2} did not exceed known levels. If the test chamber actually is a good simulation of a common kitchen, the levels reached warrant concern for the health of people exposed, mostly women and children. Levels of pollution in actual kitchens will be assessed in a later study. The adjustable opening of the stove proved effective in regulating the burn rate. At half air input, burn rate decreased by about 40%, while emissions increased by about 60% compared to operation at full air input. Emissions of CO were 340 g/kg charcoal at full air input, which was taken to be the normal mode of operation. The average thermal efficiency (PHU) of the improved mbaula was 25% compared to 29% for the traditional charcoal stove. 16 refs, 4 figs, 12 tabs

  1. Adsorption and Pore of Physical-Chemical Activated Coconut Shell Charcoal Carbon

    Science.gov (United States)

    Budi, E.; Umiatin, U.; Nasbey, H.; Bintoro, R. A.; Wulandari, Fi; Erlina, E.

    2018-04-01

    The adsorption of activated carbon of coconut shell charcoal on heavy metals (Cu and Fe) of the wastewater and its relation with the carbon pore structure was investigated. The coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours to produce charcoal and then shieved into milimeter sized granule particles. Chemical activation was done by immersing the charcoal into chemical solution of KOH, NaOH, HCl and H3PO4, with various concentration. The activation was followed by physical activation using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology of activated carbon were characterized by using Scanning Electron Microscopy (SEM). Wastewater was made by dissolving CuSO4.5H2O and FeSO4.7H2O into aquades. The metal adsorption was analized by using Atomic Absorption Spectroscopy (AAS). The result shows that in general, the increase of chemical concentration cause the increase of pore number of activated carbon due to an excessive chemical attack and lead the increase of adsorption. However it tend to decrease as further increasing in chemical activator concentration due to carbon collapsing. In general, the adsorption of Cu and Fe metal from wastewater by activated carbon increased as the activator concentration was increased.

  2. Combustion characteristics of a charcoal slurry in a direct injection diesel engine and the impact on the injection system performance

    International Nuclear Information System (INIS)

    Soloiu, Valentin; Lewis, Jeffery; Yoshihara, Yoshinobu; Nishiwaki, Kazuie

    2011-01-01

    The paper presents the research results pertaining to the renewable biomass charcoal-diesel slurries and their use as alternative fuels for combustion in diesel generating plants. The utilization of charcoal slurry fuel aims to reduce diesel oil consumption and would decrease fossil green house emissions into the atmosphere. The paper investigates the formulation, emulsification, sprays, combustion, injection system operation, and subsequent wear with charcoal-diesel slurries. In the research, cedar wood chips were used for the production of charcoal to be emulsified with diesel oil. The slurry's viscosity of 27 cP achieved the target ( o C. Charcoal slurry displayed a high vaporization rate of 75% by wt. at 300 o C. Engine investigations showed that the top combustion pressure at 1200 rpm and 100% load (7.8 brake mean effective pressure (bmep)) was 79 bar for diesel fuel and 78 bar for the charcoal slurry fuel. From the injection and heat release history was found an ignition delay of 1.7 ms for diesel that increased to 2.1 ms for the slurry fuel. A higher net heat release for charcoal slurry was observed, up to 180 J/crank angle degrees (CAD) compared with the diesel at 145 J/CAD The maximum combustion temperature reached 2300 K for diesel and 2330 K for slurry. The heat fluxes for both fuels have similar values and trends during the entire cycle showing the good compatibility of charcoal slurry with a diesel type combustion and low soot radiation. The exhaust temperatures were about 40-50 o C higher for charcoal slurry at 19 o before top dead center (BTDC) injection timing. The engine's bsfc increased as expected due to the lower heating value of the slurry fuel. The smoke Bosch no. was lower for the slurry fuel at any load, and is believed that the oxygen from the charcoal had a beneficial effect. The measured emissions of slurry fuel were better at 13 o BTDC than those of diesel fuel with the original engine settings and the remaining 6-10% oxygen content in

  3. [Evaluation of drinking-water treatment by Lifestraw® and Ceramic-pot filters].

    Science.gov (United States)

    Pérez-Vidal, Andrea; Díaz-Gómez, Jaime; Salamanca-Rojas, Karen L; Rojas-Torres, Leidy Y

    2016-04-01

    Objective To evaluate under laboratory conditions, the removal efficiency of turbidity and E. coli of two household water filters: LifeStraw® family (MF) and ceramic pot filter (CPF). Methods The two systems were operated over 6 months using two identical control units per system, treating 7.5 L/d of a synthetic substrate used as raw water. The turbidity of the substrate was adjusted with Kaolinite and the E. coli concentration, with a replica of the ATCC 95922 strain. The differences of effluent quality of the systems, in terms of turbidity and E. coli, were evaluated with Analysis of Variance (ANOVA). Operative and maintenance aspects, that could limit or enhance the use of the systems, were also considered in the evaluation. Results The water synthetic substrate quality had an average of 32.2 ± 2.8 NTU for turbidity and 3,9x105 UFC/100 mL for E. coli. Both systems reduce the turbidity to values below 2 NTU with an inactivation of 100 % of E. coli. Statistical differences were found between the systems in terms of turbidity removal, MF being more efficient than the CPF (99,2 ± 0.4 % and 97.6 % ± 1.14, respectively). Conclusions Both systems are suitable for household water supply treatment, acheiving the water quality standards established by Colombian regulations. The MF was more efficient for suspended solids removal and filtration rate, but when economic, operative, and maintenance aspects along with social acceptability and lifespan are considered, the CPF seems more suitable, especially in rural areas.

  4. Attenuation of polychlorinated biphenyl sorption to charcoal by humic acids

    NARCIS (Netherlands)

    Koelmans, A.A.; Meulman, B.; Meijer, T.; Jonker, M.T.O.

    2009-01-01

    Strong sorption to black carbon may limit the environmental risks of organic pollutants, but interactions with cosorbing humic acid (HA) may interfere. We studied the attenuative effect of HA additions on the sorption of polychlorinated biphenyls (PCBs) to a charcoal. "Intrinsic" sorption to

  5. Efficiency of moso bamboo charcoal and activated carbon for adsorbing radioactive iodine

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Chuan-Chi; Huang, Ying-Pin; Wang, Wie-Chieh [ITRI South, Industrial Technology Research Institute, Tainan (China); Chao, Jun-Hsing; Wei, Yuan-Yao [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu (China)

    2011-02-15

    Preventing radioactive pollution is a troublesome problem but an urgent concern worldwide because radioactive substances cause serious health-related hazards to human being. The adsorption method has been used for many years to concentrate and remove radioactive pollutants; selecting an adequate adsorbent is the key to the success of an adsorption-based pollution abatement system. In Taiwan, all nuclear power plants use activated carbon as the adsorbent to treat radiation-contaminated air emission. The activated carbon is entirely imported; its price and manufacturing technology are entirely controlled by international companies. Taiwan is rich in bamboo, which is one of the raw materials for high-quality activated carbon. Thus, a less costly activated carbon with the same or even better adsorptive capability as the imported adsorbent can be made from bamboo. The objective of this research is to confirm the adsorptive characteristics and efficiency of the activated carbon made of Taiwan native bamboo for removing {sup 131}I gas from air in the laboratory. The study was conducted using new activated carbon module assembled for treating {sup 131}I-contaminated air. The laboratory results reveal that the {sup 131}I removal efficiency for a single-pass module is as high as 70%, and the overall efficiency is 100% for four single-pass modules operated in series. The bamboo charcoal and bamboo activated carbon have suitable functional groups for adsorbing {sup 131}I and they have greater adsorption capacities than commercial activated carbons. Main mechanism is for trapping of radioiodine on impregnated charcoal, as a result of surface oxidation. When volatile radioiodine is trapped by potassium iodide-impregnated bamboo charcoal, the iodo-compound is first adsorbed on the charcoal surface, and then migrates to iodide ion sites where isotope exchange occurs. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Structural, morphological, and thermal characterization of kraft lignin and its charcoals obtained at different heating rates

    Science.gov (United States)

    Rodrigues Brazil, Tayra; Nunes Costa, Rogeria; Massi, Marcos; Cerqueira Rezende, Mirabel

    2018-04-01

    Biomass is a renewable resource that is becoming more import due to environmental concerns and possible oil crisis. Thus, optimizing its use is a current challenge for many researchers. Lignin, which is a macromolecule with complex chemical structure, valuable physicochemical properties, and varied chemical composition, is available in large quantities in pulp and paper companies. The objective of this work is the physicochemical characterization of two Kraft lignin samples with different purities, and the study of its thermal conversion into charcoal. The lignin characterization was based on chemical, TGA, DSC, FT-IR, particle sizes, and FEG-SEM analyses. These analyses show that the lignins are mainly composed of guaiacyl and syringyl units, with residues of 30–36 wt.%, in inert atmosphere, depending on the lignin purity. From these results, the more purified lignin with higher carbon yield (%C) was selected for charcoal production. The heat treatment (HT) for carbonization of lignin, at different times (90, 180, and 420 min), resulted in different %C (41–44 wt.%). Longer HT resulted in higher %C and in charcoals with smaller pore sizes. Nanopores (∼50 nm) are observed for the charcoal obtained with the longest HT.

  7. Estimation of pressure drop in the mixing zone of beds in operation filters as drinking water treatment by a mathematical model

    International Nuclear Information System (INIS)

    Rodriguez Miranda, J. P.

    2010-01-01

    This paper describes the correlation of a mathematical model that considers the pressure drop (energy) in the mixing zone of beds in operation filters as drinking water treatment, filters applied in conventional pilot operated and mounted on a water treatment plant of a municipally in Colombia. (Author) 20 refs.

  8. Carbon filter property detection with thermal neutron technique

    International Nuclear Information System (INIS)

    Deng Zhongbo; Han Jun; Li Wenjie

    2003-01-01

    The paper discussed the mechanism that the antigas property of the carbon filter will decrease because of its carbon bed absorbing water from the air while the carbon filter is being stored, and introduced the principle and method of detection the amount of water absorption with thermal neutron technique. Because some certain relation between the antigas property of the carbon filter and the amount of water absorption exists, the decrease degree of the carbon filter antigas property can be estimated through the amount of water absorption, offering a practicable facility technical pathway to quickly non-destructively detect the carbon filter antigas property

  9. Volatile compounds and odor preferences of ground beef added with garlic and red wine, and irradiated with charcoal pack

    International Nuclear Information System (INIS)

    Lee, Kyung Haeng; Yun, Hyejeong; Lee, Ju Woon; Ahn, Dong Uk; Lee, Eun Joo; Jo, Cheorun

    2012-01-01

    Irradiation is the most efficient non-thermal technology for improving hygienic quality and extending the shelf-life of food products. One of the adverse effects of food irradiation, however, is off-flavor production, which significantly affects the sensory preferences for certain foods. In this study, garlic (5%, w/w) and red wine (1:1, w/w) were added to ground beef to increase the radiation sensitivity of pathogens and improve meat odor/flavor. Samples were irradiated at 0 or 5 kGy in the presence of charcoal pack. SPME-GC–MS analysis was performed to measure the changes in the volatile compounds and sensory characteristics of the samples. The amount of total volatile compounds produced from ground beef was greater when the sample was irradiated. When garlic and red wine were added to the ground beef, the amount of volatile compounds significantly increased, and the amount of volatile compounds increased even further after irradiation. However, when the samples were irradiated with charcoal pack, the amount of volatile compounds decreased significantly. Sensory evaluation indicated that charcoal pack significantly increased the odor preferences for both irradiated and non-irradiated ground beef added with garlic. These results indicated that addition of charcoal pack to ground beef could reduce off-odor problems induced by irradiation, and this effect was consistent even when certain additives such as garlic and red wine were added. - Highlights: ► Garlic and red wine were added to ground beef and irradiated at 5 kGy in the presence of charcoal pack. ► When the samples were irradiated with charcoal pack, the amount of volatile compounds decreased significantly and it affected sensory score. ► Thus, addition of charcoal pack to ground beef could reduce off-odor problems induced by irradiation. ► This effect was consistent when additives, such as garlic and red wine, were added into ground beef.

  10. Application of design for six sigma methodology on portable water filter that uses membrane filtration system: A preliminary study

    Science.gov (United States)

    Fahrul Hassan, Mohd; Jusoh, Suhada; Zaini Yunos, Muhamad; Arifin, A. M. T.; Ismail, A. E.; Rasidi Ibrahim, M.; Zulafif Rahim, M.

    2017-09-01

    Portable water filter has grown significantly in recent years. The use of water bottles as a water drink stuff using hand pump water filtration unit has been suggested to replace water bottled during outdoor recreational activities and for emergency supplies. However, quality of water still the issue related to contaminated water due to the residual waste plants, bacteria, and so on. Based on these issues, the study was carried out to design a portable water filter that uses membrane filtration system by applying Design for Six Sigma. Design for Six Sigma methodology consists of five stages which is Define, Measure, Analyze, Design and Verify. There were several tools have been used in each stage in order to come out with a specific objective. In the Define stage, questionnaire approach was used to identify the needs of portable water filter in the future from potential users. Next, Quality Function Deployment (QFD) tool was used in the Measure stage to measure the users’ needs into engineering characteristics. Based on the information in the Measure stage, morphological chart and weighted decision matrix tools were used in the Analyze stage. This stage performed several activities including concept generation and selection. Once the selection of the final concept completed, detail drawing was made in the Design stage. Then, prototype was developed in the Verify stage to conduct proof-of-concept testing. The results that obtained from each stage have been reported in this paper. From this study, it can be concluded that the application of Design for Six Sigma in designing a future portable water filter that uses membrane filtration system is a good start in looking for a new alternative concept with a completed supporting document.

  11. An Improved Cambridge Filter Pad Extraction Methodology to Obtain More Accurate Water and “Tar” Values: In Situ Cambridge Filter Pad Extraction Methodology

    OpenAIRE

    Ghosh David; Jeannet Cyril

    2014-01-01

    Previous investigations by others and internal investigations at Philip Morris International (PMI) have shown that the standard trapping and extraction procedure used for conventional cigarettes, defined in the International Standard ISO 4387 (Cigarettes -- Determination of total and nicotine-free dry particulate matter using a routine analytical smoking machine), is not suitable for high-water content aerosols. Errors occur because of water losses during the opening of the Cambridge filter p...

  12. Use of Activated Charcoal for 220Rn Adsorption for Operations Associated with the Uranium Deposit in the Auxiliary Charcoal Bed at the Molten Salt Reactor Experiment Facility

    International Nuclear Information System (INIS)

    Coleman, R.L.

    1999-01-01

    Measurements have been collected with the purpose of evaluating the effectiveness of activated charcoal for the removal of 220 Rn from process off-gas at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory. A series of bench-scale tests were performed at superficial flow velocities of 10, 18, 24, and 33 cm/s (20, 35, 47, and 65 ft/min) with a continuous input concentration of 220 Rn in the range of 9 x 10 3 pCi/L. In addition, two tests were performed at the MSRE facility by flowing helium through the auxiliary charcoal bed uranium deposit. These tests were performed so that the adsorptive effectiveness could be evaluated with a relatively high concentration of 220 Rn. In addition to measuring the effectiveness of activated charcoal as a 220 Rn adsorption media, the source term for available 220 Rn in the deposit is actually available for removal and that the relative activity of fission gases is very small when compared to 220 Rn. The measurement data were then used to evaluate the expected effectiveness of a proposed charcoal adsorption bed consisting of a right circular cylinder having a diameter of 43 cm and a length of 91 cm (17 in. I.D. x 3 ft.). The majority of the measurement data predicts an overall 220Rn activity reduction factor of about 1 x 10 9 for such a design; however, two measurements collected at a flow velocity of 18 cm/s (35 ft/min) indicated that the reduction factor could be as low as 1 x 10 6 . The adsorptive capacity of the proposed trap was also evaluated to determine the expected life prior to degradation of performance. Taking a conservative vantage point during analysis, it was estimated that the adsorption effectiveness should not begin to deteriorate until a 220 Rn activity on the order of 10 10 Ci has been processed. It was therefore concluded that degradation of performance would likely occur as the result of causes other than filling by radon progeny

  13. Adsorption of krypton from helium by low temperature charcoal

    International Nuclear Information System (INIS)

    Cooper, M.H.; Simmons, C.R.; Taylor, G.R.

    1975-01-01

    Adsorption of krypton from helium by charcoal at temperatures from -100 0 C to -140 0 C was experimentally investigated to verify adsorption system design methods and to determine effects of regeneration for the Gas Purification System of the Liquid-Metal Fast Breeder Reactor. Helium with two krypton concentrations, traced by krypton-85 at 0.0044 μCi/cm 3 , was passed through a 1/2-inch diameter, three-inch long trap packed with coconut charcoal. Breakthrough curves were measured by continuously recording the activity of the effluent gas using a sampler with a krypton-85 detection limit of about 5 x 10 -7 μCi/cm 3 . Experimental breakthrough curves with continuous feed for both concentrations and for superficial gas velocities of 5 to 28 cm/sec were closely fitted when the pore diffusion term was omitted from the Anzelius linear equilibrium adsorption model indicating that the adsorption process for this system was controlled by gas phase mass transport kinetics. Adsorption capacities determined in these experiments at -140 0 C agreed closely with published data. A discontinuity, however, was observed in the krypton adsorption coefficient between -100 and -120 0 C. This discontinuity may be caused by capillary condensation of krypton in the charcoal pores. Breakthrough times for pulse experiments at 400 ppM (vol.) krypton concentration were several times greater than breakthrough for continuous feed experiments at equivalent conditions. The differences in breakthrough times indicate that the adsorption isotherms are non-linear in this concentration range. Regeneration experiments showed that purging with helium at room temperature for 16 hours was inadequate, since lower breakthrough times were obtained after this treatment. Regeneration under vacuum at 100 0 C or 200 0 C for 16 hours resulted in satisfactory regeneration (i.e., no reduction in breakthrough times occurred in subsequent runs). (U.S.)

  14. Household-based ceramic water filters for the prevention of diarrhea: a randomized, controlled trial of a pilot program in Colombia.

    Science.gov (United States)

    Clasen, Thomas; Garcia Parra, Gloria; Boisson, Sophie; Collin, Simon

    2005-10-01

    Household water treatment is increasingly recognized as an effective means of reducing the burden of diarrheal disease among low-income populations without access to safe water. Oxfam GB undertook a pilot project to explore the use of household-based ceramic water filters in three remote communities in Colombia. In a randomized, controlled trial over a period of six months, the filters were associated with a 75.3% reduction in arithmetic mean thermotolerant coliforms (TTCs) (P Health Organization limits for low risk (1-10 TTCs/100 mL), respectively, compared with 0.9% and 7.3% for control group samples. Overall, prevalence of diarrhea was 60% less among households using filters than among control households (odds ratio = 0.40, 95% confidence interval = 0.25, 0.63, P < 0.0001). However, the microbiologic performance and protective effect of the filters was not uniform throughout the study communities, suggesting the need to consider the circumstances of the particular setting before implementing this intervention.

  15. Holocene elemental, lead isotope and charcoal record from peat in southern Poland

    Directory of Open Access Journals (Sweden)

    K. Tudyka

    2017-03-01

    Full Text Available This article presents a mid-resolution elemental, isotopic and charcoal record from 10700 BC to AD 500 in a peat core located in Żyglin (southern Poland. The objective is to give insight into the proxies with emphasis on lead (Pb sources in this minerogenic peat deposit. During the Early Holocene (10700–7550 BC the average 206Pb/207Pb quotient was around 1.196. This isotopic signature is consistent with natural dust derived from long-distance soil and rock weathering. The Mid-Holocene period (7550–3200 BC shows a significant change in the peat accumulation conditions. The growth rate is approximately 0.04 mm yr-1 and the 206Pb/207Pb quotients are shifted toward values that are found in local galena ores. This is simultaneous with a significantly increased lead flux which further confirms local sources of material in this peat deposit. In the Late Holocene period (3200 BC–AD 500 a large quantity of charcoal particles with diameters ranging from 2 mm up to 3 cm is found; also, Pb, Zn and Cu fluxes reach their highest values. This period corresponds to the Eneolithic, Bronze and Iron Ages, and human impact is recorded as charcoal.

  16. Removal of Mn, Fe, Ni and Cu Ions from Wastewater Using Cow Bone Charcoal

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2010-01-01

    Full Text Available Cow bone charcoal (CBC was synthesized and used for the removal of metals ions (manganese, iron, nickel and copper from aqueous solutions. Two different adsorption models were used for analyzing the data. Adsorption capacities were determined: copper ions exhibit the greatest adsorption on cow bone charcoal because of their size and pH conditions. Adsorption capacity varies as a function of pH. Adsorption isotherms from aqueous solution of heavy metals on CBC were determined. Adsorption isotherms are consistent with Langmuir´s adsorption model. Adsorbent quantity and immersion enthalpy were studied.

  17. Adsorption characteristics of sulfur powder by bamboo charcoal to restrain sulfur allergies

    Directory of Open Access Journals (Sweden)

    Wanxi Peng

    2017-01-01

    Full Text Available Exposures to particulate matter with a diameter of 2.5 μm or less (PM2.5 may influence the risk of birth defects and make you allergic, which causes serious harm to human health. Bamboo charcoal can adsorb harmful substances,that was of benefitto people’s health. In order to figure out the optimal adsorbtion condition and the intrinsic change of bamboo charcoal, five chemicals were adsorbed by bamboo charcoal and were analyzed by FT-IR. The optimal blast time was 80 min of Na2SO3, 100 min of Na2S2O8, 20 min of Na2SO4, 120 min of Fe2(SO43 and 60 min or 100 min of S. FT-IR spectra showed that bamboo charcoal had five characteristic peaks of SS stretch, H2O stretch, OH stretch, CO stretch or CC stretch, and NO2 stretch at 3850 cm−1, 3740 cm−1, 3430 cm−1, 1630 cm−1 and 1530 cm−1, respectively. For Na2SO3, the peaks at 3850 cm−1, 3740 cm−1, 3430 cm−1, 1630 cm−1 and 1530 cm−1 achieved the maximum at 20 min. For Na2S2O8, the peaks at 3850 cm−1, 3740 cm−1, 3430 cm−1 and 1530 cm−1 achieved the maximum at 40 min. For Na2SO4, the peaks at 3850 cm−1, 3740 cm−1 and 1530 cm−1 achieved the maximum at 40 min. For Fe2(SO43, the peaks at 3850 cm−1, 3740 cm−1, 1630 cm−1 and 1530 cm−1 achieved the maximum at 120 min. For S, the peaks at 3850 cm−1 and 3740 cm−1 achieved the maximum at 40 min, the peaks at 1630 cm−1 and 1530 cm−1 achieved the maximum at 40 min. It proved that bamboo charcoal could remove sulfur powder from air to restrain sulfur allergies.

  18. Phosphate limitation in biological rapid sand filters used to remove ammonium from drinking water

    DEFF Research Database (Denmark)

    Lee, Carson Odell; Albrechtsen, Hans-Jørgen; Smets, Barth F.

    2013-01-01

    Removing ammonium from drinking water is important for maintaining biological stability in distribution systems. This is especially important in regions that do not use disinfectants in the treatment process or keep a disinfectant residual in the distribution system. Problems with nitrification c...... a pilot scale sand column which initial analysis confirmed performed similarly to the full scale filters. Long term increased ammonium loads were applied to the pilot filter both with and without phosphate addition. Phosphate was added at a concentration of 0.5 mg PO4-P/L to ensure...

  19. Development of improved low-cost ceramic water filters for viral removal in the Haitian context

    OpenAIRE

    Guerrero Latorre, Laura; Rusiñol Arantegui, Marta; Hundesa Gonfa, Ayalkibet; Garcia Vallès, Maite; Martínez Manent, Salvador; Joseph, Osnick; Bofill Mas, Silvia; Gironès Llop, Rosina

    2015-01-01

    Household-based water treatment (HWT) is increasingly being promoted to improve water quality and, therefore, health status in low-income countries. Ceramic water filters (CWFs) are used in many regions as sustainable HWT and have been proven to meet World Health Organization (WHO) microbiological performance targets for bacterial removal (24 log); however, the described viral removal efficiencies are insufficient to significantly reduce the associated risk of viral infection. With the object...

  20. Drawer compacted sand filter: a new and innovative method for on-site grey water treatment.

    Science.gov (United States)

    Assayed, Almoayied; Chenoweth, Jonathan; Pedley, Steven

    2014-01-01

    In this paper, results ofa new sand filter design were presented. The drawer compacted sand filter (DCSF) is a modified design for a sand filter in which the sand layer is broken down into several layers, each of which is 10 cm high and placed in a movable drawer separated by a 10 cm space. A lab-scale DCSF was designed and operated for 330 days fed by synthetic grey water. The response of drawer sand filters to variable hydraulic and organic loading rates (HLR and OLR) in terms of biological oxygen demand (BODs), chemical oxygen demand (COD), total suspended solids (TSS), pH, electrical conductivity and Escherichia coli reductions were evaluated. The HLR was studied by increasing from 72 to 142 L m(-2) day(-1) and OLR was studied by increasing it from 23 to 30 g BOD5 m(-2) day(-1) while keeping the HLR constant at 142 L m(-2) day(-1). Each loading regime was applied for 110 days. Results showed that DCSF was able to remove >90% of organic matter and total suspended solids for all doses. No significant difference was noticed in terms of overall filter efficiency between different loads for all parameters. Significant reduction in BOD5 and COD (P water was drained through the third drawer in all tested loads. The paper concludes that DCSF would be appropriate for use in dense urban areas as its footprint is small and is appropriate for a wide range of users because of its convenience and low maintenance requirements.

  1. Modeling Adsorption Based Filters (Bio-remediation of Heavy Metal Contaminated Water)

    Science.gov (United States)

    McCarthy, Chris

    I will discuss kinetic models of adsorption, as well as models of filters based on those mechanisms. These mathematical models have been developed in support of our interdisciplinary lab group, which is centered at BMCC/CUNY (City University of New York). Our group conducts research into bio-remediation of heavy metal contaminated water via filtration. The filters are constructed out of biomass, such as spent tea leaves. The spent tea leaves are available in large quantities as a result of the industrial production of tea beverages. The heavy metals bond with the surfaces of the tea leaves (adsorption). The models involve differential equations, stochastic methods, and recursive functions. I will compare the models' predictions to data obtained from computer simulations and experimentally by our lab group. Funding: CUNY Collaborative Incentive Research Grant (Round 12); CUNY Research Scholars Program.

  2. CHARCOAL PACKED FURNACE FOR LOW-TECH CHARRING OF BONE

    DEFF Research Database (Denmark)

    Jacobsen, P.; Dahi, Elian

    1997-01-01

    A low-tech furnace for charring of raw bone using char coal is developed and tested. The furnace consists of a standard oil drum, fitted with simple materials as available in every market in small towns in developing counties. 80 kg of raw bone and 6 kg of charcoal are used for production of 50 kg...

  3. [Determination of five representative ultraviolet filters in water by gas chromatography-mass spectrometry].

    Science.gov (United States)

    Ding, Yiran; Huang, Yun; Zhao, Tingting; Cai, Qian; Luo, Yu; Huang, Bin; Zhang, Yuxia; Pan, Xuejun

    2014-06-01

    A method for the determination of five representative organic UV filters: ethylhexyl methoxycinnamate (EHMC), benzophenone-3 (BP-3), 4-methylbenzylidene camphor (4-MBC), octocrylene (OC), homosalate (HMS) in water was investigated. The method was ased on derivatization, solid phase extraction (SPE), followed by determination with gas chromatography-mass spectrometry (GC-MS). The variables involved in the derivatization of BP-3 and HMS were optimized, and SPE conditions were studied. For derivatization, 100 microL N,O-bis(trimethylsilyl) trifluoroacetamide (BSTFA) was used as derivatization reagent and reacted with BP-3 and HMS at 100 degrees C for 100 min. For SPE, the pH value of water sample was adjusted to 3-5. The Oasis HLB cartridges were employed and the solution of ethyl acetate and dichloromethane (1 : 1, v/v) was used as the eluting solvent, and good recoveries of the target compounds were obtained. The limits of detection (LODs) and the limits of quantification (LOQs) for the five target compounds in water samples were 0.5-1.2 ng/L and 1.4-4.0 ng/L, respectively. The recoveries of spiked water samples were 87.85%-102.34% with good repeatability and reproducibility (RSD < 5%, n = 3) for all the target compounds. Finally, the validated method was applied to analysis the representative UV filters in water samples collected from a wastewater treatment plant in Kunming city of Yunnan province.

  4. Towards the use of small amounts of activated charcoal along with well-type NaI(Tl) detector for indoor radon measurements

    International Nuclear Information System (INIS)

    Al-Azmi, D.

    2006-01-01

    The feasibility of using small quantities of activated charcoal and a 7.6 cm x 7.6 cm NaI(Tl) well-type detector was investigated for indoor radon measurements. Vials, filled with 10 g of charcoal, were exposed for different indoor radon concentration levels typical of Kuwait dwellings. After exposure, the vials were sealed and kept for 3 h to allow radon to come into radioactive equilibrium with its progenies and were then analysed by gamma-ray spectrometry using the well-type NaI(Tl) detector. The variation of radon absorption by the vials filled with charcoal with exposure time was also studied. A comparative study of the present technique with the standard technique of using 70 g charcoal canisters and flat NaI detector was also performed. After establishing the suitability of the technique, the charcoal vials were then used to investigate the effect of air-ventilation on the concentration levels of the indoor radon. Results show that there is a reduction in the radon concentration level (up to 25%) when the air-ventilation system was switched on. The paper presents the results of the study on the feasibility of combining small amounts of activated charcoal with a well-type NaI(Tl) detector in the measurement of indoor radon concentrations. (authors)

  5. Effect of activated charcoal, abscisic acid and polyethylene glycol on ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... Generation of horse chestnut somatic embryos is commonly achieved by transferring embryo- genic tissue onto an ABA, PEG and manitol-containing maturation media (Capuana and Deberg, 1997). Activated charcoal is commonly used in tissue culture media to darken the immediate media surroundings ...

  6. Prevalence of Acute Respiratory Infections in Women and Children in Western Sierra Leone due to Smoke from Wood and Charcoal Stoves

    Directory of Open Access Journals (Sweden)

    Eldred Tunde Taylor

    2012-06-01

    Full Text Available Combustion of biomass fuels (wood and charcoal for cooking releases smoke that contains health damaging pollutants. Women and children are the most affected. Exposure to biomass smoke is associated with acute respiratory infections (ARI. This study investigated the prevalence of ARI potentially caused by smoke from wood and charcoal stoves in Western Sierra Leone, as these two fuels are the predominant fuel types used for cooking. A cross sectional study was conducted for 520 women age 15–45 years; and 520 children under 5 years of age in homes that burn wood and charcoal. A questionnaire assessing demographic, household and exposure characteristics and ARI was administered to every woman who further gave information for the child. Suspended particulate matter (SPM was continuously monitored in fifteen homes. ARI prevalence revealed 32% and 24% for women, 64% and 44% for children in homes with wood and charcoal stoves, respectively. After adjusting for potential confounders for each group, the odds ratio of having suffered from ARI was similar for women, but remained large for children in homes with wood stoves relative to charcoal stoves (OR = 1.14, 95%CI: 0.71–1.82 and (OR = 2.03, 95%CI: 1.31–3.13, respectively. ARI prevalence was higher for children in homes with wood stoves compared with homes with charcoal stoves, but ARI prevalence for both types of fuels is higher compared with reported prevalence elsewhere. To achieve a reduction in ARI would require switching from wood and charcoal to cleaner fuels.

  7. Assessment of radiation exposure of nuclear medicine staff using personal TLD dosimeters and charcoal detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, F.; Garcia-Talavera, M.; Pardo, R.; Deban, L. [Valladolid Univ., Dept. de Quimica Analitica, Facultad de Ciencias (Spain); Garcia-Talavera, P.; Singi, G.M.; Martin, E. [Hospital Clinico Univ., Servicio de Medicina Nuclear, Salamanca (Spain)

    2006-07-01

    Although the main concern regarding exposure to ionizing radiation for nuclear medicine workers is external radiation, inhalation of radionuclides can significantly contribute to the imparted doses. We propose a new approach to assess exposure to inhalation of {sup 131}I based on passive monitoring using activated charcoal detectors. We compared the inhalation doses to the staff of a nuclear medicine department, based on the measurements derived from charcoal detectors placed at various locations, and the external doses monitored using personal TLD dosimeters. (authors)

  8. Assessment of radiation exposure of nuclear medicine staff using personal TLD dosimeters and charcoal detectors

    International Nuclear Information System (INIS)

    Jimenez, F.; Garcia-Talavera, M.; Pardo, R.; Deban, L.; Garcia-Talavera, P.; Singi, G.M.; Martin, E.

    2006-01-01

    Although the main concern regarding exposure to ionizing radiation for nuclear medicine workers is external radiation, inhalation of radionuclides can significantly contribute to the imparted doses. We propose a new approach to assess exposure to inhalation of 131 I based on passive monitoring using activated charcoal detectors. We compared the inhalation doses to the staff of a nuclear medicine department, based on the measurements derived from charcoal detectors placed at various locations, and the external doses monitored using personal TLD dosimeters. (authors)

  9. What Does Psychological Autopsy Study Tell Us about Charcoal Burning Suicide--A New and Contagious Method in Asia?

    Science.gov (United States)

    Chan, Sandra S. M.; Chiu, Helen F. K.; Chen, Eric Y. H.; Chan, Wincy S. C.; Wong, Paul W. C.; Chan, Cecilia L. W.; Law, Y. W.; Yip, Paul S. F.

    2009-01-01

    Charcoal burning suicides in Hong Kong between 2002-2004 in the 15 to 59-year-old age group were investigated using the psychological autopsy method. The psychopathological profiles of charcoal burning suicides (N = 53) were compared against "other suicides" (N = 97). The two groups did not differ significantly in the prevalence of…

  10. Research on removal of radioiodine by charcoal

    International Nuclear Information System (INIS)

    Li Wangchang; Huang Yuying; Wu Yianwei; Jia Ming; Guo Liangtian

    1993-01-01

    The major R and D work carried out in the CIRP laboratory on removal of radioiodine is introduced, which involves the adsorption performances of various kinds of fruit shell base and coal base charcoal impregnated with chemicals, the influence of various parameters, the technique of non-destructive test for commercial scale iodine adsorber, and the iodine samplers for both gross iodine and iodine in different forms. The experimental results have been applied to the design and test of iodine adsorber and the monitoring of airborne radioiodine

  11. Diagnostic of the charcoal's productive and commercialize in the Pinar del Río's Integral Forest Company by matrix SWOT

    Directory of Open Access Journals (Sweden)

    Van Anh Thi Nguyen

    2014-06-01

    Full Text Available This study aimed to diagnose the situation productive of charcoal in Pinar del Río EFI by SWOT matrix (weaknesses, threats, strengths and opportunities which consists of the collection of information from different sources related to the production of charcoal and thus a screening of ideas and through the technical working group with the presence of specialists proceeded develop the matrix with all components was performed. The results of the assessment of the productive situation of charcoal indicate an unfavorable position, resulting in a strategy of adaptive type, conditioned by economic, political and cultural factors.

  12. Preparation of reusable conductive activated charcoal plate as a new electrode for industrial wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ayoubi-Feiz, Baharak; Aber, Soheil [University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-10-15

    A conductive activated charcoal plate (ACP) was prepared from a low-cost, abundant, and non-conductive charcoal. The prepared ACP was characterized using N{sub 2} adsorption/desorption isotherms, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Brunauer-Emmett-Teller (BET) surface area of the charcoal and the ACP was 0.58m{sup 2} g{sup -1} and 461.67m{sup 2} g{sup -1}, respectively. The ACP was employed in textile wastewater treatment using electrosorption process. Response surface methodology (RSM) was applied to design the experiments. The decolorization efficiency of 76% at optimum conditions of voltage=450mV, pH=4, and contact time=120 min indicated that the ACP has promising potential to decolorize textile wastewater. Moreover, the results of the kinetic analyses demonstrated that wastewater treatment followed pseudo-first order kinetic model. The ACP electrode could be regenerated and reused effectively at five successive cycles of electrosorption/electrodesorption.

  13. Origin of bank filtered groundwater resources covering the drinking water demand of Budapest, Hungary

    International Nuclear Information System (INIS)

    Forizs, I.; Deak, J.

    1998-01-01

    The ratio of Danube water/infiltrated precipitation has been determined using stable oxygen isotope data on four parts of the protection area of the bank filtered water works supplying drinking water for Budapest, Hungary. These ratios comparing to those calculated by hydraulic modeling rarely match each other. The Danube water transit time calculated fro few wells by isotopic data are usually shorter than those determined by hydraulic modeling. The relation between the δ 18 O values and the nitrate chloride and sulfate pollutants shows that the source of the pollutants is on the island area (sewage water, agricultural activity and salt used for de-icing asphalt roads). (author)

  14. Sphagnum can 'filter' N deposition, but effects on the plant and pore water depend on the N form.

    Science.gov (United States)

    Chiwa, Masaaki; Sheppard, Lucy J; Leith, Ian D; Leeson, Sarah R; Tang, Y Sim; Cape, J Neil

    2016-07-15

    The ability of Sphagnum moss to efficiently intercept atmospheric nitrogen (N) has been assumed to be vulnerable to increased N deposition. However, the proposed critical load (20kgNha(-1)yr(-1)) to exceed the capacity of the Sphagnum N filter has not been confirmed. A long-term (11years) and realistic N manipulation on Whim bog was used to study the N filter function of Sphagnum (Sphagnum capillifolium) in response to increased wet N deposition. On this ombrotrophic peatland where ambient deposition was 8kgNha(-1)yr(-1), an additional 8, 24, and 56kgNha(-1)yr(-1) of either ammonium (NH4(+)) or nitrate (NO3(-)) has been applied for 11years. Nutrient status of Sphagnum and pore water quality from the Sphagnum layer were assessed. The N filter function of Sphagnum was still active up to 32kgNha(-1)yr(-1) even after 11years. N saturation of Sphagnum and subsequent increases in dissolved inorganic N (DIN) concentration in pore water occurred only for 56kgNha(-1)yr(-1) of NH4(+) addition. These results indicate that the Sphagnum N filter is more resilient to wet N deposition than previously inferred. However, functionality will be more compromised when NH4(+) dominates wet deposition for high inputs (56kgNha(-1)yr(-1)). The N filter function in response to NO3(-) uptake increased the concentration of dissolved organic N (DON) and associated organic anions in pore water. NH4(+) uptake increased the concentration of base cations and hydrogen ions in pore water though ion exchange. The resilience of the Sphagnum N filter can explain the reported small magnitude of species change in the Whim bog ecosystem exposed to wet N deposition. However, changes in the leaching substances, arising from the assimilation of NO3(-) and NH4(+), may lead to species change. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Optimisation and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment

    NARCIS (Netherlands)

    Magic-Knezev, A.; Kooij, van der D.

    2004-01-01

    A method for determining the concentration of active microbial biomass in granular activated carbon (GAC) filters used in water treatment was developed to facilitate studies on the interactions between adsorption processes and biological activity in such filters. High-energy sonication at a power

  16. Integrated metagenomic and physiochemical analyses to evaluate the potential role of microbes in the sand filter of a drinking water treatment system.

    Directory of Open Access Journals (Sweden)

    Yaohui Bai

    Full Text Available While sand filters are widely used to treat drinking water, the role of sand filter associated microorganisms in water purification has not been extensively studied. In the current investigation, we integrated molecular (based on metagenomic and physicochemical analyses to elucidate microbial community composition and function in a common sand filter used to treat groundwater for potable consumption. The results revealed that the biofilm developed rapidly within 2 days (reaching ≈ 10(11 prokaryotes per gram in the sand filter along with abiotic and biotic particulates accumulated in the interstitial spaces. Bacteria (up to 90% dominated the biofilm microbial community, with Alphaproteobacteria being the most common class. Thaumarchaeota was the sole phylum of Archaea, which might be involved in ammonia oxidation. Function annotation of metagenomic datasets revealed a number of aromatic degradation pathway genes, such as aromatic oxygenase and dehydrogenase genes, in the biofilm, suggesting a significant role for microbes in the breakdown of aromatic compounds in groundwater. Simultaneous nitrification and denitrification pathways were confirmed as the primary routes of nitrogen removal. Dissolved heavy metals in groundwater, e.g. Mn(2+ and As(3+, might be biologically oxidized to insoluble or easily adsorbed compounds and deposited in the sand filter. Our study demonstrated that the role of the microbial community in the sand filter treatment system are critical to effective water purification in drinking water.

  17. Integrated metagenomic and physiochemical analyses to evaluate the potential role of microbes in the sand filter of a drinking water treatment system.

    Science.gov (United States)

    Bai, Yaohui; Liu, Ruiping; Liang, Jinsong; Qu, Jiuhui

    2013-01-01

    While sand filters are widely used to treat drinking water, the role of sand filter associated microorganisms in water purification has not been extensively studied. In the current investigation, we integrated molecular (based on metagenomic) and physicochemical analyses to elucidate microbial community composition and function in a common sand filter used to treat groundwater for potable consumption. The results revealed that the biofilm developed rapidly within 2 days (reaching ≈ 10(11) prokaryotes per gram) in the sand filter along with abiotic and biotic particulates accumulated in the interstitial spaces. Bacteria (up to 90%) dominated the biofilm microbial community, with Alphaproteobacteria being the most common class. Thaumarchaeota was the sole phylum of Archaea, which might be involved in ammonia oxidation. Function annotation of metagenomic datasets revealed a number of aromatic degradation pathway genes, such as aromatic oxygenase and dehydrogenase genes, in the biofilm, suggesting a significant role for microbes in the breakdown of aromatic compounds in groundwater. Simultaneous nitrification and denitrification pathways were confirmed as the primary routes of nitrogen removal. Dissolved heavy metals in groundwater, e.g. Mn(2+) and As(3+), might be biologically oxidized to insoluble or easily adsorbed compounds and deposited in the sand filter. Our study demonstrated that the role of the microbial community in the sand filter treatment system are critical to effective water purification in drinking water.

  18. Reconsidering 'appropriate technology': the effects of operating conditions on the bacterial removal performance of two household drinking-water filter systems

    International Nuclear Information System (INIS)

    Baumgartner, Jill; Murcott, Susan; Ezzati, Majid

    2007-01-01

    We examined the performance of two household water treatment and safe storage (HWTS) systems, the Danvor plastic biosand filter and the Potters for Peace Filtron ceramic filter, under ideal as well as modified operating conditions using systematic and comparable measurements. The operating variables for the biosand filter were (i) pause times between filtration runs (ii) water-dosing volumes and (iii) the effluent volume at which a filtered water sample was collected. For the ceramic filter we examined overflow filtration versus standard filtration. We used the bacterial indicators of total coliforms and Escherichia coli to quantify microbiological removal. With the biosand filter, a 12 h pause time had significantly higher total coliform removal than a 36 h pause time at the 20 l collection point (79.1% versus 73.7%; p < 0.01) and borderline significance at the 10 l collection point (81.0% versus 78.3%; p = 0.07). High-volume filtration (20 l) had significantly lower total coliform removal efficacy than low-volume (10 l) filtration at the 10 l collection point (81.0% versus 84.2%; p = 0.03). We observed a decreasing trend in total coliform removal by sample collection volume with the highest removal efficacy at the 5 l sample collection point (versus at the 10 and 20 l collection points). Using the ceramic filter, mean total coliform and E. coli removal were significantly lower (p < 0.01) in overflow filtration than in standard filtration. The findings indicate that operating conditions can reduce the effectiveness of the systems in a field-based setting and increase environmental risk exposure

  19. Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser

    International Nuclear Information System (INIS)

    Lin, Yung-Hsiang; Chi, Yu-Chieh; Lin, Gong-Ru

    2013-01-01

    Triturated charcoal nano-powder directly brushed on a fiber connector end-face is used for the first time as a fast saturable absorber for a passively mode-locked erbium-doped fiber-ring laser (EDFL). These dispersant-free charcoal nano-powders with a small amount of crystalline graphene phase and highly disordered carbon structure exhibit a broadened x-ray diffraction peak and their Raman spectrum shows the existence of a carbon related D-band at 1350 cm −1 and the disappearance of the 2D-band peak at 2700 cm −1 . The charcoal nano-powder exhibits a featureless linear absorbance in the infrared region with its linear transmittance of 0.66 nonlinearly saturated at 0.73 to give a ΔT/T of 10%. Picosecond mode-locking at a transform-limited condition of a low-gain EDFL is obtained by using the charcoal nano-powder. By using a commercial EDFA with a linear gain of only 17 dB at the saturated output power of 17.5 dB m required to initiate the saturable absorption of the charcoal nano-powder, the EDFL provides a pulsewidth narrowing from 3.3 to 1.36 ps associated with its spectral linewidth broadening from 0.8 to 1.83 nm on increasing the feedback ratio from 30 to 90%. This investigation indicates that all the carbon-based materials containing a crystalline graphene phase can be employed to passively mode-lock the EDFL, however, the disordered carbon structure inevitably induces a small modulation depth and a large mode-locking threshold, thus limiting the pulsewidth shortening. Nevertheless, the nanoscale charcoal passively mode-locked EDFL still shows the potential to generate picosecond pulses under a relatively low cavity gain. An appropriate cavity design can be used to compensate this defect-induced pulsewidth limitation and obtain a short pulsewidth. (letter)

  20. Effect of ethanol and pH on the adsorption of acetaminophen (paracetamol) to high surface activated charcoal, in vitro studies

    DEFF Research Database (Denmark)

    Høgberg, Lotte Christine Groth; Angelo, Helle R; Christophersen, A Bolette

    2002-01-01

    BACKGROUND: Paracetamol (acetaminophen) intoxication often in combination with ethanol, is seen commonly in overdose cases. Doses of several grams might be close to the maximum adsorption capacity of the standard treatment dose (50g) of activated charcoal. The aim of this study was to determine...... the maximum adsorption capacity for paracetamol for two types of high surface-activated charcoal [Carbomix and Norit Ready-To-Use (not yet registered trademark in Denmark) both from Norit Cosmara, Amersfoort, The Netherlands] in simulated in vivo environments: At pH 1.2 (gastric environment), at pH 7.......2 (intestinal environment), and with and without 10% ethanol. METHODS: Activated charcoal, at both gastric or intestinal pHs, and paracetamol were mixed, resulting in activated charcoal-paracetamol ratios from 10:] to 1:1. In trials with ethanol, some of the gastric or intestinal fluid was replaced...

  1. The Nano-filters as the tools for the management of the water imbalance in the human society

    Science.gov (United States)

    Singh, R. P.; Kontar, V.

    2011-12-01

    ultra-thin nanoscale fibers, which filter out contaminants, plus active carbon granules, which kill bacteria. The carbon nano-tube as filters exhibit chemical-species selectivity with higher physical strength and higher temperature tolerance, more rugged process, more rapid filtration, regeneration via thermal means rather than physical removal and lowers costs. The nano-filters remove the toxic or unwanted bivalent ions (ions with 2 or more charges), such as lead, iron, nickel, mercury, etc. The nano-materials and nano-filters will help solve the problems of the water imbalance management in the human society. Therefore we are talking about some nano-applications on the session H138 "Imbalance of Water in Nature".

  2. PATHOLOGICAL AND MOLECULAR GENETIC STUDIES ON SOME SOYBEAN MUTANTS INDUCED BY GAMMA RAYS IN RELATION TO CHARCOAL ROT DISEASE

    International Nuclear Information System (INIS)

    ASHRY, N.A.; EL-DEMERDASH, H.M.; ABD EL-RAHMAN, S.S.

    2008-01-01

    The Egyptian soybean cultivar Giza-22 was used to induce resistant mutants for charcoal rot disease using gamma rays. Sixteen mutants and their parental cultivar were evaluated in M3 generation for their agronomic traits and for resistance to charcoal rot disease. Four mutants showed superiority in their agronomic traits as compared with their parental cultivar. Three mutants were significantly resistant to the disease than their parental cultivar (Giza-22). These three resistant mutants showed non-significant improvement in their agronomic traits as compared with Giza-22 cultivar. DNA extractions from the three resistant mutants and their parent were used to test the differences on the molecular level. Seven random amplified polymorphic DNA (RAPD) primers were used to detect RAPD markers related to charcoal rot resistance in soybean, and to differentiate these mutants. Six RAPD-primers showed molecular markers associated with resistance to charcoal rot in soybean, where five RAPD-primers could differentiate each of the three mutants from each other and from their parental cultivar

  3. Pseudobrookite-type MgTi2O5 water purification filter with controlled particle morphology

    Directory of Open Access Journals (Sweden)

    Yuta Nakagoshi

    2015-09-01

    Full Text Available Pseudobrookite-type oxide-based ceramics, such as Al2TiO5 and MgTi2O5, have recently been studied as porous ceramic membranes. Here, the effect of LiF doping on the morphology of MgTi2O5 particles is presented in detail. Water purification filters were produced using porous MgTi2O5, with different particle morphologies. MgCO3 (basic and TiO2 powders with various LiF contents were wet-ball milled, dried, and then, calcined in air at 1100 °C to obtain the MgTi2O5 powders. The powder compacts were sintered at 1000–1200 °C to produce the MgTi2O5 disk filters. The 0.5 wt.% LiF-doped MgTi2O5 disk filter, with elongated grains, showed well-balanced performance removing boehmite particles with diameter of 0.7 μm. Non-doped MgTi2O5 disk filter with equiaxed grains was suitable for precise filtration.

  4. Amazon soil charcoal: Pyrogenic carbon stock depends of ignition source distance and forest type in Roraima, Brazil.

    Science.gov (United States)

    da Silva Carvalho, Lidiany C; Fearnside, Philip M; Nascimento, Marcelo T; Barbosa, Reinaldo I

    2018-04-18

    Pyrogenic carbon (PyC) derived from charcoal particles (paleo + modern) deposited in the soil column has been little studied in the Amazon, and our understanding of the factors that control the spatial and vertical distribution of these materials in the region's forest soils is still unclear. The objective of this study was to test the effect of forest type and distance from the ignition source on the PyC stocks contained in macroscopic particles of soil charcoal (≥2 mm; 1 m depth) dispersed in ecotone forests of the northern Brazilian Amazon. Thirty permanent plots were set up near a site that had been occupied by pre-Columbian and by modern populations until the late 1970s. The sampled plots represent seasonal and ombrophilous forests that occur under different hydro-edaphic restrictions. Our results indicate that the largest PyC stock was spatially dependent on distance to the ignition source ( 50 cm) in seasonal forests was limited by hydro-edaphic impediments that restricted the occurrence of charcoal. These results suggest that PyC stocks derived from macroscopic charcoal particles in the soil of this Brazilian Amazon ecotone region are controlled by the distance from the ignition source of the fire, and that forest types with higher hydro-edaphic restrictions can inhibit formation and accumulation of charcoal. Making use of these distinctions reduces uncertainty and improves our ability to understand the variability of PyC stocks in forests with a history of fire in the Amazon. © 2018 John Wiley & Sons Ltd.

  5. A comparison of charcoal- and slag-based constructed wetlands for ...

    African Journals Online (AJOL)

    Subsurface-flow constructed wetlands (CW) with charcoal- or slag-based bed matrices were investigated for their potential use in remediating acid mine drainage (AMD). A CW is effectively a reactor in which some components of the wastewater are broken down by the organisms occurring within the CW, whilst others may ...

  6. Water stress mitigates the negative effects of ozone on photosynthesis and biomass in poplar plants.

    Science.gov (United States)

    Gao, Feng; Catalayud, Vicent; Paoletti, Elena; Hoshika, Yasutomo; Feng, Zhaozhong

    2017-11-01

    Tropospheric ozone (O 3 ) pollution frequently overlaps with drought episodes but the combined effects are not yet understood. We investigated the physiological and biomass responses of an O 3 sensitive hybrid poplar clone ('546') under three O 3 levels (charcoal-filtered ambient air, non-filtered ambient air (NF), and NF plus 40 ppb) and two watering regimes (well-watered (WW) and reduced watering (RW), i.e. 40% irrigation) for one growing season. Water stress increased chlorophyll and carotenoid contents, protecting leaves from pigment degradation by O 3 . Impairment of photosynthesis by O 3 was also reduced by stomatal closure due to water stress, which preserved light-saturated CO 2 assimilation rate, and the maximum carboxylation efficiency. Water stress increased water use efficiency of the leaves while O 3 decreased it, showing significant interactions. Effects were more evident in older leaves than in younger leaves. Water stress reduced biomass production, but the negative effects of O 3 were less in RW than in WW for total biomass per plant. A stomatal O 3 flux-based dose-response relationship was parameterized considering water stress effects, which explained biomass losses much better than a concentration-based approach. The O 3 critical level of Phytotoxic Ozone Dose over a threshold of 7 nmol O 3 .m -2 .s -1 (POD 7 ) for a 4% biomass loss in this poplar clone under different water regimes was 4.1 mmol m -2 . Our results suggest that current O 3 levels in most parts of China threaten poplar growth and that interaction with water availability is a key factor for O 3 risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Non-porous membrane-assisted liquid-liquid extraction of UV filter compounds from water samples.

    Science.gov (United States)

    Rodil, Rosario; Schrader, Steffi; Moeder, Monika

    2009-06-12

    A method for the determination of nine UV filter compounds [benzophenone-3 (BP-3), isoamyl methoxycinnamate, 4-methylbenzylidene camphor, octocrylene (OC), butyl methoxydibenzoylmethane, ethylhexyl dimethyl p-aminobenzoate (OD-PABA), ethylhexyl methoxycinnamate (EHMC), ethylhexyl salicylate and homosalate] in water samples was developed and evaluated. The procedure includes non-porous membrane-assisted liquid-liquid extraction (MALLE) and LC-atmospheric pressure photoionization (APPI)-MS/MS. Membrane bags made of different polymeric materials were examined to enable a fast and simple extraction of the target analytes. Among the polymeric materials tested, low- and high-density polyethylene membranes proved to be well suited to adsorb the analytes from water samples. Finally, 2 cm length tailor-made membrane bags were prepared from low-density polyethylene in order to accommodate 100 microL of propanol. The fully optimised protocol provides recoveries from 76% to 101% and limits of detection (LOD) between 0.4 ng L(-1) (OD-PABA) and 16 ng L(-1) (EHMC). The interday repeatability of the whole protocol was below 18%. The effective separation of matrix molecules was proved by only marginal matrix influence during the APPI-MS analysis since no ion suppression effects were observed. During the extraction step, the influence of the matrix was only significant when non-treated wastewater was analysed. The analysis of lake water indicated the presence of seven UV filter compounds included in this study at concentrations between 40 ng L(-1) (BP-3) and 4381 ng L(-1) (OC). In non-treated wastewater several UV filters were also detected at concentration levels as high as 5322 ng L(-1) (OC).

  8. A rapid two dot filter assay for the detection of E. coli O157 in water samples.

    Science.gov (United States)

    Kamma, Sujatha; Tang, Lily; Leung, Kelvin; Ashton, Edie; Newman, Norman; Suresh, Mavanur R

    2008-07-31

    E. coli O157:H7 is an enterohemorrhagic bacteria that cause deadly water-borne infections implicated in outbreaks of a wide spectrum of human gastrointestinal diseases. It is therefore important to have a rapid convenient, simple and sensitive range of detection of E. coli O157:H7. A new E. coli O157 MAb designated P124 was developed for ultrasensitive detection of E. coli O157 in water, apple juice and beef for routine use. A prototype filter dot assay was designed with anti-E. coli O157 MAb bound to 0.2 microm nitrocellulose filter disk as the capture antibody. A 100 ml water sample spiked with 1-50 CFU of E. coli O157 either in the presence or absence of other non-specific bacteria were filtered for capture of the pathogen on the antibody coated nitrocellulose disk. The detection of the pathogen was successfully accomplished by the same antibody both as a capture and detecting antibody as a homosandwich. In a non-enriched format, detection of E. coli was possible with a sensitivity of 2500 CFU/100 ml. Ultrasensitive detection of ~1 CFU/100 ml sample could be achieved by a prior pathogen enrichment step before the addition of the labeled antibody. The design of this diagnostic test is based on the common architecture of all bacteria, viruses and spores, namely the manifestation of repeat lipopolysaccharide epitopes on the surface. We have developed an easy-to-use two dot visual filter assay for translation into current water testing in public health laboratories to detect E. coli O157:H7. In a 5 h assay approximately 1 CFU and approximately 5 CFU of E. coli O157 could be detected in 100 ml of water or juice and lake samples respectively. This simple homosandwich enrichment strategy can also be used to detect low levels of other water-borne pathogens.

  9. Concerted action of two cation filters in the aquaporin water channel

    DEFF Research Database (Denmark)

    Wu, Binghua; Steinbronn, Christina; Alsterfjord, Magnus

    2009-01-01

    Aquaporin (AQP) facilitated water transport is common to virtually all cell membranes and is marked by almost perfect specificity and high flux rates. Simultaneously, protons and cations are strictly excluded to maintain ionic transmembrane gradients. Yet, the AQP cation filters have not been...... identified experimentally. We report that three point mutations turned the water-specific AQP1 into a proton/alkali cation channel with reduced water permeability and the permeability sequence: H(+) >>K(+) >Rb(+) >Na(+) >Cs(+) >Li(+). Contrary to theoretical models, we found that electrostatic repulsion...... at the central asn-pro-ala (NPA) region does not suffice to exclude protons. Full proton exclusion is reached only in conjunction with the aromatic/arginine (ar/R) constriction at the pore mouth. In contrast, alkali cations are blocked by the NPA region but leak through the ar/R constriction. Expression...

  10. Numerical and analytical assessment of radon diffusion in various media and potential of charcoal as radon detector

    Science.gov (United States)

    Rybalkin, Andrey

    Numerical assessments of radon diffusion together with analytical estimates for short-time and long-time exposure were the first objective of this thesis with the goal to demonstrate how radon propagates in various media. Theoretical predictions were compared to numerical simulations, and obtained values of total radon activities inside each material match quite well with the analytical estimates. These estimates, for activated and nonactivated charcoal, were then used to evaluate the possibility of designing a charcoal system to be used as a radon detector. Another objective was to use nonactivated charcoal samples and measure the level of radon accumulation, and use these data to estimate radon diffusion and adsorption coefficients. The analytical approach was developed to estimate these values. Radon adsorption coefficient in nonactivated charcoal was found to be from 0.2 to 0.4 m3/kg. Radon diffusion coefficient for nonactivated charcoal is in the range of 1.2×10-11 to 5.1×10-10 m2/s in comparison to activated charcoal with adsorption coefficient of 4 m3/kg and diffusion coefficient of 1.43×10-9 m2/s. The third objective was to use GEANT4 numerical code to simulate decay of 238U series and 222Rn in an arbitrary soil sample. Based on that model, the goal was to provide a guideline for merging GEANT4 radioactive decay modeling with the diffusion of radon in a soil sample. It is known that radon can be used as an earthquake predictor by measuring its concentration in groundwater, or if possible, along the faults. Numerical simulations of radon migration by diffusion only were made to estimate how fast and how far radon can move along the fault strands. Among the known cases of successful correlations between radon concentration anomalies and earthquake are the 1966 Tashkent and 1976 Songpan-Pingwu earthquakes. Thus, an idea of radon monitoring along the Wasatch Fault, using system of activated/nonactivated charcoals together with solid state radon detectors is

  11. High flow ceramic pot filters

    OpenAIRE

    van Halem, D.; van der Laan, H.; Soppe, A. I.A.; Heijman, S.G.J.

    2017-01-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more water without sacrificing their microbial removal efficacy. High flow pot filters, produced by increasing the rice husk content, had a higher initial flow rate (6–19 L h−1), but initial LRVs for E. coli o...

  12. FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: implications for studies of inertinite in coals

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Bustin, R.M. [University of British Columbia, Vancouver, BC (Canada). Dept. of Earth and Ocean Sciences

    1998-09-01

    The chemical and physical characteristics of laboratory produced charcoals, natural charcoals, fungal decayed woods and inertinite from a variety of Western Canadian coals were investigated using FTIR and standard petrologic techniques. The studies confirm and extend earlier work in showing that almost all inertinite macerals can be attributed to wildfire in peat swamps, and that variation in the petrological characteristics of inertinite are a product of temperature, duration of heating and the nature of the initial plant material. The relationships between reflectance and temperature, as well as heating duration of charcoal formation are established as a reference for the examination of inertinite, and the probable temperature of inertinite precursor (fossil charcoal) formation in paleo-widlfire. Fungi do not directly contribute to the formation of charcoal and inertinite apart from the fungal bodies themselves (funginite: sclerotia and hyphae) and perhaps by increasing the extent of shrinkage and cracking (increasing surface area) of the plant materials and thus susceptibility to charring. Evidence of fungal activity progressively decreases with increasing degree of charing in response to duration of heating or increased charing temperature. The reflectance values and FTIR spectral characteristics of inertinites in Western Canadian coal suggest that most inertinite formed by wildfires at temperatures over 400{degree}C. The great abundance of semifusinite in Western Canadian coal may reflect frequent but short duration wildfires in precursor peat swamps. 44 refs., 16 figs., 6 tabs.

  13. Potential of simple filters to improve microbial quality of irrigation water used in urban vegetable farming in Ghana

    DEFF Research Database (Denmark)

    Keraita, Bernard; Drechsel, Pay; Konradsen, Flemming

    2008-01-01

    . As part of a larger study on possible interventions for health risk reduction, the potential of simple interventions was explored. Column slow sand filters with three levels of sand depths (0.5 m, 0.75 m and 1 m) and fabric filters made of nylon, cotton and netting were assessed. More than 600 water...... samples were analyzed for helminth eggs and thermotolerant coliforms. Flow rates were also measured. From slow sand filters, 71-96% of helminths and 2 log units (from 7 to 5 log units) of thermotolerant coliforms were removed. Sand depths had no significant influence in the removal. Lower removal rates...... were achieved by fabric filters, with an average removal of 12-62% for helminth eggs and 1 log unit for thermotolerant coliforms. Nylon filters had higher removal rates especially for helminth eggs (58%). Average flow rates for sand filters were 3 m per day and fabric filters had steady flows of about...

  14. COMPUTER MODELING OF HYDRODYNAMIC PARAMETERS AT BOUNDARIES OF WATER INTAKE AREA WITH FILTERING INTAKE

    Directory of Open Access Journals (Sweden)

    Boronina Lyudmila Vladimirovna

    2012-12-01

    Full Text Available Improvement of water intake technologies are of great importance. These technologies are required to provide high quality water intake and treatment; they must be sufficiently simple and reliable, and they must be easily adjustable to particular local conditions. A mathematical model of a water supply area near the filtering water intake is proposed. On its basis, a software package designated for the calculation of parameters of the supply area along with its graphical representation is developed. To improve the efficiency of water treatment plants, the authors propose a new method of their integration into the landscape by taking account of velocity distributions in the water supply area within the water reservoir where the plant installation is planned. In the proposed relationship, the filtration rate and the scattering rate at the outlet of the supply area are taken into account, and they assure more precise projections of the inlet velocity. In the present study, assessment of accuracy of the mathematical model involving the scattering of a turbulent flow has been done. The assessment procedure is based on verification of the mean values equality hypothesis and on comparison with the experimental data. The results and conclusions obtained by means of the method developed by the authors have been verified through comparison of deviations of specific values calculated through the employment of similar algorithms in MathCAD, Maple and PLUMBING. The method of the water supply area analysis, with the turbulent scattering area having been taken into account, and the software package enable to numerically estimate the efficiency of the pre-purification process by tailoring a number of parameters of the filtering component of the water intake to the river hydrodynamic properties. Therefore, the method and the software package provide a new tool for better design, installation and operation of water treatment plants with respect to filtration and

  15. Metabolite Profiling of Feces and Serum in Hemodialysis Patients and the Effect of Medicinal Charcoal Tablets.

    Science.gov (United States)

    Liu, Sixiu; Liang, Shanshan; Liu, Hua; Chen, Lei; Sun, Lingshuang; Wei, Meng; Jiang, Hongli; Wang, Jing

    2018-05-22

    Recently, the colon has been recognized as an important source of various uremic toxins in patients with end stage renal disease. Medicinal charcoal tablets are an oral adsorbent that are widely used in patients with chronic kidney disease in China to remove creatinine and urea from the colon. A parallel fecal and serum metabolomics study was performed to determine comprehensive metabolic profiles of patients receiving hemodialysis (HD). The effects of medicinal charcoal tablets on the fecal and serum metabolomes of HD patients were also investigated. Ultra-performance liquid chromatography/mass spectrometry was used to investigate the fecal and serum metabolic profiles of 20 healthy controls and 31 HD patients before and after taking medicinal charcoal tablets for 3 months. There were distinct metabolic variations between the HD patients and healthy controls both in the feces and serum according to multivariate data analysis. Metabolic disturbances of alanine, aspartate and glutamate metabolism, arginine and proline metabolism figured prominently in the serum. However, in the feces, alterations of tryptophan metabolism, lysine degradation and beta-alanine metabolism were pronounced, and the levels of several amino acids (leucine, phenylalanine, lysine, histidine, methionine, tyrosine, and tryptophan) were increased dramatically. Nineteen fecal metabolites and 21 serum metabolites were also identified as biomarkers that contributed to the metabolic differences. Additionally, medicinal charcoal treatment generally enabled the serum and fecal metabolomes of the HD patients to draw close to those of the control subjects, especially the serum metabolic profile. Parallel fecal and serum metabolomics uncovered the systematic metabolic variations of HD patients, especially disturbances in amino acid metabolism in the colon. Medicinal charcoal tablets had an impact on the serum and fecal metabolomes of HD patients, but their exact effects still need to be studied further

  16. Reduction of irradiation off-odor and lipid oxidation in ground beef by α-tocopherol addition and the use of a charcoal pack

    International Nuclear Information System (INIS)

    Sohn, S.H.; Jang, A.; Kim, J.K.; Song, H.P.; Kim, J.H.; Lee, M.; Jo, C.

    2009-01-01

    A combination of a charcoal pack during irradiation and α-tocopherol addition into ground beef was applied to eliminate an irradiation characteristic off-odor and to retard the lipid oxidation caused by the irradiation process. Ground beef was mixed with 200 ppm α-tocopherol and gamma irradiated with 0, 5, and 10 kGy with or without a charcoal pack present during the irradiation treatment. The pH of the control group was lower than that of α-tocopherol and charcoal pack treatment initially but increased rapidly and showed higher pH at day 7. Addition of α-tocopherol with or without charcoal pack addition showed lower 2-thiobarbituric acid reactive substances values in irradiated ground beef at days 3 and 7 compared to those without addition. The color of ground beef was not significantly affected by the treatment. However, odor preference result showed that 10 kGy-irradiated ground beef with a combination of charcoal pack and α-tocopherol addition had higher scores than the control group regardless of irradiation. Solid-phase microextraction (SPME) gas chromatograph/mass spectrometry (GC/MS) analysis identified various volatile compounds that were created by irradiation of ground beef. These compounds were reduced or eliminated when a charcoal pack was used during the irradiation process. The results of the present study imply that combination of packaging with a charcoal pack during the irradiation process and addition of α-tocopherol into ground beef is a good method to effectively eliminate an irradiation off-odor and retard the lipid oxidation development in ground beef caused by irradiation

  17. Reduction of irradiation off-odor and lipid oxidation in ground beef by {alpha}-tocopherol addition and the use of a charcoal pack

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, S.H. [Busan Regional Food and Drug Administration, Busan 608-829 (Korea, Republic of); Jang, A. [National Institute of Animal Science, RDA, Suwon 441-706 (Korea, Republic of); Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, J.K. [Cooperative Research, Extension, and Education Service, Northern Marianas College, Saipan, MP 96950 (Korea, Republic of); Song, H.P. [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, J.H. [Cooperative Research, Extension, and Education Service, Northern Marianas College, Saipan, MP 96950 (Korea, Republic of); Lee, M. [Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Jo, C. [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of)], E-mail: cheorun@cnu.ac.kr

    2009-02-15

    A combination of a charcoal pack during irradiation and {alpha}-tocopherol addition into ground beef was applied to eliminate an irradiation characteristic off-odor and to retard the lipid oxidation caused by the irradiation process. Ground beef was mixed with 200 ppm {alpha}-tocopherol and gamma irradiated with 0, 5, and 10 kGy with or without a charcoal pack present during the irradiation treatment. The pH of the control group was lower than that of {alpha}-tocopherol and charcoal pack treatment initially but increased rapidly and showed higher pH at day 7. Addition of {alpha}-tocopherol with or without charcoal pack addition showed lower 2-thiobarbituric acid reactive substances values in irradiated ground beef at days 3 and 7 compared to those without addition. The color of ground beef was not significantly affected by the treatment. However, odor preference result showed that 10 kGy-irradiated ground beef with a combination of charcoal pack and {alpha}-tocopherol addition had higher scores than the control group regardless of irradiation. Solid-phase microextraction (SPME) gas chromatograph/mass spectrometry (GC/MS) analysis identified various volatile compounds that were created by irradiation of ground beef. These compounds were reduced or eliminated when a charcoal pack was used during the irradiation process. The results of the present study imply that combination of packaging with a charcoal pack during the irradiation process and addition of {alpha}-tocopherol into ground beef is a good method to effectively eliminate an irradiation off-odor and retard the lipid oxidation development in ground beef caused by irradiation.

  18. A HYBRID FILTER AND WRAPPER FEATURE SELECTION APPROACH FOR DETECTING CONTAMINATION IN DRINKING WATER MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    S. VISALAKSHI

    2017-07-01

    Full Text Available Feature selection is an important task in predictive models which helps to identify the irrelevant features in the high - dimensional dataset. In this case of water contamination detection dataset, the standard wrapper algorithm alone cannot be applied because of the complexity. To overcome this computational complexity problem and making it lighter, filter-wrapper based algorithm has been proposed. In this work, reducing the feature space is a significant component of water contamination. The main findings are as follows: (1 The main goal is speeding up the feature selection process, so the proposed filter - based feature pre-selection is applied and guarantees that useful data are improbable to be detached in the initial stage which discussed briefly in this paper. (2 The resulting features are again filtered by using the Genetic Algorithm coded with Support Vector Machine method, where it facilitates to nutshell the subset of features with high accuracy and decreases the expense. Experimental results show that the proposed methods trim down redundant features effectively and achieved better classification accuracy.

  19. ACTIVATED CARBON (CHARCOAL OBTAINING . APPLICATION

    Directory of Open Access Journals (Sweden)

    Florin CIOFU

    2015-05-01

    Full Text Available The activated carbon is a microporous sorbent with a very large adsorption area that can reach in some cases even 1500sqm / gram. Activated carbon is produced from any organic material with high carbon content: coal, wood, peat or moor coal, coconut shells. The granular activated charcoal is most commonly produced by grinding the raw material, adding a suitable binder to provide the desired hardness and shape. Enabling coal is a complete process through which the raw material is fully exposed to temperatures between 600-900 degrees C, in the absence of oxygen, usually in a domestic atmosphere as gases such as nitrogen or argon; as material that results from this process is exposed in an atmosphere of oxygen and steam at a temperature in the interval from 600 - 1200 degrees C.

  20. Studies on denitrification performance of tricking filters

    International Nuclear Information System (INIS)

    Ruediger, A.

    1993-01-01

    Trickling filters are one of the oldest methods of biological waste water purification, widely used ever since they were first developed. These filters are mostly used for aerobic purification of water as highly polluted or lightly polluted reactors. While these systems are very useful for the elemination of organic pollution and the nitrification of the waste waters, denitrification of the whole plant poses considerable problems. The question is in how far trickling filters can be used as denitrification reactors. The conditions of successful denitrification in trickling filters is investigated, denitrification performance is established. Studies were conducted in laboratory, semi-industrial and industrial scale. (BBR) [de

  1. Removal of Dissolved Cadmium by Adsorption onto Walnut and Almond Shell Charcoal: Comparison with Granular Activated Carbon (GAC

    Directory of Open Access Journals (Sweden)

    Mohsen Saeedi

    2009-06-01

    Full Text Available In the present study, adsorption of dissolved Cadmium (Cd onto walnut and almond shell charcoal and the standard granular activated carbon (GAC has been investigated and compared. The effect of pH value, initial concentration of dissolved Cadmium and amount of adsorbent on the adsorption of Cd by the mentioned adsorbents were investigated. Results showed that the adsorption process was highly dependent on pH. Maximum Cd removal was achieved when the final pH of the mixture fell within 6.5-7. Adsorption test results revealed that Cd adsorption on the studied adsorbents could be better described by Longmuir isotherm. Maximum Cd removal efficiencies were obtained by walnut shell charcoal (91%, almond shell charcoal (85%, and GAC (81%.

  2. Ozone and Water Stress: Effects on the Behaviour of Two White Clover Biotypes

    Directory of Open Access Journals (Sweden)

    Massimo Fagnano

    Full Text Available ozone pollution, water stress, stomata conductance, ozone uptake, clover, OTC.Ozone is a strong oxidizing pollutant which derives by alteration of the photolytic NOx cycle and it accumulates in the troposphere spreading in rural areas and therefore determining injuries on natural vegetation and crops. Since its penetration occurs mainly through stomata, all factors which alter plant-atmosphere relations could be able to modify plant response to ozone. Interaction between ozone and water stress in Mediterranean environment was studied on ozone resistant and sensitive biotypes of white clover, which were grown in charcoal filtered and notfiltered Open Top Chambers in factorial combination with different levels of water supply. Measurements of biomass, leaf area and stomatal conductance were made during the growth period. Ozone injuries were estimated as not-filtered/filtered OTC yield ratio; the stomatal flux of ozone was estimated multiplying stomata conductance x diffusivity ratio between ozone and water vapour (0.613 x ozone hourly concentrations. The hourly values of ozone uptake were cumulated throughout the cropping periods of the two years. In the sensitive biotype, water stress reduced yield losses due to ozone from 38% to 22%, as well as yield losses due to water stress were reduced by the presence of ozone from 43% to 29%, while no interaction between ozone and water stress was observed in the resistant biotype. Biomass yield losses of the sensitive biotype were strictly correlated to cumulated ozone uptake (R2 = 0.99, while biomass yield losses of the resistant biotype were not affected by the ozone fluxes variations created by the treatments. Flux based models could better estimate yield losses due to ozone in Mediterranean environments in which other stresses could be contemporary present; therefore, the new European directives might replace the actual thresholds based

  3. MATLAB algorithm to implement soil water data assimilation with the Ensemble Kalman Filter using HYDRUS.

    Science.gov (United States)

    Valdes-Abellan, Javier; Pachepsky, Yakov; Martinez, Gonzalo

    2018-01-01

    Data assimilation is becoming a promising technique in hydrologic modelling to update not only model states but also to infer model parameters, specifically to infer soil hydraulic properties in Richard-equation-based soil water models. The Ensemble Kalman Filter method is one of the most widely employed method among the different data assimilation alternatives. In this study the complete Matlab© code used to study soil data assimilation efficiency under different soil and climatic conditions is shown. The code shows the method how data assimilation through EnKF was implemented. Richards equation was solved by the used of Hydrus-1D software which was run from Matlab. •MATLAB routines are released to be used/modified without restrictions for other researchers•Data assimilation Ensemble Kalman Filter method code.•Soil water Richard equation flow solved by Hydrus-1D.

  4. Gas permeability through thin-foil x-ray filters

    Science.gov (United States)

    Tveekrem, June L.; Keski-Kuha, Ritva A.; Webb, Andrew T.

    1997-10-01

    We have measured the permeation rates of helium and water through thin-foil UV-blocking filters used in the ASTRO-E/x- ray spectrometer (XRS) instrument. In the XRS program, there is a concern that outgassed contaminants such as water could permeate through the outermost filter which will be at room temperature and freeze on the inner filters which will be at cryogenic temperatures. The filters tested consisted of approximately 1000 angstroms Al on approximately 1000 angstroms of either Lexan or polyimide. Measurements were made using a vacuum apparatus consisting essentially of two small chambers separated by the filter under test. A helium leak detector was used to measure helium permeation rates, and a residual gas analyzer (RGA) was used to detect water. Results discussed include permeation rate as a function of pressure difference across a filter, the ratio of helium permeation rate over water permeation rate, and the effect of the aluminum layer thickness on permeation.

  5. Density and distribution of nitrifying guilds in rapid sand filters for drinking water production: Dominance of Nitrospira spp

    DEFF Research Database (Denmark)

    Tatari, Karolina; Musovic, Sanin; Gülay, Arda

    2017-01-01

    distribution of these guilds, filter material was sampled at four drinking water treatment plants (DWTPs) in parallel filters of the pre- and after-filtration stages at different locations and depths. The target guilds were quantified by qPCR targeting 16S rRNA and amoA genes. Total bacterial densities......We investigated the density and distribution of total bacteria, canonical Ammonia Oxidizing Bacteria (AOB) (Nitrosomonas plus Nitrosospira), Ammonia Oxidizing Archaea (AOA), as well as Nitrobacter and Nitrospira in rapid sand filters used for groundwater treatment. To investigate the spatial...

  6. Comparison of the bacterial removal performance of silver nanoparticles and a polymer based quaternary amine functiaonalized silsesquioxane coated point-of-use ceramic water filters.

    Science.gov (United States)

    Zhang, Hongyin; Oyanedel-Craver, Vinka

    2013-09-15

    This study compares the disinfection performance of ceramic water filters impregnated with two antibacterial compounds: silver nanoparticles and a polymer based quaternary amine functiaonalized silsesquioxane (poly(trihydroxysilyl) propyldimethyloctadecyl ammonium chloride (TPA)). This study evaluated these compounds using ceramic disks manufactures with clay obtained from a ceramic filter factory located in San Mateo Ixtatan, Guatemala. Instead of using full size ceramic water filters, manufactured 6.5 cm diameter ceramic water filter disks were used. Results showed that TPA can achieve a log bacterial reduction value of 10 while silver nanoparticles reached up to 2 log reduction using a initial concentration of bacteria of 10(10)-10(11)CFU/ml. Similarly, bacterial transport demonstrated that ceramic filter disks painted with TPA achieved a bacterial log reduction value of 6.24, which is about 2 log higher than the values obtained for disks painted with silver nanoparticles (bacterial log reduction value: 4.42). The release of both disinfectants from the ceramic materials to the treated water was determined measuring the effluent concentrations in each test performed. Regarding TPA, about 3% of the total mass applied to the ceramic disks was released in the effluent over 300 min, which is slightly lower than the release percentage for silver nanoparticles (4%). This study showed that TPA provides a comparable disinfection performance than silver nanoparticles in ceramic water filter. Another advantage of using TPA is the cost as the price of TPA is considerable lower than silver nanoparticles. In spite of the use of TPA in several medical related products, there is only partial information regarding the health risk associated with the ingestion of this compound. Additional long-term toxicological information for TPA should be evaluated before its future application in ceramic water filters. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Assessing the spatial representability of charcoal and PAH-based paleofire records with integrated GIS, modelling, and empirical approaches

    Science.gov (United States)

    Vachula, R. S.; Huang, Y.; Russell, J. M.

    2017-12-01

    Lake sediment-based fire reconstructions offer paleoenvironmental context in which to assess modern fires and predict future burning. However, despite the ubiquity, many uncertainties remain regarding the taphonomy of paleofire proxies and the spatial scales for which they record variations in fire history. Here we present down-core proxy analyses of polycyclic aromatic hydrocarbons (PAHs) and three size-fractions of charcoal (63-150, >150 and >250 μm) from Swamp Lake, California, an annually laminated lacustrine archive. Using a statewide historical GIS dataset of area burned, we assess the spatial scales for which these proxies are reliable recorders of fire history. We find that the coherence of observed and proxy-recorded fire history inherently depends upon spatial scale. Contrary to conventional thinking that charcoal mainly records local fires, our results indicate that macroscopic charcoal (>150 μm) may record spatially broader (250 μm) may be a more conservative proxy for local burning. We find that sub-macroscopic charcoal particles (63-150 μm) reliably record regional (up to 150 km) changes in fire history. These results indicate that charcoal-based fire reconstructions may represent spatially broader fire history than previously thought, which has major implications for our understanding of spatiotemporal paleofire variations. Our analyses of PAHs show that dispersal mobility is heterogeneous between compounds, but that PAH fluxes are reliable proxies of fire history within 25-50 km, which suggests PAHs may be a better spatially constrained paleofire proxy than sedimentary charcoal. Further, using a linear discriminant analysis model informed by modern emissions analyses, we show that PAH assemblages preserved in lake sediments can differentiate vegetation type burned, and are thus promising paleoecological biomarkers warranting further research and implementation. In sum, our analyses offer new insight into the spatial dimensions of paleofire

  8. Process for washing electromagnetic filters

    International Nuclear Information System (INIS)

    Guittet, Maurice; Treille, Pierre.

    1980-01-01

    This process concerns the washing of an electro-magnetic filter used, inter alia, for filtering the drain-off waters of nuclear power station steam generators, by means of a washing water used in closed circuit and freed, after each cleaning, of the solids in suspension it contains, by settlement of these solids. This invention enables the volume of water to be evaporated to be divided by 50, thereby providing a solid assurance of better safety, apart from a very significant saving [fr

  9. Effects of false yam tuber meals and charcoal on broiler chicken ...

    African Journals Online (AJOL)

    The authors investigated the effects of replacing a portion of a commercial broiler feed with false yam tuber meals on broiler growth performance, feed conversion rate (FCR) and blood parameters. Furthermore, wood charcoal was added at various levels to the meals to explore their potential to attenuate toxic effects.

  10. Hydrodynamics of microbial filter feeding.

    Science.gov (United States)

    Nielsen, Lasse Tor; Asadzadeh, Seyed Saeed; Dölger, Julia; Walther, Jens H; Kiørboe, Thomas; Andersen, Anders

    2017-08-29

    Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate amounts of water. Also, the trade-off in the filter spacing remains unexplored, despite its simple formulation: A filter too coarse will allow suitably sized prey to pass unintercepted, whereas a filter too fine will cause strong flow resistance. We quantify the feeding flow of the filter-feeding choanoflagellate Diaphanoeca grandis using particle tracking, and demonstrate that the current understanding of microbial filter feeding is inconsistent with computational fluid dynamics (CFD) and analytical estimates. Both approaches underestimate observed filtration rates by more than an order of magnitude; the beating flagellum is simply unable to draw enough water through the fine filter. We find similar discrepancies for other choanoflagellate species, highlighting an apparent paradox. Our observations motivate us to suggest a radically different filtration mechanism that requires a flagellar vane (sheet), something notoriously difficult to visualize but sporadically observed in the related choanocytes (sponges). A CFD model with a flagellar vane correctly predicts the filtration rate of D. grandis , and using a simple model we can account for the filtration rates of other microbial filter feeders. We finally predict how optimum filter mesh size increases with cell size in microbial filter feeders, a prediction that accords very well with observations. We expect our results to be of significance for small-scale biophysics and trait-based ecological modeling.

  11. Filters in nuclear facilities

    International Nuclear Information System (INIS)

    Berg, K.H.; Wilhelm, J.G.

    1985-01-01

    The topics of the nine papers given include the behavior of HEPA filters during exposure to air flows of high humidity as well as of high differential pressure, the development of steel-fiber filters suitable for extreme operating conditions, and the occurrence of various radioactive iodine species in the exhaust air from boiling water reactors. In an introductory presentation the German view of the performance requirements to be met by filters in nuclear facilities as well as the present status of filter quality assurance are discussed. (orig.) [de

  12. Performance of ceramic disk filter coated with nano ZnO for removing Escherichia coli from water in small rural and remote communities of developing regions.

    Science.gov (United States)

    Huang, Jing; Huang, Guohe; An, Chunjiang; He, Yuan; Yao, Yao; Zhang, Peng; Shen, Jian

    2018-03-12

    Global water safety is facing great challenges due to increased population and demand. There is an urgent need to develop suitable water treatment strategy for small rural and remote communities in low-income developing countries. In order to find a low-cost solution, the reduction of E. coli using ceramic water disk coated with nano ZnO was investigated in this study. The performance of modified ceramic disk filters was influenced by several factors in the filter production process. Based on the factorial analysis, the pore size of the disk filters was the most significant factor for influencing E. coli removal efficiency and the clay content was the most significant one for influencing flow rate of modified disk filters. The coating of nano ZnO led to the change of disk filter surface and porosity. The reduction of E. coli could be attributed to both filter retention and photocatalytic antibacterial activity of nano ZnO. The effects of filter operation factors including initial E. coli concentration, illumination time and lamp power on E. coli removal effectiveness were also revealed. The results can help find a safe and cost-effective approach to solve drinking water problems in small rural and remote communities of developing regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Adaptive Kalman Filter Based on Adjustable Sampling Interval in Burst Detection for Water Distribution System

    Directory of Open Access Journals (Sweden)

    Doo Yong Choi

    2016-04-01

    Full Text Available Rapid detection of bursts and leaks in water distribution systems (WDSs can reduce the social and economic costs incurred through direct loss of water into the ground, additional energy demand for water supply, and service interruptions. Many real-time burst detection models have been developed in accordance with the use of supervisory control and data acquisition (SCADA systems and the establishment of district meter areas (DMAs. Nonetheless, no consideration has been given to how frequently a flow meter measures and transmits data for predicting breaks and leaks in pipes. This paper analyzes the effect of sampling interval when an adaptive Kalman filter is used for detecting bursts in a WDS. A new sampling algorithm is presented that adjusts the sampling interval depending on the normalized residuals of flow after filtering. The proposed algorithm is applied to a virtual sinusoidal flow curve and real DMA flow data obtained from Jeongeup city in South Korea. The simulation results prove that the self-adjusting algorithm for determining the sampling interval is efficient and maintains reasonable accuracy in burst detection. The proposed sampling method has a significant potential for water utilities to build and operate real-time DMA monitoring systems combined with smart customer metering systems.

  14. Regional changes in charcoal-burning suicide rates in East/Southeast Asia from 1995 to 2011: a time trend analysis.

    Directory of Open Access Journals (Sweden)

    Shu-Sen Chang

    2014-04-01

    Full Text Available Suicides by carbon monoxide poisoning resulting from burning barbecue charcoal reached epidemic levels in Hong Kong and Taiwan within 5 y of the first reported cases in the early 2000s. The objectives of this analysis were to investigate (i time trends and regional patterns of charcoal-burning suicide throughout East/Southeast Asia during the time period 1995-2011 and (ii whether any rises in use of this method were associated with increases in overall suicide rates. Sex- and age-specific trends over time were also examined to identify the demographic groups showing the greatest increases in charcoal-burning suicide rates across different countries.We used data on suicides by gases other than domestic gas for Hong Kong, Japan, the Republic of Korea, Taiwan, and Singapore in the years 1995/1996-2011. Similar data for Malaysia, the Philippines, and Thailand were also extracted but were incomplete. Graphical and joinpoint regression analyses were used to examine time trends in suicide, and negative binomial regression analysis to study sex- and age-specific patterns. In 1995/1996, charcoal-burning suicides accounted for <1% of all suicides in all study countries, except in Japan (5%, but they increased to account for 13%, 24%, 10%, 7%, and 5% of all suicides in Hong Kong, Taiwan, Japan, the Republic of Korea, and Singapore, respectively, in 2011. Rises were first seen in Hong Kong after 1998 (95% CI 1997-1999, followed by Singapore in 1999 (95% CI 1998-2001, Taiwan in 2000 (95% CI 1999-2001, Japan in 2002 (95% CI 1999-2003, and the Republic of Korea in 2007 (95% CI 2006-2008. No marked increases were seen in Malaysia, the Philippines, or Thailand. There was some evidence that charcoal-burning suicides were associated with an increase in overall suicide rates in Hong Kong, Taiwan, and Japan (for females, but not in Japan (for males, the Republic of Korea, and Singapore. Rates of change in charcoal-burning suicide rate did not differ by sex/age group

  15. Regional changes in charcoal-burning suicide rates in East/Southeast Asia from 1995 to 2011: a time trend analysis.

    Science.gov (United States)

    Chang, Shu-Sen; Chen, Ying-Yeh; Yip, Paul S F; Lee, Won Jin; Hagihara, Akihito; Gunnell, David

    2014-04-01

    Suicides by carbon monoxide poisoning resulting from burning barbecue charcoal reached epidemic levels in Hong Kong and Taiwan within 5 y of the first reported cases in the early 2000s. The objectives of this analysis were to investigate (i) time trends and regional patterns of charcoal-burning suicide throughout East/Southeast Asia during the time period 1995-2011 and (ii) whether any rises in use of this method were associated with increases in overall suicide rates. Sex- and age-specific trends over time were also examined to identify the demographic groups showing the greatest increases in charcoal-burning suicide rates across different countries. We used data on suicides by gases other than domestic gas for Hong Kong, Japan, the Republic of Korea, Taiwan, and Singapore in the years 1995/1996-2011. Similar data for Malaysia, the Philippines, and Thailand were also extracted but were incomplete. Graphical and joinpoint regression analyses were used to examine time trends in suicide, and negative binomial regression analysis to study sex- and age-specific patterns. In 1995/1996, charcoal-burning suicides accounted for <1% of all suicides in all study countries, except in Japan (5%), but they increased to account for 13%, 24%, 10%, 7%, and 5% of all suicides in Hong Kong, Taiwan, Japan, the Republic of Korea, and Singapore, respectively, in 2011. Rises were first seen in Hong Kong after 1998 (95% CI 1997-1999), followed by Singapore in 1999 (95% CI 1998-2001), Taiwan in 2000 (95% CI 1999-2001), Japan in 2002 (95% CI 1999-2003), and the Republic of Korea in 2007 (95% CI 2006-2008). No marked increases were seen in Malaysia, the Philippines, or Thailand. There was some evidence that charcoal-burning suicides were associated with an increase in overall suicide rates in Hong Kong, Taiwan, and Japan (for females), but not in Japan (for males), the Republic of Korea, and Singapore. Rates of change in charcoal-burning suicide rate did not differ by sex/age group in

  16. Manganese dioxide-coated filters for removing radium from drinking water. Report for 19 September 1983-1 September 1987

    International Nuclear Information System (INIS)

    Menetrez, M.Y.; Anderson, D.G.; Stahel, E.P.

    1988-09-01

    Research was performed using manganese dioxide (MnO 2 ) to demonstrate that above pH3 cations are adsorbed from solution in the order of their affinity, and that the interaction is characterized by the pH dependence of the metal. The relationship of the zero-point charge of pH and the solution ionic strength effects on interfacial surface potential and adsorption were addressed. Characteristics of MnO 2 behavior, structure, and stability found in research investigation were reviewed. Most of the study was on the use of MnO 2 coated filters for the removal of radium. A few comparison tests on radium removal with ion exchange were also made. Specifically, these tests have shown that acrylic-fiber filters coated with MnO 2 will remove radium from water. For a high-hardness water with pH = 7.4, total radium removal was 14,200 pCi/g MnO 2 before the MCL of 5 pCi/L was exceeded, and for a low-hardness water with pH = 4.5, total radium removal was 5000 pCi/g MnO 2 before the MCL of 5 pCi/L was exceeded. Hardness passed through the MnO 2 filters with little change and, therefore, radium was highly preferred over hardness. A step-by-step process for the preparation of acrylic-fiber filters coated with MnO 2 was designed and operated successfully

  17. Research of preferences of consumers of household filters for water purification by the fokus-grupp method

    OpenAIRE

    Medvedeva, E.; Blyumina, A.; Piskunov, V.

    2013-01-01

    Availability of qualitative water - the minimum guarantee of health of the person water or to use it only for cleaning and ware washing. The growing demand and change of consumer preferences causes relevance and timeliness of the organization and carrying out the research "Consumer Behaviour in the Market of Household Filters for Water Purification". As the main instrument of obtaining information the method of focus groups was chosen. In article criteria of a consumer choice are defined, to ...

  18. Utilization of radioanalytical methods for the determination of isotopes of U, Pu and Am in activated charcoal from IEA-R1 reactor

    International Nuclear Information System (INIS)

    Geraldo, Bianca; Marumo, Julio T.; Taddei, Maria Helena T.

    2013-01-01

    Activated charcoal is a radioactive waste arising from the water purification system of the nuclear research reactor. The management of this waste includes its characterization in order to identify and quantify the existing radionuclides, including those known as 'difficult-to-measure radionuclides' (RDM). The analysis of these RDM usually involves complex radiochemical costly and time consuming procedures for the purification and separation of them. The objective of this work was to define a methodology of sequential analysis of isotopes of U, Pu and Am, present in activated charcoal, evaluating chemical recovery, analysis time, quantity of radioactive waste generated and cost. Ion exchange and the chromatographic extraction methodologies were compared. Both methods showed high chemical recoveries, ranged from 74 and 100% for U, 76 and 100% for Pu and 87 and 100% for Am, demonstrating that these methods provide accurate and reliable results. However, chromatographic extraction method is more suitable for the determination of the radionuclides because it generates the smaller volume of waste and is more cost-effectively. (author)

  19. Utilization of radioanalytical methods for the determination of isotopes of U, Pu and Am in activated charcoal from IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Bianca; Marumo, Julio T., E-mail: bgeraldo@ipen.br, E-mail: jtmarumo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Taddei, Maria Helena T., E-mail: mhtaddei@cnen.gov.br [Laboratorio de Pocos de Caldas (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil)

    2013-07-01

    Activated charcoal is a radioactive waste arising from the water purification system of the nuclear research reactor. The management of this waste includes its characterization in order to identify and quantify the existing radionuclides, including those known as 'difficult-to-measure radionuclides' (RDM). The analysis of these RDM usually involves complex radiochemical costly and time consuming procedures for the purification and separation of them. The objective of this work was to define a methodology of sequential analysis of isotopes of U, Pu and Am, present in activated charcoal, evaluating chemical recovery, analysis time, quantity of radioactive waste generated and cost. Ion exchange and the chromatographic extraction methodologies were compared. Both methods showed high chemical recoveries, ranged from 74 and 100% for U, 76 and 100% for Pu and 87 and 100% for Am, demonstrating that these methods provide accurate and reliable results. However, chromatographic extraction method is more suitable for the determination of the radionuclides because it generates the smaller volume of waste and is more cost-effectively. (author)

  20. Optimizing nitrification in biological rapid sand filters: Diagnosing and supplementing micronutrients needed for proper filter performance

    DEFF Research Database (Denmark)

    Lee, Carson Odell; Wagner, Florian Benedikt; Boe-Hansen, Rasmus

    Nitrification is an important biological process commonly used in biological drinking water filters to remove ammonium from drinking water. Recent research has shown that a lack of micronutrients could be limiting the performance of these filters. Because nitrification is a biological process, ca...... to be an important diagnostic tool that could decrease regulatory hurdles, and save time and money....