WorldWideScience

Sample records for characterizing protein complexes

  1. Characterization of known protein complexes using k-connectivity and other topological measures

    Science.gov (United States)

    Gallagher, Suzanne R; Goldberg, Debra S

    2015-01-01

    Many protein complexes are densely packed, so proteins within complexes often interact with several other proteins in the complex. Steric constraints prevent most proteins from simultaneously binding more than a handful of other proteins, regardless of the number of proteins in the complex. Because of this, as complex size increases, several measures of the complex decrease within protein-protein interaction networks. However, k-connectivity, the number of vertices or edges that need to be removed in order to disconnect a graph, may be consistently high for protein complexes. The property of k-connectivity has been little used previously in the investigation of protein-protein interactions. To understand the discriminative power of k-connectivity and other topological measures for identifying unknown protein complexes, we characterized these properties in known Saccharomyces cerevisiae protein complexes in networks generated both from highly accurate X-ray crystallography experiments which give an accurate model of each complex, and also as the complexes appear in high-throughput yeast 2-hybrid studies in which new complexes may be discovered. We also computed these properties for appropriate random subgraphs.We found that clustering coefficient, mutual clustering coefficient, and k-connectivity are better indicators of known protein complexes than edge density, degree, or betweenness. This suggests new directions for future protein complex-finding algorithms. PMID:26913183

  2. Characterization of Mediator Complex and its Associated Proteins from Rice.

    Science.gov (United States)

    Samanta, Subhasis; Thakur, Jitendra Kumar

    2017-01-01

    The Mediator complex is a multi-protein complex that acts as a molecular bridge conveying transcriptional messages from the cis element-bound transcription factor to the RNA Polymerase II machinery. It is found in all eukaryotes including members of the plant kingdom. Increasing number of reports from plants regarding different Mediator subunits involved in a multitude of processes spanning from plant development to environmental interactions have firmly established it as a central hub of plant regulatory networks. Routine isolation of Mediator complex in a particular species is a necessity because of many reasons. First, composition of the Mediator complex varies from species to species. Second, the composition of the Mediator complex in a particular species is not static under all developmental and environmental conditions. Besides this, at times, Mediator complex is used in in vitro transcription systems. Rice, a staple food crop of the world, is used as a model monocot crop. Realizing the need of a reliable protocol for the isolation of Mediator complex from plants, we describe here the isolation of Mediator complex from rice.

  3. Characterization of the human GARP (Golgi associated retrograde protein) complex

    International Nuclear Information System (INIS)

    Liewen, Heike; Meinhold-Heerlein, Ivo; Oliveira, Vasco; Schwarzenbacher, Robert; Luo Guorong; Wadle, Andreas; Jung, Martin; Pfreundschuh, Michael; Stenner-Liewen, Frank

    2005-01-01

    The Golgi associated retrograde protein complex (GARP) or Vps fifty-three (VFT) complex is part of cellular inter-compartmental transport systems. Here we report the identification of the VFT tethering factor complex and its interactions in mammalian cells. Subcellular fractionation shows that human Vps proteins are found in the smooth membrane/Golgi fraction but not in the cytosol. Immunostaining of human Vps proteins displays a vesicular distribution most concentrated at the perinuclear envelope. Co-staining experiments with endosomal markers imply an endosomal origin of these vesicles. Significant accumulation of VFT complex positive endosomes is found in the vicinity of the Trans Golgi Network area. This is in accordance with a putative role in Golgi associated transport processes. In Saccharomyces cerevisiae, GARP is the main effector of the small GTPase Ypt6p and interacts with the SNARE Tlg1p to facilitate membrane fusion. Accordingly, the human homologue of Ypt6p, Rab6, specifically binds hVps52. In human cells, the 'orphan' SNARE Syntaxin 10 is the genuine binding partner of GARP mediated by hVps52. This reveals a previously unknown function of human Syntaxin 10 in membrane docking and fusion events at the Golgi. Taken together, GARP shows significant conservation between various species but diversification and specialization result in important differences in human cells

  4. Identification and characterization of stable membrane protein complexes

    NARCIS (Netherlands)

    Spelbrink, R.E.J.

    2007-01-01

    Many membrane proteins exist as oligomers. Such oligomers play an important role in a broad variety of cellular processes such as ion transport, energy transduction, osmosensing and cell wall synthesis. We developed an electrophoresis-based method of identifying oligomeric membrane proteins that are

  5. Characterization of the ternary Usher syndrome SANS/ush2a/whirlin protein complex.

    Science.gov (United States)

    Sorusch, Nasrin; Bauß, Katharina; Plutniok, Janet; Samanta, Ananya; Knapp, Barbara; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe

    2017-03-15

    The Usher syndrome (USH) is the most common form of inherited deaf-blindness, accompanied by vestibular dysfunction. Due to the heterogeneous manifestation of the clinical symptoms, three USH types (USH1-3) and additional atypical forms are distinguished. USH1 and USH2 proteins have been shown to function together in multiprotein networks in photoreceptor cells and hair cells. Mutations in USH proteins are considered to disrupt distinct USH protein networks and finally lead to the development of USH.To get novel insights into the molecular pathomechanisms underlying USH, we further characterize the periciliary USH protein network in photoreceptor cells. We show the direct interaction between the scaffold protein SANS (USH1G) and the transmembrane adhesion protein ush2a and that both assemble into a ternary USH1/USH2 complex together with the PDZ-domain protein whirlin (USH2D) via mutual interactions. Immunohistochemistry and proximity ligation assays demonstrate co-localization of complex partners and complex formation, respectively, in the periciliary region, the inner segment and at the synapses of rodent and human photoreceptor cells. Protein-protein interaction assays and co-expression of complex partners reveal that pathogenic mutations in USH1G severely affect formation of the SANS/ush2a/whirlin complex. Translational read-through drug treatment, targeting the c.728C > A (p.S243X) nonsense mutation, restored SANS scaffold function. We conclude that USH1 and USH2 proteins function together in higher order protein complexes. The maintenance of USH1/USH2 protein complexes depends on multiple USH1/USH2 protein interactions, which are disrupted by pathogenic mutations in USH1G protein SANS. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Biochemical characterization of the prolyl 3-hydroxylase 1.cartilage-associated protein.cyclophilin B complex.

    Science.gov (United States)

    Ishikawa, Yoshihiro; Wirz, Jackie; Vranka, Janice A; Nagata, Kazuhiro; Bächinger, Hans Peter

    2009-06-26

    The rough endoplasmic reticulum-resident protein complex consisting of prolyl 3-hydroxylase 1 (P3H1), cartilage-associated protein (CRTAP), and cyclophilin B (CypB) can be isolated from chick embryos on a gelatin-Sepharose column, indicating some involvement in the biosynthesis of procollagens. Prolyl 3-hydroxylase 1 modifies a single proline residue in the alpha chains of type I, II, and III collagens to (3S)-hydroxyproline. The peptidyl-prolyl cis-trans isomerase activity of cyclophilin B was shown previously to catalyze the rate of triple helix formation. Here we show that cyclophilin B in the complex shows peptidyl-prolyl cis-trans isomerase activity and that the P3H1.CRTAP.CypB complex has another important function: it acts as a chaperone molecule when tested with two classical chaperone assays. The P3H1.CRTAP.CypB complex inhibited the thermal aggregation of citrate synthase and was active in the denatured rhodanese refolding and aggregation assay. The chaperone activity of the complex was higher than that of protein-disulfide isomerase, a well characterized chaperone. The P3H1.CRTAP.CypB complex also delayed the in vitro fibril formation of type I collagen, indicating that this complex is also able to interact with triple helical collagen and acts as a collagen chaperone.

  7. Intermolecular detergent-membrane protein noes for the characterization of the dynamics of membrane protein-detergent complexes.

    Science.gov (United States)

    Eichmann, Cédric; Orts, Julien; Tzitzilonis, Christos; Vögeli, Beat; Smrt, Sean; Lorieau, Justin; Riek, Roland

    2014-12-11

    The interaction between membrane proteins and lipids or lipid mimetics such as detergents is key for the three-dimensional structure and dynamics of membrane proteins. In NMR-based structural studies of membrane proteins, qualitative analysis of intermolecular nuclear Overhauser enhancements (NOEs) or paramagnetic resonance enhancement are used in general to identify the transmembrane segments of a membrane protein. Here, we employed a quantitative characterization of intermolecular NOEs between (1)H of the detergent and (1)H(N) of (2)H-perdeuterated, (15)N-labeled α-helical membrane protein-detergent complexes following the exact NOE (eNOE) approach. Structural considerations suggest that these intermolecular NOEs should show a helical-wheel-type behavior along a transmembrane helix or a membrane-attached helix within a membrane protein as experimentally demonstrated for the complete influenza hemagglutinin fusion domain HAfp23. The partial absence of such a NOE pattern along the amino acid sequence as shown for a truncated variant of HAfp23 and for the Escherichia coli inner membrane protein YidH indicates the presence of large tertiary structure fluctuations such as an opening between helices or the presence of large rotational dynamics of the helices. Detergent-protein NOEs thus appear to be a straightforward probe for a qualitative characterization of structural and dynamical properties of membrane proteins embedded in detergent micelles.

  8. Characterization of the adenoassociated virus Rep protein complex formed on the viral origin of DNA replication

    International Nuclear Information System (INIS)

    Li Zengi; Brister, J. Rodney; Im, Dong-Soo; Muzyczka, Nicholas

    2003-01-01

    Interaction between the adenoassociated virus (AAV) replication proteins, Rep68 and 78, and the viral terminal repeats (TRs) is mediated by a DNA sequence termed the Rep-binding element (RBE). This element is necessary for Rep-mediated unwinding of duplex DNA substrates, directs Rep catalyzed cleavage of the AAV origin of DNA replication, and is required for viral transcription and proviral integration. Six discrete Rep complexes with the AAV TR substrates have been observed in vitro, and cross-linking studies suggest these complexes contain one to six molecules of Rep. However, the functional relationship between Rep oligomerization and biochemical activity is unclear. Here we have characterized Rep complexes that form on the AAV TR. Both Rep68 and Rep78 appear to form the same six complexes with the AAV TR, and ATP seems to stimulate formation of specific, higher order complexes. When the sizes of these Rep complexes were estimated on native polyacrylamide gels, the four slower migrating complexes were larger than predicted by an amount equivalent to one or two TRs. To resolve this discrepancy, the molar ratio of protein and DNA was calculated for the three largest complexes. Data from these experiments indicated that the larger complexes included multiple TRs in addition to multiple Rep molecules and that the Rep-to-TR ratio was approximately 2. The two largest complexes were also associated with increased Rep-mediated, origin cleavage activity. Finally, we characterized a second, Rep-mediated cleavage event that occurs adjacent to the normal nicking site, but on the opposite strand. This second site nicking event effectively results in double-stranded DNA cleavage at the normal nicking site

  9. Comprehensive Characterization of Minichromosome Maintenance Complex (MCM) Protein Interactions Using Affinity and Proximity Purifications Coupled to Mass Spectrometry.

    Science.gov (United States)

    Dubois, Marie-Line; Bastin, Charlotte; Lévesque, Dominique; Boisvert, François-Michel

    2016-09-02

    The extensive identification of protein-protein interactions under different conditions is an important challenge to understand the cellular functions of proteins. Here we use and compare different approaches including affinity purification and purification by proximity coupled to mass spectrometry to identify protein complexes. We explore the complete interactome of the minichromosome maintenance (MCM) complex by using both approaches for all of the different MCM proteins. Overall, our analysis identified unique and shared interaction partners and proteins enriched for distinct biological processes including DNA replication, DNA repair, and cell cycle regulation. Furthermore, we mapped the changes in protein interactions of the MCM complex in response to DNA damage, identifying a new role for this complex in DNA repair. In summary, we demonstrate the complementarity of these approaches for the characterization of protein interactions within the MCM complex.

  10. Biochemical characterization of native Usher protein complexes from a vesicular subfraction of tracheal epithelial cells.

    Science.gov (United States)

    Zallocchi, Marisa; Sisson, Joseph H; Cosgrove, Dominic

    2010-02-16

    Usher syndrome is the major cause of deaf/blindness in the world. It is a genetic heterogeneous disorder, with nine genes already identified as causative for the disease. We noted expression of all known Usher proteins in bovine tracheal epithelial cells and exploited this system for large-scale biochemical analysis of Usher protein complexes. The dissected epithelia were homogenized in nondetergent buffer and sedimented on sucrose gradients. At least two complexes were evident after the first gradient: one formed by specific isoforms of CDH23, PCDH15, and VLGR-1 and a different one at the top of the gradient that included all of the Usher proteins and rab5, a transport vesicle marker. TEM analysis of these top fractions found them enriched in 100-200 nm vesicles, confirming a vesicular association of the Usher complex(es). Immunoisolation of these vesicles confirmed some of the associations already predicted and identified novel interactions. When the vesicles are lysed in the presence of phenylbutyrate, most of the Usher proteins cosediment into the gradient at a sedimentation coefficient of approximately 50 S, correlating with a predicted molecular mass of 2 x 10(6) Da. Although it is still unclear whether there is only one complex or several independent complexes that are trafficked within distinct vesicular pools, this work shows for the first time that native Usher protein complexes occur in vivo. This complex(es) is present primarily in transport vesicles at the apical pole of tracheal epithelial cells, predicting that Usher proteins may be directionally transported as complexes in hair cells and photoreceptors.

  11. BIOCHEMICAL CHARACTERIZATION OF NATIVE USHER PROTEIN COMPLEXES FROM A VESICULAR SUBFRACTION OF TRACHEAL EPITHELIAL CELLS†

    Science.gov (United States)

    Zallocchi, Marisa; Sisson, Joseph H.; Cosgrove, Dominic

    2010-01-01

    Usher syndrome is the major cause of deaf/blindness in the world. It is a genetic heterogeneous disorder, with nine genes already identified as causative for the disease. We noted expression of all known Usher proteins in bovine tracheal epithelial cells, and exploited this system for large-scale biochemical analysis of Usher protein complexes. The dissected epithelia were homogenized in non-detergent buffer, and sedimented on sucrose gradients. At least two complexes were evident after the first gradient: one formed by specific isoforms of CDH23, PCDH15 and VLGR-1, and a different one at the top of the gradient that included all the Usher proteins and rab5, a transport vesicle marker. TEM analysis of these top fractions found them enriched in 100–200 nm vesicles, confirming a vesicular association of the Usher complex(es). Immunoisolation of these vesicles confirmed some of the associations already predicted and identified novel interactions. When the vesicles are lysed in the presence of phenylbutyrate, most of the Usher proteins co-sediment into the gradient at a sedimentation coefficient of approximately 50S, correlating with a predicted molecular mass of 2 × 106 Daltons. Although it is still unclear whether there is only one complex or several independent complexes that are trafficked within distinct vesicular pools, this work shows for the first time that native Usher proteins complexes occur in vivo. This complex(es) is present primarily in transport vesicles at the apical pole of tracheal epithelial cells, predicting that Usher proteins may be directionally transported as complexes in hair cells and photoreceptors. PMID:20058854

  12. Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex.

    Science.gov (United States)

    Gao, Yang; Westfield, Gerwin; Erickson, Jon W; Cerione, Richard A; Skiniotis, Georgios; Ramachandran, Sekar

    2017-08-25

    The visual photo-transduction cascade is a prototypical G protein-coupled receptor (GPCR) signaling system, in which light-activated rhodopsin (Rho*) is the GPCR catalyzing the exchange of GDP for GTP on the heterotrimeric G protein transducin (G T ). This results in the dissociation of G T into its component α T -GTP and β 1 γ 1 subunit complex. Structural information for the Rho*-G T complex will be essential for understanding the molecular mechanism of visual photo-transduction. Moreover, it will shed light on how GPCRs selectively couple to and activate their G protein signaling partners. Here, we report on the preparation of a stable detergent-solubilized complex between Rho* and a heterotrimer (G T *) comprising a Gα T /Gα i1 chimera (α T *) and β 1 γ 1 The complex was formed on native rod outer segment membranes upon light activation, solubilized in lauryl maltose neopentyl glycol, and purified with a combination of affinity and size-exclusion chromatography. We found that the complex is fully functional and that the stoichiometry of Rho* to Gα T * is 1:1. The molecular weight of the complex was calculated from small-angle X-ray scattering data and was in good agreement with a model consisting of one Rho* and one G T *. The complex was visualized by negative-stain electron microscopy, which revealed an architecture similar to that of the β 2 -adrenergic receptor-G S complex, including a flexible α T * helical domain. The stability and high yield of the purified complex should allow for further efforts toward obtaining a high-resolution structure of this important signaling complex. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Isolation and structure–function characterization of a signaling-active rhodopsin–G protein complex

    Science.gov (United States)

    Gao, Yang; Westfield, Gerwin; Erickson, Jon W.; Cerione, Richard A.; Skiniotis, Georgios; Ramachandran, Sekar

    2017-01-01

    The visual photo-transduction cascade is a prototypical G protein–coupled receptor (GPCR) signaling system, in which light-activated rhodopsin (Rho*) is the GPCR catalyzing the exchange of GDP for GTP on the heterotrimeric G protein transducin (GT). This results in the dissociation of GT into its component αT–GTP and β1γ1 subunit complex. Structural information for the Rho*–GT complex will be essential for understanding the molecular mechanism of visual photo-transduction. Moreover, it will shed light on how GPCRs selectively couple to and activate their G protein signaling partners. Here, we report on the preparation of a stable detergent-solubilized complex between Rho* and a heterotrimer (GT*) comprising a GαT/Gαi1 chimera (αT*) and β1γ1. The complex was formed on native rod outer segment membranes upon light activation, solubilized in lauryl maltose neopentyl glycol, and purified with a combination of affinity and size-exclusion chromatography. We found that the complex is fully functional and that the stoichiometry of Rho* to GαT* is 1:1. The molecular weight of the complex was calculated from small-angle X-ray scattering data and was in good agreement with a model consisting of one Rho* and one GT*. The complex was visualized by negative-stain electron microscopy, which revealed an architecture similar to that of the β2-adrenergic receptor–GS complex, including a flexible αT* helical domain. The stability and high yield of the purified complex should allow for further efforts toward obtaining a high-resolution structure of this important signaling complex. PMID:28655769

  14. Biophysical characterization of the complex between human papillomavirus E6 protein and synapse-associated protein 97

    DEFF Research Database (Denmark)

    Chi, Celestine Ngang; Bach, Anders; Engström, Åke

    2011-01-01

    The E6 protein of human papillomavirus exhibits complex interaction patterns with several host proteins and their roles in HPV mediated oncogenesis have proved challenging to study. Here we use several biophysical techniques to explore the binding of E6 to the three PDZ domains of the tumor......, this quaternary complex has the same apparent hydrodynamic volume as the unliganded PDZ region, suggesting that a conformational change occurs in the PDZ region upon binding, a conclusion supported by kinetic experiments. Using NMR, we discovered a new mode of interaction between E6 and PDZ: a subset of residues...

  15. Characterization, stoichiometry, and stability of salivary protein-tannin complexes by ESI-MS and ESI-MS/MS.

    Science.gov (United States)

    Canon, Francis; Paté, Franck; Meudec, Emmanuelle; Marlin, Thérèse; Cheynier, Véronique; Giuliani, Alexandre; Sarni-Manchado, Pascale

    2009-12-01

    Numerous protein-polyphenol interactions occur in biological and food domains particularly involving proline-rich proteins, which are representative of the intrinsically unstructured protein group (IUP). Noncovalent protein-ligand complexes are readily detected by electrospray ionization mass spectrometry (ESI-MS), which also gives access to ligand binding stoichiometry. Surprisingly, the study of interactions between polyphenolic molecules and proteins is still an area where ESI-MS has poorly benefited, whereas it has been extensively applied to the detection of noncovalent complexes. Electrospray ionization mass spectrometry has been applied to the detection and the characterization of the complexes formed between tannins and a human salivary proline-rich protein (PRP), namely IB5. The study of the complex stability was achieved by low-energy collision-induced dissociation (CID) measurements, which are commonly implemented using triple quadrupole, hybrid quadrupole time-of-flight, or ion trap instruments. Complexes composed of IB5 bound to a model polyphenol EgCG have been detected by ESI-MS and further analyzed by MS/MS. Mild ESI interface conditions allowed us to observe intact noncovalent PRP-tannin complexes with stoichiometries ranging from 1:1 to 1:5. Thus, ESI-MS shows its efficiency for (1) the study of PRP-tannin interactions, (2) the determination of stoichiometry, and (3) the study of complex stability. We were able to establish unambiguously both their stoichiometries and their overall subunit architecture via tandem mass spectrometry and solution disruption experiments. Our results prove that IB5.EgCG complexes are maintained intact in the gas phase.

  16. Biochemical Characterization of the Prolyl 3-Hydroxylase 1·Cartilage-associated Protein·Cyclophilin B Complex*

    Science.gov (United States)

    Ishikawa, Yoshihiro; Wirz, Jackie; Vranka, Janice A.; Nagata, Kazuhiro; Bächinger, Hans Peter

    2009-01-01

    The rough endoplasmic reticulum-resident protein complex consisting of prolyl 3-hydroxylase 1 (P3H1), cartilage-associated protein (CRTAP), and cyclophilin B (CypB) can be isolated from chick embryos on a gelatin-Sepharose column, indicating some involvement in the biosynthesis of procollagens. Prolyl 3-hydroxylase 1 modifies a single proline residue in the α chains of type I, II, and III collagens to (3S)-hydroxyproline. The peptidyl-prolyl cis-trans isomerase activity of cyclophilin B was shown previously to catalyze the rate of triple helix formation. Here we show that cyclophilin B in the complex shows peptidyl-prolyl cis-trans isomerase activity and that the P3H1·CRTAP·CypB complex has another important function: it acts as a chaperone molecule when tested with two classical chaperone assays. The P3H1·CRTAP·CypB complex inhibited the thermal aggregation of citrate synthase and was active in the denatured rhodanese refolding and aggregation assay. The chaperone activity of the complex was higher than that of protein-disulfide isomerase, a well characterized chaperone. The P3H1·CRTAP·CypB complex also delayed the in vitro fibril formation of type I collagen, indicating that this complex is also able to interact with triple helical collagen and acts as a collagen chaperone. PMID:19419969

  17. Cloning, characterization and sub-cellular localization of gamma subunit of T-complex protein-1 (chaperonin) from Leishmania donovani

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar,; Kumari, Neeti [Division of Biochemistry, CSIR-Central Drug Research Institute, Chattar Manzil Palace, PO Box 173, Lucknow (India); Goyal, Neena, E-mail: neenacdri@yahoo.com [Division of Biochemistry, CSIR-Central Drug Research Institute, Chattar Manzil Palace, PO Box 173, Lucknow (India)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer The study presents cloning and characterization of TCP1{gamma} gene from L. donovani. Black-Right-Pointing-Pointer TCP1{gamma} is a subunit of T-complex protein-1 (TCP1), a chaperonin class of protein. Black-Right-Pointing-Pointer LdTCP{gamma} exhibited differential expression in different stages of promastigotes. Black-Right-Pointing-Pointer LdTCP{gamma} co-localized with actin, a cytoskeleton protein. Black-Right-Pointing-Pointer The data suggests that this gene may have a role in differentiation/biogenesis. Black-Right-Pointing-Pointer First report on this chapronin in Leishmania. -- Abstract: T-complex protein-1 (TCP1) complex, a chaperonin class of protein, ubiquitous in all genera of life, is involved in intracellular assembly and folding of various proteins. The gamma subunit of TCP1 complex (TCP1{gamma}), plays a pivotal role in the folding and assembly of cytoskeleton protein(s) as an individual or complexed with other subunits. Here, we report for the first time cloning, characterization and expression of the TCP1{gamma} of Leishmania donovani (LdTCP1{gamma}), the causative agent of Indian Kala-azar. Primary sequence analysis of LdTCP1{gamma} revealed the presence of all the characteristic features of TCP1{gamma}. However, leishmanial TCP1{gamma} represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. LdTCP1{gamma} exhibited differential expression in different stages of promastigotes. The non-dividing stationary phase promastigotes exhibited 2.5-fold less expression of LdTCP1{gamma} as compared to rapidly dividing log phase parasites. The sub-cellular distribution of LdTCP1{gamma} was studied in log phase promastigotes by employing indirect immunofluorescence microscopy. The protein was present not only in cytoplasm but it was also localized in nucleus, peri-nuclear region, flagella, flagellar pocket and apical region. Co-localization of LdTCP1{gamma} with actin suggests

  18. Cloning, characterization and sub-cellular localization of gamma subunit of T-complex protein-1 (chaperonin) from Leishmania donovani

    International Nuclear Information System (INIS)

    Bhaskar,; Kumari, Neeti; Goyal, Neena

    2012-01-01

    Highlights: ► The study presents cloning and characterization of TCP1γ gene from L. donovani. ► TCP1γ is a subunit of T-complex protein-1 (TCP1), a chaperonin class of protein. ► LdTCPγ exhibited differential expression in different stages of promastigotes. ► LdTCPγ co-localized with actin, a cytoskeleton protein. ► The data suggests that this gene may have a role in differentiation/biogenesis. ► First report on this chapronin in Leishmania. -- Abstract: T-complex protein-1 (TCP1) complex, a chaperonin class of protein, ubiquitous in all genera of life, is involved in intracellular assembly and folding of various proteins. The gamma subunit of TCP1 complex (TCP1γ), plays a pivotal role in the folding and assembly of cytoskeleton protein(s) as an individual or complexed with other subunits. Here, we report for the first time cloning, characterization and expression of the TCP1γ of Leishmania donovani (LdTCP1γ), the causative agent of Indian Kala-azar. Primary sequence analysis of LdTCP1γ revealed the presence of all the characteristic features of TCP1γ. However, leishmanial TCP1γ represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. LdTCP1γ exhibited differential expression in different stages of promastigotes. The non-dividing stationary phase promastigotes exhibited 2.5-fold less expression of LdTCP1γ as compared to rapidly dividing log phase parasites. The sub-cellular distribution of LdTCP1γ was studied in log phase promastigotes by employing indirect immunofluorescence microscopy. The protein was present not only in cytoplasm but it was also localized in nucleus, peri-nuclear region, flagella, flagellar pocket and apical region. Co-localization of LdTCP1γ with actin suggests that, this gene may have a role in maintaining the structural dynamics of cytoskeleton of parasite.

  19. Characterizing protein activities on the lysozyme and nanodiamond complex prepared for bio applications.

    Science.gov (United States)

    Perevedentseva, E; Cai, P-J; Chiu, Y-C; Cheng, C-L

    2011-02-01

    Recently, nanodiamond particles have attracted increasing attention as a promising nanomaterial for its biocompatibility, easy functionalization and conjugation with biomolecules, and its superb physical/chemical properties. Nanodiamonds are mainly used as markers for cell imaging, using its fluorescence or Raman signals for detection, and as carriers for drug delivery. For the success of these applications, the biomolecule associated with the nanodiamond has to retain its functionality. In this work, the protein activities of egg white lysozyme adsorbed on nanodiamond particles of different sizes is investigated. The lysozyme nanodiamond complex is used here as a protein model for analyzing its structural conformation changes and, correspondingly, its enzymatic activity after the adsorption. Fourier-transform infrared spectroscopy (FTIR) is used for the analysis of the sensitive protein secondary structure. To access the activities of the adsorbed lysozyme, a fluorescence-based assay is used. The process of adsorption is also analyzed using UV-visible spectroscopic measurements in combination with analysis of nanodiamond properties with FTIR, Raman spectroscopy, and ζ-potential measurements. It is found that the activity of lysozyme upon adsorption depends on the nanodiamond's size and surface properties, and that the nanodiamond particles can be selected and treated, which do not alter the lysozyme functional properties. Such nanodiamonds can be considered convenient nanoparticles for various bioapplications.

  20. Characterization of milk proteins-lutein complexes and the impact on lutein chemical stability.

    Science.gov (United States)

    Yi, Jiang; Fan, Yuting; Yokoyama, Wallace; Zhang, Yuzhu; Zhao, Liqing

    2016-06-01

    In this study, the interaction of WPI (whey protein isolate) and SC (sodium caseinate) with hydrophobic lutein was investigated through UV-vis spectroscopy and circular dichroism (CD) as well as fluorescence. The effects on lutein's chemical stability were also examined. The decrease of turbidity of lutein suggested that lutein's aqueous solubility was improved after binding with milk proteins. CD analysis indicated lutein had little impact on the secondary structures of both proteins. Different preparation methods have significant impacts on the binding constant. Fluorescence results indicated that WPI and SC interact with lutein by hydrophobic contacts. Milk proteins have protective effects on lutein against oxidation and decomposition, and SC showed better capability in protecting lutein from oxidation than WPI during 16 days storage. The lutein's chemical stability was increased with increasing of proteins concentration. The results indicated that milk proteins may act as effective carriers for lipophilic nutraceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Modeling complexes of modeled proteins.

    Science.gov (United States)

    Anishchenko, Ivan; Kundrotas, Petras J; Vakser, Ilya A

    2017-03-01

    Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å C α RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Structural Characterization of Phosducin and Its Complex with the 14-3-3 Protein

    Czech Academy of Sciences Publication Activity Database

    Kacířová, Miroslava; Košek, Dalibor; Kádek, Alan; Man, Petr; Večeř, J.; Herman, P.; Obšilová, Veronika; Obšil, Tomáš

    2015-01-01

    Roč. 290, č. 26 (2015), s. 16246-16260 ISSN 0021-9258 Grant - others:GA ČR(CZ) GAP305/11/0708 Institutional support: RVO:67985823 ; RVO:61388971 Keywords : Phosducin * 14-3-3 protein * fluorescence spectroscopy * SAXS * hydrogen-deuterium exchange Subject RIV: CE - Biochemistry Impact factor: 4.258, year: 2015

  3. Structural and biophysical characterization of the PI4KB:14-3-3 protein complex

    Czech Academy of Sciences Publication Activity Database

    Chalupská, Dominika; Eisenreichová, Andrea; Rozycki, B.; Řežábková, L.; Humpolíčková, Jana; Klíma, Martin; Bouřa, Evžen

    2017-01-01

    Roč. 284, Suppl 1 (2017), s. 191 ISSN 1742-464X. [FEBS Congress /42./ From Molecules to Cells and Back. 10.09.2017-14.09.2017, Jerusalem] Institutional support: RVO:61388963 Keywords : PI4KB * 14-3-3 proteins Subject RIV: CE - Biochemistry

  4. Dynamics in electron transfer protein complexes

    NARCIS (Netherlands)

    Bashir, Qamar

    2010-01-01

    Recent studies have provided experimental evidence for the existence of an encounter complex, a transient intermediate in the formation of protein complexes. We have used paramagnetic relaxation enhancement NMR spectroscopy in combination with Monte Carlo simulations to characterize and visualize

  5. Characterization of protein/ligand interactions by 1H/3H exchange: application to the hAsf1/ histone H3 complex

    International Nuclear Information System (INIS)

    Mousseau, G.

    2007-05-01

    In the first chapter will be exposed the main current methods of identification to high debit of the interactions protein-protein. Then the methods allowing to characterize the surfaces of interaction or to determine the structures of the complexes will be listed by discussing the main advantages and the inconveniences. Our approach of characterization of the zones of interaction protein-protein is a method of 'foot-printing' 1, based on the identification and radicals' quantification formed on the residues of proteins accessible to the water. The second chapter will so discuss the development of this method of radical identification using the atom of tritium as radioactive label. Our approach will finally be validated in the third chapter by applying it to the characterization of amino acids involved in the interaction enter the human protein anti silencing factor 1 (hAsf11-156) and a fragment of the histone H 3 . (N.C.)

  6. Complexes prepared from protein A and human serum, IgG, or Fc gamma fragments: characterization by immunochemical analysis of ultracentrifugation fractions and studies on their interconversion.

    Science.gov (United States)

    Langone, J J; Das, C; Mainwaring, R; Shearer, W T

    1985-01-01

    Protein A of Staphylococcus aureus is an Fc receptor for IgG that has been used as a therapeutic reagent to treat cancer in humans and experimental animals. We used ultracentrifugation combined with analysis of isolated fractions by radioimmunoprecipitation and competitive radioimmunoassay with chicken antibodies that bind free protein A or protein A in complexes but do bind free immunoglobulin reagents to localize and characterize the types of complexes formed with different molar ratios of 125I-protein A and human 131I-IgG alone or in serum, and 131I-Fc gamma fragments. This approach offers a distinct advantage over direct counting of radioactivity in the fractions because resolution of complexes and free reagents is much improved. With excess 131I-IgG or 131I-Fc, all the 125I-protein A is present only in complexes that contained 4 molecules of immunoglobulin reagent and 2 molecules of protein A (4:2 complexes), whereas with excess 125I-protein A the stoichiometry of the complexes was 1:1. We have also shown the preformed 4:2 and 1:1 complexes will interconvert in the presence of added excess protein A or IgG, respectively, and that fresh IgG will exchange with IgG or Fc gamma in preformed complexes. Because protein A has been found to elute from an immobilized reagent used in serotherapy of human cancer and is present in a large excess of IgG, the 4:2 complexes may play an active role in the tumoricidal or toxic reactions observed.

  7. Structural characterization of POM6 Fab and mouse prion protein complex identifies key regions for prions conformational conversion.

    Science.gov (United States)

    Baral, Pravas Kumar; Swayampakula, Mridula; Aguzzi, Adriano; James, Michael N G

    2018-05-01

    Conversion of the cellular prion protein PrP C into its pathogenic isoform PrP S c is the hallmark of prion diseases, fatal neurodegenerative diseases affecting many mammalian species including humans. Anti-prion monoclonal antibodies can arrest the progression of prion diseases by stabilizing the cellular form of the prion protein. Here, we present the crystal structure of the POM6 Fab fragment, in complex with the mouse prion protein (moPrP). The prion epitope of POM6 is in close proximity to the epitope recognized by the purportedly toxic antibody fragment, POM1 Fab also complexed with moPrP. The POM6 Fab recognizes a larger binding interface indicating a likely stronger binding compared to POM1. POM6 and POM1 exhibit distinct biological responses. Structural comparisons of the bound mouse prion proteins from the POM6 Fab:moPrP and POM1 Fab:moPrP complexes reveal several key regions of the prion protein that might be involved in initiating mis-folding events. The structural data of moPrP:POM6 Fab complex are available in the PDB under the accession number www.rcsb.org/pdb/search/structidSearch.do?structureId=6AQ7. © 2018 Federation of European Biochemical Societies.

  8. Dynamics in electron transfer protein complexes

    OpenAIRE

    Bashir, Qamar

    2010-01-01

    Recent studies have provided experimental evidence for the existence of an encounter complex, a transient intermediate in the formation of protein complexes. We have used paramagnetic relaxation enhancement NMR spectroscopy in combination with Monte Carlo simulations to characterize and visualize the ensemble of encounter orientations in the short-lived electron transfer complex of yeast Cc and CcP. The complete conformational space sampled by the protein molecules during the dynamic part of ...

  9. Structure of the higher plant light harvesting complex I: in vivo characterization and structural interdependence of the Lhca proteins.

    Science.gov (United States)

    Klimmek, Frank; Ganeteg, Ulrika; Ihalainen, Janne A; van Roon, Henny; Jensen, Poul E; Scheller, Henrik V; Dekker, Jan P; Jansson, Stefan

    2005-03-01

    We have investigated the structure of the higher plant light harvesting complex of photosystem I (LHCI) by analyzing PSI-LHCI particles isolated from a set of Arabidopsis plant lines, each lacking a specific Lhca (Lhca1-4) polypeptide. Functional antenna size measurements support the recent finding that there are four Lhca proteins per PSI in the crystal structure [Ben-Shem, A., Frolow, F., and Nelson, N. (2003) Nature 426, 630-635]. According to HPLC analyses the number of pigment molecules bound within the LHCI is higher than expected from reconstitution studies or analyses of isolated native LHCI. Comparison of the spectra of the particles from the different lines reveals chlorophyll absorption bands peaking at 696, 688, 665, and 655 nm that are not present in isolated PSI or LHCI. These bands presumably originate from "gap" or "linker" pigments that are cooperatively coordinated by the Lhca and/or PSI proteins, which we have tentatively localized in the PSI-LHCI complex.

  10. Analysis of the complexity of protein kinases within the phloem sieve tube system. Characterization of Cucurbita maxima calmodulin-like domain protein kinase 1.

    Science.gov (United States)

    Yoo, Byung-Chun; Lee, Jung-Youn; Lucas, William J

    2002-05-03

    In angiosperms, functional, mature sieve elements lack nuclei, vacuoles, ribosomes, and most of the endomembrane network. In this study, the complexity, number, and nature of protein kinases within the phloem sap of Cucurbita maxima were investigated to test the hypothesis that the enucleate sieve tube system utilizes a simplified signal transduction network. Supporting evidence was obtained in that only five putative protein kinases (three calcium-independent and two calcium-dependent protein kinases) were detected within the phloem sap extracted from stem tissues. Biochemical methods were used to purify one such calcium-dependent protein kinase. The gene for this C. maxima calmodulin-like domain protein kinase 1 (CmCPK1), was cloned using peptide microsequences. A combination of mass spectrometry, peptide fingerprinting, and amino-terminal sequencing established that, in the phloem sap, CmCPK1 exists as an amino-terminally cleaved protein. A second highly homologous isoform, CmCPK2, was identified, but although transcripts could be detected in the companion cells, peptide fingerprint analysis suggested that CmCPK2 does not enter the phloem sap. Potential substrates for CmCPK1, within the phloem sap, were also detected using an on-membrane phosphorylation assay. Entry of CmCPK1 into sieve elements via plasmodesmata and the potential roles played by these phloem protein kinases are discussed.

  11. Alcohol--Induced Polyelectrolyte-Surfactant Complex Coacervate Systems: Characterization and Applications in Enzyme and Protein Extraction

    Science.gov (United States)

    Nejati Moshtaghin, Mahboubeh

    The focus of this thesis is to achieve a better understanding of the newly discovered surfactant-polyelectrolyte complex coacervate (SPCC) systems induced by fluoroalcohol/acid as well as short chain aliphatic alcohol; and to elucidate their applications in extraction and enrichment of proteins and enzyme. We have discovered that fluoroalcohols and --acids induce complex coacervation and phase separation in the aqueous mixtures of oppositely charged anionic polyelectrolytes; specifically, sodium salts of polyacrylic acid and polymethacrylic acid and cationic surfactant (cetyltrimethylammonium bromide, CTAB) over a broad range of concentrations of mole fractions of the oppositely charged amphiphiles. Accordingly, these new classes of coacervators will significantly broaden the scope and facilitate engineering of new coacervate phases. Toward these goals, we have inspected the formation of surfactant-polyelectrolyte complex coacervates in the presence of fluoroalcohols namely hexafluoroisopropanol (HFIP) and Trifluoroethanol (TFE). Furthermore, the extent of coacervation as a function of concentrations the system components, and charge ratios of the oppositely charged amphiphiles has been investigated. Polyelectrolytes are considered to be milder reagents, as compared to surfactants, regarding proteins denaturation. This highlights the importance of a detailed investigation of the efficiency of our coacervate systems for extraction and preconcentration of proteins and enzymes, especially, when the biological activity of the extracted proteins needs to be maintained based on the objectives mentioned above, the results of the investigations have been organized in four chapters. In Chapter II, the phase behavior of the FA-SPCC will be investigated. The objective is to examine the phase behavior and phase properties with respect to the extent of coacervation in different solution conditions. In particular, the effects of different solution variables such as concentration

  12. Structural and biophysical characterization of an epitope-specific engineered Fab fragment and complexation with membrane proteins: implications for co-crystallization.

    Science.gov (United States)

    Johnson, Jennifer L; Entzminger, Kevin C; Hyun, Jeongmin; Kalyoncu, Sibel; Heaner, David P; Morales, Ivan A; Sheppard, Aly; Gumbart, James C; Maynard, Jennifer A; Lieberman, Raquel L

    2015-04-01

    Crystallization chaperones are attracting increasing interest as a route to crystal growth and structure elucidation of difficult targets such as membrane proteins. While strategies to date have typically employed protein-specific chaperones, a peptide-specific chaperone to crystallize multiple cognate peptide epitope-containing client proteins is envisioned. This would eliminate the target-specific chaperone-production step and streamline the co-crystallization process. Previously, protein engineering and directed evolution were used to generate a single-chain variable (scFv) antibody fragment with affinity for the peptide sequence EYMPME (scFv/EE). This report details the conversion of scFv/EE to an anti-EE Fab format (Fab/EE) followed by its biophysical characterization. The addition of constant chains increased the overall stability and had a negligible impact on the antigen affinity. The 2.0 Å resolution crystal structure of Fab/EE reveals contacts with larger surface areas than those of scFv/EE. Surface plasmon resonance, an enzyme-linked immunosorbent assay, and size-exclusion chromatography were used to assess Fab/EE binding to EE-tagged soluble and membrane test proteins: namely, the β-barrel outer membrane protein intimin and α-helical A2a G protein-coupled receptor (A2aR). Molecular-dynamics simulation of the intimin constructs with and without Fab/EE provides insight into the energetic complexities of the co-crystallization approach.

  13. Characterization of the TolB-Pal trans-envelope complex from Xylella fastidiosa reveals a dynamic and coordinated protein expression profile during the biofilm development process.

    Science.gov (United States)

    Santos, Clelton A; Janissen, Richard; Toledo, Marcelo A S; Beloti, Lilian L; Azzoni, Adriano R; Cotta, Monica A; Souza, Anete P

    2015-10-01

    The intriguing roles of the bacterial Tol-Pal trans-envelope protein complex range from maintenance of cell envelope integrity to potential participation in the process of cell division. In this study, we report the characterization of the XfTolB and XfPal proteins of the Tol-Pal complex of Xylella fastidiosa. X. fastidiosa is a major plant pathogen that forms biofilms inside xylem vessels, triggering the development of diseases in important cultivable plants around the word. Based on functional complementation experiments in Escherichia coli tolB and pal mutant strains, we confirmed the role of xftolB and xfpal in outer membrane integrity. In addition, we observed a dynamic and coordinated protein expression profile during the X. fastidiosa biofilm development process. Using small-angle X-ray scattering (SAXS), the low-resolution structure of the isolated XfTolB-XfPal complex in solution was solved for the first time. Finally, the localization of the XfTolB and XfPal polar ends was visualized via immunofluorescence labeling in vivo during bacterial cell growth. Our results highlight the major role of the components of the cell envelope, particularly the TolB-Pal complex, during the different phases of bacterial biofilm development. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Characterization of protein/ligand interactions by {sup 1}H/{sup 3}H exchange: application to the hAsf{sup 1}/ histone H{sup 3} complex; Caracterisation des interactions proteine / ligand par echange {sup 1}H/{sup 3}H: application au complexe entre la proteine hAsf{sup 1} et l'histone H{sup 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mousseau, G

    2007-05-15

    In the first chapter will be exposed the main current methods of identification to high debit of the interactions protein-protein. Then the methods allowing to characterize the surfaces of interaction or to determine the structures of the complexes will be listed by discussing the main advantages and the inconveniences. Our approach of characterization of the zones of interaction protein-protein is a method of 'foot-printing' 1, based on the identification and radicals' quantification formed on the residues of proteins accessible to the water. The second chapter will so discuss the development of this method of radical identification using the atom of tritium as radioactive label. Our approach will finally be validated in the third chapter by applying it to the characterization of amino acids involved in the interaction enter the human protein anti silencing factor 1 (hAsf11-156) and a fragment of the histone H{sup 3}. (N.C.)

  15. Structure of the higher plant light harvesting complex I: In vivo characterization and structural interdependence of the Lhca proteins

    NARCIS (Netherlands)

    Klimmek, F.; Ganeteg, U.; Ihalainen, J.A.; van Roon, H.; Jensen, P.E.; Scheller, H.V.; Dekker, J.P.; Jansson, S.

    2005-01-01

    We have investigated the structure of the higher plant light harvesting complex of photosystem I (LHCI) by analyzing PSI-LHCI particles isolated from a set of Arabidopsis plant lines, each lacking a specific Lhca (Lhca1-4) polypeptide. Functional antenna size measurements support the recent finding

  16. Identification and analysis of multi-protein complexes in placenta.

    Directory of Open Access Journals (Sweden)

    Fuqiang Wang

    Full Text Available Placental malfunction induces pregnancy disorders which contribute to life-threatening complications for both the mother and the fetus. Identification and characterization of placental multi-protein complexes is an important step to integratedly understand the protein-protein interaction networks in placenta which determine placental function. In this study, blue native/sodium dodecyl sulfate polyacrylamide gel electrophoresis (BN/SDS-PAGE and Liquid chromatography-tandem mass spectrometry (LC-MS/MS were used to screen the multi-protein complexes in placenta. 733 unique proteins and 34 known and novel heterooligomeric multi-protein complexes including mitochondrial respiratory chain complexes, integrin complexes, proteasome complexes, histone complex, and heat shock protein complexes were identified. A novel protein complex, which involves clathrin and small conductance calcium-activated potassium (SK channel protein 2, was identified and validated by antibody based gel shift assay, co-immunoprecipitation and immunofluorescence staining. These results suggest that BN/SDS-PAGE, when integrated with LC-MS/MS, is a very powerful and versatile tool for the investigation of placental protein complexes. This work paves the way for deeper functional characterization of the placental protein complexes associated with pregnancy disorders.

  17. Design and characterization of controlled-release edible packaging films prepared with synergistic whey-protein polysaccharide complexes.

    Science.gov (United States)

    Liu, Fei; Jiang, Yanfeng; Du, Bingjian; Chai, Zhi; Jiao, Tong; Zhang, Chunyue; Ren, Fazheng; Leng, Xiaojing

    2013-06-19

    This paper describes an investigation into the properties of a doubly emulsified film incorporated with protein-polysaccharide microcapsules, which serves as a multifunctional food packaging film prepared using common edible materials in place of petroleum--based plastics. The relationships between the microstructural properties and controlled release features of a series of water-in-oil-in-water (W/O/W) microcapsulated edible films prepared in thermodynamically incompatible conditions were analyzed. The hydrophilic riboflavin (V(B2)) nano-droplets (13-50 nm) dispersed in α-tocopherol (V(E)) oil phase were embedded in whey protein-polysaccharide (WPs) microcapsules with a shell thickness of 20-56 nm. These microcapsules were then integrated in 103 μm thick WPs films. Different polysaccharides, including gum arabic (GA), low-methoxyl pectin (LMP), and κ-carrageenan (KCG), exhibited different in vitro synergistic effects on the ability of both films to effect enteric controlled release of both vitamins. GA, which showed a strong emulsifying ability, also showed better control of V(E) than other polysaccharides, and the highly charged KCG showed better control of V(B2) than GA did.

  18. Affinity purification and partial characterization of a yeast multiprotein complex for nucleotide excision repair using histidine-tagged Rad14 protein

    International Nuclear Information System (INIS)

    Rodriguez, K.; Talamantez, J.; Huang, W.; Reed, S.H.; Wang, Z.; Chen, L.; Feaver, W.J.; Friedberg, E.C.; Tomkinson, A.E.

    1998-01-01

    The nucleotide excision repair (NER) pathway of eukaryotes involves approximately 30 polypeptides. Reconstitution of this pathway with purified components is consistent with the sequential assembly of NER proteins at the DNA lesion. However, recent studies have suggested that NER proteins may be pre-assembled in a high molecular weight complex in the absence of DNA damage. To examine this model further, we have constructed a histidine-tagged version of the yeast DNA damage recognition protein Rad14. Affinity purification of this protein from yeast nuclear extracts resulted in the co-purification of Rad1, Rad7, Rad10, Rad16, Rad23, RPA, RPB1, and TFIIH proteins, whereas none of these proteins bound to the affinity resin in the absence of recombinant Rad14. Furthermore, many of the co-purifying proteins were present in approximately equimolar amounts. Co-elution of these proteins was also observed when the nuclear extract was fractionated by gel filtration, indicating that the NER proteins were associated in a complex with a molecular mass of >1000 kDa prior to affinity chromatography. The affinity purified NER complex catalyzed the incision of UV-irradiated DNA in an ATP-dependent reaction. We conclude that active high molecular weight complexes of NER proteins exist in undamaged yeast cells

  19. The fifth adaptor protein complex.

    Directory of Open Access Journals (Sweden)

    Jennifer Hirst

    2011-10-01

    Full Text Available Adaptor protein (AP complexes sort cargo into vesicles for transport from one membrane compartment of the cell to another. Four distinct AP complexes have been identified, which are present in most eukaryotes. We report the existence of a fifth AP complex, AP-5. Tagged AP-5 localises to a late endosomal compartment in HeLa cells. AP-5 does not associate with clathrin and is insensitive to brefeldin A. Knocking down AP-5 subunits interferes with the trafficking of the cation-independent mannose 6-phosphate receptor and causes the cell to form swollen endosomal structures with emanating tubules. AP-5 subunits can be found in all five eukaryotic supergroups, but they have been co-ordinately lost in many organisms. Concatenated phylogenetic analysis provides robust resolution, for the first time, into the evolutionary order of emergence of the adaptor subunit families, showing AP-3 as the basal complex, followed by AP-5, AP-4, and AP-1 and AP-2. Thus, AP-5 is an evolutionarily ancient complex, which is involved in endosomal sorting, and which has links with hereditary spastic paraplegia.

  20. Cloning and characterization of Sdga gene encoding alpha-subunit of heterotrimeric guanosine 5'-triphosphate-binding protein complex in Scoparia dulcis.

    Science.gov (United States)

    Shite, Masato; Yamamura, Yoshimi; Hayashi, Toshimitsu; Kurosaki, Fumiya

    2008-11-01

    A homology-based cloning strategy yielded Sdga, a cDNA clone presumably encoding alpha-subunit of heterotrimeric guanosine 5'-triphosphate-binding protein complex, from leaf tissues of Scoparia dulcis. Phylogenetic tree analysis of G-protein alpha-subunits from various biological sources suggested that, unlike in animal cells, classification of Galpha-proteins into specific subfamilies could not be applicable to the proteins from higher plants. Restriction digests of genomic DNA of S. dulcis showed a single hybridized signal in Southern blot analysis, suggesting that Sdga is a sole gene encoding Galpha-subunit in this plant. The expression level of Sdga appeared to be maintained at almost constant level after exposure of the leaves to methyl jasmonate as analyzed by reverse-transcription polymerase chain reaction. These results suggest that Sdga plays roles in methyl jasmonate-induced responses of S. dulcis without a notable change in the transcriptional level.

  1. Principles of assembly reveal a periodic table of protein complexes.

    Science.gov (United States)

    Ahnert, Sebastian E; Marsh, Joseph A; Hernández, Helena; Robinson, Carol V; Teichmann, Sarah A

    2015-12-11

    Structural insights into protein complexes have had a broad impact on our understanding of biological function and evolution. In this work, we sought a comprehensive understanding of the general principles underlying quaternary structure organization in protein complexes. We first examined the fundamental steps by which protein complexes can assemble, using experimental and structure-based characterization of assembly pathways. Most assembly transitions can be classified into three basic types, which can then be used to exhaustively enumerate a large set of possible quaternary structure topologies. These topologies, which include the vast majority of observed protein complex structures, enable a natural organization of protein complexes into a periodic table. On the basis of this table, we can accurately predict the expected frequencies of quaternary structure topologies, including those not yet observed. These results have important implications for quaternary structure prediction, modeling, and engineering. Copyright © 2015, American Association for the Advancement of Science.

  2. Protein complex prediction via dense subgraphs and false positive analysis.

    Directory of Open Access Journals (Sweden)

    Cecilia Hernandez

    Full Text Available Many proteins work together with others in groups called complexes in order to achieve a specific function. Discovering protein complexes is important for understanding biological processes and predict protein functions in living organisms. Large-scale and throughput techniques have made possible to compile protein-protein interaction networks (PPI networks, which have been used in several computational approaches for detecting protein complexes. Those predictions might guide future biologic experimental research. Some approaches are topology-based, where highly connected proteins are predicted to be complexes; some propose different clustering algorithms using partitioning, overlaps among clusters for networks modeled with unweighted or weighted graphs; and others use density of clusters and information based on protein functionality. However, some schemes still require much processing time or the quality of their results can be improved. Furthermore, most of the results obtained with computational tools are not accompanied by an analysis of false positives. We propose an effective and efficient mining algorithm for discovering highly connected subgraphs, which is our base for defining protein complexes. Our representation is based on transforming the PPI network into a directed acyclic graph that reduces the number of represented edges and the search space for discovering subgraphs. Our approach considers weighted and unweighted PPI networks. We compare our best alternative using PPI networks from Saccharomyces cerevisiae (yeast and Homo sapiens (human with state-of-the-art approaches in terms of clustering, biological metrics and execution times, as well as three gold standards for yeast and two for human. Furthermore, we analyze false positive predicted complexes searching the PDBe (Protein Data Bank in Europe database in order to identify matching protein complexes that have been purified and structurally characterized. Our analysis shows

  3. Synthesis, characterization, DNA/protein interaction and cytotoxicity studies of Cu(II) and Co(II) complexes derived from dipyridyl triazole ligands

    Science.gov (United States)

    Zhang, Wei; Yao, Di; Wei, Yi; Tang, Jie; Bian, He-Dong; Huang, Fu-Ping; Liang, Hong

    2016-06-01

    Four different transition metal complexes containing dipyridyl triazole ligands, namely [Cu(abpt)2Cl2]·2H2O (1), [Cu(abpt)2(ClO4)2] (2), [Co2(abpt)2(H2O)2Cl2]·Cl2·4H2O (3) and [Co2(Hbpt)2(CH3OH)2(NO3)2] (4) have been designed, synthesized and further structurally characterized by X-ray crystallography, ESI-MS, elemental analysis, IR and Raman spectroscopy. In these complexes, the both ligands act as bidentate ligands with N, N donors. DNA binding interactions with calf thymus DNA (ct-DNA) of the ligand and its complexes 1 ~ 4 were investigated via electronic absorption, fluorescence quenching, circular dichroism and viscosity measurements as well as confocal Laser Raman spectroscopy. The results show these complexes are able to bind to DNA via the non-covalent mode i.e. intercalation and groove binding or electrostatic interactions. The interactions with bovine serum albumin (BSA) were also studied using UV-Vis and fluorescence spectroscopic methods which indicated that fluorescence quenching of BSA by these compounds was the presence of both static and dynamic quenching. Moreover, the in vitro cytotoxic effects of the complexes against four cell lines SK-OV-3, HL-7702, BEL7404 and NCI-H460 showed the necessity of the coordination action on the biological properties on the respective complex and that all four complexes exhibited substantial cytotoxic activity.

  4. Prediction of Protein-Protein Interactions Related to Protein Complexes Based on Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2015-01-01

    Full Text Available A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptive k-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction network. Based on different complex sets detected by various algorithms, we can obtain different prediction sets of protein-protein interactions. The reliability of the predicted interaction sets is proved by using estimations with statistical tests and direct confirmation of the biological data. In comparison with the approaches which predict the interactions based on the cliques, the overlap of the predictions is small. Similarly, the overlaps among the predicted sets of interactions derived from various complex sets are also small. Thus, every predicted set of interactions may complement and improve the quality of the original network data. Meanwhile, the predictions from the proposed method replenish protein-protein interactions associated with protein complexes using only the network topology.

  5. Physicochemical Characterization of Inclusion Complex of Catechin ...

    African Journals Online (AJOL)

    with catechin, and characterize the physicochemical properties of the inclusion complex of catechin and ... microscopy (SEM), X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). ... complexes with bioactive compounds.

  6. Characterization of a novel Dp71 dystrophin-associated protein complex (DAPC) present in the nucleus of HeLa cells: Members of the nuclear DAPC associate with the nuclear matrix

    International Nuclear Information System (INIS)

    Fuentes-Mera, Lizeth; Rodriguez-Munoz, Rafael; Gonzalez-Ramirez, Ricardo; Garcia-Sierra, Francisco; Gonzalez, Everardo; Mornet, Dominique; Cisneros, Bulmaro

    2006-01-01

    Dystrophin is an essential component in the assembly and maintenance of the dystrophin-associated protein complex (DAPC), which includes members of the dystroglycan, syntrophin, sarcoglycan and dystrobrevin protein families. Distinctive complexes have been described in the cell membrane of different tissues and cultured cells. In this work, we report the identification and characterization of a novel DAPC present in the nuclei of HeLa cells, which contains dystrophin Dp71 as a key component. Using confocal microscopy and cell fractionation analyses, we found the presence of Dp71, β-sarcoglycan, β-dystroglycan, α- and β-syntrophin, α1- and β-dystrobrevin and nNOS in the nuclei of HeLa cells. Furthermore, we demonstrated by co-immunoprecipitation experiments that most of these proteins form a complex in the nuclear compartment. Next, we analyze the possible association of the nuclear DAPC with the nuclear matrix. We found the presence of Dp71, β-dystroglycan, nNOS, β-sarcoglycan, α/β syntrophin, α1-dystrobrevin and β-dystrobrevin in the nuclear matrix protein fractions and in situ nuclear matrix preparations from HeLa cells. Moreover, we found that Dp71, β-dystroglycan and β-dystrobrevin co-immunoprecipitated with the nuclear matrix proteins lamin B1 and actin. The association of members of the nuclear DAPC with the nuclear matrix indicates that they may work as scaffolding proteins involved in nuclear architecture

  7. 3D complex: a structural classification of protein complexes.

    Directory of Open Access Journals (Sweden)

    Emmanuel D Levy

    2006-11-01

    Full Text Available Most of the proteins in a cell assemble into complexes to carry out their function. It is therefore crucial to understand the physicochemical properties as well as the evolution of interactions between proteins. The Protein Data Bank represents an important source of information for such studies, because more than half of the structures are homo- or heteromeric protein complexes. Here we propose the first hierarchical classification of whole protein complexes of known 3-D structure, based on representing their fundamental structural features as a graph. This classification provides the first overview of all the complexes in the Protein Data Bank and allows nonredundant sets to be derived at different levels of detail. This reveals that between one-half and two-thirds of known structures are multimeric, depending on the level of redundancy accepted. We also analyse the structures in terms of the topological arrangement of their subunits and find that they form a small number of arrangements compared with all theoretically possible ones. This is because most complexes contain four subunits or less, and the large majority are homomeric. In addition, there is a strong tendency for symmetry in complexes, even for heteromeric complexes. Finally, through comparison of Biological Units in the Protein Data Bank with the Protein Quaternary Structure database, we identified many possible errors in quaternary structure assignments. Our classification, available as a database and Web server at http://www.3Dcomplex.org, will be a starting point for future work aimed at understanding the structure and evolution of protein complexes.

  8. Characterization of a novel domain ‘GATE’ in the ABC protein DrrA and its role in drug efflux by the DrrAB complex

    International Nuclear Information System (INIS)

    Zhang, Han; Rahman, Sadia; Li, Wen; Fu, Guoxing; Kaur, Parjit

    2015-01-01

    A novel domain, GATE (Glycine-loop And Transducer Element), is identified in the ABC protein DrrA. This domain shows sequence and structural conservation among close homologs of DrrA as well as distantly-related ABC proteins. Among the highly conserved residues in this domain are three glycines, G215, G221 and G231, of which G215 was found to be critical for stable expression of the DrrAB complex. Other conserved residues, including E201, G221, K227 and G231, were found to be critical for the catalytic and transport functions of the DrrAB transporter. Structural analysis of both the previously published crystal structure of the DrrA homolog MalK and the modeled structure of DrrA showed that G215 makes close contacts with residues in and around the Walker A motif, suggesting that these interactions may be critical for maintaining the integrity of the ATP binding pocket as well as the complex. It is also shown that G215A or K227R mutation diminishes some of the atomic interactions essential for ATP catalysis and overall transport function. Therefore, based on both the biochemical and structural analyses, it is proposed that the GATE domain, located outside of the previously identified ATP binding and hydrolysis motifs, is an additional element involved in ATP catalysis. - Highlights: • A novel domain ‘GATE’ is identified in the ABC protein DrrA. • GATE shows high sequence and structural conservation among diverse ABC proteins. • GATE is located outside of the previously studied ATP binding and hydrolysis motifs. • Conserved GATE residues are critical for stability of DrrAB and for ATP catalysis

  9. Structural entanglements in protein complexes

    Science.gov (United States)

    Zhao, Yani; Chwastyk, Mateusz; Cieplak, Marek

    2017-06-01

    We consider multi-chain protein native structures and propose a criterion that determines whether two chains in the system are entangled or not. The criterion is based on the behavior observed by pulling at both termini of each chain simultaneously in the two chains. We have identified about 900 entangled systems in the Protein Data Bank and provided a more detailed analysis for several of them. We argue that entanglement enhances the thermodynamic stability of the system but it may have other functions: burying the hydrophobic residues at the interface and increasing the DNA or RNA binding area. We also study the folding and stretching properties of the knotted dimeric proteins MJ0366, YibK, and bacteriophytochrome. These proteins have been studied theoretically in their monomeric versions so far. The dimers are seen to separate on stretching through the tensile mechanism and the characteristic unraveling force depends on the pulling direction.

  10. Characterization of anti-P monoclonal antibodies directed against the ribosomal protein-RNA complex antigen and produced using Murphy Roths large autoimmune-prone mice.

    Science.gov (United States)

    Sato, H; Onozuka, M; Hagiya, A; Hoshino, S; Narita, I; Uchiumi, T

    2015-02-01

    Autoantibodies, including anti-ribosomal P proteins (anti-P), are thought to be produced by an antigen-driven immune response in systemic lupus erythematosus (SLE). To test this hypothesis, we reconstituted the ribosomal antigenic complex in vitro using human P0, phosphorylated P1 and P2 and a 28S rRNA fragment covering the P0 binding site, and immunized Murphy Roths large (MRL)/lrp lupus mice with this complex without any added adjuvant to generate anti-P antibodies. Using hybridoma technology, we subsequently obtained 34 clones, each producing an anti-P monoclonal antibody (mAb) that recognized the conserved C-terminal tail sequence common to all three P proteins. We also obtained two P0-specific monoclonal antibodies, but no antibody specific to P1, P2 or rRNA fragment. Two types of mAbs were found among these anti-P antibodies: one type (e.g. 9D5) reacted more strongly with the phosphorylated P1 and P2 than that with their non-phosphorylated forms, whereas the other type (e.g. 4H11) reacted equally with both phosphorylated and non-phosphorylated forms of P1/P2. Both 9D5 and 4H11 inhibited the ribosome/eukaryotic elongation factor-2 (eEF-2)-coupled guanosine triphosphate (GTP)ase activity. However, preincubation with a synthetic peptide corresponding to the C-terminal sequence common to all three P proteins, but not the peptide that lacked the last three C-terminal amino acids, mostly prevented the mAb-induced inhibition of GTPase activity. Thus, at least two types of anti-P were produced preferentially following the immunization of MRL mice with the reconstituted antigenic complex. Presence of multiple copies of the C-termini, particularly that of the last three C-terminal amino acid residues, in the antigenic complex appears to contribute to the immunogenic stimulus. © 2014 British Society for Immunology.

  11. Structure-based characterization of multiprotein complexes.

    Science.gov (United States)

    Wiederstein, Markus; Gruber, Markus; Frank, Karl; Melo, Francisco; Sippl, Manfred J

    2014-07-08

    Multiprotein complexes govern virtually all cellular processes. Their 3D structures provide important clues to their biological roles, especially through structural correlations among protein molecules and complexes. The detection of such correlations generally requires comprehensive searches in databases of known protein structures by means of appropriate structure-matching techniques. Here, we present a high-speed structure search engine capable of instantly matching large protein oligomers against the complete and up-to-date database of biologically functional assemblies of protein molecules. We use this tool to reveal unseen structural correlations on the level of protein quaternary structure and demonstrate its general usefulness for efficiently exploring complex structural relationships among known protein assemblies. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Characterization of complex renal cysts

    DEFF Research Database (Denmark)

    Graumann, Ole; Osther, Susanne Sloth; Osther, Palle Jörn Sloth

    2010-01-01

    Abstract Objective. Complex renal cysts represent a major clinical problem, since it is often difficult to exclude malignancy. The Bosniak classification system, based on computed tomography (CT), is widely used to categorize cystic renal lesions. The aim of this study was to evaluate critically...... available data on the Bosniak classification. Material and methods. All publications from an Entrez Pubmed search were reviewed, focusing on clinical applicability and the use of imaging modalities other than CT to categorize complex renal cysts. Results. Fifteen retrospective studies were found. Most...

  13. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology.

    Science.gov (United States)

    Sudhir, Putty-Reddy; Chen, Chung-Hsuan

    2016-03-22

    A protein complex consists of two or more proteins that are linked together through protein-protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples.

  14. Yersinia pestis insecticidal-like toxin complex (Tc family proteins: characterization of expression, subcellular localization, and potential role in infection of the flea vector

    Directory of Open Access Journals (Sweden)

    Spinner Justin L

    2012-12-01

    Full Text Available Abstract Background Toxin complex (Tc family proteins were first identified as insecticidal toxins in Photorhabdus luminescens and have since been found in a wide range of bacteria. The genome of Yersinia pestis, the causative agent of bubonic plague, contains a locus that encodes the Tc protein homologues YitA, YitB, YitC, and YipA and YipB. Previous microarray data indicate that the Tc genes are highly upregulated by Y. pestis while in the flea vector; however, their role in the infection of fleas and pathogenesis in the mammalian host is unclear. Results We show that the Tc proteins YitA and YipA are highly produced by Y. pestis while in the flea but not during growth in brain heart infusion (BHI broth at the same temperature. Over-production of the LysR-type regulator YitR from an exogenous plasmid increased YitA and YipA synthesis in broth culture. The increase in production of YitA and YipA correlated with the yitR copy number and was temperature-dependent. Although highly synthesized in fleas, deletion of the Tc proteins did not alter survival of Y. pestis in the flea or prevent blockage of the proventriculus. Furthermore, YipA was found to undergo post-translational processing and YipA and YitA are localized to the outer membrane of Y. pestis. YitA was also detected by immunofluorescence microscopy on the surface of Y. pestis. Both YitA and YipA are produced maximally at low temperature but persist for several hours after transfer to 37°C. Conclusions Y. pestis Tc proteins are highly expressed in the flea but are not essential for Y. pestis to stably infect or produce a transmissible infection in the flea. However, YitA and YipA localize to the outer membrane and YitA is exposed on the surface, indicating that at least YitA is present on the surface when Y. pestis is transmitted into the mammalian host from the flea.

  15. Detection of the Endosomal Sorting Complex Required for Transport in Entamoeba histolytica and Characterization of the EhVps4 Protein

    Directory of Open Access Journals (Sweden)

    Israel López-Reyes

    2010-01-01

    Full Text Available Eukaryotic endocytosis involves multivesicular bodies formation, which is driven by endosomal sorting complexes required for transport (ESCRT. Here, we showed the presence and expression of homologous ESCRT genes in Entamoeba histolytica. We cloned and expressed the Ehvps4 gene, an ESCRT member, to obtain the recombinant EhVps4 and generate specific antibodies, which immunodetected EhVps4 in cytoplasm of trophozoites. Bioinformatics and biochemical studies evidenced that rEhVps4 is an ATPase, whose activity depends on the conserved E211 residue. Next, we generated trophozoites overexpressing EhVps4 and mutant EhVps4-E211Q FLAG-tagged proteins. The EhVps4-FLAG was located in cytosol and at plasma membrane, whereas the EhVps4-E211Q-FLAG was detected as abundant cytoplasmic dots in trophozoites. Erythrophagocytosis, cytopathic activity, and hepatic damage in hamsters were not improved in trophozoites overexpressing EhVps4-FLAG. In contrast, EhVps4-E211Q-FLAG protein overexpression impaired these properties. The localization of EhVps4-FLAG around ingested erythrocytes, together with our previous results, strengthens the role for EhVps4 in E. histolytica phagocytosis and virulence.

  16. Linking structural features of protein complexes and biological function.

    Science.gov (United States)

    Sowmya, Gopichandran; Breen, Edmond J; Ranganathan, Shoba

    2015-09-01

    Protein-protein interaction (PPI) establishes the central basis for complex cellular networks in a biological cell. Association of proteins with other proteins occurs at varying affinities, yet with a high degree of specificity. PPIs lead to diverse functionality such as catalysis, regulation, signaling, immunity, and inhibition, playing a crucial role in functional genomics. The molecular principle of such interactions is often elusive in nature. Therefore, a comprehensive analysis of known protein complexes from the Protein Data Bank (PDB) is essential for the characterization of structural interface features to determine structure-function relationship. Thus, we analyzed a nonredundant dataset of 278 heterodimer protein complexes, categorized into major functional classes, for distinguishing features. Interestingly, our analysis has identified five key features (interface area, interface polar residue abundance, hydrogen bonds, solvation free energy gain from interface formation, and binding energy) that are discriminatory among the functional classes using Kruskal-Wallis rank sum test. Significant correlations between these PPI interface features amongst functional categories are also documented. Salt bridges correlate with interface area in regulator-inhibitors (r = 0.75). These representative features have implications for the prediction of potential function of novel protein complexes. The results provide molecular insights for better understanding of PPIs and their relation to biological functions. © 2015 The Protein Society.

  17. Synthesis, spectroscopic characterization and in vitro cytotoxicities of new organometallic palladium complexes with biologically active β-diketones; Biological evaluation probing of the interaction mechanism with DNA/Protein and molecular docking

    Science.gov (United States)

    Karami, Kazem; Rafiee, Mina; Lighvan, Zohreh Mehri; Zakariazadeh, Mostafa; Faal, Ali Yeganeh; Esmaeili, Seyed-Alireza; Momtazi-Borojeni, Amir Abbas

    2018-02-01

    [Pd{(C,N)sbnd C6H4CH (CH3)NH}(CUR)] (3) and [Pd2{(C,N)sbnd C6H4CH(CH3)NH2}2(μ-N3CS2)] (4) [cur = 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dion] novel organometallic complexes with biologically active ligands have been prepared and characterized via elemental analysis, multinuclear spectroscopic techniques (1H, and 13C NMR and IR) and their biological activities, including antitumoral activity and DNA-protein interactions have been investigated. Fluorescence spectroscopy used to study the interaction of the complexes with BSA have shown the affinity of the complexes for these proteins with relatively high binding constant values and the changed secondary structure of BSA in the presence of the complexes. In the meantime, spectroscopy and competitive titration have been applied to investigate the interaction of complexes with Warfarin and Ibuprofen site markers for sites I and II, respectively, with BSA. The results have suggested that the locations of complexes 3 and 4 are sites II and I, respectively. UV-Vis spectroscopy, emission titration and helix melting methods have been used to study the interaction of these complexes with CT-DNA, indicating that complexes are bound to CT-DNA by intercalation binding mode. In addition, good cytotoxic activity against MCF-7 (human breast cancer) and JURKAT (human leukemia) cell line has been shown by both complexes whereas low cytotoxicity was exerted on normal peripheral blood mononuclear cells.

  18. Characterization of Complex Colloidal Suspensions

    Science.gov (United States)

    Seaman, J. C.; Guerin, M.; Jackson, B. P.; Ranville, J. M.

    2003-04-01

    Surface chemical reactions play a major role in controlling contaminant fate and transport in the subsurface environment. Recent field and laboratory evidence suggests that mobile soil and groundwater colloids may facilitate the migration of sparingly soluble groundwater contaminants. Colloidal suspensions collected in the field or generated in laboratory column experiments tend to be fairly dilute in nature and comprised of relatively small particulates (reserved for studying ideal systems to the characterization of mobile colloids. However, many of these analytical techniques, including total/selective dissolution methods, dynamic light scattering, micro-electrophoresis, streaming potential, and even scanning electron microscopy (SEM), can be biased in of larger size fractions, and therefore, extremely sensitive to sampling, storage, and fractionation artifacts. In addition, surface modifiers such as sorbed oxides or organics can alter particulate appearance, composition, and behavior when compared to synthetic analogues or mineral standards. The current presentation will discuss the limitations and inherent biases associated with a number of analytical characterization techniques that are commonly applied to the study of mobile soil and groundwater colloids, including field flow fractionation (FFF) and acoustic based methods that have only recently become available.

  19. Identification and characterization of the surface proteins of Clostridium difficile

    International Nuclear Information System (INIS)

    Dailey, D.C.

    1988-01-01

    Several clostridial proteins were detected on the clostridial cell surface by sensitive radioiodination techniques. Two major proteins and six minor proteins comprised the radioiodinated proteins on the clostridial cell surface. Cellular fractionation of surface radiolabeled C. difficile determined that the radioiodinated proteins were found in the cell wall fraction of C. difficile and surprisingly were also present in the clostridial membrane. Furthermore, an interesting phenomenon of disulfide-crosslinking of the cell surface proteins of C. difficile was observed. Disulfide-linked protein complexes were found in both the membrane and cell wall fractions. In addition, the cell surface proteins of C. difficile were found to be released into the culture medium. In attempts to further characterize the clostridial proteins recombinant DNA techniques were employed. In addition, the role of the clostridial cell surface proteins in the interactions of C. difficile with human PMNs was also investigated

  20. Peroxisome protein import: a complex journey.

    Science.gov (United States)

    Baker, Alison; Lanyon-Hogg, Thomas; Warriner, Stuart L

    2016-06-15

    The import of proteins into peroxisomes possesses many unusual features such as the ability to import folded proteins, and a surprising diversity of targeting signals with differing affinities that can be recognized by the same receptor. As understanding of the structure and function of many components of the protein import machinery has grown, an increasingly complex network of factors affecting each step of the import pathway has emerged. Structural studies have revealed the presence of additional interactions between cargo proteins and the PEX5 receptor that affect import potential, with a subtle network of cargo-induced conformational changes in PEX5 being involved in the import process. Biochemical studies have also indicated an interdependence of receptor-cargo import with release of unloaded receptor from the peroxisome. Here, we provide an update on recent literature concerning mechanisms of protein import into peroxisomes. © 2016 The Author(s).

  1. Proteins: Chemistry, Characterization, and Quality

    NARCIS (Netherlands)

    Sforza, S.; Tedeschi, T.; Wierenga, P.A.

    2016-01-01

    Proteins are one of the major macronutrients in food, and several traditional food commodities are good sources of proteins (meat, egg, milk and dairy products, fish, and soya). Proteins are polymers made by 20 different amino acids. They might undergo desired or undesired chemical or enzymatic

  2. Comparative Study of Elastic Network Model and Protein Contact Network for Protein Complexes: The Hemoglobin Case

    Directory of Open Access Journals (Sweden)

    Guang Hu

    2017-01-01

    Full Text Available The overall topology and interfacial interactions play key roles in understanding structural and functional principles of protein complexes. Elastic Network Model (ENM and Protein Contact Network (PCN are two widely used methods for high throughput investigation of structures and interactions within protein complexes. In this work, the comparative analysis of ENM and PCN relative to hemoglobin (Hb was taken as case study. We examine four types of structural and dynamical paradigms, namely, conformational change between different states of Hbs, modular analysis, allosteric mechanisms studies, and interface characterization of an Hb. The comparative study shows that ENM has an advantage in studying dynamical properties and protein-protein interfaces, while PCN is better for describing protein structures quantitatively both from local and from global levels. We suggest that the integration of ENM and PCN would give a potential but powerful tool in structural systems biology.

  3. Nanoscale Dewetting Transition in Protein Complex Folding

    Science.gov (United States)

    Hua, Lan; Huang, Xuhui; Liu, Pu; Zhou, Ruhong; Berne, Bruce J.

    2011-01-01

    In a previous study, a surprising drying transition was observed to take place inside the nanoscale hydrophobic channel in the tetramer of the protein melittin. The goal of this paper is to determine if there are other protein complexes capable of displaying a dewetting transition during their final stage of folding. We searched the entire protein data bank (PDB) for all possible candidates, including protein tetramers, dimers, and two-domain proteins, and then performed the molecular dynamics (MD) simulations on the top candidates identified by a simple hydrophobic scoring function based on aligned hydrophobic surface areas. Our large scale MD simulations found several more proteins, including three tetramers, six dimers, and two two-domain proteins, which display a nanoscale dewetting transition in their final stage of folding. Even though the scoring function alone is not sufficient (i.e., a high score is necessary but not sufficient) in identifying the dewetting candidates, it does provide useful insights into the features of complex interfaces needed for dewetting. All top candidates have two features in common: (1) large aligned (matched) hydrophobic areas between two corresponding surfaces, and (2) large connected hydrophobic areas on the same surface. We have also studied the effect on dewetting of different water models and different treatments of the long-range electrostatic interactions (cutoff vs PME), and found the dewetting phenomena is fairly robust. This work presents a few proteins other than melittin tetramer for further experimental studies of the role of dewetting in the end stages of protein folding. PMID:17608515

  4. Detection of protein complex from protein-protein interaction network using Markov clustering

    International Nuclear Information System (INIS)

    Ochieng, P J; Kusuma, W A; Haryanto, T

    2017-01-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks. (paper)

  5. Preparation and characterization of artemether inclusion complexes ...

    African Journals Online (AJOL)

    curve soluble complex system (referred to as the AL system), and a stability constant (KC) value of 143. M-1. ... Index Medicus, JournalSeek, Journal Citation Reports/Science Edition, Directory of Open Access Journals .... The differences between the data sets were .... Characterization, thermodynamic parameters, molecular.

  6. Community characterization of heterogeneous complex systems

    International Nuclear Information System (INIS)

    Tumminello, Michele; Miccichè, Salvatore; Lillo, Fabrizio; Mantegna, Rosario N; Varho, Jan; Piilo, Jyrki

    2011-01-01

    We introduce an analytical statistical method for characterizing the communities detected in heterogeneous complex systems. By proposing a suitable null hypothesis, our method makes use of the hypergeometric distribution to assess the probability that a given property is over-expressed in the elements of a community with respect to all the elements of the investigated set. We apply our method to two specific complex networks, namely a network of world movies and a network of physics preprints. The characterization of the elements and of the communities is done in terms of languages and countries for the movie network and of journals and subject categories for papers. We find that our method is able to characterize clearly the communities identified. Moreover our method works well both for large and for small communities

  7. The Search Engine for Multi-Proteoform Complexes: An Online Tool for the Identification and Stoichiometry Determination of Protein Complexes.

    Science.gov (United States)

    Skinner, Owen S; Schachner, Luis F; Kelleher, Neil L

    2016-12-08

    Recent advances in top-down mass spectrometry using native electrospray now enable the analysis of intact protein complexes with relatively small sample amounts in an untargeted mode. Here, we describe how to characterize both homo- and heteropolymeric complexes with high molecular specificity using input data produced by tandem mass spectrometry of whole protein assemblies. The tool described is a "search engine for multi-proteoform complexes," (SEMPC) and is available for free online. The output is a list of candidate multi-proteoform complexes and scoring metrics, which are used to define a distinct set of one or more unique protein subunits, their overall stoichiometry in the intact complex, and their pre- and post-translational modifications. Thus, we present an approach for the identification and characterization of intact protein complexes from native mass spectrometry data. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  8. Encapsulation of Protein-Polysaccharide HIP Complex in Polymeric Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ripal Gaudana

    2011-01-01

    Full Text Available The objective of the present study is to formulate and characterize a nanoparticulate-based formulation of a macromolecule in a hydrophobic ion pairing (HIP complex form. So far, HIP complexation approach has been studied only for proteins with molecular weight of 10–20 kDa. Hence, we have selected bovine serum albumin (BSA having higher molecular weight (66.3 kDa as a model protein and dextran sulphate (DS as a complexing polymer to generate HIP complex. We have prepared and optimized the HIP complex formation process of BSA with DS. Ionic interactions between basic amino acids of BSA with sulphate groups of DS were confirmed by FTIR analysis. Further, nanoparticles were prepared and characterized with respect to size and surface morphology. We observed significant entrapment of BSA in nanoparticles prepared with minimal amounts of PLGA polymer. Finally, results of circular dichroism and intrinsic fluorescence assay have clearly indicated that HIP complexation and method of nanoparticle preparation did not alter the secondary and tertiary structures of BSA.

  9. Analysis of Proteins, Protein Complexes, and Organellar Proteomes Using Sheathless Capillary Zone Electrophoresis - Native Mass Spectrometry

    Science.gov (United States)

    Belov, Arseniy M.; Viner, Rosa; Santos, Marcia R.; Horn, David M.; Bern, Marshall; Karger, Barry L.; Ivanov, Alexander R.

    2017-12-01

    Native mass spectrometry (MS) is a rapidly advancing field in the analysis of proteins, protein complexes, and macromolecular species of various types. The majority of native MS experiments reported to-date has been conducted using direct infusion of purified analytes into a mass spectrometer. In this study, capillary zone electrophoresis (CZE) was coupled online to Orbitrap mass spectrometers using a commercial sheathless interface to enable high-performance separation, identification, and structural characterization of limited amounts of purified proteins and protein complexes, the latter with preserved non-covalent associations under native conditions. The performance of both bare-fused silica and polyacrylamide-coated capillaries was assessed using mixtures of protein standards known to form non-covalent protein-protein and protein-ligand complexes. High-efficiency separation of native complexes is demonstrated using both capillary types, while the polyacrylamide neutral-coated capillary showed better reproducibility and higher efficiency for more complex samples. The platform was then evaluated for the determination of monoclonal antibody aggregation and for analysis of proteomes of limited complexity using a ribosomal isolate from E. coli. Native CZE-MS, using accurate single stage and tandem-MS measurements, enabled identification of proteoforms and non-covalent complexes at femtomole levels. This study demonstrates that native CZE-MS can serve as an orthogonal and complementary technique to conventional native MS methodologies with the advantages of low sample consumption, minimal sample processing and losses, and high throughput and sensitivity. This study presents a novel platform for analysis of ribosomes and other macromolecular complexes and organelles, with the potential for discovery of novel structural features defining cellular phenotypes (e.g., specialized ribosomes). [Figure not available: see fulltext.

  10. Characterising antimicrobial protein-membrane complexes

    International Nuclear Information System (INIS)

    Xun, Gloria; Dingley, Andrew; Tremouilhac, Pierre

    2009-01-01

    Full text: Antimicrobial proteins (AMPs) are host defence molecules that protect organisms from microbial infection. A number of hypotheses for AMP activity have been proposed which involve protein membrane interactions. However, there is a paucity of information describing AMP-membrane complexes in detail. The aim of this project is to characterise the interactions of amoebapore-A (APA-1) with membrane models using primarily solution-state NMR spectroscopy. APA-1 is an AMP which is regulated by a pH-dependent dimerisation event. Based on the atomic resolution solution structure of monomeric APA-1, it is proposed that this dimerisation is a prerequisite for ring-like hexameric pore formation. Due to the cytotoxicity of APA-1, we have developed a cell-free system to produce this protein. To facilitate our studies, we have adapted the cell-free system to isotope label APA-1. 13 C /15 N -enriched APA-1 sample was achieved and we have begun characterising APA-1 dimerisation and membrane interactions using NMR spectroscopy and other biochemical/biophysical methods. Neutron reflectometry is a surface-sensitive technique and therefore represents an ideal technique to probe how APA-1 interacts with membranes at the molecular level under different physiological conditions. Using Platypus, the pH-induced APA-1-membrane interactions should be detectable as an increase of the amount of protein adsorbed at the membrane surface and changes in the membrane properties. Specifically, detailed information of the structure and dimensions of the protein-membrane complex, the position and amount of the protein in the membrane, and the perturbation of the membrane phospholipids on protein incorporation can be extracted from the neutron reflectometry measurement. Such information will enable critical assessment of current proposed mechanisms of AMP activity in bacterial membranes and complement our NMR studies

  11. Protein complex prediction in large ontology attributed protein-protein interaction networks.

    Science.gov (United States)

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo

    2013-01-01

    Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.

  12. Characterization and complexation of humic acid

    International Nuclear Information System (INIS)

    Kim, J.I.; Buckau, G.; Klenze, R.; Rhee, D.S.; Wimmer, H.

    1990-05-01

    This paper summarizes the research contributions to the CEC project MIRAGE II, particularly the research area: complexation and colloids (COCO). The first part of the paper comprises the characterization of humic and fulvic acids from different origins: a commercial product from Aldrich Co. used as a reference humic acid and site specific humic acids from Gorleben (FRG), Boom Clay (B) and Fanay Augeres (F) aquifer systems. The second part includes the complexation of trivalent actinides: Am(III) and Cm(III) with various humic acids. A number of different methods have been applied for the complexation study: spectrophotometry, ultrafiltration, laser-indused photoacoustic spectroscopy (LPAS) and time resolved laser fluorescence spectroscopy (TRLFS). The evaluation process of complexation constant is discussed extensively and the well consolidated results are presented, which can be directly used for the geochemical modelling of the radionuclide migration. (orig.)

  13. Radiolysis of DNA-protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Begusova, Marie [Department of Radiation Dosimetry, Nuclear Physics Institute, Na Truhlarce 39/64, CZ-18086, Prague 8 (Czech Republic)]. E-mail: begusova@ujf.cas.cz; Gillard, Nathalie [Centre de Biophysique Moleculaire, CNRS, rue Charles-Sadron, F-45071 Orleans Cedex 2 (France); Sy, Denise [Centre de Biophysique Moleculaire, CNRS, rue Charles-Sadron, F-45071 Orleans Cedex 2 (France); Castaing, Bertrand [Centre de Biophysique Moleculaire, CNRS, rue Charles-Sadron, F-45071 Orleans Cedex 2 (France); Charlier, Michel [Centre de Biophysique Moleculaire, CNRS, rue Charles-Sadron, F-45071 Orleans Cedex 2 (France); Spotheim-Maurizot, Melanie [Centre de Biophysique Moleculaire, CNRS, rue Charles-Sadron, F-45071 Orleans Cedex 2 (France)

    2005-02-01

    We discuss here modifications of DNA and protein radiolysis due to the interaction of these two partners in specific complexes. Experimental patterns of frank strand breaks (FSB) and alkali revealed breaks (ARB) obtained for DNA lac operator bound to the lac repressor and for a DNA containing an abasic site analog bound to the formamidopyrimidine-DNA glycosylase are reported. Experimental data are compared to predicted damage distribution obtained using the theoretical model RADACK.

  14. Radiolysis of DNA-protein complexes

    International Nuclear Information System (INIS)

    Begusova, Marie; Gillard, Nathalie; Sy, Denise; Castaing, Bertrand; Charlier, Michel; Spotheim-Maurizot, Melanie

    2005-01-01

    We discuss here modifications of DNA and protein radiolysis due to the interaction of these two partners in specific complexes. Experimental patterns of frank strand breaks (FSB) and alkali revealed breaks (ARB) obtained for DNA lac operator bound to the lac repressor and for a DNA containing an abasic site analog bound to the formamidopyrimidine-DNA glycosylase are reported. Experimental data are compared to predicted damage distribution obtained using the theoretical model RADACK

  15. Expression, Purification and Characterization of GMZ2'.10C, a Complex Disulphide-Bonded Fusion Protein Vaccine Candidate against the Asexual and Sexual Life-Stages of the Malaria-Causing Plasmodium falciparum Parasite

    NARCIS (Netherlands)

    Mistarz, U.H.; Singh, S.K; Nguyen, T.; Roeffen, W.; Lissau, C.; Madsen, S.M.; Vrang, A.; Tiendrebeogo, R.W.; Kana, I.H.; Sauerwein, R.W.; Theisen, M.; Rand, K.D.

    2017-01-01

    PURPOSE: Production and characterization of a chimeric fusion protein (GMZ2'.10C) which combines epitopes of key malaria parasite antigens: glutamate-rich protein (GLURP), merozoite surface protein 3 (MSP3), and the highly disulphide bonded Pfs48/45 (10C). GMZ2'.10C is a potential candidate for a

  16. Protein complex prediction based on k-connected subgraphs in protein interaction network

    OpenAIRE

    Habibi, Mahnaz; Eslahchi, Changiz; Wong, Limsoon

    2010-01-01

    Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on ...

  17. Complex geologic characterization of the repository environment

    Energy Technology Data Exchange (ETDEWEB)

    Harper, T R [British Petroleum Research Center, Sunberry, England; Szymanski, J S

    1982-01-01

    The present basis for characterizing geological environments is identified in this paper, and the additional requirements imposed by the need to isolate high-level waste safely are discussed. Solutions to these additional requirements are proposed. The time scale of concern and the apparent complexity of the required multidisciplinary approach are identified. It is proposed that an increased use of the geologic record, together with a recognition that all geologic processes operate within an interdependent system, be a key feature in geologic characterization of deep repositories.

  18. Alpha complexes in protein structure prediction

    DEFF Research Database (Denmark)

    Winter, Pawel; Fonseca, Rasmus

    2015-01-01

    Reducing the computational effort and increasing the accuracy of potential energy functions is of utmost importance in modeling biological systems, for instance in protein structure prediction, docking or design. Evaluating interactions between nonbonded atoms is the bottleneck of such computations......-complexes from scratch for every configuration encountered during the search for the native structure would make this approach hopelessly slow. However, it is argued that kinetic a-complexes can be used to reduce the computational effort of determining the potential energy when "moving" from one configuration...... to a neighboring one. As a consequence, relatively expensive (initial) construction of an a-complex is expected to be compensated by subsequent fast kinetic updates during the search process. Computational results presented in this paper are limited. However, they suggest that the applicability of a...

  19. Biochemical and redox characterization of the mediator complex and its associated transcription factor GeBPL, a GLABROUS1 enhancer binding protein.

    Science.gov (United States)

    Shaikhali, Jehad; Davoine, Céline; Brännström, Kristoffer; Rouhier, Nicolas; Bygdell, Joakim; Björklund, Stefan; Wingsle, Gunnar

    2015-06-15

    The eukaryotic mediator integrates regulatory signals from promoter-bound transcription factors (TFs) and transmits them to RNA polymerase II (Pol II) machinery. Although redox signalling is important in adjusting plant metabolism and development, nothing is known about a possible redox regulation of mediator. In the present study, using pull-down and yeast two-hybrid assays, we demonstrate the association of mediator (MED) subunits MED10a, MED28 and MED32 with the GLABROUS1 (GL1) enhancer-binding protein-like (GeBPL), a plant-specific TF that binds a promoter containing cryptochrome 1 response element 2 (CryR2) element. All the corresponding recombinant proteins form various types of covalent oligomers linked by intermolecular disulfide bonds that are reduced in vitro by the thioredoxin (TRX) and/or glutathione/glutaredoxin (GRX) systems. The presence of recombinant MED10a, MED28 and MED32 subunits or changes of its redox state affect the DNA-binding capacity of GeBPL suggesting that redox-driven conformational changes might modulate its activity. Overall, these results advance our understanding of how redox signalling affects transcription and identify mediator as a novel actor in redox signalling pathways, relaying or integrating redox changes in combination with specific TFs as GeBPL. © The Authors Journal compilation © 2015 Biochemical Society.

  20. DOE complex buried waste characterization assessment

    International Nuclear Information System (INIS)

    Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

    1993-01-01

    The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m 3 of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993)

  1. Which clustering algorithm is better for predicting protein complexes?

    Directory of Open Access Journals (Sweden)

    Moschopoulos Charalampos N

    2011-12-01

    Full Text Available Abstract Background Protein-Protein interactions (PPI play a key role in determining the outcome of most cellular processes. The correct identification and characterization of protein interactions and the networks, which they comprise, is critical for understanding the molecular mechanisms within the cell. Large-scale techniques such as pull down assays and tandem affinity purification are used in order to detect protein interactions in an organism. Today, relatively new high-throughput methods like yeast two hybrid, mass spectrometry, microarrays, and phage display are also used to reveal protein interaction networks. Results In this paper we evaluated four different clustering algorithms using six different interaction datasets. We parameterized the MCL, Spectral, RNSC and Affinity Propagation algorithms and applied them to six PPI datasets produced experimentally by Yeast 2 Hybrid (Y2H and Tandem Affinity Purification (TAP methods. The predicted clusters, so called protein complexes, were then compared and benchmarked with already known complexes stored in published databases. Conclusions While results may differ upon parameterization, the MCL and RNSC algorithms seem to be more promising and more accurate at predicting PPI complexes. Moreover, they predict more complexes than other reviewed algorithms in absolute numbers. On the other hand the spectral clustering algorithm achieves the highest valid prediction rate in our experiments. However, it is nearly always outperformed by both RNSC and MCL in terms of the geometrical accuracy while it generates the fewest valid clusters than any other reviewed algorithm. This article demonstrates various metrics to evaluate the accuracy of such predictions as they are presented in the text below. Supplementary material can be found at: http://www.bioacademy.gr/bioinformatics/projects/ppireview.htm

  2. Nuclear pore complex protein mediated nuclear localization of dicer protein in human cells.

    Directory of Open Access Journals (Sweden)

    Yoshinari Ando

    Full Text Available Human DICER1 protein cleaves double-stranded RNA into small sizes, a crucial step in production of single-stranded RNAs which are mediating factors of cytoplasmic RNA interference. Here, we clearly demonstrate that human DICER1 protein localizes not only to the cytoplasm but also to the nucleoplasm. We also find that human DICER1 protein associates with the NUP153 protein, one component of the nuclear pore complex. This association is detected predominantly in the cytoplasm but is also clearly distinguishable at the nuclear periphery. Additional characterization of the NUP153-DICER1 association suggests NUP153 plays a crucial role in the nuclear localization of the DICER1 protein.

  3. Characterizing the statistical properties of protein surfaces

    Science.gov (United States)

    Bak, Ji Hyun; Bitbol, Anne-Florence; Bialek, William

    Proteins and their interactions form the body of the signaling transduction pathway in many living systems. In order to ensure the accuracy as well as the specificity of signaling, it is crucial that proteins recognize their correct interaction partners. How difficult, then, is it for a protein to discriminate its correct interaction partner(s) from the possibly large set of other proteins it may encounter in the cell? An important ingredient of recognition is shape complementarity. The ensemble of protein shapes should be constrained by the need for maintaining functional interactions while avoiding spurious ones. To address this aspect of protein recognition, we consider the ensemble of proteins in terms of the shapes of their surfaces. We take into account the high-resolution structures of E.coli non-DNA-binding cytoplasmic proteins, retrieved from the Protein Data Bank. We aim to characterize the statistical properties of the protein surfaces at two levels: First, we study the intrinsic dimensionality at the level of the ensemble of the surface objects. Second, at the level of the individual surfaces, we determine the scale of shape variation. We further discuss how the dimensionality of the shape space is linked to the statistical properties of individual protein surfaces. Jhb and WB acknowledge support from National Science Foundation Grants PHY-1305525 and PHY-1521553. AFB acknowledges support from the Human Frontier Science Program.

  4. Protein scaffolds and higher-order complexes in synthetic biology

    NARCIS (Netherlands)

    den Hamer, A.; Rosier, B.J.H.M.; Brunsveld, L.; de Greef, T.F.A.; Ryadnov, M.; Brunsveld, L.; Suga, H.

    2017-01-01

    Interactions between proteins control molecular functions such as signalling or metabolic activity. Assembly of proteins via scaffold proteins or in higher-order complexes is a key regulatory mechanism. Understanding and functionally applying this concept requires the construction, study, and

  5. Characterization of interactions between inclusion membrane proteins from Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    Emilie eGauliard

    2015-02-01

    Full Text Available Chlamydiae are obligate intracellular pathogens of eukaryotes. The bacteria grow in an intracellular vesicle called an inclusion, the membrane of which is heavily modified by chlamydial proteins called Incs (Inclusion membrane proteins. Incs represent 7-10% of the genomes of Chlamydia and, given their localization at the interface between the host and the pathogen, likely play a key role in the development and pathogenesis of the bacterium. However, their functions remain largely unknown. Here, we characterized the interaction properties between various Inc proteins of C. trachomatis, using a bacterial two-hybrid (BACTH method suitable for detecting interactions between integral membrane proteins. To validate this approach, we first examined the oligomerization properties of the well-characterized IncA protein and showed that both the cytoplasmic domain and the transmembrane region independently contribute to IncA oligomerization. We then analyzed a set of Inc proteins and identified novel interactions between these components. Two small Incs, IncF and Ct222, were found here to interact with many other Inc proteins and may thus represent interaction nodes within the inclusion membrane. Our data suggest that the Inc proteins may assemble in the membrane of the inclusion to form specific multi-molecular complexes in an hierarchical and temporal manner. These studies will help to better define the putative functions of the Inc proteins in the infectious process of Chlamydia.

  6. Expression, Purification and Characterization of GMZ2'.10C, a Complex Disulphide-Bonded Fusion Protein Vaccine Candidate against the Asexual and Sexual Life-Stages of the Malaria-Causing Plasmodium falciparum Parasite

    DEFF Research Database (Denmark)

    Mistarz, Ulrik H; Singh, Susheel K; Nguyen, Tam T T N

    2017-01-01

    PURPOSE: Production and characterization of a chimeric fusion protein (GMZ2'.10C) which combines epitopes of key malaria parasite antigens: glutamate-rich protein (GLURP), merozoite surface protein 3 (MSP3), and the highly disulphide bonded Pfs48/45 (10C). GMZ2'.10C is a potential candidate...... was analysed by RP-HPLC, SEC-HPLC, 2-site ELISA, gel-electrophoresis and Western blotting. Structural characterization (mass analysis, peptide mapping and cysteine connectivity mapping) was performed by LC-MS/MS. RESULTS: CP-GMZ2'.10C resulted in similar purity, yield, structure and stability as compared to IP...

  7. Electrokinetic characterization of whey protein separation

    DEFF Research Database (Denmark)

    Keiding, Kristian; Stougård, Anders; Christensen, Morten Lykkegaard

    Cross flow filtration of whey protein has been performed on 3 different membranes. The rejections have been determined by HPLC analysis of the feed and permeate. The pure membranes as well as the fouled membranes have been characterized by measurements of the streaming potential along the membrane...

  8. On characterization of anisotropic plant protein structures

    NARCIS (Netherlands)

    Krintiras, G.A.; Göbel, J.; Bouwman, W.G.; Goot, van der A.J.; Stefanidis, G.D.

    2014-01-01

    In this paper, a set of complementary techniques was used to characterize surface and bulk structures of an anisotropic Soy Protein Isolate (SPI)–vital wheat gluten blend after it was subjected to heat and simple shear flow in a Couette Cell. The structured biopolymer blend can form a basis for a

  9. Expression, purification and spectroscopic characterization of the Regulator complex

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, M.L.C.; Silva, A.L.S.; Camilotti, D.; Silva, C.A.; Sforca, M.L.; Smetana, J.H.C.; Zeri, A.C. [Laboratorio Nacional de Biociencias - LNBIO, Campinas, SP (Brazil); Ospina-Bedoya, M. [Universidad de Antioquia, Medellin (Colombia)

    2012-07-01

    Full text: The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals, serves as a central regulator of cell metabolism in humans and its deregulation is linked to diseases like cancer and diabetes. The small GTPases Rag are mediators of signaling by amino acid (leucine). These GT-Pases are anchored on the surface of the lysosome through an interaction with a complex of three proteins, p18, MP1 and p14, called Ragulator. The p18 protein is responsible for interaction with the lysosomal membrane through its N terminal post translational modification. The objective of this project is to study the interaction of p18 and other components of the Ragulator complex. The p18 protein was expressed in inclusion bodies, which were isolated and solubilized in urea. p18 was renatured with its partners MP1/p14 and this complex, the Ragulator, was subjected to spectroscopic characterization using circular dichroism and dynamic light scattering. (author)

  10. Expression, purification and spectroscopic characterization of the Regulator complex

    International Nuclear Information System (INIS)

    Nogueira, M.L.C.; Silva, A.L.S.; Camilotti, D.; Silva, C.A.; Sforca, M.L.; Smetana, J.H.C.; Zeri, A.C.; Ospina-Bedoya, M.

    2012-01-01

    Full text: The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals, serves as a central regulator of cell metabolism in humans and its deregulation is linked to diseases like cancer and diabetes. The small GTPases Rag are mediators of signaling by amino acid (leucine). These GT-Pases are anchored on the surface of the lysosome through an interaction with a complex of three proteins, p18, MP1 and p14, called Ragulator. The p18 protein is responsible for interaction with the lysosomal membrane through its N terminal post translational modification. The objective of this project is to study the interaction of p18 and other components of the Ragulator complex. The p18 protein was expressed in inclusion bodies, which were isolated and solubilized in urea. p18 was renatured with its partners MP1/p14 and this complex, the Ragulator, was subjected to spectroscopic characterization using circular dichroism and dynamic light scattering. (author)

  11. HKC: An Algorithm to Predict Protein Complexes in Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Xiaomin Wang

    2011-01-01

    Full Text Available With the availability of more and more genome-scale protein-protein interaction (PPI networks, research interests gradually shift to Systematic Analysis on these large data sets. A key topic is to predict protein complexes in PPI networks by identifying clusters that are densely connected within themselves but sparsely connected with the rest of the network. In this paper, we present a new topology-based algorithm, HKC, to detect protein complexes in genome-scale PPI networks. HKC mainly uses the concepts of highest k-core and cohesion to predict protein complexes by identifying overlapping clusters. The experiments on two data sets and two benchmarks show that our algorithm has relatively high F-measure and exhibits better performance compared with some other methods.

  12. Characterizing English Poetic Style Using Complex Networks

    Science.gov (United States)

    Roxas-Villanueva, Ranzivelle Marianne; Nambatac, Maelori Krista; Tapang, Giovanni

    Complex networks have been proven useful in characterizing written texts. Here, we use networks to probe if there exist a similarity within, and difference across, era as reflected within the poem's structure. In literary history, boundary lines are set to distinguish the change in writing styles through time. We obtain the network parameters and motif frequencies of 845 poems published from 1522 to 1931 and relate this to the writing of the Elizabethan, 17th Century, Augustan, Romantic and Victorian eras. Analysis of the different network parameters shows a significant difference of the Augustan era (1667-1780) with the rest. The network parameters and the convex hull and centroids of the motif frequencies reflect the adjectival sequence pattern of the poems of the Augustan era.

  13. Construction of ontology augmented networks for protein complex prediction.

    Science.gov (United States)

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian

    2013-01-01

    Protein complexes are of great importance in understanding the principles of cellular organization and function. The increase in available protein-protein interaction data, gene ontology and other resources make it possible to develop computational methods for protein complex prediction. Most existing methods focus mainly on the topological structure of protein-protein interaction networks, and largely ignore the gene ontology annotation information. In this article, we constructed ontology augmented networks with protein-protein interaction data and gene ontology, which effectively unified the topological structure of protein-protein interaction networks and the similarity of gene ontology annotations into unified distance measures. After constructing ontology augmented networks, a novel method (clustering based on ontology augmented networks) was proposed to predict protein complexes, which was capable of taking into account the topological structure of the protein-protein interaction network, as well as the similarity of gene ontology annotations. Our method was applied to two different yeast protein-protein interaction datasets and predicted many well-known complexes. The experimental results showed that (i) ontology augmented networks and the unified distance measure can effectively combine the structure closeness and gene ontology annotation similarity; (ii) our method is valuable in predicting protein complexes and has higher F1 and accuracy compared to other competing methods.

  14. Protein complex finding and ranking: An application to Alzheimer's

    Indian Academy of Sciences (India)

    Protein complexes are known to play a major role in controlling cellular activity in a living being. Identifying complexesfrom raw protein–protein interactions (PPIs) is an important area of research. Earlier work has been limited mostly to yeastand a few other model organisms. Such protein complex identification methods, ...

  15. Improved understanding of protein complex offers insight into DNA

    Science.gov (United States)

    Summer Science Writing Internship Improved understanding of protein complex offers insight into DNA clearer understanding of the origin recognition complex (ORC) - a protein complex that directs DNA replication - through its crystal structure offers new insight into fundamental mechanisms of DNA replication

  16. Characterization of paralogous protein families in rice

    Directory of Open Access Journals (Sweden)

    Zhu Wei

    2008-02-01

    Full Text Available Abstract Background High gene numbers in plant genomes reflect polyploidy and major gene duplication events. Oryza sativa, cultivated rice, is a diploid monocotyledonous species with a ~390 Mb genome that has undergone segmental duplication of a substantial portion of its genome. This, coupled with other genetic events such as tandem duplications, has resulted in a substantial number of its genes, and resulting proteins, occurring in paralogous families. Results Using a computational pipeline that utilizes Pfam and novel protein domains, we characterized paralogous families in rice and compared these with paralogous families in the model dicotyledonous diploid species, Arabidopsis thaliana. Arabidopsis, which has undergone genome duplication as well, has a substantially smaller genome (~120 Mb and gene complement compared to rice. Overall, 53% and 68% of the non-transposable element-related rice and Arabidopsis proteins could be classified into paralogous protein families, respectively. Singleton and paralogous family genes differed substantially in their likelihood of encoding a protein of known or putative function; 26% and 66% of singleton genes compared to 73% and 96% of the paralogous family genes encode a known or putative protein in rice and Arabidopsis, respectively. Furthermore, a major skew in the distribution of specific gene function was observed; a total of 17 Gene Ontology categories in both rice and Arabidopsis were statistically significant in their differential distribution between paralogous family and singleton proteins. In contrast to mammalian organisms, we found that duplicated genes in rice and Arabidopsis tend to have more alternative splice forms. Using data from Massively Parallel Signature Sequencing, we show that a significant portion of the duplicated genes in rice show divergent expression although a correlation between sequence divergence and correlation of expression could be seen in very young genes. Conclusion

  17. Physicochemical characterization of native and modified sodium caseinate- Vitamin A complexes.

    Science.gov (United States)

    Gupta, Chitra; Arora, Sumit; Syama, M A; Sharma, Apurva

    2018-04-01

    Native and modified sodium caseinate- Vitamin A complexes {Sodium caseinate- Vit A complex by stirring (NaCas-VA ST), succinylated sodium caseinate- Vit A complex by stirring (SNaCas-VA ST), reassembled sodium caseinate- Vit A complex (RNaCas-VA) and reassembled succinylated sodium caseinate- Vit A complex (RSNaCas-VA)} were prepared and characterized for their physicochemical characteristics e.g. particle size, zeta potential, turbidity analysis and tryptophan intensities which confirmed structural modification of both native (NaCas-VA ST) and modified (SNaCas-VA ST, RNaCas-VA and RSNaCas- VA) proteins upon complex formation with vitamin A. Binding of vitamin A to milk protein reduced the turbidity caused by vitamin A, however, the particle size and zeta potential of milk protein increased after complexation. Microstructure details of NaCas (spray dried) showed uniform spherical structure, however, other milk proteins and milk protein- Vit A complexes (freeze dried) showed broken glass and flaky structures. Tiny particles were observed on the surface of reassembled protein and reassembled protein- Vit A complexes. Binding of vitamin A to milk protein did not have an influence on the electrophoretic mobility and elution profile (RP-HPLC). Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Characterization of the Mammalian CORVET and HOPS Complexes and Their Modular Restructuring for Endosome Specificity

    NARCIS (Netherlands)

    van der Kant, Rik; Jonker, Caspar T. H.; Wijdeven, Ruud H.; Bakker, Jeroen; Janssen, Lennert; Klumperman, Judith; Neefjes, Jacques

    2015-01-01

    Trafficking of cargo through the endosomal system depends on endosomal fusion events mediated by SNARE proteins, Rab-GTPases, and multisubunit tethering complexes. The CORVET and HOPS tethering complexes, respectively, regulate early and late endosomal tethering and have been characterized in detail

  19. DNA-protein complexes induced by chromate and other carcinogens

    International Nuclear Information System (INIS)

    Costa, M.

    1991-01-01

    DNA-protein complexes induced in intact Chinese hamster ovary cells by chromate have been isolated, analyzed, and compared with those induced by cis-platinum, ultraviolet light, and formaldehyde. Actin has been identified as one of the major proteins complexed to DNA by chromate based upon its molecular weight, isoelectric point, positive reaction with an actin polyclonal antibody, and proteolytic mapping. Chromate and cis-platinum both complex proteins of similar molecular weight and isoelectric point, positive reaction with an actin polyclonal antibody, and proteolytic mapping. Chromate and cis-platinum both complex proteins of similar molecular weight and isoelectric points, and these complexes can be disrupted by chelating agents and sulfhydryl reducing agents, suggesting that the metal itself is participating in binding rather than having a catalytic or indirect role (i.e., oxygen radicals). In contrast, formaldehyde complexed histones to the DNA, and these complexes were not disrupted by chelating or reducing agents. An antiserum raised to chromate-induced DNA-protein complexes reacted primarily with 97,000 kDa protein that did not silver stain. Slot blots, as well as Western blots, were used to detect formation of p97 DNA crosslinks. This protein was complexed to the DNA by all four agents studied

  20. Recording information on protein complexes in an information management system.

    Science.gov (United States)

    Savitsky, Marc; Diprose, Jonathan M; Morris, Chris; Griffiths, Susanne L; Daniel, Edward; Lin, Bill; Daenke, Susan; Bishop, Benjamin; Siebold, Christian; Wilson, Keith S; Blake, Richard; Stuart, David I; Esnouf, Robert M

    2011-08-01

    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein-protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Identification & Characterization of Fungal Ice Nucleation Proteins

    Science.gov (United States)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Kampf, Christopher Johannes; Mauri, Sergio; Weidner, Tobias; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Freezing of water at relatively warm subfreezing temperatures is dependent on ice nucleation catalysis facilitated by ice nuclei (IN). These IN can be of various origins and although extensive research was done and progress was achieved, the nature and mechanisms leading to an effective IN are to date still poorly understood. Some of the most important processes of our geosphere like the water cycle are highly dependent on effective ice nucleation at temperatures between -2°C - -8°C, a temperature range which is almost exclusively covered by biological IN (BioIN). BioIN are usually macromolecular structures of biological polymers. Sugars as well as proteins have been reported to serve as IN and the best characterized BioIN are ice nucleation proteins (IN-P) from gram negative bacteria. Fungal strains from Fusarium spp. were described to be effective IN at subfreezing temperatures up to -2°C already 25 years ago and more and more fungal species are described to serve as efficient IN. Fungal IN are also thought to be proteins or at least contain a proteinaceous compound, but to date the fungal IN-P primary structure as well as their coding genetic elements of all IN active fungi are unknown. The aim of this study is a.) to identify the proteins and their coding genetic elements from IN active fungi (F. acuminatum, F. avenaceum, M. alpina) and b.) to characterize the mechanisms by which fungal IN serve as effective IN. We designed an interdisciplinary approach using biological, analytical and physical methods to identify fungal IN-P and describe their biological, chemical, and physical properties.

  2. Protein complex prediction based on k-connected subgraphs in protein interaction network

    Directory of Open Access Journals (Sweden)

    Habibi Mahnaz

    2010-09-01

    Full Text Available Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on connectivity number on subgraphs. We evaluate CFA using several protein interaction networks on reference protein complexes in two benchmark data sets (MIPS and Aloy, containing 1142 and 61 known complexes respectively. We compare CFA to some existing protein complex prediction methods (CMC, MCL, PCP and RNSC in terms of recall and precision. We show that CFA predicts more complexes correctly at a competitive level of precision. Conclusions Many real complexes with different connectivity level in protein interaction network can be predicted based on connectivity number. Our CFA program and results are freely available from http://www.bioinf.cs.ipm.ir/softwares/cfa/CFA.rar.

  3. UO{sub 2}{sup 2+}/protein complexation sites screening

    Energy Technology Data Exchange (ETDEWEB)

    Guilbaud, P.; Pible, O

    2004-07-01

    Uranium(VI) is likely to make strong coordination with some proteins in the plasma and in targeted cells. In the frame of a nuclear toxicology program, a biochemical strategy has been developed to identify these targets in complex biological media. The present work focuses on an approach based on the screening of 3D protein structures in order to identify proteins able to bind UO{sub 2}{sup 2+} and the corresponding complexation sites in these proteins. Our preliminary results show that indeed a few proteins display a high affinity to uranyl salt. The site of interaction may be mapped using molecular modeling, providing coherent results with the biochemical data. (authors)

  4. Computational Modeling of Complex Protein Activity Networks

    NARCIS (Netherlands)

    Schivo, Stefano; Leijten, Jeroen; Karperien, Marcel; Post, Janine N.; Prignet, Claude

    2017-01-01

    Because of the numerous entities interacting, the complexity of the networks that regulate cell fate makes it impossible to analyze and understand them using the human brain alone. Computational modeling is a powerful method to unravel complex systems. We recently described the development of a

  5. Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells.

    Science.gov (United States)

    Sobkowiak, Robert; Zielezinski, Andrzej; Karlowski, Wojciech M; Lesicki, Andrzej

    2017-10-01

    Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.

  6. Finding low-conductance sets with dense interactions (FLCD) for better protein complex prediction.

    Science.gov (United States)

    Wang, Yijie; Qian, Xiaoning

    2017-03-14

    Intuitively, proteins in the same protein complexes should highly interact with each other but rarely interact with the other proteins in protein-protein interaction (PPI) networks. Surprisingly, many existing computational algorithms do not directly detect protein complexes based on both of these topological properties. Most of them, depending on mathematical definitions of either "modularity" or "conductance", have their own limitations: Modularity has the inherent resolution problem ignoring small protein complexes; and conductance characterizes the separability of complexes but fails to capture the interaction density within complexes. In this paper, we propose a two-step algorithm FLCD (Finding Low-Conductance sets with Dense interactions) to predict overlapping protein complexes with the desired topological structure, which is densely connected inside and well separated from the rest of the networks. First, FLCD detects well-separated subnetworks based on approximating a potential low-conductance set through a personalized PageRank vector from a protein and then solving a mixed integer programming (MIP) problem to find the minimum-conductance set within the identified low-conductance set. At the second step, the densely connected parts in those subnetworks are discovered as the protein complexes by solving another MIP problem that aims to find the dense subnetwork in the minimum-conductance set. Experiments on four large-scale yeast PPI networks from different public databases demonstrate that the complexes predicted by FLCD have better correspondence with the yeast protein complex gold standards than other three state-of-the-art algorithms (ClusterONE, LinkComm, and SR-MCL). Additionally, results of FLCD show higher biological relevance with respect to Gene Ontology (GO) terms by GO enrichment analysis.

  7. Characterization of host proteins interacting with the lymphocytic choriomeningitis virus L protein.

    Science.gov (United States)

    Khamina, Kseniya; Lercher, Alexander; Caldera, Michael; Schliehe, Christopher; Vilagos, Bojan; Sahin, Mehmet; Kosack, Lindsay; Bhattacharya, Anannya; Májek, Peter; Stukalov, Alexey; Sacco, Roberto; James, Leo C; Pinschewer, Daniel D; Bennett, Keiryn L; Menche, Jörg; Bergthaler, Andreas

    2017-12-01

    RNA-dependent RNA polymerases (RdRps) play a key role in the life cycle of RNA viruses and impact their immunobiology. The arenavirus lymphocytic choriomeningitis virus (LCMV) strain Clone 13 provides a benchmark model for studying chronic infection. A major genetic determinant for its ability to persist maps to a single amino acid exchange in the viral L protein, which exhibits RdRp activity, yet its functional consequences remain elusive. To unravel the L protein interactions with the host proteome, we engineered infectious L protein-tagged LCMV virions by reverse genetics. A subsequent mass-spectrometric analysis of L protein pulldowns from infected human cells revealed a comprehensive network of interacting host proteins. The obtained LCMV L protein interactome was bioinformatically integrated with known host protein interactors of RdRps from other RNA viruses, emphasizing interconnected modules of human proteins. Functional characterization of selected interactors highlighted proviral (DDX3X) as well as antiviral (NKRF, TRIM21) host factors. To corroborate these findings, we infected Trim21-/- mice with LCMV and found impaired virus control in chronic infection. These results provide insights into the complex interactions of the arenavirus LCMV and other viral RdRps with the host proteome and contribute to a better molecular understanding of how chronic viruses interact with their host.

  8. Expression, Purification and Characterization of GMZ2'.10C, a Complex Disulphide-Bonded Fusion Protein Vaccine Candidate against the Asexual and Sexual Life-Stages of the Malaria-Causing Plasmodium falciparum Parasite.

    Science.gov (United States)

    Mistarz, Ulrik H; Singh, Susheel K; Nguyen, Tam T T N; Roeffen, Will; Yang, Fen; Lissau, Casper; Madsen, Søren M; Vrang, Astrid; Tiendrebeogo, Régis W; Kana, Ikhlaq H; Sauerwein, Robert W; Theisen, Michael; Rand, Kasper D

    2017-09-01

    Production and characterization of a chimeric fusion protein (GMZ2'.10C) which combines epitopes of key malaria parasite antigens: glutamate-rich protein (GLURP), merozoite surface protein 3 (MSP3), and the highly disulphide bonded Pfs48/45 (10C). GMZ2'.10C is a potential candidate for a multi-stage malaria vaccine that targets both transmission and asexual life-cycle stages of the parasite. GMZ2'.10C was produced in Lactococcus lactis and purified using either an immunoaffinity purification (IP) or a conventional purification (CP) method. Protein purity and stability was analysed by RP-HPLC, SEC-HPLC, 2-site ELISA, gel-electrophoresis and Western blotting. Structural characterization (mass analysis, peptide mapping and cysteine connectivity mapping) was performed by LC-MS/MS. CP-GMZ2'.10C resulted in similar purity, yield, structure and stability as compared to IP-GMZ2'.10C. CP-GMZ2'.10C and IP-GMZ2'.10C both elicited a high titer of transmission blocking (TB) antibodies in rodents. The intricate disulphide-bond connectivity of C-terminus Pfs48/45 was analysed by tandem mass spectrometry and was established for GMZ2'.10C and two reference fusion proteins encompassing similar parts of Pfs48/45. GMZ2'.10C, combining GMZ2' and correctly-folded Pfs48/45 can be produced by the Lactoccus lactis P170 based expression system in purity and quality for pharmaceutical development and elicit high level of TB antibodies. The cysteine connectivity for the 10C region of Pfs48/45 was revealed experimentally, providing an important guideline for employing the Pfs48/45 antigen in vaccine design.

  9. Operon Gene Order Is Optimized for Ordered Protein Complex Assembly

    Science.gov (United States)

    Wells, Jonathan N.; Bergendahl, L. Therese; Marsh, Joseph A.

    2016-01-01

    Summary The assembly of heteromeric protein complexes is an inherently stochastic process in which multiple genes are expressed separately into proteins, which must then somehow find each other within the cell. Here, we considered one of the ways by which prokaryotic organisms have attempted to maximize the efficiency of protein complex assembly: the organization of subunit-encoding genes into operons. Using structure-based assembly predictions, we show that operon gene order has been optimized to match the order in which protein subunits assemble. Exceptions to this are almost entirely highly expressed proteins for which assembly is less stochastic and for which precisely ordered translation offers less benefit. Overall, these results show that ordered protein complex assembly pathways are of significant biological importance and represent a major evolutionary constraint on operon gene organization. PMID:26804901

  10. Patterning protein complexes on DNA nanostructures using a GFP nanobody.

    Science.gov (United States)

    Sommese, R F; Hariadi, R F; Kim, K; Liu, M; Tyska, M J; Sivaramakrishnan, S

    2016-11-01

    DNA nanostructures have become an important and powerful tool for studying protein function over the last 5 years. One of the challenges, though, has been the development of universal methods for patterning protein complexes on DNA nanostructures. Herein, we present a new approach for labeling DNA nanostructures by functionalizing them with a GFP nanobody. We demonstrate the ability to precisely control protein attachment via our nanobody linker using two enzymatic model systems, namely adenylyl cyclase activity and myosin motility. Finally, we test the power of this attachment method by patterning unpurified, endogenously expressed Arp2/3 protein complex from cell lysate. By bridging DNA nanostructures with a fluorescent protein ubiquitous throughout cell and developmental biology and protein biochemistry, this approach significantly streamlines the application of DNA nanostructures as a programmable scaffold in biological studies. © 2016 The Protein Society.

  11. Characterization of aspartame-cyclodextrin complexation.

    Science.gov (United States)

    Sohajda, Tamás; Béni, Szabolcs; Varga, Erzsébet; Iványi, Róbert; Rácz, Akos; Szente, Lajos; Noszál, Béla

    2009-12-05

    The inclusion complex formation of aspartame (guest) and various cyclodextrins (host) were examined using 1H NMR titration and capillary electrophoresis. Initially the protonation constants of aspartame were determined by NMR-pH titration with in situ pH measurement to yield log K1=7.83 and log K2=2.96. Based on these values the stability of the complexes formed by aspartame and 21 different cyclodextrins (CDs) were studied at pH 2.5, pH 5.2 and pH 9.0 values where aspartame exists predominantly in monocationic, zwitterionic and monoanionic form, respectively. The host cyclodextrin derivatives differed in various sidechains, degree of substitution, charge and purity so that the effect of these properties could be examined systematically. Concerning size, the seven-membered beta-cyclodextrin and its derivatives have been found to be the most suitable host molecules for complexation. Highest stability was observed for the acetylated derivative with a degree of substitution of 7. The purity of the CD enhanced the complexation while the degree of substitution did not provide obvious consequences. Finally, geometric aspects of the inclusion complex were assessed by 2D ROESY NMR and molecular modelling which proved that the guest's aromatic ring enters the wider end of the host cavity.

  12. Quantifying the energetics of cooperativity in a ternary protein complex

    DEFF Research Database (Denmark)

    Andersen, Peter S; Schuck, Peter; Sundberg, Eric J

    2002-01-01

    and mathematical modeling to describe the energetics of cooperativity in a trimolecular protein complex. As a model system for quantifying cooperativity, we studied the ternary complex formed by the simultaneous interaction of a superantigen with major histocompatibility complex and T cell receptor, for which...... a structural model is available. This system exhibits positive and negative cooperativity, as well as augmentation of the temperature dependence of binding kinetics upon the cooperative interaction of individual protein components in the complex. Our experimental and theoretical analysis may be applicable...... to other systems involving cooperativity....

  13. Protein Connectivity in Chemotaxis Receptor Complexes.

    Directory of Open Access Journals (Sweden)

    Stephan Eismann

    2015-12-01

    Full Text Available The chemotaxis sensory system allows bacteria such as Escherichia coli to swim towards nutrients and away from repellents. The underlying pathway is remarkably sensitive in detecting chemical gradients over a wide range of ambient concentrations. Interactions among receptors, which are predominantly clustered at the cell poles, are crucial to this sensitivity. Although it has been suggested that the kinase CheA and the adapter protein CheW are integral for receptor connectivity, the exact coupling mechanism remains unclear. Here, we present a statistical-mechanics approach to model the receptor linkage mechanism itself, building on nanodisc and electron cryotomography experiments. Specifically, we investigate how the sensing behavior of mixed receptor clusters is affected by variations in the expression levels of CheA and CheW at a constant receptor density in the membrane. Our model compares favorably with dose-response curves from in vivo Förster resonance energy transfer (FRET measurements, demonstrating that the receptor-methylation level has only minor effects on receptor cooperativity. Importantly, our model provides an explanation for the non-intuitive conclusion that the receptor cooperativity decreases with increasing levels of CheA, a core signaling protein associated with the receptors, whereas the receptor cooperativity increases with increasing levels of CheW, a key adapter protein. Finally, we propose an evolutionary advantage as explanation for the recently suggested CheW-only linker structures.

  14. Prediction of heterodimeric protein complexes from weighted protein-protein interaction networks using novel features and kernel functions.

    Directory of Open Access Journals (Sweden)

    Peiying Ruan

    Full Text Available Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These methods have dealt with only complexes with size of more than three because the methods often are based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part according to several comprehensive databases of known complexes. In this paper, we propose several feature space mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric protein complexes.

  15. Stabilization of Proteins and Noncovalent Protein Complexes during Electrospray Ionization by Amino Acid Additives.

    Science.gov (United States)

    Zhang, Hua; Lu, Haiyan; Chingin, Konstantin; Chen, Huanwen

    2015-07-21

    Ionization of proteins and noncovalent protein complexes with minimal disturbance to their native structure presents a great challenge for biological mass spectrometry (MS). In living organisms, the native structure of intracellular proteins is commonly stabilized by solute amino acids (AAs) accumulated in cells at very high concentrations. Inspired by nature, we hypothesized that AAs could also pose a stabilizing effect on the native structure of proteins and noncovalent protein complexes during ionization. To test this hypothesis, here we explored MS response for various protein complexes upon the addition of free AAs at mM concentrations into the electrospray ionization (ESI) solution. Thermal activation of ESI droplets in the MS inlet capillary was employed as a model destabilizing factor during ionization. Our results indicate that certain AAs, in particular proline (Pro), pose considerable positive effect on the stability of noncovalent protein complexes in ESI-MS without affecting the signal intensity of protein ions and original protein-ligand equilibrium, even when added at the 20 mM concentration. The data suggest that the degree of protein stabilization is primarily determined by the osmolytic and ampholytic characteristics of AA solutes. The highest stability and visibility of noncovalent protein complexes in ESI-MS are achieved using AA additives with neutral isoelectric point, moderate proton affinity, and unfavorable interaction with the native protein state. Overall, our results indicate that the simple addition of free amino acids into the working solution can notably improve the stability and accuracy of protein analysis by native ESI-MS.

  16. Interface areas complexity characterization of echographic images

    Energy Technology Data Exchange (ETDEWEB)

    Capri, Arnaud [LVR, Orleans University, IUT de Bourges, 63 avenue de Lattre de Tassigny, 18020 Bourges (France); SINTERS GROUP SAS, 5 rue Paul Mesple, BP 1311, 31106 ToulouseCedex 01 (France)]. E-mail: Arnaud.Capri@bourges.univ-orleans.fr; Vincent, Nicole [CRIP5-SIP, Rene Descartes University-Paris 5, 45 rue des Saints-Peres, 75270 Paris Cedex 06 (France); Vieyres, Pierre [LVR, Orleans University, IUT de Bourges, 63 avenue de Lattre de Tassigny, 18020 Bourges (France); Poisson, Gerard [LVR, Orleans University, IUT de Bourges, 63 avenue de Lattre de Tassigny, 18020 Bourges (France); Makris, Pascal [LI, University Francois Rabelais of Tours, 64 avenue Jean Portalis, 37200 Tours (France)

    2006-12-20

    The telemedicine concept integrates images, video acquisition and video transfer which are usually managed by using a standard videoconference system. Very often, the initial blur of echography pictures makes it difficult to use standard segmentation techniques such as snakes or Sobel filters which aid the doctor in making his decision. In medical echography practice, contour properties of an organ are often more relevant to decipher the presence of pathologies than the exact lineout of the contour itself. The processing, via the fuzzy approach, enables us to subdivide an image in different classes: one gathering the homogeneous zones (pixels belonging to a medium) and the other gathering more heterogeneous zones (e.g. transition between two media). Complexity measurement of each region can be approximated by the calculation of a fractal dimension. Thus, we can obtain interface complexity without having to extract the interfaces themselves. Finally, the link between fractal dimension and fuzzy rate is carried out.

  17. Interface areas complexity characterization of echographic images

    International Nuclear Information System (INIS)

    Capri, Arnaud; Vincent, Nicole; Vieyres, Pierre; Poisson, Gerard; Makris, Pascal

    2006-01-01

    The telemedicine concept integrates images, video acquisition and video transfer which are usually managed by using a standard videoconference system. Very often, the initial blur of echography pictures makes it difficult to use standard segmentation techniques such as snakes or Sobel filters which aid the doctor in making his decision. In medical echography practice, contour properties of an organ are often more relevant to decipher the presence of pathologies than the exact lineout of the contour itself. The processing, via the fuzzy approach, enables us to subdivide an image in different classes: one gathering the homogeneous zones (pixels belonging to a medium) and the other gathering more heterogeneous zones (e.g. transition between two media). Complexity measurement of each region can be approximated by the calculation of a fractal dimension. Thus, we can obtain interface complexity without having to extract the interfaces themselves. Finally, the link between fractal dimension and fuzzy rate is carried out

  18. Drosophila protein interaction map (DPiM): a paradigm for metazoan protein complex interactions.

    Science.gov (United States)

    Guruharsha, K G; Obar, Robert A; Mintseris, Julian; Aishwarya, K; Krishnan, R T; Vijayraghavan, K; Artavanis-Tsakonas, Spyros

    2012-01-01

    Proteins perform essential cellular functions as part of protein complexes, often in conjunction with RNA, DNA, metabolites and other small molecules. The genome encodes thousands of proteins but not all of them are expressed in every cell type; and expressed proteins are not active at all times. Such diversity of protein expression and function accounts for the level of biological intricacy seen in nature. Defining protein-protein interactions in protein complexes, and establishing the when, what and where of potential interactions, is therefore crucial to understanding the cellular function of any protein-especially those that have not been well studied by traditional molecular genetic approaches. We generated a large-scale resource of affinity-tagged expression-ready clones and used co-affinity purification combined with tandem mass-spectrometry to identify protein partners of nearly 5,000 Drosophila melanogaster proteins. The resulting protein complex "map" provided a blueprint of metazoan protein complex organization. Here we describe how the map has provided valuable insights into protein function in addition to generating hundreds of testable hypotheses. We also discuss recent technological advancements that will be critical in addressing the next generation of questions arising from the map.

  19. Characterization for Soil Fixation by Polyelectrolyte Complex

    International Nuclear Information System (INIS)

    Choi, Yong Suk; Kwon, Sang Woon; Yang, Heeman; Lee, Kune Woo; Seo, Bumkyoung; Moon, Jei Kwon

    2014-01-01

    According to report, the radioactivity bulk (approx. 95%) is localized within topsoil. Therefore soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils with Cs-137 by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been also used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and make into the polyelectrolyte complex (PEC) due to electrostatic interaction of polyanion and polycation in an aqueous solution. It can be avoids using the chemical cross-linking agents, and reducing the possible toxicity and other undesirable effects of the reagents. PEC can fix soil particles by flocculation and formation of crust between soil. The method can also prevent a spread of radioactive material by floating on a soil surface. Recently, PEC used for the solidification of soil near the Fukushima nuclear power plant in Japan. The decontamination efficiency of the surface soils reached 90%, and dust release was effectively suppressed during the removal of surface soils. In this study, it was investigated the fixation of the soil by PEC to avoid the spread of the contamination in addition to the separation of soil and PEC. The physicochemical properties of polyelectrolyte complex solution and the stability of fixed soil by PEC were investigated. The mode of the addition is important to prepare the polyelectrolytes complex without PAA agglomerate. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation

  20. Characterization for Soil Fixation by Polyelectrolyte Complex

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Suk; Kwon, Sang Woon; Yang, Heeman; Lee, Kune Woo; Seo, Bumkyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    According to report, the radioactivity bulk (approx. 95%) is localized within topsoil. Therefore soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils with Cs-137 by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been also used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and make into the polyelectrolyte complex (PEC) due to electrostatic interaction of polyanion and polycation in an aqueous solution. It can be avoids using the chemical cross-linking agents, and reducing the possible toxicity and other undesirable effects of the reagents. PEC can fix soil particles by flocculation and formation of crust between soil. The method can also prevent a spread of radioactive material by floating on a soil surface. Recently, PEC used for the solidification of soil near the Fukushima nuclear power plant in Japan. The decontamination efficiency of the surface soils reached 90%, and dust release was effectively suppressed during the removal of surface soils. In this study, it was investigated the fixation of the soil by PEC to avoid the spread of the contamination in addition to the separation of soil and PEC. The physicochemical properties of polyelectrolyte complex solution and the stability of fixed soil by PEC were investigated. The mode of the addition is important to prepare the polyelectrolytes complex without PAA agglomerate. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation.

  1. Mesoscale meteorological measurements characterizing complex flows

    International Nuclear Information System (INIS)

    Hubbe, J.M.; Allwine, K.J.

    1993-09-01

    Meteorological measurements are an integral and essential component of any emergency response system for addressing accidental releases from nuclear facilities. An important element of the US Department of Energy's (DOE's) Atmospheric Studies in Complex Terrain (ASCOT) program is the refinement and use of state-of-the-art meteorological instrumentation. ASCOT is currently making use of ground-based remote wind sensing instruments such as doppler acoustic sounders (sodars). These instruments are capable of continuously and reliably measuring winds up to several hundred meters above the ground, unattended. Two sodars are currently measuring the winds, as part of ASCOT's Front Range Study, in the vicinity of DOE's Rocky Flats Plant (RFP) near Boulder, Colorado. A brief description of ASCOT's ongoing Front Range Study is given followed by a case study analysis that demonstrates the utility of the meteorological measurement equipment and the complexity of flow phenomena that are experienced near RFP. These complex flow phenomena can significantly influence the transport of the released material and consequently need to be identified for accurate assessments of the consequences of a release

  2. Detecting protein complexes based on a combination of topological and biological properties in protein-protein interaction network

    Directory of Open Access Journals (Sweden)

    Pooja Sharma

    2018-06-01

    Full Text Available Protein complexes are known to play a major role in controlling cellular activity in a living being. Identifying complexes from raw protein protein interactions (PPIs is an important area of research. Earlier work has been limited mostly to yeast. Such protein complex identification methods, when applied to large human PPIs often give poor performance. We introduce a novel method called CSC to detect protein complexes. The method is evaluated in terms of positive predictive value, sensitivity and accuracy using the datasets of the model organism, yeast and humans. CSC outperforms several other competing algorithms for both organisms. Further, we present a framework to establish the usefulness of CSC in analyzing the influence of a given disease gene in a complex topologically as well as biologically considering eight major association factors. Keywords: Protein complex, Connectivity, Semantic similarity, Contribution

  3. Traveling-wave ion mobility mass spectrometry of protein complexes

    DEFF Research Database (Denmark)

    Salbo, Rune; Bush, Matthew F; Naver, Helle

    2012-01-01

    The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization ...

  4. A novel protein-protein interaction in the RES (REtention and Splicing) complex.

    Science.gov (United States)

    Tripsianes, Konstantinos; Friberg, Anders; Barrandon, Charlotte; Brooks, Mark; van Tilbeurgh, Herman; Seraphin, Bertrand; Sattler, Michael

    2014-10-10

    The retention and splicing (RES) complex is a conserved spliceosome-associated module that was shown to enhance splicing of a subset of transcripts and promote the nuclear retention of unspliced pre-mRNAs in yeast. The heterotrimeric RES complex is organized around the Snu17p protein that binds to both the Bud13p and Pml1p subunits. Snu17p exhibits an RRM domain that resembles a U2AF homology motif (UHM) and Bud13p harbors a Trp residue reminiscent of an UHM-ligand motif (ULM). It has therefore been proposed that the interaction between Snu17p and Bud13p resembles canonical UHM-ULM complexes. Here, we have used biochemical and NMR structural analysis to characterize the structure of the yeast Snu17p-Bud13p complex. Unlike known UHMs that sequester the Trp residue of the ULM ligand in a hydrophobic pocket, Snu17p and Bud13p utilize a large interaction surface formed around the two helices of the Snu17p domain. In total 18 residues of the Bud13p ligand wrap around the Snu17p helical surface in an U-turn-like arrangement. The invariant Trp(232) in Bud13p is located in the center of the turn, and contacts surface residues of Snu17p. The structural data are supported by mutational analysis and indicate that Snu17p provides an extended binding surface with Bud13p that is notably distinct from canonical UHM-ULM interactions. Our data highlight structural diversity in RRM-protein interactions, analogous to the one seen for nucleic acid interactions. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes.

    Directory of Open Access Journals (Sweden)

    Jiawei Luo

    Full Text Available Computational approaches aided by computer science have been used to predict essential proteins and are faster than expensive, time-consuming, laborious experimental approaches. However, the performance of such approaches is still poor, making practical applications of computational approaches difficult in some fields. Hence, the development of more suitable and efficient computing methods is necessary for identification of essential proteins.In this paper, we propose a new method for predicting essential proteins in a protein interaction network, local interaction density combined with protein complexes (LIDC, based on statistical analyses of essential proteins and protein complexes. First, we introduce a new local topological centrality, local interaction density (LID, of the yeast PPI network; second, we discuss a new integration strategy for multiple bioinformatics. The LIDC method was then developed through a combination of LID and protein complex information based on our new integration strategy. The purpose of LIDC is discovery of important features of essential proteins with their neighbors in real protein complexes, thereby improving the efficiency of identification.Experimental results based on three different PPI(protein-protein interaction networks of Saccharomyces cerevisiae and Escherichia coli showed that LIDC outperformed classical topological centrality measures and some recent combinational methods. Moreover, when predicting MIPS datasets, the better improvement of performance obtained by LIDC is over all nine reference methods (i.e., DC, BC, NC, LID, PeC, CoEWC, WDC, ION, and UC.LIDC is more effective for the prediction of essential proteins than other recently developed methods.

  6. Protein Complex Production from the Drug Discovery Standpoint.

    Science.gov (United States)

    Moarefi, Ismail

    2016-01-01

    Small molecule drug discovery critically depends on the availability of meaningful in vitro assays to guide medicinal chemistry programs that are aimed at optimizing drug potency and selectivity. As it becomes increasingly evident, most disease relevant drug targets do not act as a single protein. In the body, they are instead generally found in complex with protein cofactors that are highly relevant for their correct function and regulation. This review highlights selected examples of the increasing trend to use biologically relevant protein complexes for rational drug discovery to reduce costly late phase attritions due to lack of efficacy or toxicity.

  7. Characterization of membrane association of Rinderpest virus matrix protein

    International Nuclear Information System (INIS)

    Subhashri, R.; Shaila, M.S.

    2007-01-01

    Paramyxovirus matrix protein is believed to play a crucial role in the assembly and maturation of the virus particle by bringing the major viral components together at the budding site in the host cell. The membrane association capability of many enveloped virus matrix proteins has been characterized to be their intrinsic property. In this work, we have characterized the membrane association of Rinderpest virus matrix (M) protein. The M protein of Rinderpest virus when expressed in the absence of other viral proteins is present both in the cytoplasm and plasma membrane. When expressed as GFP fusion protein, the M protein gets localized into plasma membrane protrusions. High salt and alkaline conditions resulted in partial dissociation of M protein from cell membrane. Thus, M protein behaves like an integral membrane protein although its primary structure suggests it to be a peripheral membrane protein

  8. Purification and characterization of a thylakoid protein kinase

    International Nuclear Information System (INIS)

    Coughlan, S.J.; Hind, G.

    1986-01-01

    Control of state transitions in the thylakoid by reversible phosphorylation of the light-harvesting chlorophyll a/b protein complex of photosystem II (LHC-II) is modulated by a kinase. The kinase catalyzing this phosphorylation is associated with the thylakoid membrane, and is regulated by the redox state of the plastoquinone pool. The isolation and partial purification from spinach thylakoids of two protein kinases (CPK1, CPK2) of apparent molecular masses 25 kDa and 38 kDa has been reported. Neither enzyme utilizes isolated LHC-II as a substrate. The partial purification of a third protein kinase (LHCK) which can utilize both lysine-rich histones (IIIs and Vs) and isolated LHC-II as substrate has now been purified to homogeneity and characterized by SDS-polyacrylamide gel electrophoresis as a 64 kDa peptide. From a comparison of the two isolation procedures we have concluded that CPK1 is indeed a protein kinase, but has a lower specific activity than that of LHCK. 8 refs., 4 figs

  9. Interactions of cullin3/KCTD5 complexes with both cytoplasmic and nuclear proteins: Evidence for a role in protein stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Rutz, Natalja; Heilbronn, Regine; Weger, Stefan, E-mail: stefan.weger@charite.de

    2015-08-28

    Based on its specific interaction with cullin3 mediated by an N-terminal BTB/POZ homologous domain, KCTD5 has been proposed to function as substrate adapter for cullin3 based ubiquitin E3 ligases. In the present study we tried to validate this hypothesis through identification and characterization of additional KCTD5 interaction partners. For the replication protein MCM7, the zinc finger protein ZNF711 and FAM193B, a yet poorly characterized cytoplasmic protein, we could demonstrate specific interaction with KCTD5 both in yeast two-hybrid and co-precipitation studies in mammalian cells. Whereas trimeric complexes of cullin3 and KCTD5 with the respective KCTD5 binding partner were formed, KCTD5/cullin3 induced polyubiquitylation and/or proteasome-dependent degradation of these binding partners could not be demonstrated. On the contrary, KCTD5 or Cullin3 overexpression increased ZNF711 protein stability. - Highlights: • KCTD5 nuclear translocation depends upon M phase and protein oligomerization. • Identification of MCM7, ZNF711 and FAM193 as KCTD5 interaction partners. • Formation of trimeric complexes of KCTD5/cullin3 with MCM7, ZNF711 and FAM193B. • KCTD5 is not involved in polyubiquitylation of MCM7 replication factor. • The KCTD5/cullin3 complex stabilizes ZNF711 transcription factor.

  10. Characterizations and computational complexity of systolic trellis automata

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, O H; Kim, S M

    1984-03-01

    Systolic trellis automata are simple models for VLSI. The authors characterize the computing power of these models in terms of turing machines. The characterizations are useful in proving new results as well as giving simpler proofs of known results. They also derive lower and upper bounds on the computational complexity of the models. 18 references.

  11. Characterization of complex networks : Application to robustness analysis

    NARCIS (Netherlands)

    Jamakovic, A.

    2008-01-01

    This thesis focuses on the topological characterization of complex networks. It specifically focuses on those elementary graph measures that are of interest when quantifying topology-related aspects of the robustness of complex networks. This thesis makes the following contributions to the field of

  12. Identifying Hierarchical and Overlapping Protein Complexes Based on Essential Protein-Protein Interactions and “Seed-Expanding” Method

    Directory of Open Access Journals (Sweden)

    Jun Ren

    2014-01-01

    Full Text Available Many evidences have demonstrated that protein complexes are overlapping and hierarchically organized in PPI networks. Meanwhile, the large size of PPI network wants complex detection methods have low time complexity. Up to now, few methods can identify overlapping and hierarchical protein complexes in a PPI network quickly. In this paper, a novel method, called MCSE, is proposed based on λ-module and “seed-expanding.” First, it chooses seeds as essential PPIs or edges with high edge clustering values. Then, it identifies protein complexes by expanding each seed to a λ-module. MCSE is suitable for large PPI networks because of its low time complexity. MCSE can identify overlapping protein complexes naturally because a protein can be visited by different seeds. MCSE uses the parameter λ_th to control the range of seed expanding and can detect a hierarchical organization of protein complexes by tuning the value of λ_th. Experimental results of S. cerevisiae show that this hierarchical organization is similar to that of known complexes in MIPS database. The experimental results also show that MCSE outperforms other previous competing algorithms, such as CPM, CMC, Core-Attachment, Dpclus, HC-PIN, MCL, and NFC, in terms of the functional enrichment and matching with known protein complexes.

  13. Identification and characterization of secreted proteins in Eimeria tenella

    Science.gov (United States)

    Ramlee, Intan Azlinda; Firdaus-Raih, Mohd; Wan, Kiew-Lian

    2015-09-01

    Eimeria tenella is a protozoan parasite that causes coccidiosis, an economically important disease in the poultry industry. The characterization of proteins that are secreted by parasites have been shown to play important roles in parasite invasion and are considered to be potential control agents. In this study, 775 proteins potentially secreted by E. tenella were identified. These proteins were further filtered to remove mitochondrial proteins. Out of 763 putative secreted proteins, 259 proteins possess transmembrane domains while another 150 proteins have GPI (Glycosylphosphatidylinositol) anchors. Homology search revealed that 315 and 448 proteins have matches with known and hypothetical proteins in the database, respectively. Within this data set, previously characterized secretory proteins such as micronemes, rhoptry kinases and dense granules were detected.

  14. Interpretation of stream programs: characterizing type 2 polynomial time complexity

    OpenAIRE

    Férée , Hugo; Hainry , Emmanuel; Hoyrup , Mathieu; Péchoux , Romain

    2010-01-01

    International audience; We study polynomial time complexity of type 2 functionals. For that purpose, we introduce a first order functional stream language. We give criteria, named well-founded, on such programs relying on second order interpretation that characterize two variants of type 2 polynomial complexity including the Basic Feasible Functions (BFF). These charac- terizations provide a new insight on the complexity of stream programs. Finally, we adapt these results to functions over th...

  15. Tuning structure of oppositely charged nanoparticle and protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Aswal, V. K., E-mail: sugam@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Callow, P. [Institut Laue Langevin, DS/LSS, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9 (France)

    2014-04-24

    Small-angle neutron scattering (SANS) has been used to probe the structures of anionic silica nanoparticles (LS30) and cationic lyszyme protein (M.W. 14.7kD, I.P. ∼ 11.4) by tuning their interaction through the pH variation. The protein adsorption on nanoparticles is found to be increasing with pH and determined by the electrostatic attraction between two components as well as repulsion between protein molecules. We show the strong electrostatic attraction between nanoparticles and protein molecules leads to protein-mediated aggregation of nanoparticles which are characterized by fractal structures. At pH 5, the protein adsorption gives rise to nanoparticle aggregation having surface fractal morphology with close packing of nanoparticles. The surface fractals transform to open structures of mass fractal morphology at higher pH (7 and 9) on approaching isoelectric point (I.P.)

  16. Comprehensive inventory of protein complexes in the Protein Data Bank from consistent classification of interfaces

    Directory of Open Access Journals (Sweden)

    Gorin Andrey A

    2008-05-01

    Full Text Available Abstract Background Protein-protein interactions are ubiquitous and essential for all cellular processes. High-resolution X-ray crystallographic structures of protein complexes can reveal the details of their function and provide a basis for many computational and experimental approaches. Differentiation between biological and non-biological contacts and reconstruction of the intact complex is a challenging computational problem. A successful solution can provide additional insights into the fundamental principles of biological recognition and reduce errors in many algorithms and databases utilizing interaction information extracted from the Protein Data Bank (PDB. Results We have developed a method for identifying protein complexes in the PDB X-ray structures by a four step procedure: (1 comprehensively collecting all protein-protein interfaces; (2 clustering similar protein-protein interfaces together; (3 estimating the probability that each cluster is relevant based on a diverse set of properties; and (4 combining these scores for each PDB entry in order to predict the complex structure. The resulting clusters of biologically relevant interfaces provide a reliable catalog of evolutionary conserved protein-protein interactions. These interfaces, as well as the predicted protein complexes, are available from the Protein Interface Server (PInS website (see Availability and requirements section. Conclusion Our method demonstrates an almost two-fold reduction of the annotation error rate as evaluated on a large benchmark set of complexes validated from the literature. We also estimate relative contributions of each interface property to the accurate discrimination of biologically relevant interfaces and discuss possible directions for further improving the prediction method.

  17. SDSL-ESR-based protein structure characterization.

    Science.gov (United States)

    Strancar, Janez; Kavalenka, Aleh; Urbancic, Iztok; Ljubetic, Ajasja; Hemminga, Marcus A

    2010-03-01

    As proteins are key molecules in living cells, knowledge about their structure can provide important insights and applications in science, biotechnology, and medicine. However, many protein structures are still a big challenge for existing high-resolution structure-determination methods, as can be seen in the number of protein structures published in the Protein Data Bank. This is especially the case for less-ordered, more hydrophobic and more flexible protein systems. The lack of efficient methods for structure determination calls for urgent development of a new class of biophysical techniques. This work attempts to address this problem with a novel combination of site-directed spin labelling electron spin resonance spectroscopy (SDSL-ESR) and protein structure modelling, which is coupled by restriction of the conformational spaces of the amino acid side chains. Comparison of the application to four different protein systems enables us to generalize the new method and to establish a general procedure for determination of protein structure.

  18. 3D pressure field in lipid membranes and membrane-protein complexes

    DEFF Research Database (Denmark)

    Ollila, O H Samuli; Risselada, H Jelger; Louhivuori, Martti

    2009-01-01

    We calculate full 3D pressure fields for inhomogeneous nanoscale systems using molecular dynamics simulation data. The fields represent systems with increasing level of complexity, ranging from semivesicles and vesicles to membranes characterized by coexistence of two phases, including also...... a protein-membrane complex. We show that the 3D pressure field is distinctly different for curved and planar bilayers, the pressure field depends strongly on the phase of the membrane, and that an integral protein modulates the tension and elastic properties of the membrane....

  19. Characterization of redox proteins using electrochemical methods

    OpenAIRE

    Verhagen, M.

    1995-01-01

    The use of electrochemical techniques in combination with proteins started approximately a decade ago and has since then developed into a powerfull technique for the study of small redox proteins. In addition to the determination of redox potentials, electrochemistry can be used to obtain information about the kinetics of electron transfer between proteins and about the dynamic behaviour of redox cofactors in proteins. This thesis describes the results of a study, initiated to get a ...

  20. Hydrophobic Interaction Chromatography for Bottom-Up Proteomics Analysis of Single Proteins and Protein Complexes.

    Science.gov (United States)

    Rackiewicz, Michal; Große-Hovest, Ludger; Alpert, Andrew J; Zarei, Mostafa; Dengjel, Jörn

    2017-06-02

    Hydrophobic interaction chromatography (HIC) is a robust standard analytical method to purify proteins while preserving their biological activity. It is widely used to study post-translational modifications of proteins and drug-protein interactions. In the current manuscript we employed HIC to separate proteins, followed by bottom-up LC-MS/MS experiments. We used this approach to fractionate antibody species followed by comprehensive peptide mapping as well as to study protein complexes in human cells. HIC-reversed-phase chromatography (RPC)-mass spectrometry (MS) is a powerful alternative to fractionate proteins for bottom-up proteomics experiments making use of their distinct hydrophobic properties.

  1. Decomposition of overlapping protein complexes: A graph theoretical method for analyzing static and dynamic protein associations

    Directory of Open Access Journals (Sweden)

    Guimarães Katia S

    2006-04-01

    Full Text Available Abstract Background Most cellular processes are carried out by multi-protein complexes, groups of proteins that bind together to perform a specific task. Some proteins form stable complexes, while other proteins form transient associations and are part of several complexes at different stages of a cellular process. A better understanding of this higher-order organization of proteins into overlapping complexes is an important step towards unveiling functional and evolutionary mechanisms behind biological networks. Results We propose a new method for identifying and representing overlapping protein complexes (or larger units called functional groups within a protein interaction network. We develop a graph-theoretical framework that enables automatic construction of such representation. We illustrate the effectiveness of our method by applying it to TNFα/NF-κB and pheromone signaling pathways. Conclusion The proposed representation helps in understanding the transitions between functional groups and allows for tracking a protein's path through a cascade of functional groups. Therefore, depending on the nature of the network, our representation is capable of elucidating temporal relations between functional groups. Our results show that the proposed method opens a new avenue for the analysis of protein interaction networks.

  2. Displacement affinity chromatography of protein phosphatase one (PP1 complexes

    Directory of Open Access Journals (Sweden)

    Gourlay Robert

    2008-11-01

    Full Text Available Abstract Background Protein phosphatase one (PP1 is a ubiquitously expressed, highly conserved protein phosphatase that dephosphorylates target protein serine and threonine residues. PP1 is localized to its site of action by interacting with targeting or regulatory proteins, a majority of which contains a primary docking site referred to as the RVXF/W motif. Results We demonstrate that a peptide based on the RVXF/W motif can effectively displace PP1 bound proteins from PP1 retained on the phosphatase affinity matrix microcystin-Sepharose. Subsequent co-immunoprecipitation experiments confirmed that each identified binding protein was either a direct PP1 interactor or was in a complex that contains PP1. Our results have linked PP1 to numerous new nuclear functions and proteins, including Ki-67, Rif-1, topoisomerase IIα, several nuclear helicases, NUP153 and the TRRAP complex. Conclusion This modification of the microcystin-Sepharose technique offers an effective means of purifying novel PP1 regulatory subunits and associated proteins and provides a simple method to uncover a link between PP1 and additional cellular processes.

  3. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.

    Science.gov (United States)

    Theofilatos, Konstantinos; Pavlopoulou, Niki; Papasavvas, Christoforos; Likothanassis, Spiros; Dimitrakopoulos, Christos; Georgopoulos, Efstratios; Moschopoulos, Charalampos; Mavroudi, Seferina

    2015-03-01

    Proteins are considered to be the most important individual components of biological systems and they combine to form physical protein complexes which are responsible for certain molecular functions. Despite the large availability of protein-protein interaction (PPI) information, not much information is available about protein complexes. Experimental methods are limited in terms of time, efficiency, cost and performance constraints. Existing computational methods have provided encouraging preliminary results, but they phase certain disadvantages as they require parameter tuning, some of them cannot handle weighted PPI data and others do not allow a protein to participate in more than one protein complex. In the present paper, we propose a new fully unsupervised methodology for predicting protein complexes from weighted PPI graphs. The proposed methodology is called evolutionary enhanced Markov clustering (EE-MC) and it is a hybrid combination of an adaptive evolutionary algorithm and a state-of-the-art clustering algorithm named enhanced Markov clustering. EE-MC was compared with state-of-the-art methodologies when applied to datasets from the human and the yeast Saccharomyces cerevisiae organisms. Using public available datasets, EE-MC outperformed existing methodologies (in some datasets the separation metric was increased by 10-20%). Moreover, when applied to new human datasets its performance was encouraging in the prediction of protein complexes which consist of proteins with high functional similarity. In specific, 5737 protein complexes were predicted and 72.58% of them are enriched for at least one gene ontology (GO) function term. EE-MC is by design able to overcome intrinsic limitations of existing methodologies such as their inability to handle weighted PPI networks, their constraint to assign every protein in exactly one cluster and the difficulties they face concerning the parameter tuning. This fact was experimentally validated and moreover, new

  4. Curcumin complexation with cyclodextrins by the autoclave process: Method development and characterization of complex formation.

    Science.gov (United States)

    Hagbani, Turki Al; Nazzal, Sami

    2017-03-30

    One approach to enhance curcumin (CUR) aqueous solubility is to use cyclodextrins (CDs) to form inclusion complexes where CUR is encapsulated as a guest molecule within the internal cavity of the water-soluble CD. Several methods have been reported for the complexation of CUR with CDs. Limited information, however, is available on the use of the autoclave process (AU) in complex formation. The aims of this work were therefore to (1) investigate and evaluate the AU cycle as a complex formation method to enhance CUR solubility; (2) compare the efficacy of the AU process with the freeze-drying (FD) and evaporation (EV) processes in complex formation; and (3) confirm CUR stability by characterizing CUR:CD complexes by NMR, Raman spectroscopy, DSC, and XRD. Significant differences were found in the saturation solubility of CUR from its complexes with CD when prepared by the three complexation methods. The AU yielded a complex with expected chemical and physical fingerprints for a CUR:CD inclusion complex that maintained the chemical integrity and stability of CUR and provided the highest solubility of CUR in water. Physical and chemical characterizations of the AU complexes confirmed the encapsulated of CUR inside the CD cavity and the transformation of the crystalline CUR:CD inclusion complex to an amorphous form. It was concluded that the autoclave process with its short processing time could be used as an alternate and efficient methods for drug:CD complexation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. 'Fractional recovery' analysis of a presynaptic synaptotagmin 1-anchored endocytic protein complex.

    Directory of Open Access Journals (Sweden)

    Rajesh Khanna

    Full Text Available BACKGROUND: The integral synaptic vesicle protein and putative calcium sensor, synaptotagmin 1 (STG, has also been implicated in synaptic vesicle (SV recovery. However, proteins with which STG interacts during SV endocytosis remain poorly understood. We have isolated an STG-associated endocytic complex (SAE from presynaptic nerve terminals and have used a novel fractional recovery (FR assay based on electrostatic dissociation to identify SAE components and map the complex structure. The location of SAE in the presynaptic terminal was determined by high-resolution quantitative immunocytochemistry at the chick ciliary ganglion giant calyx-type synapse. METHODOLOGY/PRINCIPLE FINDINGS: The first step in FR analysis was to immunoprecipitate (IP the complex with an antibody against one protein component (the IP-protein. The immobilized complex was then exposed to a high salt (1150 mM stress-test that caused shedding of co-immunoprecipitated proteins (co-IP-proteins. A Fractional Recovery ratio (FR: recovery after high salt/recovery with control salt as assayed by Western blot was calculated for each co-IP-protein. These FR values reflect complex structure since an easily dissociated protein, with a low FR value, cannot be intermediary between the IP-protein and a salt-resistant protein. The structure of the complex was mapped and a blueprint generated with a pair of FR analyses generated using two different IP-proteins. The blueprint of SAE contains an AP180/X/STG/stonin 2/intersectin/epsin core (X is unknown and epsin is hypothesized, and an AP2 adaptor, H-/L-clathrin coat and dynamin scission protein perimeter. Quantitative immunocytochemistry (ICA/ICQ method at an isolated calyx-type presynaptic terminal indicates that this complex is associated with STG at the presynaptic transmitter release face but not with STG on intracellular synaptic vesicles. CONCLUSIONS/SIGNIFICANCE: We hypothesize that the SAE serves as a recognition site and also as a

  6. Characterization of tumour virus proteins, 2

    International Nuclear Information System (INIS)

    Higuchi, T.

    1977-01-01

    The structural protein in murine tumour virus P30 has been measured by radioiummunoassay. The titer of each serum was determined by using as antigen the purified Rauscher viral protein labeled with 125 iodine. Standard competition curve was constructed in order to determine the equivalent of protein to inhibit the precipitation reaction under limited antibody concentration. Competition by purified Kirsten virus suspension normal rat kidney cells, transformed-productive and transformed non-productive cells were measured in homologous and heterologous systems [pt

  7. SCOWLP: a web-based database for detailed characterization and visualization of protein interfaces

    Directory of Open Access Journals (Sweden)

    Schroeder Michael

    2006-03-01

    Full Text Available Abstract Background Currently there is a strong need for methods that help to obtain an accurate description of protein interfaces in order to be able to understand the principles that govern molecular recognition and protein function. Many of the recent efforts to computationally identify and characterize protein networks extract protein interaction information at atomic resolution from the PDB. However, they pay none or little attention to small protein ligands and solvent. They are key components and mediators of protein interactions and fundamental for a complete description of protein interfaces. Interactome profiling requires the development of computational tools to extract and analyze protein-protein, protein-ligand and detailed solvent interaction information from the PDB in an automatic and comparative fashion. Adding this information to the existing one on protein-protein interactions will allow us to better understand protein interaction networks and protein function. Description SCOWLP (Structural Characterization Of Water, Ligands and Proteins is a user-friendly and publicly accessible web-based relational database for detailed characterization and visualization of the PDB protein interfaces. The SCOWLP database includes proteins, peptidic-ligands and interface water molecules as descriptors of protein interfaces. It contains currently 74,907 protein interfaces and 2,093,976 residue-residue interactions formed by 60,664 structural units (protein domains and peptidic-ligands and their interacting solvent. The SCOWLP web-server allows detailed structural analysis and comparisons of protein interfaces at atomic level by text query of PDB codes and/or by navigating a SCOP-based tree. It includes a visualization tool to interactively display the interfaces and label interacting residues and interface solvent by atomic physicochemical properties. SCOWLP is automatically updated with every SCOP release. Conclusion SCOWLP enriches

  8. Structural characterization of the Actinides (III) and (IV) - DOTA complexes

    International Nuclear Information System (INIS)

    Audras, Matthieu

    2014-01-01

    The polyamino-carboxylate anions have been identified as compounds of interest in the operations of actinide separation, in actinide migration in the environment and in human radio-toxicology. The structural characterization of complexes formed between actinides and polyamino-carboxylates ligands is essential for a better understanding of actinide-ligands interactions. Among the polyamino-carboxylate anions, the DOTA ligand (1,4,7,10-tetraaza-cyclododecane tetraacetic acid) is described as a very strong complexing agent of the lanthanides(III), but has been little studied with actinides. The objective of this thesis is to describe the complexes formed between the actinides (III) and (IV) and the DOTA ligand, and compare them with the lanthanide complexes. For this, an approach has been introduced to characterize the complexes by complementary analytical techniques (spectrophotometry, electro-spray ionization mass spectrometry, NMR, EXAFS, electrochemistry), but also by calculations of theoretical chemistry to help the interpretation of the experimental data. The formation of a 1:1 complex is observed with the actinides(III) (plutonium and americium) as for lanthanides(III): rapid formation of intermediate species which evolves slowly towards the formation of a limit complex. Within this complex, the cation is located inside the cavity formed by the ligand. Four nitrogen atoms and four oxygen atoms from the carboxylate functions are involved in the coordination sphere of the cation. However, differences were observed in the bond lengths formed between the cation and the nitrogen atoms (the bonds are somewhat shorter in the case of actinide complexes) as well as the complexation kinetics, which is slightly faster for the actinides(III) than for lanthanide(III) ions of equivalent radius. The same behavior was observed in solution upon complexation of actinides(IV) (uranium, plutonium and neptunium): slow formation of a 1:1 complex (actinide(IV):ligand) in wherein the

  9. Characterization of redox proteins using electrochemical methods

    NARCIS (Netherlands)

    Verhagen, M.

    1995-01-01

    The use of electrochemical techniques in combination with proteins started approximately a decade ago and has since then developed into a powerfull technique for the study of small redox proteins. In addition to the determination of redox potentials, electrochemistry can be used to obtain

  10. SDSL-ESR-based protein structure characterization

    NARCIS (Netherlands)

    Strancar, J.; Kavalenka, A.A.; Urbancic, I.; Ljubetic, A.; Hemminga, M.A.

    2010-01-01

    As proteins are key molecules in living cells, knowledge about their structure can provide important insights and applications in science, biotechnology, and medicine. However, many protein structures are still a big challenge for existing high-resolution structure-determination methods, as can be

  11. Characterization of the inclusion complex ropivacaine: β-cyclodextrin

    International Nuclear Information System (INIS)

    Fraceto, Leonardo Fernandes; Moraes, Carolina Morales; Araujo, Daniele Ribeiro de; Zanella, Luciana; Paula, Eneida de; Pertinhez, Thelma de Aguiar

    2007-01-01

    Ropivacaine (RVC) is a widely used local anesthetic. The complexation of RVC with β-cyclodextrin (β-CD) is of great interest for the development of more efficient local anesthetic formulations. The present work focuses on the characterization of the RVC:β-CD complex by nuclear magnetic resonance (NMR). The stoichiometry of the complex is 1:2 RVC:β-CD. DOSY-NMR shows that the association constant is 55.5 M -1 . Longitudinal relaxation time results show that RVC changes its mobility in the presence of β-CD. This study is focused on the physicochemical characterization of inclusion complexes that are potentials options for pain treatment. (author)

  12. Adenovirus type 5 DNA-protein complexes from formaldehyde cross-linked cells early after infection

    International Nuclear Information System (INIS)

    Spector, David J.; Johnson, Jeffrey S.; Baird, Nicholas L.; Engel, Daniel A.

    2003-01-01

    We report here the properties of viral DNA-protein complexes that purify with cellular chromatin following formaldehyde cross-linking of intact cells early after infection. The cross-linked viral DNA fractionated into shear-sensitive (S) and shear- resistant (R) components that were separable by sedimentation, which allowed independent characterization. The R component had the density and sedimentation properties expected for DNA-protein complexes and contained intact viral DNA. It accounted for about 50% of the viral DNA recovered at 1.5 h after infection but less than 20% by 4.5 h. The proportion of R component was independent of multiplicity of infection, even at less than one particle per cell. Viral hexon and protein VII, but not protein VI, were detected in the fractions containing the R component. These properties are consistent with those of partially uncoated virions associated with the nuclear envelope. A substantial proportion of the S component viral DNA had the same density as cellular chromatin. Protein VII was the most abundant viral protein present in gradient fractions that contained the S component. Complexes containing USF transcription factor cross-linked to the adenovirus major late promoter were detected by viral chromatin immunoprecipitation of the fractions containing S component. The S component probably contained uncoated nuclear viral DNA that assembles into early viral transcription complexes

  13. Characterizing time series: when Granger causality triggers complex networks

    International Nuclear Information System (INIS)

    Ge Tian; Cui Yindong; Lin Wei; Liu Chong; Kurths, Jürgen

    2012-01-01

    In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIH human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length. (paper)

  14. Characterizing time series: when Granger causality triggers complex networks

    Science.gov (United States)

    Ge, Tian; Cui, Yindong; Lin, Wei; Kurths, Jürgen; Liu, Chong

    2012-08-01

    In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIHMassachusetts Institute of Technology-Beth Israel Hospital. human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length.

  15. Effects of ionizing radiations on DNA-protein complexes

    International Nuclear Information System (INIS)

    Gillard, N.

    2005-11-01

    The radio-induced destruction of DNA-protein complexes may have serious consequences for systems implicated in important cellular functions. The first system which has been studied is the lactose operon system, that regulates gene expression in Escherichia coli. First of all, the repressor-operator complex is destroyed after irradiation of the complex or of the protein alone. The damaging of the domain of repressor binding to DNA (headpiece) has been demonstrated and studied from the point of view of peptide chain integrity, conformation and amino acids damages. Secondly, dysfunctions of the in vitro induction of an irradiated repressor-unirradiated DNA complex have been observed. These perturbations, due to a decrease of the number of inducer binding sites, are correlated to the damaging of tryptophan residues. Moreover, the inducer protects the repressor when they are irradiated together, both by acting as a scavenger in the bulk, and by the masking of its binding site on the protein. The second studied system is formed by Fpg (for Formamido pyrimidine glycosylase), a DNA repair protein and a DNA with an oxidative lesion. The results show that irradiation disturbs the repair both by decreasing its efficiency of DNA lesion recognition and binding, and by altering its enzymatic activity. (author)

  16. Colorful packages : fluorescent proteins in complex coacervate core micelles

    NARCIS (Netherlands)

    Nolles, Antsje

    2018-01-01

    This thesis explores the encapsulation of fluorescent proteins (FPs) into complex coacervate core micelles (C3Ms) and features the impact of this encapsulation on the biophysical properties of the FPs. In total eight different FPs were investigated originating from two different classes

  17. Affinity capture of biotinylated proteins at acidic conditions to facilitate hydrogen/deuterium exchange mass spectrometry analysis of multimeric protein complexes

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Jørgensen, Thomas J. D.; Koefoed, Klaus

    2013-01-01

    Characterization of conformational and dynamic changes associated with protein interactions can be done by hydrogen/deuterium exchange mass spectrometry (HDX-MS) by comparing the deuterium uptake in the bound and unbound state of the proteins. Investigation of local hydrogen/deuterium exchange...... in heteromultimeric protein complexes poses a challenge for the method due to the increased complexity of the mixture of peptides originating from all interaction partners in the complex. Previously, interference of peptides from one interaction partner has been removed by immobilizing the intact protein on beads...... complexes without interference of peptides originating from other interaction partners in the complex. The biotin-streptavidin strategy has been successfully implemented in a model system with two recombinant monoclonal antibodies that target nonoverlapping epitopes on the human epidermal growth factor...

  18. Exploration of the dynamic properties of protein complexes predicted from spatially constrained protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Eric A Yen

    2014-05-01

    Full Text Available Protein complexes are not static, but rather highly dynamic with subunits that undergo 1-dimensional diffusion with respect to each other. Interactions within protein complexes are modulated through regulatory inputs that alter interactions and introduce new components and deplete existing components through exchange. While it is clear that the structure and function of any given protein complex is coupled to its dynamical properties, it remains a challenge to predict the possible conformations that complexes can adopt. Protein-fragment Complementation Assays detect physical interactions between protein pairs constrained to ≤8 nm from each other in living cells. This method has been used to build networks composed of 1000s of pair-wise interactions. Significantly, these networks contain a wealth of dynamic information, as the assay is fully reversible and the proteins are expressed in their natural context. In this study, we describe a method that extracts this valuable information in the form of predicted conformations, allowing the user to explore the conformational landscape, to search for structures that correlate with an activity state, and estimate the abundance of conformations in the living cell. The generator is based on a Markov Chain Monte Carlo simulation that uses the interaction dataset as input and is constrained by the physical resolution of the assay. We applied this method to an 18-member protein complex composed of the seven core proteins of the budding yeast Arp2/3 complex and 11 associated regulators and effector proteins. We generated 20,480 output structures and identified conformational states using principle component analysis. We interrogated the conformation landscape and found evidence of symmetry breaking, a mixture of likely active and inactive conformational states and dynamic exchange of the core protein Arc15 between core and regulatory components. Our method provides a novel tool for prediction and

  19. In-house characterization of protein powder

    DEFF Research Database (Denmark)

    Hartmann, Christian Grundahl; Nielsen, Ole Faurskov; Ståhl, Kenny

    2010-01-01

    X-ray powder diffraction patterns of lysozyme and insulin were recorded on a standard in-house powder diffractometer. The experimental powder diffraction patterns were compared with patterns calculated from Protein Data Bank coordinate data. Good agreement was obtained by including straightforward...... to include calculated H-atom positions did not improve the overall fit and was abandoned. The method devised was shown to be a quick and convenient tool for distinguishing precipitates and polymorphs of proteins....

  20. Characterization of the superior olivary complex of Canis lupus domesticus.

    Science.gov (United States)

    Fech, Tatiana; Calderón-Garcidueñas, Lilian; Kulesza, Randy J

    2017-08-01

    The superior olivary complex (SOC) is a collection of brainstem auditory nuclei which play essential roles in the localization of sound sources, temporal coding of vocalizations and descending modulation of the cochlea. Notwithstanding, the SOC nuclei vary considerably between species in accordance with the auditory needs of the animal. The canine SOC was subjected to anatomical and physiological examination nearly 50 years ago and was then virtually forgotten. Herein, we aimed to characterize the nuclei of the canine SOC using quantitative morphometrics, estimation of neuronal number, histochemistry for perineuronal nets and immunofluorescence for the calcium binding proteins calbindin and calretinin. We found the principal nuclei to be extremely well developed: the lateral superior olive (LSO) contained over 20,000 neurons and the medial superior olive (MSO) contained over 15,000 neurons. In nearly all non-chiropterian terrestrial mammals, the MSO exists as a thin, vertical column of neurons. The canine MSO was folded into a U-shaped contour and had associated with the ventromedial tip a small, round collection of neurons we termed the tail nucleus of the MSO. Further, we found evidence within the LSO, MSO and medial nucleus of the trapezoid body (MNTB) for significant morphological variations along the mediolateral or rostrocaudal axes. Finally, the majority of MNTB neurons were calbindin-immunopositive and associated with calretinin-immunopositive calyceal terminals. Together, these observations suggest the canine SOC complies with the basic plan of the mammalian SOC but possesses a number of unique anatomical features. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Extreme disorder in an ultrahigh-affinity protein complex

    Science.gov (United States)

    Borgia, Alessandro; Borgia, Madeleine B.; Bugge, Katrine; Kissling, Vera M.; Heidarsson, Pétur O.; Fernandes, Catarina B.; Sottini, Andrea; Soranno, Andrea; Buholzer, Karin J.; Nettels, Daniel; Kragelund, Birthe B.; Best, Robert B.; Schuler, Benjamin

    2018-03-01

    Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring defined binding sites or interactions between specific individual residues. Proteome-wide sequence analysis suggests that this interaction mechanism may be abundant in eukaryotes.

  2. Extreme disorder in an ultrahigh-affinity protein complex

    DEFF Research Database (Denmark)

    Borgia, Alessandro; Borgia, Madeleine B; Bugge, Katrine

    2018-01-01

    Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions...... with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring...... or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex...

  3. From nonspecific DNA-protein encounter complexes to the prediction of DNA-protein interactions.

    Directory of Open Access Journals (Sweden)

    Mu Gao

    2009-03-01

    Full Text Available DNA-protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA-protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA-protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA-protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA-protein interaction modes exhibit some similarity to specific DNA-protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Calpha deviation from native is up to 5 A from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA-protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein.

  4. Evolution of DNA replication protein complexes in eukaryotes and Archaea.

    Directory of Open Access Journals (Sweden)

    Nicholas Chia

    Full Text Available BACKGROUND: The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA, replication factor C (RFC, and the minichromosome maintenance (MCM complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best. METHODOLOGY/PRINCIPAL FINDINGS: While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex-all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea. CONCLUSION/SIGNIFICANCE: This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota.

  5. Effects of ionizing radiations on DNA-protein complexes; Effets des radiations ionisantes sur des complexes ADN-proteine

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, N

    2005-11-15

    The radio-induced destruction of DNA-protein complexes may have serious consequences for systems implicated in important cellular functions. The first system which has been studied is the lactose operon system, that regulates gene expression in Escherichia coli. First of all, the repressor-operator complex is destroyed after irradiation of the complex or of the protein alone. The damaging of the domain of repressor binding to DNA (headpiece) has been demonstrated and studied from the point of view of peptide chain integrity, conformation and amino acids damages. Secondly, dysfunctions of the in vitro induction of an irradiated repressor-unirradiated DNA complex have been observed. These perturbations, due to a decrease of the number of inducer binding sites, are correlated to the damaging of tryptophan residues. Moreover, the inducer protects the repressor when they are irradiated together, both by acting as a scavenger in the bulk, and by the masking of its binding site on the protein. The second studied system is formed by Fpg (for Formamido pyrimidine glycosylase), a DNA repair protein and a DNA with an oxidative lesion. The results show that irradiation disturbs the repair both by decreasing its efficiency of DNA lesion recognition and binding, and by altering its enzymatic activity. (author)

  6. Purification, characterization and immunolocalization of porcine surfactant protein D

    DEFF Research Database (Denmark)

    Sørensen, C.M.; Nielsen, Ove Lilholm; Willis, A.

    2005-01-01

    in a dose and Ca2+-dependent manner with a saccharide specificity similar to rat and human SP-D. The purified protein was used for the production of a monoclonal anti-pSP-D antibody. The antibody reacted specifically with pSP-D in the reduced and unreduced state when analysed by Western blotting......Surfactant protein D (SP-D) is a collectin believed to play an important role in innate immunity. SP-D is characterized by having a collagen-like domain and a carbohydrate recognition domain (CRD), which has a specific Ca2+-dependent specificity for saccharides and thus the ability to bind complex...... glycoconjugates on micro-organisms. This paper describes the tissue immunolocalization of porcine SP-D (pSP-D) in normal slaughter pigs using a monoclonal antibody raised against purified pSP-D. Porcine SP-D was purified from porcine bronchoalveolar lavage (BAL) by maltose-agarose and immunoglobulin M affinity...

  7. Sequence-specific capture of protein-DNA complexes for mass spectrometric protein identification.

    Directory of Open Access Journals (Sweden)

    Cheng-Hsien Wu

    Full Text Available The regulation of gene transcription is fundamental to the existence of complex multicellular organisms such as humans. Although it is widely recognized that much of gene regulation is controlled by gene-specific protein-DNA interactions, there presently exists little in the way of tools to identify proteins that interact with the genome at locations of interest. We have developed a novel strategy to address this problem, which we refer to as GENECAPP, for Global ExoNuclease-based Enrichment of Chromatin-Associated Proteins for Proteomics. In this approach, formaldehyde cross-linking is employed to covalently link DNA to its associated proteins; subsequent fragmentation of the DNA, followed by exonuclease digestion, produces a single-stranded region of the DNA that enables sequence-specific hybridization capture of the protein-DNA complex on a solid support. Mass spectrometric (MS analysis of the captured proteins is then used for their identification and/or quantification. We show here the development and optimization of GENECAPP for an in vitro model system, comprised of the murine insulin-like growth factor-binding protein 1 (IGFBP1 promoter region and FoxO1, a member of the forkhead rhabdomyosarcoma (FoxO subfamily of transcription factors, which binds specifically to the IGFBP1 promoter. This novel strategy provides a powerful tool for studies of protein-DNA and protein-protein interactions.

  8. A Bacillus megaterium System for the Production of Recombinant Proteins and Protein Complexes.

    Science.gov (United States)

    Biedendieck, Rebekka

    2016-01-01

    For many years the Gram-positive bacterium Bacillus megaterium has been used for the production and secretion of recombinant proteins. For this purpose it was systematically optimized. Plasmids with different inducible promoter systems, with different compatible origins, with small tags for protein purification and with various specific signals for protein secretion were combined with genetically improved host strains. Finally, the development of appropriate cultivation conditions for the production strains established this organism as a bacterial cell factory even for large proteins. Along with the overproduction of individual proteins the organism is now also used for the simultaneous coproduction of up to 14 recombinant proteins, multiple subsequently interacting or forming protein complexes. Some of these recombinant strains are successfully used for bioconversion or the biosynthesis of valuable components including vitamins. The titers in the g per liter scale for the intra- and extracellular recombinant protein production prove the high potential of B. megaterium for industrial applications. It is currently further enhanced for the production of recombinant proteins and multi-subunit protein complexes using directed genetic engineering approaches based on transcriptome, proteome, metabolome and fluxome data.

  9. Characterization of auxin-binding proteins from zucchini plasma membrane

    Science.gov (United States)

    Hicks, G. R.; Rice, M. S.; Lomax, T. L.

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may

  10. A plant virus movement protein forms ringlike complexes with the major nucleolar protein, fibrillarin, in vitro.

    Science.gov (United States)

    Canetta, Elisabetta; Kim, Sang Hyon; Kalinina, Natalia O; Shaw, Jane; Adya, Ashok K; Gillespie, Trudi; Brown, John W S; Taliansky, Michael

    2008-02-29

    Fibrillarin, one of the major proteins of the nucleolus, has methyltransferase activity directing 2'-O-ribose methylation of rRNA and snRNAs and is required for rRNA processing. The ability of the plant umbravirus, groundnut rosette virus, to move long distances through the phloem, the specialized plant vascular system, has been shown to strictly depend on the interaction of one of its proteins, the ORF3 protein (protein encoded by open reading frame 3), with fibrillarin. This interaction is essential for several stages in the groundnut rosette virus life cycle such as nucleolar import of the ORF3 protein via Cajal bodies, relocalization of some fibrillarin from the nucleolus to cytoplasm, and assembly of cytoplasmic umbraviral ribonucleoprotein particles that are themselves required for the long-distance spread of the virus and systemic infection. Here, using atomic force microscopy, we determine the architecture of these complexes as single-layered ringlike structures with a diameter of 18-22 nm and a height of 2.0+/-0.4 nm, which consist of several (n=6-8) distinct protein granules. We also estimate the molar ratio of fibrillarin to ORF3 protein in the complexes as approximately 1:1. Based on these data, we propose a model of the structural organization of fibrillarin-ORF3 protein complexes and discuss potential mechanistic and functional implications that may also apply to other viruses.

  11. The Fanconi anemia protein FANCF forms a nuclear complex with FANCA, FANCC and FANCG.

    Science.gov (United States)

    de Winter, J P; van der Weel, L; de Groot, J; Stone, S; Waisfisz, Q; Arwert, F; Scheper, R J; Kruyt, F A; Hoatlin, M E; Joenje, H

    2000-11-01

    Fanconi anemia (FA) is a chromosomal instability syndrome associated with a strong predisposition to cancer, particularly acute myeloid leukemia and squamous cell carcinoma. At the cellular level, FA is characterized by spontaneous chromosomal breakage and a unique hypersensitivity to DNA cross-linking agents. Complementation analysis has indicated that at least seven distinct genes are involved in the pathogenesis of FA. Despite the identification of four of these genes (FANCA, FANCC, FANCF and FANCG), the nature of the 'FA pathway' has remained enigmatic, as the FA proteins lack sequence homologies or motifs that could point to a molecular function. To further define this pathway, we studied the subcellular localizations and mutual interactions of the FA proteins, including the recently identified FANCF protein, in human lymphoblasts. FANCF was found predominantly in the nucleus, where it complexes with FANCA, FANCC and FANCG. These interactions were detected in wild-type and FA-D lymphoblasts, but not in lymphoblasts of other FA complementation groups. This implies that each of the FA proteins, except FANCD, is required for these complexes to form. Similarly, we show that the interaction between FANCA and FANCC is restricted to wild-type and FA-D cells. Furthermore, we document the subcellular localization of FANCA and the FANCA/FANCG complex in all FA complementation groups. Our results, along with published data, culminate in a model in which a multi-protein FA complex serves a nuclear function to maintain genomic integrity.

  12. In-house characterization of protein powder

    DEFF Research Database (Denmark)

    Hartmann, Christian Grundahl; Harris, Pernille; Ståhl, Kenny

    2011-01-01

    . For safe identification of the crystal form the experimental patterns have to be compared with patterns calculated from known crystal structures. Very good agreement with Protein Data Bank data was obtained after including corrections for background, unit cell parameters, disordered bulk......Collecting protein powder diffraction data on standard in-house powder diffractometers requires careful handling of the samples. Specially designed sample holders combined with optimized collimation were found to be the key factors in improving the data quality and reducing the data collection time......-solvent, and geometric factors. The data collection and correction procedures were demonstrated by the identification of three different crystal forms of insulin....

  13. Parts Characterization for Tunable Protein Expression

    DEFF Research Database (Denmark)

    Klausen, Michael Schantz; Sommer, Morten Otto Alexander

    2018-01-01

    Flow-seq combines flexible genome engineering methods with flow cytometry-based cell sorting and deep DNA sequencing to enable comprehensive interrogation of genotype to phenotype relationships. One application is to study the effect of specific regulatory elements on protein expression. Construc......Flow-seq combines flexible genome engineering methods with flow cytometry-based cell sorting and deep DNA sequencing to enable comprehensive interrogation of genotype to phenotype relationships. One application is to study the effect of specific regulatory elements on protein expression...

  14. Electrophoretic characterization of crude leaf proteins in ...

    African Journals Online (AJOL)

    Administrator

    ground in an eppendorf tube with 100 µl of lysis buffer. The mixtures were allowed to settle inside the eppendorf immersed in an ice bath for 1 h, and the supernatants were fractionated by. 7.5% SDS-PAGE (Laemmili, 1970). RESULTS AND DISCUSSION. Protein distribution patterns in three cultivars of. Lycopersicon and ...

  15. Molecular and functional characterization of MICAL proteins

    NARCIS (Netherlands)

    Zhou, Y.

    2011-01-01

    Since their original identification in 2002, MICAL proteins have been implicated in various physiological and pathological processes including axon guidance, tight junction formation, spinal cord injury and cancer. MICALs mediate cell signaling via their unusual N-terminal monooxygenase (MO) domain

  16. Enzyme kinetic characterization of protein tyrosine phosphatases

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Branner, S.; Møller, K. B.

    2003-01-01

    Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta...

  17. Integral and peripheral association of proteins and protein complexes with Yersinia pestis inner and outer membranes

    Directory of Open Access Journals (Sweden)

    Bunai Christine L

    2009-02-01

    Full Text Available Abstract Yersinia pestis proteins were sequentially extracted from crude membranes with a high salt buffer (2.5 M NaBr, an alkaline solution (180 mM Na2CO3, pH 11.3 and membrane denaturants (8 M urea, 2 M thiourea and 1% amidosulfobetaine-14. Separation of proteins by 2D gel electrophoresis was followed by identification of more than 600 gene products by MS. Data from differential 2D gel display experiments, comparing protein abundances in cytoplasmic, periplasmic and all three membrane fractions, were used to assign proteins found in the membrane fractions to three protein categories: (i integral membrane proteins and peripheral membrane proteins with low solubility in aqueous solutions (220 entries; (ii peripheral membrane proteins with moderate to high solubility in aqueous solutions (127 entries; (iii cytoplasmic or ribosomal membrane-contaminating proteins (80 entries. Thirty-one proteins were experimentally associated with the outer membrane (OM. Circa 50 proteins thought to be part of membrane-localized, multi-subunit complexes were identified in high Mr fractions of membrane extracts via size exclusion chromatography. This data supported biologically meaningful assignments of many proteins to the membrane periphery. Since only 32 inner membrane (IM proteins with two or more predicted transmembrane domains (TMDs were profiled in 2D gels, we resorted to a proteomic analysis by 2D-LC-MS/MS. Ninety-four additional IM proteins with two or more TMDs were identified. The total number of proteins associated with Y. pestis membranes increased to 456 and included representatives of all six β-barrel OM protein families and 25 distinct IM transporter families.

  18. Characterization of radiation-induced proteins in Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Tanaka, A.; Watanabe, H.; Nozawa, R.; Hu, Q.; Kitayama, S.

    1992-01-01

    Induction of proteins after gamma-irradiation in Deinococcus radiodurans were investigated. 10 proteins were induced and about 15 proteins were reduced after irradiation with 6kGy. These proteins were classified to four groups by responses to gamma-rays, UV light, mitomycin C(MMC) treatment and heating. Additional studies were carried out for the characterization of two induced proteins. One protein was induced by gamma-rays, UV light as well as heating. This protein appeared to be a glycoprotein from its reaction with lectin. From the amino acid sequences of N-terminal and internal region, it was found that this protein is homologous to EF-Tu protein of E. coli. Meanwhile the other protein was induced not only by gamma-rays but also by UV light and MMC treatment. This protein seems to be a new enzyme as it has no homology to the known proteins which have ever been analyzed. No accumulations of these two proteins were observed in radiation sensitive strain of D. radiodurans and in both of E. coli and Bacillus pumilus, suggesting that induction of these two proteins would be specific for high resistant strain. (author)

  19. Congenital deficiency of two polypeptide subunits of the iron-protein fragment of mitochondrial complex I.

    Science.gov (United States)

    Moreadith, R W; Cleeter, M W; Ragan, C I; Batshaw, M L; Lehninger, A L

    1987-02-01

    Recently, we described a patient with severe lactic acidosis due to congenital complex I (NADH-ubiquinone oxidoreductase) deficiency. We now report further enzymatic and immunological characterizations. Both NADH and ferricyanide titrations of complex I activity (measured as NADH-ferricyanide reductase) were distinctly altered in the mitochondria from the patient's tissues. In addition, antisera against complex I immunoprecipitated NADH-ferricyanide reductase from the control but not the patient's mitochondria. However, immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of complex I polypeptides demonstrated that the majority of the 25 polypeptides comprising complex I were present in the affected mitochondria. A more detailed analysis using subunit selective antisera against the main polypeptides of the iron-protein fragments of complex I revealed a selective absence of the 75- and 13-kD polypeptides. These findings suggest that the underlying basis for this patient's disease was a congenital deficiency of at least two polypeptides comprising the iron-protein fragment of complex I, which resulted in the inability to correctly assemble a functional enzyme complex.

  20. Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex

    Directory of Open Access Journals (Sweden)

    Lisa M. Tuttle

    2018-03-01

    Full Text Available Summary: Transcription activation domains (ADs are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements. : Tuttle et al. report a “fuzzy free-for-all” interaction mechanism that explains how seemingly unrelated transcription activators converge on a limited number of coactivator targets. The mechanism provides a rationale for the observation that individually weak and low-specificity interactions can combine to produce biologically critical function without requiring highly ordered structure. Keywords: transcription activation, intrinsically disordered proteins, fuzzy binding

  1. Immersion freezing of ice nucleation active protein complexes

    Directory of Open Access Journals (Sweden)

    S. Hartmann

    2013-06-01

    Full Text Available Utilising the Leipzig Aerosol Cloud Interaction Simulator (LACIS, the immersion freezing behaviour of droplet ensembles containing monodisperse particles, generated from a Snomax™ solution/suspension, was investigated. Thereto ice fractions were measured in the temperature range between −5 °C to −38 °C. Snomax™ is an industrial product applied for artificial snow production and contains Pseudomonas syringae} bacteria which have long been used as model organism for atmospheric relevant ice nucleation active (INA bacteria. The ice nucleation activity of such bacteria is controlled by INA protein complexes in their outer membrane. In our experiments, ice fractions increased steeply in the temperature range from about −6 °C to about −10 °C and then levelled off at ice fractions smaller than one. The plateau implies that not all examined droplets contained an INA protein complex. Assuming the INA protein complexes to be Poisson distributed over the investigated droplet populations, we developed the CHESS model (stoCHastic modEl of similar and poiSSon distributed ice nuclei which allows for the calculation of ice fractions as function of temperature and time for a given nucleation rate. Matching calculated and measured ice fractions, we determined and parameterised the nucleation rate of INA protein complexes exhibiting class III ice nucleation behaviour. Utilising the CHESS model, together with the determined nucleation rate, we compared predictions from the model to experimental data from the literature and found good agreement. We found that (a the heterogeneous ice nucleation rate expression quantifying the ice nucleation behaviour of the INA protein complex is capable of describing the ice nucleation behaviour observed in various experiments for both, Snomax™ and P. syringae bacteria, (b the ice nucleation rate, and its temperature dependence, seem to be very similar regardless of whether the INA protein complexes inducing ice

  2. Characterization and complexation of humic acids. Part 1

    International Nuclear Information System (INIS)

    Kim, J.L.; Buckau, G.; Klenze, R.; Rhee, D.S.; Wimmer, H.

    1991-01-01

    This paper summarizes the research contributions to the CEC Mirage II project, particularly the research area on complexation and colloids (COCO). The first part of the paper comprises the characterization of humic and fulvic acids from different origins: a commercial product from the Aldrich Co. used as a reference humic acid and site-specific humic acids from Gorleben (Germany), Boom Clay (Belgium) and Fanay Augeres (France) aquifer systems. The second part includes the complexation of trivalent actinides: Am(III) and Cm(III) with various humic acids. A number of different methods have been applied for the complexation study: spectrophotometry, ultrafiltration, laser-induced photo-acoustic spectroscopy (LPAS) and time-resolved laser fluorescence spectroscopy (TRLFS). The evaluation process of complexation constant is discussed extensively and the well consolidated results are presented, which can be directly used for the geochemical modelling of the radionuclide migration

  3. Preparation and Characterization of Myosin Proteins.

    Science.gov (United States)

    Caldwell, Elizabeth; Eftink, Maurice R.

    1985-01-01

    Students complete five experimental projects at the end of a senior-level biochemistry course which involves the isolation and characterization of myosin and its water-soluble subfragments. Procedures used and results obtained are provided for such projects as viscosity and ATPase measurements and gel electrophoresis experiments. (JN)

  4. Proteomics strategy for identifying candidate bioactive proteins in complex mixtures: application to the platelet releasate.

    LENUS (Irish Health Repository)

    O'Connor, Roisin

    2010-01-01

    Proteomic approaches have proven powerful at identifying large numbers of proteins, but there are fewer reports of functional characterization of proteins in biological tissues. Here, we describe an experimental approach that fractionates proteins released from human platelets, linking bioassay activity to identity. We used consecutive orthogonal separation platforms to ensure sensitive detection: (a) ion-exchange of intact proteins, (b) SDS-PAGE separation of ion-exchange fractions and (c) HPLC separation of tryptic digests coupled to electrospray tandem mass spectrometry. Migration of THP-1 monocytes in response to complete or fractionated platelet releasate was assessed and located to just one of the forty-nine ion-exchange fractions. Over 300 proteins were identified in the releasate, with a wide range of annotated biophysical and biochemical properties, in particular platelet activation, adhesion, and wound healing. The presence of PEDF and involucrin, two proteins not previously reported in platelet releasate, was confirmed by western blotting. Proteins identified within the fraction with monocyte promigratory activity and not in other inactive fractions included vimentin, PEDF, and TIMP-1. We conclude that this analytical platform is effective for the characterization of complex bioactive samples.

  5. Supercharging Protein Complexes from Aqueous Solution Disrupts their Native Conformations

    Science.gov (United States)

    Sterling, Harry J.; Kintzer, Alexander F.; Feld, Geoffrey K.; Cassou, Catherine A.; Krantz, Bryan A.; Williams, Evan R.

    2012-02-01

    The effects of aqueous solution supercharging on the solution- and gas-phase structures of two protein complexes were investigated using traveling-wave ion mobility-mass spectrometry (TWIMS-MS). Low initial concentrations of m-nitrobenzyl alcohol ( m-NBA) in the electrospray ionization (ESI) solution can effectively increase the charge of concanavalin A dimers and tetramers, but at higher m-NBA concentrations, the increases in charge are accompanied by solution-phase dissociation of the dimers and up to a ~22% increase in the collision cross section (CCS) of the tetramers. With just 0.8% m-NBA added to the ESI solution of a ~630 kDa anthrax toxin octamer complex, the average charge is increased by only ~4% compared with the "native" complex, but it is sufficiently destabilized so that extensive gas-phase fragmentation occurs in the relatively high pressure regions of the TWIMS device. Anthrax toxin complexes exist in either a prechannel or a transmembrane channel state. With m-NBA, the prechannel state of the complex has the same CCS/charge ratio in the gas phase as the transmembrane channel state of the same complex formed without m-NBA, yet undergoes extensive dissociation, indicating that destabilization from supercharging occurs in the ESI droplet prior to ion formation and is not a result of Coulombic destabilization in the gas phase as a result of higher charging. These results demonstrate that the supercharging of large protein complexes is the result of conformational changes induced by the reagents in the ESI droplets, where enrichment of the supercharging reagent during droplet evaporation occurs.

  6. Structural analysis of protein complexes with sodium alkyl sulfates by small-angle scattering and polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Ospinal-Jiménez, Mónica; Pozzo, Danilo C

    2011-02-01

    Small-angle X-ray (SAXS) and neutron (SANS) scattering is used to probe the structure of protein-surfactant complexes in solution and to correlate this information with their performance in gel electrophoresis. Proteins with sizes between 6.5 to 116 kDa are denatured with sodium alkyl sulfates (SC(x)S) of variable tail lengths. Several combinations of proteins and surfactants are analyzed to measure micelle radii, the distance between micelles, the extension of the complex, the radius of gyration, and the electrophoretic mobility. The structural characterization shows that most protein-surfactant complexes can be accurately described as pearl-necklace structures with spherical micelles. However, protein complexes with short surfactants (SC(8)S) bind with micelles that deviate significantly from spherical shape. Sodium decyl (SC(10)S) and dodecyl (SC(12)S, more commonly abbreviated as SDS) sulfates result in the best protein separations in standard gel electrophoresis. Particularly, SC(10)S shows higher resolutions for complexes of low molecular weight. The systematic characterization of alkyl sulfate surfactants demonstrates that changes in the chain architecture can significantly affect electrophoretic migration so that protein-surfactant structures could be optimized for high resolution protein separations.

  7. Crystallization of bi-functional ligand protein complexes.

    Science.gov (United States)

    Antoni, Claudia; Vera, Laura; Devel, Laurent; Catalani, Maria Pia; Czarny, Bertrand; Cassar-Lajeunesse, Evelyn; Nuti, Elisa; Rossello, Armando; Dive, Vincent; Stura, Enrico Adriano

    2013-06-01

    Homodimerization is important in signal transduction and can play a crucial role in many other biological systems. To obtaining structural information for the design of molecules able to control the signalization pathways, the proteins involved will have to be crystallized in complex with ligands that induce dimerization. Bi-functional drugs have been generated by linking two ligands together chemically and the relative crystallizability of complexes with mono-functional and bi-functional ligands has been evaluated. There are problems associated with crystallization with such ligands, but overall, the advantages appear to be greater than the drawbacks. The study involves two matrix metalloproteinases, MMP-12 and MMP-9. Using flexible and rigid linkers we show that it is possible to control the crystal packing and that by changing the ligand-enzyme stoichiometric ratio, one can toggle between having one bi-functional ligand binding to two enzymes and having the same ligand bound to each enzyme. The nature of linker and its point of attachment on the ligand can be varied to aid crystallization, and such variations can also provide valuable structural information about the interactions made by the linker with the protein. We report here the crystallization and structure determination of seven ligand-dimerized complexes. These results suggest that the use of bi-functional drugs can be extended beyond the realm of protein dimerization to include all drug design projects. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Characterization of the Tetraspan Junctional Complex (4JC) superfamily.

    Science.gov (United States)

    Chou, Amy; Lee, Andre; Hendargo, Kevin J; Reddy, Vamsee S; Shlykov, Maksim A; Kuppusamykrishnan, Harikrishnan; Medrano-Soto, Arturo; Saier, Milton H

    2017-03-01

    Connexins or innexins form gap junctions, while claudins and occludins form tight junctions. In this study, statistical data, derived using novel software, indicate that these four junctional protein families and eleven other families of channel and channel auxiliary proteins are related by common descent and comprise the Tetraspan (4 TMS) Junctional Complex (4JC) Superfamily. These proteins all share similar 4 transmembrane α-helical (TMS) topologies. Evidence is presented that they arose via an intragenic duplication event, whereby a 2 TMS-encoding genetic element duplicated tandemly to give 4 TMS proteins. In cases where high resolution structural data were available, the conclusion of homology was supported by conducting structural comparisons. Phylogenetic trees reveal the probable relationships of these 15 families to each other. Long homologues containing fusions to other recognizable domains as well as internally duplicated or fused domains are reported. Large "fusion" proteins containing 4JC domains proved to fall predominantly into family-specific patterns as follows: (1) the 4JC domain was N-terminal; (2) the 4JC domain was C-terminal; (3) the 4JC domain was duplicated or occasionally triplicated and (4) mixed fusion types were present. Our observations provide insight into the evolutionary origins and subfunctions of these proteins as well as guides concerning their structural and functional relationships. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Radiation damage to DNA in DNA-protein complexes.

    Science.gov (United States)

    Spotheim-Maurizot, M; Davídková, M

    2011-06-03

    The most aggressive product of water radiolysis, the hydroxyl (OH) radical, is responsible for the indirect effect of ionizing radiations on DNA in solution and aerobic conditions. According to radiolytic footprinting experiments, the resulting strand breaks and base modifications are inhomogeneously distributed along the DNA molecule irradiated free or bound to ligands (polyamines, thiols, proteins). A Monte-Carlo based model of simulation of the reaction of OH radicals with the macromolecules, called RADACK, allows calculating the relative probability of damage of each nucleotide of DNA irradiated alone or in complexes with proteins. RADACK calculations require the knowledge of the three dimensional structure of DNA and its complexes (determined by X-ray crystallography, NMR spectroscopy or molecular modeling). The confrontation of the calculated values with the results of the radiolytic footprinting experiments together with molecular modeling calculations show that: (1) the extent and location of the lesions are strongly dependent on the structure of DNA, which in turns is modulated by the base sequence and by the binding of proteins and (2) the regions in contact with the protein can be protected against the attack by the hydroxyl radicals via masking of the binding site and by scavenging of the radicals. 2011 Elsevier B.V. All rights reserved.

  10. CISAPS: Complex Informational Spectrum for the Analysis of Protein Sequences

    Directory of Open Access Journals (Sweden)

    Charalambos Chrysostomou

    2015-01-01

    Full Text Available Complex informational spectrum analysis for protein sequences (CISAPS and its web-based server are developed and presented. As recent studies show, only the use of the absolute spectrum in the analysis of protein sequences using the informational spectrum analysis is proven to be insufficient. Therefore, CISAPS is developed to consider and provide results in three forms including absolute, real, and imaginary spectrum. Biologically related features to the analysis of influenza A subtypes as presented as a case study in this study can also appear individually either in the real or imaginary spectrum. As the results presented, protein classes can present similarities or differences according to the features extracted from CISAPS web server. These associations are probable to be related with the protein feature that the specific amino acid index represents. In addition, various technical issues such as zero-padding and windowing that may affect the analysis are also addressed. CISAPS uses an expanded list of 611 unique amino acid indices where each one represents a different property to perform the analysis. This web-based server enables researchers with little knowledge of signal processing methods to apply and include complex informational spectrum analysis to their work.

  11. Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins

    DEFF Research Database (Denmark)

    Seeger, Michael; Hartmann-Petersen, Rasmus; Wilkinson, Caroline R M

    2003-01-01

    Fission yeast Rhp23 and Pus1 represent two families of multiubiquitin chain-binding proteins that associate with the proteasome. We show that both proteins bind to different regions of the proteasome subunit Mts4. The binding site for Pus1 was mapped to a cluster of repetitive sequences also found...... in the proteasome subunit SpRpn2 and the anaphase-promoting complex/cyclosome (APC/C) subunit Cut4. The putative role of Pus1 as a factor involved in allocation of ubiquitinylated substrates for the proteasome is discussed....

  12. Development and characterization of nanoparticulate formulation of a water soluble prodrug of dexamethasone by HIP complexation.

    Science.gov (United States)

    Gaudana, Ripal; Parenky, Ashwin; Vaishya, Ravi; Samanta, Swapan K; Mitra, Ashim K

    2011-01-01

    The objective of this study was to develop and characterize a nanoparticulate-based sustained release formulation of a water soluble dipeptide prodrug of dexamethasone, valine-valine-dexamethasone (VVD). Being hydrophilic in nature, it readily leaches out in the external aqueous medium and hence partitions poorly into the polymeric matrix resulting in minimal entrapment in nanoparticles. Hence, hydrophobic ion pairing (HIP) complexation of the prodrug was employed with dextran sulphate as a complexing polymer. A novel, solid in oil in water emulsion method was employed to encapsulate the prodrug in HIP complex form in poly(lactic-co-glycolic acid) matrix. Nanoparticles were characterized with respect to size, zeta potential, crystallinity of entrapped drug and surface morphology. A significant enhancement in the entrapment of the prodrug in nanoparticles was achieved. Finally, a simple yet novel method was developed which can also be applicable to encapsulate other charged hydrophilic molecules, such as peptides and proteins.

  13. Characterizing time series via complexity-entropy curves

    Science.gov (United States)

    Ribeiro, Haroldo V.; Jauregui, Max; Zunino, Luciano; Lenzi, Ervin K.

    2017-06-01

    The search for patterns in time series is a very common task when dealing with complex systems. This is usually accomplished by employing a complexity measure such as entropies and fractal dimensions. However, such measures usually only capture a single aspect of the system dynamics. Here, we propose a family of complexity measures for time series based on a generalization of the complexity-entropy causality plane. By replacing the Shannon entropy by a monoparametric entropy (Tsallis q entropy) and after considering the proper generalization of the statistical complexity (q complexity), we build up a parametric curve (the q -complexity-entropy curve) that is used for characterizing and classifying time series. Based on simple exact results and numerical simulations of stochastic processes, we show that these curves can distinguish among different long-range, short-range, and oscillating correlated behaviors. Also, we verify that simulated chaotic and stochastic time series can be distinguished based on whether these curves are open or closed. We further test this technique in experimental scenarios related to chaotic laser intensity, stock price, sunspot, and geomagnetic dynamics, confirming its usefulness. Finally, we prove that these curves enhance the automatic classification of time series with long-range correlations and interbeat intervals of healthy subjects and patients with heart disease.

  14. Taking advantage of local structure descriptors to analyze interresidue contacts in protein structures and protein complexes.

    Science.gov (United States)

    Martin, Juliette; Regad, Leslie; Etchebest, Catherine; Camproux, Anne-Claude

    2008-11-15

    Interresidue protein contacts in proteins structures and at protein-protein interface are classically described by the amino acid types of interacting residues and the local structural context of the contact, if any, is described using secondary structures. In this study, we present an alternate analysis of interresidue contact using local structures defined by the structural alphabet introduced by Camproux et al. This structural alphabet allows to describe a 3D structure as a sequence of prototype fragments called structural letters, of 27 different types. Each residue can then be assigned to a particular local structure, even in loop regions. The analysis of interresidue contacts within protein structures defined using Voronoï tessellations reveals that pairwise contact specificity is greater in terms of structural letters than amino acids. Using a simple heuristic based on specificity score comparison, we find that 74% of the long-range contacts within protein structures are better described using structural letters than amino acid types. The investigation is extended to a set of protein-protein complexes, showing that the similar global rules apply as for intraprotein contacts, with 64% of the interprotein contacts best described by local structures. We then present an evaluation of pairing functions integrating structural letters to decoy scoring and show that some complexes could benefit from the use of structural letter-based pairing functions.

  15. Radioprotection by polyethylene glycol-protein complexes in mice

    International Nuclear Information System (INIS)

    Gray, B.H.; Stull, R.W.

    1983-01-01

    Polyethylene glycol of about 5000 D was activated with cyanuric chloride, and the activated compound was complexed to each of three proteins. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase were each radioprotectants when administered prophylactically to female B6CBF1 mice before irradiation. The dose reduction factor for these mice was 1.2 when 5000 units of polyethylene glycol-catalase was administered before 60 Co irradiation. Female B6CBF1 mice administered prophylactic intravenous injections of catalase, polyethylene glycol-albumin, or heat-denatured polyethylene glycol-catalase had survival rates similar to phosphate-buffered saline-injected control mice following 60 Co irradiation. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase have radioprotective activity in B6CBF1 mice, which appears to depend in part on enzymatic activities of the complex. However, no radioprotective effect was observed in male C57BL/6 mice injected with each polyethylene glycol-protein complex at either 3 or 24 hr before irradiation. The mechanism for radioprotection by these complexes may depend in part on other factors

  16. Strategies for the structural analysis of multi-protein complexes: lessons from the 3D-Repertoire project.

    Science.gov (United States)

    Collinet, B; Friberg, A; Brooks, M A; van den Elzen, T; Henriot, V; Dziembowski, A; Graille, M; Durand, D; Leulliot, N; Saint André, C; Lazar, N; Sattler, M; Séraphin, B; van Tilbeurgh, H

    2011-08-01

    Structural studies of multi-protein complexes, whether by X-ray diffraction, scattering, NMR spectroscopy or electron microscopy, require stringent quality control of the component samples. The inability to produce 'keystone' subunits in a soluble and correctly folded form is a serious impediment to the reconstitution of the complexes. Co-expression of the components offers a valuable alternative to the expression of single proteins as a route to obtain sufficient amounts of the sample of interest. Even in cases where milligram-scale quantities of purified complex of interest become available, there is still no guarantee that good quality crystals can be obtained. At this step, protein engineering of one or more components of the complex is frequently required to improve solubility, yield or the ability to crystallize the sample. Subsequent characterization of these constructs may be performed by solution techniques such as Small Angle X-ray Scattering and Nuclear Magnetic Resonance to identify 'well behaved' complexes. Herein, we recount our experiences gained at protein production and complex assembly during the European 3D Repertoire project (3DR). The goal of this consortium was to obtain structural information on multi-protein complexes from yeast by combining crystallography, electron microscopy, NMR and in silico modeling methods. We present here representative set case studies of complexes that were produced and analyzed within the 3DR project. Our experience provides useful insight into strategies that are more generally applicable for structural analysis of protein complexes. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Protein chimerism: novel source of protein diversity in humans adds complexity to bottom-up proteomics.

    Science.gov (United States)

    Casado-Vela, Juan; Lacal, Juan Carlos; Elortza, Felix

    2013-01-01

    Three main molecular mechanisms are considered to contribute expanding the repertoire and diversity of proteins present in living organisms: first, at DNA level (gene polymorphisms and single nucleotide polymorphisms); second, at messenger RNA (pre-mRNA and mRNA) level including alternative splicing (also termed differential splicing or cis-splicing); finally, at the protein level mainly driven through PTM and specific proteolytic cleavages. Chimeric mRNAs constitute an alternative source of protein diversity, which can be generated either by chromosomal translocations or by trans-splicing events. The occurrence of chimeric mRNAs and proteins is a frequent event in cells from the immune system and cancer cells, mainly as a consequence of gene rearrangements. Recent reports support that chimeric proteins may also be expressed at low levels under normal physiological circumstances, thus, representing a novel source of protein diversity. Notably, recent publications demonstrate that chimeric protein products can be successfully identified through bottom-up proteomic analyses. Several questions remain unsolved, such as the physiological role and impact of such chimeric proteins or the potential occurrence of chimeric proteins in higher eukaryotic organisms different from humans. The occurrence of chimeric proteins certainly seems to be another unforeseen source of complexity for the proteome. It may be a process to take in mind not only when performing bottom-up proteomic analyses in cancer studies but also in general bottom-up proteomics experiments. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex.

    Science.gov (United States)

    Tuttle, Lisa M; Pacheco, Derek; Warfield, Linda; Luo, Jie; Ranish, Jeff; Hahn, Steven; Klevit, Rachel E

    2018-03-20

    Transcription activation domains (ADs) are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs) on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Zein/caseinate/pectin complex nanoparticles: Formation and characterization.

    Science.gov (United States)

    Chang, Chao; Wang, Taoran; Hu, Qiaobin; Luo, Yangchao

    2017-11-01

    In this study, pectin was used as coating material to form zein/caseinate/pectin complex nanoparticles through pH adjustment and heating treatment for potential oral delivery applications. The preparation conditions were studied by applying heating treatment at different pHs, either the isoelectric point of zein (pH 6.2) or caseinate (pH 4.6), or consecutively at both pHs. The particulate characteristics, including particle size, polydispersity index, and zeta potential were monitored for complex nanoparticles formed under different preparation conditions. The complex nanoparticles generally exhibited particle size smaller than 200nm with narrow distribution, spherical shape, and strong negative charge. Fourier transform infrared and fluorescence spectroscopy revealed that hydrophobic interactions and hydrogen bonds were involved in the formation of complex nanoparticles, in addition to electrostatic interactions. Fresh colloidal dispersion and freeze-dried powders varied in their morphology, depending on their preparation conditions. Our results suggested that heating pH and sequence significantly affected the morphology of complex nanoparticles, and pectin coating exerted stabilization effect under simulated gastrointestinal conditions. The present study provides insight into the formation of protein/polysaccharide complex nanoparticles under different preparation conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A physical complex of the Fanconi anemia proteins FANCG/XRCC9 and FANCA

    Science.gov (United States)

    Waisfisz, Quinten; de Winter, Johan P.; Kruyt, Frank A. E.; de Groot, Jan; van der Weel, Laura; Dijkmans, Lonneke M.; Zhi, Yu; Arwert, Fré; Scheper, Rik J.; Youssoufian, Hagop; Hoatlin, Maureen E.; Joenje, Hans

    1999-01-01

    Fanconi anemia (FA) is a recessively inherited disease characterized at the cellular level by spontaneous chromosomal instability and specific hypersensitivity to cross-linking agents. FA is genetically heterogeneous, comprising at least eight complementation groups (A-H). We report that the protein encoded by the gene mutated in complementation group G (FANCG) localizes to the cytoplasm and nucleus of the cell and assembles in a molecular complex with the FANCA protein, both in vivo and in vitro. Endogenous FANCA/FANCG complex was detected in both non-FA cells and in FA cells from groups D and E. By contrast, no complex was detected in specific cell lines belonging to groups A and G, whereas reduced levels were found in cells from groups B, C, F, and H. Wild-type levels of FANCA/FANCG complex were restored upon correction of the cellular phenotype by transfection or cell fusion experiments, suggesting that this complex is of functional significance in the FA pathway. These results indicate that the cellular FA phenotype can be connected to three biochemical subtypes based on the levels of FANCA/FANCG complex. Disruption of the complex may provide an experimental strategy for chemosensitization of neoplastic cells. PMID:10468606

  1. Role for a Novel Usher Protein Complex in Hair Cell Synaptic Maturation

    Science.gov (United States)

    Zallocchi, Marisa; Meehan, Daniel T.; Delimont, Duane; Rutledge, Joseph; Gratton, Michael Anne; Flannery, John; Cosgrove, Dominic

    2012-01-01

    The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23), protocadherin-15 (PCDH15) and the very large G-protein coupled receptor 1 (VLGR1) have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1−/− mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzerav3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well. PMID:22363448

  2. Role for a novel Usher protein complex in hair cell synaptic maturation.

    Directory of Open Access Journals (Sweden)

    Marisa Zallocchi

    Full Text Available The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23, protocadherin-15 (PCDH15 and the very large G-protein coupled receptor 1 (VLGR1 have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1-/- mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzer(av3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well.

  3. Characterization and biological activity of Solidago canadensis complex.

    Science.gov (United States)

    Šutovská, M; Capek, P; Kocmálová, M; Fraňová, S; Pawlaczyk, I; Gancarz, R

    2013-01-01

    Polyphenolic-polysaccharide-protein complex has been isolated from flowers of Solidago canadensis L. by hot alkaline extraction procedure. Compositional analyses of S canadensis complex revealed the presence of carbohydrates (43 wt%), protein (27 wt%), phenolics (12 wt%), uronic acids (10 wt%) and inorganic material (8 wt%). The carbohydrate part was rich in neutral sugars (81 wt%) while uronids were determined in lower amount (19 wt%). Monosaccharide analysis of carbohydrate part revealed the presence of five main sugar components, i.e. rhamnose (~23 wt%), arabinose (~20 wt%), uronic acids (~19 wt%), galactose (~17 wt%) and glucose (~14 wt%), and indicated thus the presence of rhamnogalacturonan and arabinogalactan in S. canadensis complex. HPLC analysis of complex showed one single peak of molecule mass at 11.2 kDa. Antitussive activity tests, performed in three doses of Solidago complex, showed the reduction of the number of cough efforts in the dose-dependent manner. Higher doses (50 and 75 mg/kg b.w.) were shown to be by 15 and 20% more effective than that of lower one (25mg/kg b.w.). However, the antitussive effect of the highest dose (75 mg/kg b.w.) was by 10% lower in comparison with that of codeine, the strongest antitussive agent. Besides, the highest dose of the complex (75 mg/kg b.w.) significantly decreased values of specific airways resistance and their effect remained longer as that of salbutamol, a representative of classic antiasthmatic drugs. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Improved functional overview of protein complexes using inferred epistatic relationships

    LENUS (Irish Health Repository)

    Ryan, Colm

    2011-05-23

    Abstract Background Epistatic Miniarray Profiling(E-MAP) quantifies the net effect on growth rate of disrupting pairs of genes, often producing phenotypes that may be more (negative epistasis) or less (positive epistasis) severe than the phenotype predicted based on single gene disruptions. Epistatic interactions are important for understanding cell biology because they define relationships between individual genes, and between sets of genes involved in biochemical pathways and protein complexes. Each E-MAP screen quantifies the interactions between a logically selected subset of genes (e.g. genes whose products share a common function). Interactions that occur between genes involved in different cellular processes are not as frequently measured, yet these interactions are important for providing an overview of cellular organization. Results We introduce a method for combining overlapping E-MAP screens and inferring new interactions between them. We use this method to infer with high confidence 2,240 new strongly epistatic interactions and 34,469 weakly epistatic or neutral interactions. We show that accuracy of the predicted interactions approaches that of replicate experiments and that, like measured interactions, they are enriched for features such as shared biochemical pathways and knockout phenotypes. We constructed an expanded epistasis map for yeast cell protein complexes and show that our new interactions increase the evidence for previously proposed inter-complex connections, and predict many new links. We validated a number of these in the laboratory, including new interactions linking the SWR-C chromatin modifying complex and the nuclear transport apparatus. Conclusion Overall, our data support a modular model of yeast cell protein network organization and show how prediction methods can considerably extend the information that can be extracted from overlapping E-MAP screens.

  5. Biodegradation of the chitin-protein complex in crustacean cuticle

    Science.gov (United States)

    Artur, Stankiewicz B.; Mastalerz, Maria; Hof, C.H.J.; Bierstedt, A.; Flannery, M.B.; Briggs, D.E.G.; Evershed, R.P.

    1998-01-01

    Arthropod cuticles consist predominantly of chitin cross-linked with proteins. While there is some experimental evidence that this chitin-protein complex may resist decay, the chemical changes that occur during degradation have not been investigated in detail. The stomatopod crustacean Neogonodactylus oerstedii was decayed in the laboratory under anoxic conditions. A combination of pyrolysis-gas chromatography/mass spectrometry and FTIR revealed extensive chemical changes after just 2 weeks that resulted in a cuticle composition dominated by chitin. Quantitative analysis of amino acids (by HPLC) and chitin showed that the major loss of proteins and chitin occurred between weeks 1 and 2. After 8 weeks tyrosine, tryptophan and valine are the most prominent amino acid moieties, showing their resistance to degradation. The presence of cyclic ketones in the pyrolysates indicates that mucopolysaccharides or other bound non-chitinous carbohydrates are also resistant to decay. There is no evidence of structural degradation of chitin prior to 8 weeks when FTIR revealed a reduction in chitin-specific bands. The chemical changes are paralleled by structural changes in the cuticle, which becomes an increasingly open structure consisting of loose chitinous fibres. The rapid rate of decay in the experiments suggests that where chitin and protein are preserved in fossil cuticles degradation must have been inhibited.Arthropod cuticles consist predominantly of chitin cross-linked with proteins. While there is some experimental evidence that this chitin-protein complex may resist decay, the chemical changes that occur during degradation have not been investigated in detail. The stomatopod crustacean Neogonodactylus oerstedii was decayed in the laboratory under anoxic conditions. A combination of pyrolysis-gas chromatography/mass spectrometry and FTIR revealed extensive chemical changes after just 2 weeks that resulted in a cuticle composition dominated by chitin. Quantitative

  6. Multiple TPR motifs characterize the Fanconi anemia FANCG protein.

    Science.gov (United States)

    Blom, Eric; van de Vrugt, Henri J; de Vries, Yne; de Winter, Johan P; Arwert, Fré; Joenje, Hans

    2004-01-05

    The genome protection pathway that is defective in patients with Fanconi anemia (FA) is controlled by at least eight genes, including BRCA2. A key step in the pathway involves the monoubiquitylation of FANCD2, which critically depends on a multi-subunit nuclear 'core complex' of at least six FANC proteins (FANCA, -C, -E, -F, -G, and -L). Except for FANCL, which has WD40 repeats and a RING finger domain, no significant domain structure has so far been recognized in any of the core complex proteins. By using a homology search strategy comparing the human FANCG protein sequence with its ortholog sequences in Oryzias latipes (Japanese rice fish) and Danio rerio (zebrafish) we identified at least seven tetratricopeptide repeat motifs (TPRs) covering a major part of this protein. TPRs are degenerate 34-amino acid repeat motifs which function as scaffolds mediating protein-protein interactions, often found in multiprotein complexes. In four out of five TPR motifs tested (TPR1, -2, -5, and -6), targeted missense mutagenesis disrupting the motifs at the critical position 8 of each TPR caused complete or partial loss of FANCG function. Loss of function was evident from failure of the mutant proteins to complement the cellular FA phenotype in FA-G lymphoblasts, which was correlated with loss of binding to FANCA. Although the TPR4 mutant fully complemented the cells, it showed a reduced interaction with FANCA, suggesting that this TPR may also be of functional importance. The recognition of FANCG as a typical TPR protein predicts this protein to play a key role in the assembly and/or stabilization of the nuclear FA protein core complex.

  7. Recent mass spectrometry-based techniques and considerations for disulfide bond characterization in proteins.

    Science.gov (United States)

    Lakbub, Jude C; Shipman, Joshua T; Desaire, Heather

    2018-04-01

    Disulfide bonds are important structural moieties of proteins: they ensure proper folding, provide stability, and ensure proper function. With the increasing use of proteins for biotherapeutics, particularly monoclonal antibodies, which are highly disulfide bonded, it is now important to confirm the correct disulfide bond connectivity and to verify the presence, or absence, of disulfide bond variants in the protein therapeutics. These studies help to ensure safety and efficacy. Hence, disulfide bonds are among the critical quality attributes of proteins that have to be monitored closely during the development of biotherapeutics. However, disulfide bond analysis is challenging because of the complexity of the biomolecules. Mass spectrometry (MS) has been the go-to analytical tool for the characterization of such complex biomolecules, and several methods have been reported to meet the challenging task of mapping disulfide bonds in proteins. In this review, we describe the relevant, recent MS-based techniques and provide important considerations needed for efficient disulfide bond analysis in proteins. The review focuses on methods for proper sample preparation, fragmentation techniques for disulfide bond analysis, recent disulfide bond mapping methods based on the fragmentation techniques, and automated algorithms designed for rapid analysis of disulfide bonds from liquid chromatography-MS/MS data. Researchers involved in method development for protein characterization can use the information herein to facilitate development of new MS-based methods for protein disulfide bond analysis. In addition, individuals characterizing biotherapeutics, especially by disulfide bond mapping in antibodies, can use this review to choose the best strategies for disulfide bond assignment of their biologic products. Graphical Abstract This review, describing characterization methods for disulfide bonds in proteins, focuses on three critical components: sample preparation, mass

  8. MDcons: Intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories

    KAUST Repository

    Abdel-Azeim, Safwat

    2014-05-06

    Background: Molecular Dynamics ( MD) simulations of protein complexes suffer from the lack of specific tools in the analysis step. Analyses of MD trajectories of protein complexes indeed generally rely on classical measures, such as the RMSD, RMSF and gyration radius, conceived and developed for single macromolecules. As a matter of fact, instead, researchers engaged in simulating the dynamics of a protein complex are mainly interested in characterizing the conservation/variation of its biological interface. Results: On these bases, herein we propose a novel approach to the analysis of MD trajectories or other conformational ensembles of protein complexes, MDcons, which uses the conservation of inter-residue contacts at the interface as a measure of the similarity between different snapshots. A "consensus contact map" is also provided, where the conservation of the different contacts is drawn in a grey scale. Finally, the interface area of the complex is monitored during the simulations. To show its utility, we used this novel approach to study two protein-protein complexes with interfaces of comparable size and both dominated by hydrophilic interactions, but having binding affinities at the extremes of the experimental range. MDcons is demonstrated to be extremely useful to analyse the MD trajectories of the investigated complexes, adding important insight into the dynamic behavior of their biological interface. Conclusions: MDcons specifically allows the user to highlight and characterize the dynamics of the interface in protein complexes and can thus be used as a complementary tool for the analysis of MD simulations of both experimental and predicted structures of protein complexes.

  9. Model of a DNA-protein complex of the architectural monomeric protein MC1 from Euryarchaea.

    Directory of Open Access Journals (Sweden)

    Françoise Paquet

    Full Text Available In Archaea the two major modes of DNA packaging are wrapping by histone proteins or bending by architectural non-histone proteins. To supplement our knowledge about the binding mode of the different DNA-bending proteins observed across the three domains of life, we present here the first model of a complex in which the monomeric Methanogen Chromosomal protein 1 (MC1 from Euryarchaea binds to the concave side of a strongly bent DNA. In laboratory growth conditions MC1 is the most abundant architectural protein present in Methanosarcina thermophila CHTI55. Like most proteins that strongly bend DNA, MC1 is known to bind in the minor groove. Interaction areas for MC1 and DNA were mapped by Nuclear Magnetic Resonance (NMR data. The polarity of protein binding was determined using paramagnetic probes attached to the DNA. The first structural model of the DNA-MC1 complex we propose here was obtained by two complementary docking approaches and is in good agreement with the experimental data previously provided by electron microscopy and biochemistry. Residues essential to DNA-binding and -bending were highlighted and confirmed by site-directed mutagenesis. It was found that the Arg25 side-chain was essential to neutralize the negative charge of two phosphates that come very close in response to a dramatic curvature of the DNA.

  10. High-resolution diffraction from crystals of a membrane-protein complex: bacterial outer membrane protein OmpC complexed with the antibacterial eukaryotic protein lactoferrin

    International Nuclear Information System (INIS)

    Sundara Baalaji, N.; Acharya, K. Ravi; Singh, T. P.; Krishnaswamy, S.

    2005-01-01

    Crystals of the complex formed between the bacterial membrane protein OmpC and the antibacterial protein lactoferrin suitable for high-resolution structure determination have been obtained. The crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å. Crystals of the complex formed between the outer membrane protein OmpC from Escherichia coli and the eukaryotic antibacterial protein lactoferrin from Camelus dromedarius (camel) have been obtained using a detergent environment. Initial data processing suggests that the crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å, α = β = 90, γ = 120°. This indicated a Matthews coefficient (V M ) of 3.3 Å 3 Da −1 , corresponding to a possible molecular complex involving four molecules of lactoferrin and two porin trimers in the unit cell (4832 amino acids; 533.8 kDa) with 63% solvent content. A complete set of diffraction data was collected to 3 Å resolution at 100 K. Structure determination by molecular replacement is in progress. Structural study of this first surface-exposed membrane-protein complex with an antibacterial protein will provide insights into the mechanism of action of OmpC as well as lactoferrin

  11. Application of model bread baking in the examination of arabinoxylan-protein complexes in rye bread.

    Science.gov (United States)

    Buksa, Krzysztof

    2016-09-05

    The changes in molecular mass of arabinoxylan (AX) and protein caused by bread baking process were examined using a model rye bread. Instead of the normal flour, the dough contained starch, water-extractable AX and protein which were isolated from rye wholemeal. From the crumb of selected model breads, starch was removed releasing AX-protein complexes, which were further examined by size exclusion chromatography. On the basis of the research, it was concluded that optimum model mix can be composed of 3-6% AX and 3-6% rye protein isolate at 94-88% of rye starch meaning with the most similar properties to low extraction rye flour. Application of model rye bread allowed to examine the interactions between AX and proteins. Bread baked with a share of AX, rye protein and starch, from which the complexes of the highest molar mass were isolated, was characterized by the strongest structure of the bread crumb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Nicked apomyoglobin: a noncovalent complex of two polypeptide fragments comprising the entire protein chain.

    Science.gov (United States)

    Musi, Valeria; Spolaore, Barbara; Picotti, Paola; Zambonin, Marcello; De Filippis, Vincenzo; Fontana, Angelo

    2004-05-25

    Limited proteolysis of the 153-residue chain of horse apomyoglobin (apoMb) by thermolysin results in the selective cleavage of the peptide bond Pro88-Leu89. The N-terminal (residues 1-88) and C-terminal (residues 89-153) fragments of apoMb were isolated to homogeneity and their conformational and association properties investigated in detail. Far-UV circular dichroism (CD) measurements revealed that both fragments in isolation acquire a high content of helical secondary structure, while near-UV CD indicated the absence of tertiary structure. A 1:1 mixture of the fragments leads to a tight noncovalent protein complex (1-88/89-153, nicked apoMb), characterized by secondary and tertiary structures similar to those of intact apoMb. The apoMb complex binds heme in a nativelike manner, as given by CD measurements in the Soret region. Second-derivative absorption spectra in the 250-300 nm region provided evidence that the degree of exposure of Tyr residues in the nicked species is similar to that of the intact protein at neutral pH. Also, the microenvironment of Trp residues, located in positions 7 and 14 of the 153-residue chain of the protein, is similar in both protein species, as given by fluorescence emission data. Moreover, in analogy to intact apoMb, the nicked protein binds the hydrophobic dye 1-anilinonaphthalene-8-sulfonate (ANS). Taken together, our results indicate that the two proteolytic fragments 1-88 and 89-153 of apoMb adopt partly folded states characterized by sufficiently nativelike conformational features that promote their specific association and mutual stabilization into a nicked protein species much resembling in its structural features intact apoMb. It is suggested that the formation of a noncovalent complex upon fragment complementation can mimic the protein folding process of the entire protein chain, with the difference that the folding of the complementary fragments is an intermolecular process. In particular, this study emphasizes the

  13. Proteomic characterization of the human centrosome by protein correlation profiling

    DEFF Research Database (Denmark)

    Andersen, Jens S; Wilkinson, Christopher J; Mayor, Thibault

    2003-01-01

    chromosomes between dividing cells. Despite the importance of this organelle to cell biology and more than 100 years of study, many aspects of its function remain enigmatic and its structure and composition are still largely unknown. We performed a mass-spectrometry-based proteomic analysis of human...... centrosomes in the interphase of the cell cycle by quantitatively profiling hundreds of proteins across several centrifugation fractions. True centrosomal proteins were revealed by both correlation with already known centrosomal proteins and in vivo localization. We identified and validated 23 novel...... components and identified 41 likely candidates as well as the vast majority of the known centrosomal proteins in a large background of nonspecific proteins. Protein correlation profiling permits the analysis of any multiprotein complex that can be enriched by fractionation but not purified to homogeneity....

  14. Functional characterization of Arabidopsis thaliana transthyretin-like protein.

    Science.gov (United States)

    Pessoa, João; Sárkány, Zsuzsa; Ferreira-da-Silva, Frederico; Martins, Sónia; Almeida, Maria R; Li, Jianming; Damas, Ana M

    2010-02-18

    Arabidopsis thaliana transthyretin-like (TTL) protein is a potential substrate in the brassinosteroid signalling cascade, having a role that moderates plant growth. Moreover, sequence homology revealed two sequence domains similar to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) decarboxylase (N-terminal domain) and 5-hydroxyisourate (5-HIU) hydrolase (C-terminal domain). TTL is a member of the transthyretin-related protein family (TRP), which comprises a number of proteins with sequence homology to transthyretin (TTR) and the characteristic C-terminal sequence motif Tyr-Arg-Gly-Ser. TRPs are single domain proteins that form tetrameric structures with 5-HIU hydrolase activity. Experimental evidence is fundamental for knowing if TTL is a tetrameric protein, formed by the association of the 5-HIU hydrolase domains and, in this case, if the structural arrangement allows for OHCU decarboxylase activity. This work reports about the biochemical and functional characterization of TTL. The TTL gene was cloned and the protein expressed and purified for biochemical and functional characterization. The results show that TTL is composed of four subunits, with a moderately elongated shape. We also found evidence for 5-HIU hydrolase and OHCU decarboxylase activities in vitro, in the full-length protein. The Arabidopsis thaliana transthyretin-like (TTL) protein is a tetrameric bifunctional enzyme, since it has 5-HIU hydrolase and OHCU decarboxylase activities, which were simultaneously observed in vitro.

  15. Functional characterization of Arabidopsis thaliana transthyretin-like protein

    Directory of Open Access Journals (Sweden)

    Almeida Maria R

    2010-02-01

    Full Text Available Abstract Background Arabidopsis thaliana transthyretin-like (TTL protein is a potential substrate in the brassinosteroid signalling cascade, having a role that moderates plant growth. Moreover, sequence homology revealed two sequence domains similar to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU decarboxylase (N-terminal domain and 5-hydroxyisourate (5-HIU hydrolase (C-terminal domain. TTL is a member of the transthyretin-related protein family (TRP, which comprises a number of proteins with sequence homology to transthyretin (TTR and the characteristic C-terminal sequence motif Tyr-Arg-Gly-Ser. TRPs are single domain proteins that form tetrameric structures with 5-HIU hydrolase activity. Experimental evidence is fundamental for knowing if TTL is a tetrameric protein, formed by the association of the 5-HIU hydrolase domains and, in this case, if the structural arrangement allows for OHCU decarboxylase activity. This work reports about the biochemical and functional characterization of TTL. Results The TTL gene was cloned and the protein expressed and purified for biochemical and functional characterization. The results show that TTL is composed of four subunits, with a moderately elongated shape. We also found evidence for 5-HIU hydrolase and OHCU decarboxylase activities in vitro, in the full-length protein. Conclusions The Arabidopsis thaliana transthyretin-like (TTL protein is a tetrameric bifunctional enzyme, since it has 5-HIU hydrolase and OHCU decarboxylase activities, which were simultaneously observed in vitro.

  16. Docking-based modeling of protein-protein interfaces for extensive structural and functional characterization of missense mutations.

    Science.gov (United States)

    Barradas-Bautista, Didier; Fernández-Recio, Juan

    2017-01-01

    Next-generation sequencing (NGS) technologies are providing genomic information for an increasing number of healthy individuals and patient populations. In the context of the large amount of generated genomic data that is being generated, understanding the effect of disease-related mutations at molecular level can contribute to close the gap between genotype and phenotype and thus improve prevention, diagnosis or treatment of a pathological condition. In order to fully characterize the effect of a pathological mutation and have useful information for prediction purposes, it is important first to identify whether the mutation is located at a protein-binding interface, and second to understand the effect on the binding affinity of the affected interaction/s. Computational methods, such as protein docking are currently used to complement experimental efforts and could help to build the human structural interactome. Here we have extended the original pyDockNIP method to predict the location of disease-associated nsSNPs at protein-protein interfaces, when there is no available structure for the protein-protein complex. We have applied this approach to the pathological interaction networks of six diseases with low structural data on PPIs. This approach can almost double the number of nsSNPs that can be characterized and identify edgetic effects in many nsSNPs that were previously unknown. This can help to annotate and interpret genomic data from large-scale population studies, and to achieve a better understanding of disease at molecular level.

  17. Docking-based modeling of protein-protein interfaces for extensive structural and functional characterization of missense mutations.

    Directory of Open Access Journals (Sweden)

    Didier Barradas-Bautista

    Full Text Available Next-generation sequencing (NGS technologies are providing genomic information for an increasing number of healthy individuals and patient populations. In the context of the large amount of generated genomic data that is being generated, understanding the effect of disease-related mutations at molecular level can contribute to close the gap between genotype and phenotype and thus improve prevention, diagnosis or treatment of a pathological condition. In order to fully characterize the effect of a pathological mutation and have useful information for prediction purposes, it is important first to identify whether the mutation is located at a protein-binding interface, and second to understand the effect on the binding affinity of the affected interaction/s. Computational methods, such as protein docking are currently used to complement experimental efforts and could help to build the human structural interactome. Here we have extended the original pyDockNIP method to predict the location of disease-associated nsSNPs at protein-protein interfaces, when there is no available structure for the protein-protein complex. We have applied this approach to the pathological interaction networks of six diseases with low structural data on PPIs. This approach can almost double the number of nsSNPs that can be characterized and identify edgetic effects in many nsSNPs that were previously unknown. This can help to annotate and interpret genomic data from large-scale population studies, and to achieve a better understanding of disease at molecular level.

  18. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    International Nuclear Information System (INIS)

    Nielsen, Anders Lade

    2009-01-01

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of γ-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as β-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  19. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Anders Lade, E-mail: aln@humgen.au.dk [Department of Human Genetics, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C (Denmark)

    2009-10-23

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of {gamma}-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as {beta}-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  20. Dysfunction of Protein Quality Control in Parkinsonism–Dementia Complex of Guam

    Directory of Open Access Journals (Sweden)

    Bert M. Verheijen

    2018-03-01

    Full Text Available Guam parkinsonism–dementia complex (G-PDC is an enigmatic neurodegenerative disease that is endemic to the Pacific island of Guam. G-PDC patients are clinically characterized by progressive cognitive impairment and parkinsonism. Neuropathologically, G-PDC is characterized by abundant neurofibrillary tangles, which are composed of hyperphosphorylated tau, marked deposition of 43-kDa TAR DNA-binding protein, and neuronal loss. Although both genetic and environmental factors have been implicated, the etiology and pathogenesis of G-PDC remain unknown. Recent neuropathological studies have provided new clues about the pathomechanisms involved in G-PDC. For example, deposition of abnormal components of the protein quality control system in brains of G-PDC patients indicates a role for proteostasis imbalance in the disease. This opens up promising avenues for new research on G-PDC and could have important implications for the study of other neurodegenerative disorders.

  1. Native MS and ECD Characterization of a Fab-Antigen Complex May Facilitate Crystallization for X-ray Diffraction

    Science.gov (United States)

    Zhang, Ying; Cui, Weidong; Wecksler, Aaron T.; Zhang, Hao; Molina, Patricia; Deperalta, Galahad; Gross, Michael L.

    2016-07-01

    Native mass spectrometry (MS) and top-down electron-capture dissociation (ECD) combine as a powerful approach for characterizing large proteins and protein assemblies. Here, we report their use to study an antibody Fab (Fab-1)-VEGF complex in its near-native state. Native ESI with analysis by FTICR mass spectrometry confirms that VEGF is a dimer in solution and that its complex with Fab-1 has a binding stoichiometry of 2:2. Applying combinations of collisionally activated dissociation (CAD), ECD, and infrared multiphoton dissociation (IRMPD) allows identification of flexible regions of the complex, potentially serving as a guide for crystallization and X-ray diffraction analysis.

  2. Design principles for cancer therapy guided by changes in complexity of protein-protein interaction networks.

    Science.gov (United States)

    Benzekry, Sebastian; Tuszynski, Jack A; Rietman, Edward A; Lakka Klement, Giannoula

    2015-05-28

    The ever-increasing expanse of online bioinformatics data is enabling new ways to, not only explore the visualization of these data, but also to apply novel mathematical methods to extract meaningful information for clinically relevant analysis of pathways and treatment decisions. One of the methods used for computing topological characteristics of a space at different spatial resolutions is persistent homology. This concept can also be applied to network theory, and more specifically to protein-protein interaction networks, where the number of rings in an individual cancer network represents a measure of complexity. We observed a linear correlation of R = -0.55 between persistent homology and 5-year survival of patients with a variety of cancers. This relationship was used to predict the proteins within a protein-protein interaction network with the most impact on cancer progression. By re-computing the persistent homology after computationally removing an individual node (protein) from the protein-protein interaction network, we were able to evaluate whether such an inhibition would lead to improvement in patient survival. The power of this approach lied in its ability to identify the effects of inhibition of multiple proteins and in the ability to expose whether the effect of a single inhibition may be amplified by inhibition of other proteins. More importantly, we illustrate specific examples of persistent homology calculations, which correctly predict the survival benefit observed effects in clinical trials using inhibitors of the identified molecular target. We propose that computational approaches such as persistent homology may be used in the future for selection of molecular therapies in clinic. The technique uses a mathematical algorithm to evaluate the node (protein) whose inhibition has the highest potential to reduce network complexity. The greater the drop in persistent homology, the greater reduction in network complexity, and thus a larger

  3. Simulating evolution of protein complexes through gene duplication and co-option.

    Science.gov (United States)

    Haarsma, Loren; Nelesen, Serita; VanAndel, Ethan; Lamine, James; VandeHaar, Peter

    2016-06-21

    We present a model of the evolution of protein complexes with novel functions through gene duplication, mutation, and co-option. Under a wide variety of input parameters, digital organisms evolve complexes of 2-5 bound proteins which have novel functions but whose component proteins are not independently functional. Evolution of complexes with novel functions happens more quickly as gene duplication rates increase, point mutation rates increase, protein complex functional probability increases, protein complex functional strength increases, and protein family size decreases. Evolution of complexity is inhibited when the metabolic costs of making proteins exceeds the fitness gain of having functional proteins, or when point mutation rates get so large the functional proteins undergo deleterious mutations faster than new functional complexes can evolve. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Assembly and structural organization of pigment-protein complexes in membranes of Rhodopseudomonas sphaeroides

    International Nuclear Information System (INIS)

    Hunter, C.N.; Pennoyer, J.D.; Niederman, R.A.

    1982-01-01

    The B875 and B800-850 light-harvesting pigment-protein complexes of Rhodopseudomonas sphaeroides are characterized further by lithium dodecyl sulfate/polyacrylamide gel electrophoresis at 4 degrees C. Bacteriochlorophyll a was shown in reconstruction studies to remain complexed with its respective binding proteins during this procedure. From distributions in these gels, a quantitative description for the arrangement of the complexes is proposed. Assembly of the complexes was examined in delta-aminolevulinate-requiring mutant H-5 after a shift from high- to low-light intensity. After 10 h of delta-[ 3 H]aminolevulinate labeling, the specific radioactivity of bacteriochlorophyll in a fraction containing putative membrane invaginations reached the maximal level, while that of the mature photosynthetic membrane was at only one-third this level. This suggests that membrane invaginations are sites of preferential bacteriochlorophyll synthesis in which completed pigment-proteins exist transiently. Analysis of the 3 H distribution after electrophoretic separation further suggests that photosynthetic membranes grow mainly by addition of B800-850 to preformed membrane consisting largely of B875 and photochemical reaction centers. These results corroborate the above model for the structural organization of the light-harvesting system and indicate that the structurally and functionally discrete B800-850 pool is not completely assembled until all B875 sites for B800-850 interactions are occupied

  5. Waste Sampling and Characterization Facility (WSCF) Complex Safety Analysis

    International Nuclear Information System (INIS)

    MELOY, R.T.

    2003-01-01

    The Waste Sampling and Characterization Facility (WSCF) is an analytical laboratory complex on the Hanford Site that was constructed to perform chemical and low-level radiological analyses on a variety of sample media in support of Hanford Site customer needs. The complex is located in the 600 area of the Hanford Site, east of the 200 West Area. Customers include effluent treatment facilities, waste disposal and storage facilities, and remediation projects. Customers primarily need analysis results for process control and to comply with federal, Washington State, and US. Department of Energy (DOE) environmental or industrial hygiene requirements. This document was prepared to analyze the facility for safety consequences and includes the following steps: Determine radionuclide and highly hazardous chemical inventories; Compare these inventories to the appropriate regulatory limits; Document the compliance status with respect to these limits; and Identify the administrative controls necessary to maintain this status

  6. Synthesis and characterization of some new molybdenum(V) complexes

    International Nuclear Information System (INIS)

    Kamenar, Boris; Korpar-Choling, Branka; Cindrich, Marina; Matkovich-Chalogovich, Dubravka; Penavich, Maja

    1997-01-01

    The molybdenium(V) complexes of the types Mo 2 O 3 L 4 (L = acetylacetone or dibenzolymethane), Mo 2 O 4 L 2 L' 2 solvated with L' (L = dibenzolymethane, L' = morpholine or thiomorpholine), and NR-morphH)[Mo 8 O 2 0LL' 3 ] (R = methyl or ethyl, L = dibenzolymethane, L' = NR-morpholine) have been synthesized for the first time. All were characterized by chemical analyses, IR spectra and magnethochemical measurements. Crystal structure of [Mo 2 O 4 (dbm) 2 (morph) 2 ].(morph) has been determined by X-ray diffraction technique. Complex is dinuclear containing the molybdenium atoms in a distorted octahedral geometry. Each molybdenium atom is surrounded by two bridging oxo-oxygen atoms, two oxygen atoms from one bidentately coordinated dibenzolymethane ligand, one nitrogen atom from morpholine molecule and one terminal oxo-oxygen atom. The solvated morpholine molecule is disordered around the diad axis. (author)

  7. Characterization and Preparation of Broken Rice Proteins Modified by Proteases

    Directory of Open Access Journals (Sweden)

    Lixia Hou

    2010-01-01

    Full Text Available Broken rice is an underutilized by-product of milling. Proteins prepared from broken rice by treatments with alkaline protease and papain have been characterized with regard to nutritional and functional properties. The protein content and the protein recovery were 56.45 and 75.45 % for alkaline protease treatment, and 65.45 and 46.32 % for papain treatment, respectively. Protease treatment increased the lysine and valine content, leading to a more balanced amino acid profile. Broken rice proteins had high emulsifying capacity, 58.3–71.6 % at neutral pH, and adequate water holding capacity, ranging from 1.96 to 2.93 g/g of proteins. At pH=7.0, the broken rice protein had the highest water holding capacity and the best interfacial activities (emulsifying capacity, emulsifying stability, foaming capacity and foaming stability, which may be the result of the higher solubility at pH=7.0. The interfacial activities increased with the increase in the mass fraction of broken rice proteins. The proteins prepared by the papain treatment had higher water holding capacity (p>0.05, emulsifying capacity (p0.05 than alkaline protease treatment at the same pH or mass fraction. To test the fortification of food products with broken rice proteins, pork sausages containing the proteins were prepared. Higher yield of the sausages was obtained with the increased content of broken rice proteins, in the range of 2.0–9.0 %. The results indicate that broken rice proteins have potential to be used as the protein fortification ingredient for food products.

  8. Moessbauer spectroscopic characterization of macromolecule-metallochlorophyll complexes

    International Nuclear Information System (INIS)

    Inoue, H.; Fukuda, K.; Nonomura, Y.; Fluck, E.

    1993-01-01

    The bis-adducts of iron chlorophylls with poly(4-vinylpyridine-costyrene) (PVP) have been prepared and characterized by 57 Fe Moessbauer spectroscopy. The Moessbauer parameters of the PVP-adducts of iron chlorophylls are typical of low-spin iron(II) complexes. The central iron(III) ion is spontaneously reduced upon the axial coordination of PVP to iron(III) chlorophylls. The general tendency in the spontaneous reduction of the iron(III) chlorophylls has been interpreted in terms of the σ-donor and π-acceptor power of the axial macromolecular ligand. (orig.)

  9. Partial characterization of GTP-binding proteins in Neurospora

    International Nuclear Information System (INIS)

    Hasunuma, K.; Miyamoto-Shinohara, Y.; Furukawa, K.

    1987-01-01

    Six fractions of GTP-binding proteins separated by gel filtration of a mycelial extract containing membrane components of Neurospora crassa were partially characterized. [ 35 S]GTP gamma S bound to GTP-binding protein was assayed by repeated treatments with a Norit solution and centrifugation. The binding of [ 35 S]GTP gamma S to GTP-binding proteins was competitively prevented in the presence of 0.1 to 1 mM GTP but not in the presence of ATP. These GTP-binding proteins fractionated by the gel column had Km values of 20, 7, 4, 4, 80 and 2 nM. All six fractions of these GTP-binding proteins showed the capacity to be ADP-ribosylated by pertussis toxin

  10. Characterization of reversible reactions of isocyanides with molybdenum dithiolate complexes

    International Nuclear Information System (INIS)

    Miller, D.J.; DuBois, M.R.

    1980-01-01

    Dimeric molybdenum complexes with bridging dithiocarbonimidate ligands of the formula [C 5 H 5 MoS 2 CNR] 2 (where R = CH 3 , CH 2 C 6 H 5 , C 6 H 11 , and n-C 4 H 9 ) have been synthesized and characterized. The syntheses involve the room-temperature reactions of excess isocyanides with solutions of the dimeric complex [C 5 H 5 MoSC 3 H 6 S] 2 . During the course of these reactions, propene is displaced from the sulfur atoms of the bridging dithiolate ligands. Addition of excess alkene reverses the above reactions. Equilibrium constants have been calculated for the following reactions by integration of NMR resonances: [CH 3 C 5 H 4 MoSC 2 H 4 S] 2 + RNC reversible (CH 3 C 5 H 4 Mo) 2 (SC 2 H 4 S)(S 2 CNR) + C == C, K 1 = 2.9 +- 0.2; (CH 3 C 5 H 4 Mo) 2 (SC 2 H 4 S)(S 2 CNR) + RNC reversible [CH 3 C 5 H 4 MoS 2 CNR] 2 + C == C, K 2 = 0.7 +- 0.1 (R = CH 2 C 6 H 5 ). The dithiocarbonimidate complexes react cleanly with the electrophiles CH 3 OSO 2 F and HOSO 2 CF 3 to form [C 5 H 5 MoS 2 CNRR'] 2 2+ where R' = H or CH 3 . These products have been characterized by spectral and conductivity methods. The reactions of the dithiocarbonimidate complexes with reducing agents and with carbon monoxide are discussed. 1 figure, 2 tables

  11. Murine colon proteome and characterization of the protein pathways

    Directory of Open Access Journals (Sweden)

    Magdeldin Sameh

    2012-08-01

    Full Text Available Abstract Background Most of the current proteomic researches focus on proteome alteration due to pathological disorders (i.e.: colorectal cancer rather than normal healthy state when mentioning colon. As a result, there are lacks of information regarding normal whole tissue- colon proteome. Results We report here a detailed murine (mouse whole tissue- colon protein reference dataset composed of 1237 confident protein (FDR I and Mw ranged from 3–12 and 4–600 KDa, respectively. Gravy index scoring predicted 19.5% membranous and 80.5% globularly located proteins. GO hierarchies and functional network analysis illustrated proteins function together with their relevance and implication of several candidates in malignancy such as Mitogen- activated protein kinase (Mapk8, 9 in colorectal cancer, Fibroblast growth factor receptor (Fgfr 2, Glutathione S-transferase (Gstp1 in prostate cancer, and Cell division control protein (Cdc42, Ras-related protein (Rac1,2 in pancreatic cancer. Protein abundances calculated with 3 different algorithms (NSAF, PAF and emPAI provide a relative quantification under normal condition as guidance. Conclusions This highly confidence colon proteome catalogue will not only serve as a useful reference for further experiments characterizing differentially expressed proteins induced from diseased conditions, but also will aid in better understanding the ontology and functional absorptive mechanism of the colon as well.

  12. A quantitative characterization of the yeast heterotrimeric G protein cycle

    Science.gov (United States)

    Yi, Tau-Mu; Kitano, Hiroaki; Simon, Melvin I.

    2003-01-01

    The yeast mating response is one of the best understood heterotrimeric G protein signaling pathways. Yet, most descriptions of this system have been qualitative. We have quantitatively characterized the heterotrimeric G protein cycle in yeast based on direct in vivo measurements. We used fluorescence resonance energy transfer to monitor the association state of cyan fluorescent protein (CFP)-Gα and Gβγ-yellow fluorescent protein (YFP), and we found that receptor-mediated G protein activation produced a loss of fluorescence resonance energy transfer. Quantitative time course and dose–response data were obtained for both wild-type and mutant cells possessing an altered pheromone response. These results paint a quantitative portrait of how regulators such as Sst2p and the C-terminal tail of α-factor receptor modulate the kinetics and sensitivity of G protein signaling. We have explored critical features of the dynamics including the rapid rise and subsequent decline of active G proteins during the early response, and the relationship between the G protein activation dose–response curve and the downstream dose–response curves for cell-cycle arrest and transcriptional induction. Fitting the data to a mathematical model produced estimates of the in vivo rates of heterotrimeric G protein activation and deactivation in yeast. PMID:12960402

  13. Distribution of adenosine deaminase complexing protein (ADCP) in human tissues.

    Science.gov (United States)

    Dinjens, W N; ten Kate, J; van der Linden, E P; Wijnen, J T; Khan, P M; Bosman, F T

    1989-12-01

    The normal distribution of adenosine deaminase complexing protein (ADCP) in the human body was investigated quantitatively by ADCP-specific radioimmunoassay (RIA) and qualitatively by immunohistochemistry. In these studies we used a specific rabbit anti-human ADCP antiserum. In all 19 investigated tissues, except erythrocytes, ADCP was found by RIA in the soluble and membrane fractions. From all tissues the membrane fractions contained more ADCP (expressed per mg protein) than the soluble fractions. High membrane ADCP concentrations were found in skin, renal cortex, gastrointestinal tract, and prostate. Immunoperoxidase staining confirmed the predominant membrane-associated localization of the protein. In serous sweat glands, convoluted tubules of renal cortex, bile canaliculi, gastrointestinal tract, lung, pancreas, prostate gland, salivary gland, gallbladder, mammary gland, and uterus, ADCP immunoreactivity was found confined to the luminal membranes of the epithelial cells. These data demonstrate that ADCP is present predominantly in exocrine glands and absorptive epithelia. The localization of ADCP at the secretory or absorptive apex of the cells suggests that the function of ADCP is related to the secretory and/or absorptive process.

  14. The affinity purification and characterization of ATP synthase complexes from mitochondria.

    Science.gov (United States)

    Runswick, Michael J; Bason, John V; Montgomery, Martin G; Robinson, Graham C; Fearnley, Ian M; Walker, John E

    2013-02-13

    The mitochondrial F₁-ATPase inhibitor protein, IF₁, inhibits the hydrolytic, but not the synthetic activity of the F-ATP synthase, and requires the hydrolysis of ATP to form the inhibited complex. In this complex, the α-helical inhibitory region of the bound IF₁ occupies a deep cleft in one of the three catalytic interfaces of the enzyme. Its N-terminal region penetrates into the central aqueous cavity of the enzyme and interacts with the γ-subunit in the enzyme's rotor. The intricacy of forming this complex and the binding mode of the inhibitor endow IF₁ with high specificity. This property has been exploited in the development of a highly selective affinity procedure for purifying the intact F-ATP synthase complex from mitochondria in a single chromatographic step by using inhibitor proteins with a C-terminal affinity tag. The inhibited complex was recovered with residues 1-60 of bovine IF₁ with a C-terminal green fluorescent protein followed by a His-tag, and the active enzyme with the same inhibitor with a C-terminal glutathione-S-transferase domain. The wide applicability of the procedure has been demonstrated by purifying the enzyme complex from bovine, ovine, porcine and yeast mitochondria. The subunit compositions of these complexes have been characterized. The catalytic properties of the bovine enzyme have been studied in detail. Its hydrolytic activity is sensitive to inhibition by oligomycin, and the enzyme is capable of synthesizing ATP in vesicles in which the proton-motive force is generated from light by bacteriorhodopsin. The coupled enzyme has been compared by limited trypsinolysis with uncoupled enzyme prepared by affinity chromatography. In the uncoupled enzyme, subunits of the enzyme's stator are degraded more rapidly than in the coupled enzyme, indicating that uncoupling involves significant structural changes in the stator region.

  15. LIL3, a Light-Harvesting Complex Protein, Links Terpenoid and Tetrapyrrole Biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Hey, Daniel; Rothbart, Maxi; Herbst, Josephine; Wang, Peng; Müller, Jakob; Wittmann, Daniel; Gruhl, Kirsten; Grimm, Bernhard

    2017-06-01

    The LIL3 protein of Arabidopsis ( Arabidopsis thaliana ) belongs to the light-harvesting complex (LHC) protein family, which also includes the light-harvesting chlorophyll-binding proteins of photosystems I and II, the early-light-inducible proteins, PsbS involved in nonphotochemical quenching, and the one-helix proteins and their cyanobacterial homologs designated high-light-inducible proteins. Each member of this family is characterized by one or two LHC transmembrane domains (referred to as the LHC motif) to which potential functions such as chlorophyll binding, protein interaction, and integration of interacting partners into the plastid membranes have been attributed. Initially, LIL3 was shown to interact with geranylgeranyl reductase (CHLP), an enzyme of terpene biosynthesis that supplies the hydrocarbon chain for chlorophyll and tocopherol. Here, we show another function of LIL3 for the stability of protochlorophyllide oxidoreductase (POR). Multiple protein-protein interaction analyses suggest the direct physical interaction of LIL3 with POR but not with chlorophyll synthase. Consistently, LIL3-deficient plants exhibit substantial loss of POR as well as CHLP, which is not due to defective transcription of the POR and CHLP genes but to the posttranslational modification of their protein products. Interestingly, in vitro biochemical analyses provide novel evidence that LIL3 shows high binding affinity to protochlorophyllide, the substrate of POR. Taken together, this study suggests a critical role for LIL3 in the organization of later steps in chlorophyll biosynthesis. We suggest that LIL3 associates with POR and CHLP and thus contributes to the supply of the two metabolites, chlorophyllide and phytyl pyrophosphate, required for the final step in chlorophyll a synthesis. © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. Characterization and detection of thermoacoustic combustion oscillations based on statistical complexity and complex-network theory

    Science.gov (United States)

    Murayama, Shogo; Kinugawa, Hikaru; Tokuda, Isao T.; Gotoda, Hiroshi

    2018-02-01

    We present an experimental study on the characterization of dynamic behavior of flow velocity field during thermoacoustic combustion oscillations in a turbulent confined combustor from the viewpoints of statistical complexity and complex-network theory, involving detection of a precursor of thermoacoustic combustion oscillations. The multiscale complexity-entropy causality plane clearly shows the possible presence of two dynamics, noisy periodic oscillations and noisy chaos, in the shear layer regions (1) between the outer recirculation region in the dump plate and a recirculation flow in the wake of the centerbody and (2) between the outer recirculation region in the dump plate and a vortex breakdown bubble away from the centerbody. The vertex strength in the turbulence network and the community structure of the vorticity field can identify the vortical interactions during thermoacoustic combustion oscillations. Sequential horizontal visibility graph motifs are useful for capturing a precursor of themoacoustic combustion oscillations.

  17. Characterization of MVP and VPARP assembly into vault ribonucleoprotein complexes.

    Science.gov (United States)

    Zheng, Chun-Lei; Sumizawa, Tomoyuki; Che, Xiao-Fang; Tsuyama, Shinichiro; Furukawa, Tatsuhiko; Haraguchi, Misako; Gao, Hui; Gotanda, Takenari; Jueng, Hei-Cheul; Murata, Fusayoshi; Akiyama, Shin-Ichi

    2005-01-07

    Vaults are barrel-shaped cytoplasmic ribonucleoprotein particles composed of three proteins: the major vault protein (MVP), the vault poly(ADP-ribose)polymerase (VPARP), and the telomerase-associated protein 1, together with one or more small untranslated RNAs. To date, little is known about the process of vault assembly or about the stability of vault components. In this study, we analyzed the biosynthesis of MVP and VPARP, and their half-lives within the vault particle in human ACHN renal carcinoma cells. Using an immunoprecipitation assay, we found that it took more than 4h for newly synthesized MVPs to be incorporated into vault particles but that biosynthesized VPARPs were completely incorporated into vaults within 1.5h. Once incorporated into the vault complex, both MVP and VPARP were very stable. Expression of human MVP alone in Escherichia coli resulted in the formation of particles that had a distinct vault morphology. The C-terminal region of VPARP that lacks poly(ADP-ribose)polymerase activity co-sedimented with MVP particles. This suggests that the activity of VPARP is not essential for interaction with MVP-self-assembled vault-like particles. In conclusion, our findings provide an insight into potential mechanisms of physiological vault assembly.

  18. A Guide to Transient Expression of Membrane Proteins in HEK-293 Cells for Functional Characterization

    KAUST Repository

    Ooi, Amanda Siok Lee

    2016-07-19

    The human embryonic kidney 293 (HEK-293) cells are commonly used as host for the heterologous expression of membrane proteins not least because they have a high transfection efficiency and faithfully translate and process proteins. In addition, their cell size, morphology and division rate, and low expression of native channels are traits that are particularly attractive for current-voltage measurements. Nevertheless, the heterologous expression of complex membrane proteins such as receptors and ion channels for biological characterization and in particular for single-cell applications such as electrophysiology remains a challenge. Expression of functional proteins depends largely on careful step-by-step optimization that includes the design of expression vectors with suitable identification tags, as well as the selection of transfection methods and detection parameters appropriate for the application. Here, we use the heterologous expression of a plant potassium channel, the Arabidopsis thaliana guard cell outward-rectifying K+ channel, AtGORK (At5G37500) in HEK-293 cells as an example, to evaluate commonly used transfection reagents and fluorescent detection methods, and provide a detailed methodology for optimized transient transfection and expression of membrane proteins for in vivo studies in general and for single-cell applications in particular. This optimized protocol will facilitate the physiological and cellular characterization of complex membrane proteins.

  19. A Guide to Transient Expression of Membrane Proteins in HEK-293 Cells for Functional Characterization

    KAUST Repository

    Ooi, Amanda Siok Lee; Wong, Aloysius Tze; Esau, Luke; Lemtiri-Chlieh, Fouad; Gehring, Christoph A

    2016-01-01

    The human embryonic kidney 293 (HEK-293) cells are commonly used as host for the heterologous expression of membrane proteins not least because they have a high transfection efficiency and faithfully translate and process proteins. In addition, their cell size, morphology and division rate, and low expression of native channels are traits that are particularly attractive for current-voltage measurements. Nevertheless, the heterologous expression of complex membrane proteins such as receptors and ion channels for biological characterization and in particular for single-cell applications such as electrophysiology remains a challenge. Expression of functional proteins depends largely on careful step-by-step optimization that includes the design of expression vectors with suitable identification tags, as well as the selection of transfection methods and detection parameters appropriate for the application. Here, we use the heterologous expression of a plant potassium channel, the Arabidopsis thaliana guard cell outward-rectifying K+ channel, AtGORK (At5G37500) in HEK-293 cells as an example, to evaluate commonly used transfection reagents and fluorescent detection methods, and provide a detailed methodology for optimized transient transfection and expression of membrane proteins for in vivo studies in general and for single-cell applications in particular. This optimized protocol will facilitate the physiological and cellular characterization of complex membrane proteins.

  20. Selection and Characterization of Palmitic Acid Responsive Patients with an OXPHOS Complex I Defect

    Directory of Open Access Journals (Sweden)

    Tom E. J. Theunissen

    2017-10-01

    Full Text Available Mitochondrial disorders are genetically and clinically heterogeneous, mainly affecting high energy-demanding organs due to impaired oxidative phosphorylation (OXPHOS. Currently, effective treatments for OXPHOS defects, with complex I deficiency being the most prevalent, are not available. Yet, clinical practice has shown that some complex I deficient patients benefit from a high-fat or ketogenic diet, but it is unclear how these therapeutic diets influence mitochondrial function and more importantly, which complex I patients could benefit from such treatment. Dietary studies in a complex I deficient patient with exercise intolerance showed increased muscle endurance on a high-fat diet compared to a high-carbohydrate diet. We performed whole-exome sequencing to characterize the genetic defect. A pathogenic homozygous p.G212V missense mutation was identified in the TMEM126B gene, encoding an early assembly factor of complex I. A complementation study in fibroblasts confirmed that the p.G212V mutation caused the complex I deficiency. The mechanism turned out to be an incomplete assembly of the peripheral arm of complex I, leading to a decrease in the amount of mature complex I. The patient clinically improved on a high-fat diet, which was supported by the 25% increase in maximal OXPHOS capacity in TMEM126B defective fibroblast by the saturated fatty acid palmitic acid, whereas oleic acid did not have any effect in those fibroblasts. Fibroblasts of other patients with a characterized complex I gene defect were tested in the same way. Patient fibroblasts with complex I defects in NDUFS7 and NDUFAF5 responded to palmitic acid, whereas ACAD9, NDUFA12, and NDUFV2 defects were non-responding. Although the data are too limited to draw a definite conclusion on the mechanism, there is a tendency that protein defects involved in early assembly complexes, improve with palmitic acid, whereas proteins defects involved in late assembly, do not. Our data show at

  1. Characterization of the Eimeria maxima sporozoite surface protein IMP1

    Science.gov (United States)

    The purpose of this study was to characterize Eimeria maxima immunoprotective protein IMP1 that is hypothesized to play a role in eliciting protective immunity against E. maxima infection in chickens. RT-PCR analysis of RNA from unsporulated and sporulating E. maxima oocysts revealed highest transc...

  2. Induction and characterization of pathogenesis-related proteins in ...

    African Journals Online (AJOL)

    Furthermore, induced proteins were extracted from roots of inoculated and control tolerant (RO1054 and RO3015) and susceptible (RO2063) accessions at 8 dpi, and characterized by isoelectric focusing (IEF), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analyses. Chitinase ...

  3. Molecular characterization of capsid protein gene of potato virus X ...

    African Journals Online (AJOL)

    Molecular characterization of capsid protein gene of potato virus X from Pakistan. Arshad Jamal, Idrees Ahmad Nasir, Bushra Tabassum, Muhammad Tariq, Abdul Munim Farooq, Zahida Qamar, Mohsin Ahmad Khan, Nadeem Ahmad, Muhammad Shafiq, Muhammad Saleem Haider, M. Arshad Javed, Tayyab Husnain ...

  4. Molecular recognition in complexes of TRF proteins with telomeric DNA.

    Directory of Open Access Journals (Sweden)

    Miłosz Wieczór

    Full Text Available Telomeres are specialized nucleoprotein assemblies that protect the ends of linear chromosomes. In humans and many other species, telomeres consist of tandem TTAGGG repeats bound by a protein complex known as shelterin that remodels telomeric DNA into a protective loop structure and regulates telomere homeostasis. Shelterin recognizes telomeric repeats through its two major components known as Telomere Repeat-Binding Factors, TRF1 and TRF2. These two homologous proteins are therefore essential for the formation and normal function of telomeres. Indeed, TRF1 and TRF2 are implicated in a plethora of different cellular functions and their depletion leads to telomere dysfunction with chromosomal fusions, followed by apoptotic cell death. More specifically, it was found that TRF1 acts as a negative regulator of telomere length, and TRF2 is involved in stabilizing the loop structure. Consequently, these proteins are of great interest, not only because of their key role in telomere maintenance and stability, but also as potential drug targets. In the current study, we investigated the molecular basis of telomeric sequence recognition by TRF1 and TRF2 and their DNA binding mechanism. We used molecular dynamics (MD to calculate the free energy profiles for binding of TRFs to telomeric DNA. We found that the predicted binding free energies were in good agreement with experimental data. Further, different molecular determinants of binding, such as binding enthalpies and entropies, the hydrogen bonding pattern and changes in surface area, were analyzed to decompose and examine the overall binding free energies at the structural level. With this approach, we were able to draw conclusions regarding the consecutive stages of sequence-specific association, and propose a novel aspartate-dependent mechanism of sequence recognition. Finally, our work demonstrates the applicability of computational MD-based methods to studying protein-DNA interactions.

  5. Expression, purification and characterization of hepatitis B virus X protein BH3-like motif-linker-Bcl-xL fusion protein for structural studies

    Directory of Open Access Journals (Sweden)

    Hideki Kusunoki

    2017-03-01

    Full Text Available Hepatitis B virus X protein (HBx is a multifunctional protein that interacts directly with many host proteins. For example, HBx interacts with anti-apoptotic proteins, Bcl-2 and Bcl-xL, through its BH3-like motif, which leads to elevated cytosolic calcium levels, efficient viral DNA replication and the induction of apoptosis. To facilitate sample preparation and perform detailed structural characterization of the complex between HBx and Bcl-xL, we designed and purified a recombinant HBx BH3-like motif-linker-Bcl-xL fusion protein produced in E. coli. The fusion protein was characterized by size exclusion chromatography, circular dichroism and nuclear magnetic resonance experiments. Our results show that the fusion protein is a monomer in aqueous solution, forms a stable intramolecular complex, and likely retains the native conformation of the complex between Bcl-xL and the HBx BH3-like motif. Furthermore, the HBx BH3-like motif of the intramolecular complex forms an α-helix. These observations indicate that the fusion protein should facilitate structural studies aimed at understanding the interaction between HBx and Bcl-xL at the atomic level.

  6. Mapping Proteoforms and Protein Complexes From King Cobra Venom Using Both Denaturing and Native Top-down Proteomics.

    Science.gov (United States)

    Melani, Rafael D; Skinner, Owen S; Fornelli, Luca; Domont, Gilberto B; Compton, Philip D; Kelleher, Neil L

    2016-07-01

    Characterizing whole proteins by top-down proteomics avoids a step of inference encountered in the dominant bottom-up methodology when peptides are assembled computationally into proteins for identification. The direct interrogation of whole proteins and protein complexes from the venom of Ophiophagus hannah (king cobra) provides a sharply clarified view of toxin sequence variation, transit peptide cleavage sites and post-translational modifications (PTMs) likely critical for venom lethality. A tube-gel format for electrophoresis (called GELFrEE) and solution isoelectric focusing were used for protein fractionation prior to LC-MS/MS analysis resulting in 131 protein identifications (18 more than bottom-up) and a total of 184 proteoforms characterized from 14 protein toxin families. Operating both GELFrEE and mass spectrometry to preserve non-covalent interactions generated detailed information about two of the largest venom glycoprotein complexes: the homodimeric l-amino acid oxidase (∼130 kDa) and the multichain toxin cobra venom factor (∼147 kDa). The l-amino acid oxidase complex exhibited two clusters of multiproteoform complexes corresponding to the presence of 5 or 6 N-glycans moieties, each consistent with a distribution of N-acetyl hexosamines. Employing top-down proteomics in both native and denaturing modes provides unprecedented characterization of venom proteoforms and their complexes. A precise molecular inventory of venom proteins will propel the study of snake toxin variation and the targeted development of new antivenoms or other biotherapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. PROXiMATE: a database of mutant protein-protein complex thermodynamics and kinetics.

    Science.gov (United States)

    Jemimah, Sherlyn; Yugandhar, K; Michael Gromiha, M

    2017-09-01

    We have developed PROXiMATE, a database of thermodynamic data for more than 6000 missense mutations in 174 heterodimeric protein-protein complexes, supplemented with interaction network data from STRING database, solvent accessibility, sequence, structural and functional information, experimental conditions and literature information. Additional features include complex structure visualization, search and display options, download options and a provision for users to upload their data. The database is freely available at http://www.iitm.ac.in/bioinfo/PROXiMATE/ . The website is implemented in Python, and supports recent versions of major browsers such as IE10, Firefox, Chrome and Opera. gromiha@iitm.ac.in. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. Complexes of Usher proteins preassemble at the endoplasmic reticulum and are required for trafficking and ER homeostasis

    Directory of Open Access Journals (Sweden)

    Bernardo Blanco-Sánchez

    2014-05-01

    Full Text Available Usher syndrome (USH, the leading cause of hereditary combined hearing and vision loss, is characterized by sensorineural deafness and progressive retinal degeneration. Mutations in several different genes produce USH, but the proximal cause of sensory cell death remains mysterious. We adapted a proximity ligation assay to analyze associations among three of the USH proteins, Cdh23, Harmonin and Myo7aa, and the microtubule-based transporter Ift88 in zebrafish inner ear mechanosensory hair cells. We found that the proteins are in close enough proximity to form complexes and that these complexes preassemble at the endoplasmic reticulum (ER. Defects in any one of the three USH proteins disrupt formation and trafficking of the complex and result in diminished levels of the other proteins, generalized trafficking defects and ER stress that triggers apoptosis. ER stress, thus, contributes to sensory hair cell loss and provides a new target to explore for protective therapies for USH.

  9. Identification and characterization of the pseudorabies virus UL43 protein

    International Nuclear Information System (INIS)

    Klupp, Barbara G.; Altenschmidt, Jan; Granzow, Harald; Fuchs, Walter; Mettenleiter, Thomas C.

    2005-01-01

    Among the least characterized herpesvirus membrane proteins are the homologs of UL43 of herpes simplex virus 1 (HSV-1). To identify and characterize the UL43 protein of pseudorabies virus (PrV), part of the open reading frame was expressed in Escherichia coli and used for immunization of a rabbit. The antiserum recognized in Western blots a 34-kDa protein in lysates of PrV infected cells and purified virions, demonstrating that the UL43 protein is a virion component. In indirect immunofluorescence analysis, the antiserum labeled vesicular structures in PrV infected cells which also contained glycoprotein B. To functionally analyze UL43, a deletion mutant was constructed lacking amino acids 23-332 of the 373aa protein. This mutant was only slightly impaired in replication as assayed by one-step growth kinetics, measurement of plaque sizes, and electron microscopy. Interestingly, the PrV UL43 protein was able to inhibit fusion induced by PrV glycoproteins in a transient expression-fusion assay to a similar extent as gM. Double mutant viruses lacking, in addition to UL43, the multiply membrane spanning glycoproteins K or M did not show a phenotype beyond that observed in the gK and gM single deletion mutants

  10. NMR spectroscopic and analytical ultracentrifuge analysis of membrane protein detergent complexes

    Directory of Open Access Journals (Sweden)

    Choe Senyon

    2007-11-01

    Full Text Available Abstract Background Structural studies of integral membrane proteins (IMPs are hampered by inherent difficulties in their heterologous expression and in the purification of solubilized protein-detergent complexes (PDCs. The choice and concentrations of detergents used in an IMP preparation play a critical role in protein homogeneity and are thus important for successful crystallization. Results Seeking an effective and standardized means applicable to genomic approaches for the characterization of PDCs, we chose 1D-NMR spectroscopic analysis to monitor the detergent content throughout their purification: protein extraction, detergent exchange, and sample concentration. We demonstrate that a single NMR measurement combined with a SDS-PAGE of a detergent extracted sample provides a useful gauge of the detergent's extraction potential for a given protein. Furthermore, careful monitoring of the detergent content during the process of IMP production allows for a high level of reproducibility. We also show that in many cases a simple sedimentation velocity measurement provides sufficient data to estimate both the oligomeric state and the detergent-to-protein ratio in PDCs, as well as to evaluate the homogeneity of the samples prior to crystallization screening. Conclusion The techniques presented here facilitate the screening and selection of the extraction detergent, as well as help to maintain reproducibility in the detergent exchange and PDC concentration procedures. Such reproducibility is particularly important for the optimization of initial crystallization conditions, for which multiple purifications are routinely required.

  11. Characterization of a cocaine binding protein in human placenta

    International Nuclear Information System (INIS)

    Ahmed, M.S.; Zhou, D.H.; Maulik, D.; Eldefrawi, M.E.

    1990-01-01

    [ 3 H]-Cocaine binding sites are identified in human placental villus tissue plasma membranes. These binding sites are associated with a protein and show saturable and specific binding of [ 3 H]-cocaine with a high affinity site of 170 fmole/mg protein. The binding is lost with pretreatment with trypsin or heat. The membrane bound protein is solubilized with the detergent 3-(3-cholamidopropyl)dimethyl-ammonio-1-propane sulphonate (CHAPS) with retention of its saturable and specific binding of [ 3 H]-cocaine. The detergent-protein complex migrates on a sepharose CL-6B gel chromatography column as a protein with an apparent molecular weight of 75,900. The protein has an S 20,w value of 5.1. The binding of this protein to norcocaine, pseudococaine, nomifensine, imipramine, desipramine, amphetamine and dopamine indicates that it shares some, but not all, the properties of the brain cocaine receptor. The physiologic significance of this protein in human placenta is currently unclear

  12. Leaching of irradiated polymers: solution characterization and actinides complexation

    International Nuclear Information System (INIS)

    Fromentin, Elodie

    2017-01-01

    The first aim of this work is to study the degradation of an industrial poly-esterurethane (PURm) by radio-oxidation and then by leaching in an alkaline aqueous solution. The second aim is to measure the complexing power of hydro-soluble degradation products (HDP) with actinides. To reach these goals, PURm was first characterized and then radio-oxidized at room temperature with γ rays up to 10 MGy. Second, it was leached at pH 13.3 at different temperature values. Numerous analytical techniques were employed in order to characterize the HDP which were obtained. Europium(III) was used as an analogue of actinides(III) and the behavior of HDP with europium(III) was analyzed by time-resolved luminescence spectroscopy (TRLS). Whatever the dose received by PURm, adipic acid and butane-1,4-diol are the two main HDP in leachates. The leaching data acquired at 40 and 60 C, on the 1 MGy radio-oxidized PURm, correlate with the model given by Yoon et al. (1997). However, the data at room temperature (22 C in average) are not in agreement with the model. Nevertheless, it seems that the plateau which was reached at long-term leaching is the same whatever the temperature used in this study. The results allow to conclude that the predominant mechanism occurring during the leaching of unirradiated and radio-oxidized PURm in an alkaline medium is the hydrolysis of the soft segments ester groups. The complexation of europium(III) by HDP in alkaline medium was demonstrated. The measurement of the complexing power and the identification of ligands was achieved under certain conditions. (author) [fr

  13. Mannan-binding protein forms complexes with alpha-2-macroglobulin. A protein model for the interaction

    DEFF Research Database (Denmark)

    Storgaard, P; Holm Nielsen, E; Skriver, E

    1995-01-01

    We report that alpha-2-macroglobulin (alpha 2M) can form complexes with a high molecular weight porcine mannan-binding protein (pMBP-28). The alpha 2M/pMBP-28 complexes was isolated by PEG-precipitation and affinity chromatography on mannan-Sepharose, protein A-Sepharose and anti-IgM Sepharose......-PAGE, which reacted with antibodies against alpha 2M and pMBP-28, respectively, in Western blotting. Furthermore, alpha 2M/pMBP-28 complexes were demonstrated by electron microscopy. Fractionation of pMBP-containing D-mannose eluate from mannan-Sepharose on Superose 6 showed two protein peaks which reacted...... with anti-C1 s antibodies in ELISA, one of about 650-800 kDa, which in addition contained pMBP-28 and anti-alpha 2M reactive material, the other with an M(r) of 100-150 kDa. The latter peak revealed rhomboid molecules (7 x 15 nm) in the electron microscope and a 67 kDa band in SDS-PAGE under reducing...

  14. Treatment of Children with Protein – Losing Enteropathy After Fontan and Other Complex Congenital Heart Disease Procedures in Condition with Limited Human and Technical Resources

    OpenAIRE

    Bejiqi, Ramush; Retkoceri, Ragip; Zeka, Naim; Bejiqi, Hana; Vuqiterna, Armend; Maloku, Arlinda

    2014-01-01

    Background Protein-losing enteropathy (PLE) is a disorder characterized by abnormal and often profound enteric protein loss. It’s relatively uncommon complication of Fontan and other complex congenital heart disease (CCHD) procedures. Because of the complexity and rarity of this disease process, the pathogenesis and pathophysiology of protein-losing enteropathy remain poorly understood, and attempts at treatment seldom yield long-term success. Aim of presentation is to describe single centre ...

  15. Discovering functional interdependence relationship in PPI networks for protein complex identification.

    Science.gov (United States)

    Lam, Winnie W M; Chan, Keith C C

    2012-04-01

    Protein molecules interact with each other in protein complexes to perform many vital functions, and different computational techniques have been developed to identify protein complexes in protein-protein interaction (PPI) networks. These techniques are developed to search for subgraphs of high connectivity in PPI networks under the assumption that the proteins in a protein complex are highly interconnected. While these techniques have been shown to be quite effective, it is also possible that the matching rate between the protein complexes they discover and those that are previously determined experimentally be relatively low and the "false-alarm" rate can be relatively high. This is especially the case when the assumption of proteins in protein complexes being more highly interconnected be relatively invalid. To increase the matching rate and reduce the false-alarm rate, we have developed a technique that can work effectively without having to make this assumption. The name of the technique called protein complex identification by discovering functional interdependence (PCIFI) searches for protein complexes in PPI networks by taking into consideration both the functional interdependence relationship between protein molecules and the network topology of the network. The PCIFI works in several steps. The first step is to construct a multiple-function protein network graph by labeling each vertex with one or more of the molecular functions it performs. The second step is to filter out protein interactions between protein pairs that are not functionally interdependent of each other in the statistical sense. The third step is to make use of an information-theoretic measure to determine the strength of the functional interdependence between all remaining interacting protein pairs. Finally, the last step is to try to form protein complexes based on the measure of the strength of functional interdependence and the connectivity between proteins. For performance evaluation

  16. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships

    Science.gov (United States)

    Zeke, András; Misheva, Mariya

    2016-01-01

    SUMMARY The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. PMID:27466283

  17. Behaviour of intrinsically disordered proteins in protein-protein complexes with an emphasis on fuzziness

    DEFF Research Database (Denmark)

    Olsen, Johan Gotthardt; Teilum, Kaare; Kragelund, Birthe Brandt

    2017-01-01

    in their malleability, which enables them to bind several different partners with high specificity. In addition, their interactions with other macromolecules can be regulated by a variable amount of chemically diverse post-translational modifications. Four kinetically and energetically different types of complexes...

  18. Single Molecule Spectroscopy on Photosynthetic Pigment-Protein Complexes

    CERN Document Server

    Jelezko, F; Schuler, S; Thews, E; Tietz, C; Wechsler, A; Wrachtrup, J

    2001-01-01

    Single molecule spectroscopy was applied to unravel the energy transfer pathway in photosynthetic pigment-protein complexes. Detailed analysis of excitation and fluorescence emission spectra has been made for peripheral plant antenna LHC II and Photosystem I from cyanobacterium Synechococcus elongatus. Optical transitions of individual pigments were resolved under nonselective excitation of antenna chlorophylls. High-resolution fluorescence spectroscopy of individual plant antenna LHC II indicates that at low temperatures, the excitation energy is localized on the red-most Chl a pool absorbing at 680 nm. More than one pigment molecule is responsible for the fluorescence emission of the LHC II trimer. The spectral lines of single Chl a molecules absorbing at 675 nm are broadened because of the Foerster energy transfer towards the red-most pigments. Low-temperature spectroscopy on single PS I trimers indicates that two subgroups of pigments, which are present in the red antenna pool, differ by the strength of t...

  19. Characterization of pathogenic germline mutations in human Protein Kinases

    Directory of Open Access Journals (Sweden)

    Orengo Christine A

    2011-07-01

    Full Text Available Abstract Background Protein Kinases are a superfamily of proteins involved in crucial cellular processes such as cell cycle regulation and signal transduction. Accordingly, they play an important role in cancer biology. To contribute to the study of the relation between kinases and disease we compared pathogenic mutations to neutral mutations as an extension to our previous analysis of cancer somatic mutations. First, we analyzed native and mutant proteins in terms of amino acid composition. Secondly, mutations were characterized according to their potential structural effects and finally, we assessed the location of the different classes of polymorphisms with respect to kinase-relevant positions in terms of subfamily specificity, conservation, accessibility and functional sites. Results Pathogenic Protein Kinase mutations perturb essential aspects of protein function, including disruption of substrate binding and/or effector recognition at family-specific positions. Interestingly these mutations in Protein Kinases display a tendency to avoid structurally relevant positions, what represents a significant difference with respect to the average distribution of pathogenic mutations in other protein families. Conclusions Disease-associated mutations display sound differences with respect to neutral mutations: several amino acids are specific of each mutation type, different structural properties characterize each class and the distribution of pathogenic mutations within the consensus structure of the Protein Kinase domain is substantially different to that for non-pathogenic mutations. This preferential distribution confirms previous observations about the functional and structural distribution of the controversial cancer driver and passenger somatic mutations and their use as a proxy for the study of the involvement of somatic mutations in cancer development.

  20. Translation initiation mediated by nuclear cap-binding protein complex.

    Science.gov (United States)

    Ryu, Incheol; Kim, Yoon Ki

    2017-04-01

    In mammals, cap-dependent translation of mRNAs is initiated by two distinct mechanisms: cap-binding complex (CBC; a heterodimer of CBP80 and 20)-dependent translation (CT) and eIF4E-dependent translation (ET). Both translation initiation mechanisms share common features in driving cap- dependent translation; nevertheless, they can be distinguished from each other based on their molecular features and biological roles. CT is largely associated with mRNA surveillance such as nonsense-mediated mRNA decay (NMD), whereas ET is predominantly involved in the bulk of protein synthesis. However, several recent studies have demonstrated that CT and ET have similar roles in protein synthesis and mRNA surveillance. In a subset of mRNAs, CT preferentially drives the cap-dependent translation, as ET does, and ET is responsible for mRNA surveillance, as CT does. In this review, we summarize and compare the molecular features of CT and ET with a focus on the emerging roles of CT in translation. [BMB Reports 2017; 50(4): 186-193].

  1. Food protein-based phytosterol nanoparticles: fabrication and characterization.

    Science.gov (United States)

    Cao, Wen-Jun; Ou, Shi-Yi; Lin, Wei-Feng; Tang, Chuan-He

    2016-09-14

    The development of food-grade (nano)particles as a delivery system for poorly water soluble bioactives has recently attracted increasing attention. This work is an attempt to fabricate food protein-based nanoparticles as delivery systems for improving the water dispersion and bioaccessibility of phytosterols (PS) by an emulsification-evaporation method. The fabricated PS nanoparticles were characterized in terms of particle size, encapsulation efficiency (EE%) and loading amount (LA), and ξ-potential. Among all the test proteins, including soy protein isolate (SPI), whey protein concentrate (WPC) and sodium caseinate (SC), SC was confirmed to be the most suitable protein for the PS nano-formulation. Besides the type of protein, the particle size, EE% and LA of PS in the nanoparticles varied with the applied protein concentration in the aqueous phase and organic volume fraction. The freeze-dried PS nanoparticles with SC exhibited good water re-dispersion behavior and low crystallinity of PS. The LA of PS in the nanoparticles decreased upon storage, especially at high temperatures (e.g., >25 °C). The PS in the fabricated nanoparticles exhibited much better bioaccessibility than free PS. The findings would be of relevance for the fabrication of food-grade colloidal phytosterols, with great potential to be applied in functional food formulations.

  2. Further biochemical characterization of Mycobacterium leprae laminin-binding proteins

    Directory of Open Access Journals (Sweden)

    M.A.M. Marques

    2001-04-01

    Full Text Available It has been demonstrated that the alpha2 chain of laminin-2 present on the surface of Schwann cells is involved in the process of attachment of Mycobacterium leprae to these cells. Searching for M. leprae laminin-binding molecules, in a previous study we isolated and characterized the cationic proteins histone-like protein (Hlp and ribosomal proteins S4 and S5 as potential adhesins involved in M. leprae-Schwann cell interaction. Hlp was shown to bind alpha2-laminins and to greatly enhance the attachment of mycobacteria to ST88-14 Schwann cells. In the present study, we investigated the laminin-binding capacity of the ribosomal proteins S4 and S5. The genes coding for these proteins were PCR amplified and their recombinant products were shown to bind alpha2-laminins in overlay assays. However, when tested in ELISA-based assays and in adhesion assays with ST88-14 cells, in contrast to Hlp, S4 and S5 failed to bind laminin and act as adhesins. The laminin-binding property and adhesin capacity of two basic host-derived proteins were also tested, and only histones, but not cytochrome c, were able to increase bacterial attachment to ST88-14 cells. Our data suggest that the alanine/lysine-rich sequences shared by Hlp and eukaryotic H1 histones might be involved in the binding of these cationic proteins to laminin.

  3. Solving structures of protein complexes by molecular replacement with Phaser

    International Nuclear Information System (INIS)

    McCoy, Airlie J.

    2006-01-01

    Four case studies in using maximum-likelihood molecular replacement, as implemented in the program Phaser, to solve structures of protein complexes are described. Molecular replacement (MR) generally becomes more difficult as the number of components in the asymmetric unit requiring separate MR models (i.e. the dimensionality of the search) increases. When the proportion of the total scattering contributed by each search component is small, the signal in the search for each component in isolation is weak or non-existent. Maximum-likelihood MR functions enable complex asymmetric units to be built up from individual components with a ‘tree search with pruning’ approach. This method, as implemented in the automated search procedure of the program Phaser, has been very successful in solving many previously intractable MR problems. However, there are a number of cases in which the automated search procedure of Phaser is suboptimal or encounters difficulties. These include cases where there are a large number of copies of the same component in the asymmetric unit or where the components of the asymmetric unit have greatly varying B factors. Two case studies are presented to illustrate how Phaser can be used to best advantage in the standard ‘automated MR’ mode and two case studies are used to show how to modify the automated search strategy for problematic cases

  4. Characterization of Proteins in Filtrate from Biodegradation of Crop Residue

    Science.gov (United States)

    Horton, Wileatha; Trotman, A. A.

    1997-01-01

    Biodegradation of plant biomass is a feasible path for transformation of crop residue and recycling of nutrients for crop growth. The need to model the effects of factors associated with recycling of plant biomass resulting from hydroponic sweet potato production has led to investigation of natural soil isolates with the capacity for starch hydrolysis. This study sought to use nondenaturing gel electrophoresis to characterize the proteins present in filtered effluent from bioreactors seeded with starch hydrolyzing bacterial culture used in the biodegradation of senesced sweet potato biomass. The study determined the relative molecular weight of proteins in sampled effluent and the protein banding pattern was characterized. The protein profiles of effluent were similar for samples taken from independent runs under similar conditions of starch hydrolysis. The method can be used as a quality control tool for confirmation of starch hydrolysis of crop biomass. In addition, this method will allow monitoring for presence of contaminants within the system-protein profiles indicative of new enzymes in the bioreactors.

  5. Quantitative Interpretation of Multifrequency Multimode EPR Spectra of Metal Containing Proteins, Enzymes, and Biomimetic Complexes.

    Science.gov (United States)

    Petasis, Doros T; Hendrich, Michael P

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has long been a primary method for characterization of paramagnetic centers in materials and biological complexes. Transition metals in biological complexes have valence d-orbitals that largely define the chemistry of the metal centers. EPR spectra are distinctive for metal type, oxidation state, protein environment, substrates, and inhibitors. The study of many metal centers in proteins, enzymes, and biomimetic complexes has led to the development of a systematic methodology for quantitative interpretation of EPR spectra from a wide array of metal containing complexes. The methodology is now contained in the computer program SpinCount. SpinCount allows simulation of EPR spectra from any sample containing multiple species composed of one or two metals in any spin state. The simulations are quantitative, thus allowing determination of all species concentrations in a sample directly from spectra. This chapter will focus on applications to transition metals in biological systems using EPR spectra from multiple microwave frequencies and modes. © 2015 Elsevier Inc. All rights reserved.

  6. Protein Loop Dynamics Are Complex and Depend on the Motions of the Whole Protein

    Directory of Open Access Journals (Sweden)

    Michael T. Zimmermann

    2012-04-01

    Full Text Available We investigate the relationship between the motions of the same peptide loop segment incorporated within a protein structure and motions of free or end-constrained peptides. As a reference point we also compare against alanine chains having the same length as the loop. Both the analysis of atomic molecular dynamics trajectories and structure-based elastic network models, reveal no general dependence on loop length or on the number of solvent exposed residues. Rather, the whole structure affects the motions in complex ways that depend strongly and specifically on the tertiary structure of the whole protein. Both the Elastic Network Models and Molecular Dynamics confirm the differences in loop dynamics between the free and structured contexts; there is strong agreement between the behaviors observed from molecular dynamics and the elastic network models. There is no apparent simple relationship between loop mobility and its size, exposure, or position within a loop. Free peptides do not behave the same as the loops in the proteins. Surface loops do not behave as if they were random coils, and the tertiary structure has a critical influence upon the apparent motions. This strongly implies that entropy evaluation of protein loops requires knowledge of the motions of the entire protein structure.

  7. Different Types of nsP3-Containing Protein Complexes in Sindbis Virus-Infected Cells▿

    Science.gov (United States)

    Gorchakov, Rodion; Garmashova, Natalia; Frolova, Elena; Frolov, Ilya

    2008-01-01

    Alphaviruses represent a serious public health threat and cause a wide variety of diseases, ranging from severe encephalitis, which can result in death or neurological sequelae, to mild infection, characterized by fever, skin rashes, and arthritis. In the infected cells, alphaviruses express only four nonstructural proteins, which function in the synthesis of virus-specific RNAs and in modification of the intracellular environment. The results of our study suggest that Sindbis virus (SINV) infection in BHK-21 cells leads to the formation of at least two types of nsP3-containing complexes, one of which was found in association with the plasma membrane and endosome-like vesicles, while the second was coisolated with cell nuclei. The latter complexes could be solubilized only with the cytoskeleton-destabilizing detergent. Besides viral nsPs, in the mammalian cells, both complexes contained G3BP1 and G3BP2 (which were found in different ratios), YBX1, and HSC70. Rasputin, an insect cell-specific homolog of G3BP1, was found in the nsP3-containing complexes isolated from mosquito cells, which was suggestive of a high conservation of the complexes in the cells of both vertebrate and invertebrate origin. The endosome- and plasma membrane-associated complexes contained a high concentration of double-stranded RNAs (dsRNAs), which is indicative of their function in viral-RNA synthesis. The dsRNA synthesis is likely to efficiently proceed on the plasma membrane, and at least some of the protein-RNA complexes would then be transported into the cytosol in association with the endosome-like vesicular organelles. These findings provide new insight into the mechanism of SINV replication and virus-host cell interactions. PMID:18684830

  8. Different types of nsP3-containing protein complexes in Sindbis virus-infected cells.

    Science.gov (United States)

    Gorchakov, Rodion; Garmashova, Natalia; Frolova, Elena; Frolov, Ilya

    2008-10-01

    Alphaviruses represent a serious public health threat and cause a wide variety of diseases, ranging from severe encephalitis, which can result in death or neurological sequelae, to mild infection, characterized by fever, skin rashes, and arthritis. In the infected cells, alphaviruses express only four nonstructural proteins, which function in the synthesis of virus-specific RNAs and in modification of the intracellular environment. The results of our study suggest that Sindbis virus (SINV) infection in BHK-21 cells leads to the formation of at least two types of nsP3-containing complexes, one of which was found in association with the plasma membrane and endosome-like vesicles, while the second was coisolated with cell nuclei. The latter complexes could be solubilized only with the cytoskeleton-destabilizing detergent. Besides viral nsPs, in the mammalian cells, both complexes contained G3BP1 and G3BP2 (which were found in different ratios), YBX1, and HSC70. Rasputin, an insect cell-specific homolog of G3BP1, was found in the nsP3-containing complexes isolated from mosquito cells, which was suggestive of a high conservation of the complexes in the cells of both vertebrate and invertebrate origin. The endosome- and plasma membrane-associated complexes contained a high concentration of double-stranded RNAs (dsRNAs), which is indicative of their function in viral-RNA synthesis. The dsRNA synthesis is likely to efficiently proceed on the plasma membrane, and at least some of the protein-RNA complexes would then be transported into the cytosol in association with the endosome-like vesicular organelles. These findings provide new insight into the mechanism of SINV replication and virus-host cell interactions.

  9. Structural characterization of core-bradavidin in complex with biotin

    Science.gov (United States)

    Agrawal, Nitin; Määttä, Juha A. E.; Kulomaa, Markku S.; Hytönen, Vesa P.; Johnson, Mark S.; Airenne, Tomi T.

    2017-01-01

    Bradavidin is a tetrameric biotin-binding protein similar to chicken avidin and bacterial streptavidin, and was originally cloned from the nitrogen-fixing bacteria Bradyrhizobium diazoefficiens. We have previously reported the crystal structure of the full-length, wild-type (wt) bradavidin with 138 amino acids, where the C-terminal residues Gly129-Lys138 (“Brad-tag”) act as an intrinsic ligand (i.e. Gly129-Lys138 bind into the biotin-binding site of an adjacent subunit within the same tetramer) and has potential as an affinity tag for biotechnological purposes. Here, the X-ray structure of core-bradavidin lacking the C-terminal residues Gly114-Lys138, and hence missing the Brad-tag, was crystallized in complex with biotin at 1.60 Å resolution [PDB:4BBO]. We also report a homology model of rhodavidin, an avidin-like protein from Rhodopseudomonas palustris, and of an avidin-like protein from Bradyrhizobium sp. Ai1a-2, both of which have the Brad-tag sequence at their C-terminus. Moreover, core-bradavidin V1, an engineered variant of the original core-bradavidin, was also expressed at high levels in E. coli, as well as a double mutant (Cys39Ala and Cys69Ala) of core-bradavidin (CC mutant). Our data help us to further engineer the core-bradavidin–Brad-tag pair for biotechnological assays and chemical biology applications, and provide deeper insight into the biotin-binding mode of bradavidin. PMID:28426764

  10. Structural characterization of core-bradavidin in complex with biotin.

    Directory of Open Access Journals (Sweden)

    Nitin Agrawal

    Full Text Available Bradavidin is a tetrameric biotin-binding protein similar to chicken avidin and bacterial streptavidin, and was originally cloned from the nitrogen-fixing bacteria Bradyrhizobium diazoefficiens. We have previously reported the crystal structure of the full-length, wild-type (wt bradavidin with 138 amino acids, where the C-terminal residues Gly129-Lys138 ("Brad-tag" act as an intrinsic ligand (i.e. Gly129-Lys138 bind into the biotin-binding site of an adjacent subunit within the same tetramer and has potential as an affinity tag for biotechnological purposes. Here, the X-ray structure of core-bradavidin lacking the C-terminal residues Gly114-Lys138, and hence missing the Brad-tag, was crystallized in complex with biotin at 1.60 Å resolution [PDB:4BBO]. We also report a homology model of rhodavidin, an avidin-like protein from Rhodopseudomonas palustris, and of an avidin-like protein from Bradyrhizobium sp. Ai1a-2, both of which have the Brad-tag sequence at their C-terminus. Moreover, core-bradavidin V1, an engineered variant of the original core-bradavidin, was also expressed at high levels in E. coli, as well as a double mutant (Cys39Ala and Cys69Ala of core-bradavidin (CC mutant. Our data help us to further engineer the core-bradavidin-Brad-tag pair for biotechnological assays and chemical biology applications, and provide deeper insight into the biotin-binding mode of bradavidin.

  11. Functional mapping of protein-protein interactions in an enzyme complex by directed evolution.

    Directory of Open Access Journals (Sweden)

    Kathrin Roderer

    Full Text Available The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS. The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84-90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84-86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes.

  12. Functional mapping of protein-protein interactions in an enzyme complex by directed evolution.

    Science.gov (United States)

    Roderer, Kathrin; Neuenschwander, Martin; Codoni, Giosiana; Sasso, Severin; Gamper, Marianne; Kast, Peter

    2014-01-01

    The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM) of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS). The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84-90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84-86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes.

  13. A centrifugation-based physicochemical characterization method for the interaction between proteins and nanoparticles

    Science.gov (United States)

    Bekdemir, Ahmet; Stellacci, Francesco

    2016-10-01

    Nanomedicine requires in-depth knowledge of nanoparticle-protein interactions. These interactions are studied with methods limited to large or fluorescently labelled nanoparticles as they rely on scattering or fluorescence-correlation signals. Here, we have developed a method based on analytical ultracentrifugation (AUC) as an absorbance-based, label-free tool to determine dissociation constants (KD), stoichiometry (Nmax), and Hill coefficient (n), for the association of bovine serum albumin (BSA) with gold nanoparticles. Absorption at 520 nm in AUC renders the measurements insensitive to unbound and aggregated proteins. Measurements remain accurate and do not become more challenging for small (sub-10 nm) nanoparticles. In AUC, frictional ratio analysis allows for the qualitative assessment of the shape of the analyte. Data suggests that small-nanoparticles/protein complexes significantly deviate from a spherical shape even at maximum coverage. We believe that this method could become one of the established approaches for the characterization of the interaction of (small) nanoparticles with proteins.

  14. Characterization of subgraph relationships and distribution in complex networks

    International Nuclear Information System (INIS)

    Antiqueira, Lucas; Fontoura Costa, Luciano da

    2009-01-01

    A network can be analyzed at different topological scales, ranging from single nodes to motifs, communities, up to the complete structure. We propose a novel approach which extends from single nodes to the whole network level by considering non-overlapping subgraphs (i.e. connected components) and their interrelationships and distribution through the network. Though such subgraphs can be completely general, our methodology focuses on the cases in which the nodes of these subgraphs share some special feature, such as being critical for the proper operation of the network. The methodology of subgraph characterization involves two main aspects: (i) the generation of histograms of subgraph sizes and distances between subgraphs and (ii) a merging algorithm, developed to assess the relevance of nodes outside subgraphs by progressively merging subgraphs until the whole network is covered. The latter procedure complements the histograms by taking into account the nodes lying between subgraphs, as well as the relevance of these nodes to the overall subgraph interconnectivity. Experiments were carried out using four types of network models and five instances of real-world networks, in order to illustrate how subgraph characterization can help complementing complex network-based studies.

  15. A Polypyrimidine Tract Binding Protein, Pumpkin RBP50, Forms the Basis of a Phloem-Mobile Ribonucleoprotein Complex[W

    Science.gov (United States)

    Ham, Byung-Kook; Brandom, Jeri L.; Xoconostle-Cázares, Beatriz; Ringgold, Vanessa; Lough, Tony J.; Lucas, William J.

    2009-01-01

    RNA binding proteins (RBPs) are integral components of ribonucleoprotein (RNP) complexes and play a central role in RNA processing. In plants, some RBPs function in a non-cell-autonomous manner. The angiosperm phloem translocation stream contains a unique population of RBPs, but little is known regarding the nature of the proteins and mRNA species that constitute phloem-mobile RNP complexes. Here, we identified and characterized a 50-kD pumpkin (Cucurbita maxima cv Big Max) phloem RNA binding protein (RBP50) that is evolutionarily related to animal polypyrimidine tract binding proteins. In situ hybridization studies indicated a high level of RBP50 transcripts in companion cells, while immunolocalization experiments detected RBP50 in both companion cells and sieve elements. A comparison of the levels of RBP50 present in vascular bundles and phloem sap indicated that this protein is highly enriched in the phloem sap. Heterografting experiments confirmed that RBP50 is translocated from source to sink tissues. Collectively, these findings established that RBP50 functions as a non-cell-autonomous RBP. Protein overlay, coimmunoprecipitation, and cross-linking experiments identified the phloem proteins and mRNA species that constitute RBP50-based RNP complexes. Gel mobility-shift assays demonstrated that specificity, with respect to the bound mRNA, is established by the polypyrimidine tract binding motifs within such transcripts. We present a model for RBP50-based RNP complexes within the pumpkin phloem translocation stream. PMID:19122103

  16. Characterization of pea (Pisum sativum) seed protein fractions.

    Science.gov (United States)

    Rubio, Luis A; Pérez, Alicia; Ruiz, Raquel; Guzmán, M Ángeles; Aranda-Olmedo, Isabel; Clemente, Alfonso

    2014-01-30

    Legume seed proteins have to be chemically characterized in order to properly link their nutritional effects with their chemical structure. Vicilin and albumin fractions devoid of cross-contamination, as assessed by mass peptide fingerprinting analysis, were obtained from defatted pea (Pisum sativum cv. Bilbo) meal. The extracted protein fractions contained 56.7-67.7 g non-starch polysaccharides kg⁻¹. The vicilin fraction was higher than legumins in arginine, isoleucine, leucine, phenylalanine and lysine. The most abundant amino acids in the albumin fraction were aspartic acid, glutamic acid, lysine and arginine, and the amounts of methionine were more than double than those in legumins and vicilins. The pea albumin fraction showed a clear enrichment of protease inhibitory activity when compared with the seed meal. In vitro digestibility values for pea proteins were 0.63 ±  0.04, 0.88 ±  0.04 and 0.41 ±  0.23 for legumins, vicilins and albumins respectively. Vicilin and albumin fractions devoid of cross-contamination with other proteins were obtained from pea seed meal. The vicilin fraction also contained low amounts of soluble non-starch polysaccharides and was enriched in isoleucine, leucine, phenylalanine and lysine. In vitro digestibility values for pea proteins were similar or even numerically higher than those for control proteins. © 2013 Society of Chemical Industry.

  17. Characterization of seed storage protein patterns of Heliotropium digynum

    Directory of Open Access Journals (Sweden)

    Mona Soliman Alwhibi

    2017-09-01

    Full Text Available Heliotropium digynum, is a shrub that has ecological importance. The height of the plant differs from one population to another and the difference in length of the inflorescence can be attributed to environmental factors, such as rainfall or type of soil and temperature. To date, no study has shed light on estimation in seed samples of H. digynum in Saudi Arabia. So, the aim is to evaluate and characterize the protein patterns of seed storage proteins of H. digynum to be used as fingerprint of this plant in Saudi Arabia. It is collected from different locations in the central region of Saudi Arabia and total protein extraction from plant was compared in SDS-PAGE. The genetic relationships among all cultivars were analyzed using UPGMA and NJ using Total Lab TL and in the same way using Jaccard Similarity Coefficient dendrogram using STATISTICA (ver.8 software. Results, our data show that amounts of protein are different, although they are of the same type or from the same geographical region. Amounts ranged between 22 and 1.5 mg/g of dry weight. Less amount of protein was obtained from the group of samples collected from Dir’iyah area, and the highest amount of protein was from the group of samples collected from Dyrab area in general.

  18. Characterization of seed storage protein patterns of Heliotropium digynum.

    Science.gov (United States)

    Alwhibi, Mona Soliman

    2017-09-01

    Heliotropium digynum , is a shrub that has ecological importance. The height of the plant differs from one population to another and the difference in length of the inflorescence can be attributed to environmental factors, such as rainfall or type of soil and temperature. To date, no study has shed light on estimation in seed samples of H. digynum in Saudi Arabia. So, the aim is to evaluate and characterize the protein patterns of seed storage proteins of H. digynum to be used as fingerprint of this plant in Saudi Arabia. It is collected from different locations in the central region of Saudi Arabia and total protein extraction from plant was compared in SDS-PAGE. The genetic relationships among all cultivars were analyzed using UPGMA and NJ using Total Lab TL and in the same way using Jaccard Similarity Coefficient dendrogram using STATISTICA (ver.8) software. Results, our data show that amounts of protein are different, although they are of the same type or from the same geographical region. Amounts ranged between 22 and 1.5 mg/g of dry weight. Less amount of protein was obtained from the group of samples collected from Dir'iyah area, and the highest amount of protein was from the group of samples collected from Dyrab area in general.

  19. Identification and characterization of Euphorbia nivulia latex proteins.

    Science.gov (United States)

    Badgujar, Shamkant B; Mahajan, Raghunath T

    2014-03-01

    The protein profile of latex of Euphorbia nivulia Buch.-Ham. is established. Three new proteins viz., Nivulian-I, II and III have been purified to homogeneity from the latex. The relative molecular masses of Nivulian-I, II and III are 31,486.985, 43,670.846 and 52,803.470 Da respectively. Nivulian-I is a simple type of protein while Nivulian-II and III are glycoproteins. Peptide mass fingerprint analysis revealed peptides of these proteins match with Tubulin alpha-1 chain of Eleusine indica, Maturase K of Banksia quercifolia and hypothetical protein of Zea mays respectively. Tryptic digestion profile of Nivulian-I, II and III, infer the exclusive nature of latex origin proteins and may be new and are additive molecules in the dictionaries of phytoproteins or botany. This is the first of its kind, regarding characterization and validation of Nivulian-I, II and III with respect to peptide sequencing. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Extremely stable soluble high molecular mass multi-protein complex with DNase activity in human placental tissue.

    Directory of Open Access Journals (Sweden)

    Evgeniya E Burkova

    Full Text Available Human placenta is an organ which protects, feeds, and regulates the grooving of the embryo. Therefore, identification and characterization of placental components including proteins and their multi-protein complexes is an important step to understanding the placenta function. We have obtained and analyzed for the first time an extremely stable multi-protein complex (SPC, ∼ 1000 kDa from the soluble fraction of three human placentas. By gel filtration on Sepharose-4B, the SPC was well separated from other proteins of the placenta extract. Light scattering measurements and gel filtration showed that the SPC is stable in the presence of NaCl, MgCl2, acetonitrile, guanidinium chloride, and Triton in high concentrations, but dissociates efficiently in the presence of 8 M urea, 50 mM EDTA, and 0.5 M NaCl. Such a stable complex is unlikely to be a casual associate of different proteins. According to SDS-PAGE and MALDI mass spectrometry data, this complex contains many major glycosylated proteins with low and moderate molecular masses (MMs 4-14 kDa and several moderately abundant (79.3, 68.5, 52.8, and 27.2 kDa as well as minor proteins with higher MMs. The SPC treatment with dithiothreitol led to a disappearance of some protein bands and revealed proteins with lower MMs. The SPCs from three placentas efficiently hydrolyzed plasmid supercoiled DNA with comparable rates and possess at least two DNA-binding sites with different affinities for a 12-mer oligonucleotide. Progress in study of placental protein complexes can promote understanding of their biological functions.

  1. Differential Roles for Inner Membrane Complex Proteins across Toxoplasma gondii and Sarcocystis neurona Development.

    Science.gov (United States)

    Dubey, Rashmi; Harrison, Brooke; Dangoudoubiyam, Sriveny; Bandini, Giulia; Cheng, Katherine; Kosber, Aziz; Agop-Nersesian, Carolina; Howe, Daniel K; Samuelson, John; Ferguson, David J P; Gubbels, Marc-Jan

    2017-01-01

    The inner membrane complex (IMC) of apicomplexan parasites contains a network of intermediate filament-like proteins. The 14 alveolin domain-containing IMC proteins in Toxoplasma gondii fall into different groups defined by their distinct spatiotemporal dynamics during the internal budding process of tachyzoites. Here, we analyzed representatives of different IMC protein groups across all stages of the Toxoplasma life cycle and during Sarcocystis neurona asexual development. We found that across asexually dividing Toxoplasma stages, IMC7 is present exclusively in the mother's cytoskeleton, whereas IMC1 and IMC3 are both present in mother and daughter cytoskeletons (IMC3 is strongly enriched in daughter buds). In developing macro- and microgametocytes, IMC1 and -3 are absent, whereas IMC7 is lost in early microgametocytes but retained in macrogametocytes until late in their development. We found no roles for IMC proteins during meiosis and sporoblast formation. However, we observed that IMC1 and IMC3, but not IMC7, are present in sporozoites. Although the spatiotemporal pattern of IMC15 and IMC3 suggests orthologous functions in Sarcocystis , IMC7 may have functionally diverged in Sarcocystis merozoites. To functionally characterize IMC proteins, we knocked out IMC7, -12, -14, and -15 in Toxoplasma . IMC14 and -15 appear to be involved in switching between endodyogeny and endopolygeny. In addition, IMC7, -12, and -14, which are all recruited to the cytoskeleton outside cytokinesis, are critical for the structural integrity of extracellular tachyzoites. Altogether, stage- and development-specific roles for IMC proteins can be discerned, suggesting different niches for each IMC protein across the entire life cycle. IMPORTANCE The inner membrane complex (IMC) is a defining feature of apicomplexan parasites key to both their motility and unique cell division. To provide further insights into the IMC, we analyzed the dynamics and functions of representative alveolin

  2. Recovering protein-protein and domain-domain interactions from aggregation of IP-MS proteomics of coregulator complexes.

    Directory of Open Access Journals (Sweden)

    Amin R Mazloom

    2011-12-01

    Full Text Available Coregulator proteins (CoRegs are part of multi-protein complexes that transiently assemble with transcription factors and chromatin modifiers to regulate gene expression. In this study we analyzed data from 3,290 immuno-precipitations (IP followed by mass spectrometry (MS applied to human cell lines aimed at identifying CoRegs complexes. Using the semi-quantitative spectral counts, we scored binary protein-protein and domain-domain associations with several equations. Unlike previous applications, our methods scored prey-prey protein-protein interactions regardless of the baits used. We also predicted domain-domain interactions underlying predicted protein-protein interactions. The quality of predicted protein-protein and domain-domain interactions was evaluated using known binary interactions from the literature, whereas one protein-protein interaction, between STRN and CTTNBP2NL, was validated experimentally; and one domain-domain interaction, between the HEAT domain of PPP2R1A and the Pkinase domain of STK25, was validated using molecular docking simulations. The scoring schemes presented here recovered known, and predicted many new, complexes, protein-protein, and domain-domain interactions. The networks that resulted from the predictions are provided as a web-based interactive application at http://maayanlab.net/HT-IP-MS-2-PPI-DDI/.

  3. Identification and characterization of N-glycosylated proteins using proteomics

    DEFF Research Database (Denmark)

    Selby, David S; Larsen, Martin R; Calvano, Cosima Damiana

    2008-01-01

    and analysis of glycoproteins and glycopeptides. Combinations of affinity-enrichment techniques, chemical and biochemical protocols, and advanced mass spectrometry facilitate detailed glycoprotein analysis in proteomics, from fundamental biological studies to biomarker discovery in biomedicine....... is a complex task and is currently achieved by mass spectrometry-based methods that enable identification of glycoproteins and localization, classification, and analysis of individual glycan structures on proteins. In this chapter we briefly introduce a range of analytical technologies for recovery...

  4. Purification and characterization of Escherichia coli MreB protein.

    Science.gov (United States)

    Nurse, Pearl; Marians, Kenneth J

    2013-02-01

    The actin homolog MreB is required in rod-shaped bacteria for maintenance of cell shape and is intimately connected to the holoenzyme that synthesizes the peptidoglycan layer. The protein has been reported variously to exist in helical loops under the cell surface, to rotate, and to move in patches in both directions around the cell surface. Studies of the Escherichia coli protein in vitro have been hampered by its tendency to aggregate. Here we report the purification and characterization of native E. coli MreB. The protein requires ATP hydrolysis for polymerization, forms bundles with a left-hand twist that can be as long as 4 μm, forms sheets in the presence of calcium, and has a critical concentration for polymerization of 1.5 μM.

  5. Purification and Characterization of Escherichia coli MreB Protein*

    Science.gov (United States)

    Nurse, Pearl; Marians, Kenneth J.

    2013-01-01

    The actin homolog MreB is required in rod-shaped bacteria for maintenance of cell shape and is intimately connected to the holoenzyme that synthesizes the peptidoglycan layer. The protein has been reported variously to exist in helical loops under the cell surface, to rotate, and to move in patches in both directions around the cell surface. Studies of the Escherichia coli protein in vitro have been hampered by its tendency to aggregate. Here we report the purification and characterization of native E. coli MreB. The protein requires ATP hydrolysis for polymerization, forms bundles with a left-hand twist that can be as long as 4 μm, forms sheets in the presence of calcium, and has a critical concentration for polymerization of 1.5 μm. PMID:23235161

  6. Machines vs. ensembles: effective MAPK signaling through heterogeneous sets of protein complexes.

    Directory of Open Access Journals (Sweden)

    Ryan Suderman

    Full Text Available Despite the importance of intracellular signaling networks, there is currently no consensus regarding the fundamental nature of the protein complexes such networks employ. One prominent view involves stable signaling machines with well-defined quaternary structures. The combinatorial complexity of signaling networks has led to an opposing perspective, namely that signaling proceeds via heterogeneous pleiomorphic ensembles of transient complexes. Since many hypotheses regarding network function rely on how we conceptualize signaling complexes, resolving this issue is a central problem in systems biology. Unfortunately, direct experimental characterization of these complexes has proven technologically difficult, while combinatorial complexity has prevented traditional modeling methods from approaching this question. Here we employ rule-based modeling, a technique that overcomes these limitations, to construct a model of the yeast pheromone signaling network. We found that this model exhibits significant ensemble character while generating reliable responses that match experimental observations. To contrast the ensemble behavior, we constructed a model that employs hierarchical assembly pathways to produce scaffold-based signaling machines. We found that this machine model could not replicate the experimentally observed combinatorial inhibition that arises when the scaffold is overexpressed. This finding provides evidence against the hierarchical assembly of machines in the pheromone signaling network and suggests that machines and ensembles may serve distinct purposes in vivo. In some cases, e.g. core enzymatic activities like protein synthesis and degradation, machines assembled via hierarchical energy landscapes may provide functional stability for the cell. In other cases, such as signaling, ensembles may represent a form of weak linkage, facilitating variation and plasticity in network evolution. The capacity of ensembles to signal effectively

  7. Structural characterization of Mumps virus fusion protein core

    International Nuclear Information System (INIS)

    Liu Yueyong; Xu Yanhui; Lou Zhiyong; Zhu Jieqing; Hu Xuebo; Gao, George F.; Qiu Bingsheng; Rao Zihe; Tien, Po

    2006-01-01

    The fusion proteins of enveloped viruses mediating the fusion between the viral and cellular membranes comprise two discontinuous heptad repeat (HR) domains located at the ectodomain of the enveloped glycoproteins. The crystal structure of the fusion protein core of Mumps virus (MuV) was determined at 2.2 A resolution. The complex is a six-helix bundle in which three HR1 peptides form a central highly hydrophobic coiled-coil and three HR2 peptides pack against the hydrophobic grooves on the surface of central coiled-coil in an oblique antiparallel manner. Fusion core of MuV, like those of simian virus 5 and human respiratory syncytium virus, forms typical 3-4-4-4-3 spacing. The similar charecterization in HR1 regions, as well as the existence of O-X-O motif in extended regions of HR2 helix, suggests a basic rule for the formation of the fusion core of viral fusion proteins

  8. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review

    Science.gov (United States)

    Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

    2015-01-01

    Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences. PMID:25657842

  9. INFLUENCE OF NATURAL ADDITIVES ON PROTEIN COMPLEX OF BREAD

    Directory of Open Access Journals (Sweden)

    Dana Urminská

    2010-11-01

    Full Text Available The study focuses on researching the influence of natural additives on certain technological characteristics of mixtures used for bread production, more particularly the influence of N substances in used raw material on selected qualitative parameters of bread. The blends for bread production to be analysed were prepared by mixing wheat flour with an addition of oat, buckwheat, lentil and chickpea wholegrain flour in different portions (10, 20, 30, 40 and 50 %. The experiment showed that the addition of natural additives worsened the protein complex of the blends used in bread production (worsening also qualitative parameters known as product volume. The loaves prepared with an addition of buckwheat, oat, lentil and chickpea were evaluated to be of a lesser quality from a technological viewpoint when compared with pure wheat loaves. The lower content of gluten forming proteins and the generally changed protein composition of blends due to additives caused a lower percentage of wet gluten content, its lower extensibility and swelling capacity. The sedimentation value (Zeleny index decreased proportionally with the increase of addition until the level was unsatisfactory for raw material intended for bakery purposes. The N content in experimental loaves was higher than in the reference loaves and it increased according to the selected additive and its portion in the blend (more with the addition of lentil and chickpea, less in case of buckwheat and oat which is considered as positive from a nutritional point of view. But from the technological point of view the additives did not show any positive influence and caused a lower loaf bread volume. The most significant decrease of the loaf bread volume was found with the addition of 50 % of buckwheat (- 45.6 %. Better results were obtained with a lower portion of the additive: loaf with an addition of 30 % of chickpea (volume decreased by 12.8 % > loaf with an addition of 30 % of lentil (volume

  10. Salt-bridge networks within globular and disordered proteins: characterizing trends for designable interactions.

    Science.gov (United States)

    Basu, Sankar; Mukharjee, Debasish

    2017-07-01

    There has been considerable debate about the contribution of salt bridges to the stabilization of protein folds, in spite of their participation in crucial protein functions. Salt bridges appear to contribute to the activity-stability trade-off within proteins by bringing high-entropy charged amino acids into close contacts during the course of their functions. The current study analyzes the modes of association of salt bridges (in terms of networks) within globular proteins and at protein-protein interfaces. While the most common and trivial type of salt bridge is the isolated salt bridge, bifurcated salt bridge appears to be a distinct salt-bridge motif having a special topology and geometry. Bifurcated salt bridges are found ubiquitously in proteins and interprotein complexes. Interesting and attractive examples presenting different modes of interaction are highlighted. Bifurcated salt bridges appear to function as molecular clips that are used to stitch together large surface contours at interacting protein interfaces. The present work also emphasizes the key role of salt-bridge-mediated interactions in the partial folding of proteins containing long stretches of disordered regions. Salt-bridge-mediated interactions seem to be pivotal to the promotion of "disorder-to-order" transitions in small disordered protein fragments and their stabilization upon binding. The results obtained in this work should help to guide efforts to elucidate the modus operandi of these partially disordered proteins, and to conceptualize how these proteins manage to maintain the required amount of disorder even in their bound forms. This work could also potentially facilitate explorations of geometrically specific designable salt bridges through the characterization of composite salt-bridge networks. Graphical abstract ᅟ.

  11. Study on protein conformation and adsorption behaviors in nanodiamond particle-protein complexes

    International Nuclear Information System (INIS)

    Wang Haidong; Niu, Catherine Hui; Yang Qiaoqin; Badea, Ildiko

    2011-01-01

    In the present research, the conformation of bovine serum albumin (BSA) in the nanodiamond particle (ND)-BSA complex was studied by Fourier transform infrared spectroscopy, fluorescence spectroscopy, UV-vis spectroscopy, and circular dichroism spectroscopy. The spectroscopic study revealed that most BSA structural features could be preserved in the complex though the BSA underwent conformational changes in the complex due to ND-BSA interaction. In addition, BSA adsorption isotherms and zeta-potential measurements were employed to investigate the pH dependence of the ND-BSA interaction. The changes in surface charge of the ND-BSA complex with pH variations indicated that the binding of BSA to ND might lead to not only the adsorption of BSA onto the ND surface but also the partial breakup of ND aggregates into relatively small ND-BSA aggregates because of the strong binding force between ND and BSA. The results show that ND is an excellent platform for protein immobilization with high affinity and holds great potential to be used for biosensor applications.

  12. Study on protein conformation and adsorption behaviors in nanodiamond particle-protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Haidong [Department of Biomedical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada); Niu, Catherine Hui [Department of Chemical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada); Yang Qiaoqin [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada); Badea, Ildiko, E-mail: catherine.niu@usask.ca [Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, S7N 5C9 (Canada)

    2011-04-08

    In the present research, the conformation of bovine serum albumin (BSA) in the nanodiamond particle (ND)-BSA complex was studied by Fourier transform infrared spectroscopy, fluorescence spectroscopy, UV-vis spectroscopy, and circular dichroism spectroscopy. The spectroscopic study revealed that most BSA structural features could be preserved in the complex though the BSA underwent conformational changes in the complex due to ND-BSA interaction. In addition, BSA adsorption isotherms and zeta-potential measurements were employed to investigate the pH dependence of the ND-BSA interaction. The changes in surface charge of the ND-BSA complex with pH variations indicated that the binding of BSA to ND might lead to not only the adsorption of BSA onto the ND surface but also the partial breakup of ND aggregates into relatively small ND-BSA aggregates because of the strong binding force between ND and BSA. The results show that ND is an excellent platform for protein immobilization with high affinity and holds great potential to be used for biosensor applications.

  13. HAMLET - A protein-lipid complex with broad tumoricidal activity.

    Science.gov (United States)

    Ho, James C S; Nadeem, Aftab; Svanborg, Catharina

    2017-01-15

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a tumoricidal protein-lipid complex with broad effects against cancer cells of different origin. The therapeutic potential is emphasized by a high degree of specificity for tumor tissue. Here we review early studies of HAMLET, in collaboration with the Orrenius laboratory, and some key features of the subsequent development of the HAMLET project. The early studies focused on the apoptotic response that accompanies death in HAMLET treated tumor cells and the role of mitochondria in this process. In subsequent studies, we have identified a sequence of interactions that starts with the membrane integration of HAMLET and the activation of ion fluxes followed by HAMLET internalization, progressive inhibition of MAPK kinases and GTPases and sorting of HAMLET to different cellular compartments, including the nuclei. Therapeutic efficacy of HAMLET has been demonstrated in animal models of glioblastoma, bladder cancer and intestinal cancer. In clinical studies, HAMLET has been shown to target skin papillomas and bladder cancers. The findings identify HAMLET as a new drug candidate with promising selectivity for cancer cells and a strong therapeutic potential. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Adenosine deaminase complexing protein (ADCP) immunoreactivity in colorectal adenocarcinoma.

    Science.gov (United States)

    ten Kate, J; van den Ingh, H F; Khan, P M; Bosman, F T

    1986-04-15

    Immunoreactive adenosine deaminase complexing protein (ADCP) was studied in 91 human colorectal adenocarcinomas. The expression of ADCP was correlated with that of secretory component (SC) and carcinoembryonic antigen (CEA), with the histological grade and the Dukes' stage of the carcinomas. The histological grade was scored semi-quantitatively according to 5 structural and 4 cytological variables. ADCP expression was observed in 3 different staining patterns, namely: (1) diffuse cytoplasmic (77% of the carcinomas); (2) granular cytoplasmic (13%); and (3) membrane-associated (66%). These patterns were observed alone or in combination. Eleven percent of the carcinomas exhibited no ADCP immunoreactivity. Linear regression analysis showed that the expression of ADCP correlates with that of SC and CEA. However, no significant correlation emerged between the histological parameters or the Dukes' stage and any of the immunohistological parameters. Comparison of the histological characteristics of carcinomas exhibiting little or no ADCP immunoreactivity with those showing extensive immunoreactivity, showed that membranous ADCP immunoreactivity occurs more frequently in well-differentiated carcinomas. Structural parameters showed a better correlation with membranous ADCP expression than the cytological variables. It is concluded that membranous expression of ADCP and CEA are indicators of a high level of differentiation as reflected primarily in the structural characteristics of the tumor.

  15. Protein kinase that phosphorylates light-harvesting complex is autophosphorylated and is associated with photosystem II

    International Nuclear Information System (INIS)

    Coughlan, S.J.; Hind, G.

    1987-01-01

    Thylakoid membranes were phosphorylated with [γ- 32 P]ATP and extracted with octyl glucoside and cholate. Among the radiolabeled phosphoproteins in the extract was a previously characterized protein kinase of 64-kDa apparent mass. The ability of this enzyme to undergo autophosphorylation in situ was used to monitor its distribution in the membrane. Fractionation studies showed that the kinase is confined to granal regions of the thylakoid, where it appears to be associated with the light-harvesting chlorophyll-protein complex of photosystem II. The kinetics of kinase autophosphorylation were investigated both in situ and in extracted, purified enzyme. In the membrane, autophosphorylation saturated within 20-30 min and was reversed with a half-time of 7-8 min upon removal of ATP or oxidative inactivation of the kinase; the accompanying dephosphorylation of light-harvesting complex was slower and kinetically complex. Fluoride (10 mM) inhibited these dephosphorylations. Autophosphorylation of the isolated kinase was independent of enzyme concentration, indicative of an intramolecular mechanism. A maximum of one serine residue per mole of kinase was esterified. Autophosphorylation was more rapid in the presence of histone IIIs, an exogenous substrate. Dephosphorylation of the isolated enzyme was not observed

  16. Structural Characterization of a Thrombin-Aptamer Complex by High Resolution Native Top-Down Mass Spectrometry

    Science.gov (United States)

    Zhang, Jiang; Loo, Rachel R. Ogorzalek; Loo, Joseph A.

    2017-09-01

    Native mass spectrometry (MS) with electrospray ionization (ESI) has evolved as an invaluable tool for the characterization of intact native proteins and non-covalently bound protein complexes. Here we report the structural characterization by high resolution native top-down MS of human thrombin and its complex with the Bock thrombin binding aptamer (TBA), a 15-nucleotide DNA with high specificity and affinity for thrombin. Accurate mass measurements revealed that the predominant form of native human α-thrombin contains a glycosylation mass of 2205 Da, corresponding to a sialylated symmetric biantennary oligosaccharide structure without fucosylation. Native MS showed that thrombin and TBA predominantly form a 1:1 complex under near physiological conditions (pH 6.8, 200 mM NH4OAc), but the binding stoichiometry is influenced by the solution ionic strength. In 20 mM ammonium acetate solution, up to two TBAs were bound to thrombin, whereas increasing the solution ionic strength destabilized the thrombin-TBA complex and 1 M NH4OAc nearly completely dissociated the complex. This observation is consistent with the mediation of thrombin-aptamer binding through electrostatic interactions and it is further consistent with the human thrombin structure that contains two anion binding sites on the surface. Electron capture dissociation (ECD) top-down MS of the thrombin-TBA complex performed with a high resolution 15 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer showed the primary binding site to be at exosite I located near the N-terminal sequence of the heavy chain, consistent with crystallographic data. High resolution native top-down MS is complementary to traditional structural biology methods for structurally characterizing native proteins and protein-DNA complexes. [Figure not available: see fulltext.

  17. MicroProtein-mediated recruitment of CONSTANS into a TOPLESS trimeric complex represses flowering in Arabidopsis

    DEFF Research Database (Denmark)

    Graeff, Moritz; Straub, Daniel; Eguen, Tenai E.

    2016-01-01

    MicroProteins are short, single domain proteins that act by sequestering larger, multi-domain proteins into non-functional complexes. MicroProteins have been identified in plants and animals, where they are mostly involved in the regulation of developmental processes. Here we show that two...

  18. Protein corona between nanoparticles and bacterial proteins in activated sludge: Characterization and effect on nanoparticle aggregation.

    Science.gov (United States)

    Zhang, Peng; Xu, Xiao-Yan; Chen, You-Peng; Xiao, Meng-Qian; Feng, Bo; Tian, Kai-Xun; Chen, Yue-Hui; Dai, You-Zhi

    2018-02-01

    In this work, the protein coronas of activated sludge proteins on TiO 2 nanoparticles (TNPs) and ZnO nanoparticles (ZNPs) were characterized. The proteins with high affinity to TNPs and ZNPs were identified by shotgun proteomics, and their effects of on the distributions of TNPs and ZNPs in activated sludge were concluded. In addition, the effects of protein coronas on the aggregations of TNPs and ZNPs were evaluated. Thirty and nine proteins with high affinities to TNPs and ZNPs were identified, respectively. The proteomics and adsorption isotherms demonstrated that activated sludge had a higher affinity to TNPs than to ZNPs. The aggregation percentages of ZNPs at 35, 53, and 106 mg/L of proteins were 13%, 14%, and 18%, respectively, whereas those of TNPs were 21%, 30%, 41%, respectively. The proteins contributed to ZNPs aggregation by dissolved Zn ion-bridging, whereas the increasing protein concentrations enhanced the TNPs aggregation through macromolecule bridging flocculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Site-specific covalent attachment of DNA to proteins using a photoactivatable Tus-Ter complex.

    Science.gov (United States)

    Dahdah, Dahdah B; Morin, Isabelle; Moreau, Morgane J J; Dixon, Nicholas E; Schaeffer, Patrick M

    2009-06-07

    Investigations into the photocrosslinking kinetics of the protein Tus with various bromodeoxyuridine-substituted Ter DNA variants highlight the potential use of this complex as a photoactivatable connector between proteins of interest and specific DNA sequences.

  20. Three-Dimentional Structures of Autophosphorylation Complexes in Crystals of Protein Kinases

    KAUST Repository

    Dumbrack, Roland

    2016-01-01

    Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Several autophosphorylation complexes have been identified in crystals of protein kinases, with a known serine, threonine, or tyrosine

  1. Structural characterization of a recombinant fusion protein by instrumental analysis and molecular modeling.

    Directory of Open Access Journals (Sweden)

    Zhigang Wu

    Full Text Available Conbercept is a genetically engineered homodimeric protein for the treatment of wet age-related macular degeneration (wet AMD that functions by blocking VEGF-family proteins. Its huge, highly variable architecture makes characterization and development of a functional assay difficult. In this study, the primary structure, number of disulfide linkages and glycosylation state of conbercept were characterized by high-performance liquid chromatography, mass spectrometry, and capillary electrophoresis. Molecular modeling was then applied to obtain the spatial structural model of the conbercept-VEGF-A complex, and to study its inter-atomic interactions and dynamic behavior. This work was incorporated into a platform useful for studying the structure of conbercept and its ligand binding functions.

  2. A primary microcephaly protein complex forms a ring around parental centrioles.

    Science.gov (United States)

    Sir, Joo-Hee; Barr, Alexis R; Nicholas, Adeline K; Carvalho, Ofelia P; Khurshid, Maryam; Sossick, Alex; Reichelt, Stefanie; D'Santos, Clive; Woods, C Geoffrey; Gergely, Fanni

    2011-10-09

    Autosomal recessive primary microcephaly (MCPH) is characterized by a substantial reduction in prenatal human brain growth without alteration of the cerebral architecture and is caused by biallelic mutations in genes coding for a subset of centrosomal proteins. Although at least three of these proteins have been implicated in centrosome duplication, the nature of the centrosome dysfunction that underlies the neurodevelopmental defect in MCPH is unclear. Here we report a homozygous MCPH-causing mutation in human CEP63. CEP63 forms a complex with another MCPH protein, CEP152, a conserved centrosome duplication factor. Together, these two proteins are essential for maintaining normal centrosome numbers in cells. Using super-resolution microscopy, we found that CEP63 and CEP152 co-localize in a discrete ring around the proximal end of the parental centriole, a pattern specifically disrupted in CEP63-deficient cells derived from patients with MCPH. This work suggests that the CEP152-CEP63 ring-like structure ensures normal neurodevelopment and that its impairment particularly affects human cerebral cortex growth.

  3. Protein complex finding and ranking: An application to Alzheimer's ...

    Indian Academy of Sciences (India)

    Pooja Sharma

    2017-07-07

    Jul 7, 2017 ... and a few other model organisms. .... form proteins) affect the protein formation process. Muta- ..... We implemented the ComFiR method in MATLAB run- ning on ..... Van Dongen SM 2001 Graph clustering by flow simulation.

  4. Characterization of Responsive Hydrogel Nanoparticles upon Polyelectrolyte Complexation

    Directory of Open Access Journals (Sweden)

    Su-Kyoung Lee

    2017-02-01

    Full Text Available Characterization of responsive hydrogels and their interaction with other molecules have significantly expanded our understanding of the functional materials. We here report on the response of poly(N-isopropylacrylamide-co-acrylic acid (pNIPAm-co-AAc nanogels to the addition of the poly(allylamine hydrochloride (PAH in aqueous dispersions. We find that the hydrodynamic radius and stability of nanogels are dependent on the PAH/nanogel stoichiometry. If the nanogel solution is titrated with very small aliquots of PAH, the nanogels decrease in radius until the equivalence point, followed by aggregation at suprastoichiometric PAH additions. Conversely, when titrated with large aliquots, the nanogel charge switches rapidly from anionic to cationic, and no aggregation is observed. This behavior correlates well with electrophoretic mobility measurements, which shows the nanogel charge transitioning from negative to positive upon PAH addition. The volume phase transition temperature (VPTT of the nanogels is also measured to discover the effect of polyelectrolyte complexation on the deswelling thermodynamics. These data show that charge neutralization upon PAH addition decreases the VPTT of the nanogel at pH 6.5. However, if an excess amount of PAH is added to the nanogel solution, the VPTT shifts back to higher temperatures due to the formation of a net positive charge in the nanogel network.

  5. Efficient Characterization of Parametric Uncertainty of Complex (Biochemical Networks.

    Directory of Open Access Journals (Sweden)

    Claudia Schillings

    2015-08-01

    Full Text Available Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is "non-intrusive" and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design.

  6. MIPCE: An MI-based protein complex extraction technique

    Indian Academy of Sciences (India)

    2015-09-28

    Sep 28, 2015 ... In this work, a method is proposed, referred to as. MIPCE, to find protein ... Because of its importance in the studies of protein interaction network, there are ..... three publicly available benchmark real-life datasets. The method was ... protein interaction networks with improved balance and scal- ability; in ...

  7. Isotope coded protein labeling coupled immunoprecipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue.

    Science.gov (United States)

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-05-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms--including humans--are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)(1) with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method.

  8. Isotope Coded Protein Labeling Coupled Immunoprecipitation (ICPL-IP): A Novel Approach for Quantitative Protein Complex Analysis From Native Tissue*

    Science.gov (United States)

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-01-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms—including humans—are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)1 with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method. PMID:23268931

  9. Characterization of hydrogen bonding motifs in proteins: hydrogen elimination monitoring by ultraviolet photodissociation mass spectrometry.

    Science.gov (United States)

    Morrison, Lindsay J; Chai, Wenrui; Rosenberg, Jake A; Henkelman, Graeme; Brodbelt, Jennifer S

    2017-08-02

    Determination of structure and folding of certain classes of proteins remains intractable by conventional structural characterization strategies and has spurred the development of alternative methodologies. Mass spectrometry-based approaches have a unique capacity to differentiate protein heterogeneity due to the ability to discriminate populations, whether minor or major, featuring modifications or complexation with non-covalent ligands on the basis of m/z. Cleavage of the peptide backbone can be further utilized to obtain residue-specific structural information. Here, hydrogen elimination monitoring (HEM) upon ultraviolet photodissociation (UVPD) of proteins transferred to the gas phase via nativespray ionization is introduced as an innovative approach to deduce backbone hydrogen bonding patterns. Using well-characterized peptides and a series of proteins, prediction of the engagement of the amide carbonyl oxygen of the protein backbone in hydrogen bonding using UVPD-HEM is demonstrated to show significant agreement with the hydrogen-bonding motifs derived from molecular dynamics simulations and X-ray crystal structures.

  10. Structural characterization of the fusion core in syncytin, envelope protein of human endogenous retrovirus family W

    International Nuclear Information System (INIS)

    Gong Rui; Peng Xiaoxue; Kang Shuli; Feng Huixing; Huang Jianying; Zhang Wentao; Lin Donghai; Tien Po; Xiao Gengfu

    2005-01-01

    Syncytin is a captive retroviral envelope protein, possibly involved in the formation of the placental syncytiotrophoblast layer generated by trophoblast cell fusion at the maternal-fetal interface. We found that syncytin and type I viral envelope proteins shared similar structural profiling, especially in the regions of N- and C-terminal heptad repeats (NHR and CHR). We expressed the predicted regions of NHR (41 aa) and CHR (34 aa) in syncytin as a native single chain (named 2-helix protein) to characterize it. 2-helix protein exists as a trimer and is highly α-helix, thermo-stable, and denatured by low pH. NHR and CHR could form a protease-resistant complex. The complex structure built by the molecular docking demonstrated that NHR and CHR associated in an antiparallel manner. Overall, the 2-helix protein could form a thermo-stable coiled coil trimer. The fusion core structure of syncytin was first demonstrated in endogenous retrovirus. These results support the explanation how syncytin mediates cytotrophoblast cell fusion involved in placental morphogenesis

  11. Characterization of an M-Cluster-Substituted Nitrogenase VFe Protein.

    Science.gov (United States)

    Rebelein, Johannes G; Lee, Chi Chung; Newcomb, Megan; Hu, Yilin; Ribbe, Markus W

    2018-03-13

    The Mo- and V-nitrogenases are two homologous members of the nitrogenase family that are distinguished mainly by the presence of different heterometals (Mo or V) at their respective cofactor sites (M- or V-cluster). However, the V-nitrogenase is ~600-fold more active than its Mo counterpart in reducing CO to hydrocarbons at ambient conditions. Here, we expressed an M-cluster-containing, hybrid V-nitrogenase in Azotobacter vinelandii and compared it to its native, V-cluster-containing counterpart in order to assess the impact of protein scaffold and cofactor species on the differential reactivities of Mo- and V-nitrogenases toward CO. Housed in the VFe protein component of V-nitrogenase, the M-cluster displayed electron paramagnetic resonance (EPR) features similar to those of the V-cluster and demonstrated an ~100-fold increase in hydrocarbon formation activity from CO reduction, suggesting a significant impact of protein environment on the overall CO-reducing activity of nitrogenase. On the other hand, the M-cluster was still ~6-fold less active than the V-cluster in the same protein scaffold, and it retained its inability to form detectable amounts of methane from CO reduction, illustrating a fine-tuning effect of the cofactor properties on this nitrogenase-catalyzed reaction. Together, these results provided important insights into the two major determinants for the enzymatic activity of CO reduction while establishing a useful framework for further elucidation of the essential catalytic elements for the CO reactivity of nitrogenase. IMPORTANCE This is the first report on the in vivo generation and in vitro characterization of an M-cluster-containing V-nitrogenase hybrid. The "normalization" of the protein scaffold to that of the V-nitrogenase permits a direct comparison between the cofactor species of the Mo- and V-nitrogenases (M- and V-clusters) in CO reduction, whereas the discrepancy between the protein scaffolds of the Mo- and V-nitrogenases (MoFe and VFe

  12. Disruption of a Ciliary B9 Protein Complex Causes Meckel Syndrome

    Science.gov (United States)

    Dowdle, William E.; Robinson, Jon F.; Kneist, Andreas; Sirerol-Piquer, M. Salomé; Frints, Suzanna G.M.; Corbit, Kevin C.; Zaghloul, Norran A.; van Lijnschoten, Gesina; Mulders, Leon; Verver, Dideke E.; Zerres, Klaus; Reed, Randall R.; Attié-Bitach, Tania; Johnson, Colin A.; García-Verdugo, José Manuel; Katsanis, Nicholas; Bergmann, Carsten; Reiter, Jeremy F.

    2011-01-01

    Nearly every ciliated organism possesses three B9 domain-containing proteins: MKS1, B9D1, and B9D2. Mutations in human MKS1 cause Meckel syndrome (MKS), a severe ciliopathy characterized by occipital encephalocele, liver ductal plate malformations, polydactyly, and kidney cysts. Mouse mutations in either Mks1 or B9d2 compromise ciliogenesis and result in phenotypes similar to those of MKS. Given the importance of these two B9 proteins to ciliogenesis, we examined the role of the third B9 protein, B9d1. Mice lacking B9d1 displayed polydactyly, kidney cysts, ductal plate malformations, and abnormal patterning of the neural tube, concomitant with compromised ciliogenesis, ciliary protein localization, and Hedgehog (Hh) signal transduction. These data prompted us to screen MKS patients for mutations in B9D1 and B9D2. We identified a homozygous c.301A>C (p.Ser101Arg) B9D2 mutation that segregates with MKS, affects an evolutionarily conserved residue, and is absent from controls. Unlike wild-type B9D2 mRNA, the p.Ser101Arg mutation failed to rescue zebrafish phenotypes induced by the suppression of b9d2. With coimmunoprecipitation and mass spectrometric analyses, we found that Mks1, B9d1, and B9d2 interact physically, but that the p.Ser101Arg mutation abrogates the ability of B9d2 to interact with Mks1, further suggesting that the mutation compromises B9d2 function. Our data indicate that B9d1 is required for normal Hh signaling, ciliogenesis, and ciliary protein localization and that B9d1 and B9d2 are essential components of a B9 protein complex, disruption of which causes MKS. PMID:21763481

  13. Radiation-induced dissociation of stable DNA-protein complexes in Erlich ascites carcinoma cells

    International Nuclear Information System (INIS)

    Juhasz, P.P.; Sirota, N.P.; Gaziev, A.I.

    1982-01-01

    DNA of Ehrlich ascites carcinoma cells prepared under conditions that were highly denaturing for proteins but not for DNA, contained a group of nonhistone residual proteins. The amount of these proteins increased during DNA replication. The DNA-protein complex observed was sensitive to proteolytic enzymes and/or SH-reagents. γ-irradiation cells with moderate doses leads to a decrease in the amount of DNA-protein complexes. High-dose gamma-irradiation produces enhanced linking of chromosomal proteins with DNA. (author)

  14. A Type-2 fuzzy data fusion approach for building reliable weighted protein interaction networks with application in protein complex detection.

    Science.gov (United States)

    Mehranfar, Adele; Ghadiri, Nasser; Kouhsar, Morteza; Golshani, Ashkan

    2017-09-01

    Detecting the protein complexes is an important task in analyzing the protein interaction networks. Although many algorithms predict protein complexes in different ways, surveys on the interaction networks indicate that about 50% of detected interactions are false positives. Consequently, the accuracy of existing methods needs to be improved. In this paper we propose a novel algorithm to detect the protein complexes in 'noisy' protein interaction data. First, we integrate several biological data sources to determine the reliability of each interaction and determine more accurate weights for the interactions. A data fusion component is used for this step, based on the interval type-2 fuzzy voter that provides an efficient combination of the information sources. This fusion component detects the errors and diminishes their effect on the detection protein complexes. So in the first step, the reliability scores have been assigned for every interaction in the network. In the second step, we have proposed a general protein complex detection algorithm by exploiting and adopting the strong points of other algorithms and existing hypotheses regarding real complexes. Finally, the proposed method has been applied for the yeast interaction datasets for predicting the interactions. The results show that our framework has a better performance regarding precision and F-measure than the existing approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Identification and characterization of immunogenic proteins of Mycoplasma genitalium

    DEFF Research Database (Denmark)

    Svenstrup, Helle Friis; Jensen, J.S.; Gevaert, K.

    2006-01-01

    serum against M. genitalium G37, determine their identity by mass spectrometry, and develop an M. genitalium-specific enzyme-linked immunosorbent assay (ELISA) free from cross-reactivity with M. pneumoniae antibodies. Using recombinant fragments of the C-terminal part of MgPa (rMgPa), we developed....... genitalium strains were isolated (J. S. Jensen, H. T. Hansen, and K. Lind, J. Clin. Microbiol. 34:286-291, 1996). The objective of this study was to characterize immunogenic proteins of M. genitalium by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting by using a hyperimmune rabbit...

  16. ComplexContact: a web server for inter-protein contact prediction using deep learning

    KAUST Repository

    Zeng, Hong; Wang, Sheng; Zhou, Tianming; Zhao, Feifeng; Li, Xiufeng; Wu, Qing; Xu, Jinbo

    2018-01-01

    ComplexContact (http://raptorx2.uchicago.edu/ComplexContact/) is a web server for sequence-based interfacial residue-residue contact prediction of a putative protein complex. Interfacial residue-residue contacts are critical for understanding how proteins form complex and interact at residue level. When receiving a pair of protein sequences, ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA), then it applies co-evolution analysis and a CASP-winning deep learning (DL) method to predict interfacial contacts from paired MSAs and visualizes the prediction as an image. The DL method was originally developed for intra-protein contact prediction and performed the best in CASP12. Our large-scale experimental test further shows that ComplexContact greatly outperforms pure co-evolution methods for inter-protein contact prediction, regardless of the species.

  17. ComplexContact: a web server for inter-protein contact prediction using deep learning

    KAUST Repository

    Zeng, Hong

    2018-05-20

    ComplexContact (http://raptorx2.uchicago.edu/ComplexContact/) is a web server for sequence-based interfacial residue-residue contact prediction of a putative protein complex. Interfacial residue-residue contacts are critical for understanding how proteins form complex and interact at residue level. When receiving a pair of protein sequences, ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA), then it applies co-evolution analysis and a CASP-winning deep learning (DL) method to predict interfacial contacts from paired MSAs and visualizes the prediction as an image. The DL method was originally developed for intra-protein contact prediction and performed the best in CASP12. Our large-scale experimental test further shows that ComplexContact greatly outperforms pure co-evolution methods for inter-protein contact prediction, regardless of the species.

  18. ComplexContact: a web server for inter-protein contact prediction using deep learning.

    Science.gov (United States)

    Zeng, Hong; Wang, Sheng; Zhou, Tianming; Zhao, Feifeng; Li, Xiufeng; Wu, Qing; Xu, Jinbo

    2018-05-22

    ComplexContact (http://raptorx2.uchicago.edu/ComplexContact/) is a web server for sequence-based interfacial residue-residue contact prediction of a putative protein complex. Interfacial residue-residue contacts are critical for understanding how proteins form complex and interact at residue level. When receiving a pair of protein sequences, ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA), then it applies co-evolution analysis and a CASP-winning deep learning (DL) method to predict interfacial contacts from paired MSAs and visualizes the prediction as an image. The DL method was originally developed for intra-protein contact prediction and performed the best in CASP12. Our large-scale experimental test further shows that ComplexContact greatly outperforms pure co-evolution methods for inter-protein contact prediction, regardless of the species.

  19. Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes.

    Science.gov (United States)

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Sánchez, Rosario; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2016-02-01

    Two sunflower hydroxyacyl-[acyl carrier protein] dehydratases evolved into two different isoenzymes showing distinctive expression levels and kinetics' efficiencies. β-Hydroxyacyl-[acyl carrier protein (ACP)]-dehydratase (HAD) is a component of the type II fatty acid synthase complex involved in 'de novo' fatty acid biosynthesis in plants. This complex, formed by four intraplastidial proteins, is responsible for the sequential condensation of two-carbon units, leading to 16- and 18-C acyl-ACP. HAD dehydrates 3-hydroxyacyl-ACP generating trans-2-enoyl-ACP. With the aim of a further understanding of fatty acid biosynthesis in sunflower (Helianthus annuus) seeds, two β-hydroxyacyl-[ACP] dehydratase genes have been cloned from developing seeds, HaHAD1 (GenBank HM044767) and HaHAD2 (GenBank GU595454). Genomic DNA gel blot analyses suggest that both are single copy genes. Differences in their expression patterns across plant tissues were detected. Higher levels of HaHAD2 in the initial stages of seed development inferred its key role in seed storage fatty acid synthesis. That HaHAD1 expression levels remained constant across most tissues suggest a housekeeping function. Heterologous expression of these genes in E. coli confirmed both proteins were functional and able to interact with the bacterial complex 'in vivo'. The large increase of saturated fatty acids in cells expressing HaHAD1 and HaHAD2 supports the idea that these HAD genes are closely related to the E. coli FabZ gene. The proposed three-dimensional models of HaHAD1 and HaHAD2 revealed differences at the entrance to the catalytic tunnel attributable to Phe166/Val1159, respectively. HaHAD1 F166V was generated to study the function of this residue. The 'in vitro' enzymatic characterization of the three HAD proteins demonstrated all were active, with the mutant having intermediate K m and V max values to the wild-type proteins.

  20. Identification of Protein Complexes Using Weighted PageRank-Nibble Algorithm and Core-Attachment Structure.

    Science.gov (United States)

    Peng, Wei; Wang, Jianxin; Zhao, Bihai; Wang, Lusheng

    2015-01-01

    Protein complexes play a significant role in understanding the underlying mechanism of most cellular functions. Recently, many researchers have explored computational methods to identify protein complexes from protein-protein interaction (PPI) networks. One group of researchers focus on detecting local dense subgraphs which correspond to protein complexes by considering local neighbors. The drawback of this kind of approach is that the global information of the networks is ignored. Some methods such as Markov Clustering algorithm (MCL), PageRank-Nibble are proposed to find protein complexes based on random walk technique which can exploit the global structure of networks. However, these methods ignore the inherent core-attachment structure of protein complexes and treat adjacent node equally. In this paper, we design a weighted PageRank-Nibble algorithm which assigns each adjacent node with different probability, and propose a novel method named WPNCA to detect protein complex from PPI networks by using weighted PageRank-Nibble algorithm and core-attachment structure. Firstly, WPNCA partitions the PPI networks into multiple dense clusters by using weighted PageRank-Nibble algorithm. Then the cores of these clusters are detected and the rest of proteins in the clusters will be selected as attachments to form the final predicted protein complexes. The experiments on yeast data show that WPNCA outperforms the existing methods in terms of both accuracy and p-value. The software for WPNCA is available at "http://netlab.csu.edu.cn/bioinfomatics/weipeng/WPNCA/download.html".

  1. Analysis of protein-protein docking decoys using interaction fingerprints: application to the reconstruction of CaM-ligand complexes

    Directory of Open Access Journals (Sweden)

    Uchikoga Nobuyuki

    2010-05-01

    Full Text Available Abstract Background Protein-protein docking for proteins with large conformational changes was analyzed by using interaction fingerprints, one of the scales for measuring similarities among complex structures, utilized especially for searching near-native protein-ligand or protein-protein complex structures. Here, we have proposed a combined method for analyzing protein-protein docking by taking large conformational changes into consideration. This combined method consists of ensemble soft docking with multiple protein structures, refinement of complexes, and cluster analysis using interaction fingerprints and energy profiles. Results To test for the applicability of this combined method, various CaM-ligand complexes were reconstructed from the NMR structures of unbound CaM. For the purpose of reconstruction, we used three known CaM-ligands, namely, the CaM-binding peptides of cyclic nucleotide gateway (CNG, CaM kinase kinase (CaMKK and the plasma membrane Ca2+ ATPase pump (PMCA, and thirty-one structurally diverse CaM conformations. For each ligand, 62000 CaM-ligand complexes were generated in the docking step and the relationship between their energy profiles and structural similarities to the native complex were analyzed using interaction fingerprint and RMSD. Near-native clusters were obtained in the case of CNG and CaMKK. Conclusions The interaction fingerprint method discriminated near-native structures better than the RMSD method in cluster analysis. We showed that a combined method that includes the interaction fingerprint is very useful for protein-protein docking analysis of certain cases.

  2. Improved Peak Detection and Deconvolution of Native Electrospray Mass Spectra from Large Protein Complexes.

    Science.gov (United States)

    Lu, Jonathan; Trnka, Michael J; Roh, Soung-Hun; Robinson, Philip J J; Shiau, Carrie; Fujimori, Danica Galonic; Chiu, Wah; Burlingame, Alma L; Guan, Shenheng

    2015-12-01

    Native electrospray-ionization mass spectrometry (native MS) measures biomolecules under conditions that preserve most aspects of protein tertiary and quaternary structure, enabling direct characterization of large intact protein assemblies. However, native spectra derived from these assemblies are often partially obscured by low signal-to-noise as well as broad peak shapes because of residual solvation and adduction after the electrospray process. The wide peak widths together with the fact that sequential charge state series from highly charged ions are closely spaced means that native spectra containing multiple species often suffer from high degrees of peak overlap or else contain highly interleaved charge envelopes. This situation presents a challenge for peak detection, correct charge state and charge envelope assignment, and ultimately extraction of the relevant underlying mass values of the noncovalent assemblages being investigated. In this report, we describe a comprehensive algorithm developed for addressing peak detection, peak overlap, and charge state assignment in native mass spectra, called PeakSeeker. Overlapped peaks are detected by examination of the second derivative of the raw mass spectrum. Charge state distributions of the molecular species are determined by fitting linear combinations of charge envelopes to the overall experimental mass spectrum. This software is capable of deconvoluting heterogeneous, complex, and noisy native mass spectra of large protein assemblies as demonstrated by analysis of (1) synthetic mononucleosomes containing severely overlapping peaks, (2) an RNA polymerase II/α-amanitin complex with many closely interleaved ion signals, and (3) human TriC complex containing high levels of background noise. Graphical Abstract ᅟ.

  3. NSP-CAS Protein Complexes: Emerging Signaling Modules in Cancer.

    Science.gov (United States)

    Wallez, Yann; Mace, Peter D; Pasquale, Elena B; Riedl, Stefan J

    2012-05-01

    The CAS (CRK-associated substrate) family of adaptor proteins comprises 4 members, which share a conserved modular domain structure that enables multiple protein-protein interactions, leading to the assembly of intracellular signaling platforms. Besides their physiological role in signal transduction downstream of a variety of cell surface receptors, CAS proteins are also critical for oncogenic transformation and cancer cell malignancy through associations with a variety of regulatory proteins and downstream effectors. Among the regulatory partners, the 3 recently identified adaptor proteins constituting the NSP (novel SH2-containing protein) family avidly bind to the conserved carboxy-terminal focal adhesion-targeting (FAT) domain of CAS proteins. NSP proteins use an anomalous nucleotide exchange factor domain that lacks catalytic activity to form NSP-CAS signaling modules. Additionally, the NSP SH2 domain can link NSP-CAS signaling assemblies to tyrosine-phosphorylated cell surface receptors. NSP proteins can potentiate CAS function by affecting key CAS attributes such as expression levels, phosphorylation state, and subcellular localization, leading to effects on cell adhesion, migration, and invasion as well as cell growth. The consequences of these activities are well exemplified by the role that members of both families play in promoting breast cancer cell invasiveness and resistance to antiestrogens. In this review, we discuss the intriguing interplay between the NSP and CAS families, with a particular focus on cancer signaling networks.

  4. Supervised maximum-likelihood weighting of composite protein networks for complex prediction

    Directory of Open Access Journals (Sweden)

    Yong Chern Han

    2012-12-01

    Full Text Available Abstract Background Protein complexes participate in many important cellular functions, so finding the set of existent complexes is essential for understanding the organization and regulation of processes in the cell. With the availability of large amounts of high-throughput protein-protein interaction (PPI data, many algorithms have been proposed to discover protein complexes from PPI networks. However, such approaches are hindered by the high rate of noise in high-throughput PPI data, including spurious and missing interactions. Furthermore, many transient interactions are detected between proteins that are not from the same complex, while not all proteins from the same complex may actually interact. As a result, predicted complexes often do not match true complexes well, and many true complexes go undetected. Results We address these challenges by integrating PPI data with other heterogeneous data sources to construct a composite protein network, and using a supervised maximum-likelihood approach to weight each edge based on its posterior probability of belonging to a complex. We then use six different clustering algorithms, and an aggregative clustering strategy, to discover complexes in the weighted network. We test our method on Saccharomyces cerevisiae and Homo sapiens, and show that complex discovery is improved: compared to previously proposed supervised and unsupervised weighting approaches, our method recalls more known complexes, achieves higher precision at all recall levels, and generates novel complexes of greater functional similarity. Furthermore, our maximum-likelihood approach allows learned parameters to be used to visualize and evaluate the evidence of novel predictions, aiding human judgment of their credibility. Conclusions Our approach integrates multiple data sources with supervised learning to create a weighted composite protein network, and uses six clustering algorithms with an aggregative clustering strategy to

  5. Adenosine deaminase complexing protein (ADCP): a transformation sensitive protein with potentials of a cancer marker.

    Science.gov (United States)

    Herbschleb-Voogt, E; Ten Kate, J; Meera Khan, P

    1983-01-01

    Several observations by independent investigators in the past have indicated that adenosine deaminase complexing protein (ADCP), present in considerable quantities in certain human tissues, was absent or decreased in the cancers originated from them. During the present study, electrophoretic analysis of adenosine deaminase (ADA) isozymes and radioimmunoassay for ADCP in the primary fibroblasts and the transformed as well as certain tumor derived cell lines have demonstrated that ADCP present in large quantities in the primary cells was absent or nearly absent in the transformed or tumor-derived cell lines. Though the mechanisms involved are not yet clear, the above observations indicate that ADCP has the potentials of a useful marker in the studies on transformed cells and cancer tissues.

  6. Characterization of the Eimeria maxima sporozoite surface protein IMP1.

    Science.gov (United States)

    Jenkins, M C; Fetterer, R; Miska, K; Tuo, W; Kwok, O; Dubey, J P

    2015-07-30

    The purpose of this study was to characterize Eimeria maxima immune-mapped protein 1 (IMP1) that is hypothesized to play a role in eliciting protective immunity against E. maxima infection in chickens. RT-PCR analysis of RNA from unsporulated and sporulating E. maxima oocysts revealed highest transcription levels at 6-12h of sporulation with a considerable downregulation thereafter. Alignment of IMP1 coding sequence from Houghton, Weybridge, and APU-1 strains of E. maxima revealed single nucleotide polymorphisms that in some instances led to amino acid changes in the encoded protein sequence. The E. maxima (APU-1) IMP1 cDNA sequence was cloned and expressed in 2 different polyHis Escherichia coli expression vectors. Regardless of expression vector, recombinant E. maxima IMP1 (rEmaxIMP1) was fairly unstable in non-denaturing buffer, which is consistent with stability analysis of the primary amino acid sequence. Antisera specific for rEmaxIMP1 identified a single 72 kDa protein or a 61 kDa protein by non-reducing or reducing SDS-PAGE/immunoblotting. Immunofluorescence staining with anti-rEmaxIMP1, revealed intense surface staining of E. maxima sporozoites, with negligible staining of merozoite stages. Immuno-histochemical staining of E. maxima-infected chicken intestinal tissue revealed staining of E. maxima developmental stages in the lamnia propia and crypts at both 24 and 48 h post-infection, and negligible staining thereafter. The expression of IMP1 during early stages of in vivo development and its location on the sporozoite surface may explain in part the immunoprotective effect of this protein against E. maxima infection. Published by Elsevier B.V.

  7. The alternative complement pathway control protein H binds to immune complexes and serves their detection

    International Nuclear Information System (INIS)

    Nydegger, U.E.; Corvetta, A.; Spaeth, P.J.; Spycher, M.

    1983-01-01

    During solubilization of immune complexes C3b becomes fixed to the immunoglobulin part and serves as a receptor for the alternative complement pathway control protein H. The H-C3b immune complex interaction can be made detectable using 4% polyethyleneglycol to separate free from bound 125 I-H. Tetanus toxoid (Te)/anti-Te complexes kept soluble with fresh serum and containing 125 IU of specific antibody bound 18% of 125 I-H; when fresh serum was chelated with 10 mM EDTA, 125 I-H binding was only 5%. On sucrose density gradients, the H-binding material sedimented in the range of 12 to 30 S. In 36 serum samples from rheumatoid arthritis (RA) patients and in 12 serum samples from patients with systemic lupus erythematosus (SLE), 125 I-H binding was significantly elevated to 9.5 +/- 4.7% (mean +/- 1 SD) and 13.3 +/- 5.6%, respectively, while 125 I-H binding by 36 normal human sera was 4 +/- 2%. RA samples (17/36, 47%) and SLE samples (9/12, 75%) had H-binding values increased by more than 2 SD above the normal mean. The serum samples were also assessed for conglutinin- and C1q-binding activities; a significant correlation between H and C1q binding was observed (P less than 0.001); there was no correlation between H and conglutinin binding. Although binding to immune complexes through its interaction with C3b, H clearly detects a population of complexes other than conglutinin, thus expanding the possibilities of further characterizing pathological complexes

  8. Preparation and Characterization of Double Metal Cyanide Complex Catalysts

    Directory of Open Access Journals (Sweden)

    Weilin Guo

    2003-01-01

    Full Text Available A series of double metal cyanide (DMC complex catalysts were prepared in two different methods by using ß-cyclodextrin, PEG-1000 and Tween-60 as an additional complex ligands respectively. It was showed that a mixture of crystalline and amorphous DMC was synthesized by using traditional method in which the additional complex ligand was added after the precipitation of DMC. Amorphous and dispersed DMC with higher activity could be obtained when the additional complex ligand was added in the reactant solution before reaction. The effect of additional complex ligand and preparation method on the crystalline state and catalytic property of DMC were also investigated.

  9. Characterization of linear mimetic peptides of Interleukin-22 from dissection of protein interfaces.

    Science.gov (United States)

    La Manna, Sara; Scognamiglio, Pasqualina Liana; Di Natale, Concetta; Leone, Marilisa; Mercurio, Flavia Anna; Malfitano, Anna Maria; Cianfarani, Francesca; Madonna, Stefania; Caravella, Sergio; Albanesi, Cristina; Novellino, Ettore; Marasco, Daniela

    2017-07-01

    Interleukin-22 (IL-22) belongs to the family of IL-10 cytokines and is involved in a wide number of human diseases, including inflammatory disorders and cancer pathology. The ligand-receptor complex IL-22/IL-22R plays a key role in several pathways especially in the regulation and resolution of immune responses. The identification of novel compounds able to modulate IL-22/IL-22R complex could open the route to new therapeutic strategies in multiple human diseases. In this study, we designed and characterized IL-22 derived peptides at protein interface regions: several sequences revealed able to interfere with the protein complex with IC 50 in the micromolar range as evaluated through Surface Plasmon Resonance (SPR) experiments. Their conformational characterization was carried out through Circular Dichroism (CD) and Nuclear Magnetic Resonance (NMR) spectroscopies, shedding new light into the features of IL-22 fragments and on structural determinants of IL-22/IL-22R1 recognition. Finally, several peptides were tested on human keratinocyte cultures for evaluating their ability to mimic the activation of molecular pathways downstream to IL-22R in response to IL-22 binding. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  10. Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2

    KAUST Repository

    Ková cs, Krisztiá n A.; Steinmann, Myriam; Halfon, Olivier; Magistretti, Pierre J.; Cardinaux, Jean René

    2015-01-01

    CREB-binding protein (CBP) and p300 are transcriptional coactivators involved in numerous biological processes that affect cell growth, transformation, differentiation, and development. In this study, we provide evidence of the involvement of homeodomain-interacting protein kinase 2 (HIPK2) in the regulation of CBP activity. We show that HIPK2 interacts with and phosphorylates several regions of CBP. We demonstrate that serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of CBP C-terminal activation domain. Moreover, we show that HIPK2 strongly potentiates the transcriptional activity of CBP. However, our data suggest that HIPK2 activates CBP mainly by counteracting the repressive action of cell cycle regulatory domain 1 (CRD1), located between amino acids 977 and 1076, independently of CBP phosphorylation. Our findings thus highlight a complex regulation of CBP activity by HIPK2, which might be relevant for the control of specific sets of target genes involved in cellular proliferation, differentiation and apoptosis. © 2015 Elsevier Inc.

  11. Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2

    KAUST Repository

    Kovács, Krisztián A.

    2015-11-01

    CREB-binding protein (CBP) and p300 are transcriptional coactivators involved in numerous biological processes that affect cell growth, transformation, differentiation, and development. In this study, we provide evidence of the involvement of homeodomain-interacting protein kinase 2 (HIPK2) in the regulation of CBP activity. We show that HIPK2 interacts with and phosphorylates several regions of CBP. We demonstrate that serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of CBP C-terminal activation domain. Moreover, we show that HIPK2 strongly potentiates the transcriptional activity of CBP. However, our data suggest that HIPK2 activates CBP mainly by counteracting the repressive action of cell cycle regulatory domain 1 (CRD1), located between amino acids 977 and 1076, independently of CBP phosphorylation. Our findings thus highlight a complex regulation of CBP activity by HIPK2, which might be relevant for the control of specific sets of target genes involved in cellular proliferation, differentiation and apoptosis. © 2015 Elsevier Inc.

  12. Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome

    Science.gov (United States)

    Walter, Jean-Charles; Walliser, Nils-Ole; David, Gabriel; Dorignac, Jérôme; Geniet, Frédéric; Palmeri, John; Parmeggiani, Andrea; Wingreen, Ned S.; Broedersz, Chase P.

    2018-03-01

    The bacterial genome is organized by a variety of associated proteins inside a structure called the nucleoid. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the looping and clustering model, which employs a statistical physics approach to describe protein-DNA complexes. The looping and clustering model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for placing loops within the cluster on the other. Indeed, we show that the protein interaction strength determines the ‘tightness’ of the loopy protein-DNA complex. Thus, our model provides a theoretical framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate (parS) binding site.

  13. Topological properties of complex networks in protein structures

    Science.gov (United States)

    Kim, Kyungsik; Jung, Jae-Won; Min, Seungsik

    2014-03-01

    We study topological properties of networks in structural classification of proteins. We model the native-state protein structure as a network made of its constituent amino-acids and their interactions. We treat four structural classes of proteins composed predominantly of α helices and β sheets and consider several proteins from each of these classes whose sizes range from amino acids of the Protein Data Bank. Particularly, we simulate and analyze the network metrics such as the mean degree, the probability distribution of degree, the clustering coefficient, the characteristic path length, the local efficiency, and the cost. This work was supported by the KMAR and DP under Grant WISE project (153-3100-3133-302-350).

  14. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    International Nuclear Information System (INIS)

    Paulin, Sarah; Rosado, Helena; Taylor, Peter W; Jamshad, Mohammed; Dafforn, Timothy R; Garcia-Lara, Jorge; Foster, Simon J; Galley, Nicola F; Roper, David I

    2014-01-01

    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function. (paper)

  15. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    Science.gov (United States)

    Paulin, Sarah; Jamshad, Mohammed; Dafforn, Timothy R.; Garcia-Lara, Jorge; Foster, Simon J.; Galley, Nicola F.; Roper, David I.; Rosado, Helena; Taylor, Peter W.

    2014-07-01

    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function.

  16. Emission solvatochromic behavior of a pentacoordinated Zn(II) complex: A viable tool for studying the metallodrug–protein interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardi, Loredana, E-mail: loredana.ricciardi@unical.it [Department of Chemistry and Chemical Technology, University of Calabria, I-87036 Rende (CS) (Italy); Centre of Excellence “Functional Nanostructured Materials” CEMIF.CAL, LASCAMM and CR INSTM, INSTM Calabria Unit, and CNR-IPCF-UOS Cosenza - Licryl Laboratory, I-87036 Rende (CS) (Italy); Pucci, Daniela; Pirillo, Sante; La Deda, Massimo [Department of Chemistry and Chemical Technology, University of Calabria, I-87036 Rende (CS) (Italy); Centre of Excellence “Functional Nanostructured Materials” CEMIF.CAL, LASCAMM and CR INSTM, INSTM Calabria Unit, and CNR-IPCF-UOS Cosenza - Licryl Laboratory, I-87036 Rende (CS) (Italy)

    2014-07-01

    A metal complex with antitumoral activity, Zn(Curcumin)(bypiridine)Cl, was characterized from a photophysical point of view, showing a green emission and a positive solvatochromism. These characteristics can be conveniently used to study its interaction with Human Serum Albumin (HSA), a protein carrier of many non-aqueous biologically-active compounds in the blood stream. The intrinsic fluorescence of HSA was quenched by Fluorescence Resonance Energy Transfer toward the Zn(II) complex, and the Stern–Volmer equation was applied to determine the bimolecular quenching rate constant of the interaction. - Highlights: • Albumin binding information is a key characteristic of drug pharmacology. • Fluorescence spectroscopy offers a simple method for revealing drug–protein interaction. • The fluorescence of the Zn(II) complex and its solvatochromisms has allowed studying the binding from a dual perspective.

  17. Characterization of Nora Virus Structural Proteins via Western Blot Analysis.

    Science.gov (United States)

    Ericson, Brad L; Carlson, Darby J; Carlson, Kimberly A

    2016-01-01

    Nora virus is a single stranded RNA picorna-like virus with four open reading frames (ORFs). The coding potentials of the ORFs are not fully characterized, but ORF3 and ORF4 are believed to encode the capsid proteins (VP3, VP4a, VP4b, and VP4c) comprising the virion. To determine the polypeptide composition of Nora virus virions, polypeptides from purified virus were compared to polypeptides detected in Nora virus infected Drosophila melanogaster. Nora virus was purified from infected flies and used to challenge mice for the production of antisera. ORF3, ORF4a, ORF4b, and ORF4c were individually cloned and expressed in E. coli; resultant recombinant proteins purified and were used to make monospecific antisera. Antisera were evaluated via Western blot against whole virus particles and Nora virus infected fly lysates. Viral purification yielded two particle types with densities of ~1.31 g/mL (empty particles) and ~1.33 g/mL (complete virions). Comparison of purified virus polypeptide composition to Nora virus infected D. melanogaster lysate showed the number of proteins in infected cell lysates is less than purified virus. Our results suggest the virion is composed of 6 polypeptides, VP3, VP4a, two forms of VP4b, and two forms of VP4c. This polypeptide composition is similar to other small RNA insect viruses.

  18. Predicting protein complexes using a supervised learning method combined with local structural information.

    Science.gov (United States)

    Dong, Yadong; Sun, Yongqi; Qin, Chao

    2018-01-01

    The existing protein complex detection methods can be broadly divided into two categories: unsupervised and supervised learning methods. Most of the unsupervised learning methods assume that protein complexes are in dense regions of protein-protein interaction (PPI) networks even though many true complexes are not dense subgraphs. Supervised learning methods utilize the informative properties of known complexes; they often extract features from existing complexes and then use the features to train a classification model. The trained model is used to guide the search process for new complexes. However, insufficient extracted features, noise in the PPI data and the incompleteness of complex data make the classification model imprecise. Consequently, the classification model is not sufficient for guiding the detection of complexes. Therefore, we propose a new robust score function that combines the classification model with local structural information. Based on the score function, we provide a search method that works both forwards and backwards. The results from experiments on six benchmark PPI datasets and three protein complex datasets show that our approach can achieve better performance compared with the state-of-the-art supervised, semi-supervised and unsupervised methods for protein complex detection, occasionally significantly outperforming such methods.

  19. Characterization of mammalian selenoprotein o: a redox-active mitochondrial protein.

    Science.gov (United States)

    Han, Seong-Jeong; Lee, Byung Cheon; Yim, Sun Hee; Gladyshev, Vadim N; Lee, Seung-Rock

    2014-01-01

    Selenoproteins exhibit diverse biological functions, most of which are associated with redox control. However, the functions of approximately half of mammalian selenoproteins are not known. One such protein is Selenoprotein O (SelO), the largest mammalian selenoprotein with orthologs found in a wide range of organisms, including bacteria and yeast. Here, we report characterization of mammalian SelO. Expression of this protein could be verified in HEK 293T cells by metabolic labeling of cells with 75Se, and it was abolished when selenocysteine was replaced with serine. A CxxU motif was identified in the C-terminal region of SelO. This protein was reversibly oxidized in a time- and concentration-dependent manner in HEK 293T cells when cells were treated with hydrogen peroxide. This treatment led to the formation of a transient 88 kDa SelO-containing complex. The formation of this complex was enhanced by replacing the CxxU motif with SxxC, but abolished when it was replaced with SxxS, suggesting a redox interaction of SelO with another protein through its Sec residue. SelO was localized to mitochondria and expressed across mouse tissues. Its expression was little affected by selenium deficiency, suggesting it has a high priority for selenium supply. Taken together, these results show that SelO is a redox-active mitochondrial selenoprotein.

  20. Characterization of mammalian selenoprotein o: a redox-active mitochondrial protein.

    Directory of Open Access Journals (Sweden)

    Seong-Jeong Han

    Full Text Available Selenoproteins exhibit diverse biological functions, most of which are associated with redox control. However, the functions of approximately half of mammalian selenoproteins are not known. One such protein is Selenoprotein O (SelO, the largest mammalian selenoprotein with orthologs found in a wide range of organisms, including bacteria and yeast. Here, we report characterization of mammalian SelO. Expression of this protein could be verified in HEK 293T cells by metabolic labeling of cells with 75Se, and it was abolished when selenocysteine was replaced with serine. A CxxU motif was identified in the C-terminal region of SelO. This protein was reversibly oxidized in a time- and concentration-dependent manner in HEK 293T cells when cells were treated with hydrogen peroxide. This treatment led to the formation of a transient 88 kDa SelO-containing complex. The formation of this complex was enhanced by replacing the CxxU motif with SxxC, but abolished when it was replaced with SxxS, suggesting a redox interaction of SelO with another protein through its Sec residue. SelO was localized to mitochondria and expressed across mouse tissues. Its expression was little affected by selenium deficiency, suggesting it has a high priority for selenium supply. Taken together, these results show that SelO is a redox-active mitochondrial selenoprotein.

  1. Polysaccharide charge density regulating protein adsorption to air/water interfaces by protein/polysaccharide complex formation

    NARCIS (Netherlands)

    Ganzevles, R.A.; Kosters, H.; Vliet, T. van; Stuart, M.A.C.; Jongh, H.H.J. de

    2007-01-01

    Because the formation of protein/polysaccharide complexes is dominated by electrostatic interaction, polysaccharide charge density is expected to play a major role in the adsorption behavior of the complexes. In this study, pullulan (a non-charged polysaccharide) carboxylated to four different

  2. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry

    DEFF Research Database (Denmark)

    Ho, Yuen; Gruhler, Albrecht; Heilbut, Adrian

    2002-01-01

    The recent abundance of genome sequence data has brought an urgent need for systematic proteomics to decipher the encoded protein networks that dictate cellular function. To date, generation of large-scale protein-protein interaction maps has relied on the yeast two-hybrid system, which detects...... as a test case, an example of this approach, which we term high-throughput mass spectrometric protein complex identification (HMS-PCI). Beginning with 10% of predicted yeast proteins as baits, we detected 3,617 associated proteins covering 25% of the yeast proteome. Numerous protein complexes were...... identified, including many new interactions in various signalling pathways and in the DNA damage response. Comparison of the HMS-PCI data set with interactions reported in the literature revealed an average threefold higher success rate in detection of known complexes compared with large-scale two...

  3. Structural and dynamic characterization of eukaryotic gene regulatory protein domains in solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Andrew Loyd [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    Solution NMR was primarily used to characterize structure and dynamics in two different eukaryotic protein systems: the δ-Al-ε activation domain from c-jun and the Drosophila RNA-binding protein Sex-lethal. The second system is the Drosophila Sex-lethal (Sxl) protein, an RNA-binding protein which is the ``master switch`` in sex determination. Sxl contains two adjacent RNA-binding domains (RBDs) of the RNP consensus-type. The NMR spectrum of the second RBD (Sxl-RBD2) was assigned using multidimensional heteronuclear NMR, and an intermediate-resolution family of structures was calculated from primarily NOE distance restraints. The overall fold was determined to be similar to other RBDs: a βαβ-βαβ pattern of secondary structure, with the two helices packed against a 4-stranded anti-parallel β-sheet. In addition 15N T1, T2, and 15N/1H NOE relaxation measurements were carried out to characterize the backbone dynamics of Sxl-RBD2 in solution. RNA corresponding to the polypyrimidine tract of transformer pre-mRNA was generated and titrated into 3 different Sxl-RBD protein constructs. Combining Sxl-RBD1+2 (bht RBDs) with this RNA formed a specific, high affinity protein/RNA complex that is amenable to further NMR characterization. The backbone 1H, 13C, and 15N resonances of Sxl-RBD1+2 were assigned using a triple-resonance approach, and 15N relaxation experiments were carried out to characterize the backbone dynamics of this complex. The changes in chemical shift in Sxl-RBD1+2 upon binding RNA are observed using Sxl-RBD2 as a substitute for unbound Sxl-RBD1+2. This allowed the binding interface to be qualitatively mapped for the second domain.

  4. Synthesis, characterization and oxidative behaviour of dioxoruthenium(VI) complexes

    International Nuclear Information System (INIS)

    Agarwal, D.D.; Rastogi, Rachana

    1995-01-01

    Dioxoruthenium(VI) complexes are found to give low yield of epoxide but good yield of cyclohexanone. The complexes are electro active giving metal centered Ru VI /Ru V couple. Cis-stilbene gives trans epoxide and benzaldehyde. Norbornene gives exo epoxy norbornene. The selectivity for allylic oxidation is high. In the present note the synthesis of dioxoruthenium(VI) complexes and their oxidation behaviour is reported. The dioxoruthenium(VI) complexes have been stoichiometrically found to be good oxidants. (author). 21 refs., 1 tab

  5. Conformational Heterogeneity in Antibody-Protein Antigen Recognition IMPLICATIONS FOR HIGH AFFINITY PROTEIN COMPLEX FORMATION

    Czech Academy of Sciences Publication Activity Database

    Addis, P. W.; Hall, c. J.; Bruton, S.; Veverka, Václav; Wilkinson, I. C.; Muskett, F. W.; Renshaw, P. S.; Prosser, C. E.; Carrington, B.; Lawson, A. D. G.; Griffin, R.; Taylor, R. J.; Waters, L. C.; Henry, A. J.; Carr, M. D.

    2014-01-01

    Roč. 289, č. 10 (2014), s. 7200-7210 ISSN 0021-9258 Institutional support: RVO:61388963 Keywords : NMR * antibody * protein-protein interaction * protein conformation Subject RIV: CE - Biochemistry Impact factor: 4.573, year: 2014

  6. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network.

    Directory of Open Access Journals (Sweden)

    Xianjun Shen

    Full Text Available How to identify protein complex is an important and challenging task in proteomics. It would make great contribution to our knowledge of molecular mechanism in cell life activities. However, the inherent organization and dynamic characteristic of cell system have rarely been incorporated into the existing algorithms for detecting protein complexes because of the limitation of protein-protein interaction (PPI data produced by high throughput techniques. The availability of time course gene expression profile enables us to uncover the dynamics of molecular networks and improve the detection of protein complexes. In order to achieve this goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment. It detects protein-complex core comprising of continually expressed and highly connected proteins in dynamic PPI network, and then the protein complex is formed by including the attachments with high adhesion into the core. The integration of core-attachment feature into the dynamic PPI network is responsible for the superiority of our algorithm. DCA has been applied on two different yeast dynamic PPI networks and the experimental results show that it performs significantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-measure and statistical significance in biology. In addition, the identified complexes with strong biological significance provide potential candidate complexes for biologists to validate.

  7. Determining protein complex connectivity using a probabilistic deletion network derived from quantitative proteomics.

    Science.gov (United States)

    Sardiu, Mihaela E; Gilmore, Joshua M; Carrozza, Michael J; Li, Bing; Workman, Jerry L; Florens, Laurence; Washburn, Michael P

    2009-10-06

    Protein complexes are key molecular machines executing a variety of essential cellular processes. Despite the availability of genome-wide protein-protein interaction studies, determining the connectivity between proteins within a complex remains a major challenge. Here we demonstrate a method that is able to predict the relationship of proteins within a stable protein complex. We employed a combination of computational approaches and a systematic collection of quantitative proteomics data from wild-type and deletion strain purifications to build a quantitative deletion-interaction network map and subsequently convert the resulting data into an interdependency-interaction model of a complex. We applied this approach to a data set generated from components of the Saccharomyces cerevisiae Rpd3 histone deacetylase complexes, which consists of two distinct small and large complexes that are held together by a module consisting of Rpd3, Sin3 and Ume1. The resulting representation reveals new protein-protein interactions and new submodule relationships, providing novel information for mapping the functional organization of a complex.

  8. Determining protein complex connectivity using a probabilistic deletion network derived from quantitative proteomics.

    Directory of Open Access Journals (Sweden)

    Mihaela E Sardiu

    2009-10-01

    Full Text Available Protein complexes are key molecular machines executing a variety of essential cellular processes. Despite the availability of genome-wide protein-protein interaction studies, determining the connectivity between proteins within a complex remains a major challenge. Here we demonstrate a method that is able to predict the relationship of proteins within a stable protein complex. We employed a combination of computational approaches and a systematic collection of quantitative proteomics data from wild-type and deletion strain purifications to build a quantitative deletion-interaction network map and subsequently convert the resulting data into an interdependency-interaction model of a complex. We applied this approach to a data set generated from components of the Saccharomyces cerevisiae Rpd3 histone deacetylase complexes, which consists of two distinct small and large complexes that are held together by a module consisting of Rpd3, Sin3 and Ume1. The resulting representation reveals new protein-protein interactions and new submodule relationships, providing novel information for mapping the functional organization of a complex.

  9. Evidence for the robustness of protein complexes to inter-species hybridization.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Leducq

    Full Text Available Despite the tremendous efforts devoted to the identification of genetic incompatibilities underlying hybrid sterility and inviability, little is known about the effect of inter-species hybridization at the protein interactome level. Here, we develop a screening platform for the comparison of protein-protein interactions (PPIs among closely related species and their hybrids. We examine in vivo the architecture of protein complexes in two yeast species (Saccharomyces cerevisiae and Saccharomyces kudriavzevii that diverged 5-20 million years ago and in their F1 hybrids. We focus on 24 proteins of two large complexes: the RNA polymerase II and the nuclear pore complex (NPC, which show contrasting patterns of molecular evolution. We found that, with the exception of one PPI in the NPC sub-complex, PPIs were highly conserved between species, regardless of protein divergence. Unexpectedly, we found that the architecture of the complexes in F1 hybrids could not be distinguished from that of the parental species. Our results suggest that the conservation of PPIs in hybrids likely results from the slow evolution taking place on the very few protein residues involved in the interaction or that protein complexes are inherently robust and may accommodate protein divergence up to the level that is observed among closely related species.

  10. Leukemia: Derived heat shock protein gp96-peptide complex ...

    African Journals Online (AJOL)

    Jane

    2011-06-27

    Jun 27, 2011 ... Leukemia is a malignant clonal disease in hematopoietic stem cells that is typically treated with chemotherapy and radiotherapy. However ..... with autologous tumor-derived heatshock protein gp96 after liver resection for ...

  11. glue protein profiles in the nasuta–albomicans complex

    Indian Academy of Sciences (India)

    . Manasagangotri ... Further, quantitative analysis also shows lack of correlation between the chromosomal ... involving these two races followed by karyotypic screening of hybrid .... The molecular masses of the variable protein fractions were ...

  12. Characterization of the heterotrimeric G-protein family and its transmembrane regulator from capsicum (Capsicum annuum L.).

    Science.gov (United States)

    Romero-Castillo, Rafael A; Roy Choudhury, Swarup; León-Félix, Josefina; Pandey, Sona

    2015-05-01

    Throughout evolution, organisms have created numerous mechanisms to sense and respond to their environment. One such highly conserved mechanism involves regulation by heterotrimeric G-protein complex comprised of alpha (Gα), beta (Gβ) and gamma (Gγ) subunits. In plants, these proteins play important roles in signal transduction pathways related to growth and development including response to biotic and abiotic stresses and consequently affect yield. In this work, we have identified and characterized the complete heterotrimeric G-protein repertoire in the Capsicum annuum (Capsicum) genome which consists of one Gα, one Gβ and three Gγ genes. We have also identified one RGS gene in the Capsicum genome that acts as a regulator of the G-protein signaling. Biochemical activities of the proteins were confirmed by assessing the GTP-binding and GTPase activity of the recombinant Gα protein and its regulation by the GTPase acceleration activity of the RGS protein. Interaction between different subunits was established using yeast- and plant-based analyses. Gene and protein expression profiles of specific G-protein components revealed interesting spatial and temporal regulation patterns, especially during root development and during fruit development and maturation. This research thus details the characterization of the first heterotrimeric G-protein family from a domesticated, commercially important vegetable crop. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Structural characterization of inclusion complex of arbutin and ...

    African Journals Online (AJOL)

    Scanning electron micrographs of the inclusion complex showed that the original morphology of both components disappeared, and some tiny aggregates of amorphous areas of irregular size were present, revealing that the arbutin was dispersed in HP-β-CD. The powder XRD pattern of the inclusion complex was more ...

  14. Preparation and Characterization of a Complex of Paeonol and ...

    African Journals Online (AJOL)

    thermogravimetric/differential scanning calorimetry (TG/DSC). Results: The phase-solubility results showed that paeonol formed a 1:1 stoichiometric complex with. HP-β-CD while UV and IR spectra suggested that HP-β-CD and paeonol in the complex interacted by a non-covalent bond. SEM and XRD indicate that the heat ...

  15. Synthesis and Characterization of Organ Tin (IV) Complexes ...

    African Journals Online (AJOL)

    User

    2012-08-21

    Aug 21, 2012 ... the reference drug. In addition, within the diorganotin(IV) complexes, monomeric type (3) exhibited a slightly better activity as compared to the organodistannoxane dimer types (1 and 4). Key words: Preliminary in vitro cytotoxic assay, organotin(IV) complexes, comparison study. INTRODUCTION. Although ...

  16. Complex structure of type VI peptidoglycan muramidase effector and a cognate immunity protein

    International Nuclear Information System (INIS)

    Wang, Tianyu; Ding, Jinjing; Zhang, Ying; Wang, Da-Cheng; Liu, Wei

    2013-01-01

    The structure of the Tse3–Tsi3 complex associated with the bacterial type VI secretion system of P. aeruginosa has been solved and refined at 1.9 Å resolution. The structural basis of the recognition of the muramidase effector and its inactivation by its cognate immunity protein is revealed. The type VI secretion system (T6SS) is a bacterial protein-export machine that is capable of delivering virulence effectors between Gram-negative bacteria. The T6SS of Pseudomonas aeruginosa transports two lytic enzymes, Tse1 and Tse3, to degrade cell-wall peptidoglycan in the periplasm of rival bacteria that are competing for niches via amidase and muramidase activities, respectively. Two cognate immunity proteins, Tsi1 and Tsi3, are produced by the bacterium to inactivate the two antibacterial effectors, thereby protecting its siblings from self-intoxication. Recently, Tse1–Tsi1 has been structurally characterized. Here, the structure of the Tse3–Tsi3 complex is reported at 1.9 Å resolution. The results reveal that Tse3 contains a C-terminal catalytic domain that adopts a soluble lytic transglycosylase (SLT) fold in which three calcium-binding sites were surprisingly observed close to the catalytic Glu residue. The electrostatic properties of the substrate-binding groove are also distinctive from those of known structures with a similar fold. All of these features imply that a unique catalytic mechanism is utilized by Tse3 in cleaving glycosidic bonds. Tsi3 comprises a single domain showing a β-sandwich architecture that is reminiscent of the immunoglobulin fold. Three loops of Tsi3 insert deeply into the groove of Tse3 and completely occlude its active site, which forms the structural basis of Tse3 inactivation. This work is the first crystallographic report describing the three-dimensional structure of the Tse3–Tsi3 effector–immunity pair

  17. Complex structure of type VI peptidoglycan muramidase effector and a cognate immunity protein

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianyu [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ding, Jinjing; Zhang, Ying; Wang, Da-Cheng, E-mail: dcwang@ibp.ac.cn [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Liu, Wei, E-mail: dcwang@ibp.ac.cn [The Third Military Medical University, Chongqing 400038 (China); Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2013-10-01

    The structure of the Tse3–Tsi3 complex associated with the bacterial type VI secretion system of P. aeruginosa has been solved and refined at 1.9 Å resolution. The structural basis of the recognition of the muramidase effector and its inactivation by its cognate immunity protein is revealed. The type VI secretion system (T6SS) is a bacterial protein-export machine that is capable of delivering virulence effectors between Gram-negative bacteria. The T6SS of Pseudomonas aeruginosa transports two lytic enzymes, Tse1 and Tse3, to degrade cell-wall peptidoglycan in the periplasm of rival bacteria that are competing for niches via amidase and muramidase activities, respectively. Two cognate immunity proteins, Tsi1 and Tsi3, are produced by the bacterium to inactivate the two antibacterial effectors, thereby protecting its siblings from self-intoxication. Recently, Tse1–Tsi1 has been structurally characterized. Here, the structure of the Tse3–Tsi3 complex is reported at 1.9 Å resolution. The results reveal that Tse3 contains a C-terminal catalytic domain that adopts a soluble lytic transglycosylase (SLT) fold in which three calcium-binding sites were surprisingly observed close to the catalytic Glu residue. The electrostatic properties of the substrate-binding groove are also distinctive from those of known structures with a similar fold. All of these features imply that a unique catalytic mechanism is utilized by Tse3 in cleaving glycosidic bonds. Tsi3 comprises a single domain showing a β-sandwich architecture that is reminiscent of the immunoglobulin fold. Three loops of Tsi3 insert deeply into the groove of Tse3 and completely occlude its active site, which forms the structural basis of Tse3 inactivation. This work is the first crystallographic report describing the three-dimensional structure of the Tse3–Tsi3 effector–immunity pair.

  18. Characterization of Fluorescent Proteins for Three- and Four-Color Live-Cell Imaging in S. cerevisiae.

    Science.gov (United States)

    Higuchi-Sanabria, Ryo; Garcia, Enrique J; Tomoiaga, Delia; Munteanu, Emilia L; Feinstein, Paul; Pon, Liza A

    2016-01-01

    Saccharomyces cerevisiae are widely used for imaging fluorescently tagged protein fusions. Fluorescent proteins can easily be inserted into yeast genes at their chromosomal locus, by homologous recombination, for expression of tagged proteins at endogenous levels. This is especially useful for incorporation of multiple fluorescent protein fusions into a single strain, which can be challenging in organisms where genetic manipulation is more complex. However, the availability of optimal fluorescent protein combinations for 3-color imaging is limited. Here, we have characterized a combination of fluorescent proteins, mTFP1/mCitrine/mCherry for multicolor live cell imaging in S. cerevisiae. This combination can be used with conventional blue dyes, such as DAPI, for potential four-color live cell imaging.

  19. Protein complex detection in PPI networks based on data integration and supervised learning method.

    Science.gov (United States)

    Yu, Feng; Yang, Zhi; Hu, Xiao; Sun, Yuan; Lin, Hong; Wang, Jian

    2015-01-01

    Revealing protein complexes are important for understanding principles of cellular organization and function. High-throughput experimental techniques have produced a large amount of protein interactions, which makes it possible to predict protein complexes from protein-protein interaction (PPI) networks. However, the small amount of known physical interactions may limit protein complex detection. The new PPI networks are constructed by integrating PPI datasets with the large and readily available PPI data from biomedical literature, and then the less reliable PPI between two proteins are filtered out based on semantic similarity and topological similarity of the two proteins. Finally, the supervised learning protein complex detection (SLPC), which can make full use of the information of available known complexes, is applied to detect protein complex on the new PPI networks. The experimental results of SLPC on two different categories yeast PPI networks demonstrate effectiveness of the approach: compared with the original PPI networks, the best average improvements of 4.76, 6.81 and 15.75 percentage units in the F-score, accuracy and maximum matching ratio (MMR) are achieved respectively; compared with the denoising PPI networks, the best average improvements of 3.91, 4.61 and 12.10 percentage units in the F-score, accuracy and MMR are achieved respectively; compared with ClusterONE, the start-of the-art complex detection method, on the denoising extended PPI networks, the average improvements of 26.02 and 22.40 percentage units in the F-score and MMR are achieved respectively. The experimental results show that the performances of SLPC have a large improvement through integration of new receivable PPI data from biomedical literature into original PPI networks and denoising PPI networks. In addition, our protein complexes detection method can achieve better performance than ClusterONE.

  20. Combining biophysical methods for the analysis of protein complex stoichiometry and affinity in SEDPHAT

    International Nuclear Information System (INIS)

    Zhao, Huaying; Schuck, Peter

    2015-01-01

    Global multi-method analysis for protein interactions (GMMA) can increase the precision and complexity of binding studies for the determination of the stoichiometry, affinity and cooperativity of multi-site interactions. The principles and recent developments of biophysical solution methods implemented for GMMA in the software SEDPHAT are reviewed, their complementarity in GMMA is described and a new GMMA simulation tool set in SEDPHAT is presented. Reversible macromolecular interactions are ubiquitous in signal transduction pathways, often forming dynamic multi-protein complexes with three or more components. Multivalent binding and cooperativity in these complexes are often key motifs of their biological mechanisms. Traditional solution biophysical techniques for characterizing the binding and cooperativity are very limited in the number of states that can be resolved. A global multi-method analysis (GMMA) approach has recently been introduced that can leverage the strengths and the different observables of different techniques to improve the accuracy of the resulting binding parameters and to facilitate the study of multi-component systems and multi-site interactions. Here, GMMA is described in the software SEDPHAT for the analysis of data from isothermal titration calorimetry, surface plasmon resonance or other biosensing, analytical ultracentrifugation, fluorescence anisotropy and various other spectroscopic and thermodynamic techniques. The basic principles of these techniques are reviewed and recent advances in view of their particular strengths in the context of GMMA are described. Furthermore, a new feature in SEDPHAT is introduced for the simulation of multi-method data. In combination with specific statistical tools for GMMA in SEDPHAT, simulations can be a valuable step in the experimental design

  1. FANCG promotes formation of a newly identified protein complex containing BRCA2, FANCD2 and XRCC3.

    Science.gov (United States)

    Wilson, J B; Yamamoto, K; Marriott, A S; Hussain, S; Sung, P; Hoatlin, M E; Mathew, C G; Takata, M; Thompson, L H; Kupfer, G M; Jones, N J

    2008-06-12

    Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. Thirteen complementation groups and genes are identified, including BRCA2, which is defective in the FA-D1 group. Eight of the FA proteins, including FANCG, participate in a nuclear core complex that is required for the monoubiquitylation of FANCD2 and FANCI. FANCD2, like FANCD1/BRCA2, is not part of the core complex, and we previously showed direct BRCA2-FANCD2 interaction using yeast two-hybrid analysis. We now show in human and hamster cells that expression of FANCG protein, but not the other core complex proteins, is required for co-precipitation of BRCA2 and FANCD2. We also show that phosphorylation of FANCG serine 7 is required for its co-precipitation with BRCA2, XRCC3 and FANCD2, as well as the direct interaction of BRCA2-FANCD2. These results argue that FANCG has a role independent of the FA core complex, and we propose that phosphorylation of serine 7 is the signalling event required for forming a discrete complex comprising FANCD1/BRCA2-FANCD2-FANCG-XRCC3 (D1-D2-G-X3). Cells that fail to express either phospho-Ser7-FANCG, or full length BRCA2 protein, lack the interactions amongst the four component proteins. A role for D1-D2-G-X3 in homologous recombination repair (HRR) is supported by our finding that FANCG and the RAD51-paralog XRCC3 are epistatic for sensitivity to DNA crosslinking compounds in DT40 chicken cells. Our findings further define the intricate interface between FANC and HRR proteins in maintaining chromosome stability.

  2. Characterization of KCNE1 inside Lipodisq Nanoparticles for EPR Spectroscopic Studies of Membrane Proteins.

    Science.gov (United States)

    Sahu, Indra D; Zhang, Rongfu; Dunagan, Megan M; Craig, Andrew F; Lorigan, Gary A

    2017-06-01

    EPR spectroscopic studies of membrane proteins in a physiologically relevant native membrane-bound state are extremely challenging due to the complexity observed in inhomogeneity sample preparation and dynamic motion of the spin-label. Traditionally, detergent micelles are the most widely used membrane mimetics for membrane proteins due to their smaller size and homogeneity, providing high-resolution structure analysis by solution NMR spectroscopy. However, it is often difficult to examine whether the protein structure in a micelle environment is the same as that of the respective membrane-bound state. Recently, lipodisq nanoparticles have been introduced as a potentially good membrane mimetic system for structural studies of membrane proteins. However, a detailed characterization of a spin-labeled membrane protein incorporated into lipodisq nanoparticles is still lacking. In this work, lipodisq nanoparticles were used as a membrane mimic system for probing the structural and dynamic properties of the integral membrane protein KCNE1 using site-directed spin labeling EPR spectroscopy. The characterization of spin-labeled KCNE1 incorporated into lipodisq nanoparticles was carried out using CW-EPR titration experiments for the EPR spectral line shape analysis and pulsed EPR titration experiment for the phase memory time (T m ) measurements. The CW-EPR titration experiment indicated an increase in spectral line broadening with the addition of the SMA polymer which approaches close to the rigid limit at a lipid to polymer weight ratio of 1:1, providing a clear solubilization of the protein-lipid complex. Similarly, the T m titration experiment indicated an increase in T m values with the addition of SMA polymer and approaches ∼2 μs at a lipid to polymer weight ratio of 1:2. Additionally, CW-EPR spectral line shape analysis was performed on six inside and six outside the membrane spin-label probes of KCNE1 in lipodisq nanoparticles. The results indicated significant

  3. Characterizing Complexity of Containerized Cargo X-ray Images

    International Nuclear Information System (INIS)

    Wang, Guangxing; Martz, Harry; Glenn, Steven; Divin, Charles; Birrer, Nat

    2016-01-01

    X-ray imaging can be used to inspect cargos imported into the United States. In order to better understand the performance of X-ray inspection systems, the X-ray characteristics (density, complexity) of cargo need to be quantified. In this project, an image complexity measure called integrated power spectral density (IPSD) was studied using both DNDO engineered cargos and stream-of-commerce (SOC) cargos. A joint distribution of cargo density and complexity was obtained. A support vector machine was used to classify the SOC cargos into four categories to estimate the relative fractions.

  4. Characterizing Complexity of Containerized Cargo X-ray Images

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guangxing [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, Harry [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glenn, Steven [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Divin, Charles [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Birrer, Nat [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-19

    X-ray imaging can be used to inspect cargos imported into the United States. In order to better understand the performance of X-ray inspection systems, the X-ray characteristics (density, complexity) of cargo need to be quantified. In this project, an image complexity measure called integrated power spectral density (IPSD) was studied using both DNDO engineered cargos and stream-of-commerce (SOC) cargos. A joint distribution of cargo density and complexity was obtained. A support vector machine was used to classify the SOC cargos into four categories to estimate the relative fractions.

  5. Monte Carlo simulations of flexible polyanions complexing with whey proteins at their isoelectric point.

    Science.gov (United States)

    de Vries, R

    2004-02-15

    Electrostatic complexation of flexible polyanions with the whey proteins alpha-lactalbumin and beta-lactoglobulin is studied using Monte Carlo simulations. The proteins are considered at their respective isoelectric points. Discrete charges on the model polyelectrolytes and proteins interact through Debye-Huckel potentials. Protein excluded volume is taken into account through a coarse-grained model of the protein shape. Consistent with experimental results, it is found that alpha-lactalbumin complexes much more strongly than beta-lactoglobulin. For alpha-lactalbumin, strong complexation is due to localized binding to a single large positive "charge patch," whereas for beta-lactoglobulin, weak complexation is due to diffuse binding to multiple smaller charge patches. Copyright 2004 American Institute of Physics

  6. Lateral release of proteins from the TOM complex into the outer membrane of mitochondria.

    Science.gov (United States)

    Harner, Max; Neupert, Walter; Deponte, Marcel

    2011-07-15

    The TOM complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are imported into the mitochondria. It is made up by receptors and a protein conducting channel. Although precursor proteins of all subcompartments of mitochondria use the TOM complex, it is not known whether its channel can only mediate passage across the outer membrane or also lateral release into the outer membrane. To study this, we have generated fusion proteins of GFP and Tim23 which are inserted into the inner membrane and, at the same time, are spanning either the TOM complex or are integrated into the outer membrane. Our results demonstrate that the TOM complex, depending on sequence determinants in the precursors, can act both as a protein conducting pore and as an insertase mediating lateral release into the outer membrane.

  7. Generating functional analysis of complex formation and dissociation in large protein interaction networks

    International Nuclear Information System (INIS)

    Coolen, A C C; Rabello, S

    2009-01-01

    We analyze large systems of interacting proteins, using techniques from the non-equilibrium statistical mechanics of disordered many-particle systems. Apart from protein production and removal, the most relevant microscopic processes in the proteome are complex formation and dissociation, and the microscopic degrees of freedom are the evolving concentrations of unbound proteins (in multiple post-translational states) and of protein complexes. Here we only include dimer-complexes, for mathematical simplicity, and we draw the network that describes which proteins are reaction partners from an ensemble of random graphs with an arbitrary degree distribution. We show how generating functional analysis methods can be used successfully to derive closed equations for dynamical order parameters, representing an exact macroscopic description of the complex formation and dissociation dynamics in the infinite system limit. We end this paper with a discussion of the possible routes towards solving the nontrivial order parameter equations, either exactly (in specific limits) or approximately.

  8. Chaperonin Structure - The Large Multi-Subunit Protein Complex

    Directory of Open Access Journals (Sweden)

    Irena Roterman

    2009-03-01

    Full Text Available The multi sub-unit protein structure representing the chaperonins group is analyzed with respect to its hydrophobicity distribution. The proteins of this group assist protein folding supported by ATP. The specific axial symmetry GroEL structure (two rings of seven units stacked back to back - 524 aa each and the GroES (single ring of seven units - 97 aa each polypeptide chains are analyzed using the hydrophobicity distribution expressed as excess/deficiency all over the molecule to search for structure-to-function relationships. The empirically observed distribution of hydrophobic residues is confronted with the theoretical one representing the idealized hydrophobic core with hydrophilic residues exposure on the surface. The observed discrepancy between these two distributions seems to be aim-oriented, determining the structure-to-function relation. The hydrophobic force field structure generated by the chaperonin capsule is presented. Its possible influence on substrate folding is suggested.

  9. Common and distinctive localization patterns of Crumbs polarity complex proteins in the mammalian eye.

    Science.gov (United States)

    Kim, Jin Young; Song, Ji Yun; Karnam, Santi; Park, Jun Young; Lee, Jamie J H; Kim, Seonhee; Cho, Seo-Hee

    2015-01-01

    Crumbs polarity complex proteins are essential for cellular and tissue polarity, and for adhesion of epithelial cells. In epithelial tissues deletion of any of three core proteins disrupts localization of the other proteins, indicating structural and functional interdependence among core components. Despite previous studies of function and co-localization that illustrated the properties that these proteins share, it is not known whether an individual component of the complex plays a distinct role in a unique cellular and developmental context. In order to investigate this question, we primarily used confocal imaging to determine the expression and subcellular localization of the core Crumbs polarity complex proteins during ocular development. Here we show that in developing ocular tissues core Crumbs polarity complex proteins, Crb, Pals1 and Patj, generally appear in an overlapping pattern with some exceptions. All three core complex proteins localize to the apical junction of the retinal and lens epithelia. Pals1 is also localized in the Golgi of the retinal cells and Patj localizes to the nuclei of the apically located subset of progenitor cells. These findings suggest that core Crumbs polarity complex proteins exert common and independent functions depending on cellular context. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells.

    Science.gov (United States)

    Tan, Chris Soon Heng; Go, Ka Diam; Bisteau, Xavier; Dai, Lingyun; Yong, Chern Han; Prabhu, Nayana; Ozturk, Mert Burak; Lim, Yan Ting; Sreekumar, Lekshmy; Lengqvist, Johan; Tergaonkar, Vinay; Kaldis, Philipp; Sobota, Radoslaw M; Nordlund, Pär

    2018-03-09

    Proteins differentially interact with each other across cellular states and conditions, but an efficient proteome-wide strategy to monitor them is lacking. We report the application of thermal proximity coaggregation (TPCA) for high-throughput intracellular monitoring of protein complex dynamics. Significant TPCA signatures observed among well-validated protein-protein interactions correlate positively with interaction stoichiometry and are statistically observable in more than 350 annotated human protein complexes. Using TPCA, we identified many complexes without detectable differential protein expression, including chromatin-associated complexes, modulated in S phase of the cell cycle. Comparison of six cell lines by TPCA revealed cell-specific interactions even in fundamental cellular processes. TPCA constitutes an approach for system-wide studies of protein complexes in nonengineered cells and tissues and might be used to identify protein complexes that are modulated in diseases. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. AMMOS2: a web server for protein-ligand-water complexes refinement via molecular mechanics.

    Science.gov (United States)

    Labbé, Céline M; Pencheva, Tania; Jereva, Dessislava; Desvillechabrol, Dimitri; Becot, Jérôme; Villoutreix, Bruno O; Pajeva, Ilza; Miteva, Maria A

    2017-07-03

    AMMOS2 is an interactive web server for efficient computational refinement of protein-small organic molecule complexes. The AMMOS2 protocol employs atomic-level energy minimization of a large number of experimental or modeled protein-ligand complexes. The web server is based on the previously developed standalone software AMMOS (Automatic Molecular Mechanics Optimization for in silico Screening). AMMOS utilizes the physics-based force field AMMP sp4 and performs optimization of protein-ligand interactions at five levels of flexibility of the protein receptor. The new version 2 of AMMOS implemented in the AMMOS2 web server allows the users to include explicit water molecules and individual metal ions in the protein-ligand complexes during minimization. The web server provides comprehensive analysis of computed energies and interactive visualization of refined protein-ligand complexes. The ligands are ranked by the minimized binding energies allowing the users to perform additional analysis for drug discovery or chemical biology projects. The web server has been extensively tested on 21 diverse protein-ligand complexes. AMMOS2 minimization shows consistent improvement over the initial complex structures in terms of minimized protein-ligand binding energies and water positions optimization. The AMMOS2 web server is freely available without any registration requirement at the URL: http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Isolation and characterization of PSI-LHCI super-complex and their sub-complexes from a red alga Cyanidioschyzon merolae.

    Science.gov (United States)

    Tian, Lirong; Liu, Zheyi; Wang, Fangjun; Shen, Liangliang; Chen, Jinghua; Chang, Lijing; Zhao, Songhao; Han, Guangye; Wang, Wenda; Kuang, Tingyun; Qin, Xiaochun; Shen, Jian-Ren

    2017-09-01

    Photosystem I (PSI)-light-harvesting complex I (LHCI) super-complex and its sub-complexes PSI core and LHCI, were purified from a unicellular red alga Cyanidioschyzon merolae and characterized. PSI-LHCI of C. merolae existed as a monomer with a molecular mass of 580 kDa. Mass spectrometry analysis identified 11 subunits (PsaA, B, C, D, E, F, I, J, K, L, O) in the core complex and three LHCI subunits, CMQ142C, CMN234C, and CMN235C in LHCI, indicating that at least three Lhcr subunits associate with the red algal PSI core. PsaG was not found in the red algae PSI-LHCI, and we suggest that the position corresponding to Lhca1 in higher plant PSI-LHCI is empty in the red algal PSI-LHCI. The PSI-LHCI complex was separated into two bands on native PAGE, suggesting that two different complexes may be present with slightly different protein compositions probably with respective to the numbers of Lhcr subunits. Based on the results obtained, a structural model was proposed for the red algal PSI-LHCI. Furthermore, pigment analysis revealed that the C. merolae PSI-LHCI contained a large amount of zeaxanthin, which is mainly associated with the LHCI complex whereas little zeaxanthin was found in the PSI core. This indicates a unique feature of the carotenoid composition of the Lhcr proteins and may suggest an important role of Zea in the light-harvesting and photoprotection of the red algal PSI-LHCI complex.

  13. Synthesis and characterization of some metal complexes of a Schiff ...

    African Journals Online (AJOL)

    KEY WORDS: Metal complexes, Schiff base, Ninhydrin, α,L-Alanine, .... Buck Scientific Infrared Spectrophotometer Model 500 in the range of 4000 .... Assignments based on Nakamoto [35], ν - stretching vibration, δ - bending or deformation.

  14. Characterization of S-Phase Specific BRCA1-Containing Complex

    National Research Council Canada - National Science Library

    You, Fanglei

    2003-01-01

    ...), was observed in HeLa and in 293 cells. Hydroxyurea treatment of cells results in the reduction of BRCA1 content in the RNA polymerase II holoenzyme complex with a complementary increase in the HUIC...

  15. Characterization of S-Phase Specific BRCA1-Containing Complex

    National Research Council Canada - National Science Library

    Chiba, Natsuko

    2002-01-01

    ...), was observed in HeLa and in 293 cells. Hydroxyurea treatment of cells results in the reduction of BRCA1 content in the RNA polymerase II holoenzyme complex with a complementary increase in the HUIC...

  16. On the interconnection of stable protein complexes: inter-complex hubs and their conservation in Saccharomyces cerevisiae and Homo sapiens networks.

    Science.gov (United States)

    Guerra, Concettina

    2015-01-01

    Protein complexes are key molecular entities that perform a variety of essential cellular functions. The connectivity of proteins within a complex has been widely investigated with both experimental and computational techniques. We developed a computational approach to identify and characterise proteins that play a role in interconnecting complexes. We computed a measure of inter-complex centrality, the crossroad index, based on disjoint paths connecting proteins in distinct complexes and identified inter-complex hubs as proteins with a high value of the crossroad index. We applied the approach to a set of stable complexes in Saccharomyces cerevisiae and in Homo sapiens. Just as done for hubs, we evaluated the topological and biological properties of inter-complex hubs addressing the following questions. Do inter-complex hubs tend to be evolutionary conserved? What is the relation between crossroad index and essentiality? We found a good correlation between inter-complex hubs and both evolutionary conservation and essentiality.

  17. Comparative evolutionary analysis of protein complexes in E. coli and yeast

    Directory of Open Access Journals (Sweden)

    Ranea Juan AG

    2010-02-01

    Full Text Available Abstract Background Proteins do not act in isolation; they frequently act together in protein complexes to carry out concerted cellular functions. The evolution of complexes is poorly understood, especially in organisms other than yeast, where little experimental data has been available. Results We generated accurate, high coverage datasets of protein complexes for E. coli and yeast in order to study differences in the evolution of complexes between these two species. We show that substantial differences exist in how complexes have evolved between these organisms. A previously proposed model of complex evolution identified complexes with cores of interacting homologues. We support findings of the relative importance of this mode of evolution in yeast, but find that it is much less common in E. coli. Additionally it is shown that those homologues which do cluster in complexes are involved in eukaryote-specific functions. Furthermore we identify correlated pairs of non-homologous domains which occur in multiple protein complexes. These were identified in both yeast and E. coli and we present evidence that these too may represent complex cores in yeast but not those of E. coli. Conclusions Our results suggest that there are differences in the way protein complexes have evolved in E. coli and yeast. Whereas some yeast complexes have evolved by recruiting paralogues, this is not apparent in E. coli. Furthermore, such complexes are involved in eukaryotic-specific functions. This implies that the increase in gene family sizes seen in eukaryotes in part reflects multiple family members being used within complexes. However, in general, in both E. coli and yeast, homologous domains are used in different complexes.

  18. Synthesis and Characterization of Novel Magnetite Nanoparticle Block Copolymer Complexes

    OpenAIRE

    Zhang, Qian

    2007-01-01

    Superparamagnetic Magnetite (Fe3O4) nanoparticles were synthesized and complexed with carboxylate-functionalized block copolymers, and aqueous dispersions of the complexes were investigated as functions of their chemical and morphological structures. The block copolymer dispersants possessed either poly(ethylene oxide), poly(ethylene oxide-co-propylene oxide), or poly(ethylene oxide-b-propylene oxide) outer blocks, and all contained a polyurethane center block with pendant carboxylate functi...

  19. Enterovirus 71 viral capsid protein linear epitopes: Identification and characterization

    Directory of Open Access Journals (Sweden)

    Gao Fan

    2012-01-01

    Full Text Available Abstract Background To characterize the human humoral immune response against enterovirus 71 (EV71 infection and map human epitopes on the viral capsid proteins. Methods A series of 256 peptides spanning the capsid proteins (VP1, VP2, VP3 of BJ08 strain (genomic C4 were synthesized. An indirect enzyme-linked immunosorbent assay (ELISA was carried out to detect anti-EV71 IgM and IgG in sera of infected children in acute or recovery phase. The partially overlapped peptides contained 12 amino acids and were coated in the plate as antigen (0.1 μg/μl. Sera from rabbits immunized with inactivated BJ08 virus were also used to screen the peptide panel. Results A total of 10 human anti-EV71 IgM epitopes (vp1-14 in VP1; vp2-6, 21, 40 and 50 in VP2 and vp3-10, 12, 15, 24 and 75 in VP3 were identified in acute phase sera. In contrast, only one anti-EV71 IgG epitope in VP1 (vp1-15 was identified in sera of recovery stage. Four rabbit anti-EV71 IgG epitopes (vp1-14, 31, 54 and 71 were identified and mapped to VP1. Conclusion These data suggested that human IgM epitopes were mainly mapped to VP2 and VP3 with multi-epitope responses occurred at acute infection, while the only IgG epitope located on protein VP1 was activated in recovery phase sera. The dynamic changes of humoral immune response at different stages of infection may have public health significance in evaluation of EV71 vaccine immunogenicity and the clinical application of diagnostic reagents.

  20. Formation of protein-birnessite complex: XRD, FTIR, and AFM analysis.

    Science.gov (United States)

    Naidja, A; Liu, C; Huang, P M

    2002-07-01

    Limited information is available on formation chemistry of enzyme-Mn oxide complexes. Adsorption isotherm of protein molecules (tyrosinase) on birnessite (delta-MnO(2)) at pH 6.0 and room temperature (23 degrees C) was of H type, indicating a very high affinity of the enzyme protein molecules to the birnessite mineral surfaces. After thorough washing of the protein-mineral complex with deionized-distilled water, up to 89% of adsorbed protein molecules remained bound to the mineral surfaces. When a high amount of the protein was immobilized, the X-ray diffractogram shows a significant decrease in the intensity of characteristic d-spacings of birnessite. No shift to higher values of the d-spacings of protein-birnessite complex was observed, indicating that the enzyme molecules were not intercalated in the mineral structure but immobilized at the external surfaces and the edges of the mineral oxide. By comparison to the free enzyme, infrared absorption spectra of the protein-birnessite complexes show a shift by up to 11 cm(-1) to lower frequencies in the absorption bands characteristic of amide I and II modes of the polypeptides chains. The mineral surfaces exerted some strain on the protein structure, resulting in an alteration of the protein molecular conformation after binding to the mineral colloid surfaces. In the free state, the globular protein molecules had a spheroid shape with an average cross-sectional diameter of 70+/-6 nm. The unfolding and flattening of the protein molecules after immobilization is clearly shown in atomic force micrographs. Compared to the tyrosinase-birnessite complex, similar FTIR spectra and atomic force micrographs were observed for the pure protein, bovine serum albumin (BSA), after immobilization on birnessite. The information obtained in this study is of fundamental significance for understanding birnessite as an adsorbent of biopolymers and the catalytic role of the enzyme-birnessite complex.

  1. Protein/polysaccharide complexes at air/water interfaces

    NARCIS (Netherlands)

    Ganzevles, R.A.

    2007-01-01

    KEYWORDS:protein, polysaccharide,Carotenoid-protein complexes and their stability towards oxygen and radiation

    International Nuclear Information System (INIS)

    Ramakrishnan, T.V.; Francis, F.J.

    1980-01-01

    Carotenoid-protein complexes isolated from fresh mangoes were found to be more stable to oxygen and radiation when dissolved in water as compared with β-carotene in petroleum ether. Part of the pigment could be released from the complex by gamma irradiation. Observations on the stability of the carotenoid (98% β-carotene) in the complex indicated that the pigment is either associated with the lipid prosthetic group of the protein or loosely attached to the protein by weak hydrophobic bonds. (author)

  2. Isolation and characterization of the heterogeneous nuclear RNA-ribonucleoprotein complex

    International Nuclear Information System (INIS)

    Choi, Y.D.

    1985-01-01

    Exposure of cells to UV light of sufficient intensity brings about crosslinking of RNA to proteins which are in direct contact with it in vivo. The major [ 35 S]methionine-labeled proteins which become crosslinked to poly(A) + hnRNA in HeLa cells are of 120K, 68K, 53K, 43K, 41K, 38K, and 36K (K = kilodaltons). By immunizing mice with UV crosslinked complexes two monoclonal antibodies (2B12 and 4F4) against the C proteins (41K and 43K) and one (3G6) against the 120K protein of the hnRNP complex were obtained. Immunofluorescence microscopy demonstrates that the C proteins and 120K are segregated to the nucleus and are not associated with nucleoli or chromatin. The two C proteins are highly related to each other antigenically. Monoclonal antibody 4F4 identifies the C proteins of the hnRNP complex in widely divergent species from human to lizard. The C proteins are phosphorylated and are in contact with hnRNA in vivo. The hnRNP complex was isolated from vertebrate cell nuclei by immunoprecipitation with these monoclonal antibodies. This complex contains proteins and hnRNA of up to ∼10 kb. The major steady state labeled [ 35 S]methionine labeled proteins of the isolated complex from HeLa cells are of 34K, 36K, 36K (A1 and A2), 37K, 38K (B1 and B2), 41K, 43K (C1 and C2) and doublets at 68K and at 120K. These proteins are organized into a 30S particle. Large hnRNP complexes are composed of multiples of 30S particles which are connected by highly nuclease sensitive stretches of hnRNA. It it concluded that the hnRNP structure is an integral component of the mRNA formation pathway in the eukaryotic cell

  3. Rpa4, a homolog of the 34-kilodalton subunit of the replication protein A complex.

    OpenAIRE

    Keshav, K F; Chen, C; Dutta, A

    1995-01-01

    Replication protein A (RPA) is a complex of three polypeptides of 70, 34, and 13 kDa isolated from diverse eukaryotes. The complex is a single-stranded DNA-binding protein essential for simian virus 40-based DNA replication in vitro and for viability in the yeast Saccharomyces cerevisiae. We have identified a new 30-kDa human protein which interacts with the 70- and 13-kDa subunits of RPA, with a yeast two-hybrid/interaction trap method. This protein, Rpa4, has 47% identity with Rpa2, the 34-...

  4. Interaction proteomics analysis of polycomb proteins defines distinct PRC1 complexes in mammalian cells

    DEFF Research Database (Denmark)

    Vandamme, Julien; Völkel, Pamela; Rosnoblet, Claire

    2011-01-01

    Polycomb group (PcG) proteins maintain transcriptional repression of hundreds of genes involved in development, signaling or cancer using chromatin-based epigenetic mechanisms. Biochemical studies in Drosophila have revealed that PcG proteins associate in at least two classes of protein complexes...... known as Polycomb repressive complexes 1 and 2 (PRC1 and PRC2). Drosophila core PRC1 is composed of four subunits, Polycomb (Pc), Sex combs extra (Sce), Polyhomeotic (Ph), and Posterior sex combs (Psc). Each of these proteins has multiple orthologs in vertebrates classified respectively as the CBX, RING...... in order to identify interacting partners of CBX family proteins under the same experimental conditions. Our analysis identified with high confidence about 20 proteins co-eluted with CBX2 and CBX7 tagged proteins, about 40 with CBX4, and around 60 with CBX6 and CBX8. We provide evidences that the CBX...

  5. Spectroscopic characterization of some Cu(II) complexes

    International Nuclear Information System (INIS)

    Singh, Puja; Sharma, S.

    2014-01-01

    3-hydroxy-4-methoxy benzaldehyde semicarbazone (HMBS) is a biologically active compound which has several potential donor sites. This compound has been used for complexation with Cu(II) ions to synthesize complexes of general formula [Cu(HMBS) 2 X 2 ] where X is Cl − , NO 3 − and CH 3 COO − . Cu(II) is a d 9 system for which 2 D term is generated. Under O h symmetry, this term splits into 2 E g and 2 T 2g . the ground term 2 Eg is doubly degenerate and hence suffers strong Jahn-Teller effect and accordingly the further splitting of terms occur to lower the symmetry from perfect O h . Here, the ligand occupies four planar positions while the two axial positions have been varied by using different ions like Cl − , NO 3 − and CH 3 COO − . These variations on the axial positions also add to the distortion in O h symmetry. Under strong distortion, the electronic spectral band splits into multiplets exhibiting tetragonal distortion in complexes. The extent of distortion has been derived by the derivation of the two radial parameters D s and D t from electronic spectral bands. The ESR spectra of complexes reveal the real position of the only unpaired electron of the d 9 system in complexes

  6. Gold(I)-selenolate complexes: Synthesis, characterization and ...

    Indian Academy of Sciences (India)

    known that the gold(I) drugs rapidly bind to the most abundant plasma protein serum albumin (Alb-SH) after ... Aldrich. The experiments were carried out under dry and oxygen-free nitrogen using standard Schlenk tech- ... To a deoxygenated aqueous solution of the disele- nide 11 (30.0mg, 0.094mmol) was added sodium.

  7. Characterization of SCF-Complex during Bovine Preimplantation Development

    Czech Academy of Sciences Publication Activity Database

    Benešová, Veronika; Kinterová, Veronika; Kaňka, Jiří; Toralová, Tereza

    2016-01-01

    Roč. 11, č. 1 (2016), e0147096-e0147096 E-ISSN 1932-6203 R&D Projects: GA ČR GP13-24730P Institutional support: RVO:67985904 Keywords : F-box protein * early development Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.806, year: 2016

  8. A structurally characterized organometallic plutonium(IV) complex

    Energy Technology Data Exchange (ETDEWEB)

    Apostolidis, Christos; Walter, Olaf [European Commission, Joint Research Centre, Directorate G - Nuclear Safety and Security, Karlsruhe (Germany); Vogt, Jochen; Liebing, Phil; Edelmann, Frank T. [Chemisches Institut, Otto-von-Guericke-Universitaet Magdeburg (Germany); Maron, Laurent [Laboratoire de Physique et Chimie des Nanoobjets (LPCNO), Universite de Toulouse/INSA/CNRS (UMR5215), Toulouse (France)

    2017-04-24

    The blood-red plutonocene complex Pu(1,3-COT'')(1,4-COT'') (4; COT''=η{sup 8}-bis(trimethylsilyl)cyclooctatetraenyl) has been synthesized by oxidation of the anionic sandwich complex Li[Pu(1,4-COT''){sub 2}] (3) with anhydrous cobalt(II) chloride. The first crystal structure determination of an organoplutonium(IV) complex revealed an asymmetric sandwich structure for 4 where one COT'' ring is 1,3-substituted while the other retains the original 1,4-substitution pattern. The electronic structure of 4 has been elucidated by a computational study, revealing a probable cause for the unexpected silyl group migration. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. The Structure of the Human Centrin 2-Xeroderma Pigmentosum Group C Protein Complex

    Energy Technology Data Exchange (ETDEWEB)

    Thompson,J.; Ryan, Z.; Salisbury, J.; Kumar, R.

    2006-01-01

    Human centrin-2 plays a key role in centrosome function and stimulates nucleotide excision repair by binding to the xeroderma pigmentosum group C protein. To determine the structure of human centrin-2 and to develop an understanding of molecular interactions between centrin and xeroderma pigmentosum group C protein, we characterized the crystal structure of calcium-loaded full-length centrin-2 complexed with a xeroderma pigmentosum group C peptide. Our structure shows that the carboxyl-terminal domain of centrin-2 binds this peptide and two calcium atoms, whereas the amino-terminal lobe is in a closed conformation positioned distantly by an ordered {alpha}-helical linker. A stretch of the amino-terminal domain unique to centrins appears disordered. Two xeroderma pigmentosum group C peptides both bound to centrin-2 also interact to form an {alpha}-helical coiled-coil. The interface between centrin-2 and each peptide is predominantly nonpolar, and key hydrophobic residues of XPC have been identified that lead us to propose a novel binding motif for centrin.

  10. The Structure of the Human Centrin 2-Xeroderma Pigmentosum Group C Protein Complex

    International Nuclear Information System (INIS)

    Thompson, J.; Ryan, Z.; Salisbury, J.; Kumar, R.

    2006-01-01

    Human centrin-2 plays a key role in centrosome function and stimulates nucleotide excision repair by binding to the xeroderma pigmentosum group C protein. To determine the structure of human centrin-2 and to develop an understanding of molecular interactions between centrin and xeroderma pigmentosum group C protein, we characterized the crystal structure of calcium-loaded full-length centrin-2 complexed with a xeroderma pigmentosum group C peptide. Our structure shows that the carboxyl-terminal domain of centrin-2 binds this peptide and two calcium atoms, whereas the amino-terminal lobe is in a closed conformation positioned distantly by an ordered α-helical linker. A stretch of the amino-terminal domain unique to centrins appears disordered. Two xeroderma pigmentosum group C peptides both bound to centrin-2 also interact to form an α-helical coiled-coil. The interface between centrin-2 and each peptide is predominantly nonpolar, and key hydrophobic residues of XPC have been identified that lead us to propose a novel binding motif for centrin

  11. Improving prediction of heterodimeric protein complexes using combination with pairwise kernel.

    Science.gov (United States)

    Ruan, Peiying; Hayashida, Morihiro; Akutsu, Tatsuya; Vert, Jean-Philippe

    2018-02-19

    Since many proteins become functional only after they interact with their partner proteins and form protein complexes, it is essential to identify the sets of proteins that form complexes. Therefore, several computational methods have been proposed to predict complexes from the topology and structure of experimental protein-protein interaction (PPI) network. These methods work well to predict complexes involving at least three proteins, but generally fail at identifying complexes involving only two different proteins, called heterodimeric complexes or heterodimers. There is however an urgent need for efficient methods to predict heterodimers, since the majority of known protein complexes are precisely heterodimers. In this paper, we use three promising kernel functions, Min kernel and two pairwise kernels, which are Metric Learning Pairwise Kernel (MLPK) and Tensor Product Pairwise Kernel (TPPK). We also consider the normalization forms of Min kernel. Then, we combine Min kernel or its normalization form and one of the pairwise kernels by plugging. We applied kernels based on PPI, domain, phylogenetic profile, and subcellular localization properties to predicting heterodimers. Then, we evaluate our method by employing C-Support Vector Classification (C-SVC), carrying out 10-fold cross-validation, and calculating the average F-measures. The results suggest that the combination of normalized-Min-kernel and MLPK leads to the best F-measure and improved the performance of our previous work, which had been the best existing method so far. We propose new methods to predict heterodimers, using a machine learning-based approach. We train a support vector machine (SVM) to discriminate interacting vs non-interacting protein pairs, based on informations extracted from PPI, domain, phylogenetic profiles and subcellular localization. We evaluate in detail new kernel functions to encode these data, and report prediction performance that outperforms the state-of-the-art.

  12. Characterizing Protein Interactions Employing a Genome-Wide siRNA Cellular Phenotyping Screen

    Science.gov (United States)

    Suratanee, Apichat; Schaefer, Martin H.; Betts, Matthew J.; Soons, Zita; Mannsperger, Heiko; Harder, Nathalie; Oswald, Marcus; Gipp, Markus; Ramminger, Ellen; Marcus, Guillermo; Männer, Reinhard; Rohr, Karl; Wanker, Erich; Russell, Robert B.; Andrade-Navarro, Miguel A.; Eils, Roland; König, Rainer

    2014-01-01

    Characterizing the activating and inhibiting effect of protein-protein interactions (PPI) is fundamental to gain insight into the complex signaling system of a human cell. A plethora of methods has been suggested to infer PPI from data on a large scale, but none of them is able to characterize the effect of this interaction. Here, we present a novel computational development that employs mitotic phenotypes of a genome-wide RNAi knockdown screen and enables identifying the activating and inhibiting effects of PPIs. Exemplarily, we applied our technique to a knockdown screen of HeLa cells cultivated at standard conditions. Using a machine learning approach, we obtained high accuracy (82% AUC of the receiver operating characteristics) by cross-validation using 6,870 known activating and inhibiting PPIs as gold standard. We predicted de novo unknown activating and inhibiting effects for 1,954 PPIs in HeLa cells covering the ten major signaling pathways of the Kyoto Encyclopedia of Genes and Genomes, and made these predictions publicly available in a database. We finally demonstrate that the predicted effects can be used to cluster knockdown genes of similar biological processes in coherent subgroups. The characterization of the activating or inhibiting effect of individual PPIs opens up new perspectives for the interpretation of large datasets of PPIs and thus considerably increases the value of PPIs as an integrated resource for studying the detailed function of signaling pathways of the cellular system of interest. PMID:25255318

  13. Synthesis and physicochemical characterization of rhenium (V) complexes with bisbenzoylthiosemicarbazones

    International Nuclear Information System (INIS)

    Gagieva, S.Ch.; Gutnova, N.A.; Tsaloev, A.T.; Khubulov, A.B.; Arutyunyants, A.A.; Galimov, Yu.B.

    2003-01-01

    Rhenium (V) complexing with mono- and bis-benzoylthiosemicarbazones is studied in dependence on hydrohalic acids concentration changes. It is determined that in media with high concentration of hydrohalic acids (6 mol/l HCl, 7 mol/l HBr) in dependence on reaction conditions stable complexes with bi- and tridentate coordination of thiosemicarbazone are formed. In the case of hydrohalic acid concentration decreasing stable binuclear and oxohydroxycomplexes are formed. Composition and structure of the compounds obtained are determined by the methods of element analysis, IR spectroscopy, conductometry. Thermal investigations of the compounds obtained are done [ru

  14. Spectroscopic characterization of the ethyl radical-water complex.

    Science.gov (United States)

    Lin, Chen; Finney, Brian A; Laufer, Allan H; Anglada, Josep M; Francisco, Joseph S

    2016-10-14

    An ab initio investigation has been employed to determine the structural and spectroscopic parameters, such as rotational constants, vibrational frequencies, vertical excitation energies, and the stability of the ethyl-water complex. The ethyl-water complex has a binding energy of 1.15 kcal⋅mol -1 . The interaction takes place between the hydrogen of water and the unpaired electron of the radical. This interaction is found to produce a red shift in the OH stretching bands of water of ca. 84 cm -1 , and a shift of all UV absorption bands to higher energies.

  15. Radiological Characterization of TFA metallic tubes from CERN Accelerator Complex

    CERN Document Server

    Saraiva, João Pedro de Carvalho; Carvalho, João

    The scope of this thesis consists in the radiological characterization of chilled water pipes used for air-conditioning and exposed to ionizing radiation in the PS accelerator, one of the CERN accelerators, for more than 40 years. Due to corrosion problems, the 1200 m of steel pipeline were removed from the PS tunnel during the long shutdowns between the years 2000 to 2004. The radiological characterization, that included the use of FLUKA Monte Carlo simulations and the JEREMY code, began in mid-2011 and revealed a radionuclide inventory with the presence of 55Fe as dominant radionuclide and 60Co as dominant gamma emitter. Due to operational reasons, only 5.5% of the pipeline were characterized for validation. In the course of this work it was found that the contribution of both aforementioned radionuclides corresponds to more than 90% of the total computed IRAS factor (Indice Radiologique d’Acceptation en Stokage). Two different methods were used for the characterization of the PS pipes, yielding two diffe...

  16. Synthesis and characterization of the Rhodium (II) citrate complex

    International Nuclear Information System (INIS)

    Najjar, R.; Santos, F.S. dos; Seidel, W.

    1987-01-01

    The preparation and characterization of the rhodium (II) citrate is described. Rhodium citrate was prepared by reacting citric acid trihydrated (3,4 g, 16 mmols) with anhydrous rhodium acetate (0,44 g, 1 mmol). Th electronic instruments, thermogravimetric curve and spectrum of rhodium (II) citrate are analysed. (M.J.C.) [pt

  17. Small-angle scattering studies of intrinsically disordered proteins and their complexes

    DEFF Research Database (Denmark)

    Cordeiro, Tiago N.; Herranz-Trillo, Fátima; Urbanek, Annika

    2017-01-01

    Intrinsically Disordered Proteins (IDPs) perform a broad range of biological functions. Their relevance has motivated intense research activity seeking to characterize their sequence/structure/function relationships. However, the conformational plasticity of these molecules hampers the applicatio...

  18. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters.

    Science.gov (United States)

    György, Bence; Módos, Károly; Pállinger, Eva; Pálóczi, Krisztina; Pásztói, Mária; Misják, Petra; Deli, Mária A; Sipos, Aron; Szalai, Anikó; Voszka, István; Polgár, Anna; Tóth, Kálmán; Csete, Mária; Nagy, György; Gay, Steffen; Falus, András; Kittel, Agnes; Buzás, Edit I

    2011-01-27

    Numerous diseases, recently reported to associate with elevated microvesicle/microparticle (MP) counts, have also long been known to be characterized by accelerated immune complex (IC) formation. The goal of this study was to investigate the potential overlap between parameters of protein complexes (eg, ICs or avidin-biotin complexes) and MPs, which might perturb detection and/or isolation of MPs. In this work, after comprehensive characterization of MPs by electron microscopy, atomic force microscopy, dynamic light-scattering analysis, and flow cytometry, for the first time, we drive attention to the fact that protein complexes, especially insoluble ICs, overlap in biophysical properties (size, light scattering, and sedimentation) with MPs. This, in turn, affects MP quantification by flow cytometry and purification by differential centrifugation, especially in diseases in which IC formation is common, including not only autoimmune diseases, but also hematologic disorders, infections, and cancer. These data may necessitate reevaluation of certain published data on patient-derived MPs and contribute to correct the clinical laboratory assessment of the presence and biologic functions of MPs in health and disease.

  19. Characterizing the structure of lipodisq nanoparticles for membrane protein spectroscopic studies.

    Science.gov (United States)

    Zhang, Rongfu; Sahu, Indra D; Liu, Lishan; Osatuke, Anna; Comer, Raven G; Dabney-Smith, Carole; Lorigan, Gary A

    2015-01-01

    Membrane protein spectroscopic studies are challenging due to the difficulty introduced in preparing homogenous and functional hydrophobic proteins incorporated into a lipid bilayer system. Traditional membrane mimics such as micelles or liposomes have proved to be powerful in solubilizing membrane proteins for biophysical studies, however, several drawbacks have limited their applications. Recently, a nanosized complex termed lipodisq nanoparticles was utilized as an alternative membrane mimic to overcome these caveats by providing a homogeneous lipid bilayer environment. Despite all the benefits that lipodisq nanoparticles could provide to enhance the biophysical studies of membrane proteins, structural characterization in different lipid compositions that closely mimic the native membrane environment is still lacking. In this study, the formation of lipodisq nanoparticles using different weight ratios of POPC/POPG lipids to SMA polymers was characterized via solid-state nuclear magnetic resonance (SSNMR) spectroscopy and dynamic light scattering (DLS). A critical weight ratio of (1/1.25) for the complete solubilization of POPC/POPG vesicles has been observed and POPC/POPG vesicles turned clear instantaneously upon the addition of the SMA polymer. The size of lipodisq nanoparticles formed from POPC/POPG lipids at this weight ratio of (1/1.25) was found to be about 30 nm in radius. We also showed that upon the complete solubilization of POPC/POPG vesicles by SMA polymers, the average size of the lipodisq nanoparticles is weight ratio dependent, when more SMA polymers were introduced, smaller lipodisq nanoparticles were obtained. The results of this study will be helpful for a variety of biophysical experiments when specific size of lipid disc is required. Further, this study will provide a proper path for researchers working on membrane proteins to obtain pertinent structure and dynamic information in a physiologically relevant membrane mimetic environment

  1. Yeast Mitochondrial Interactosome Model: Metabolon Membrane Proteins Complex Involved in the Channeling of ADP/ATP

    Directory of Open Access Journals (Sweden)

    Benjamin Clémençon

    2012-02-01

    Full Text Available The existence of a mitochondrial interactosome (MI has been currently well established in mammalian cells but the exact composition of this super-complex is not precisely known, and its organization seems to be different from that in yeast. One major difference is the absence of mitochondrial creatine kinase (MtCK in yeast, unlike that described in the organization model of MI, especially in cardiac, skeletal muscle and brain cells. The aim of this review is to provide a detailed description of different partner proteins involved in the synergistic ADP/ATP transport across the mitochondrial membranes in the yeast Saccharomyces cerevisiae and to propose a new mitochondrial interactosome model. The ADP/ATP (Aacp and inorganic phosphate (PiC carriers as well as the VDAC (or mitochondrial porin catalyze the import and export of ADP, ATP and Pi across the mitochondrial membranes. Aacp and PiC, which appear to be associated with the ATP synthase, consist of two nanomotors (F0, F1 under specific conditions and form ATP synthasome. Identification and characterization of such a complex were described for the first time by Pedersen and co-workers in 2003.

  2. The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies.

    Science.gov (United States)

    Xue, Yutong; Gibbons, Richard; Yan, Zhijiang; Yang, Dafeng; McDowell, Tarra L; Sechi, Salvatore; Qin, Jun; Zhou, Sharleen; Higgs, Doug; Wang, Weidong

    2003-09-16

    ATRX syndrome is characterized by X-linked mental retardation associated with alpha-thalassemia. The gene mutated in this disease, ATRX, encodes a plant homeodomain-like finger and a SWI2/SNF2-like ATPase motif, both of which are often found in chromatin-remodeling enzymes, but ATRX has not been characterized biochemically. By immunoprecipitation from HeLa extract, we found that ATRX is in a complex with transcription cofactor Daxx. The following evidence supports that ATRX and Daxx are components of an ATP-dependent chromatin-remodeling complex: (i) Daxx and ATRX can be coimmunoisolated by antibodies specific for each protein; (ii) a proportion of Daxx cofractionates with ATRX as a complex of 1 MDa by gel-filtration analysis; (iii) in extract from cells of a patient with ATRX syndrome, the level of the Daxx-ATRX complex is correspondingly reduced; (iv) a proportion of ATRX and Daxx colocalize in promyelocytic leukemia nuclear bodies, with which Daxx had previously been located; and (v) the ATRX complex displays ATP-dependent activities that resemble those of other chromatin-remodeling complexes, including triple-helix DNA displacement and alteration of mononucleosome disruption patterns. But unlike the previously described SWI/SNF or NURD complexes, the ATRX complex does not randomize DNA phasing of the mononucleosomes, suggesting that it may remodel chromatin differently. Taken together, the results suggest that ATRX functions in conjunction with Daxx in a novel chromatin-remodeling complex. The defects in ATRX syndrome may result from inappropriate expression of genes controlled by this complex.

  3. Metathesis synthesis and characterization of complex metal fluoride ...

    Indian Academy of Sciences (India)

    Administrator

    V MANIVANNAN*, P PARHI and JONATHAN W KRAMER. Department of Mechanical Engineering, Campus Delivery 1374, Colorado State University, Fort Collins,. CO 80523, USA. MS received 30 April 2008. Abstract. Metathesis synthesis of complex metal fluorides using mechanochemical activation has been reported.

  4. Characterization of Hydrogen Complex Formation in III-V Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Michael D

    2006-09-28

    Atomic hydrogen has been found to react with some impurity species in semiconductors. Hydrogenation is a methodology for the introduction of atomic hydrogen into the semiconductor for the express purpose of forming complexes within the material. Efforts to develop hydrogenation as an isolation technique for AlGaAs and Si based devices failed to demonstrate its commercial viability. This was due in large measure to the low activation energies of the formed complexes. Recent studies of dopant passivation in long wavelength (0.98 - 1.55m) materials suggested that for the appropriate choice of dopants much higher activation energies can be obtained. This effort studied the formation of these complexes in InP, This material is extensively used in optoelectronics, i.e., lasers, modulators and detectors. The experimental techniques were general to the extent that the results can be applied to other areas such as sensor technology, photovoltaics and to other material systems. The activation energies for the complexes have been determined and are reported in the scientific literature. The hydrogenation process has been shown by us to have a profound effect on the electronic structure of the materials and was thoroughly investigated. The information obtained will be useful in assessing the long term reliability of device structures fabricated using this phenomenon and in determining new device functionalities.

  5. Characterization of Aluminum(III) Complexes in Coal Organic Matter

    Czech Academy of Sciences Publication Activity Database

    Straka, Pavel

    2016-01-01

    Roč. 7, č. 4 (2016), s. 378-394 ISSN 2156-8251 Institutional support: RVO:67985891 Keywords : aluminium * complex * 27Al MAS NMR * coal * lignite * altered coal Subject RIV: DD - Geochemistry http://www.scirp.org/journal/AJAC/

  6. Complex socio-technical systems: Characterization and management guidelines.

    Science.gov (United States)

    Righi, Angela Weber; Saurin, Tarcisio Abreu

    2015-09-01

    Although ergonomics has paid increasing attention to the perspective of complexity, methods for its operationalization are scarce. This study introduces a framework for the operationalization of the "attribute view" of complexity, which involves: (i) the delimitation of the socio-technical system (STS); (ii) the description of four complexity attributes, namely a large number of elements in dynamic interactions, a wide diversity of elements, unexpected variability, and resilience; (iii) the assessment of six management guidelines, namely design slack, give visibility to processes and outcomes, anticipate and monitor the impacts of small changes, monitor the gap between prescription and practice, encourage diversity of perspectives when making decisions, and create an environment that supports resilience; and (iv) the identification of leverage points for improving the STS design, based on both the analysis of relationships among the attributes and their classification as irreducible/manageable complexity, and liability/asset. The use of the framework is illustrated by the study of an emergency department of a University hospital. Data collection involved analysis of documents, observations of work at the front-line, interviews with employees, and the application of questionnaires. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  7. synthesis, characterization an complexes with schiff base co

    African Journals Online (AJOL)

    userpc

    active Ru(II) complexes with coordinating Schiff base were synthesiz lemental ... synthesis and stability of Schiff bases wh ... chelates with anticancer activity have also ..... iron.Inorg. Chem,23(1), 3-10. Kostova, I.; Sasa, L.(2013). Advances in.

  8. Using complex networks to characterize international business cycles.

    Science.gov (United States)

    Caraiani, Petre

    2013-01-01

    There is a rapidly expanding literature on the application of complex networks in economics that focused mostly on stock markets. In this paper, we discuss an application of complex networks to study international business cycles. We construct complex networks based on GDP data from two data sets on G7 and OECD economies. Besides the well-known correlation-based networks, we also use a specific tool for presenting causality in economics, the Granger causality. We consider different filtering methods to derive the stationary component of the GDP series for each of the countries in the samples. The networks were found to be sensitive to the detrending method. While the correlation networks provide information on comovement between the national economies, the Granger causality networks can better predict fluctuations in countries' GDP. By using them, we can obtain directed networks allows us to determine the relative influence of different countries on the global economy network. The US appears as the key player for both the G7 and OECD samples. The use of complex networks is valuable for understanding the business cycle comovements at an international level.

  9. Using complex networks to characterize international business cycles.

    Directory of Open Access Journals (Sweden)

    Petre Caraiani

    Full Text Available BACKGROUND: There is a rapidly expanding literature on the application of complex networks in economics that focused mostly on stock markets. In this paper, we discuss an application of complex networks to study international business cycles. METHODOLOGY/PRINCIPAL FINDINGS: We construct complex networks based on GDP data from two data sets on G7 and OECD economies. Besides the well-known correlation-based networks, we also use a specific tool for presenting causality in economics, the Granger causality. We consider different filtering methods to derive the stationary component of the GDP series for each of the countries in the samples. The networks were found to be sensitive to the detrending method. While the correlation networks provide information on comovement between the national economies, the Granger causality networks can better predict fluctuations in countries' GDP. By using them, we can obtain directed networks allows us to determine the relative influence of different countries on the global economy network. The US appears as the key player for both the G7 and OECD samples. CONCLUSION: The use of complex networks is valuable for understanding the business cycle comovements at an international level.

  10. synthesis and spectra characterization of mixed- ligand complexes

    African Journals Online (AJOL)

    BARTH EKWUEME

    The Schiff base ligand, N-Propylidene-2-methylpyridylamine was obtained from the condensation of 2- aminomethypyridine and propanal.Also, its complexes with Cu(II),Ni(II),Zn(II),Co(II) .... determined with Thomas–Hoover capillary melting apparatus. RESULTS AND DISCUSSION. N-propylidene-2-methylpyridylamine ...

  11. Preparation and Characterization of a Complex of Paeonol and ...

    African Journals Online (AJOL)

    Methods: The complex of paeonol and HP-β-CD was prepared by freeze-drying method. Its physicochemical properties were studied by phase-solubility method, ultraviolet-visible spectrometry (UV), infrared spectrometry (IR), scanning electron microscopy (SEM), x-ray diffractometry (XRD) and thermogravimetric/differential ...

  12. Protein complexes and cholesterol in the control of late endosomal dynamicsCholesterol and multi-protein complexes in the control of late endosomal dynamics

    NARCIS (Netherlands)

    Kant, Rik Henricus Nicolaas van der

    2013-01-01

    Late endosomal transport is disrupted in several diseases such as Niemann-Pick type C, ARC syndrome and Alzheimer’s disease. This thesis describes the regulation of late endosomal dynamics by cholesterol and multi-protein complexes. We find that cholesterol acts as a cellular tomtom that steers the

  13. Immunochemical characterization of rhesus proteins with antibodies raised against synthetic peptides.

    Science.gov (United States)

    Hermand, P; Mouro, I; Huet, M; Bloy, C; Suyama, K; Goldstein, J; Cartron, J P; Bailly, P

    1993-07-15

    Rabbit polyclonal antibodies were raised against synthetic peptides corresponding to hydrophilic regions of the human Rhesus (Rh) IX cDNA-encoded polypeptide predicted to be extracellularly or intracellularly exposed in the topologic model of the Rh blood group protein. Four antibodies encompassing residues 33-45 (MPC1), 224-233 (MPC4), 390-404 (MPC6), and 408-416 (MPC8) were characterized and compared with a polyclonal anti-Rh protein obtained by immunization with purified Rh proteins. All antibodies had specificity for authentic Rh polypeptides and reacted on Western blot with Rh proteins immunoprecipitated with human monoclonal anti-RhD, -c, and -E. MPC1, but not the other antibodies, agglutinated all human erythrocytes except Rhnull and Rhmod cells, which either lack totally or are severely deficient in Rh proteins, respectively. Immunoblotting analysis with membrane proteins from common and rare variants showed that MPC1 and MPC8 reacted in Western blot with 32-Kd Rh polypeptides from all common red blood cells except those from Rhnull and Rhmod, indicating that peptide regions 33-45 and 408-416 may be common to several if not all Rh proteins, whatever the Rh blood group specificity. MPC4 reacted only with membrane preparations from cells carrying the E antigen, whereas MPC6 recognized preferentially the Rh proteins from E and Ee preparations, suggesting that the protein encoded by the RhIXb cDNA carries the E and/or e antigen(s). Immunoadsorption experiments using inside-out or right-side-out sealed vesicules from DccEE red blood cells as competing antigen showed that the MPC6 and MPC8 antibodies bound only to the cytoplasmic side of the erythrocyte membrane, thus providing evidence for the intracellular orientation of the C-terminal 27 residues of the Rh polypeptides. Attempts to transiently or stably express the Rh polypeptides. Attempts to transiently or stably express the Rh cDNA in eukaryotic cells were largely unsuccessful, suggesting that Rh antigen

  14. The challenges in and importance of analysing protein structure and physical stability in complex formulations

    DEFF Research Database (Denmark)

    Jorgensen, L.; Jensen, Minna Grønning; Roest, N.

    2013-01-01

    In this review several analytical challenges that may be encountered during protein formulation development of complex formulations are discussed through recent examples. These examples show how selected advanced biophysical methods can greatly increase our understanding of the system under...

  15. Implicit solvent simulations of DNA and DNA-protein complexes: Agreement with explicit solvent vs experiment

    Czech Academy of Sciences Publication Activity Database

    Chocholoušová, Jana; Feig, M.

    2006-01-01

    Roč. 110, č. 34 (2006), s. 17240-17251 ISSN 1520-6106 Keywords : implicit solvent * explicit solvent * protein DNA complex Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.115, year: 2006

  16. Contribution of Human Oral Cells to Astringency by Binding Salivary Protein/Tannin Complexes.

    Science.gov (United States)

    Soares, Susana; Ferrer-Galego, Raúl; Brandão, Elsa; Silva, Mafalda; Mateus, Nuno; Freitas, Victor de

    2016-10-10

    The most widely accepted mechanism to explain astringency is the interaction and precipitation of salivary proteins by food tannins, in particular proline-rich proteins. However, other mechanisms have been arising to explain astringency, such as binding of tannins to oral cells. In this work, an experimental method was adapted to study the possible contribution of both salivary proteins and oral cells to astringency induced by grape seed procyanidin fractions. Overall, in the absence of salivary proteins, the extent of procyanidin complexation with oral cells increased with increasing procyanidin degree of polymerization (mDP). Procyanidin fractions rich in monomers were the ones with the lowest ability to bind to oral cells. In the presence of salivary proteins and for procyanidins with mDP 2 the highest concentrations (1.5 and 2.0 mM) resulted in an increased binding of procyanidins to oral cells. This was even more evident for fractions III and IV at 1.0 mM and upper concentrations. Regarding the salivary proteins affected, it was possible to observe a decrease of P-B peptide and aPRP proteins for fractions II and III. This decrease is greater as the procyanidins' mDP increases. In fact, for fraction IV an almost total depletion of all salivary proteins was observed. This decrease is due to the formation of insoluble salivary protein/procyanidin complexes. Altogether, these data suggest that some procyanidins are able to bind to oral cells and that the salivary proteins interact with procyanidins forming salivary protein/procyanidin complexes that are also able to link to oral cells. The procyanidins that remain unbound to oral cells are able to bind to salivary proteins forming a large network of salivary protein/procyanidin complexes. Overall, the results presented herein provide one more step to understand food oral astringency onset.

  17. The Chlamydia type III secretion system C-ring engages a chaperone-effector protein complex.

    Directory of Open Access Journals (Sweden)

    Kris E Spaeth

    2009-09-01

    Full Text Available In Gram-negative bacterial pathogens, specialized chaperones bind to secreted effector proteins and maintain them in a partially unfolded form competent for translocation by type III secretion systems/injectisomes. How diverse sets of effector-chaperone complexes are recognized by injectisomes is unclear. Here we describe a new mechanism of effector-chaperone recognition by the Chlamydia injectisome, a unique and ancestral line of these evolutionarily conserved secretion systems. By yeast two-hybrid analysis we identified networks of Chlamydia-specific proteins that interacted with the basal structure of the injectisome, including two hubs of protein-protein interactions that linked known secreted effector proteins to CdsQ, the putative cytoplasmic C-ring component of the secretion apparatus. One of these protein-interaction hubs is defined by Ct260/Mcsc (Multiple cargo secretion chaperone. Mcsc binds to and stabilizes at least two secreted hydrophobic proteins, Cap1 and Ct618, that localize to the membrane of the pathogenic vacuole ("inclusion". The resulting complexes bind to CdsQ, suggesting that in Chlamydia, the C-ring of the injectisome mediates the recognition of a subset of inclusion membrane proteins in complex with their chaperone. The selective recognition of inclusion membrane proteins by chaperones may provide a mechanism to co-ordinate the translocation of subsets of inclusion membrane proteins at different stages in infection.

  18. The malaria parasite RhopH protein complex interacts with erythrocyte calmyrin identified from a comprehensive erythrocyte protein library.

    Science.gov (United States)

    Miura, Toyokazu; Takeo, Satoru; Ntege, Edward H; Otsuki, Hitoshi; Sawasaki, Tatsuya; Ishino, Tomoko; Takashima, Eizo; Tsuboi, Takafumi

    2018-06-02

    Malaria merozoite apical organelles; microneme and rhoptry secreted proteins play functional roles during and following invasion of host erythrocytes. Among numerous proteins, the rhoptries discharge high molecular weight proteins known as RhopH complex. Recent reports suggest that the RhopH complex is essential for growth and survival of the malaria parasite within erythrocytes. However, an in-depth understanding of the host-parasite molecular interactions is indispensable. Here we utilized a comprehensive mouse erythrocyte protein library consisting of 443 proteins produced by a wheat germ cell-free system, combined with AlphaScreen technology to identify mouse erythrocyte calmyrin as an interacting molecule of the rodent malaria parasite Plasmodium yoelii RhopH complex (PyRhopH). The PyRhopH interaction was dependent on the calmyrin N-terminus and divalent cation capacity. The finding unveils a recommendable and invaluable usefulness of our comprehensive mouse erythrocyte protein library together with the AlphaScreen technology in investigating a wide-range of host-parasite molecular interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Rheological characterization of plasticized corn proteins for fused deposition modeling

    Science.gov (United States)

    Chaunier, Laurent; Dalgalarrondo, Michèle; Della Valle, Guy; Lourdin, Denis; Marion, Didier; Leroy, Eric

    2017-10-01

    Additive Manufacturing (AM) of tailored natural biopolymer-based objects by Fused Deposition Modeling (FDM) opens new perspectives for applications such as biomedical temporary devices, or pharmaceutical tablets. This exploits the biocompatibility, resorbability and edibility properties of biopolymers. When adequately plasticized, zeins, storage proteins from endosperm of maize kernels, displayed thermomechanical properties possibly matching FDM processing requirements at a convenient temperature Tprinting=130°C. Indeed, with 20% glycerol added (Tg=42°C), plasticized zeins present a high modulus, E'>1GPa, at ambient conditions, which drops below 0.6 MPa at the processing temperature T=130°C, before flowing in the molten state. The rheological characterization shows that the processing window is limited by a progressive increase of viscosity linked to proteins aggregation and crosslinking by S-S bonding between cysteine amino acid residues, which can lead to gelation. However, for short residence time typical of FDM, the viscosity of plasticized zeins is comparable to the one of standard polymers, like ABS or PLA in their FDM processing conditions: indeed, in presence of glycerol, the molten zeins show a shear-thinning behavior with |η*|≈3kPa.s at 1s-1, decreasing to |η*|≈0.3kPa.s at 100s-1, at 130°C. Moreover, zeins presenting both hydrophilic and hydrophobic domains, amphiphilic plasticizers can be used supplementary to tune their rheological behavior. With 20% oleic acid added to the previous composition, the viscosity is divided down to a ratio about 1/2 at 100s-1 at 130°C, below the value of a standard polymer as PLA at its printing temperature. These results show the possible enhancement of the printability of zein-based materials in the molten state, by combining polar and amphiphilic plasticizers.

  20. Implicit complexity for coinductive data: a characterization of corecurrence

    Directory of Open Access Journals (Sweden)

    Daniel Leivant

    2012-01-01

    Full Text Available We propose a framework for reasoning about programs that manipulate coinductive data as well as inductive data. Our approach is based on using equational programs, which support a seamless combination of computation and reasoning, and using productivity (fairness as the fundamental assertion, rather than bi-simulation. The latter is expressible in terms of the former. As an application to this framework, we give an implicit characterization of corecurrence: a function is definable using corecurrence iff its productivity is provable using coinduction for formulas in which data-predicates do not occur negatively. This is an analog, albeit in weaker form, of a characterization of recurrence (i.e. primitive recursion in [Leivant, Unipolar induction, TCS 318, 2004].

  1. On the importance of polar interactions for complexes containing intrinsically disordered proteins.

    Directory of Open Access Journals (Sweden)

    Eric T C Wong

    Full Text Available There is a growing recognition for the importance of proteins with large intrinsically disordered (ID segments in cell signaling and regulation. ID segments in these proteins often harbor regions that mediate molecular recognition. Coupled folding and binding of the recognition regions has been proposed to confer high specificity to interactions involving ID segments. However, researchers recently questioned the origin of the interaction specificity of ID proteins because of the overrepresentation of hydrophobic residues in their interaction interfaces. Here, we focused on the role of polar and charged residues in interactions mediated by ID segments. Making use of the extended nature of most ID segments when in complex with globular proteins, we first identified large numbers of complexes between globular proteins and ID segments by using radius-of-gyration-based selection criteria. Consistent with previous studies, we found the interfaces of these complexes to be enriched in hydrophobic residues, and that these residues contribute significantly to the stability of the interaction interface. However, our analyses also show that polar interactions play a larger role in these complexes than in structured protein complexes. Computational alanine scanning and salt-bridge analysis indicate that interfaces in ID complexes are highly complementary with respect to electrostatics, more so than interfaces of globular proteins. Follow-up calculations of the electrostatic contributions to the free energy of binding uncovered significantly stronger Coulombic interactions in complexes harbouring ID segments than in structured protein complexes. However, they are counter-balanced by even higher polar-desolvation penalties. We propose that polar interactions are a key contributing factor to the observed high specificity of ID segment-mediated interactions.

  2. Research of the complex of functional and technological properties of animal protein

    Directory of Open Access Journals (Sweden)

    Олена Борисівна Дроменко

    2016-12-01

    Full Text Available The analysis of the results of analytical and practical research of the complex of functional and technological properties of animal protein Gelexcel A-95 as the basis for creation of complex functional additives is shown. The regularities of their changes are determined depending on technological factors. Rational parameters of animal protein rehydration, gelation conditions, emulsification for further use in the process of production of meat products are identified

  3. Gel and gel-free approaches for the quantitative characterisation of complex protein mixtures

    CSIR Research Space (South Africa)

    Buthelezi, S

    2012-10-01

    Full Text Available reliable set of methods for profiling proteins in a complex mixture in order to allow for the mining of low abundant species. To achieve this, several fractionation techniques were applied to samples of bovine hepatic tissue. These included two... further separated via low pH reverse phase (RP) chromatography before being introduced for mass spectrometric analysis. MATERIALS AND METHODS Figure 1: Study design to analyse a complex mixture of proteins extracted from hepatic tissue. To determine...

  4. Acute phase proteins in cattle after exposure to complex stress

    DEFF Research Database (Denmark)

    Lomborg, S. R.; Nielsen, L. R.; Heegaard, Peter M. H.

    2008-01-01

    Abstract Stressors such as weaning, mixing and transportation have been shown to lead to increased blood concentrations of acute phase proteins (APP), including serum amyloid A (SAA) and haptoglobin, in calves. This study was therefore undertaken to assess whether SAA and haptoglobin levels...... concentrations of SAA and haptoglobin increased significantly in response to the stressors (P...... in blood mirror stress in adult cattle. Six clinically healthy Holstein cows and two Holstein heifers were transported for four to six hours to a research facility, where each animal was housed in solitary tie stalls. Blood samples for evaluation of leukocyte counts and serum SAA and haptoglobin...

  5. Synthesis, Characterization and Antimicrobial Activity of Zirconium (IV) Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shobhana; Jain, Asha; Saxena, Sanjiv [Univ. of Rajasthan, Jaipur (India)

    2012-08-15

    Heteroleptic complexes of zirconium (IV) derived from bulky Schiff base ligands containing a sulphur atom and oximes of heterocyclic β-diketones of the general formula ZrLL' (where L'H{sub 2}=RCNH(C{sub 6}H{sub 4})SC : C(OH)N(C{sub 6}H{sub 5})N : CCH{sub 3}, R=-C{sub 6}H{sub 5}, -C{sub 6}H{sub 4}Cl(p) and L'H{sub 2}=R'C : (NOH)C : C(OH)N(C{sub 6}H{sub 5})N : CCH{sub 3}, R' = -CH{sub 2}CH{sub 3}, -C{sub 6}H{sub 5}, -C{sub 6}H{sub 4}Cl (p) were prepared by the reactions of zirconium tetrachloride with disodium salts of Schiff bases (L Na{sub 2}) and oximes of heterocyclic β-diketones (L' Na{sub 2}) in 1:1:1 molar ratio in dry refluxing THF. The structures of these monomeric zirconium (IV) complexes were elucidated with the help of elemental analysis, molecular weight measurements, spectroscopic (IR, NMR and mass) studies. A distorted trigonal bipyramidal geometry may be suggested for these heteroleptic zirconium (IV) complexes. The ligands (bulky Schiff base ligands containing a sulphur atom and oximes of heterocyclic β-diketones) and their heteroleptic complexes of zirconium (IV) were screened against A. flavus, P. aeruginesa and E. coli.

  6. Characterizing genes with distinct methylation patterns in the context of protein-protein interaction network: application to human brain tissues.

    Science.gov (United States)

    Li, Yongsheng; Xu, Juan; Chen, Hong; Zhao, Zheng; Li, Shengli; Bai, Jing; Wu, Aiwei; Jiang, Chunjie; Wang, Yuan; Su, Bin; Li, Xia

    2013-01-01

    DNA methylation is an essential epigenetic mechanism involved in transcriptional control. However, how genes with different methylation patterns are assembled in the protein-protein interaction network (PPIN) remains a mystery. In the present study, we systematically dissected the characterization of genes with different methylation patterns in the PPIN. A negative association was detected between the methylation levels in the brain tissues and topological centralities. By focusing on two classes of genes with considerably different methylation levels in the brain tissues, namely the low methylated genes (LMGs) and high methylated genes (HMGs), we found that their organizing principles in the PPIN are distinct. The LMGs tend to be the center of the PPIN, and attacking them causes a more deleterious effect on the network integrity. Furthermore, the LMGs express their functions in a modular pattern and substantial differences in functions are observed between the two types of genes. The LMGs are enriched in the basic biological functions, such as binding activity and regulation of transcription. More importantly, cancer genes, especially recessive cancer genes, essential genes, and aging-related genes were all found more often in the LMGs. Additionally, our analysis presented that the intra-classes communications are enhanced, but inter-classes communications are repressed. Finally, a functional complementation was revealed between methylation and miRNA regulation in the human genome. We have elucidated the assembling principles of genes with different methylation levels in the context of the PPIN, providing key insights into the complex epigenetic regulation mechanisms.

  7. Rybp, a polycomb complex-associated protein, is required for mouse eye development

    Directory of Open Access Journals (Sweden)

    Schreiber-Agus Nicole

    2007-04-01

    Full Text Available Abstract Background Rybp (Ring1 and YY1 binding protein is a zinc finger protein which interacts with the members of the mammalian polycomb complexes. Previously we have shown that Rybp is critical for early embryogenesis and that haploinsufficiency of Rybp in a subset of embryos causes failure of neural tube closure. Here we investigated the requirement for Rybp in ocular development using four in vivo mouse models which resulted in either the ablation or overexpression of Rybp. Results Our results demonstrate that loss of a single Rybp allele in conventional knockout mice often resulted in retinal coloboma, an incomplete closure of the optic fissure, characterized by perturbed localization of Pax6 but not of Pax2. In addition, about one half of Rybp-/- Rybp+/+ chimeric embryos also developed retinal colobomas and malformed lenses. Tissue-specific transgenic overexpression of Rybp in the lens resulted in abnormal fiber cell differentiation and severe lens opacification with increased levels of AP-2α and Sox2, and reduced levels of βA4-crystallin gene expression. Ubiquitous transgenic overexpression of Rybp in the entire eye caused abnormal retinal folds, corneal neovascularization, and lens opacification. Additional changes included defects in anterior eye development. Conclusion These studies establish Rybp as a novel gene that has been associated with coloboma. Other genes linked to coloboma encode various classes of transcription factors such as BCOR, CBP, Chx10, Pax2, Pax6, Six3, Ski, Vax1 and Vax2. We propose that the multiple functions for Rybp in regulating mouse retinal and lens development are mediated by genetic, epigenetic and physical interactions between these genes and proteins.

  8. Characterization of surface complexes in enhanced Raman scattering

    International Nuclear Information System (INIS)

    Roy, D.; Furtak, T.E.

    1984-01-01

    An indicator molecule, para-nitrosodimethylanaline (p-NDMA), has been used to study the chemical nature of surface complexes involving the active site for SERS in the electrochemical environment. We present evidence for positively charged Ag atoms stabilized by coadsorbed Cl - ions as the primary sites which are produced during the oxidation reduction cycle treatment of an Ag electrode. Depending on the relative number of Cl - ions which influence the Ag site the active site demonstrates a greater or lesser electron accepting character toward p-NDMA. This character is influenced by the applied voltage and by the presence of Tl + ions in the bulk of the solution near the surface. As in previously studied systems p-NDMA/Cl - /Ag complexes demonstrate charge transfer excitation which in this case is from the p-NDMA to the Ag site. These results further solidify the importance of complex formation in electrochemical SERS and suggest that caution should be applied when using SERS as a quantitative measure of surface coverage

  9. Influence of Pea Protein Aggregates on the Structure and Stability of Pea Protein/Soybean Polysaccharide Complex Emulsions

    Directory of Open Access Journals (Sweden)

    Baoru Yin

    2015-03-01

    Full Text Available The applications of plant proteins in the food and beverage industry have been hampered by their precipitation in acidic solution. In this study, pea protein isolate (PPI with poor dispersibility in acidic solution was used to form complexes with soybean soluble polysaccharide (SSPS, and the effects of PPI aggregates on the structure and stability of PPI/SSPS complex emulsions were investigated. Under acidic conditions, high pressure homogenization disrupts the PPI aggregates and the electrostatic attraction between PPI and SSPS facilitates the formation of dispersible PPI/SSPS complexes. The PPI/SSPS complex emulsions prepared from the PPI containing aggregates prove to possess similar droplet structure and similar stability compared with the PPI/SSPS emulsions produced from the PPI in which the aggregates have been previously removed by centrifugation. The oil droplets are protected by PPI/SSPS complex interfacial films and SSPS surfaces. The emulsions show long-term stability against pH and NaCl concentration changes. This study demonstrates that PPI aggregates can also be used to produce stable complex emulsions, which may promote the applications of plant proteins in the food and beverage industry.

  10. Influence of pea protein aggregates on the structure and stability of pea protein/soybean polysaccharide complex emulsions.

    Science.gov (United States)

    Yin, Baoru; Zhang, Rujing; Yao, Ping

    2015-03-20

    The applications of plant proteins in the food and beverage industry have been hampered by their precipitation in acidic solution. In this study, pea protein isolate (PPI) with poor dispersibility in acidic solution was used to form complexes with soybean soluble polysaccharide (SSPS), and the effects of PPI aggregates on the structure and stability of PPI/SSPS complex emulsions were investigated. Under acidic conditions, high pressure homogenization disrupts the PPI aggregates and the electrostatic attraction between PPI and SSPS facilitates the formation of dispersible PPI/SSPS complexes. The PPI/SSPS complex emulsions prepared from the PPI containing aggregates prove to possess similar droplet structure and similar stability compared with the PPI/SSPS emulsions produced from the PPI in which the aggregates have been previously removed by centrifugation. The oil droplets are protected by PPI/SSPS complex interfacial films and SSPS surfaces. The emulsions show long-term stability against pH and NaCl concentration changes. This study demonstrates that PPI aggregates can also be used to produce stable complex emulsions, which may promote the applications of plant proteins in the food and beverage industry.

  11. Genetic and phenotypic characterization of complex hereditary spastic paraplegia

    Science.gov (United States)

    Kara, Eleanna; Tucci, Arianna; Manzoni, Claudia; Lynch, David S.; Elpidorou, Marilena; Bettencourt, Conceicao; Chelban, Viorica; Manole, Andreea; Hamed, Sherifa A.; Haridy, Nourelhoda A.; Federoff, Monica; Preza, Elisavet; Hughes, Deborah; Pittman, Alan; Jaunmuktane, Zane; Brandner, Sebastian; Xiromerisiou, Georgia; Wiethoff, Sarah; Schottlaender, Lucia; Proukakis, Christos; Morris, Huw; Warner, Tom; Bhatia, Kailash P.; Korlipara, L.V. Prasad; Singleton, Andrew B.; Hardy, John; Wood, Nicholas W.; Lewis, Patrick A.

    2016-01-01

    Abstract The hereditary spastic paraplegias are a heterogeneous group of degenerative disorders that are clinically classified as either pure with predominant lower limb spasticity, or complex where spastic paraplegia is complicated with additional neurological features, and are inherited in autosomal dominant, autosomal recessive or X-linked patterns. Genetic defects have been identified in over 40 different genes, with more than 70 loci in total. Complex recessive spastic paraplegias have in the past been frequently associated with mutations in SPG11 (spatacsin), ZFYVE26/SPG15 , SPG7 (paraplegin) and a handful of other rare genes, but many cases remain genetically undefined. The overlap with other neurodegenerative disorders has been implied in a small number of reports, but not in larger disease series. This deficiency has been largely due to the lack of suitable high throughput techniques to investigate the genetic basis of disease, but the recent availability of next generation sequencing can facilitate the identification of disease-causing mutations even in extremely heterogeneous disorders. We investigated a series of 97 index cases with complex spastic paraplegia referred to a tertiary referral neurology centre in London for diagnosis or management. The mean age of onset was 16 years (range 3 to 39). The SPG11 gene was first analysed, revealing homozygous or compound heterozygous mutations in 30/97 (30.9%) of probands, the largest SPG11 series reported to date, and by far the most common cause of complex spastic paraplegia in the UK, with severe and progressive clinical features and other neurological manifestations, linked with magnetic resonance imaging defects. Given the high frequency of SPG11 mutations, we studied the autophagic response to starvation in eight affected SPG11 cases and control fibroblast cell lines, but in our restricted study we did not observe correlations between disease status and autophagic or lysosomal markers. In the remaining

  12. R7-binding protein targets the G protein β5/R7-regulator of G protein signaling complex to lipid rafts in neuronal cells and brain

    Directory of Open Access Journals (Sweden)

    Zhang Jian-Hua

    2007-09-01

    Full Text Available Abstract Background Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins, composed of Gα, Gβ, and Gγ subunits, are positioned at the inner face of the plasma membrane and relay signals from activated G protein-coupled cell surface receptors to various signaling pathways. Gβ5 is the most structurally divergent Gβ isoform and forms tight heterodimers with regulator of G protein signalling (RGS proteins of the R7 subfamily (R7-RGS. The subcellular localization of Gβ 5/R7-RGS protein complexes is regulated by the palmitoylation status of the associated R7-binding protein (R7BP, a recently discovered SNARE-like protein. We investigate here whether R7BP controls the targeting of Gβ5/R7-RGS complexes to lipid rafts, cholesterol-rich membrane microdomains where conventional heterotrimeric G proteins and some effector proteins are concentrated in neurons and brain. Results We show that endogenous Gβ5/R7-RGS/R7BP protein complexes are present in native neuron-like PC12 cells and that a fraction is targeted to low-density, detergent-resistant membrane lipid rafts. The buoyant density of endogenous raft-associated Gβ5/R7-RGS protein complexes in PC12 cells was similar to that of lipid rafts containing the palmitoylated marker proteins PSD-95 and LAT, but distinct from that of the membrane microdomain where flotillin was localized. Overexpression of wild-type R7BP, but not its palmitoylation-deficient mutant, greatly enriched the fraction of endogenous Gβ5/R7-RGS protein complexes in the lipid rafts. In HEK-293 cells the palmitoylation status of R7BP also regulated the lipid raft targeting of co-expressed Gβ5/R7-RGS/R7BP proteins. A fraction of endogenous Gβ5/R7-RGS/R7BP complexes was also present in lipid rafts in mouse brain. Conclusion A fraction of Gβ5/R7-RGS/R7BP protein complexes is targeted to low-density, detergent-resistant membrane lipid rafts in PC12 cells and brain. In cultured cells, the palmitoylation status of

  13. NMR spectroscopic and analytical ultracentrifuge analysis of membrane protein detergent complexes

    OpenAIRE

    Choe Senyon; Riek Roland; Johnson Casey; Kefala Georgia; Maslennikov Innokentiy; Kwiatkowski Witek

    2007-01-01

    Abstract Background Structural studies of integral membrane proteins (IMPs) are hampered by inherent difficulties in their heterologous expression and in the purification of solubilized protein-detergent complexes (PDCs). The choice and concentrations of detergents used in an IMP preparation play a critical role in protein homogeneity and are thus important for successful crystallization. Results Seeking an effective and standardized means applicable to genomic approaches for the characteriza...

  14. Characterization of the Zebrafish Homolog of Zipper Interacting Protein Kinase

    Directory of Open Access Journals (Sweden)

    Brandon W. Carr

    2014-06-01

    Full Text Available Zipper-interacting protein kinase (ZIPK is a conserved vertebrate-specific regulator of actomyosin contractility in smooth muscle and non-muscle cells. Murine ZIPK has undergone an unusual divergence in sequence and regulation compared to other ZIPK orthologs. In humans, subcellular localization is controlled by phosphorylation of threonines 299 and 300. In contrast, ZIPK subcellular localization in mouse and rat is controlled by interaction with PAR-4. We carried out a comparative biochemical characterization of the regulation of the zebrafish ortholog of ZIPK. Like the human orthologs zebrafish ZIPK undergoes nucleocytoplasmic-shuttling and is abundant in the cytoplasm, unlike the primarily nuclear rat ZIPK. Rat ZIPK, but not human or zebrafish ZIPK, interacts with zebrafish PAR-4. Mutation of the conserved residues required for activation of the mammalian orthologs abrogated activity of the zebrafish ZIPK. In contrast to the human ortholog, mutation of threonine 299 and 300 in the zebrafish ZIPK has no effect on the activity or subcellular localization. Thus, we found that zebrafish ZIPK functions in a manner most similar to the human ZIPK and quite distinct from murine orthologs, yet the regulation of subcellular localization is not conserved.

  15. Human-Chromatin-Related Protein Interactions Identify a Demethylase Complex Required for Chromosome Segregation

    Directory of Open Access Journals (Sweden)

    Edyta Marcon

    2014-07-01

    Full Text Available Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins. On the basis of 1,394 successful purifications of 293 proteins, we report a high-confidence (85% precision network involving 11,464 protein-protein interactions among 1,738 different human proteins, grouped into 164 often overlapping protein complexes with a particular focus on the family of JmjC-containing lysine demethylases, their partners, and their roles in chromatin remodeling. We show that RCCD1 is a partner of histone H3K36 demethylase KDM8 and demonstrate that both are important for cell-cycle-regulated transcriptional repression in centromeric regions and accurate mitotic division.

  16. Complex cystic renal masses: characterization with contrast-enhanced US.

    Science.gov (United States)

    Ascenti, Giorgio; Mazziotti, Silvio; Zimbaro, Giovanni; Settineri, Nicola; Magno, Carlo; Melloni, Darwin; Caruso, Rosario; Scribano, Emanuele

    2007-04-01

    To prospectively compare contrast material-enhanced ultrasonography (US) with computed tomography (CT) in the classification of complex cystic renal masses with the Bosniak system. Ethics committee approval and written informed consent were obtained. Forty patients (17 women, 23 men; age range, 31-77 years) with 44 complex cystic renal masses detected with conventional US were prospectively examined by using second-harmonic US with a second-generation contrast agent and multiphasic helical CT. Thirty-six patients had one lesion, and four patients had two lesions. Surgical resection in nine patients and imaging follow-up in 31 patients were used to determine the outcome. On contrast-enhanced US images, masses were classified as Bosniak category II (n = 18), IIF (ie, lesions were classified as category II and follow-up was needed) (n = 16), III (n = 7), or IV (n = 3) lesions. On CT images, masses were classified as Bosniak category II (n = 24), IIF (n = 10), III (n = 7), or IV (n = 3) lesions. Interobserver agreement was high (kappa = 0.86, P < .001) for classification with US. Complete concordance between the readers was found for classification with CT. Complete concordance between contrast-enhanced US and CT was observed in the differentiation of surgical and nonsurgical complex cysts. Complete concordance among the three readers in the assessment of vascularity with contrast-enhanced US was found. Interobserver agreement in the evaluation of enhancement on CT images was high (kappa = 0.88, P < .001). Concordance between contrast-enhanced US and CT in the evaluation of vascularization was high (kappa = 0.77, P < .001). The study data suggest that contrast-enhanced second-harmonic US is appropriate for renal cyst classification with the Bosniak system.

  17. Proteomic analysis of the dysferlin protein complex unveils its importance for sarcolemmal maintenance and integrity.

    Directory of Open Access Journals (Sweden)

    Antoine de Morrée

    Full Text Available Dysferlin is critical for repair of muscle membranes after damage. Mutations in dysferlin lead to a progressive muscular dystrophy. Recent studies suggest additional roles for dysferlin. We set out to study dysferlin's protein-protein interactions to obtain comprehensive knowledge of dysferlin functionalities in a myogenic context. We developed a robust and reproducible method to isolate dysferlin protein complexes from cells and tissue. We analyzed the composition of these complexes in cultured myoblasts, myotubes and skeletal muscle tissue by mass spectrometry and subsequently inferred potential protein functions through bioinformatics analyses. Our data confirm previously reported interactions and support a function for dysferlin as a vesicle trafficking protein. In addition novel potential functionalities were uncovered, including phagocytosis and focal adhesion. Our data reveal that the dysferlin protein complex has a dynamic composition as a function of myogenic differentiation. We provide additional experimental evidence and show dysferlin localization to, and interaction with the focal adhesion protein vinculin at the sarcolemma. Finally, our studies reveal evidence for cross-talk between dysferlin and its protein family member myoferlin. Together our analyses show that dysferlin is not only a membrane repair protein but also important for muscle membrane maintenance and integrity.

  18. A 3D model of the membrane protein complex formed by the white spot syndrome virus structural proteins.

    Directory of Open Access Journals (Sweden)

    Yun-Shiang Chang

    Full Text Available BACKGROUND: Outbreaks of white spot disease have had a large negative economic impact on cultured shrimp worldwide. However, the pathogenesis of the causative virus, WSSV (whit spot syndrome virus, is not yet well understood. WSSV is a large enveloped virus. The WSSV virion has three structural layers surrounding its core DNA: an outer envelope, a tegument and a nucleocapsid. In this study, we investigated the protein-protein interactions of the major WSSV structural proteins, including several envelope and tegument proteins that are known to be involved in the infection process. PRINCIPAL FINDINGS: In the present report, we used coimmunoprecipitation and yeast two-hybrid assays to elucidate and/or confirm all the interactions that occur among the WSSV structural (envelope and tegument proteins VP51A, VP19, VP24, VP26 and VP28. We found that VP51A interacted directly not only with VP26 but also with VP19 and VP24. VP51A, VP19 and VP24 were also shown to have an affinity for self-interaction. Chemical cross-linking assays showed that these three self-interacting proteins could occur as dimers. CONCLUSIONS: From our present results in conjunction with other previously established interactions we construct a 3D model in which VP24 acts as a core protein that directly associates with VP26, VP28, VP38A, VP51A and WSV010 to form a membrane-associated protein complex. VP19 and VP37 are attached to this complex via association with VP51A and VP28, respectively. Through the VP26-VP51C interaction this envelope complex is anchored to the nucleocapsid, which is made of layers of rings formed by VP664. A 3D model of the nucleocapsid and the surrounding outer membrane is presented.

  19. Identification of chromatophore membrane protein complexes formed under different nitrogen availability conditions in Rhodospirillum rubrum

    DEFF Research Database (Denmark)

    Selao, Tiago Toscano; Branca, Rui; Chae, Pil Seok

    2011-01-01

    of two-dimensional Blue Native/SDS-PAGE and NSI-LC-LTQ-Orbitrap mass spectrometry. We have identified several membrane protein complexes, including components of the ATP synthase, reaction center, light harvesting, and NADH dehydrogenase complexes. Additionally, we have identified differentially...

  20. Three-Dimentional Structures of Autophosphorylation Complexes in Crystals of Protein Kinases

    KAUST Repository

    Dumbrack, Roland

    2016-01-26

    Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Several autophosphorylation complexes have been identified in crystals of protein kinases, with a known serine, threonine, or tyrosine autophosphorylation site of one kinase monomer sitting in the active site of another monomer of the same protein in the crystal. We utilized a structural bioinformatics method to identify all such autophosphorylation complexes in X-ray crystallographic structures in the Protein Data Bank (PDB) by generating all unique kinase/kinase interfaces within and between asymmetric units of each crystal and measuring the distance between the hydroxyl oxygen of potential autophosphorylation sites and the oxygen atoms of the active site aspartic acid residue side chain. We have identified 15 unique autophosphorylation complexes in the PDB, of which 5 complexes have not previously been described in the relevant publications on the crystal structures (N-terminal juxtamembrane regions of CSF1R and EPHA2, activation loop tyrosines of LCK and IGF1R, and a serine in a nuclear localization signal region of CLK2. Mutation of residues in the autophosphorylation complex interface of LCK either severely impaired autophosphorylation or increased it. Taking the autophosphorylation complexes as a whole and comparing them with peptide-substrate/kinase complexes, we observe a number of important features among them. The novel and previously observed autophosphorylation sites are conserved in many kinases, indicating that by homology we can extend the relevance of these complexes to many other clinically relevant drug targets.

  1. Predicting co-complexed protein pairs using genomic and proteomic data integration

    Directory of Open Access Journals (Sweden)

    King Oliver D

    2004-04-01

    Full Text Available Abstract Background Identifying all protein-protein interactions in an organism is a major objective of proteomics. A related goal is to know which protein pairs are present in the same protein complex. High-throughput methods such as yeast two-hybrid (Y2H and affinity purification coupled with mass spectrometry (APMS have been used to detect interacting proteins on a genomic scale. However, both Y2H and APMS methods have substantial false-positive rates. Aside from high-throughput interaction screens, other gene- or protein-pair characteristics may also be informative of physical interaction. Therefore it is desirable to integrate multiple datasets and utilize their different predictive value for more accurate prediction of co-complexed relationship. Results Using a supervised machine learning approach – probabilistic decision tree, we integrated high-throughput protein interaction datasets and other gene- and protein-pair characteristics to predict co-complexed pairs (CCP of proteins. Our predictions proved more sensitive and specific than predictions based on Y2H or APMS methods alone or in combination. Among the top predictions not annotated as CCPs in our reference set (obtained from the MIPS complex catalogue, a significant fraction was found to physically interact according to a separate database (YPD, Yeast Proteome Database, and the remaining predictions may potentially represent unknown CCPs. Conclusions We demonstrated that the probabilistic decision tree approach can be successfully used to predict co-complexed protein (CCP pairs from other characteristics. Our top-scoring CCP predictions provide testable hypotheses for experimental validation.

  2. Disulfide Linkage Characterization of Disulfide Bond-Containing Proteins and Peptides by Reducing Electrochemistry and Mass Spectrometry

    DEFF Research Database (Denmark)

    Cramer, Christian N; Haselmann, Kim F; Olsen, Jesper V

    2016-01-01

    in protein sequencing by tandem MS (MS/MS). Electrochemical (EC) reduction of disulfide bonds has recently been demonstrated to provide efficient reduction efficiencies, significantly enhancing sequence coverages in online coupling with MS characterization. In this study, the potential use of EC disulfide...... link between parent disulfide-linked fragments and free reduced peptides in an LC-EC-MS platform of nonreduced proteolytic protein digestions. Here we report the successful use of EC as a partial reduction approach in mapping of disulfide bonds of intact human insulin (HI) and lysozyme. In addition, we...... established a LC-EC-MS platform advantageous in disulfide characterization of complex and highly disulfide-bonded proteins such as human serum albumin (HSA) by online EC reduction of nonreduced proteolytic digestions....

  3. Combining NMR and small angle X-ray and neutron scattering in the structural analysis of a ternary protein-RNA complex

    International Nuclear Information System (INIS)

    Hennig, Janosch; Wang, Iren; Sonntag, Miriam; Gabel, Frank; Sattler, Michael

    2013-01-01

    Many processes in the regulation of gene expression and signaling involve the formation of protein complexes involving multi-domain proteins. Individual domains that mediate protein-protein and protein-nucleic acid interactions are typically connected by flexible linkers, which contribute to conformational dynamics and enable the formation of complexes with distinct binding partners. Solution techniques are therefore required for structural analysis and to characterize potential conformational dynamics. Nuclear magnetic resonance spectroscopy (NMR) provides such information but often only sparse data are obtained with increasing molecular weight of the complexes. It is therefore beneficial to combine NMR data with additional structural restraints from complementary solution techniques. Small angle X-ray/neutron scattering (SAXS/SANS) data can be efficiently combined with NMR-derived information, either for validation or by providing additional restraints for structural analysis. Here, we show that the combination of SAXS and SANS data can help to refine structural models obtained from data-driven docking using HADDOCK based on sparse NMR data. The approach is demonstrated with the ternary protein-protein-RNA complex involving two RNA recognition motif (RRM) domains of Sex-lethal, the N-terminal cold shock domain of Upstream-to-N-Ras, and msl-2 mRNA. Based on chemical shift perturbations we have mapped protein-protein and protein-RNA interfaces and complemented this NMR-derived information with SAXS data, as well as SANS measurements on subunit-selectively deuterated samples of the ternary complex. Our results show that, while the use of SAXS data is beneficial, the additional combination with contrast variation in SANS data resolves remaining ambiguities and improves the docking based on chemical shift perturbations of the ternary protein-RNA complex.

  4. Combining NMR and small angle X-ray and neutron scattering in the structural analysis of a ternary protein-RNA complex

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Janosch; Wang, Iren; Sonntag, Miriam [Institute of Structural Biology, Helmholtz Zentrum Muenchen (Germany); Gabel, Frank [Extremophiles and Large Molecular Assemblies Group (ELMA), Institut de Biologie Structurale (IBS) CEA-CNRS-UJF (France); Sattler, Michael, E-mail: sattler@helmholtz-muenchen.de [Institute of Structural Biology, Helmholtz Zentrum Muenchen (Germany)

    2013-05-15

    Many processes in the regulation of gene expression and signaling involve the formation of protein complexes involving multi-domain proteins. Individual domains that mediate protein-protein and protein-nucleic acid interactions are typically connected by flexible linkers, which contribute to conformational dynamics and enable the formation of complexes with distinct binding partners. Solution techniques are therefore required for structural analysis and to characterize potential conformational dynamics. Nuclear magnetic resonance spectroscopy (NMR) provides such information but often only sparse data are obtained with increasing molecular weight of the complexes. It is therefore beneficial to combine NMR data with additional structural restraints from complementary solution techniques. Small angle X-ray/neutron scattering (SAXS/SANS) data can be efficiently combined with NMR-derived information, either for validation or by providing additional restraints for structural analysis. Here, we show that the combination of SAXS and SANS data can help to refine structural models obtained from data-driven docking using HADDOCK based on sparse NMR data. The approach is demonstrated with the ternary protein-protein-RNA complex involving two RNA recognition motif (RRM) domains of Sex-lethal, the N-terminal cold shock domain of Upstream-to-N-Ras, and msl-2 mRNA. Based on chemical shift perturbations we have mapped protein-protein and protein-RNA interfaces and complemented this NMR-derived information with SAXS data, as well as SANS measurements on subunit-selectively deuterated samples of the ternary complex. Our results show that, while the use of SAXS data is beneficial, the additional combination with contrast variation in SANS data resolves remaining ambiguities and improves the docking based on chemical shift perturbations of the ternary protein-RNA complex.

  5. Analysis of Native-Like Proteins and Protein Complexes Using Cation to Anion Proton Transfer Reactions (CAPTR)

    Science.gov (United States)

    Laszlo, Kenneth J.; Bush, Matthew F.

    2015-12-01

    Mass spectra of native-like protein complexes often exhibit narrow charge-state distributions, broad peaks, and contributions from multiple, coexisting species. These factors can make it challenging to interpret those spectra, particularly for mixtures with significant heterogeneity. Here we demonstrate the use of ion/ion proton transfer reactions to reduce the charge states of m/ z-selected, native-like ions of proteins and protein complexes, a technique that we refer to as cation to anion proton transfer reactions (CAPTR). We then demonstrate that CAPTR can increase the accuracy of charge state assignments and the resolution of interfering species in native mass spectrometry. The CAPTR product ion spectra for pyruvate kinase exhibit ~30 peaks and enable unambiguous determination of the charge state of each peak, whereas the corresponding precursor spectra exhibit ~6 peaks and the assigned charge states have an uncertainty of ±3%. 15+ bovine serum albumin and 21+ yeast enolase dimer both appear near m/ z 4450 and are completely unresolved in a mixture. After a single CAPTR event, the resulting product ions are baseline resolved. The separation of the product ions increases dramatically after each subsequent CAPTR event; 12 events resulted in a 3000-fold improvement in separation relative to the precursor ions. Finally, we introduce a framework for interpreting and predicting the figures of merit for CAPTR experiments. More generally, these results suggest that CAPTR strongly complements other mass spectrometry tools for analyzing proteins and protein complexes, particularly those in mixtures.

  6. Biochemical characterization of the small hydrophobic protein of avian metapneumovirus.

    Science.gov (United States)

    Deng, Qiji; Song, Minxun; Demers, Andrew; Weng, Yuejin; Lu, Wuxun; Wang, Dan; Kaushik, Radhey S; Yu, Qingzhong; Li, Feng

    2012-08-01

    Avian metapneumovirus (AMPV) is a paramyxovirus that has three membrane proteins (G, F, and SH). Among them, the SH protein is a small type II integral membrane protein that is incorporated into virions and is only present in certain paramyxoviruses. In the present study, we show that the AMPV SH protein is modified by N-linked glycans and can be released into the extracellular environment. Furthermore, we demonstrate that glycosylated AMPV SH proteins form homodimers through cysteine-mediated disulfide bonds, which has not been reported previously for SH proteins of paramyxoviruses. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Characterization of a translation inhibitory protein from Luffa aegyptiaca.

    Science.gov (United States)

    Ramakrishnan, S; Enghlid, J J; Bryant, H L; Xu, F J

    1989-04-28

    A protein with a molecular weight of about 30,000 was purified from the seeds of Luffa aegyptiaca. This protein inhibited cell free translation at pM concentrations. In spite of functional similarity to other ribosomal inhibitory proteins, the NH2-terminal analysis did not show any significant homology. Competitive inhibition studies indicate no immunological crossreactivity between the inhibitory protein from Luffa aegyptiaca, pokeweed antiviral protein (PAP) and recombinant ricin A chain. Chemical linkage of the protein to a monoclonal antibody reactive to transferrin receptor resulted in a highly cytotoxic conjugate.

  8. PRODIGY : a web server for predicting the binding affinity of protein-protein complexes

    NARCIS (Netherlands)

    Xue, Li; Garcia Lopes Maia Rodrigues, João; Kastritis, Panagiotis L; Bonvin, Alexandre Mjj; Vangone, Anna

    2016-01-01

    Gaining insights into the structural determinants of protein-protein interactions holds the key for a deeper understanding of biological functions, diseases and development of therapeutics. An important aspect of this is the ability to accurately predict the binding strength for a given

  9. Synthesis and spectroscopic characterization of gallic acid and some of its azo complexes

    Science.gov (United States)

    Masoud, Mamdouh S.; Hagagg, Sawsan S.; Ali, Alaa E.; Nasr, Nessma M.

    2012-04-01

    A series of gallic acid and azo gallic acid complexes were prepared and characterized by elemental analysis, IR, electronic spectra and magnetic susceptibility. The complexes were of different geometries: Octahedral, Tetrahedral and Square Planar. ESR was studied for copper complexes. All of the prepared complexes were of isotropic nature. The thermal analyses of the complexes were studied by DTA and DSC techniques. The thermodynamic parameters and the thermal transitions, such as glass transitions, crystallization and melting temperatures for some ligands and their complexes were evaluated and discussed. The entropy change values, ΔS#, showed that the transition states are more ordered than the reacting complexes. The biological activities of some ligands and their complexes are tested against Gram positive and Gram negative bacteria. The results showed that some complexes have a well considerable activity against different organisms.

  10. Dynamic characterization of oil fields, complex stratigraphically using genetic algorithms

    International Nuclear Information System (INIS)

    Gonzalez, Santiago; Hidrobo, Eduardo A

    2004-01-01

    A novel methodology is presented in this paper for the characterization of highly heterogeneous oil fields by integration of the oil fields dynamic information to the static updated model. The objective of the oil field's characterization process is to build an oil field model, as realistic as possible, through the incorporation of all the available information. The classical approach consists in producing a model based in the oil field's static information, having as the process final stage the validation model with the dynamic information available. It is important to clarify that the term validation implies a punctual process by nature, generally intended to secure the required coherence between productive zones and petrophysical properties. The objective of the proposed methodology is to enhance the prediction capacity of the oil field's model by previously integrating, parameters inherent to the oil field's fluid dynamics by a process of dynamic data inversion through an optimization procedure based on evolutionary computation. The proposed methodology relies on the construction of the oil field's high-resolution static model, escalated by means of hybrid techniques while aiming to preserve the oil field's heterogeneity. Afterwards, using an analytic simulator as reference, the scaled model is methodically modified by means of an optimization process that uses genetic algorithms and production data as conditional information. The process's final product is a model that observes the static and dynamic conditions of the oil field with the capacity to minimize the economic impact that generates production historical adjustments to the simulation tasks. This final model features some petrophysical properties (porosity, permeability and water saturation), as modified to achieve a better adjustment of the simulated production's history versus the real one history matching. Additionally, the process involves a slight modification of relative permeability, which has

  11. Nanoparticle-Fusion Protein Complexes Protect against Mycobacterium tuberculosis Infection.

    Science.gov (United States)

    Hart, Peter; Copland, Alastair; Diogo, Gil Reynolds; Harris, Shane; Spallek, Ralf; Oehlmann, Wulf; Singh, Mahavir; Basile, Juan; Rottenberg, Martin; Paul, Matthew John; Reljic, Rajko

    2018-03-07

    Tuberculosis (TB) is the leading cause of death from infectious disease, and the current vaccine, Bacillus Calmette-Guerin (BCG), is inadequate. Nanoparticles (NPs) are an emerging vaccine technology, with recent successes in oncology and infectious diseases. NPs have been exploited as antigen delivery systems and also for their adjuvantic properties. However, the mechanisms underlying their immunological activity remain obscure. Here, we developed a novel mucosal TB vaccine (Nano-FP1) based upon yellow carnauba wax NPs (YC-NPs), coated with a fusion protein consisting of three Mycobacterium tuberculosis (Mtb) antigens: Acr, Ag85B, and HBHA. Mucosal immunization of BCG-primed mice with Nano-FP1 significantly enhanced protection in animals challenged with low-dose, aerosolized Mtb. Bacterial control by Nano-FP1 was associated with dramatically enhanced cellular immunity compared to BCG, including superior CD4 + and CD8 + T cell proliferation, tissue-resident memory T cell (Trm) seeding in the lungs, and cytokine polyfunctionality. Alongside these effects, we also observed potent humoral responses, such as the generation of Ag85B-specific serum IgG and respiratory IgA. Finally, we found that YC-NPs were able to activate antigen-presenting cells via an unconventional IRF-3-associated activation signature, without the production of potentially harmful inflammatory mediators, providing a mechanistic framework for vaccine efficacy and future development. Copyright © 2017. Published by Elsevier Inc.

  12. Pancreatic Islet Protein Complexes and Their Dysregulation in Type 2 Diabetes

    DEFF Research Database (Denmark)

    Pedersen, Helle Krogh; Gudmundsdottir, Valborg; Brunak, Søren

    2017-01-01

    Type 2 diabetes (T2D) is a complex disease that involves multiple genes. Numerous risk loci have already been associated with T2D, although many susceptibility genes remain to be identified given heritability estimates. Systems biology approaches hold potential for discovering novel T2D genes...... by considering their biological context, such as tissue-specific protein interaction partners. Pancreatic islets are a key T2D tissue and many of the known genetic risk variants lead to impaired islet function, hence a better understanding of the islet-specific dysregulation in the disease-state is essential...... to unveil the full potential of person-specific profiles. Here we identify 3,692 overlapping pancreatic islet protein complexes (containing 10,805 genes) by integrating islet gene and protein expression data with protein interactions. We found 24 of these complexes to be significantly enriched for genes...

  13. MFIB: a repository of protein complexes with mutual folding induced by binding.

    Science.gov (United States)

    Fichó, Erzsébet; Reményi, István; Simon, István; Mészáros, Bálint

    2017-11-15

    It is commonplace that intrinsically disordered proteins (IDPs) are involved in crucial interactions in the living cell. However, the study of protein complexes formed exclusively by IDPs is hindered by the lack of data and such analyses remain sporadic. Systematic studies benefited other types of protein-protein interactions paving a way from basic science to therapeutics; yet these efforts require reliable datasets that are currently lacking for synergistically folding complexes of IDPs. Here we present the Mutual Folding Induced by Binding (MFIB) database, the first systematic collection of complexes formed exclusively by IDPs. MFIB contains an order of magnitude more data than any dataset used in corresponding studies and offers a wide coverage of known IDP complexes in terms of flexibility, oligomeric composition and protein function from all domains of life. The included complexes are grouped using a hierarchical classification and are complemented with structural and functional annotations. MFIB is backed by a firm development team and infrastructure, and together with possible future community collaboration it will provide the cornerstone for structural and functional studies of IDP complexes. MFIB is freely accessible at http://mfib.enzim.ttk.mta.hu/. The MFIB application is hosted by Apache web server and was implemented in PHP. To enrich querying features and to enhance backend performance a MySQL database was also created. simon.istvan@ttk.mta.hu, meszaros.balint@ttk.mta.hu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  14. Identification of Protein Complexes from Tandem Affinity Purification/Mass Spectrometry Data via Biased Random Walk.

    Science.gov (United States)

    Cai, Bingjing; Wang, Haiying; Zheng, Huiru; Wang, Hui

    2015-01-01

    Systematic identification of protein complexes from protein-protein interaction networks (PPIs) is an important application of data mining in life science. Over the past decades, various new clustering techniques have been developed based on modelling PPIs as binary relations. Non-binary information of co-complex relations (prey/bait) in PPIs data derived from tandem affinity purification/mass spectrometry (TAP-MS) experiments has been unfairly disregarded. In this paper, we propose a Biased Random Walk based algorithm for detecting protein complexes from TAP-MS data, resulting in the random walk with restarting baits (RWRB). RWRB is developed based on Random walk with restart. The main contribution of RWRB is the incorporation of co-complex relations in TAP-MS PPI networks into the clustering process, by implementing a new restarting strategy during the process of random walk. Through experimentation on un-weighted and weighted TAP-MS data sets, we validated biological significance of our results by mapping them to manually curated complexes. Results showed that, by incorporating non-binary, co-membership information, significant improvement has been achieved in terms of both statistical measurements and biological relevance. Better accuracy demonstrates that the proposed method outperformed several state-of-the-art clustering algorithms for the detection of protein complexes in TAP-MS data.

  15. Static light scattering to characterize membrane proteins in detergent solution

    NARCIS (Netherlands)

    Slotboom, Dirk Jan; Duurkens, Ria H.; Olieman, Kees; Erkens, Guus B.

    2008-01-01

    Determination of the oligomeric state or the subunit stoichiometry of integral membrane proteins in detergent solution is notoriously difficult, because the amount of detergent (and lipid) associated with the proteins is usually not known. Only two classical methods (sedimentation equilibrium

  16. A Statistical Physics Characterization of the Complex Systems Dynamics: Quantifying Complexity from Spatio-Temporal Interactions

    Science.gov (United States)

    Koorehdavoudi, Hana; Bogdan, Paul

    2016-06-01

    Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity.

  17. Synthesis and characterization of recombinant abductin-based proteins.

    Science.gov (United States)

    Su, Renay S-C; Renner, Julie N; Liu, Julie C

    2013-12-09

    Recombinant proteins are promising tools for tissue engineering and drug delivery applications. Protein-based biomaterials have several advantages over natural and synthetic polymers, including precise control over amino acid composition and molecular weight, modular swapping of functional domains, and tunable mechanical and physical properties. In this work, we describe recombinant proteins based on abductin, an elastomeric protein that is found in the inner hinge of bivalves and functions as a coil spring to keep shells open. We illustrate, for the first time, the design, cloning, expression, and purification of a recombinant protein based on consensus abductin sequences derived from Argopecten irradians . The molecular weight of the protein was confirmed by mass spectrometry, and the protein was 94% pure. Circular dichroism studies showed that the dominant structures of abductin-based proteins were polyproline II helix structures in aqueous solution and type II β-turns in trifluoroethanol. Dynamic light scattering studies illustrated that the abductin-based proteins exhibit reversible upper critical solution temperature behavior and irreversible aggregation behavior at high temperatures. A LIVE/DEAD assay revealed that human umbilical vein endothelial cells had a viability of 98 ± 4% after being cultured for two days on the abductin-based protein. Initial cell spreading on the abductin-based protein was similar to that on bovine serum albumin. These studies thus demonstrate the potential of abductin-based proteins in tissue engineering and drug delivery applications due to the cytocompatibility and its response to temperature.

  18. Interactions of the human MCM-BP protein with MCM complex components and Dbf4.

    Directory of Open Access Journals (Sweden)

    Tin Nguyen

    Full Text Available MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK.

  19. Interactions of the human MCM-BP protein with MCM complex components and Dbf4.

    Science.gov (United States)

    Nguyen, Tin; Jagannathan, Madhav; Shire, Kathy; Frappier, Lori

    2012-01-01

    MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK.

  20. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response.

    Science.gov (United States)

    Maiorano, Gabriele; Sabella, Stefania; Sorce, Barbara; Brunetti, Virgilio; Malvindi, Maria Ada; Cingolani, Roberto; Pompa, Pier Paolo

    2010-12-28

    The development of appropriate in vitro protocols to assess the potential toxicity of the ever expanding range of nanoparticles represents a challenging issue, because of the rapid changes of their intrinsic physicochemical properties (size, shape, reactivity, surface area, etc.) upon dispersion in biological fluids. Dynamic formation of protein coating around nanoparticles is a key molecular event, which may strongly impact the biological response in nanotoxicological tests. In this work, by using citrate-capped gold nanoparticles (AuNPs) of different sizes as a model, we show, by several spectroscopic techniques (dynamic light scattering, UV-visible, plasmon resonance light scattering), that proteins-NP interactions are differently mediated by two widely used cellular media (i.e., Dulbecco Modified Eagle's medium (DMEM) and Roswell Park Memorial Institute medium (RPMI), supplemented with fetal bovine serum). We found that, while DMEM elicits the formation of a large time-dependent protein corona, RPMI shows different dynamics with reduced protein coating. Characterization of these nanobioentities was also performed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and mass spectroscopy, revealing that the average composition of protein corona does not reflect the relative abundance of serum proteins. To evaluate the biological impact of such hybrid bionanostructures, several comparative viability assays onto two cell lines (HeLa and U937) were carried out in the two media, in the presence of 15 nm AuNPs. We observed that proteins/NP complexes formed in RPMI are more abundantly internalized in cells as compared to DMEM, overall exerting higher cytotoxic effects. These results show that, beyond an in-depth NPs characterization before cellular experiments, a detailed understanding of the effects elicited by cell culture media on NPs is crucial for standardized nanotoxicology tests.

  1. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Arati; Mandon, Elisabet C.; Gilmore, Reid; Rapoport, Tom A. (UMASS, MED); (Harvard-Med)

    2017-03-12

    The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1.

  2. Structural analysis of DNA–protein complexes regulating the restriction–modification system Esp1396I

    International Nuclear Information System (INIS)

    Martin, Richard N. A.; McGeehan, John E.; Ball, Neil J.; Streeter, Simon D.; Thresh, Sarah-Jane; Kneale, G. G.

    2013-01-01

    Comparison of bound and unbound DNA in protein–DNA co-crystal complexes reveals insights into controller-protein binding and DNA distortion in transcriptional regulation. The controller protein of the type II restriction–modification (RM) system Esp1396I binds to three distinct DNA operator sequences upstream of the methyltransferase and endonuclease genes in order to regulate their expression. Previous biophysical and crystallographic studies have shown molecular details of how the controller protein binds to the operator sites with very different affinities. Here, two protein–DNA co-crystal structures containing portions of unbound DNA from native operator sites are reported. The DNA in both complexes shows significant distortion in the region between the conserved symmetric sequences, similar to that of a DNA duplex when bound by the controller protein (C-protein), indicating that the naked DNA has an intrinsic tendency to bend when not bound to the C-protein. Moreover, the width of the major groove of the DNA adjacent to a bound C-protein dimer is observed to be significantly increased, supporting the idea that this DNA distortion contributes to the substantial cooperativity found when a second C-protein dimer binds to the operator to form the tetrameric repression complex

  3. Synthetic strategies for efficient conjugation of organometallic complexes with pendant protein reactive markers

    KAUST Repository

    Jantke, Dominik

    2013-11-01

    Site-directed conjugation of metal centers to proteins is fundamental for biological and bioinorganic applications of transition metals. However, methods for the site-selective introduction of metal centers remain scarce. Herein, we present broadly applicable synthetic strategies for the conjugation of bioactive molecules with a range of organometallic complexes. Following three different synthetic strategies, we were able to synthesize a small library of metal conjugated protein markers featuring different types of protein reactive sites (epoxides, phenylphosphonates, fluorosulfonates and fluorophosphonate groups) as well as different late transition metals (iron, ruthenium, rhodium, palladium and platinum). The products were isolated in moderate to excellent yields and high purity. Furthermore, X-ray diffraction of the metalated protein markers corroborates structural integrity of the metal complex and the protein reactive site. © 2013 Elsevier B.V. All rights reserved.

  4. Synthetic strategies for efficient conjugation of organometallic complexes with pendant protein reactive markers

    KAUST Repository

    Jantke, Dominik; Marziale, Alexander N.; Reiner, Thomas; Kraus, Florian; Herdtweck, Eberhardt; Raba, Andreas; Eppinger, Jö rg

    2013-01-01

    Site-directed conjugation of metal centers to proteins is fundamental for biological and bioinorganic applications of transition metals. However, methods for the site-selective introduction of metal centers remain scarce. Herein, we present broadly applicable synthetic strategies for the conjugation of bioactive molecules with a range of organometallic complexes. Following three different synthetic strategies, we were able to synthesize a small library of metal conjugated protein markers featuring different types of protein reactive sites (epoxides, phenylphosphonates, fluorosulfonates and fluorophosphonate groups) as well as different late transition metals (iron, ruthenium, rhodium, palladium and platinum). The products were isolated in moderate to excellent yields and high purity. Furthermore, X-ray diffraction of the metalated protein markers corroborates structural integrity of the metal complex and the protein reactive site. © 2013 Elsevier B.V. All rights reserved.

  5. Synthesis and Characterization of Mn 2+ and Fe 2+ Complexes of ...

    African Journals Online (AJOL)

    The complexes were characterized by infrared and UV visible, while their melting point, solubility and conductivity were investigated. The ligand C=N band appear at 1645 cm-1 while the C=N band infrared absorption vibration appears at 1622 cm-1 and 1626 cm-1 for iron and manganese complexes respectively. The UV ...

  6. Characterization of Brønsted acid-base complexes by ¹⁹F DOSY.

    Science.gov (United States)

    Subramanian, Hariharaputhiran; Jasperse, Craig P; Sibi, Mukund P

    2015-03-20

    A (19)F DOSY protocol for the determination of formula weights for acid-base complexes in solution has been developed. (19)F internal standards were chosen and were used to evaluate the formula weights of complexes in solution using simple diffusion coefficient (D)-formula weight (FW) analysis. This method has potential applications in characterization of reactive intermediates in catalytic asymmetric reactions.

  7. Synthesis and Characterization of Lanthanum Complexes with Amino Acid Schiff Base

    Institute of Scientific and Technical Information of China (English)

    张秀英; 张有娟; 杨林

    2001-01-01

    Six new complexes of lanthanum with amino acid Schiff base ligands, A-F, were prepared in methanol-aqueous solution. The composition and properties of the title complexes were characterized by elemental analysis, molar conductance, infrared, electronic spectra, 1H NMR, thermogravimetric and differential thermal analysis.

  8. COMPLEX OPTICAL CHARACTERIZATION OF MESH IMPLANTS AND ENCAPSULATION AREA

    Directory of Open Access Journals (Sweden)

    VALERIY P. ZAKHAROV

    2013-04-01

    Full Text Available Complex investigation of mesh implants was performed involving laser confocal microscopy, backscattered probing and OCT imaging methods. The growth of endomysium and fat tissue with microcirculation vessels was observed in the mesh encapsulation region. Confocal microscopy analysis shows that such pathologies complications such as necrosis formation and microcavities were localized in the area near implant fibers with the size compatible with fiber diameter. And the number of such formations increase with the increase of the size, number and density of microdefects on the implant surface. Results of numerical simulations show that it is possible to control implant installation up to the depth to 4 mm with a help of backscattering probing. The applicability of OCT imaging for mesh implant control was demonstrated. Special two-stage OCT image noise-reduction algorithm, including empirical mode decomposition, was proposed for contrast increase and better abnormalities visualization by halving the signal-to-noise ratio. Joint usage of backscattered probing and OCT allows to accurately ascertain implant and surrounding tissue conditions, which reduces the risk of relapse probability.

  9. Amylose-dicarboxylic acid inclusion complexes: Characterization and comparison to monocarboxylic acid complexes

    Science.gov (United States)

    One of the main components in starch, amylose is an essentially linear polymer composed of glucose connected through alpha-1,4-bonds. Amylose is well known to form helical inclusion complexes with various types of ligands such as iodine, medium and long chain fatty acids, alcohols, lactones, and fl...

  10. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding.

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  11. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  12. Chiral PEPPSI Complexes: Synthesis, Characterization, and Application in Asymmetric Suzuki–Miyaura Coupling Reactions

    KAUST Repository

    Benhamou, Laure

    2014-01-13

    PEPPSI complexes incorporating chiral N-heterocyclic carbene (NHC) ligands based on 2,2-dimethyl-1-(o-substituted aryl)propan-1-amines were synthesized. Two complexes, with one saturated and one unsaturated NHC ligand, were structurally characterized. The chiral PEPPSI complexes were used in asymmetric Suzuki-Miyaura reactions, giving atropisomeric biaryl products in modest to good enantiomeric ratios. © 2013 American Chemical Society.

  13. Chemometric characterization of the hydrogen bonding complexes of secondary amides and aromatic hydrocarbons

    OpenAIRE

    Jović, Branislav; Nikolić, Aleksandar; Petrović, Slobodan

    2012-01-01

    The paper reports the results of the study of hydrogen bonding complexes between secondary amides and various aromatic hydrocarbons. The possibility of using chemometric methods was investigated in order to characterize N-H•••π hydrogen bonded complexes. Hierarchical clustering and Principal Component Analysis (PCA) have been applied on infrared spectroscopic and Taft parameters of 43 N-substituted amide complexes with different aromatic hydrocarbons. Results obtained in this report are...

  14. Synthesis, characterization and luminescent properties of lanthanide complexes with an unsymmetrical tripodal ligand

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhenzhong [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Tang Yu [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)], E-mail: tangyu@lzu.edu.cn; Liu Weisheng; Tan Minyu [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2008-09-15

    Solid complexes of lanthanide nitrates with a new unsymmetrical tripodal ligand, bis[(2'-benzylaminoformyl)phenoxyl)ethyl](ethyl)amine (L) have been synthesized and characterized by elemental analysis, infrared spectra and molar conductivity measurements. At the same time, the luminescent properties of the Sm(III), Eu(III), Tb(III) and Dy(III) nitrate complexes in solid state were also investigated. Under the excitation of UV light, these complexes exhibited characteristic emission of central metal ions.

  15. Preparation, characterization and in vitro dissolution study of Nitrazepam: Cyclodextrin inclusion complex

    OpenAIRE

    Patel, J. S.; Patel, R. P.

    2012-01-01

    The objectives of this research were to prepare and characterize inclusion complexes of Nitrazepam with Hydroxypropyl-β-cyclodextrin (HPβCD) and Sulfobutyl ether β-cyclodextrin (SBEβCD) to study the effect of complexation on the dissolution rate of Nitrazepam, a water-insoluble drug. The phase solubility profile of Nitrazepam with Hydroxypropyl- β-cyclodextrin and Sulfobutyl ether β-cyclodextrin was an AP-type, indicating the formation of 2:1 stoichiometric inclusion complexes. Gibbs free ene...

  16. Chiral PEPPSI Complexes: Synthesis, Characterization, and Application in Asymmetric Suzuki–Miyaura Coupling Reactions

    KAUST Repository

    Benhamou, Laure; Besnard, Cé line; Kü ndig, E. Peter

    2014-01-01

    PEPPSI complexes incorporating chiral N-heterocyclic carbene (NHC) ligands based on 2,2-dimethyl-1-(o-substituted aryl)propan-1-amines were synthesized. Two complexes, with one saturated and one unsaturated NHC ligand, were structurally characterized. The chiral PEPPSI complexes were used in asymmetric Suzuki-Miyaura reactions, giving atropisomeric biaryl products in modest to good enantiomeric ratios. © 2013 American Chemical Society.

  17. TXRF as a tool in complex particle characterization

    International Nuclear Information System (INIS)

    Hoffmann, P.; Ortner, H.M.; Ebert, M.; Weinbruch, S.; Helas, G.

    2000-01-01

    Aerosol particles play an important role, e.g., for the formation of clouds, the radiation balance in the atmosphere, for the input of trace metals into the hydrosphere, geosphere, and biosphere. To obtain a more detailed picture of the composition (elements, compounds) of aerosols TXRF was applied for an elemental bulk determination and HRSEM for the characterization of individual particles. The aerosol was sampled in field experiments (NORDEX'96, LACE'98) by a 5-stage impactor on glassy carbon carriers. At first a qualitative analysis was performed by TXRF (Seifert Spectrace I: Z = 20-82; self-constructed instrument: Z = 8-23), secondly some thousands individual particles were studied by HRSEM (Philips XL 30 FEG), and finally all samples were measured again and evaluated quantitatively by TXRF after adding an internal standard solution. As a result nearly all particles (92-98 %) were associated to one of twelve groups: sea salt, aged sea salt, mixture of sea salt and alumosilicates, alumosilicates, Si-rich (quartz), metal oxides (Fe, Mn, Al, Ti, Pb), ammonium sulfate, calcium sulfate, soot, biological material, mixture of carbon and sulfate, and other carbon-dominated particles. A principal component analysis shows additionally the marine and continental character of all particles. The distribution of the twelve groups in the samples gives the possibility: to recognize the source apportionment and the routes (trajectories) of air parcels, to separate the natural and anthropogenic sources, and to calculate the real (scattering) and the imaginary (absorption) part of the refractive index of an aerosol. A comparison of the chemical composition of the aerosol with optical measurements (given in the literature) shows an increase of the absorption and scattering coefficients with the anthopogenic load of the atmosphere. (author)

  18. Simplified Method for Predicting a Functional Class of Proteins in Transcription Factor Complexes

    KAUST Repository

    Piatek, Marek J.

    2013-07-12

    Background:Initiation of transcription is essential for most of the cellular responses to environmental conditions and for cell and tissue specificity. This process is regulated through numerous proteins, their ligands and mutual interactions, as well as interactions with DNA. The key such regulatory proteins are transcription factors (TFs) and transcription co-factors (TcoFs). TcoFs are important since they modulate the transcription initiation process through interaction with TFs. In eukaryotes, transcription requires that TFs form different protein complexes with various nuclear proteins. To better understand transcription regulation, it is important to know the functional class of proteins interacting with TFs during transcription initiation. Such information is not fully available, since not all proteins that act as TFs or TcoFs are yet annotated as such, due to generally partial functional annotation of proteins. In this study we have developed a method to predict, using only sequence composition of the interacting proteins, the functional class of human TF binding partners to be (i) TF, (ii) TcoF, or (iii) other nuclear protein. This allows for complementing the annotation of the currently known pool of nuclear proteins. Since only the knowledge of protein sequences is required in addition to protein interaction, the method should be easily applicable to many species.Results:Based on experimentally validated interactions between human TFs with different TFs, TcoFs and other nuclear proteins, our two classification systems (implemented as a web-based application) achieve high accuracies in distinguishing TFs and TcoFs from other nuclear proteins, and TFs from TcoFs respectively.Conclusion:As demonstrated, given the fact that two proteins are capable of forming direct physical interactions and using only information about their sequence composition, we have developed a completely new method for predicting a functional class of TF interacting protein partners

  19. Global-Scale Hydrology: Simple Characterization of Complex Simulation

    Science.gov (United States)

    Koster, Randal D.

    1999-01-01

    Atmospheric general circulation models (AGCMS) are unique and valuable tools for the analysis of large-scale hydrology. AGCM simulations of climate provide tremendous amounts of hydrological data with a spatial and temporal coverage unma