WorldWideScience

Sample records for characterizing low-level radioactive

  1. IGRIS for characterizing low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Peters, C.W. [Nuclear Diagnostic Systems, Springfield, VA (United States); Swanson, P.J. [Concord Associates, Knoxville, TN (United States)

    1993-03-01

    A recently developed neutron diagnostic probe system has the potential to noninvasively characterize low-level radioactive waste in bulk soil samples, containers such as 55-gallon barrels, and in pipes, valves, etc. The probe interrogates the target with a low-intensity beam of 14-MeV neutrons produced from the deuterium-tritium reaction in a specially designed sealed-tube neutron-generator (STNG) that incorporates an alpha detector to detect the alpha particle associated with each neutron. These neutrons interact with the nuclei in the target to produce inelastic-, capture-, and decay-gamma rays that are detected by gamma-ray detectors. Time-of-flight methods are used to separate the inelastic-gamma rays from other gamma rays and to determine the origin of each inelastic-gamma ray in three dimensions through Inelastic-Gamma Ray Imaging and Spectroscopy (IGRIS). The capture-gamma ray spectrum is measured simultaneously with the IGRIS measurements. The decay-gamma ray spectrum is measured with the STNG turned off. Laboratory proof-of-concept measurements were used to design prototype systems for Bulk Soil Assay, Barrel Inspection, and Decontamination and Decommissioning and to predict their minimum detectable levels for heavy toxic metals (As, Hg, Cr, Zn, Pb, Ni, and Cd), uranium and transuranics, gamma-ray emitters, and elements such as chlorine, which is found in PCBs and other pollutants. These systems are expected to be complementary and synergistic with other technologies used to characterize low-level radioactive waste.

  2. Low-level Radioactivity Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hurtgen, C

    2001-04-01

    The objectives of the research performed in the area of low-level radioactivity measurements are (1) to maintain and develop techniques for the measurement of low-level environmental and biological samples, (2) to measure these samples by means of low-background counters (liquid scintillators, proportional counters, ZnS counters, alpha spectrometry), (3) to support and advice the nuclear and non-nuclear industry in matters concerning radioactive contamination and/or low-level radioactivity measurements; (4) to maintain the quality assurance system according to the EN45001/ISO17025 standard; and (5) to assess the internal dose from occupational intakes of radionuclides of workers of the nuclear industry. Progress and achievements in these areas in 2000 are reported.

  3. Low-level Radioactivity Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hurtgen, C

    2002-04-01

    The objectives of the research performed in the area of low-level radioactivity measurements are (1) to maintain and develop techniques for the measurement of low-level environmental and biological samples, (2) to measure these samples by means of low-background counters (liquid scintillators, proportional counters, ZnS counters, alpha spectrometry), (3) to support and advise the nuclear and non-nuclear industry on problems of radioactive contamination and low-level radioactivity measurements; (4) to maintain and improve the quality assurance system according to the ISO17025 standard; and (5) to assess the internal dose from occupational intakes of radionuclides of workers of the nuclear industry. Progress and achievements in these areas in 2001 are reported.

  4. Characterization of Class A low-level radioactive waste 1986--1990. Volume 3: Main report -- Part B

    Energy Technology Data Exchange (ETDEWEB)

    Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 to 7 contain Appendices A to P with supporting information.

  5. Characterization of Class A low-level radioactive waste 1986--1990. Volume 6: Appendices G--J

    Energy Technology Data Exchange (ETDEWEB)

    Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

  6. Characterization of Class A low-level radioactive waste 1986--1990. Volume 7: Appendices K--P

    Energy Technology Data Exchange (ETDEWEB)

    Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

  7. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Department of Energy`s (DOE`s) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect that packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE`s obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option.

  8. Characterization of radionuclide-chelating agent complexes found in low-level radioactive decontamination waste. Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R.J.; Felmy, A.R.; Cantrell, K.J.; Krupka, K.M.; Campbell, J.A.; Bolton, H. Jr.; Fredrickson, J.K. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-03-01

    The US Nuclear Regulatory Commission is responsible for regulating the safe land disposal of low-level radioactive wastes that may contain organic chelating agents. Such agents include ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), picolinic acid, oxalic acid, and citric acid, and can form radionuclide-chelate complexes that may enhance the migration of radionuclides from disposal sites. Data from the available literature indicate that chelates can leach from solidified decontamination wastes in moderate concentration (1--100 ppm) and can potentially complex certain radionuclides in the leachates. In general it appears that both EDTA and DTPA have the potential to mobilize radionuclides from waste disposal sites because such chelates can leach in moderate concentration, form strong radionuclide-chelate complexes, and can be recalcitrant to biodegradation. It also appears that oxalic acid and citric acid will not greatly enhance the mobility of radionuclides from waste disposal sites because these chelates do not appear to leach in high concentration, tend to form relatively weak radionuclide-chelate complexes, and can be readily biodegraded. In the case of picolinic acid, insufficient data are available on adsorption, complexation of key radionuclides (such as the actinides), and biodegradation to make definitive predictions, although the available data indicate that picolinic acid can chelate certain radionuclides in the leachates.

  9. Low-level radioactive waste disposal facility closure

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  10. Planning of low-level radioactive waste management program

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Teruo; Yoneya, Masayuki; Tanabe, Tsutomu; Koakutsu, Masayuki; Miyamoto, Yasuaki [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works

    2002-09-01

    In order to treat and dispose of the low-level radioactive waste generated from JNC sites safely and rationally, a comprehensive plan managing the generation, treatment, storage and disposal of waste, was formulated. The plan is called ''Low-Level Radioactive Waste Management Program''. Taking into consideration an institutionalization of disposal and based on an investigation of waste properties (type, amount, activity concentration), the appropriate treatment method for disposal was studied, and a fundamental plan for conducting the Low-Level Radioactive Waste Management Program was presented. To achieve disposal of low-level radioactive waste, concrete measures will be taken according to the Low-Level Radioactive Wastes Management Program. The plan will be improved suitably by the result of technical development, and will be reconsidered flexibly after institutionalization by the government. (author)

  11. A robotic inspector for low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, J.S.; Pettus, R.O. [South Carolina Univ., Columbia, SC (United States). Dept. of Electrical and Computer Engineering

    1996-06-01

    The Department of Energy has low-level radioactive waste stored in warehouses at several facilities. Weekly visual inspections are required. A mobile robot inspection system, ARIES (Autonomous Robotic Inspection Experimental System), has been developed to survey and inspect the stored drums. The robot will travel through the three- foot wide aisles of drums stacked four high and perform a visual inspection, normally performed by a human operator, making decisions about the condition of the drums and maintaining a database of pertinent information about each drum. This mobile robot system will improve the quality of inspection, generate required reports, and relieve human operators from low-level radioactive exposure.

  12. The basics in transportation of low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Allred, W.E.

    1998-06-01

    This bulletin gives a basic understanding about issues and safety standards that are built into the transportation system for radioactive material and waste in the US. An excellent safety record has been established for the transport of commercial low-level radioactive waste, or for that matter, all radioactive materials. This excellent safety record is primarily because of people adhering to strict regulations governing the transportation of radioactive materials. This bulletin discusses the regulatory framework as well as the regulations that set the standards for packaging, hazard communications (communicating the potential hazard to workers and the public), training, inspections, routing, and emergency response. The excellent safety record is discussed in the last section of the bulletin.

  13. Ocean dumping of low-level radioactive wastes

    Science.gov (United States)

    Templeton, W. L.

    1982-10-01

    Scientific bases, developed internationally over the last 20 years, to control and restrict to acceptable levels the resultant radiation doses that potentially could occur from the dumping of low-level radioactive wastes in the deep oceans were presented. It is concluded that present evaluations of the disposal of radioactive wastes into the oceans, coastal and deep ocean, indicate that these are being conducted within the ICRP recommended dose limits. However, there are presently no international institutions or mechanisms to deal with the long-term radiation exposure at low-levels to large numbers of people on a regional basis if not a global level. Recommendations were made to deal with these aspects through the established mechanisms of NEA/OECD and the London Dumping Convention, in cooperation with ICRP, UNSCEAR and the IAEA.

  14. Commercial low-level radioactive waste disposal in the US

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.

    1995-10-01

    Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going.

  15. Low-level radioactive waste technology: a selected, annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

    1980-10-01

    This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.

  16. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. (Science Applications International Corp., Idaho Falls, ID (United States))

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  17. Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. [Science Applications International Corp., Idaho Falls, ID (United States)

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  18. Status of low-level radioactive waste management in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.J. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of). Dept. of Nuclear Engineering

    1993-03-01

    The Republic of Korea has accomplished dramatic economic growth over the past three decades; demand for electricity has rapidly grown more than 15% per year. Since the first nuclear power plant, Kori-1 [587 MWe, pressurized water reactor (PWR)], went into commercial operation in 1978, the nuclear power program has continuously expanded and played a key role in meeting the national electricity demand. Nowadays, Korea has nine nuclear power plants [eight PWRs and one Canadian natural uranium reactor (CANDU)] in operation with total generating capacity of 7,616 MWe. The nuclear share of total electrical capacity is about 36%; however, about 50% of actual electricity production is provided by these nine nuclear power plants. In addition, two PWRs are under construction, five units (three CANDUs and two PWRs) are under design, and three more CANDUs and eight more PWRs are planned to be completed by 2006. With this ambitious nuclear program, the total nuclear generating capacity will reach about 23,000 MWe and the nuclear share will be about 40% of the total generating capacity in the year 2006. In order to expand the nuclear power program this ambitiously, enormous amounts of work still have to be done. One major area is radioactive waste management. This paper reviews the status of low-level radioactive waste management in Korea. First, the current and future generation of low-level radioactive wastes are estimated. Also included are the status and plan for the construction of a repository for low-level radioactive wastes, which is one of the hot issues in Korea. Then, the nuclear regulatory system is briefly mentioned. Finally, the research and development activities for LLW management are briefly discussed.

  19. Disposal of low-level and mixed low-level radioactive waste during 1990

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Isotopic inventories and other data are presented for low-level radioactive waste (LLW) and mixed LLW disposed (and occasionally stored) during calendar year 1990 at commercial disposal facilities and Department of Energy (DOE) sites. Detailed isotopic information is presented for the three commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. Less information is presented for the Envirocare disposal facility located near Clive, UT, and for LLW stored during 1990 at the West Valley site. DOE disposal information is included for the Savannah River Site (including the saltstone facility), Nevada Test Site, Los Alamos National Laboratory, Idaho National Engineering Laboratory, Hanford Site, Y-12 Site, and Oak Ridge National Laboratory. Summary information is presented about stored DOE LLW. Suggestions are made about improving LLW disposal data.

  20. Management of low-level radioactive wastes around the world

    Energy Technology Data Exchange (ETDEWEB)

    Lakey, L.T.; Harmon, K.M.; Colombo, P.

    1985-04-01

    This paper reviews the status of various practices used throughout the world for managing low-level radioactive wastes. Most of the information in this review was obtained through the DOE-sponsored International Program Support Office (IPSO) activities at Pacific Northwest Laboratory (PNL) at Richland, Washington. The objective of IPSO is to collect, evaluate, and disseminate information on international waste management and nuclear fuel cycle activities. The center's sources of information vary widely and include the proceedings of international symposia, papers presented at technical society meetings, published topical reports, foreign trip reports, and the news media. Periodically, the information is published in topical reports. Much of the information contained in this report was presented at the Fifth Annual Participants' Information Meeting sponsored by DOE's Low-Level Waste Management Program Office at Denver, Colorado, in September of 1983. Subsequent to that presentation, the information has been updated, particularly with information provided by Dr. P. Colombo of Brookhaven National Laboratory who corresponded with low-level waste management specialists in many countries. The practices reviewed in this paper generally represent actual operations. However, major R and D activities, along with future plans, are also discussed. 98 refs., 6 tabls.

  1. Soil gas surveying at low-level radioactive waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Crockett, A.B.; Moor, K.S.; Hull, L.C. [EG and G Idaho Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.

    1989-11-01

    Soil gas sampling is a useful screening technique for determining whether volatile organic compounds are present at low-level radioactive waste burial sites. The technique was used at several DOE sites during the DOE Environmental Survey to determine the presence and extent of volatile organic compound contamination. The advantages of the soil gas sampling are that near real time data can be obtained, no excavation is required, safety concerns are relatively minor, costs are relatively low, and large amounts of data can be obtained rapidly on the contaminants that may pose the greatest threat to groundwater resources. The disadvantages are that the data are difficult to interpret and relate to soil concentrations and environmental standards. This paper discusses the experiences of INEL sampling and analysis personnel, the advantages and disadvantages of the technique, and makes recommendations for improving the sampling and analytical procedures.

  2. Thirteenth annual U.S. DOE low-level radioactive waste management conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    The 40 papers in this document comprise the proceedings of the Department of Energy`s Thirteenth Annual Low-Level Radioactive Waste Management Conference that was held in Atlanta, Georgia, on November 19--21, 1991. General subjects addressed during the conference included: disposal facility design; greater-than-class C low-level waste; public acceptance considerations; waste certification; site characterization; performance assessment; licensing and documentation; emerging low-level waste technologies; waste minimization; mixed waste; tracking and transportation; storage; and regulatory changes. Papers have been processed separately for inclusion on the data base.

  3. Technical issues in licensing low-level radioactive waste facilities

    Energy Technology Data Exchange (ETDEWEB)

    Junkert, R. [California Dept. of Health Services, CA (United States)

    1993-03-01

    The California Department of Health Service spent two years in the review of an application for a low-level radioactive waste disposal facility in California. During this review period a variety of technical issues had to be evaluated and resolved. One of the first issues was the applicability and use of NRC guidance documents for the development of LLW disposal facilities. Other technical issues that required intensive evaluations included surface water hydrology, seismic investigation, field and numerical analysis of the unsaturated zone, including a water infiltration test. Source term verification became an issue because of one specific isotope that comprised more than 90% of the curies projected for disposal during the operational period. The use of trench liners and the proposed monitoring of the unsaturated zone were reviewed by a highly select panel of experts to provide guidance on the need for liners and to ensure that the monitoring system was capable of monitoring sufficient representative areas for radionuclides in the soil, soil gas, and soil moisture. Finally, concerns about the quality of the preoperational environmental monitoring program, including data, sample collection procedures, laboratory analysis, data review and interpretation and duration of monitoring caused a significant delay in completing the licensing review.

  4. Selected radionuclides important to low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). This report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.

  5. Microbial degradation of low-level radioactive waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr

    1996-06-01

    The Nuclear Regulatory Commission stipulates in 10 CFR 61 that disposed low-level radioactive waste (LLW) be stabilized. To provide guidance to disposal vendors and nuclear station waste generators for implementing those requirements, the NRC developed the Technical Position on Waste Form, Revision 1. That document details a specified set of recommended testing procedures and criteria, including several tests for determining the biodegradation properties of waste forms. Information has been presented by a number of researchers, which indicated that those tests may be inappropriate for examining microbial degradation of cement-solidified LLW. Cement has been widely used to solidify LLW; however, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. The purpose of this research program was to develop modified microbial degradation test procedures that would be more appropriate than the existing procedures for evaluation of the effects of microbiologically influenced chemical attack on cement-solidified LLW. The procedures that have been developed in this work are presented and discussed. Groups of microorganisms indigenous to LLW disposal sites were employed that can metabolically convert organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this final report. Data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW and subsequent release of radionuclides developed during this study are presented.

  6. LOWRAD 96. Methods and applications of low-level radioactivity measurements. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Fietz, J. [ed.] [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany)

    1997-03-01

    The newest developments in the field of low-level radioactivity measurements and new applications for existing and low-level measuring facilities are presented. The contributions mostly were devoted to basic physical aspects and applications of low-level counting. Papers on chemical separation and preparation techniques and on low-level radiation dose determinations were also presented. (DG)

  7. Status of the North Carolina/Southeast Compact low-level radioactive waste disposal project

    Energy Technology Data Exchange (ETDEWEB)

    Walker, C.K. [North Carolina Low-Level Radioactive Waste Management Authority, NC (United States)

    1993-03-01

    The Southeast Compact is a sited region for low-level radioactive waste because of the current facility at Barnwell, South Carolina. North Carolina has been designated as the next host state for the compact, and the North Carolina Low-Level Radioactive Waste Management Authority is the agency charged with developing the new facility. Chem-Nuclear Systems, Inc., has been selected by the Authority as its primary site development and operations contractor. This paper will describe the progress currently being made toward the successful opening of the facility in January 1996. The areas to be addressed include site characterization, performance assessment, facility design, public outreach, litigation, finances, and the continued operation of the Barnwell facility.

  8. Managing low-level radioactive wastes: a proposed approach

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    This document is a consensus report of the Low-Level Waste Strategy Task Force. It covers system-wide issues; generation, treatment, and packaging; transportation; and disposal. Recommendations are made. (DLC)

  9. Mixed Low-Level Radioactive Waste (MLLW) Primer

    Energy Technology Data Exchange (ETDEWEB)

    W. E. Schwinkendorf

    1999-04-01

    This document presents a general overview of mixed low-level waste, including the regulatory definitions and drivers, the manner in which the various kinds of mixed waste are regulated, and a discussion of the waste treatment options.

  10. 18th U.S. Department of Energy Low-Level Radioactive Waste Management Conference. Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-05-20

    This conference explored the latest developments in low-level radioactive waste management through presentations from professionals in both the public and the private sectors and special guests. The conference included two continuing education seminars, a workshop, exhibits, and a tour of Envirocare of Utah, Inc., one of America's three commercial low-level radioactive waste depositories.

  11. Department of Energy low-level radioactive waste disposal concepts

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, C.; Page, L.; Morreale, B.; Owens, C.

    1990-01-01

    The Department of Energy (DOE) manages its low-level waste (LLW), regulated by DOE Order 5820.2A by using an overall systems approach. This systems approach provides an improved and consistent management system for all DOE LLW waste, from generation to disposal. This paper outlines six basic disposal concepts used in the systems approach, discusses issues associated with each of the concepts, and outlines both present and future disposal concepts used at six DOE sites. 3 refs., 9 figs.

  12. Greater-than-Class C low-level waste characterization

    Energy Technology Data Exchange (ETDEWEB)

    Piscitella, R.R. [EG and G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.

    1991-12-31

    In 1985, Public Law 99-240 (Low-Level Radioactive Waste Policy Amendments Act of 1985) made the Department of Energy (DOE) responsible for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW). DOE strategies for storage and disposal of GTCC LLW required characterization of volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate characteristics, project volumes, and determine radionuclide activities to the years 2035 and 2055. Twenty-year life extensions for 70% of the operating nuclear reactors were assumed to calculate the GTCC LLW available in 2055. The following categories of GTCC LLW were addressed: Nuclear Utilities Waste; Potential Sealed Sources GTCC LLW; DOE-Held Potential GTCC LLW; and Other Generator Waste. It was determined that the largest volume of these wastes, approximately 57%, is generated by nuclear utilities. The Other Generator Waste category contributes approximately 10% of the total GTCC LLW volume projected to the year 2035. DOE-Held Potential GTCC LLW accounts for nearly 33% of all waste projected to the year 2035. Potential Sealed Sources GTCC LLW is less than 0.2% of the total projected volume. The base case total projected volume of GTCC LLW for all categories was 3,250 cubic meters. This was substantially less than previous estimates.

  13. Maine State Briefing Book on low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The Maine State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Maine. The profile is the result of a survey of radioactive material licensees in Maine. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested partices including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant goverment agencies and activities, all of which may impact management practices in Maine.

  14. Rhode Island State Briefing Book on low-level radioactive-waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    The Rhode Island State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Rhode Island. The profile is the result of a survey of radioactive material licensees in Rhode Island. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Rhode Island.

  15. Fifteenth annual U.S. Department of Energy low-level radioactive waste management conference: Agenda and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The goal of the conference was to give the opportunity to identify and discuss low-level radioactive waste management issues, share lessons learned, and hear about some of the latest advances in technology. Abstracts of the presentations are arranged into the following topical sections: (1) Performance Management Track: Performance assessment perspectives; Site characterization; Modeling and performance assessment; and Remediation; (2) Technical Track: Strategic planning; Tools and options; Characterization and validation; Treatment updates; Technology development; and Storage; (3) Institutional Track: Orders and regulatory issues; Waste management options; Legal, economic, and social issues; Public involvement; Siting process; and Low-level radioactive waste policy amendment acts.

  16. South Dakota State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The South Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Dakota. The profile is the result of a survey of NRC licensees in South Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Dakota.

  17. Massachusetts State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-12

    The Massachusetts State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Massachusetts. The profile is the result of a survey of NRC licensees in Massachusetts. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Massachusetts.

  18. Kentucky State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The Kentucky State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Kentucky. The profile is the result of a survey of NRC licensees in Kentucky. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Kentucky.

  19. Oregon State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The Oregon State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Oregon. The profile is a result of a survey of NRC licensees in Oregon. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Oregon.

  20. Tennessee State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The Tennessee State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Tennessee. The profile is the result of a survey of NRC licensees in Tennessee. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Tennessee.

  1. New Jersey State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    The New Jersey state Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Jersey. The profile is the result of a survey of NRC licensees in New Jersey. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Jersey.

  2. South Carolina State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The South Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Carolina. The profile is the result of a survey of NRC licensees in South Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as definied by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Carolina.

  3. Florida State Briefing Book for low-level radioactive-waste management

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-06-01

    The Florida State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Florida. The profile is the result of a survey of NRC licensees in Florida. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Florida.

  4. Connecticut State Briefing Book for low-level radioactive-waste management

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-06-01

    The Connecticut State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Connecticut. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Connecticut. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Connecticut.

  5. Wisconsin State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The Wisconsin State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wisconsin. The profile is the result of a survey of NRC licensees in Wisconsin. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wisconsin.

  6. North Dakota State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-10-01

    The North Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Dakota. The profile is the result of a survey of NRC licensees in North Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Dakota.

  7. Utah State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Utah State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Utah. The profile is the result of a survey of NRC licensees in Utah. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Utah.

  8. Ohio State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    The Ohio State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Ohio. The profile is the result of a survey of NRC licensees in Ohio. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Ohio.

  9. North Carolina State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The North Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Carolina. The profile is the result of a survey of NRC licensees in North Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Carolina.

  10. Wyoming State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.

  11. Mississippi State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-08-01

    The Mississippi State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state an federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Mississippi. The profile is the result of a survey of NRC licensees in Mississippi. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Mississippi.

  12. Washington State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The Washington State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Washington. The profile is the result of a survey of NRC licensees in Washington. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Washington.

  13. Puerto Rico State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Puerto Rico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Puerto Rico. The profile is the result of a survey of NRC licensees in Puerto Rico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Puerto Rico.

  14. Vermont State Briefing Book on low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    The Vermont State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Vermont. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Vermont. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Vermont.

  15. Pennsylvania State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    The Pennsylvania State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Pennsylvania. The profile is the result of a survey of NRC licensees in Pennsylvania. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Pennsylvania.

  16. Soil characterization methods for unsaturated low-level waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Wierenga, P.J.; Young, M.H. (Arizona Univ., Tucson, AZ (United States). Dept. of Soil and Water Science); Gee, G.W.; Kincaid, C.T. (Pacific Northwest Lab., Richland, WA (United States)); Hills, R.G. (New Mexico State Univ., Las Cruces, NM (United States). Dept. of Mechanical Engineering); Nicholson, T.J.; Cady, R.E. (Nuclear Regulatory Commission, Washington, DC (United States))

    1993-01-01

    To support a license application for the disposal of low-level radioactive waste (LLW), applicants must characterize the unsaturated zone and demonstrate that waste will not migrate from the facility boundary. This document provides a strategy for developing this characterization plan. It describes principles of contaminant flow and transport, site characterization and monitoring strategies, and data management. It also discusses methods and practices that are currently used to monitor properties and conditions in the soil profile, how these properties influence water and waste migration, and why they are important to the license application. The methods part of the document is divided into sections on laboratory and field-based properties, then further subdivided into the description of methods for determining 18 physical, flow, and transport properties. Because of the availability of detailed procedures in many texts and journal articles, the reader is often directed for details to the available literature. References are made to experiments performed at the Las Cruces Trench site, New Mexico, that support LLW site characterization activities. A major contribution from the Las Cruces study is the experience gained in handling data sets for site characterization and the subsequent use of these data sets in modeling studies.

  17. Texas State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The Texas State Briefing Book is one of a series of state briefing books on low-level radioactivee waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Texas. The profile is the result of a survey of NRC licensees in Texas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Texas.

  18. Identification of technical problems encountered in the shallow land burial of low-level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, D.G.; Epler, J.S.; Rose, R.R.

    1980-03-01

    A review of problems encountered in the shallow land burial of low-level radioactive wastes has been made in support of the technical aspects of the National Low-Level Waste (LLW) Management Research and Development Program being administered by the Low-Level Waste Management Program Office, Oak Ridge National Laboratory. The operating histories of burial sites at six major DOE and five commercial facilities in the US have been examined and several major problems identified. The problems experienced st the sites have been grouped into general categories dealing with site development, waste characterization, operation, and performance evaluation. Based on this grouping of the problem, a number of major technical issues have been identified which should be incorporated into program plans for further research and development. For each technical issue a discussion is presented relating the issue to a particular problem, identifying some recent or current related research, and suggesting further work necessary for resolving the issue. Major technical issues which have been identified include the need for improved water management, further understanding of the effect of chemical and physical parameters on radionuclide migration, more comprehensive waste records, improved programs for performance monitoring and evaluation, development of better predictive capabilities, evaluation of space utilization, and improved management control.

  19. A data base for low-level radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Daum, M.L.; Moskowitz, P.D.

    1989-07-01

    A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs.

  20. Social and institutional evaluation report for Greater-Than-Class C Low-Level Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.L.; Lewis, B.E.; Turner, K.H.; Rozelle, M.A. [Dames and Moore, Denver, CO (United States)

    1993-10-01

    This report identifies and characterizes social and institutional issues that would be relevant to the siting, licensing, construction, closure, and postclosure of a Greater-Than-Class-C low-level radioactive waste (GTCC LLW) disposal facility. A historical perspective of high-level radioactive waste (HLW) and LLW disposal programs is provided as an overview of radioactive waste disposal and to support the recommendations and conclusions in the report. A characterization of each issue is provided to establish the basis for further evaluations. Where applicable, the regulatory requirements of 10 CFR 60 and 61 are incorporated in the issue characterizations. The issues are used to compare surface, intermediate depth, and deep geologic disposal alternatives. The evaluation establishes that social and institutional issues do not significantly discriminate among the disposal alternatives. Recommendations are provided for methods by which the issues could be considered throughout the lifecycle of a GTCC LLW disposal program.

  1. An update of a national database of low-level radioactive waste in Canada

    Energy Technology Data Exchange (ETDEWEB)

    De, P.L.; Barker, R.C. [Atomic Energy Canada Ltd. Research, Ottawa, Ontario (Canada). Low-Level Radioactive Waste Management Office

    1993-03-01

    This paper gives an overview and update of a national database of low-level radioactive waste in Canada. To provide a relevant perspective, Canadian data are compared with US data on annual waste arisings and with disposal initiatives of the US compacts and states. Presented also is an assessment of the data and its implications for disposal solutions in Canada.

  2. The mobile incinerator for intermediate and low level radioactive organic (wood) wastes

    Energy Technology Data Exchange (ETDEWEB)

    Raginsky, L.S.; Demidovich, N.N.; Elanchik, A.G. [A.A. Bochvar Scientific Research Institute of Inorganic Materials (Russian Federation)] [and others

    1993-12-31

    The Chernobyl accident contaminated many settlements and the environment. The programme Vector was designed to mitigate the effects and involves designing a mobile facility for incinerating solid organic intermediate and low-level radioactive wastes. Results of the first stage are described.

  3. A comparison and cross-reference of commercial low-level radioactive waste acceptance criteria

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, T.A.

    1997-04-01

    This document, prepared by the National Low-Level Waste Management Program at the Idaho National Engineering and Environmental Laboratory, is a comparison and cross-reference of commercial low-level radioactive waste acceptance criteria. Many of these are draft or preliminary criteria as well as implemented criteria at operating low-level radioactive waste management facilities. Waste acceptance criteria from the following entities are included: US Nuclear Regulatory Commission, South Carolina, Washington, Utah, Nevada, California, illinois, Texas, North Carolina, Nebraska, Pennsylvania, New York, and the Midwest Compact Region. Criteria in the matrix include the following: physical form, chemical form, liquid limits, void space in packages, concentration averaging, types of packaging, chelating agents, solidification media, stability requirements, sorptive media, gas, oil, biological waste, pyrophorics, source material, special nuclear material, package dimensions, incinerator ash, dewatered resin, transuranics, and mixed waste. Each criterion in the matrix is cross-referenced to its source document so that exact requirements can be determined.

  4. Ratio methods for cost-effective field sampling of commercial radioactive low-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, L.L.; Simmons, M.A.; Thomas, J.M.

    1985-07-01

    In many field studies to determine the quantities of radioactivity at commercial low-level radioactive waste sites, preliminary appraisals are made with field radiation detectors, or other relatively inaccurate devices. More accurate determinations are subsequently made with procedures requiring chemical separations or other expensive analyses. Costs of these laboratory determinations are often large, so that adequate sampling may not be achieved due to budget limitations. In this report, we propose double sampling as a way to combine the expensive and inexpensive aproaches to substantially reduce overall costs. The underlying theory was developed for human and agricultural surveys, and is partially based on assumptions that are not appropriate for commercial low-level waste sites. Consequently, extensive computer simulations were conducted to determine whether the results can be applied in circumstances of importance to the Nuclear Regulatory Commission. This report gives the simulation details, and concludes that the principal equations are appropriate for most studies at commercial low-level waste sites. A few points require further research, using actual commercial low-level radioactive waste site data. The final section of the report provides some guidance (via an example) for the field use of double sampling. Details of the simulation programs are available from the authors. Major findings are listed in the Executive Summary. 9 refs., 9 figs., 30 tabs.

  5. Letter report: Minor component study for low-level radioactive waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.

    1996-03-01

    During the waste vitrification process, troublesome minor components in low-level radioactive waste streams could adversely affect either waste vitrification rate or melter life-time. Knowing the solubility limits for these minor components is important to determine pretreatment options for waste streams and glass formulation to prevent or to minimize these problems during the waste vitrification. A joint study between Pacific Northwest Laboratory and Rensselaer Polytechnic Institute has been conducted to determine minor component impacts in low-level nuclear waste glass.

  6. Use of engineered soils beneath low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sandford, T.C.; Humphrey, D.N.; DeMascio, F.A. [Univ. of Maine, Orono, ME (United States). Dept. of Civil Engineering

    1993-03-01

    Current regulations are oriented toward locating low-level radioactive waste disposal facilities on sites that have a substantial natural soil barrier and are above the groundwater table. In some of the northern states, like Maine, the overburden soils are glacially derived and in most places provide a thin cover over bedrock with a high groundwater table. Thus, the orientation of current regulations can severely limit the availability of suitable sites. A common characteristic of many locations in glaciated regions is the rapid change of soil types that may occur and the heterogeneity within a given soil type. In addition, the bedrock may be fractured, providing avenues for water movement. A reliable characterization of these sites can be difficult, even with a detailed subsurface exploration program. Moreover, fluctuating groundwater and frost as well as the natural deposition processes have introduced macro features such as cracks, fissures, sand and silt seams, and root holes. The significant effect that these macro features have on the permeability and adsorptive capacity of a large mass is often ignored or poorly accounted for in the analyses. This paper will examine an alternate approach, which is to use engineered soils as a substitute for some or all of the natural soil and to treat the fractures in the underlying bedrock. The site selection would no longer be primarily determined by the natural soil and rock and could even be placed in locations with no existing soils. Engineered soils can be used for below- or aboveground facilities.

  7. Methods for verifying compliance with low-level radioactive waste acceptance criteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-01

    This report summarizes the methods that are currently employed and those that can be used to verify compliance with low-level radioactive waste (LLW) disposal facility waste acceptance criteria (WAC). This report presents the applicable regulations representing the Federal, State, and site-specific criteria for accepting LLW. Typical LLW generators are summarized, along with descriptions of their waste streams and final waste forms. General procedures and methods used by the LLW generators to verify compliance with the disposal facility WAC are presented. The report was written to provide an understanding of how a regulator could verify compliance with a LLW disposal facility`s WAC. A comprehensive study of the methodology used to verify waste generator compliance with the disposal facility WAC is presented in this report. The study involved compiling the relevant regulations to define the WAC, reviewing regulatory agency inspection programs, and summarizing waste verification technology and equipment. The results of the study indicate that waste generators conduct verification programs that include packaging, classification, characterization, and stabilization elements. The current LLW disposal facilities perform waste verification steps on incoming shipments. A model inspection and verification program, which includes an emphasis on the generator`s waste application documentation of their waste verification program, is recommended. The disposal facility verification procedures primarily involve the use of portable radiological survey instrumentation. The actual verification of generator compliance to the LLW disposal facility WAC is performed through a combination of incoming shipment checks and generator site audits.

  8. Development of treatment process by pyrolysis of low level radioactive spent ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Nagahara, Satoshi; Kidoguchi, Akira; Ushikoshi, Juntaro; Kanda, Nobuyasu [Mitsui Shipbuilding and Engineering Co. Ltd., Tokyo (Japan)

    2001-03-01

    Mitsui Engineering and Shipbuilding Co., Ltd. has been successfully developing a continuous treatment process by pyrolysis under reduction condition for low level radioactive ion-exchange resin used in nuclear power plants, for the purpose of reducing its volume with excellent decontamination performance. Pyrolysis experiments with labo-scale and bench-scale test equipments were carried out, followed by the continuous pyrolysis treatment test in the full-scale test equipment with feed rate at 7 liter/hour which was composed of a rotary kiln pyrolysis drum and an after-burner. Results showed an excellent performance of pyrolysis for the treatment of the spent resin. The properties of cement immobilization of residue sufficiently meet the governmental regulations, and we are confident that the continuous treatment process of the disposal for the low level radioactive ion-exchange resin used in nuclear power plants is established. (author)

  9. Comprehensive low-level radioactive waste management plan for the Commonwealth of Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R.M.; Mills, D.; Perkins, C.; Riddle, R.

    1984-03-01

    Part I of the Comprehensive Low-Level Radioactive Waste Management Plan for the Commonwealth of Kentucky discusses the alternatives that have been examined to manage the low-level radioactive waste currently generated in the state. Part II includes a history of the commercial operation of the Maxey Flats Nuclear Waste Disposal Site in Fleming County, Kentucky. The reasons for closure of the facility by the Human Resources Cabinet, the licensing agency, are identified. The site stabilization program managed by the Natural Resources and Environmental Protection Cabinet is described in Chapter VI. Future activities to be conducted at the Maxey Flats Disposal Site will include site stabilization activities, routine operations and maintenance, and environmental monitoring programs as described in Chapter VII.

  10. Insuring low-level radioactive waste sites: Past, present, and future

    Energy Technology Data Exchange (ETDEWEB)

    Viveiros, G.F. III

    1989-11-01

    The primary purpose of the paper is to provide information concerning the availability of nuclear liability insurance coverage under the Facility Form for low-level radioactive waste facilities only. The paper describes the past history of insurers and their merger into the Nuclear Atomic Energy Liability Underwriters (MAELU). The paper discusses the coverage afforded, underwriting suspension, and work the nuclear insurance pools are doing to lift the suspension.

  11. Disposal of low-level radioactive waste at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Sauls, V.W. [Dept. of Energy, Aiken, SC (United States). Savannah River Field Office

    1993-03-01

    An important objective of the Savannah River Site`s low-level radioactive waste management program is to isolate the waste from the environment both now and well into the future. A key element in achieving this is the disposal of low-level radioactive waste in sealed concrete vaults. Historically the Site has disposed of low-level radioactive waste via shallow land burial. In 1987, it was decided that better isolation from the environment was required. At that time several options for achieving this isolation were studied and below grade concrete vaults were chosen as the best method. This paper discusses the performance objectives for the vaults, the current design of the vaults and plans for the design of future vaults, the cost to construct the vaults, and the performance assessment on the vaults. Construction of the first set of vaults is essentially complete and readiness reviews before the start of waste receipt are being performed. Startup is to begin late in calendar year 1992 and continue through early CY 1993. The performance assessment is under way and the first draft is to be completed in early 1993.

  12. Guidance document for prepermit bioassay testing of low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.L.; Harrison, F.L.

    1990-11-01

    In response to the mandate of Public Law 92-532, the Marine Protection, Research, and Sanctuaries Act (MPRSA) of 1972, as amended, the Environmental Protection Agency (EPA) has developed a program to promulgate regulations and criteria to control the ocean disposal of radioactive wastes. The EPA seeks to understand the mechanisms for biological response of marine organisms to the low levels of radioactivity that may arise from the release of these wastes as a result of ocean-disposal practices. Such information will play an important role in determining the adequacy of environmental assessments provided to the EPA in support of any disposal permit application. Although the EPA requires packaging of low-level radioactive waste to prevent release during radiodecay of the materials, some release of radioactive material into the deep-sea environment may occur when a package deteriorates. Therefore, methods for evaluating the impact on biota are being evaluated. Mortality and phenotypic responses are not anticipated at the expected low environmental levels that might occur if radioactive materials were released from the low-level waste packages. Therefore, traditional bioassay systems are unsuitable for assessing sublethal effects on biota in the marine environment. The EPA Office of Radiation Programs (ORP) has had an ongoing program to examine sublethal responses to radiation at the cellular level, using cytogenetic end points. This technical guidance report represents prepermit bioassay procedures that potentially may be applicable to the assessment of effects from a mixture of radionuclides that could be released from a point source at the ocean bottom. Methodologies along with rationale and a discussion of uncertainty are presented for the sediment benthic bioassay protocols identified in this report.

  13. Site selection and licensing issues: Southwest Compact low-level radioactive waste disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Grant, J.L.

    1989-11-01

    The low-level radioactive waste disposal site in California is being selected through a three-phase program. Phase 1 is a systematic statewide, regional, and local screening study. This program was conducted during 1986 and 1987, and culminated in the selection of three candidate sites fur further study. The candidate sites are identified as the Panamint, Silurian, and Ward Valley sites. Phase 2 comprises site characterization and environmental and socio-economic impact study activities at the three candidate sites. Based upon the site characterization studies, the candidate sites are ranked according to the desirability and conformance with regulatory requirements. Phase 3 comprises preparation of a license application for the selected candidate site. The license application will include a detailed characterization of the site, detailed design and operations plans for the proposed facility, and assessments of potential impacts of the site upon the environment and the local communities. Five types of siting criteria were developed to govern the site selection process. These types are: technical suitability exclusionary criteria, high-avoidance criteria beyond technical suitability requirements, discretionary criteria, public acceptance, and schedule requirements of the LLWR Policy Act Amendments. This paper discusses the application of the hydrological and geotechnical criteria during the siting and licensing studies in California. These criteria address site location and performance, and the degree to which present and future site behavior can be predicted. Primary regulatory requirements governing the suitability of a site are that the site must be hydrologically and geologically simple enough for the confident prediction of future behavior, and that the site must be stable enough that frequent or intensive maintenance of the closed site will not be required. This paper addresses the methods to measure site suitability at each stage of the process, methods to

  14. Low-level radioactive-waste compacts. Status report as of July 1982

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    The Low-Level Radioactive Waste Policy Act (P.L. 96-573), enacted in December 1980, established as federal policy that states take responsibility for providing disposal capacity for low-level radioactive waste (LLW) generated within their borders, except for defense waste and Federal R and D. At the request of Senator James A. McClure, Chairman of the Senate Committee on Energy and Natural Resources, DOE has documented the progress of states individually and collectively in fulfilling their responsibilities under the Public Law. Regionalization through formation of low-level waste compacts has been the primary vehicle by which many states are assuming this responsibility. To date seven low-level waste compacts have been drafted and six have been enacted by state legislatures or ratified by a governor. As indicated by national progress to date, DOE considers the task of compacting achievable by the January 1, 1986, exclusionary date set in law, although several states and NRC questioned this.

  15. Radiological safety studies on ground disposal of low-level radioactive wastes. Environmental simulation test

    Energy Technology Data Exchange (ETDEWEB)

    Wadachi, Yoshiki; Yamamoto, Tadatoshi; Takebe, Shinichi; Ohnuki, Toshihiko; Washio, Masakazu (Japan Atomic Energy Research Inst., Tokai, Ibaraki. Tokai Research Establishment)

    1982-03-01

    As the method of disposing low level radioactive wastes on land, the underground disposal method disposing the wastes in the structures constructed underground near the ground surface has been investigated as a feasible method. In order to contribute to the environmental safety assessment for this underground disposal method, environmental simulation test is planned at present, in which earth is sampled in the undisturbed state, and the behavior of radioactive nuclides is examined. The testing facilities are to be constructed in Japan Atomic Energy Research Institute from fiscal 1981. First, the research made so far concerning the movement of radioactive nuclides in airing layer and aquifer which compose natural barrier is outlined. As for the environmental simulation test, the necessity and method of the test, earth sampling, the underground simulation facility and the contribution to environmental safety assessment are explained. By examining the movement of radioactive nuclides through natural barrier and making the effective mddel for the underground movement of radioactive nuclides, the environmental safety assessment for the disposal can be performed to obtain the national consensus.

  16. The storage center of very-low level radioactive wastes; Le centre de stockage des dechets de tres faible activite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The low level radioactive wastes have a radioactivity level as same as the natural radioactivity. This wastes category and their storage has been taken into account by the french legislation. This document presents the storage principles of the site, containment, safety and the Center organization. (A.L.B.)

  17. Aboveground roofed design for the disposal of low-level radioactive waste in Maine

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J.A. [Univ. of Maine, Orono, ME (United States)

    1993-03-01

    The conceptual designs proposed in this report resulted from a study for the Maine Low-level Radioactive Waste Authority to develop conceptual designs for a safe and reliable disposal facility for Maine`s low-level radioactive waste (LLW). Freezing temperatures, heavy rainfall, high groundwater tables, and very complex and shallow glaciated soils found in Maine place severe constraints on the design. The fundamental idea behind the study was to consider Maine`s climatic and geological conditions at the beginning of conceptual design rather than starting with a design for another location and adapting it for Maine`s conditions. The conceptual designs recommended are entirely above ground and consist of an inner vault designed to provide shielding and protection against inadvertent intrusion and an outer building to protect the inner vault from water. The air dry conditions within the outer building should lead to almost indefinite service life for the concrete inner vault and the waste containers. This concept differs sharply from the usual aboveground vault in its reliance on at least two independent, but more or less conventional, roofing systems for primary and secondary protection against leakage of radioisotopes from the facility. Features include disposal of waste in air dry environment, waste loading and visual inspection by remote-controlled overhead cranes, and reliance on engineered soils for tertiary protection against release of radioactive materials.

  18. New York State Low-Level Radioactive Waste Status Report for 1992

    Energy Technology Data Exchange (ETDEWEB)

    Attridge, T.; Rapaport, S.; Yang, Qian

    1993-06-01

    This report summarizes data on low-level radioactive waste (LLRW) generation in New York State for calendar year 1992. It is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (Energy Authority) and on data from the US Department of Energy. The New York State Low-Level Radioactive Waste Management Act (State Act) requires LLRW generators in the State to submit annual reports detailing the classes and quantities of waste generated. This is the seventh year generators have been required to submit reports on their waste to the Energy Authority. The data are summarized in a series of tables and figures. There are three sections in the report. Section 1 covers volume, radioactivity and other characteristics of waste generated in 1992. Section 2 shows historical LLRW generation over the years and includes generators` projections for the next five years. Section 3 provides a list of all facilities for which 1992 LLRW reports were received.

  19. New York State low-level radioactive waste status report for 1998

    Energy Technology Data Exchange (ETDEWEB)

    Voelk, H.

    1999-06-01

    This report summarizes data on low-level radioactive waste (LLRW) generated in New York State: it is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The New York State Low-Level Radioactive Waste Management Act (State Act) requires LLRW generators in the State to submit annual reports detailing the classes and quantities of waste generated. This is the 13th year generators have been required to submit these reports to NYSERDA. The data are summarized in a series of tables and figures. There are four sections in the report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1998. Activity is the measure of a material`s radioactivity, or the number of radiation-emitting events occurring each second. Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1998. Section 3 shows historical LLRW generation and includes generators` projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1998 LLRW reports were received. 2 figs., 23 tabs.

  20. Survey of agents and techniques applicable to the solidification of low-level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Fuhrmann, M.; Neilson, R.M. Jr.; Colombo, P.

    1981-12-01

    A review of the various solidification agents and techniques that are currently available or potentially applicable for the solidification of low-level radioactive wastes is presented. An overview of the types and quantities of low-level wastes produced is presented. Descriptions of waste form matrix materials, the wastes types for which they have been or may be applied and available information concerning relevant waste form properties and characteristics follow. Also included are descriptions of the processing techniques themselves with an emphasis on those operating parameters which impact upon waste form properties. The solidification agents considered in this survey include: hydraulic cements, thermoplastic materials, thermosetting polymers, glasses, synthetic minerals and composite materials. This survey is part of a program supported by the United States Department of Energy's Low-Level Waste Management Program (LLWMP). This work provides input into LLWMP efforts to develop and compile information relevant to the treatment and processing of low-level wastes and their disposal by shallow land burial.

  1. Specific calibration problems for gammaspectrometric measurements of low-level radioactivity in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, D. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Wershofen, H. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    1997-03-01

    Gammaspectrometric measurements of low-level radioactivity in environmental samples are always done in a close source detector geometry. This geometry causes coincidence-summing effects for measurements of multi-photon emitting nuclides. The measurements of radioactivity in environmental samples are also influenced by the absorption of photons in the materials which have to be analysed. Both effects must be taken into account by correction factors with respect to an energy-specific calibration of the detector system for a given geometry and a given composition of the calibration source. The importance of these corrections is emphasized. It is the aim of the present paper to compare different experimental and theoretical methods for the determination of these correction factors published by various authors and to report about efforts to refine them. (orig.)

  2. Radioactive Waste Management Complex low-level waste radiological performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

  3. New York State low-level radioactive waste status report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This report summarizes data on low-level radioactive waste (LLRW) generated in New York State. It is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The data are summarized in a series of tables and figures. There are four sections in this report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1997. (Activity is the measure of a material`s radioactivity, or the number of radiation-emitting events occurring each second.) Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1997. Section 3 shows historical LLRW generation and includes generators` projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1997 LLRW reports were received.

  4. Estimating costs of low-level radioactive waste disposal alternatives for the Commonwealth of Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report was prepared for the Commonwealth of Massachusetts by the Idaho National Engineering Laboratory, National Low-Level Waste Management Program. It presents planning life-cycle cost (PLCC) estimates for four sizes of in-state low-level radioactive waste (LLRW) disposal facilities. These PLCC estimates include preoperational and operational expenditures, all support facilities, materials, labor, closure costs, and long-term institutional care and monitoring costs. It is intended that this report bc used as a broad decision making tool for evaluating one of the several complex factors that must be examined when deciding between various LLRW management options -- relative costs. Because the underlying assumptions of these analyses will change as the Board decides how it will manage Massachusett`s waste and the specific characteristics any disposal facility will have, the results of this study are not absolute and should only be used to compare the relative costs of the options presented. The disposal technology selected for this analysis is aboveground earth-mounded vaults. These vaults are reinforced concrete structures where low-level waste is emplaced and later covered with a multi-layered earthen cap. The ``base case`` PLCC estimate was derived from a preliminary feasibility design developed for the Illinois Low-Level Radioactive Waste Disposal Facility. This PLCC report describes facility operations and details the procedure used to develop the base case PLCC estimate for each facility component and size. Sensitivity analyses were performed on the base case PLCC estimate by varying several factors to determine their influences upon the unit disposal costs. The report presents the results of the sensitivity analyses for the five most significant cost factors.

  5. Developing operating procedures for a low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, A.A.; Miner, G.L.; Grahn, K.F.; Pollard, C.G. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)

    1993-10-01

    This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures.

  6. INPP Landfill[Disposal of very low level radioactive waste at Ignalina NPP

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, Jan; Bergstroem, Ulla

    2004-06-15

    The objective of this report is to propose the basic design for final disposal of Very Low Level Radioactive Waste (VLLW) produced at the Ignalina Nuclear Power Plant and at other small waste producers in Lithuania. Considering the safety for the environment, as well as the construction costs, it has been decided that the repository will be of a landfill type based on the same design principles as similar authorised facilities in other countries. It has also been decided that the location of the landfill shall be in the vicinity of the Ignalina Nuclear Power Plant (INPP)

  7. Model tracking system for low-level radioactive waste disposal facilities: License application interrogatories and responses

    Energy Technology Data Exchange (ETDEWEB)

    Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.; Novgrod, R.L.

    1994-08-01

    This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected.

  8. Identifying industrial best practices for the waste minimization of low-level radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Levin, V.

    1996-04-01

    In US DOE, changing circumstances are affecting the management and disposal of solid, low-level radioactive waste (LLW). From 1977 to 1991, the nuclear power industry achieved major reductions in solid waste disposal, and DOE is interested in applying those practices to reduce solid waste at DOE facilities. Project focus was to identify and document commercial nuclear industry best practices for radiological control programs supporting routine operations, outages, and decontamination and decommissioning activities. The project team (DOE facility and nuclear power industry representatives) defined a Work Control Process Model, collected nuclear power industry Best Practices, and made recommendations to minimize LLW at DOE facilities.

  9. Models for estimation of service life of concrete barriers in low-level radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Walton, J.C.; Plansky, L.E.; Smith, R.W. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-09-01

    Concrete barriers will be used as intimate parts of systems for isolation of low level radioactive wastes subsequent to disposal. This work reviews mathematical models for estimating the degradation rate of concrete in typical service environments. The models considered cover sulfate attack, reinforcement corrosion, calcium hydroxide leaching, carbonation, freeze/thaw, and cracking. Additionally, fluid flow, mass transport, and geochemical properties of concrete are briefly reviewed. Example calculations included illustrate the types of predictions expected of the models. 79 refs., 24 figs., 6 tabs.

  10. Nuclear criticality safety assessment of the low level radioactive waste disposal facility trenches

    Energy Technology Data Exchange (ETDEWEB)

    Kahook, S.D.

    1994-04-01

    Results of the analyses performed to evaluate the possibility of nuclear criticality in the Low Level Radioactive Waste Disposal Facility (LLRWDF) trenches are documented in this report. The studies presented in this document are limited to assessment of the possibility of criticality due to existing conditions in the LLRWDF. This document does not propose nor set limits for enriched uranium (EU) burial in the LLRWDF and is not a nuclear criticality safety evaluation nor analysis. The calculations presented in the report are Level 2 calculations as defined by the E7 Procedure 2.31, Engineering Calculations.

  11. Life cycle costs for disposal and assured isolation of low-level radioactive waste in Connecticut

    Energy Technology Data Exchange (ETDEWEB)

    Chau, B.; Sutherland, A.A.; Baird, R.D.

    1998-03-01

    This document presents life cycle costs for a low-level radioactive disposal facility and a comparable assured isolation facility. Cost projections were based on general plans and assumptions, including volume projections and operating life, provided by the Connecticut Hazardous Waste Management Service, for a facility designed to meet the State`s needs. Life cycle costs include the costs of pre-construction activities, construction, operations, closure, and post-closure institutional control. In order to provide a better basis for understanding the relative magnitude of near-term costs and future costs, the results of present value analysis of ut-year costs are provided.

  12. Vitrification as a low-level radioactive mixed waste treatment technology at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mazer, J.J.; No, Hyo J.

    1995-08-01

    Argonne National Laboratory-East (ANL-E) is developing plans to use vitrification to treat low-level radioactive mixed wastes (LLMW) generated onsite. The ultimate objective of this project is to install a full-scale vitrification system at ANL-E capable of processing the annual generation and historic stockpiles of selected LLMW streams. This project is currently in the process of identifying a range of processible glass compositions that can be produced from actual mixed wastes and additives, such as boric acid or borax. During the formulation of these glasses, there has been an emphasis on maximizing the waste content in the glass (70 to 90 wt %), reducing the overall final waste volume, and producing a stabilized low-level radioactive waste glass. Crucible glass studies with actual mixed waste streams have produced alkali borosilicate glasses that pass the Toxic Characteristic Leaching Procedure (TCLP) test. These same glass compositions, spiked with toxic metals well above the expected levels in actual wastes, also pass the TCLP test. These results provide compelling evidence that the vitrification system and the glass waste form will be robust enough to accommodate expected variations in the LLMW streams from ANL-E. Approximately 40 crucible melts will be studied to establish a compositional envelope for vitrifying ANL-E mixed wastes. Also being determined is the identity of volatilized metals or off-gases that will be generated.

  13. Greater-Than-Class C Low-Level Radioactive Waste Transportation Strategy report and institutional plan

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, R.C.; Tyacke, M.J.

    1995-01-01

    This document contains two parts. Part I, Greater-Than-Class-C Low-Level Radioactive Waste Transportation Strategy, addresses the requirements, responsibilities, and strategy to transport and receive these wastes. The strategy covers (a) transportation packaging, which includes shipping casks and waste containers; (b) transportation operations relating to the five facilities involved in transportation, i.e., waste originator, interim storage, dedicated storage, treatment, and disposal; (c) system safety and risk analysis; (d) routes; (e) emergency preparedness and response; and (o safeguards and security. A summary of strategic actions is provided at the conclusion of Part 1. Part II, Institutional Plan for Greater-Than-Class C Low-Level Radioactive Waste Packaging and Transportation, addresses the assumptions, requirements, and institutional plan elements and actions. As documented in the Strategy and Institutional Plan, the most challenging issues facing the GTCC LLW Program shipping campaign are institutional issues closely related to the strategy. How the Program addresses those issues and demonstrates to the states, local governments, and private citizens that the shipments can and will be made safely will strongly affect the success or failure of the campaign.

  14. Greater-than-Class C low-level radioactive waste transportation regulations and requirements study. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Tyacke, M.; Schmitt, R.

    1993-07-01

    The purpose of this report is to identify the regulations and requirements for transporting greater-than-Class C (GTCC) low-level radioactive waste (LLW) and to identify planning activities that need to be accomplished in preparation for transporting GTCC LLW. The regulations and requirements for transporting hazardous materials, of which GTCC LLW is included, are complex and include several Federal agencies, state and local governments, and Indian tribes. This report is divided into five sections and three appendices. Section 1 introduces the report. Section 2 identifies and discusses the transportation regulations and requirements. The regulations and requirements are divided into Federal, state, local government, and Indian tribes subsections. This report does not identify the regulations or requirements of specific state, local government, and Indian tribes, since the storage, treatment, and disposal facility locations and transportation routes have not been specifically identified. Section 3 identifies the planning needed to ensure that all transportation activities are in compliance with the regulations and requirements. It is divided into (a) transportation packaging; (b) transportation operations; (c) system safety and risk analysis, (d) route selection; (e) emergency preparedness and response; and (f) safeguards and security. This section does not provide actual planning since the details of the Department of Energy (DOE) GTCC LLW Program have not been finalized, e.g., waste characterization and quantity, storage, treatment and disposal facility locations, and acceptance criteria. Sections 4 and 5 provide conclusions and referenced documents, respectively.

  15. Low-level radioactive waste disposal in the United States: An overview of current commercial regulations and concepts

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E. Jr.

    1993-08-01

    Commercial low-level radioactive waste disposal in the United States is regulated by the US Nuclear Regulatory Commission (NRC) under 10 CFR 61 (1991). This regulation was issued in 1981 after a lengthy and thorough development process that considered the radionuclide concentrations and characteristics associated with commercial low-level radioactive waste streams; alternatives for waste classification; alternative technologies for low-level radioactive waste disposal; and data, modeling, and scenario analyses. The development process also included the publication of both draft and final environmental impact statements. The final regulation describes the general provisions; licenses; performance objectives; technical requirements for land disposal; financial assurances; participation by state governments and Indian tribes; and records, reports, tests, and inspections. This paper provides an overview of, and tutorial on, current commercial low-level radioactive waste disposal regulations in the United States.

  16. Radioactive waste management complex low-level waste radiological composite analysis

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.; Keck, K.N.; Honeycutt, T.K.

    1998-05-01

    The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consists of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective.

  17. Biochemical process of low level radioactive liquid simulation waste containing detergent

    Energy Technology Data Exchange (ETDEWEB)

    Kundari, Noor Anis, E-mail: nooranis@batan.go.id; Putra, Sugili; Mukaromah, Umi [Sekolah Tinggi Teknologi Nuklir – Badan Tenaga Nuklir Nasional Jl. Babarsari P.O. BOX 6101 YKBB Yogyakarta 55281 Telp : (0274) 48085, 489716, Fax : (0274) 489715 (Indonesia)

    2015-12-29

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10{sup −5} Ci/m{sup 3}. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod’s model and the decreasing of COD and BOD were first order with the rate constant of 0

  18. Biochemical process of low level radioactive liquid simulation waste containing detergent

    Science.gov (United States)

    Kundari, Noor Anis; Putra, Sugili; Mukaromah, Umi

    2015-12-01

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10-5 Ci/m3. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod's model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour-1.

  19. Low-level radioactive waste source terms for the 1992 integrated data base

    Energy Technology Data Exchange (ETDEWEB)

    Loghry, S L; Kibbey, A H; Godbee, H W; Icenhour, A S; DePaoli, S M

    1995-01-01

    This technical manual presents updated generic source terms (i.e., unitized amounts and radionuclide compositions) which have been developed for use in the Integrated Data Base (IDB) Program of the U.S. Department of Energy (DOE). These source terms were used in the IDB annual report, Integrated Data Base for 1992: Spent Fuel and Radioactive Waste Inventories, Projections, and Characteristics, DOE/RW-0006, Rev. 8, October 1992. They are useful as a basis for projecting future amounts (volume and radioactivity) of low-level radioactive waste (LLW) shipped for disposal at commercial burial grounds or sent for storage at DOE solid-waste sites. Commercial fuel cycle LLW categories include boiling-water reactor, pressurized-water reactor, fuel fabrication, and uranium hexafluoride (UF{sub 6}) conversion. Commercial nonfuel cycle LLW includes institutional/industrial (I/I) waste. The LLW from DOE operations is category as uranium/thorium fission product, induced activity, tritium, alpha, and {open_quotes}other{close_quotes}. Fuel cycle commercial LLW source terms are normalized on the basis of net electrical output [MW(e)-year], except for UF{sub 6} conversion, which is normalized on the basis of heavy metal requirement [metric tons of initial heavy metal ]. The nonfuel cycle commercial LLW source term is normalized on the basis of volume (cubic meters) and radioactivity (curies) for each subclass within the I/I category. The DOE LLW is normalized in a manner similar to that for commercial I/I waste. The revised source terms are based on the best available historical data through 1992.

  20. Comparative approaches to siting low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Newberry, W.F.

    1994-07-01

    This report describes activities in nine States to select site locations for new disposal facilities for low-level radioactive waste. These nine States have completed processes leading to identification of specific site locations for onsite investigations. For each State, the status, legal and regulatory framework, site criteria, and site selection process are described. In most cases, States and compact regions decided to assign responsibility for site selection to agencies of government and to use top-down mapping methods for site selection. The report discusses quantitative and qualitative techniques used in applying top-down screenings, various approaches for delineating units of land for comparison, issues involved in excluding land from further consideration, and different positions taken by the siting organizations in considering public acceptance, land use, and land availability as factors in site selection.

  1. Shallow land burial of low-level radioactive wastes. A selected, annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Fore, C.S.; Vaughan, N.D.; Tappen, J. (comps.)

    1978-06-01

    The data file was built to provide information support to DOE researchers in the field of low-level radioactive waste disposal and management. The scope of the data base emphasizes studies which deal with the ''old'' Manhattan sites, commercial disposal sites, and the specific parameters which affect the soil and geologic migration of radionuclides. Specialized data fields have been incorporated into the data base to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the ''Measured Radionuclides'' field, and specific parameters which affect the migration of these radionuclides are presented in the ''Measured Parameters'' field. The 504 references are rated indicating applicability to shallow land burial technology and whether interpretation is required. Indexes are provided for author, geographic location, title, measured parameters, measured radionuclides, keywords, subject categories, and publication description. (DLC)

  2. Low-level radioactive waste technology: a selected, annotated bibliography. [416 references

    Energy Technology Data Exchange (ETDEWEB)

    Fore, C.S.; Carrier, R.F.; Brewster, R.H.; Hyder, L.K.; Barnes, K.A.

    1981-10-01

    This annotated bibliography of 416 references represents the third in a series to be published by the Hazardous Materials Information Center containing scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on disposal site, environmental transport, and waste treatment studies as well as general reviews on the subject. The publication covers both domestic and foreign literature for the period 1951 to 1981. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology, and Site Resources; Regulatory and Economic Aspects; Social Aspects; Transportation Technology; Waste Production; and Waste Treatment. Entries in each of the chapters are further classified as a field study, laboratory study, theoretical study, or general overview involving one or more of these research areas.

  3. Model training curriculum for Low-Level Radioactive Waste Disposal Facility Operations

    Energy Technology Data Exchange (ETDEWEB)

    Tyner, C.J.; Birk, S.M.

    1995-09-01

    This document is to assist in the development of the training programs required to be in place for the operating license for a low-level radioactive waste disposal facility. It consists of an introductory document and four additional appendixes of individual training program curricula. This information will provide the starting point for the more detailed facility-specific training programs that will be developed as the facility hires and trains new personnel and begins operation. This document is comprehensive and is intended as a guide for the development of a company- or facility-specific program. The individual licensee does not need to use this model training curriculum as written. Instead, this document can be used as a menu for the development, modification, or verification of customized training programs.

  4. Issues in the review of a license application for an above grade low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Ringenberg, J.D. [Nebraska Dept. of Environmental Quality, NE (United States)

    1993-03-01

    In December 1987, Nebraska was selected by the Central Interstate Compact (CIC) Commission as the host state for the construction of a low-level radioactive waste disposal facility. After spending a year in the site screening process, the Compact`s developer, US Ecology, selected three sites for detailed site characterization. These sites were located in Nemaha, Nuckolls and Boyd Counties. One year later the Boyd County site was selected as the preferred site and additional site characterization studies were undertaken. On July 29, 1990, US Ecology submitted a license application to the Nebraska Department of Environmental Control (now Department of Environmental Quality-NDEQ). This paper will present issues that the NDEQ has dealt with since Nebraska`s selection as the host state for the CIC facility.

  5. National profile on commercially generated low-level radioactive mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.A.; Mrochek, J.E.; Jolley, R.L.; Osborne-Lee, I.W.; Francis, A.A.; Wright, T. [Oak Ridge National Lab., TN (United States)

    1992-12-01

    This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ``National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.`` The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate the mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy`s (DOES) management of mixed waste and generally does not address wastes from remedial action activities.

  6. Performance objectives for disposal of low-level radioactive wastes on the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, D.C.

    1987-07-01

    This report presents a set of performance objectives for disposal of low-level radioactive wastes in a new facility on the Oak Ridge Reservation. The principal performance objectives include a limit on annual committed effective dose equivalent averaged over a lifetime of 0.25 mSv (25 mrem) for any member of the public beyond the boundary of the disposal facility, and a limit on annual committed effective dose equivalent averaged over a lifetime of 1 mSv (0.1 rem) and a limit on committed effective dose equivalent in any year of 5 mSv (0.5 rem) for any individual who inadvertently intrudes onto the disposal site after loss of active institutional controls. In addition, releases of radioactivity beyond the site boundary shall not result in annual dose equivalents to any number of the public from all sources of exposure that exceed limits established by Federal regulatory authorities and shall be kept as low as reasonably achievable. This report reviews generally applicable radiation protection standards for the public and environmental radiation standards for specific practices that have been developed by national and international authorities and discusses the use of limits on risk rather than dose as performance objectives and consideration of chemical toxicity rather than radiation dose in establishing limits on intakes of uranium. 63 refs., 7 figs., 2 tabs.

  7. Groundwater geochemistry near the storage sites of low-level radioactive waste: Implications for uranium migration

    Energy Technology Data Exchange (ETDEWEB)

    Gaskova, Olga L.; Boguslavsky, Anatoly E. [Institute of Geology and Mineralogy SB RAS, Ac. Koptyug prosp. 3, Novosibirsk 630090 (Russian Federation)

    2013-07-01

    This paper presents results of detailed sampling of groundwater and surface water near the storage sites of radioactive waste from the Electrochemical Plant ECP (Zelenogorsk, Krasnoyarsk region, Russia) and the Angarsk Electrolysis Chemical Complex AEC (Angarsk, Irkutsk region, Russia), both of which have produced enriched uranium since 1960's. The liquid (LRW) and solid (SRW) radioactive wastes belong to the category of low-level activity waste. The main result is that the uranium is below the recommended MPC for drinking waters in all types of groundwater around the sludge of ECP and AEC. But alkaline nitrate solutions have been penetrating and spreading into the aquifers under the LRW sludge pits. According to our calculations, redox conditions in the groundwater influenced by discharge are controlled by the couple NO{sub 3}{sup -}/NO{sub 2}{sup -} that facilitates U(VI) migration. The groundwater under SRW repositories is distinguished by its low mineralization and neutral pH. Co-contaminants, such as Mo, V, and Zr may serve as markers of techno-genous contamination in storage sites of the LRW sludge. (authors)

  8. Treatment of low level radioactive wastewater by means of NF process

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ding; Zhao, Xuan, E-mail: zhxinet@tsinghua.edu.cn; Li, Fuzhi

    2014-10-15

    Highlights: • Nanofiltration can offer one of the approaches in optimizing membrane system. • Operation parameters especially the pressure affect nuclides’ removal efficiency. • Organic polyamide membrane shows radiation resistance. • A summary of DF and flux values can be taken as reference in designing the membrane system for LLRWs treatment. - Abstract: Membrane technology has been proved as an effective technology in the treatment of low level radioactive wastewaters (LLRWs). As ‘loose reverse osmosis’, nanofiltration can be integrated with RO and offers the high permeate flux at low pressure without obvious loss of decontamination efficiency. In the paper, three kinds of commercially available NF membrane materials were investigated by lab-scale experiment with respect to the nuclide rejection. The results demonstrate the efficient elimination. The membrane flux can be improved by the elevation of temperature and cross-flow velocity within the ranges of 20–30 °C and 0.4–1.0 m s{sup −1}. The radiation resistance test demonstrates no obvious loss of flux and nuclide rejection after a long term operation in the radioactive circumstance. A brief comparison of LLRWs treatment methods shows that NF can perform the pre-treatment of RO and optimize the entire membrane system with high flux and low pressure. In the paper, decontamination factor and flux values of the tested membranes at different operation condition are summarized as the reference for membrane selection and system design.

  9. State-of-the-art report on low-level radioactive waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kibbey, A.H.; Godbee, H.W.

    1980-09-01

    An attempt is made to identify the main sources of low-level radioactive wastes that are generated in the United States. To place the waste problem in perspective, rough estimates are given of the annual amounts of each generic type of waste that is generated. Most of the wet solid wastes arise from the cleanup of gaseous and liquid radioactive streams prior to discharge or recycle. The treatment of the process streams and the secondary wet solid wastes thus generated is described for each type of government or fuel cycle installation. Similarly, the institutional wet wastes are also described. The dry wastes from all sources have smilar physical and chemical characteristics in that they can be classified as compactible, noncompactible, combustible, noncombustible, or combinations thereof. The various treatment options for concentrated or solid wet wastes and for dry wastes are discussed. Among the dry-waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting, and shredding. Organic materials can usually be incinerated or, in some cases, biodegraded. The filter sludges, spent resins, incinerator ashes, and concentrated liquids are usually solidified in cement, urea-formaldehyde, or unsaturated polyester resins prior to burial. Asphalt has not yet been used as a solidificaton agent in the United States, but it probably will be used in the near future. The treatment of radioactive medical and bioresearch wastes is described, but the waste from radiochenmical, pharmaceutical, and other industries is not well defined at the present time. Recovery of waste metals and treatment of hazardous contaminated wastes are discussed briefly. Some areas appearing to need more research, development, and demonstration are specifically pointed out.

  10. Evaluation of Activity Concentration Values and Doses due to the Transport of Low Level Radioactive Material

    Energy Technology Data Exchange (ETDEWEB)

    Rawl, Richard R [ORNL; Scofield, Patricia A [ORNL; Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL

    2010-04-01

    The International Atomic Energy Agency (IAEA) initiated an international Coordinated Research Project (CRP) to evaluate the safety of transport of naturally occurring radioactive material (NORM). This report presents the United States contribution to that IAEA research program. The focus of this report is on the analysis of the potential doses resulting from the transport of low level radioactive material. Specific areas of research included: (1) an examination of the technical approach used in the derivation of exempt activity concentration values and a comparison of the doses associated with the transport of materials included or not included in the provisions of Paragraph 107(e) of the IAEA Safety Standards, Regulations for the Safe Transport of Radioactive Material, Safety Requirements No. TS-R-1; (2) determination of the doses resulting from different treatment of progeny for exempt values versus the A{sub 1}/A{sub 2} values; and (3) evaluation of the dose justifications for the provisions applicable to exempt materials and low specific activity materials (LSA-I). It was found that the 'previous or intended use' (PIU) provision in Paragraph 107(e) is not risk informed since doses to the most highly exposed persons (e.g., truck drivers) are comparable regardless of intended use of the transported material. The PIU clause can also have important economic implications for co-mined ores and products that are not intended for the fuel cycle but that have uranium extracted as part of their industrial processing. In examination of the footnotes in Table 2 of TS-R-1, which identifies the progeny included in the exempt or A1/A2 values, there is no explanation of how the progeny were selected. It is recommended that the progeny for both the exemption and A{sub 1}/A{sub 2} values should be similar regardless of application, and that the same physical information should be used in deriving the limits. Based on the evaluation of doses due to the transport of low-level

  11. 1996 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, R.L.

    1997-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the US. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1996 and a comparison of waste volumes and radioactivity by state for 1992 through 1996; also included is a list of all commercial nuclear power reactors in the US as of December 31, 1996. This report distinguishes between low-level radioactive waste shipped directly for disposal by generators and waste that was handled by an intermediary, a reporting change introduced in the 1988 state-by-state report.

  12. Low level radioactivity measurements with phoswich detectors using coincident techniques and digital pulse processing analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fuente, R. de la [University of Leon, Escuela de Ingenieria Industrial, Leon 24071 (Spain); Celis, B. de [University of Leon, Escuela de Ingenieria Industrial, Leon 24071 (Spain)], E-mail: bcelc@unileon.es; Canto, V. del; Lumbreras, J.M. [University of Leon, Escuela de Ingenieria Industrial, Leon 24071 (Spain); Celis, Alonso B. de [King' s College London, IoP, De Crespigny Park, SE58AF (United Kingdom); Martin-Martin, A. [Laboratorio LIBRA, Edificio I-D, Paseo Belen 3. 47011 Valladolid (Spain); Departamento de Fisica Teorica, Atomica y Optica, Facultad de Ciencias. Po Prado de la Magdalena, s/n. 47005 Valladolid (Spain)], E-mail: alonsomm@libra.uva.es; Gutierrez-Villanueva, J.L. [Laboratorio LIBRA, Edificio I-D, Paseo Belen 3. 47011 Valladolid (Spain); Departamento de Fisica Teorica, Atomica y Optica, Facultad de Ciencias. Po Prado de la Magdalena, s/n. 47005 Valladolid (Spain)], E-mail: joselg@libra.uva.es

    2008-10-15

    A new system has been developed for the detection of low radioactivity levels of fission products and actinides using coincidence techniques. The device combines a phoswich detector for {alpha}/{beta}/{gamma}-ray recognition with a fast digital card for electronic pulse analysis. The phoswich can be used in a coincident mode by identifying the composed signal produced by the simultaneous detection of {alpha}/{beta} particles and X-rays/{gamma} particles. The technique of coincidences with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty (NTBT) which established the necessity of monitoring low levels of gaseous fission products produced by underground nuclear explosions. With the device proposed here it is possible to identify the coincidence events and determine the energy and type of coincident particles. The sensitivity of the system has been improved by employing liquid scintillators and a high resolution low energy germanium detector. In this case it is possible to identify simultaneously by {alpha}/{gamma} coincidence transuranic nuclides present in environmental samples without necessity of performing radiochemical separation. The minimum detectable activity was estimated to be 0.01 Bq kg{sup -1} for 0.1 kg of soil and 1000 min counting.

  13. A unique automation platform for measuring low level radioactivity in metabolite identification studies.

    Science.gov (United States)

    Krauser, Joel; Walles, Markus; Wolf, Thierry; Graf, Daniel; Swart, Piet

    2012-01-01

    Generation and interpretation of biotransformation data on drugs, i.e. identification of physiologically relevant metabolites, defining metabolic pathways and elucidation of metabolite structures, have become increasingly important to the drug development process. Profiling using (14)C or (3)H radiolabel is defined as the chromatographic separation and quantification of drug-related material in a given biological sample derived from an in vitro, preclinical in vivo or clinical study. Metabolite profiling is a very time intensive activity, particularly for preclinical in vivo or clinical studies which have defined limitations on radiation burden and exposure levels. A clear gap exists for certain studies which do not require specialized high volume automation technologies, yet these studies would still clearly benefit from automation. Use of radiolabeled compounds in preclinical and clinical ADME studies, specifically for metabolite profiling and identification are a very good example. The current lack of automation for measuring low level radioactivity in metabolite profiling requires substantial capacity, personal attention and resources from laboratory scientists. To help address these challenges and improve efficiency, we have innovated, developed and implemented a novel and flexible automation platform that integrates a robotic plate handling platform, HPLC or UPLC system, mass spectrometer and an automated fraction collector.

  14. Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

    2007-01-01

    Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

  15. Microbial degradation of low-level radioactive waste. Volume 1, Annual report for FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr.

    1994-04-01

    The Nuclear Regulatory Commission stipulates that disposed low-level radioactive waste (LLW) be stabilized. Because of apparent ease of use and normal structural integrity, cement has been widely used as a binder to solidify LLW. However, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. This report reviews laboratory efforts that are being developed to address the effects of microbiologically influenced chemical attack on cement-solidified LLW. Groups of microorganisms are being employed that are capable of metabolically converting organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this report. Sufficient data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW has been developed during the course of this study. These data support the continued development of appropriate tests necessary to determine the resistance of cement-solidified LLW to microbially induced degradation that could impact the stability of the waste form. They also justify the continued effort of enumeration of the conditions necessary to support the microbiological growth and population expansion.

  16. Hydrogeology of a low-level radioactive-waste disposal site near Sheffield, Illinois

    Science.gov (United States)

    Foster, J.B.; Erickson, J.R.; Healy, R.W.

    1984-01-01

    The Sheffield low-level radioactive-waste facility is located on 20 acres of rolling terrain 3 miles southwest of Sheffield, Illinois. The shallow hydrogeologic system is composed of glacial sediments. Pennsylvania shale and mudstone bedrock isolate the regional aquifers below from the hydrogeologic system in the overlying glacial deposits. Pebbly sand underlies 67 percent of the site. Two ground-water flow paths were identified. The primary path conveys ground water from the site to the east through the pebbly-sand unit; a secondary path conveys ground water to the south and east through less permeable material. The pebbly-sand unit provides an underdrain that eliminates the risk of water rising into the trenches. Digital computer model results indicate that the pebbly-sand unit controls ground-water movement. Tritium found migrating in ground water in the southeast corner of the site travels approximately 25 feet per year. A group of water samples from wells which contained the highest tritium concentrations had specific conductivities, alkalinities, hardness, and chloride, sulfate, calcium, and magnesium contents higher than normal for local shallow ground water. (USGS)

  17. Analysis of source term modeling for low-level radioactive waste performance assessments

    Energy Technology Data Exchange (ETDEWEB)

    Icenhour, A.S.

    1995-03-01

    Site-specific radiological performance assessments are required for the disposal of low-level radioactive waste (LLW) at both commercial and US Department of Energy facilities. This work explores source term modeling of LLW disposal facilities by using two state-of-the-art computer codes, SOURCEI and SOURCE2. An overview of the performance assessment methodology is presented, and the basic processes modeled in the SOURCE1 and SOURCE2 codes are described. Comparisons are made between the two advective models for a variety of radionuclides, transport parameters, and waste-disposal technologies. These comparisons show that, in general, the zero-order model predicts undecayed cumulative fractions leached that are slightly greater than or equal to those of the first-order model. For long-lived radionuclides, results from the two models eventually reach the same value. By contrast, for short-lived radionuclides, the zero-order model predicts a slightly higher undecayed cumulative fraction leached than does the first-order model. A new methodology, based on sensitivity and uncertainty analyses, is developed for predicting intruder scenarios. This method is demonstrated for {sup 137}Cs in a tumulus-type disposal facility. The sensitivity and uncertainty analyses incorporate input-parameter uncertainty into the evaluation of a potential time of intrusion and the remaining radionuclide inventory. Finally, conclusions from this study are presented, and recommendations for continuing work are made.

  18. A unique automation platform for measuring low level radioactivity in metabolite identification studies.

    Directory of Open Access Journals (Sweden)

    Joel Krauser

    Full Text Available Generation and interpretation of biotransformation data on drugs, i.e. identification of physiologically relevant metabolites, defining metabolic pathways and elucidation of metabolite structures, have become increasingly important to the drug development process. Profiling using (14C or (3H radiolabel is defined as the chromatographic separation and quantification of drug-related material in a given biological sample derived from an in vitro, preclinical in vivo or clinical study. Metabolite profiling is a very time intensive activity, particularly for preclinical in vivo or clinical studies which have defined limitations on radiation burden and exposure levels. A clear gap exists for certain studies which do not require specialized high volume automation technologies, yet these studies would still clearly benefit from automation. Use of radiolabeled compounds in preclinical and clinical ADME studies, specifically for metabolite profiling and identification are a very good example. The current lack of automation for measuring low level radioactivity in metabolite profiling requires substantial capacity, personal attention and resources from laboratory scientists. To help address these challenges and improve efficiency, we have innovated, developed and implemented a novel and flexible automation platform that integrates a robotic plate handling platform, HPLC or UPLC system, mass spectrometer and an automated fraction collector.

  19. Environmental assessment for Sandia National Laboratories/New Mexico offsite transportation of low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is managed and operated by Sandia Corporation, a Lockheed Martin Company. SNL/NM is located on land owned by the U.S. Department of Energy (DOE) within the boundaries of the Kirtland Air Force Base (KAFB) in Albuquerque, New Mexico. The major responsibilities of SNL/NM are the support of national security and energy projects. Low-level radioactive waste (LLW) is generated by some of the activities performed at SNL/NM in support of the DOE. This report describes potential environmental effects of the shipments of low-level radioactive wastes to other sites.

  20. 1997 State-by-State Assessment of Low-Level Radioactive Wastes Received at Commercial Disposal Sites

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, R. L.

    1998-08-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the United States. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1997 and a comparison of waste volumes and radioactivity by state for 1993 through 1997; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1997.

  1. 1987 annual report on low-level radioactive waste management progress: Report to Congress in response to Public Law 99-240

    Energy Technology Data Exchange (ETDEWEB)

    1988-08-01

    In response to Section 7(b) of the Low-Level Radioactive Waste Policy Amendments Act of 1985 (Public Law 99-240), this report summarizes the progress of states and low-level radioactive waste compacts in 1987 in establishing new low-level waste disposal facilities. It also reports the volume of low-level waste received for disposal in 1987 by commercially operated low-level waste disposal facilities.

  2. Use of engineered soils and other site modifications for low-level radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    The U.S. Nuclear Regulatory Commission requires that low-level radioactive waste (LLW) disposal facilities be designed to minimize contact between waste and infiltrating water through the use of site design features. The purpose of this investigation is to identify engineered barriers and evaluate their ability to enhance the long-term performance of an LLW disposal facility. Previously used barriers such as concrete overpacks, vaults, backfill, and engineered soil covers, are evaluated as well as state-of-the-art barriers, including an engineered sorptive soil layer underlying a facility and an advanced design soil cover incorporating a double-capillary layer. The purpose of this investigation is also to provide information in incorporating or excluding specific engineered barriers as part of new disposal facility designs. Evaluations are performed using performance assessment modeling techniques. A generic reference disposal facility design is used as a baseline for comparing the improvements in long-term performance offered by designs incorporating engineered barriers in generic and humid environments. These evaluations simulate water infiltration through the facility, waste leaching, radionuclide transport through the facility, and decay and ingrowth. They also calculate a maximum (peak annual) dose for each disposal system design. A relative dose reduction factor is calculated for each design evaluated. The results of this investigation are presented for concrete overpacks, concrete vaults, sorptive backfill, sorptive engineered soil underlying the facility, and sloped engineered soil covers using a single-capillary barrier and a double-capillary barrier. Designs using combinations of barriers are also evaluated. These designs include a vault plus overpacks, sorptive backfill plus overpacks, and overpack with vault plus sorptive backfill, underlying sorptive soil, and engineered soil cover.

  3. Intruder scenarios for site-specific low-level radioactive waste classification

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E. Jr.; Peloquin, R.A.

    1988-09-01

    The US Department of Energy (DOE) has revised its low-level radioactive waste (LLW) management requirements and guidelines for waste generated at its facilities supporting defense missions. Specifically, draft DOE Order 5820.2A, Chapter 3 describes the purpose, policy, and requirements necessary for the management of defense LLW. The draft DOE policy calls for LLW operations to be managed to protect the health and safety of the public, preserve the environment, and ensure that no remedial action will be necessary after termination of operations. The basic approach used by DOE is to establish overall performance objectives, in terms of groundwater protection and public radiation dose limits, and to require site-specific performance assessments to determine compliance. As a result of these performance assessments, each site will develop waste acceptance criteria that define the allowable quantities and concentrations of specific radioisotopes. Additional limitations on waste disposal design, waste form, and waste treatment will also be developed on a site-specific basis. As a key step in the site-specific performance assessments, an evaluation must be conducted of potential radiation doses to intruders who may inadvertently move onto a closed DOE LLW disposal site after loss of institutional controls. This report (1) describes the types of intruder scenarios that should be considered when performing this step of the site-specific performance assessment, (2) provides the results of generic calculations performed using unit concentrations of various radionuclides as a comparison of the magnitude of importance of the various intruder scenarios, and (3) shows the relationship between the generic doses and waste classification limits for defense wastes.

  4. EDTA fouling in dead-end ultrafiltration of low level radioactive wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Lixia [Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 (China); Zhang, Xue [Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Zhao, Xuan, E-mail: zhxinet@mail.tsinghua.edu.cn [Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Hu, Hongying [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China); State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 (China)

    2015-12-15

    Highlights: • EDTA in LLRW caused unrecoverable UF membrane fouling. • The rejection of nuclides by UF was significantly enhanced with EDTA addition. • The nuclide (except Ag) deposition on membrane increased with EDTA addition. • Reducing EDTA in the feed water or alkaline/ultrasonic washing were suggested. - Abstract: EDTA is widely used as a detergent, and finally enters into wastewater. The influence of EDTA on ultrafiltration of low level radioactive wastewater (LLRW) was investigated under different operation conditions. As the main organic pollutant, EDTA led to unrecoverable membrane fouling and the normalized flux decreased from 100% to 85% depending on its concentration. The clogging caused by EDTA increased the surface roughness of the membrane, leading to the flux reduction. Both nuclide rejections and depositions on the membrane surfaces were enhanced with EDTA addition, due to the strong complexation of the nuclides with EDTA. However, Ag deposition on the membrane decreased slightly in the presence of EDTA, which may be caused by the stronger attraction of Ag to the unmodified membrane than that to the EDTA-modified one. Transmembrane pressure (TMP) and molecular weight cut off (MWCO) of membranes had negligible effects on membrane fouling, while the nuclide rejections by membrane and the depositions of nuclides on membrane both decreased significantly when the TMP increased to 0.2 MPa and MWCO increased from 5 kDa to 30 kDa. Based on these results, it clearly showed that EDTA even at a low concentration had strong effects on the performance of UF treating LLRW. Therefore, it is suggested for industrial application that pretreatments to reduce EDTA or alkaline/ultrasonic washing involved in UF process were necessary to reduce the nuclide depositions on the membrane surfaces and irradiation dose of membrane surface.

  5. Storage for greater-than-Class C low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Beitel, G.A. [EG and G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.

    1991-12-31

    EG and G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL) is actively pursuing technical storage alternatives for greater-than-Class C low-level radioactive waste (GTCC LLW) until a suitable licensed disposal facility is operating. A recently completed study projects that between 2200 and 6000 m{sup 3} of GTCC LLW will be generated by the year 2035; the base case estimate is 3250 m{sup 3}. The current plan envisions a disposal facility available as early as the year 2010. A long-term dedicated storage facility could be available in 1997. In the meantime, it is anticipated that a limited number of sealed sources that are no longer useful and have GTCC concentrations of radionuclides will require storage. Arrangements are being made to provide this interim storage at an existing DOE waste management facility. All interim stored waste will subsequently be moved to the dedicated storage facility once it is operating. Negotiations are under way to establish a host site for interim storage, which may be operational, at the earliest, by the second quarter of 1993. Two major activities toward developing a long-term dedicated storage facility are ongoing. (a) An engineering study, which explores costs for alternatives to provide environmentally safe storage and satisfy all regulations, is being prepared. Details of some of the findings of that study will be presented. (b) There is also an effort under way to seek the assistance of one or more private companies in providing dedicated storage. Alternatives and options will be discussed.

  6. Estimating Radiological Doses to Predators Foraging in a Low-Level Radioactive Waste Management Area

    Energy Technology Data Exchange (ETDEWEB)

    L.Soholt; G.Gonzales; P.Fresquez; K.Bennett; E.Lopez

    2003-03-01

    Since 1957, Los Alamos National Laboratory has operated Area G as its low-level, solid radioactive waste management and disposal area. Although the waste management area is developed, plants, small mammals, and avian and mammalian predators still occupy the less disturbed and revegetated portions of the land. For almost a decade, we have monitored the concentrations of selected radionuclides in soils, plants, and small mammals at Area G. The radionuclides tritium, plutonium-238, and plutonium-239 are regularly found at levels above regional background in all three media. Based on radionuclide concentrations in mice collected from 1994 to 1999, we calculated doses to higher trophic levels (owl, hawk, kestrel, and coyote) that forage on the waste management area. These predators play important functions in the regional ecosystems and are an important part of local Native American traditional tales that identify the uniqueness of their culture. The estimated doses are compared to Department of Energy's interim limit of 0.1 rad/day for the protection of terrestrial wildlife. We used exposure parameters that were derived from the literature for each receptor, including Environmental Protection Agency's exposure factors handbook. Estimated doses to predators ranged from 9E-06 to 2E-04 rad/day, assuming that they forage entirely on the waste management area. These doses are greater than those calculated for predators foraging exclusively in reference areas, but are still well below the interim dose limit. We believe that these calculated doses represent upper-bound estimates of exposure for local predators because the larger predators forage over areas that are much greater than the 63-acre waste management area. Based on these results, we concluded that predators foraging on this area do not face a hazard from radiological exposure under current site conditions.

  7. A survey of low-level radioactive waste treatment methods and problem areas associated with commercial nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R.L.; Rodgers, B.R.

    1987-01-01

    A survey was made (June 1985) of technologies that were currently being used, those that had been discontinued, and those that were under consideration for treatment of low-level radioactive waste from the commercial nuclear power plants in the United States. The survey results included information concerning problems areas, areas needing research and development, and the use of mobile treatment facilities.

  8. Several Opinions on Very Low Level Radioactive Waste%浅谈极低放射性废物

    Institute of Scientific and Technical Information of China (English)

    徐春艳; 杨海峰

    2011-01-01

    介绍了国际国内极低放射性废物的定义以及活度上限值的确定依据,并介绍了国内外的处置方法,以期对我国的放射性废物分类管理、审评和监督有所帮助。%This article sums up international experience about the classification principle, disposal and specific activity limits of very low level radioactive waste, and introduces practice on very low level radioactive waste disposal. The author hopes this will be helpful in the field of radioactive waste manage- ment, review and inspection.

  9. A Probabilistic Performance Assessment Study of Potential Low-Level Radioactive Waste Disposal Sites in Taiwan

    Science.gov (United States)

    Knowlton, R. G.; Arnold, B. W.; Mattie, P. D.; Kuo, M.; Tien, N.

    2006-12-01

    For several years now, Taiwan has been engaged in a process to select a low-level radioactive waste (LLW) disposal site. Taiwan is generating LLW from operational and decommissioning wastes associated with nuclear power reactors, as well as research, industrial, and medical radioactive wastes. The preliminary selection process has narrowed the search to four potential candidate sites. These sites are to be evaluated in a performance assessment analysis to determine the likelihood of meeting the regulatory criteria for disposal. Sandia National Laboratories and Taiwan's Institute of Nuclear Energy Research have been working together to develop the necessary performance assessment methodology and associated computer models to perform these analyses. The methodology utilizes both deterministic (e.g., single run) and probabilistic (e.g., multiple statistical realizations) analyses to achieve the goals. The probabilistic approach provides a means of quantitatively evaluating uncertainty in the model predictions and a more robust basis for performing sensitivity analyses to better understand what is driving the dose predictions from the models. Two types of disposal configurations are under consideration: a shallow land burial concept and a cavern disposal concept. The shallow land burial option includes a protective cover to limit infiltration potential to the waste. Both conceptual designs call for the disposal of 55 gallon waste drums within concrete lined trenches or tunnels, and backfilled with grout. Waste emplaced in the drums may be solidified. Both types of sites are underlain or placed within saturated fractured bedrock material. These factors have influenced the conceptual model development of each site, as well as the selection of the models to employ for the performance assessment analyses. Several existing codes were integrated in order to facilitate a comprehensive performance assessment methodology to evaluate the potential disposal sites. First, a need

  10. LOW LEVEL LIQUID RADIOACTIVE WASTE TREATMENT AT MURMANSK, RUSSIA: FACILITY UPGRADE AND EXPANSION

    Energy Technology Data Exchange (ETDEWEB)

    BOWERMAN,B.; CZAJKOWSKI,C.; DYER,R.S.; SORLIE,A.

    2000-03-01

    Today there exist many almost overfilled storage tanks with liquid radioactive waste in the Russian Federation. This waste was generated over several years by the civil and military utilization of nuclear power. The current waste treatment capacity is either not available or inadequate. Following the London Convention, dumping of the waste in the Arctic seas is no longer an alternative. Waste is being generated from today's operations, and large volumes are expected to be generated from the dismantling of decommissioned nuclear submarines. The US and Norway have an ongoing co-operation project with the Russian Federation to upgrade and expand the capacity of a treatment facility for low level liquid waste at the RTP Atomflot site in Murmansk. The capacity will be increased from 1,200 m{sup 3}/year to 5,000 m{sup 3} /year. The facility will also be able to treat high saline waste. The construction phase will be completed the first half of 1998. This will be followed by a start-up and a one year post-construction phase, with US and Norwegian involvement for the entire project. The new facility will consist of 9 units containing various electrochemical, filtration, and sorbent-based treatment systems. The units will be housed in two existing buildings, and must meet more stringent radiation protection requirements that were not enacted when the facility was originally designed. The US and Norwegian technical teams have evaluated the Russian design and associated documentation. The Russian partners send monthly progress reports to US and Norway. Not only technical issues must be overcome but also cultural differences resulting from different methods of management techniques. Six to eight hour time differentials between the partners make real time decisions difficult and relying on electronic age tools becomes extremely important. Language difficulties is another challenge that must be solved. Finding a common vocabulary, and working through interpreters make the

  11. Potential impacts of 40 CFR 193 on the development of low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, R.A. [Texas Low-Level Radioactive Waste Disposal Authority, Austin, TX (United States)

    1989-11-01

    Since the publication of the Advanced Notice of Proposed Rulemaking in August, 1983, the proposed environmental regulations regarding low-level radioactive waste have become a serious uncertainty in the development of new low-level radioactive waste disposal facilities. The proposed rule has been discussed on several occasions by the Technical Coordinating Committee and the purpose of this paper is to present the results of the Committee`s discussions regarding the proposed rule. The proposed standard has several closely related elements. The rule would prescribe limits on radiation exposure to individuals during processing, management and storage of low-level radioactive waste. It would set BRC levels and also set dose standards for the period following site closure. An important portion of the standard, as far as developing new facilities, is the ground water protection standard. The comments received during developing of 40 CFR 193 has also led the Environmental Protection Agency to propose 40 CFR 764 governing the disposal of naturally occurring radioactive material or NORM.

  12. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

  13. Practical Work Using Low-Level Radioactive Materials Available to the Public

    Science.gov (United States)

    Whitcher, Ralph

    2011-01-01

    These notes describe six practical activities for supplementing standard practical work in radioactivity. They are based on a series of workshops given at ASE regional and national conferences by the ASE's Safeguards in Science Committee. The activities, which demonstrate aspects of radioactivity, feature consumer items that happen to be…

  14. Analysis of the low-level waste radionuclide inventory for the Radioactive Waste Management Complex performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Plansky, L.E.; Hoiland, S.A.

    1992-02-01

    This report summarizes the results of a study to improve the estimates of the radionuclides in the low-level radioactive waste (LLW) inventory which is buried in the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC) Subsurface Disposal Area (SDA). The work is done to support the RWMC draft performance assessment (PA). Improved radionuclide inventory estimates are provided for the INEL LLW generators. Engineering, environmental assessment or other research areas may find use for the information in this report. It may also serve as a LLW inventory baseline for data quality assurance. The individual INEL LLW generators, their history and their activities are also described in detail.

  15. Complex-wide review of DOE`s management of low-level radioactive waste - progress to date

    Energy Technology Data Exchange (ETDEWEB)

    Letourneau, M.J.

    1995-12-31

    The Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-2 includes a recommendation that the Department of Energy (DOE) conduct a comprehensive, complex-wide review of the low-level waste issue to establish the dimensions of the low-level waste problem and to identify necessary corrective actions to address the safe disposition of past, present, and future volumes. DOE`s Implementation Plan calls for the conduct of a complex-wide review of low-level radioactive waste treatment, storage, and disposal sites to identify environmental, safety, and health vulnerabilities. The complex-wide review focuses on low-level waste disposal facilities through a site evaluation survey, reviews of existing documentation, and onsite observations. Low-level waste treatment and storage facilities will be assessed for their ability to meet waste acceptance criteria for disposal. Results from the complex-wide review will be used to form the basis for an integrated and planned set of actions to correct the identified vulnerabilities and to prompt development of new requirements for managing low-level waste.

  16. Expediting the commercial disposal option: Low-level radioactive waste shipments from the Mound Plant

    Energy Technology Data Exchange (ETDEWEB)

    Rice, S.; Rothman, R.

    1995-12-31

    In April, Envirocare of Utah, Inc., successfully commenced operation of its mixed waste treatment operation. A mixed waste which was (a) radioactive, (b) listed as a hazardous waste under the Resource Conservation and Recovery Act (RCRA), and (c) prohibited from land disposal was treated using Envirocare`s full-scale Mixed Waste Treatment Facility. The treatment system involved application of chemical fixation/stabilization technologies to reduce the leachability of the waste to meet applicable concentration-based RCRA treatment standards. In 1988, Envirocare became the first licensed facility for the disposal of naturally occurring radioactive material. In 1990, Envirocare received a RCRA Part B permit for commercial mixed waste storage and disposal. In 1994, Envirocare was awarded a contract for the disposal of DOE mixed wastes. Envirocare`s RCRA Part B permit allows for the receipt, storage, treatment, and disposal of mixed wastes that do not meet the land-disposal treatment standards of 40 CFR (Code of Federal Regulations) 268. Envirocare has successfully received, managed, and disposed of naturally occurring radioactive material, low-activity radioactive waste, and mixed waste from government and private generators.

  17. Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A.A. [Westinghouse Hanford Co., Richland, WA (United States); Olson, R.A.; Tennis, P.D. [Northwestern Univ., Evanston, IL (United States). Center for Advanced Cement-Based Materials] [and others

    1995-04-01

    Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter, the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.

  18. Stability of a nanofiltration membrane after contact with a low-level liquid radioactive waste

    Directory of Open Access Journals (Sweden)

    Elizabeth Eugenio de Mello Oliveira

    2013-01-01

    Full Text Available This study investigated the treatment of a liquid radioactive waste containing uranium (235U + 238U using nanofiltration membranes. The membranes were immersed in the waste for 24-5000 h, and their transport properties were evaluated before and after the immersion. Surface of the membranes changed after immersion in the waste. The SW5000 h specimen lost its coating layer of polyvinyl alcohol, and its rejection of sulfate ions and uranium decreased by about 35% and 30%, respectively. After immersion in the waste, the polyamide selective layer of the membranes became less thermally stable than that before immersion.

  19. [Manufacture and Utilization of a Low-level Radioactive 68Ge/68Ga Generator in a Radiochemistry Laboratory Course].

    Science.gov (United States)

    Washiyama, Kohshin; Amano, Ryohei; Nozaki, Tadashi; Ogawa, Koji; Nagatsu, Kotaro; Sakama, Minoru; Ido, Tatuo; Yamaguchi, Hiroshi

    2015-10-01

    The low-level radioactivity of a (68)Ge/(68)Ga generator is a suitable tool for measuring radioactive growth and decay after (68)Ga milking due to their desirable nuclear decay properties, such as the EC decay of (68)Ge with no γ-ray emission andthe β(+) decay of (68)Ga with a weak γ-ray emission. To experience andund erstandrad ioactive equilibrium during a university laboratory course, we surveyedandtestedthe production of a small amount of (68)Ge and set up educational programs to manufacture a (68)Ge/(68)Ga generator for measuring the growth andd ecay of (68)Ga. The irradiation of natGa with 25 μA of a 30 MeV proton beam from a cyclotron for 4 h yields ca. 111 MBq of (68)Ge, which was sufficient to supply to several universities. For use as the adsorbent of the generator column, particles of hydrated tin (VI) oxide were prepared from precipitated tin hydroxide gel. Repeated elution of (68)Ga from the handmade (68)Ge/(68)Ga generator gave constant amounts of (68)Ga with acceptable breakthrough of (68)Ge. The feedback from the student's experience with the (68)Ge/(68)Ga generator was evaluatedby annual questionnaire surveys, which were given to all students taking the course every year from 2012 to 2014. It has been made clear that more than half of the students were interested in the (68)Ge/(68)Ga generator program, andthis interest increasedfrom 54.9%in 2012 to 78.6%in 2014. A low-level radioactive (68)Ge/(68)Ga generator is thus expectedto be a suitable experimental tool for demonstrating the phenomenon of radioactivity to students in an intriguing way.

  20. Low-level radioactive waste (LLW) management at the Nevada Test Site (NTS)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, B.D. [Bechtel Nevada, Inc., Las Vegas, NV (United States); Gertz, C.P.; Clayton, W.A.; Crowe, B.M. [Dept. of Energy, Las Vegas, NV (United States). Nevada Operations Office

    1998-12-31

    In 1978, the Department of Energy, Nevada Operations Office (DOE/NV), established a managed LLW disposal project at the Nevada Test Site (NTS). Two, sites which were already accepting limited amounts of on-site generated waste for disposal and off-site generated Transuranic Waste for interim storage, were selected to house the disposal facilities. In those early days, these sites, located about 15 miles apart, afforded the DOE/NV the opportunity to use at least two technologies to manage its waste cost effectively. The Area 5 Radioactive Waste Management Site (RWMS) uses engineered shallow-land burial cells to dispose packaged waste while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. The paper describes the technical attributes of both Area 5 and Area 3 facilities, the acceptance process, the disposal processes, and present and future capacities of both sites.

  1. Developing a low-level radioactive waste disposal facility in Connecticut: Update on progress and new directions

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, R.E. [Connecticut Hazardous Waste Management Service, Hartford, CT (United States)

    1993-03-01

    Connecticut is a member of the Northeast Interstate Low-Level Radioactive Waste Management Compact (Northeast LLRW Compact). The other member of the Northeast LLRW Compact is New Jersey. The Northeast Interstate Low-Level Radioactive Waste Commission (Northeast Compact Commission), the Northeast LLRW Compact`s governing body, has designated both Connecticut and New Jersey as host states for disposal facilities. The Northeast Compact Commission has recommended that, for purposes of planning for each state`s facility, the siting agency for the state should use projected volumes and characteristics of the LLW generated in its own state. In 1987 Connecticut enacted legislation that assigns major responsibilities for developing a LLW disposal facility in Connecticut to the Connecticut Hazardous Waste Management Service (CHWMS). The CHWMS is required to: prepare and revise, as necessary, a LLW Management Plan for the state; select a site for a LLW disposal facility; select a disposal technology to be used at the site; select a firm to obtain the necessary approvals for the facility and to develop and operate it; and serve as the custodial agency for the facility. This paper discusses progress in developing a facility.

  2. High-temperature vitrification of low-level radioactive and hazardous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, R.F.; Kielpinski, A.L.; Bickford, D.F.; Cicero, C.A.; Applewhite-Ramsey, A.; Spatz, T.L.; Marra, J.C.

    1995-12-01

    The US Department of Energy (DOE) weapons complex has numerous radioactive waste streams which cannot be easily treated with joule-heated vitrification systems. However, it appears these streams could be treated With certain robust, high-temperature, melter technologies. These technologies are based on the use of plasma torch, graphite arc, and induction heating sources. The Savannah River Technology Center (SRTC), with financial support from the Department of Energy, Office of Technology Development (OTD) and in conjunction with the sites within the DOE weapons complex, has been investigating high-temperature vitrification technologies for several years. This program has been a cooperative effort between a number of nearby Universities, specific sites within the DOE complex, commercial equipment suppliers and the All-Russian Research Institute of Chemical Technology. These robust vitrification systems appear to have advantages for the waste streams containing inorganic materials in combination with significant quantities of metals, organics, salts, or high temperature materials. Several high-temperature technologies were selected and will be evaluated and employed to develop supporting technology. A general overview of the SRTC ``High-Temperature Program`` will be provided.

  3. Subsurface disposal of liquid low-level radioactive wastes at Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Stow, S.H.; Haase, C.S.

    1986-01-01

    At Oak Ridge National Laboratory (ORNL) subsurface injection has been used to dispose of low-level liquid nuclear waste for the last two decades. The process consists of mixing liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of 300 m (1000 ft). The slurry spreads from the injection well along bedding plane fractures and forms solid grout sheets of up to 200 m (660 ft) in radius. Using this process, ORNL has disposed of over 1.5 x 10/sup 6/ Ci of activity; the principal nuclides are /sup 90/Sr and /sup 137/Cs. In 1982, a new injection facility was put into operation. Each injection, which lasts some two days, results in the emplacement of approximately 750,000 l (180,000 gal) of slurry. Disposal cost per liter is approximately $0.30, including capital costs of the facility. This subsurface disposal process is fundamentally different from other operations. Wastes are injected into a low-permeability aquitard, and the process is designed to isolate nuclides, preventing dispersion in groundwaters. The porosity into which wastes are injected is created by hydraulically fracturing the host formation along bedding planes. The site is in the structurally complex Valley and Ridge Province. The stratigraphy consists of lower Paleozoic rocks. Investigations are under way to determine the long-term hydrologic isolation of the injection zone and the geochemical impact of saline groundwater on nuclide mobility. Injections are monitored by gamma-ray logging of cased observation wells to determine grout sheet orientation after an injection. Recent monitoring work has involved the use of tiltmeters, surface uplift surveys, and seismic arrays. 26 refs., 7 figs.

  4. Removal of radioactive caesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger.

    Science.gov (United States)

    Valsala, T P; Roy, S C; J G Shah; Gabriel, J; Raj, Kanwar; Venugopal, V

    2009-07-30

    The volumes of low level waste (LLW) generated during the operation of nuclear reactor are very high and require a concentration step before suitable matrix fixation. The volume reduction (concentration) is achieved either by co-precipitating technique or by the use of highly selective sorbents and ion exchange materials. The present study details the preparation of cobalt ferrocyanide impregnated into anion exchange resin and its evaluation with respect to removal of Cs in LLW streams both in column mode and batch mode operations. The Kd values of the prepared exchanger materials were found to be very good in actual reactor LLW solutions also. It was observed that the exchanger performed very well in the pH range of 3-9. A batch size of 6 g l(-1) of the exchanger was enough to give satisfactory decontamination for Cs in actual reactor LLW streams. The lab scale and pilot plant scale performance of the exchanger material in both batch mode and column mode operations was very good.

  5. The impact of low level radioactive waste on humans and environment the next 100 thousands years

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, E.; Saetre, P.; Lindborg, T.; Norden, S.; Kautsky, U. [Svensk Kaernbraenslehantering AB - SKB (Sweden); Loefgren, A. [Ecoanalytica, Stockholm (Sweden)

    2014-07-01

    A safety assessment for the extension of the low level repository of operational waste (SFR) has been performed (SR-PSU). The repository (both existing and planned extension) is situated c 60 - 120 m below the surface in archaean granitoid rock. SR-PSU evaluates the risk to humans and the environment for the next 100 000 years. During this time period considerable changes are expected in the surface environment due climate change and its effects on shore line displacement, terrestrialisation of lakes and expansion of forest and agricultural land. In this paper specific approaches and results for the surface ecosystems (i.e. biosphere) are presented. The transport and accumulation of radionuclides in marine, lake, and terrestrial ecosystems are modelled and expose of future human populations during present conditions, greenhouse warming, and peri-glacial climate conditions are estimated taking into account different habits and diets of future humans. A new radionuclide transport model was developed to improve the representation of C-14 in the ecosystem modelling. In SR-PSU it is shown that the primary release from the repository via the geosphere to the biosphere is focused to a small area that will be a mire in about 1000 year. The radionuclides can thereafter be transported to downstream lakes and sea ecosystems. The aquatic systems can be utilised for fish and water whereas the mire can either be utilised directly by e.g. collecting, mushroom berries, hay, or hunting, or the mire can be transformed to a small agricultural area and utilised for crops. Important dose contributing radionuclides from SFR are Cl-36, Mo-93, C-14, Ni-59 and I-129 and in some of the scenarios the dose is close to the regulatory limit of 14 μSv/y (i.e. the risk 10{sup -6}). For Non-human biota (NHB) doses are estimated with a novel implementation of the ERICA tool in Ecolego. Generally the same radionuclides contributes to dose to NHB (reference organisms and site -specific organisms) as

  6. Low-level radioactive waste from commercial nuclear reactors. Volume 2. Treatment, storage, disposal, and transportation technologies and constraints

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R.L.; Dole, L.R.; Godbee, H.W.; Kibbey, A.H.; Oyen, L.C.; Robinson, S.M.; Rodgers, B.R.; Tucker, R.F. Jr.

    1986-05-01

    The overall task of this program was to provide an assessment of currently available technology for treating commercial low-level radioactive waste (LLRW), to initiate development of a methodology for choosing one technology for a given application, and to identify research needed to improve current treatment techniques and decision methodology. The resulting report is issued in four volumes. Volume 2 discusses the definition, forms, and sources of LLRW; regulatory constraints affecting treatment, storage, transportation, and disposal; current technologies used for treatment, packaging, storage, transportation, and disposal; and the development of a matrix relating treatment technology to the LLRW stream as an aid for choosing methods for treating the waste. Detailed discussions are presented for most LLRW treatment methods, such as aqueous processes (e.g., filtration, ion exchange); dewatering (e.g., evaporation, centrifugation); sorting/segregation; mechanical treatment (e.g., shredding, baling, compaction); thermal processes (e.g., incineration, vitrification); solidification (e.g., cement, asphalt); and biological treatment.

  7. Evaluation of Department of Energy-Held Potential Greater-Than-Class C Low-Level Radioactive Waste. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    A number of commercial facilities have generated potential greater-than-Class C low-level radioactive waste (GTCC LLW), and, through contractual arrangements with the US Department of Energy (DOE) or for health and safety reasons, DOE is storing the waste. This report presents the results of an assessment conducted by the GTCC LLW Management Program to consider specific circumstances under which DOE accepted the waste, and to determine whether disposal in a facility licensed by the US Nuclear Regulatory Commission, or by DOE in a nonlicensed facility, is appropriate. Input from EG&G Idaho, Inc., and DOE Idaho Operations Office legal departments concerning the disposal requirements of this waste were the basis for the decision process used in this report.

  8. Environmental monitoring report for commercial low-level radioactive waste disposal sites (1960`s through 1990`s)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    During the time period covered in this report (1960`s through early 1990`s), six commercial low-level radioactive waste (LLRW) disposal facilities have been operated in the US. This report provides environmental monitoring data collected at each site. The report summarizes: (1) each site`s general design, (2) each site`s inventory, (3) the environmental monitoring program for each site and the data obtained as the program has evolved, and (4) what the program has indicated about releases to off-site areas, if any, including a statement of the actual health and safety significance of any release. A summary with conclusions is provided at the end of each site`s chapter. The six commercial LLRW disposal sites discussed are located near: Sheffield, Illinois; Maxey Flats, Kentucky; Beatty, Nevada; West Valley, New York; Barnwell, South Carolina; Richland, Washington.

  9. Discovery of underground argon with low level of radioactive 39Ar and possible applications to WIMP dark matter detectors

    CERN Document Server

    Galbiati, C

    2007-01-01

    We report on the first measurement of 39Ar in argon from underground natural gas reservoirs. The gas stored in the US National Helium Reserve was found to contain a low level of 39Ar. The ratio of 39Ar to stable argon was found to be <=4x10-17 (84% C.L.), less than 5% the value in atmospheric argon (39Ar/Ar=8x10-16). The total quantity of argon currently stored in the National Helium Reserve is estimated at 1000 tons. 39Ar represents one of the most important backgrounds in argon detectors for WIMP dark matter searches. The findings reported demonstrate the possibility of constructing large multi-ton argon detectors with low radioactivity suitable for WIMP dark matter searches.

  10. Remote Sensing Analysis of the Sierra Blanca (Faskin Ranch) Low-Level Radioactive Waste Disposal Site, Hudspeth County, Texas

    Energy Technology Data Exchange (ETDEWEB)

    LeMone, D. V.; Dodge, R.; Xie, H.; Langford, R. P.; Keller, G. R.

    2002-02-26

    Remote sensing images provide useful physical information, revealing such features as geological structure, vegetation, drainage patterns, and variations in consolidated and unconsolidated lithologies. That technology has been applied to the failed Sierra Blanca (Faskin Ranch) shallow burial low-level radioactive waste disposal site selected by the Texas Low-Level Radioactive Waste Disposal Authority. It has been re-examined using data from LANDSAT satellite series. The comparison of the earlier LANDSAT V (5/20/86) (30-m resolution) with the later new, higher resolution ETM imagery (10/23/99) LANDSAT VII data (15-m resolution) clearly shows the superiority of the LANDSAT VII data. The search for surficial indications of evidence of fatal flaws at the Sierra Blanca site utilizing was not successful, as it had been in the case of the earlier remote sensing analysis of the failed Fort Hancock site utilizing LANDSAT V data. The authors conclude that the tectonic activity at the Sierra Blanca site is much less recent and active than in the previously studied Fort Hancock site. The Sierra Blanca site failed primarily on the further needed documentation concerning a subsurface fault underneath the site and environmental justice issues. The presence of this fault was not revealed using the newer LANDSAT VII data. Despite this fact, it must be remembered that remote sensing provides baseline documentation for determining future physical and financial remediation responsibilities. On the basis of the two sites examined by LANDSAT remote sensing imaging, it is concluded that it is an essential, cost-effective tool that should be utilized not only in site examination but also in all nuclear-related facilities.

  11. NRC`s proposed rulemaking on the documentation and reporting of low-level radioactive waste shipment manifest information

    Energy Technology Data Exchange (ETDEWEB)

    Lahs, W.R.; Haisfield, M.F. [Nuclear Regulatory Commission, Washington, DC (United States)

    1991-12-31

    Since the 1982 promulgation of regulations for the land disposal of low-level radioactive waste (LLW), requirements have been in place to control transfers of LLW intended for disposal at licensed land disposal facilities. These requirements established a manifest tracking system and defined processes to control transfers of LLW intended for disposal at a land disposal facility. Because the regulations did not specify the format for the LLW shipment manifests, it was not unexpected that the two operators of the three currently operating disposal sites should each have developed their own manifest forms. The forms have many similarities and the collected information, in many cases, is identical; however, these manifests incorporate unique operator preferences and also reflect the needs of the Agreement State regulatory authority in the States where the disposal sites are located. Since Agreement State regulations must be compatible with, but need not always be identical to, those of the Nuclear Regulatory Commission (NRC), the possibility of a proliferation of different manifest forms containing variations in collected information could be envisioned. If these manifests were also to serve a shipping paper purpose, effective integration of the Department of Transportations` (DOT) requirements would also have to be addressed. This wide diversity in uses of manifest information by Federal and State regulatory authorities, other State or Compact entities, and disposal site operators, suggested a single consolidated approach to develop a uniform manifest format with a baseline information content and to define recordkeeping requirements. The NRC, in 1989, had embarked on a rulemaking activity to establish a base set of manifest information needs for regulatory purposes. In response to requests from State and Regional Compact organizations who are attempting to design, develop and operate LLW disposal facilities, and with the general support of Agreement State regulatory

  12. Melting behavior of low-level radioactive miscellaneous solid waste and characteristics of solidified products

    Energy Technology Data Exchange (ETDEWEB)

    Nakashio, Nobuyuki; Isobe, Motoyasu; Wakui, Takuji [Department of Decommissioning and Waste Management, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)] (and others)

    2001-02-01

    Melting tests of simulated miscellaneous solid wastes were conducted to clarify melting behavior of wastes and to characterize solidified products. Two heating modes were adopted in the tests: hybrid heating and induction heating modes. In the former, wastes were heated with both an induction furnace and a plasma torch, and in the latter, an electrical-conductive crucible was used with the induction furnace. The solidified products with no void, which may reduce the mechanical strength of them, were obtained by addition of deoxidizer. It was found that slag and metallic layers of the solidified products were almost homogeneous from the results of measurement of chemical composition and specific gravity. It was confirmed that the solidified products possessed compressive strength required for disposal. Chemical composition of solidified products was changed by corrosion of crucible or refractory material. Cobalt and cesium tracers were uniformly distributed in metallic and slag layers, respectively. It was found that the residual fraction of cesium is influenced by the heating mode. (author)

  13. Safety assessment on the human intrusion scenarios of near surface disposal facility for low and very low level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Wook; Park, Jin Baek [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of); Park, Sang Ho [Chungnam National University, Daejeon (Korea, Republic of)

    2016-03-15

    The second-stage near surface disposal facility for low and very low level radioactive waste's permanent disposal is to be built. During the institutional control period, the inadvertent intrusion of the general public is limited. But after the institutional control period, the access to the general public is not restricted. Therefore human who has purpose of residence and resource exploration can intrude the disposal facility. In this case, radioactive effects to the intruder should be limited within regulatory dose limits. This study conducted the safety assessment of human intrusion on the second-stage surface disposal facility through drilling and post drilling scenario. Results of drilling and post drilling scenario were satisfied with regulatory dose limits. The result showed that post-drilling scenario was more significant than drilling scenario. According to the human intrusion time and behavior after the closure of the facility, dominant radionuclide contributing to the intruder was different. Sensitivity analyses on the parameters about the human behavior were also satisfied with regulatory dose limits. Especially, manual redistribution factor was the most sensitive parameter on exposure dose. A loading plan of spent filter waste and dry active waste was more effective than a loading plan of spent filter waste and other wastes for the radiological point of view. These results can be expected to provide both robustness and defense in depth for the development of safety case further.

  14. Using Geographic Information Systems to Determine Site Suitability for a Low-Level Radioactive Waste Storage Facility.

    Science.gov (United States)

    Wilson, Charles A; Matthews, Kennith; Pulsipher, Allan; Wang, Wei-Hsung

    2016-02-01

    Radioactive waste is an inevitable product of using radioactive material in education and research activities, medical applications, energy generation, and weapons production. Low-level radioactive waste (LLW) makes up a majority of the radioactive waste produced in the United States. In 2010, over two million cubic feet of LLW were shipped to disposal sites. Despite efforts from several states and compacts as well as from private industry, the options for proper disposal of LLW remain limited. New methods for quickly identifying potential storage locations could alleviate current challenges and eventually provide additional sites and allow for adequate regional disposal of LLW. Furthermore, these methods need to be designed so that they are easily communicated to the public. A Geographic Information Systems (GIS) based method was developed to determine suitability of potential LLW disposal (or storage) sites. Criteria and other parameters of suitability were based on the Code of Federal Regulation (CFR) requirements as well as supporting literature and reports. The resultant method was used to assess areas suitable for further evaluation as prospective disposal sites in Louisiana. Criteria were derived from the 10 minimum requirements in 10 CFR Part 61.50, the Nuclear Regulatory Commission's Regulatory Guide 0902, and studies at existing disposal sites. A suitability formula was developed permitting the use of weighting factors and normalization of all criteria. Data were compiled into GIS data sets and analyzed on a cell grid of approximately 14,000 cells (covering 181,300 square kilometers) using the suitability formula. Requirements were analyzed for each cell using multiple criteria/sub-criteria as well as surrogates for unavailable datasets. Additional criteria were also added when appropriate. The method designed in this project proved to be sufficient for initial screening tests in determining the most suitable areas for prospective disposal (or storage

  15. Low-level radioactive waste from commercial nuclear reactors. Volume 3. Bibliographic abstracts of significant source documents. Part 1. Open-literature abstracts for low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, M.K.; Rodgers, B.R.; Jolley, R.L.

    1986-05-01

    The overall task of this program was to provide an assessment of currently available technology for treating commercial low-level radioactive waste (LLRW), to initiate development of a methodology for choosing one technology for a given application, and to identify research needed to improve current treatment techniques and decision methodology. The resulting report is issued in four volumes. Volume 3 of this series is a collection of abstracts of most of the reference documents used for this study. Because of the large volume of literature, the abstracts have been printed in two separate parts. Volume 3, part 1 presents abstracts of the open literature relating to LLRW treatment methodologies. Some of these references pertain to treatment processes for hazardous wastes that may also be applicable to LLRW management. All abstracts have been limited to 21 lines (for brevity), but each abstract contains sufficient information to enable the reader to determine the potential usefulness of the source document and to locate each article. The abstracts are arranged alphabetically by author or organization, and indexed by keyword.

  16. Simulations of long-term health risk from shallow land burial of low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Little, C.A.; Fields, D.E.

    1982-01-01

    PRESTO (Prediction of Radiation Effects from Shallow Trench Operations) is a computer code developed under U.S. Environmental Protection Agency (EPA) funding to evaluate possible health effects from shallow land burial of low-level radioactive wastes. The model is intended to assess radionuclide transport, ensuing exposure, and health impact to a static local population for up to 1000 years following the end of burial operations. Human exposure scenarios that may be considered by model include normal releases (including leaching and operational spillage), human intrusion, and near site farming. Pathways and processes of transit from the trench to an individual or population include:groundwater transport, overland flow, erosion, surface water dilution, resuspension, atmospheric transport, overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. Off-site population and individual doses and cancer risks may be calculated as well as doses and risks to the intruder and farmer. Data have been compiled for three extant shallow land burial sites: Barnwell, South Carolina; Beatty, Nevada; and West Valley, New York. Some simulation results for the Barnwell site are presented. 13 references, 3 figures, 3 tables.

  17. Set-up and first operation of a plasma oven for treatment of low level radioactive wastes

    Directory of Open Access Journals (Sweden)

    Nachtrodt Frederik

    2014-01-01

    Full Text Available An experimental device for plasma treatment of low and intermediate level radioactive waste was built and tested in several design variations. The laboratory device is designed with the intention to study the general effects and difficulties in a plasma incineration set-up for the further future development of a larger scale pilot plant. The key part of the device consists of a novel microwave plasma torch driven by 200 W electric power, and operating at atmospheric pressure. It is a specific design characteristic of the torch that a high peak temperature can be reached with a low power input compared to other plasma torches. Experiments have been carried out to analyze the effect of the plasma on materials typical for operational low-level wastes. In some preliminary cold tests the behavior of stable volatile species e. g., caesium was investigated by TXRF measurements of material collected from the oven walls and the filtered off-gas. The results help in improving and scaling up the existing design and in understanding the effects for a pilot plant, especially for the off-gas collection and treatment.

  18. Long{sub t}erm performance of structural component of intermediate- and low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Whang, J. H.; Kim, S. S.; Chun, T. H.; Lee, J. M.; Yum, M. O.; Kim, J. H.; Kim, M. S. [Kyunghee Univ., Seoul (Korea, Republic of)

    1997-03-15

    Underground repository for intermediate- and low-level radioactive waste is to be sealed and closed after operation. Structural components, which are generally made of cement concrete, are designed and accommodated in the repository for the purpose of operational convenience and stability after closure. To forecast the change of long-term integrity of the structural components, experimental verification, using in-situ or near in-situ conditions, is necessary. Domestic and foreign requirements with regard to the selection criteria and the performance criteria for structural components in disposal facility were surveyed. Characteristics of various types of cement were studied. Materials and construction methods of structural components similar to those of disposal facility was investigated and test items and methods for integrity of cement concrete were included. Literature survey for domestic groundwater characteristics was performed together with Ca-type bentonite ore which is a potential backfill material. Causes or factors affecting the durability of the cement structures were summarized. Experiments to figure out the ions leaching out from and migrating into cement soaked in distilled water and synthetic groundwater, respectively, were carried out. And finally, diffusion of chloride ion through cement was experimentally measured.

  19. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated.

  20. Determination of {sup 93}Zr in medium and low level radioactive wastes from Brazilian nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Thiago C.; Oliveira, Arno H., E-mail: oliveiratco2010@gmail.com, E-mail: heeren@nuclear.ufmg.br [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Kastner, Geraldo F.; Monteiro, Roberto Pellacani G., E-mail: rpgm@cdtn.br, E-mail: gfk@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The majority of long-lived radionuclides produced in the nuclear power plants can be regarded as difficult-to-measure radionuclides (RDM), hence chemical separation is necessary before the nuclear measurement of them. The zirconium isotope {sup 93}Zr is a long-lived pure β-particle-emitting radionuclide produced from {sup 235}U fission and from neutron activation of the stable isotope {sup 92}Zr and thus occurring as one of the radionuclides found in nuclear reactors. Due to its long half-life, {sup 93}Zr is one of the radionuclides of interest for the performance of assessment studies of waste storage or disposal. Two different methodologies based on extractive resins and LSC and ICP-MS techniques that enables the {sup 93}Zr determination in medium (ILW) and low level (LLW) radioactive wastes samples from Brazilian nuclear power plants has been developed in our laboratory. Analyzing real samples 65% and 75% chemical yields for {sup 93}Zr recovery were achieved for ICP-MS and LSC techniques, respectively. The detection limits were 0.045 μg.L{sup -1} for ICP-MS and 0.05 Bq.L{sup -1} for LSC techniques. (author)

  1. Safety Evaluation Report for the Tennessee Valley Authority's Plan to Decommission its Low-Level Radioactive Waste Burial Site at Muscle Shoals, Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Gant, K.S.; Kettelle, R.H.

    1998-11-01

    From 1966 to 1981, the Tennessee Valley Authority (TVA) operated a burial site, licensed under the former 10 CFR 20.304, for low-level radioactive waste on its Muscle Shoals, Alabama, reservation. TVA submitted a decommissioning plan for the burial site and requested approval for unrestricted use of the site. The Nuclear Regulatory Commission requested Oak Ridge National Laboratory (ORNL) to evaluate this plan to determine if the site meets the radiological requirements for unrestricted use as specified in 10 CFR 20.1402; that is, an average member of the critical group would not receive more than 25 mrem/y from residual radioactivity at the TVA Low-Level Radioactive Waste Burial Site and the radioactivity has been reduced to levels as low as reasonably achievable (ALARA).

  2. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals

    Energy Technology Data Exchange (ETDEWEB)

    Borai, E.H., E-mail: emadborai@yahoo.com [Hot Laboratories and Waste Management Center, Atomic Energy Authority, Cairo 13759 (Egypt); Harjula, R.; Malinen, Leena; Paajanen, Airi [Chemistry Department, Laboratory of Radiochemistry, Helsinki University (Finland)

    2009-12-15

    The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. The obtained results revealed that natural chabazite (NaNCh) has the higher distribution coefficients and capacity towards Cs ion rather than the other investigated zeolite materials. Furthermore, novel impregnated zeolite material (ISM) was prepared by loading Calix [4] arene bis(-2,3 naphtho-crown-6) onto synthetic mordenite to combine the high removal uptake of the mordenite with the high selectivity of Calix [4] arene towards Cs radionuclide. Comparing the obtained results for both NaSM and the impregnated synthetic mordenite (ISM-25), it could be observed that the impregnation process leads to high improvement in the distribution coefficients of Cs{sup +} ion (from 0.52 to 27.63 L/g). The final objective in all cases was aimed at determining feasible and economically reliable solution to the management of LLRLW specifically for the problems related to the low decontamination factor and the effective recovery of monovalent cesium ion.

  3. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals.

    Science.gov (United States)

    Borai, E H; Harjula, R; Malinen, Leena; Paajanen, Airi

    2009-12-15

    The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. The obtained results revealed that natural chabazite (NaNCh) has the higher distribution coefficients and capacity towards Cs ion rather than the other investigated zeolite materials. Furthermore, novel impregnated zeolite material (ISM) was prepared by loading Calix [4] arene bis(-2,3 naphtho-crown-6) onto synthetic mordenite to combine the high removal uptake of the mordenite with the high selectivity of Calix [4] arene towards Cs radionuclide. Comparing the obtained results for both NaSM and the impregnated synthetic mordenite (ISM-25), it could be observed that the impregnation process leads to high improvement in the distribution coefficients of Cs+ ion (from 0.52 to 27.63 L/g). The final objective in all cases was aimed at determining feasible and economically reliable solution to the management of LLRLW specifically for the problems related to the low decontamination factor and the effective recovery of monovalent cesium ion.

  4. Low-level liquid radioactive waste treatment at Murmansk, Russia: Technical design and review of facility upgrade and expansion

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, R.S.; Diamante, J.M. [Environmental Protection Agency, Washington, DC (United States). Office of International Activities; Duffey, R.B. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-07-01

    The governments of Norway and the US have committed their mutual cooperation and support the Murmansk Shipping Company (MSCo) to expand and upgrade the Low-Level Liquid Radioactive Waste (LLRW) treatment system located at the facilities of the Russian company RTP Atomflot, in Murmansk, Russia. RTP Atomflot provides support services to the Russian icebreaker fleet operated by the MSCo. The objective is to enable Russia to permanently cease disposing of this waste in Arctic waters. The proposed modifications will increase the facility`s capacity from 1,200 m{sup 3} per year to 5,000 m{sup 3} per year, will permit the facility to process high-salt wastes from the Russian Navy`s Northern fleet, and will improve the stabilization and interim storage of the processed wastes. The three countries set up a cooperative review of the evolving design information, conducted by a joint US and Norwegian technical team from April through December, 1995. To ensure that US and Norwegian funds produce a final facility which will meet the objectives, this report documents the design as described by Atomflot and the Russian business organization, ASPECT, both in design documents and orally. During the detailed review process, many questions were generated, and many design details developed which are outlined here. The design is based on the adsorption of radionuclides on selected inorganic resins, and desalination and concentration using electromembranes. The US/Norwegian technical team reviewed the available information and recommended that the construction commence; they also recommended that a monitoring program for facility performance be instituted.

  5. Survey of statistical and sampling needs for environmental monitoring of commercial low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, L.L.; Thomas, J.M.

    1986-07-01

    This project was designed to develop guidance for implementing 10 CFR Part 61 and to determine the overall needs for sampling and statistical work in characterizing, surveying, monitoring, and closing commercial low-level waste sites. When cost-effectiveness and statistical reliability are of prime importance, then double sampling, compositing, and stratification (with optimal allocation) are identified as key issues. If the principal concern is avoiding questionable statistical practice, then the applicability of kriging (for assessing spatial pattern), methods for routine monitoring, and use of standard textbook formulae in reporting monitoring results should be reevaluated. Other important issues identified include sampling for estimating model parameters and the use of data from left-censored (less than detectable limits) distributions.

  6. Eleventh annual Department of Energy low-level waste management conference. Volume 3: Waste characterization, waste reduction and minimization, prototype licensing application

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-11-01

    Thirteen papers are presented in volume 3. The seven papers on waste characterization discuss sampling, analysis, and certification techniques for low-level radioactive wastes. Three papers discuss US DOE waste minimization policies and regulations, Y-12 Plant`s reduction of chlorinated solvents, and C-14 removal from spent resins. The last three papers discuss the licensing studies for earth-mounded concrete bunkers for LLW disposal. Papers have been processed separately for inclusion on the data base.

  7. Commissioning of the very low level radioactive waste disposal facility; Mise en service du Centre de stockage de dechets de tres faible activite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    This press kit presents the solution retained by the French national agency of radioactive wastes (ANDRA) for the management of very low level radioactive wastes. These wastes mainly come from the dismantling of decommissioned nuclear facilities and also from other industries (chemical, metal and other industries). The storage concept is a sub-surface disposal facility (Morvilliers center, Aube) with a clay barrier and a synthetic membrane system. The regulatory framework, and the details of the licensing, of the commissioning and of the environment monitoring are recalled. The detailed planing of the project and some exploitation data are given. (J.S.)

  8. The Environmental Protection Agency`s proposed regulation of low level radioactive waste (40 CFR Part 193): A Department of Energy overview

    Energy Technology Data Exchange (ETDEWEB)

    Frangos, T.G. [Dept. of Energy, Washington, DC (United States)

    1989-11-01

    The Department of Energy (DOE) manages one of the world`s largest programs for storage, treatment, and disposal of low-level radioactive wastes. This system with facilities located at sites across the nation has evolved over some forty years in response to changing needs, technologies, and increasing public awareness and concerns for environmental protection. The DOE has operated in a self regulatory mode in most aspects of its low-level waste (LLW) programs. It has been DOE`s policy and practice to provide at least the same level of safety and protection for the public, DOE and contractor employees, and the general environment, as that required by the Nuclear Regulatory Commission for commercial operations. DOE`s policies have been implemented through a management system that historically has been highly decentralized so as to be responsive to the needs of DOE sites which generate a wide variety of wastes at some 25 locations. In addition to concerns with the LLW that it manages, DOE has an interest in the US Environmental Protection Agency`s (EPA) promulgation of 40 CFR Part 193 because of its responsibilities under the Low Level Radioactive Waste Policy Amendments Act (LLRWPAA) to manage certain classes of waste and to assist and encourage the development of interstate compact-managed regional low-level waste disposal sites.

  9. The Environmental Agency's Assessment of the Post-Closure Safety Case for the BNFL DRIGG Low Level Radioactive Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.

    2002-02-26

    The Environment Agency is responsible, in England and Wales, for authorization of radioactive waste disposal under the Radioactive Substances Act 1993. British Nuclear Fuels plc (BNFL) is currently authorized by the Environment Agency to dispose of solid low level radioactive waste at its site at Drigg, near Sellafield, NW England. As part of a planned review of this authorization, the Environment Agency is currently undertaking an assessment of BNFL's Post-Closure Safety Case Development Programme for the Drigg disposal facility. This paper presents an outline of the review methodology developed and implemented by the Environment Agency specifically for the planned review of BNFL's Post-Closure Safety Case. The paper also provides an overview of the Environment Agency's progress in its on-going assessment programme.

  10. The NEA research and environmental surveillance programme related to sea disposal of low-level radioactive waste

    Science.gov (United States)

    Rugger, B.; Templeton, W. L.; Gurbutt, P.

    1983-05-01

    Sea dumping operations of certain types of packaged low and medium level radioactive wastes have been carried out since 1967 in the North-East Atlantic under the auspices of the OECD Nuclear Energy Agency. On the occasion of the 1980 review of the continued suitability of the North-East Atlantic site used for the disposal of radioactive waste, it was recommended that an effort should be made to increase the scientific data base relating to the oceanographic and biological characteristics of the dumping area. In particular, it was suggested that a site specific model of the transfer of radionuclides in the marine environment be developed, which would permit a better assessment of the potential radiation doses to man from the dumping of radioactive waste. To fulfill these objectives a research and environmental surveillance program related to sea disposal of radioactive waste was set up in 1981 with the participation of thirteen Member countries and the International Laboratory for Marine Radioactivity of the IAEA in Monaco. The research program is focused on five research areas which are directly relevant to the preparation of more site specific assessments in the future. They are: model development; physical oceanography; geochemistry; biology; and radiological surveillance. Promising results have already been obtained and more are anticipated in the not too distant future. An interim description of the NEA dumping site has been prepared which provides an excellent data base for this area.

  11. IMPROVEMENTS IN CONTAINER MANAGEMENT OF TRANSURANIC (TRU) AND LOW LEVEL RADIOACTIVE WASTE STORED AT THE CENTRAL WASTE COMPLEX (CWC) AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    UYTIOCO EM

    2007-11-14

    The Central Waste Complex (CWC) is the interim storage facility for Resource Conservation & Recovery Act (RCRA) mixed waste, transuranic waste, transuranic mixed waste, low-level and low-level mixed radioactive waste at the Department of Energy's (DOE'S) Hanford Site. The majority of the waste stored at the facility is retrieved from the low-level burial grounds in the 200 West Area at the Site, with minor quantities of newly generated waste from on-site and off-site waste generators. The CWC comprises 18 storage buildings that house 13,000 containers. Each waste container within the facility is scanned into its location by building, module, tier and position and the information is stored in a site-wide database. As waste is retrieved from the burial grounds, a preliminary non-destructive assay is performed to determine if the waste is transuranic (TRU) or low-level waste (LLW) and subsequently shipped to the CWC. In general, the TRU and LLW waste containers are stored in separate locations within the CWC, but the final disposition of each waste container is not known upon receipt. The final disposition of each waste container is determined by the appropriate program as process knowledge is applied and characterization data becomes available. Waste containers are stored within the CWC based on their physical chemical and radiological hazards. Further segregation within each building is done by container size (55-gallon, 85-gallon, Standard Waste Box) and waste stream. Due to this waste storage scheme, assembling waste containers for shipment out of the CWC has been time consuming and labor intensive. Qualitatively, the ratio of containers moved to containers in the outgoing shipment has been excessively high, which correlates to additional worker exposure, shipment delays, and operational inefficiencies. These inefficiencies impacted the LLW Program's ability to meet commitments established by the Tri-Party Agreement, an agreement between the State

  12. Eleventh annual U.S. DOE low-level radioactive waste management conference: Executive summary, opening plenary, technical session summaries, and attendees

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-01-01

    The conference consisted of ten technical sessions, with three sessions running simultaneously each day. Session topics included: regulatory updates; performance assessment;understanding remedial action efforts; low-level waste strategy and planning (Nuclear Energy); low-level waste strategy and planning (Defense); compliance monitoring; decontamination and decommissioning; waste characterization; waste reduction and minimization; and prototype licensing application workshop. Summaries are presented for each of these sessions.

  13. Integration of US Department of Energy contractor installations for the purpose of optimizing treatment, storage, and disposal of low-level radioactive waste (LLW)

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, M.; Gnoose, J.; Coony, M.; Martin, E.; Piscitella, R.

    1998-02-01

    The US Department of Energy (DOE) manages a multibillion dollar environmental management (EM) program. In June 1996, the Assistant Secretary of Energy for EM issued a memorandum with guidance and a vision for a ten year planning process for the EM Program. The purpose of this process, which became known as the Accelerated Cleanup: Focus on 2006, is to make step changes within the DOE complex regarding the approach for making meaningful environmental cleanup progress. To augment the process, Assistant Secretary requested the site contractors to engage in an effort to identify and evaluate integration alternatives for EM waste stream treatment, storage, and disposal (TSD) that would parallel the 2006 Plan. In October 1996, ten DOE contractor installations began the task of identifying alternative opportunities for low level radioactive waste (LLW). Cost effective, efficient solutions were necessary to meet all requirements associated with storing, characterizing, treating, packaging, transporting, and disposing of LLW while protecting the workers` health and safety, and minimizing impacts to the environment. To develop these solutions, a systems engineering approach was used to establish the baseline requirements, to develop alternatives, and to evaluate the alternatives. Key assumptions were that unique disposal capabilities exist within the DOE that must be maintained; private sector disposal capability for some LLW may not continue to exist into the foreseeable future; and decisions made by the LLW Team must be made on a system or complex wide basis to fully realize the potential cost and schedule benefits. This integration effort promoted more accurate waste volume estimates and forecasts; enhanced recognition of existing treatment, storage, and disposal capabilities and capacities; and improved identification of cost savings across the complex.

  14. Low-Level RF Control of Spallation Neutron Source: System and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hengjie [ORNL

    2005-01-01

    The low-level RF control system currently commissioned throughout the Spallation Neutron Source (SNS) LINAC evolved from three design iterations over one year intensive research and development. Its digital hardware implementation is efficient, and has succeeded in achieving a minimum latency of less than 150 ns which is the key for accomplishing an all digital feedback control for the full bandwidth. The control bandwidth is analyzed in frequency domain and characterized by testing its transient response. The hardware implementation also includes the provision of a time-shared input channel for a superior phase differential measurement between the cavity field and the reference. A companion co-simulation system for the digital hardware was developed to ensure a reliable long-term supportability. A large effort has also been made in the operation software development for the practical issues such as the process automations, cavity filling, beam loading compensation, and the cavity mechanical resonance suppression.

  15. Evaluation of isotope migration: land burial. Water chemistry at commercially operated low-level radioactive waste disposal sites. Progress report No. 7, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, P.; Weiss, A. J.; Francis, A. J.

    1978-01-01

    Trench water samples from the commercial low-level radioactive waste disposal sites at Maxey Flats, Kentucky, and West Valley, New York, were collected, and the bacterial populations were enumerated. The range of bacterial populations in six trench water samples were 400 to 24,000 aerobic and 90 to 15,000 anaerobic bacteria/ml. Most of the bacteria isolated from the anaerobic culture plates were facultative anaerobes, although a few strict anaerobes were also present. Mixed bacterial populations isolated from the trench waters were able to grow anaerobically utilizing the carbon and nitrogen sources present in the trench waters. Trench waters supplemented with mineral salts supported only a modest increase in growth of these bacteria. The results of this study indicate that bacteria are active in the trenches, and the radioactivity and organic compounds present in the trenches are not toxic to these bacteria.

  16. The Tradescantia micronucleus assay is a highly sensitive tool for the detection of low levels of radioactivity in environmental samples.

    Science.gov (United States)

    Mišík, Miroslav; Krupitza, Georg; Mišíková, Katarina; Mičieta, Karol; Nersesyan, Armen; Kundi, Michael; Knasmueller, Siegfried

    2016-12-01

    Environmental contamination with radioactive materials of geogenic and anthropogenic origin is a global problem. A variety of mutagenicity test procedures has been developed which enable the detection of DNA damage caused by ionizing radiation which plays a key role in the adverse effects caused by radioisotopes. In the present study, we investigated the usefulness of the Tradescantia micronucleus test (the most widely used plant based genotoxicity bioassay) for the detection of genetic damage caused by environmental samples and a human artifact (ceramic plate) which contained radioactive elements. We compared the results obtained with different exposure protocols and found that direct exposure of the inflorescences is more sensitive and that the number of micronuclei can be further increased under "wet" conditions. The lowest dose rate which caused a significant effect was 1.2 μGy/h (10 h). Comparisons with the results obtained with other systems (i.e. with mitotic cells of higher plants, molluscs, insects, fish and human lymphocytes) show that the Tradescantia MN assay is one to three orders of magnitude more sensitive as other models, which are currently available. Taken together, our findings indicate that this method is due to its high sensitivity a unique tool, which can be used for environmental biomonitoring in radiation polluted areas.

  17. Evaluation of a performance assessment methodology for low-level radioactive waste disposal facilities: Validation needs. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, M.W.; Olague, N.E. [Sandia National Labs., Albuquerque, NM (United States)

    1995-02-01

    In this report, concepts on how validation fits into the scheme of developing confidence in performance assessments are introduced. A general framework for validation and confidence building in regulatory decision making is provided. It is found that traditional validation studies have a very limited role in developing site-specific confidence in performance assessments. Indeed, validation studies are shown to have a role only in the context that their results can narrow the scope of initial investigations that should be considered in a performance assessment. In addition, validation needs for performance assessment of low-level waste disposal facilities are discussed, and potential approaches to address those needs are suggested. These areas of topical research are ranked in order of importance based on relevance to a performance assessment and likelihood of success.

  18. Characterization of polyurethane systems which contain low levels of free TDI

    Energy Technology Data Exchange (ETDEWEB)

    Myers, R.L.; Thomas, E.V.

    1995-04-01

    EN-7, EN-8, and EN-9 are polyurethane systems that are used in numerous applications in the Department of Energy complex. These systems contain high levels of toluene diisocyanate (TDI). Currently, TDI is being treated as a suspect human carcinogen within the Department of Energy complex. This report documents the results of a material characterization study of three polyurethane systems that contain low levels of free (potentially airborne) TDI. The characterization has been accomplished by performing a set of statistically designed experiments. The purpose of these experiments is to explore the effects of formulation and cure schedule on various material properties. In general, the material properties (pot life, glass transition temperature, hardness, and tear strength) were relatively insensitive to variation in the cure schedule. On the other hand, variation in curative level had measurable effects on material properties for the polyurethane systems studied. Furthermore, the material properties of the three low-free-TDI polyurethane systems were found to be comparable or superior (for certain curative levels) to commonly-used polyurethane systems. Thus, these low-free-TDI systems appear to be viable candidates for applications where a polyurethane is needed.

  19. Evaluation of sulfur polymer cement as a waste form for the immobilization of low-level radioactive or mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Mattus, C.H.; Mattus, A.J.

    1994-03-01

    Sulfur polymer cement (SPC), also called modified sulphur cements, is a relatively new material in the waste immobilization field, although it was developed in the late seventies by the Bureau of Mines. The physical and chemical properties of SPC are interesting (e.g., development of high mechanical strength in a short time and high resistance to many corrosive environments). Because of its very low permeability and porosity, SPC is especially impervious to water, which, in turn, has led to its consideration for immobilization of hazardous or radioactive waste. Because it is a thermosetting process, the waste is encapsulated by the sulfur matrix; therefore, very little interaction occurs between the waste species and the sulfur (as there can be when waste prevents the set of portland cement-based waste forms).

  20. Auxiliary analyses in support of performance assessment of a hypothetical low-level waste facility: Two-phase flow and contaminant transport in unsaturated soils with application to low-level radioactive waste disposal. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Binning, P. [Newcastle Univ., NSW (Australia); Celia, M.A.; Johnson, J.C. [Princeton Univ., NJ (United States). Dept. of Civil Engineering and Operations Research

    1995-05-01

    A numerical model of multiphase air-water flow and contaminant transport in the unsaturated zone is presented. The multiphase flow equations are solved using the two-pressure, mixed form of the equations with a modified Picard linearization of the equations and a finite element spatial approximation. A volatile contaminant is assumed to be transported in either phase, or in both phases simultaneously. The contaminant partitions between phases with an equilibrium distribution given by Henry`s Law or via kinetic mass transfer. The transport equations are solved using a Galerkin finite element method with reduced integration to lump the resultant matrices. The numerical model is applied to published experimental studies to examine the behavior of the air phase and associated contaminant movement under water infiltration. The model is also used to evaluate a hypothetical design for a low-level radioactive waste disposal facility. The model has been developed in both one and two dimensions; documentation and computer codes are available for the one-dimensional flow and transport model.

  1. A decision methodology for the evaluation of mixed low-level radioactive waste management options for DOE sites

    Energy Technology Data Exchange (ETDEWEB)

    Bassi, J. [Dept. of Energy, Washington, DC (United States); Abashian, M.S.; Chakraborti, S.; Devarakonda, M.; Djordjevic, S.M. [IT Corp., Albuquerque, NM (United States)

    1993-03-01

    Currently, many DOE sites are developing site-specific solutions to manage their mixed low-level wastes. These site-specific MLLW programs often result in duplication of efforts between the different sites, and consequently, inefficient use of DOE system resources. A nationally integrated program for MLLW eliminates unnecessary duplication of effort, but requires a comprehensive analysis of waste management options to ensure that all site issues are addressed. A methodology for comprehensive analysis of the complete DOE MLLW system is being developed by DOE-HQ to establish an integrated and standardized solution for managing MLLW. To be effective, the comprehensive systems analysis must consider all aspects of MLLW management from cradle-to-grave (i.e. from MLLW generation to disposal). The results of the analysis will include recommendations for alternative management options for the complete DOE MLLW system based on various components such as effectiveness, cost, health and safety risks, and the probability of regulatory acceptance for an option. Because of the diverse nature of these various components and the associated difficulties in comparing between them, a decision methodology is being developed that will integrate the above components into a single evaluation scheme for performing relative comparisons between different MLLW management options. The remainder of this paper provides an overview of the roles and responsibilities of the various participants of the DOE MLLW Program, and discusses in detail the components involved in the development of the decision methodology for a comprehensive systems analysis.

  2. Features, events, processes, and safety factor analysis applied to a near-surface low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, M.E.; Dolinar, G.M.; Lange, B.A. [Atomic Energy of Canada Limited, Ontario (Canada)] [and others

    1995-12-31

    An analysis of features, events, processes (FEPs) and other safety factors was applied to AECL`s proposed IRUS (Intrusion Resistant Underground Structure) near-surface LLRW disposal facility. The FEP analysis process which had been developed for and applied to high-level and transuranic disposal concepts was adapted for application to a low-level facility for which significant efforts in developing a safety case had already been made. The starting point for this process was a series of meetings of the project team to identify and briefly describe FEPs or safety factors which they thought should be considered. At this early stage participants were specifically asked not to screen ideas. This initial list was supplemented by selecting FEPs documented in other programs and comments received from an initial regulatory review. The entire list was then sorted by topic and common issues were grouped, and issues were classified in three priority categories and assigned to individuals for resolution. In this paper, the issue identification and resolution process will be described, from the initial description of an issue to its resolution and inclusion in the various levels of the safety case documentation.

  3. IRMM low level underground laboratory in HADES

    Energy Technology Data Exchange (ETDEWEB)

    Mouchel, D. [CEC-JRC, Inst. for Reference Materials and Measurements (IRMM), Geel (Belgium); Wordel, R. [CEC-JRC, Inst. for Reference Materials and Measurements (IRMM), Geel (Belgium)

    1997-03-01

    The operation of low background HPGe detectors at a depth of 225 m, reduced the background by two orders of magnitude; a large amount of the remaining background is still attributable to the cosmic rays. The selection of radiopure materials, the characterization of reference matrices and the measurements of low radioactivities in environmental samples are performed. Coupling the low level spectrometry with additional techniques, e.g. neutron activation, will allow to measure extremely low radioactivities. (orig.)

  4. Malformation of true bug (Heteroptera): a phenotype field study on the possible influence of artificial low-level radioactivity.

    Science.gov (United States)

    Hesse-Honegger, Cornelia; Wallimann, Peter

    2008-04-01

    The results of extensive field studies on the malformation of Western European true bugs (Heteroptera) are reviewed. More than 16,000 individuals were collected over two decades, and subjected to detailed visual inspection. Various types of disturbances were found and illustrated in detail. Depending on country, region, as well as local influences, severe disturbances and high degrees of malformation were noticed, especially in the sphere of nuclear-power installations in Switzerland (Aargau), France (La Hague), and Germany (Gundremmingen). Malformation reached values as high as 22 and 30% for morphological (MD) and total disturbance (TD), respectively. This is far above the values expected for natural populations (ca. 1%) or those determined for true bugs living in biotopes considered as relatively 'intact' (1-3%). A detailed chi-square test of the malformation data obtained for 650 true bugs from 13 collection sites near the nuclear-reprocessing plant La Hague showed a highly significant correlation (p=0.003) between malformation and wind exposure/local topography. Similar observations were made for other study sites. Currently, our data are best rationalized by assuming a direct influence between the release of anthropogenic radionuclides such as tritium ((3)H), carbon-14 ((14)C), or iodine-131 ((131)I), constantly emitted by nuclear-power and nuclear-reprocessing plants, as well as by Chernobyl and bomb-testing fallout, which is rich in caesium-137 ((137)Cs) and other long-lived noxious isotopes that have entered the food chain. The present work supports the growing evidence that low-level radiation, especially in the form of randomly scattered 'hot' alpha- and beta-particles, mainly transported via aerosols, puts a heavy burden on the biosphere in general, and on true bugs in particular. These insects could, thus, serve as sensitive 'bio-indicators' for future studies.

  5. In-situ grouting of the low-level radioactive waste disposal silos at ORNL`s Solid Waste Storage Area Six

    Energy Technology Data Exchange (ETDEWEB)

    Francis, C.W.; Farmer, C.D. [Oak Ridge National Lab., TN (US); Stansfield, R.G. [Stansfield (Robert G.), Knoxville, TN (US)

    1993-07-01

    At Oak Ridge National Laboratory (ORNL), one method of solid low-level radioactive waste disposal has been disposed of in below-grade cylindrical concrete silos. Located in Solid Waste Storage Area 6 (SWSA 6), each silo measures 8 ft in diameter and 20 ft deep. Present day operations involve loading the silos with low-level radioactive waste and grouting the remaining void space with a particulate grout of low viscosity. Initial operations involving the disposal of wastes into the below-grade silos did not include the grouting process. Grouting was stated as a standard practice (in late 1988) after discovering that {approximately}75% of the silos accumulated water in the bottom of the silos in the {approximately}2 years after capping. Silo water (leachate) contained a wide range of types and concentrations of radionuclides. The migration of contaminated leachate out of the silo into adjoining soil and groundwater was considered to be a serious environmental concern. This report describes how a specially designed particulate-base grout was used to grout 54 silos previously filled with low-level radioactive waste. Grouting involved three steps: (1) silo preparation, (2) formulation and preparation of the grout mixture, and (3) injection of the grout into the silos. Thirty-five of the 54 silos grouted were equipped with a 3-in.-diam Polyvinyl Chloride (PVC) pipe used to monitor water levels in the silos. A method for rupturing the bottom section of these PVC wells was developed so that grout could be pumped to the bottom of those silos. Holes (2-in. diam) were drilled through the {approximately}18 in. thick concrete to fill the remaining 19 wells without the PVC monitoring wells. The formulation of grout injected into the silos was based on a Portland Type I cement, flyash, sand, and silica fume admixture. Compressive strength of grout delivered to SWSA6 during grouting operations averaged 1,808 lb/in{sup 2} with a bulk density of 3,549 lb/yd{sup 3}.

  6. A user's guide to the GoldSim/BLT-MS integrated software package:a low-level radioactive waste disposal performance assessment model.

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, Robert G.; Arnold, Bill Walter; Mattie, Patrick D.

    2007-03-01

    Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in the assessment of radioactive waste disposal and at the time of this publication is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. In countries with small radioactive waste programs, international technology transfer program efforts are often hampered by small budgets, schedule constraints, and a lack of experienced personnel. In an effort to surmount these difficulties, Sandia has developed a system that utilizes a combination of commercially available software codes and existing legacy codes for probabilistic safety assessment modeling that facilitates the technology transfer and maximizes limited available funding. Numerous codes developed and endorsed by the United States Nuclear Regulatory Commission (NRC) and codes developed and maintained by United States Department of Energy are generally available to foreign countries after addressing import/export control and copyright requirements. From a programmatic view, it is easier to utilize existing codes than to develop new codes. From an economic perspective, it is not possible for most countries with small radioactive waste disposal programs to maintain complex software, which meets the rigors of both domestic regulatory requirements and international peer review. Therefore, revitalization of deterministic legacy codes, as well as an adaptation of contemporary deterministic codes, provides a credible and solid computational platform for constructing probabilistic safety assessment models. This document is a reference users guide for the GoldSim/BLT-MS integrated modeling software package developed as part of a cooperative technology transfer project between Sandia National Laboratories and the Institute of Nuclear Energy Research (INER) in Taiwan for the preliminary assessment of several candidate low-level

  7. Preliminary design of a biological treatment facility for trench water from a low-level radioactive waste disposal area at West Valley, New York

    Energy Technology Data Exchange (ETDEWEB)

    Rosten, R.; Malkumus, D. [Pacific Nuclear, Inc. (United States); Sonntag, T. [New York State Energy Research and Development Authority, NY (United States); Sundquist, J. [Ecology and Environment, Inc. (United States)

    1993-03-01

    The New York State Energy Research and Development Authority (NYSERDA) owns and manages a State-Licensed Low-Level Radioactive Waste Disposal Area (SDA) at West Valley, New York. Water has migrated into the burial trenches at the SDA and collected there, becoming contaminated with radionuclides and organic compounds. The US Environmental Protection Agency issued an order to NYSERDA to reduce the levels of water in the trenches. A treatability study of the contaminated trench water (leachate) was performed and determined the best available technology to treat the leachate and discharge the effluent. This paper describes the preliminary design of the treatment facility that incorporates the bases developed in the leachate treatability study.

  8. Standard Review Plan for the review of a license application for a low-level radioactive waste disposal facility. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Standard Review Plan (SRP) (NUREG-1200) provides guidance to staff reviewers in the Office of Nuclear Material Safety and Safeguards who perform safety reviews of applications to construct and operate low-level radioactive waste disposal facilities. The SRP ensures the quality and uniformity of the staff reviews and presents a well-defined base from which to evaluate proposed changes in the scope and requirements of the staff reviews. The SRP makes information about the regulatory licensing process widely available and serves to improve the understanding of the staff`s review process by interested members of the public and the industry. Each individual SRP addresses the responsibilities of persons performing the review, the matters that are reviewed, the Commission`s regulations and acceptance criteria necessary for the review, how the review is accomplished, the conclusions that are appropriate, and the implementation requirements.

  9. Recommendations to the NRC for review criteria for alternative methods of low-level radioactive waste disposal: Task 2a, Below-ground vaults

    Energy Technology Data Exchange (ETDEWEB)

    Denson, R.H.; Bennett, R.D.; Wamsley, R.M.; Bean, D.L.; Ainsworth, D.L.

    1987-12-01

    The US Army Engineer Waterways Experiment Station (WES) and the US Army Engineer Division, Huntsville (HNDED) have developed general design criteria and specific design review criteria for the below-ground vault (BGV) alternative method of low-level radioactive waste (LLW) disposal. A BGV is a reinforced concrete vault (floor, walls, and roof) placed underground below the frost line, and above the water table, surrounded by filter blanket and drainage zones and covered with a low permeability earth layer and top soil with vegetation. Eight major review criteria categories have been developed ranging from the loads imposed on the BGV structure through material quality and durability considerations. Specific design review criteria have been developed in detail for seven of the eight major categories. 59 refs., 14 figs., 2 tabs.

  10. Recommendations to the NRC for review criteria for alternative methods of low-level radioactive waste disposal: Task 2b: Earth-mounded concrete bunkers

    Energy Technology Data Exchange (ETDEWEB)

    Denson, R.H.; Bennett, R.D.; Wamsley, R.M.; Bean, D.L.; Ainsworth, D.L.

    1988-01-01

    The US Army Engineers Waterways Experiment Station (WES) and US Army Engineer Division, Huntsville (HNDED) have developed general design criteria and specific design review criteria for the earth-mounded concrete bunker (EMCB) alternative method of low-level radioactive waste (LLW) disposal. An EMCB is generally described as a reinforced concrete vault placed below grade, underneath a tumulus, surrounded by filter-blanket and drainage zones. The tumulus is covered over with a low permeability cover layer and top soil with vegetation. Eight major review criteria categories have been developed ranging from the loads imposed on the EMCB structure through material quality and durability considerations. Specific design review criteria have been developed in detail for each of the eight major categories. 63 refs., 13 figs., 2 tabs.

  11. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    PM Daling; SB Ross; BM Biwer

    1999-12-17

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal

  12. A common-sense probabilistic approach to assessing inadvertent human intrusion into low-level radioactive waste at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Black, P.; Hooten, M.; Black, K. [Neptune and Co., Inc., Los Alamos, NM (United States); Moore, B. [Dept. of Energy, Las Vegas, NV (United States). Nevada Operations Office; Crowe, B. [Los Alamos National Lab., NM (United States); Rawlinson, S.; Barker, L. [Bechtel Nevada Corp., Las Vegas, NV (United States)

    1997-05-01

    Each site disposing of low-level radioactive waste is required to prepare and maintain a site-specific performance assessment (1) to determine potential risks posed by waste management systems to the public, and the environment, and (2) to compare these risks to established performance objectives. The DOE Nevada Operations Office, Waste Management Program recently completed a one-year study of site-specific scenarios for inadvertent human intrusion by drilling into buried low-level radioactive waste sites, as part of ongoing performance assessment studies. Intrusion scenarios focus on possible penetration of buried waste through drilling for sources of groundwater. The probability of drilling penetration into waste was judged to be driven primarily by two settlement scenarios: (1) scattered individual homesteaders, and (2) a community scenario consisting of a cluster of settlers that share drilling and distribution systems for groundwater. Management control factors include institutional control, site knowledge, placards and markers, surface barriers, and subsurface barriers. The Subject Matter Experts concluded that institutional control and site knowledge may be important factors for the first few centuries, but are not significant over the evaluation period of 10,000 years. Surface barriers can be designed that would deter the siting of a drill rig over the waste site to an effectiveness of 95%. Subsurface barriers and placards and markers will not as effectively prevent inadvertent human intrusion. Homestead and community scenarios were considered by the panel to render a site-specific probability of around 10% for inadvertent human intrusion. If management controls are designed and implemented effectively, then the probability of inadvertent human intrusion can be reduced to less than 1%.

  13. Implementation plan for liquid low-level radioactive waste systems under the FFA for Fiscal years 1996 and 1997 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facility Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the Department of Energy Oak Ridge Operations Office (DOE-ORO), the U.S. Environmental Protection Agency (EPA)-Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA was January 1, 1992. Section IX and Appendix F of the agreement impose design and operating requirements on the Oak Ridge National Laboratory (ORNL) liquid low-level radioactive waste (LLLW) tank systems and identify several plans, schedules, and assessments that must be submitted to EPA/TDEC for review of approval. The issue of ES/ER-17&D1 Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee in March 1992 transmitted to EPA/TDEC those plans and schedules that were required within 60 to 90 days of the FFA effective date. This document updates the plans, schedules, and strategy for achieving compliance with the FFA as presented in ES/ER-17&D I and summarizes the progress that has been made to date. This document supersedes all updates of ES/ER- 17&D 1. Chapter 1 describes the history and operation of the ORNL LLLW System and the objectives of the FFA. Chapters 2 through 5 contain the updated plans and schedules for meeting FFA requirements. This document will continue to be periodically reassessed and refined to reflect newly developed information and progress.

  14. Radioactive Ions for Surface Characterization

    CERN Multimedia

    2002-01-01

    The collaboration has completed a set of pilot experiments with the aim to develop techniques for using radioactive nuclei in surface physics. The first result was a method for thermal deposition of isolated atoms (Cd, In, Rb) on clean metallic surfaces. \\\\ \\\\ Then the diffusion history of deposited Cd and In atoms on two model surfaces, Mo(110) and Pd(111), was followed through the electric field gradients (efg) acting at the probe nuclei as measured with the Perturbed Angular Correlation technique. For Mo(110) a rather simple history of the adatoms was inferred from the experiments: Atoms initially landing at terrace sites diffuse from there to ledges and then to kinks, defects always present at real surfaces. The next stage is desorption from the surface. For Pd a scenario that goes still further was found. Following the kink stage the adatoms get incorporated into ledges and finally into the top surface layer. For all these five sites the efg's could be measured.\\\\ \\\\ In preparation for a further series o...

  15. Letter report: Pre-conceptual design study for a pilot-scale Non-Radioactive Low-Level Waste Vitrification Facility

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, R.A.; Morrissey, M.F.

    1996-03-01

    This report presents a pre-conceptual design study for a Non-Radioactive Low-Level Waste, Pilot-Scale Vitrification System. This pilot plant would support the development of a full-scale LLW Vitrification Facility and would ensure that the full-scale facility can meet its programmatic objectives. Use of the pilot facility will allow verification of process flowsheets, provide data for ensuring product quality, assist in scaling to full scale, and support full-scale start-up. The facility will vitrify simulated non-radioactive LLW in a manner functionally prototypic to the full-scale facility. This pre-conceptual design study does not fully define the LLW Pilot-Scale Vitrification System; rather, it estimates the funding required to build such a facility. This study includes identifying all equipment necessary. to prepare feed, deliver it into the melter, convert the feed to glass, prepare emissions for atmospheric release, and discharge and handle the glass. The conceived pilot facility includes support services and a structure to contain process equipment.

  16. Source inventory for Department of Energy solid low-level radioactive waste disposal facilities: What it means and how to get one of your own

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.A. [Science Applications International Corp., Oak Ridge, TN (United States). Environmental Compliance Group

    1991-12-31

    In conducting a performance assessment for a low-level waste (LLW) disposal facility, one of the important considerations for determining the source term, which is defined as the amount of radioactivity being released from the facility, is the quantity of radioactive material present. This quantity, which will be referred to as the source inventory, is generally estimated through a review of historical records and waste tracking systems at the LLW facility. In theory, estimating the total source inventory for Department of Energy (DOE) LLW disposal facilities should be possible by reviewing the national data base maintained for LLW operations, the Solid Waste Information Management System (SWIMS), or through the annual report that summarizes the SWIMS data, the Integrated Data Base (IDB) report. However, in practice, there are some difficulties in making this estimate. This is not unexpected, since the SWIMS and the IDB were not developed with the goal of developing a performance assessment source term in mind. The practical shortcomings using the existing data to develop a source term for DOE facilities will be discussed in this paper.

  17. Updated Strategic Assessment of the U.S. NRC Low-Level Radioactive Waste (LLW) Program and the new WCS Commercial Disposal Facility for LLW

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, David S.; Kim, Chang-Lak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-05-15

    The purpose of this paper is to review the updated NRC low level radioactive waste regulatory strategy and also present an update on a significant change in the LLW disposal landscape in the U.S., the opening of a new commercial disposal facility, the Texas Compact Waste Facility (CWF) in Andrews, Texas. Operational since spring of 2012, the CWF is owned and licensed by the state of Texas and operated by Waste Control Specialists LLC (WCS). The WCS facility in western Andrews County is the only commercial facility in the United States licensed to dispose of Class A, B and C LLW in the U.S. in the past 40 years. Based on the observation that other suitable sites have been identified such as the Clive, Utah site that meet (almost) all of these criteria it would appear that the first and last factors in our list are the most problematic and it will require a change in the public acceptance and the political posture of states to help solve the national issue of safe and cost-effective LLW disposal.

  18. Effects on radionuclide concentrations by cement/ground-water interactions in support of performance assessment of low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, K.M.; Serne, R.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-05-01

    The US Nuclear Regulatory Commission is developing a technical position document that provides guidance regarding the performance assessment of low-level radioactive waste disposal facilities. This guidance considers the effects that the chemistry of the vault disposal system may have on radionuclide release. The geochemistry of pore waters buffered by cementitious materials in the disposal system will be different from the local ground water. Therefore, the cement-buffered environment needs to be considered within the source term calculations if credit is taken for solubility limits and/or sorption of dissolved radionuclides within disposal units. A literature review was conducted on methods to model pore-water compositions resulting from reactions with cement, experimental studies of cement/water systems, natural analogue studies of cement and concrete, and radionuclide solubilities experimentally determined in cement pore waters. Based on this review, geochemical modeling was used to calculate maximum concentrations for americium, neptunium, nickel, plutonium, radium, strontium, thorium, and uranium for pore-water compositions buffered by cement and local ground-water. Another literature review was completed on radionuclide sorption behavior onto fresh cement/concrete where the pore water pH will be greater than or equal 10. Based on this review, a database was developed of preferred minimum distribution coefficient values for these radionuclides in cement/concrete environments.

  19. Evaluation of isotope migration: land burial. Water chemistry at commercially operated low-level radioactive waste disposal sites. Progress report No. 6, July--September 1977. [Maxey Flats, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, P.; Weiss, A. J.; Francis, A. J.

    1978-04-01

    A survey of the Maxey Flats, Kentucky, low-level radioactive waste disposal site was conducted to obtain an overview of the radioactivity in the trench waters for the purpose of selecting specific trenches for comprehensive study. Water samples collected from trenches and wells were analyzed for specific conductance, pH, temperature, dissolved organic carbon, tritium, gross alpha, gross beta, and gamma radioactivities. The results indicate that there are large differences in the composition of trench waters at the site. Several trenches, that represent extreme and average values of the major parameters measured, have been tentatively selected for further study. 10 fig, 6 tables.

  20. Low-level waste characterization plan for the WSCF Laboratory Complex

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, J.A.

    1994-10-04

    The Waste Characterization Plan for the Waste Sampling and Characterization Facility (WSCF) complex describes the organization and methodology for characterization of all waste streams that are transferred from the WSCF Laboratory Complex to the Hanford Site 200 Areas Storage and Disposal Facilities. Waste generated at the WSCF complex typically originates from analytical or radiological procedures. Process knowledge is derived from these operations and should be considered an accurate description of WSCF generated waste. Sample contribution is accounted for in the laboratory waste designation process and unused or excess samples are returned to the originator for disposal. The report describes procedures and processes common to all waste streams; individual waste streams; and radionuclide characterization methodology.

  1. Characterization of changes in gene expression and biochemical pathways at low levels of benzene exposure.

    Directory of Open Access Journals (Sweden)

    Reuben Thomas

    Full Text Available Benzene, a ubiquitous environmental pollutant, causes acute myeloid leukemia (AML. Recently, through transcriptome profiling of peripheral blood mononuclear cells (PBMC, we reported dose-dependent effects of benzene exposure on gene expression and biochemical pathways in 83 workers exposed across four airborne concentration ranges (from 10 ppm compared with 42 subjects with non-workplace ambient exposure levels. Here, we further characterize these dose-dependent effects with continuous benzene exposure in all 125 study subjects. We estimated air benzene exposure levels in the 42 environmentally-exposed subjects from their unmetabolized urinary benzene levels. We used a novel non-parametric, data-adaptive model selection method to estimate the change with dose in the expression of each gene. We describe non-parametric approaches to model pathway responses and used these to estimate the dose responses of the AML pathway and 4 other pathways of interest. The response patterns of majority of genes as captured by mean estimates of the first and second principal components of the dose-response for the five pathways and the profiles of 6 AML pathway response-representative genes (identified by clustering exhibited similar apparent supra-linear responses. Responses at or below 0.1 ppm benzene were observed for altered expression of AML pathway genes and CYP2E1. Together, these data show that benzene alters disease-relevant pathways and genes in a dose-dependent manner, with effects apparent at doses as low as 100 ppb in air. Studies with extensive exposure assessment of subjects exposed in the low-dose range between 10 ppb and 1 ppm are needed to confirm these findings.

  2. Effects of low-level radioactive-waste disposal on water chemistry in the unsaturated zone at a site near Sheffield, Illinois, 1982-84

    Science.gov (United States)

    Peters, C.A.; Striegl, R.G.; Mills, P.C.; Healy, R.W.

    1992-01-01

    A 1982-84 field study defined the chemistry of water collected from the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Chemical data were evaluated to determine the principal naturally occurring geochemical reactions in the unsaturated zone and to evaluate waste-induced effects on pore-water chemistry. Samples of precipitation, unsaturated-zone pore water, and saturated-zone water were analyzed for specific conductance, pH, alkalinity, major cations and anions, dissolved organic carbon, gross alpha and beta radiation, and tritium. Little change in concentration of most major constituents in the unsaturated-zone water was observed with respect to depth or distance from disposal trenches. Tritium and dissolved organic carbon concentrations were, however, dependent on proximity to trenches. The primary reactions, both on- site and off-site, were carbonate and clay dissolution, cation exchange, and the oxidation of pyrite. The major difference between on-site and off-site inorganic water chemistry resulted from the removal of the Roxana Silt and the Radnor Till Member of the Glasford Formation from on-site. Off-site, the Roxana Silt contributed substantial quantities of sodium to solution from montmorillonite dissolution and associated cation-exchange reactions. The Radnor Till Member provided exchange surfaces for magnesium. Precipitation at the site had an ionic composition of calcium zinc sulfate and an average pH of 4.6. Within 0.3 meter of the land surface, infiltrating rain water or snowmelt changed to an ionic canposition of calcium sulfate off-site and calcium bicarbonate on-site and had an average pH of 7.9; below that depth, pH averaged 7.5 and the ionic composition generally was calcium magnesium bicarbonate. Alkalinity and specific conductance differed primarily according to composition of geologic materials. Tritium concentrations ranged from 0.2 (detection limit) to 1,380 nanocuries per liter. The

  3. The radiation resistance and cobalt biosorption activity of yeast strains isolated from the Lanyu low-level radioactive waste repository in Taiwan.

    Science.gov (United States)

    Li, Chia-Chin; Chung, Hsiao-Ping; Wen, Hsiao-Wei; Chang, Ching-Tu; Wang, Ya-Ting; Chou, Fong-In

    2015-08-01

    The ubiquitous nature of microbes has made them the pioneers in radionuclides adsorption and transport. In this study, the radiation resistance and nuclide biosorption capacity of microbes isolated from the Lanyu low-level radioactive waste (LLRW) repository in Taiwan was assessed, the evaluation of the possibility of using the isolated strain as biosorbents for (60)Co and Co (II) from contaminated aqueous solution and the potential impact on radionuclides release. The microbial content of solidified waste and broken fragments of containers at the Lanyu LLRW repository reached 10(5) CFU/g. Two yeast strains, Candida guilliermondii (CT1) and Rhodotorula calyptogenae (RT1) were isolated. The radiation dose necessary to reduce the microbial count by one log cycle of CT1 and RT1 was 2.1 and 0.8 kGy, respectively. Both CT1 and RT1 can grow under a radiation field with dose rate of 6.8 Gy/h, about 100 times higher than that on the surface of the LLRW container in Lanyu repository. CT1 and RT1 had the maximum (60)Co biosorption efficiency of 99.7 ± 0.1% and 98.3 ± 0.2%, respectively in (60)Co aqueous solution (700 Bq/mL), and the (60)Co could stably retained for more than 30 days in CT 1. Nearly all of the Co was absorbed and reached equilibrium within 1 h by CT1 and RT1 in the 10 μg/g Co (II) aqueous solution. Biosorption efficiency test showed almost all of the Co (II) was adsorbed by CT1 in 20 μg/g Co (II) aqueous solution, the efficiency of biosorption by RT1 in 10 μg/g of Co (II) was lower. The maximum Co (II) sorption capacity of CT1 and RT1 was 5324.0 ± 349.0 μg/g (dry wt) and 3737.6 ± 86.5 μg/g (dry wt), respectively, in the 20 μg/g Co (II) aqueous solution. Experimental results show that microbial activity was high in the Lanyu LLRW repository in Taiwan. Two isolated yeast strains, CT1 and RT1 have high potential for use as biosorbents for (60)Co and Co (II) from contaminated aqueous solution, on the other hand, but may have the

  4. Characterization and Disposition of Legacy Low-Level Waste at the Y-12 National Security Complex - 12133

    Energy Technology Data Exchange (ETDEWEB)

    Tharp, Tim [B and W Technical Services Y-12, LLC, Oak Ridge, Tennessee 37831 (United States); Donnelly, Jim [National Nuclear Security Administration Y-12 Site Office, Oak Ridge, Tennessee, 37831 (United States)

    2012-07-01

    The Y-12 National Security Complex (Y-12) is concluding a multi-year program to characterize and dispose of all legacy low-level waste (LLW). The inventory of legacy waste at Y-12 has been reduced from over 3500 containers in Fiscal Year (FY) 2000 to 6 containers at the end of FY2011. In addition, the site recently eliminated the inventory of other low-level waste that is greater than 365 days old (i.e., >365-Day LLW), to be in full compliance with DOE Order 435.1. A consistent technical characterization approach emerged for both of these populations of backlogged waste: (1) compile existing historical data and process knowledge and conduct interviews with site personnel; (2) inspect the containers and any tags, labels, or other markings to confirm or glean additional data; (3) with appropriate monitoring, open the container, visually inspect and photograph the contents while obtaining preliminary radiological surveys; (4) obtain gross weight and field non-destructive assay (NDA) data as needed; (5) use the non-public Oak Ridge Reservation Haul Road to ship the container to a local offsite vendor for waste sorting and segregation; (6) sort, drain, sample, and remove prohibited items; and (7) compile final data and prepare for shipment to disposal. After disposing of this backlog, the focus has now turned to avoiding the recurrence of this situation by maintaining low inventories of low-level waste and shortening the duration between waste generation and disposal. An enhanced waste tracking system and monthly metric charts are used to monitor and report progress to contractor and federal site office management. During the past 2 years, the average age of LLW onsite at Y-12 has decreased from more than 180 days to less than 60 days. (authors)

  5. Optimization of the ALARA principle for the management and elimination of very low level radioactive waste; Optimisation de principe ALARA en matiere de gestion et d'elimination de dechets radioactifs de tres faible activite

    Energy Technology Data Exchange (ETDEWEB)

    Regibeau, A.; Caussin, J.; De Spiegeleer, M.; Poelaert, M. [Univ. Catholique de Louvain, Service de Radioprotection, Louvain-la-Neuve (France)

    1992-07-01

    The management of low level solid radioactive waste, as proposed by the National Institutions, cannot be applied to waste produced in a University environment. The report from the Universite Catholique de Louvain (UCL) states the reasons and the procedure which has been set up by the radioprotection department. It describes the storage facilities and details the quality control tests carried out during the elimination process. The report outlines the difficulties encountered by the radioprotection departments due to the absence of normes for the disposal of solid radioactive waste. (author)

  6. Use of flow scintillation analyzer combined with amino acid analyzer for measuring low-level radioactivity of tritium-labelled amino acids

    CERN Document Server

    Lukashina, E V; Fedoseev, V M; Ksenofontov, A L; Baratova, L A; Dobrov, E N

    2002-01-01

    Potential application of the Radiomatic 150TR Flow Scintillation Analyzer (Packard Instrument Co., USA) for measuring low radioactivity of tritium-labelled amino acids in eluate from the Amino Acid Analyzer 835 (Hitachi, Japan) was studied. Six scintillating cocktails were tested and the Hionic-Fluor and Ultima-Flo AP cocktails proved the most appropriate for flow measurement of radioactivity. Efficiency of tritium radioactivity recording under various conditions of analysis was determined. Under optimal conditions the lower detection limit for the Hionic-Fluor was 150, while for Ultima-Flo AP-100 decays/min in the peak of amino acid

  7. Properties of the cements and their use in the storage systems of low-level radioactive wastes; Propiedades de los cementos y su uso en los sistemas de almacenamiento de desechos radiactivos de nivel bajo

    Energy Technology Data Exchange (ETDEWEB)

    Almazan T, M. G., E-mail: guadalupe.almazan@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    The use of materials containing cement has generalized in the facilities of definitive storage of radioactive wastes due to their easy handling and availability. Besides conforming the buildings and structures, these materials are part of the barriers system that will maintain the isolated radioactive wastes of the biosphere until their activity has decayed at innocuous levels. However, to fulfill this function, the effectiveness and durability of these materials should be demonstrated fully. In Mexico the intention exists of building a definitive storehouse for the low-level radioactive wastes, however are few the studies on the behavior of the materials containing cement used in this type of facilities. With the purpose of to guide and promoting the study of the national cements, in this work is made a revision of the characteristics and properties of the cements with relationship to its use in the systems of definitive storage of low-level radioactive wastes, as well as of some studies that are realized to evaluate its acting as engineering barriers. (Author)

  8. Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III

    Energy Technology Data Exchange (ETDEWEB)

    Place, B.G., Westinghouse Hanford

    1996-09-24

    The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed, include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.

  9. Mixed and Low-Level Treatment Facility Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  10. Improved sampling and analytical techniques for characterization of very-low-level radwaste materials from commercial nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, D.E. [Pacific Northwest Labs., Richland, WA (United States); Robinson, P.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1989-11-01

    This paper summarizes the unique sampling methods that were utilized in a recently completed project sponsored by the Electric Power Research Institute (EPRI) to perform accurate and precise radiological characterizations of several very-low-level radwaste materials from commercial nuclear power stations. The waste types characterized during this project included dry active waste (DAW), oil, secondary-side ion exchange resin, and soil. Special precautions were taken to insure representative sampling of the DAW. This involved the initial direct, quantitative gamma spectrometric analyses of bulk quantities (208-liter drums) of DAW utilizing a specially constructed barrel scanner employing a collimated intrinsic germanium detector assembly. Subsamples of the DAW for destructive radiochemical analyses of the difficult-to-measure 10CF61 radionuclides were then selected which had the same isotopic composition (to within {+-}25%) as that measured for the entire drum of DAW. The techniques for accomplishing this sampling are described. Oil samples were collected from the top, middle and bottom sections of 208-liter drums for radiochemical analyses. These samples were composited to represent the entire drum of oil. The accuracy of this type of sampling was evaluated by comparisons with direct, quantitative assays of a number of the drums using the barrel scanning gamma-ray spectrometer. The accuracy of sampling drums of spent secondary-side ion exchange resin was evaluated by comparing the radionuclide contents of grab samples taken from the tops of the drums with direct assays performed with the barrel scanner. The results of these sampling evaluations indicated that the sampling methods used were generally adequate for providing a reasonably representative subsample from bulk quantities of DAW, oil, and resin. The study also identified a number of potential pitfalls, in sampling of these materials.

  11. Bench-scale treatability testing of biological, UV oxidation, distillation, and ion-exchange treatment of trench water from a low-level radioactive waste disposal area at West Valley, New York

    Energy Technology Data Exchange (ETDEWEB)

    Sundquist, J.A.; Gillings, J.C. [Ecology and Environment, Inc. (United States); Sonntag, T.L. [New York State Energy Research and Development Authority (United States); Denault, R.P. [Pacific Nuclear, Inc. (United States)

    1993-03-01

    Ecology and Environment, Inc. (E and E), under subcontract to Pacific Nuclear Services (PNS), conducted for the New York State Energy Research and Development Authority (NYSERDA) treatability tests to support the selection and design of a treatment system for leachate from Trench 14 of the West Valley State-Licensed, Low-Level Radioactive Waste Disposal Area (SDA). In this paper E and E presents and discusses the treatability test results and provides recommendations for the design of the full-scale treatment system.

  12. Review and evaluation of principles used in the estimation of radiation doses associated with the practice of deepsea disposal of low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.A.; Templeton, W.L.; Soldat, J.K.

    1985-09-01

    The relevant national and international guidance concerning the estimation of radiological doses from the practice of deepsea disposal of radioactive waste was reviewed. The review includes the dose limitation guidance of the various national and international bodies, especially that of the International Commission on Radiological Protection (ICRP). Pathway modeling is discussed as well as the oceanographic models of the International Atomic Energy Agency (IAEA). Included in the discussion are the recommendations for the definition of high-level waste by the IAEA for use by the London Dumping Convention (LDC) in setting limits for ocean disposal of waste. An assessment of the ICRP's radiological protection system using the effective whole-body dose methodology is made. Present models, which should continue to be improved as the research data becomes available, do provide an adequate basis for regulatory authorities to decide whether authorization for a proposed disposal can be granted, since they provide a means of indicating whether maximum individual (critical groups) exposure limits are likely to be exceeded. However, new models and information are continuously being developed by the international community to assess ocean disposal of radioactive waste in comparison to land disposal and to compare one site against another. 47 refs., 2 figs., 4 tabs.

  13. The nitrate to ammonia and ceramic (NAC) process for the denitration and immobilization of low-level radioactive liquid waste (LLW)

    Science.gov (United States)

    Muguercia, Ivan

    Hazardous radioactive liquid waste is the legacy of more than 50 years of plutonium production associated with the United States' nuclear weapons program. It is estimated that more than 245,000 tons of nitrate wastes are stored at facilities such as the single-shell tanks (SST) at the Hanford Site in the state of Washington, and the Melton Valley storage tanks at Oak Ridge National Laboratory (ORNL) in Tennessee. In order to develop an innovative, new technology for the destruction and immobilization of nitrate-based radioactive liquid waste, the United State Department of Energy (DOE) initiated the research project which resulted in the technology known as the Nitrate to Ammonia and Ceramic (NAC) process. However, inasmuch as the nitrate anion is highly mobile and difficult to immobilize, especially in relatively porous cement-based grout which has been used to date as a method for the immobilization of liquid waste, it presents a major obstacle to environmental clean-up initiatives. Thus, in an effort to contribute to the existing body of knowledge and enhance the efficacy of the NAC process, this research involved the experimental measurement of the rheological and heat transfer behaviors of the NAC product slurry and the determination of the optimal operating parameters for the continuous NAC chemical reaction process. Test results indicate that the NAC product slurry exhibits a typical non-Newtonian flow behavior. Correlation equations for the slurry's rheological properties and heat transfer rate in a pipe flow have been developed; these should prove valuable in the design of a full-scale NAC processing plant. The 20-percent slurry exhibited a typical dilatant (shear thickening) behavior and was in the turbulent flow regime due to its lower viscosity. The 40-percent slurry exhibited a typical pseudoplastic (shear thinning) behavior and remained in the laminar flow regime throughout its experimental range. The reactions were found to be more efficient in the

  14. Viability study for the implantation of an incineration unit for low level radioactive wastes; Estudo de viabilidade para implantacao de uma unidade de incineracao para rejeitos radioativos de nivel baixo

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Andre Wagner Oliani

    1995-07-01

    Incineration have been a world-wide accepted volume reduction technique for combustible materials due to its high efficiency and excellent results. This technique is used since the last century as an alternative to reduce cities garbage and during the last four decades for the hazardous wastes. The nuclear industry is also involved in this technique development related to the low level radioactive waste management. There are different types of incineration installations and the definition of the right system is based on a criterious survey of its main characteristics, related to the rad wastes as well technical, economical and burocratic parameters. After the autonomous Brazilian nuclear programme development and the onlook of the future intensive nuclear energy uses, a radwaste generation increase is expected. One of the installations where these radwastes volumes are awaited to be high is the Experimental Center of ARAMAR (CEA). Nuclear reactors for propulsion and power generation have been developed in CEA beyond other nuclear combustible cycle activities. In this panorama it is important to evaluate the incineration role in CEA installations, as a volume reduction technique for an appropriate radioactive wastes management implementation. In this work main aspects related to the low level radwaste incineration systems were up rised. This information are important to a coherent viability study and also to give a clear and impartial about a topic that is still non discussed in the national scenery. (author)

  15. Alternative methods for dispoal of low-level radioactive wastes. Task 1. Description of methods and assessment of criteria. [Alternative methods are belowground vaults, aboveground vaults; earth mounded concrete bunkers, mined cavities, augered holes

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, R.D.; Miller, W.O.; Warriner, J.B.; Malone, P.G.; McAneny, C.C.

    1984-04-01

    The study reported herein contains the results of Task 1 of a four-task study entitled Criteria for Evaluating Engineered Facilities. The overall objective of this study is to ensure that the criteria needed to evaluate five alternative low-level radioactive waste (LLW) disposal methods are available to the Nuclear Regulatory Commission (NRC) and the Agreement States. The alternative methods considered are belowground vaults, aboveground vaults, earth mounded concrete bunkers, mined cavities, and augered holes. Each of these alternatives is either being used by other countries for low-level radioactive waste (LLW) disposal or is being considered by other countries or US agencies. In this report the performance requirements are listed, each alternative is described, the experience gained with its use is discussed, and the performance capabilities of each method are addressed. Next, the existing 10 CFR Part 61 Subpart D criteria with respect to paragraphs 61.50 through 61.53, pertaining to site suitability, design, operations and closure, and monitoring are assessed for applicability to evaluation of each alternative. Preliminary conclusions and recommendations are offered on each method's suitability as an LLW disposal alternative, the applicability of the criteria, and the need for supplemental or modified criteria.

  16. Low-level waste forum meeting reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    This paper provides highlights from the summer meeting of the Low Level Radioactive Waste Forum. Topics of discussion included: responsibility for nonfuel component disposal; state experiences in facility licensing; and volume projections.

  17. Low-level waste forum meeting reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    This report provides highlights from the 1992 fall meeting of the Low LEvel Radioactive Waste Forum. Topics included: disposal options after 1992; interregional agreements; management alternatives; policy; and storage.

  18. Low-level counting techniques in the underground laboratory `Felsenkeller` in Dresden

    Energy Technology Data Exchange (ETDEWEB)

    Niese, S. [Nuclear Engineering and Analytics Rossendorf, Inc., Dresden (Germany); Koehler, M. [Nuclear Engineering and Analytics Rossendorf, Inc., Dresden (Germany)

    1997-03-01

    Low radioactivity measurements are characterized by low detection limits. They are mainly determined by the background. The contribution of cosmic rays may be reduced drastically by installation of measurement devices in an underground laboratory. In 1982 we installed a chamber with a shield of ultramafic rock for low-level measurements within a cave of an old brewery named `Felsenkeller`. In this laboratory we used low-level {gamma}-spectrometry for the measurement of neutron activated samples of semiconductor silicon (Niese (1986)), of cosmic induced radioactivity in meteorites, chemically separated long-lived nuclides in low-level wastes, contaminated materials and of environmental samples. (orig./DG)

  19. 环境样品低水平γ放射性的活度测量%Low levels of radioactivity in environmental samples γactivity measurement

    Institute of Scientific and Technical Information of China (English)

    隗莲; 沈明启; 刘春雨

    2014-01-01

    There are a variety of radionuclides in the soil , including higher levels of nuclear 40 K, 226 Ra, 232 Th and 238 U.These four standard sources was used as a basis for measure-ment, and the calculations of the branching ratio and detection efficiency of full -energy peaks were performed , so as to calculate the activity of these radionuclides .The detection ef-ficiencies of energy scale of experimental apparatus , and the standard soil source such as 40 K, 226 Ra, 232 Th and 238 U were measured using BH1936 multichannel gamma spectrometer with low background as a laboratory instrument , and the mixture of 60 Co and 137 Cs radiation source as the known energy source .The energy spectrum analysis of environmental samples mainly included radioactivity of soil samples and samples of building materials .Therefore, the specific activity of standard sources representative ( 40 K,226 Ra, 232 Th and 238 U) was ob-tained.%土壤中含有多种放射性核素,其中含量较高的核素有40 K、226 Ra、232 Th和238 U,以这四种的标准源为基础进行实验测量,计算各种能量所对应的全能峰的分支比和探测效率,从而计算出这些放射性核素的活度。通过实验的方法,用BH1936型低本底多道γ能谱仪作为实验仪器,把60 Co和137 Cs的混合放射源作为能量刻度的已知能量源,对实验仪器能量刻度,以及对标准土壤源40 K、226 Ra、232 Th和238 U的探测效率进行实验测量。以此为基础对环境样品进行了能谱分析,主要是测量和分析了环境土壤样品和建材样品的放射性活度,得到了标准源(40 K、226 Ra、232 Th和238 U)为代表的核素的比活度。

  20. Packaged low-level waste verification system

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, K.; Winberg, M.R.; McIsaac, C.V. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    The Department of Energy through the National Low-Level Waste Management Program and WMG Inc. have entered into a joint development effort to design, build, and demonstrate the Packaged Low-Level Waste Verification System. Currently, states and low-level radioactive waste disposal site operators have no method to independently verify the radionuclide content of packaged low-level waste that arrives at disposal sites for disposition. At this time, the disposal site relies on the low-level waste generator shipping manifests and accompanying records to ensure that low-level waste received meets the site`s waste acceptance criteria. The subject invention provides the equipment, software, and methods to enable the independent verification of low-level waste shipping records to ensure that the site`s waste acceptance criteria are being met. The objective of the prototype system is to demonstrate a mobile system capable of independently verifying the content of packaged low-level waste.

  1. Characterization and Dissolution Kinetics Testing of Radioactive H-3 Calcine

    Energy Technology Data Exchange (ETDEWEB)

    Garn, Troy Gerry; Batcheller, Thomas Aquinas

    2002-09-01

    Characterization and dissolution kinetics testing were performed with Idaho radioactive H-3 calcine. Calcine dissolution is the key front-end unit operation for the Separations Alternative identified in the Idaho High Level Waste Draft EIS. The impact of the extent of dissolution on the feasibility of Separations must be clearly quantified.

  2. Investigation on the analytical methods of plutonium in low-level radioactive waste water%低水平放射性废水中钚的分析方法研究进展∗

    Institute of Scientific and Technical Information of China (English)

    刘波; 史克亮; 叶高阳; 郭治军; 吴王锁; 王一鸥; 郭建锋; 梁勇

    2015-01-01

    Plutonium is an important nuclear fuel, also an extremely toxic radionuclide. It plays an important role in the field of nuclear fuel cycling and radioactive waste disposal. In recent years, attention has been turned to the content and distribution of plutonium in low level radioactive waste water of nuclear facilities and natural water. Some analytical methods have been established for plutonium determination in low level radioactive waste water of nuclear facilities, natural water around nuclear facilities as well as the natural water contaminated by nuclear accident. In this paper, the reported analytical methods have been reviewed and compared, and a new method for the separation of plutonium from other actinides and metal ions using TEVA resin vacuum micro column and determination of plutonium using liquid scintillation counter was proposed. The developed method is expected to be used in the daily and emergency monitoring of plutonium in the future.%钚是重要的核燃料,也是一种极毒的放射性核素,在核燃料循环和放射性废物处置过程中占有重要地位。近些年来,钚在自然水体中的含量、分布引起人们的关注。科研工作者针对低水平放射性废水,核设施周围自然水体,核试验、核事故情况下可能污染的自然水体等,建立了一些钚的分析方法。作者在对这些方法进行了比较的基础上,提出了一种在盐酸体系中用TEVA树脂负压微色谱柱液闪法将水溶液中钚与其他锕系元素及金属离子分离并测量的新方法。该方法有望在日常和应急监测中的得到应用。

  3. Vibrational spectroscopy characterization of low level laser therapy on mammary culture cells: a micro-FTIR study

    Science.gov (United States)

    Magrini, Taciana D.; Villa dos Santos, Nathalia; Pecora Milazzotto, Marcella; Cerchiaro, Giselle; da Silva Martinho, Herculano

    2011-03-01

    Low level laser therapy (LLLT) is an emerging therapeutic approach for several clinical conditions. The clinical effects induced by LLLT presumably go from the photobiostimulation/photobioinibition at cellular level to the molecular level. The detailed mechanism underlying this effect is still obscure. This work is dedicated to quantify some relevant aspects of LLLT related to molecular and cellular variations. This goal was attached by exposing malignant breast cells (MCF7) to spatially filtered light of a He-Ne laser (633 nm) with 28.8 mJ/cm2 of fluency. The cell viability was evaluated by microscopic observation using Trypan Blue viability test. The vibrational spectra of each experimental group (micro- FTIR technique) were used to identify the relevant biochemical alterations occurred due the process. The red light had influence over RNA, phosphate and serine/threonine/tyrosine bands. Light effects on cell number or viability were not detected. However, the irradiation had direct influence on metabolic activity of cells.

  4. Radioactive characterization of phosphogypsum from Imbituba, Brazil.

    Science.gov (United States)

    Borges, Renata Coura; Ribeiro, Fernando Carlos Araujo; Lauria, Dejanira da Costa; Bernedo, Alfredo Victor Bellido

    2013-12-01

    This research aims to characterize the content of natural occurring radionuclides in phosphogypsum stacks at Imbituba, Santa Catarina state, Brazil. (226)Ra, (228)Ra, (40)K, (238)U and (232)Th were determined in PG, soils and sediment samples by gamma spectrometry using the hyper pure germanium detector and neutron activation. The migration of radionuclides in the phosphogypsum profile did not show the same behavior for all sampling sites. The mean activity concentration of (226)Ra was 95 Bq kg(-1), which is far below the limit recommended by the U.S. Environmental Agency (USEPA) for its application in agriculture (370 Bq kg(-1)) and the Brazilian Commission of Nuclear Energy Resolution 113 that established a reference level of 1000 Bq kg(-1) of (226)Ra or (228)Ra for the use of PG in agriculture as well as building materials.

  5. Application of radiological imaging methods to radioactive waste characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tessaro, Ana Paula Gimenes; Souza, Daiane Cristini B. de; Vicente, Roberto, E-mail: aptessaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Radiological imaging technologies are most frequently used for medical diagnostic purposes but are also useful in materials characterization and other non-medical applications in research and industry. The characterization of radioactive waste packages or waste samples can also benefit from these techniques. In this paper, the application of some imaging methods is examined for the physical characterization of radioactive wastes constituted by spent ion-exchange resins and activated charcoal beds stored at the Radioactive Waste Management Department of IPEN. These wastes are generated when the filter media of the water polishing system of the IEA-R1 Nuclear Research Reactor is no longer able to maintain the required water quality and are replaced. The IEA-R1 is a 5MW pool-type reactor, moderated and cooled by light water, and fission and activation products released from the reactor core must be continuously removed to prevent activity buildup in the water. The replacement of the sorbents is carried out by pumping from the filter tanks into several 200 L drums, each drum getting a variable amount of water. Considering that the results of radioanalytical methods to determine the concentrations of radionuclides are usually expressed on dry basis,the amount of water must be known to calculate the total activity of each package. At first sight this is a trivial problem that demanded, however some effort to be solved. The findings on this subject are reported in this paper. (author)

  6. Characterization of radioactive particles from the Palomares accident

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, A. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, Departamento de Medio Ambiente, Avenida Complutense, 22, Madrid 28040 (Spain)], E-mail: antonio.aragon@ciemat.es; Espinosa, A.; Cruz, B. de la [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, Departamento de Medio Ambiente, Avenida Complutense, 22, Madrid 28040 (Spain); Fernandez, J.A. [Empresa Nacional del Uranio Sociedad Anonima, ENUSA Industrias Avanzadas, S.A., C/Santiago Rusinol, 12, Madrid 28040 (Spain)

    2008-07-15

    As a consequence of the nuclear accident that took place in Palomares (Almeria, Spain) more than 40 years ago, actinides contamination is present in the area nowadays. Previous investigations performed with soil samples collected in different locations of Palomares indicate that the contamination in the area is highly inhomogeneous, suggesting the existence of radioactive particles, thus hindering the evaluation of the radiological situation. This work presents the methodology used for the location of the radioactive particles in the field and their isolation in the laboratory for further speciation and characterization studies. Colour pictures, electron microscopy images and EDX analyses show that most of the studied particles present a granular appearance with a variable grain size and a high fragmentation tendency, being plutonium and uranium the most abundant nuclear elements. Radiochemical determinations and activity isotopic ratios prove that the nuclear material is aged weapon grade plutonium arising from the Palomares accident.

  7. 极低放废物近地表处置的环境安全评价方法研究%Technical Methods of Evaluation of Near-surface Disposal of Very Low Level Radioactive Waste

    Institute of Scientific and Technical Information of China (English)

    滕彦国; 左锐; 王金生

    2011-01-01

    放射性废物处置是当前严峻的环保问题之一,从经济、安全和高效角度出发,将极低放废物从中、低放废物中分离出来单独处置,对核废物的管理与处置具有重要意义.本文以我国西南某极低放废物备选处置场为研究对象,系统分析了处置的相关技术方法,重点研究了屏障技术和环境安全评价方法及其应用.针对拟建在古泥石流体山区山顶上的处置场.选取核素Sr作为处置对象,选用盆状屏障式处置库,估算产生的核素Sr的总活度和比活度.选用筛分的颗粒dSr的吸附效果明显;模拟计算结果显示核素Sr在50 a内被完全阻滞在包气带中,可以达到安全处置废物的要求.%Radioactive waste disposal is one of the most difficult environmental problems worldwide, and has been a hotspot in the field of pollution control and remediation. In order to economically and efficiently dispose radioactive wastes, very low level radioactive waste (VLLW) is separated from low and intermediate levels waste, and the bulk VLLW could be disposed in the disposal site without any special engineering barrier. This approach not only substantially saves disposal costs but also meets the public laws on the environment. Therefore, it is very important for disposal and management of radioactive waste. This paper developed and systemically analyzed several relevant techniques at a VLI.W disposal site in the southwestern China, and carefully studied the barrier and technical methods of evaluation. The disposal site is sited on a hilltop of debris flow. In this study, a repository with barrier was selected, 90Sr was selected as a typical nuclide, and the releasing concentration was calculated by a given model.The fine particle (d<1 mm) was used as barrier material of the repository with the thickness of 0.5 m. The sorption and migration characteristics were measured by batch and column experiments, and the results reflected the material has a good

  8. Development of characterization protocol for mixed liquid radioactive waste classification

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Norasalwa, E-mail: norasalwa@nuclearmalaysia.gov.my [Waste Technology Development Centre, Malaysian Nuclear Agency, 43000 Kajang, Selangor (Malaysia); Wafa, Syed Asraf [Radioisotop Technology and Innovation, Malaysian Nuclear Agency, 43000 Kajang, Selangor (Malaysia); Wo, Yii Mei [Radiochemistry and Environment, Malaysian Nuclear Agency, 43000 Kajang, Selangor (Malaysia); Mahat, Sarimah [Material Technology Group, Malaysian Nuclear Agency, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    Mixed liquid organic waste generated from health-care and research activities containing tritium, carbon-14, and other radionuclides posed specific challenges in its management. Often, these wastes become legacy waste in many nuclear facilities and being considered as ‘problematic’ waste. One of the most important recommendations made by IAEA is to perform multistage processes aiming at declassification of the waste. At this moment, approximately 3000 bottles of mixed liquid waste, with estimated volume of 6000 litres are currently stored at the National Radioactive Waste Management Centre, Malaysia and some have been stored for more than 25 years. The aim of this study is to develop a characterization protocol towards reclassification of these wastes. The characterization protocol entails waste identification, waste screening and segregation, and analytical radionuclides profiling using various analytical procedures including gross alpha/ gross beta, gamma spectrometry, and LSC method. The results obtained from the characterization protocol are used to establish criteria for speedy classification of the waste.

  9. TFA'Expo Exhibition on the next low level radioactive wastes storage center Andra - Aube Center. January - june 2003; TFA'Expo exposition sur le futur Centre de stockage de dechets de tres faible activite Andra - Centre de l'Aube. Janvier - Juin 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In order to inform the public on the nuclear installations, the Andra this document on the next storage Center of the Aube, for the low level radioactive wastes. The six parts present, the wastes characteristics, the wastes management, the choice of the site, the organization of the TFA (very low activity wastes), the environmental impacts and the economical impacts. (A.L.B.)

  10. Twelfth annual US DOE low-level waste management conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.

  11. Cyclic neutron activation for non-destructive characterization of radioactive waste; Zyklische Neutronen-Aktivierung zur Zerstoerungsfreien Charakterisierung radioaktiver Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Havenith, Andreas; Kettler, John [RWTH Aachen (Germany). Inst. fuer Nuklearen Brennstoffkreislauf; Mauerhofer, Eric [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energie und Klimaforschung

    2011-07-01

    In Germany about 100.000 casks with low-level radioactive waste are actually stored in federal collection sites or at the nuclear power plants. Due to the incomplete documentation these casks have to be characterized with respect to their composition. In order to avoid the opening of the casks a new non-destructive characterization method was developed by the authors based on the prompt and delayed gamma-neutron-activation analyses using 14 MeV neutrons. the main challenge was to determine the self-shielding of neutrons and photons dependent on the sample composition. Computerized MNCP calculations and experiments were performed. The multi-element analysis is based on the gamma spectroscopy during neutron activation. A new measuring system (MEDINA - multi-element detection based on instrumental neutron activation) was built esp. for the characterization of 200-l casks used in the repository KONRAD.

  12. Characterization Report for the 92-Acre Area of the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2006-06-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office manages two low-level Radioactive Waste Management Sites at the Nevada Test Site. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. This report summarizes characterization and monitoring work pertinent to the 92-Acre Area in the southeast part of the Area 5 Radioactive Waste Management Sites. The decades of characterization and assessment work at the Area 5 RWMS indicate that the access controls, waste operation practices, site design, final cover design, site setting, and arid natural environment contribute to a containment system that meets regulatory requirements and performance objectives for the short- and long-term protection of the environment and public. The available characterization and Performance Assessment information is adequate to support design of the final cover and development of closure plans. No further characterization is warranted to demonstrate regulatory compliance. U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is proceeding with the development of closure plans for the six closure units of the 92-Acre Area.

  13. Proceedings of the tenth annual DOE low-level waste management conference: Session 2: Site performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This document contains twelve papers on various aspects of low-level radioactive waste management. Topics of this volume include: performance assessment methodology; remedial action alternatives; site selection and site characterization procedures; intruder scenarios; sensitivity analysis procedures; mathematical models for mixed waste environmental transport; and risk assessment methodology. Individual papers were processed separately for the database. (TEM)

  14. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  15. Characterization of defects in semiconductors using radioactive isotopes

    CERN Document Server

    Deicher, Manfred

    2007-01-01

    Radioactive atoms have been used in solid-state physics and in material science for many decades. Besides their classical application as tracer for diffusion studies, nuclear techniques such as Mossbauer spectroscopy, perturbed angular correlation, and emission channeling have used nuclear properties to gain microscopical information on the structural and dynamical properties of solids. The availability of many different radioactive isotopes as a clean ion beam at facilities like ISOLDE/CERN has triggered a new era involving methods sensitive for the optical and electronic properties of solids, especially in the field of semiconductor physics. Spectroscopic techniques like photoluminescence (PL), deep-level transient spectroscopy (DLTS), and Hall effect gain a new quality by using radioactive isotopes. Due to their decay the chemical origin of an observed electronic and optical behavior of a specific defect or dopant can be unambiguously identified. This contribution will highlight a few examples to illustrat...

  16. Low-level Waste Forum meeting report. Summer meeting, July 21--23, 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. The Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This report contains information synthesizing the accomplishments of the Forum, as well as any new advances that have been made in the management of low-level radioactive wastes.

  17. Low-level Waste Forum meeting report. Fall meeting, October 20--22, 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. The Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This report contains information synthesizing the accomplishments of the Forum, as well as any new advances that have been made in the management of low-level radioactive wastes.

  18. Characterization of low energy radioactive beams using direct reactions

    DEFF Research Database (Denmark)

    Johansen, J.G.; Fraser, M.A.; Bildstein, V.

    2013-01-01

    We demonstrate a new technique to determine the beam structure of low energy radioactive beams using coincidence events from a direct reaction. The technique will be described and tested using Geant4 simulations. We use the technique to determine for the first time the width, divergence and energy...... of an accelerated radioactive beam produced at ISOLDE. We use data from an experiment with an 11Be beam incident on a deuteron target producing 10Be from a (d,t) reaction. The T-REX Si detector array was used for particle detection, but the technique is applicable for other setups....

  19. Explanation of Significant Differences Between Models used to Assess Groundwater Impacts for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and Greater-Than-Class C-Like Waste Environmental Impact Statement (DOE/EIS-0375-D) and the

    Energy Technology Data Exchange (ETDEWEB)

    Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

    2011-08-01

    Models have been used to assess the groundwater impacts to support the Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE-EIS 2011) for a facility sited at the Idaho National Laboratory and the Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project (INL 2011). Groundwater impacts are primarily a function of (1) location determining the geologic and hydrologic setting, (2) disposal facility configuration, and (3) radionuclide source, including waste form and release from the waste form. In reviewing the assumptions made between the model parameters for the two different groundwater impacts assessments, significant differences were identified. This report presents the two sets of model assumptions and discusses their origins and implications for resulting dose predictions. Given more similar model parameters, predicted doses would be commensurate.

  20. CACAO: A project for a laboratory for the production and characterization of thin radioactive layers

    Energy Technology Data Exchange (ETDEWEB)

    Bacri, C.O., E-mail: bacri@ipno.in2p3.f [Institut de Physique Nucleaire d' Orsay, 91406 Orsay Cedex, CNRS (UMR8608-IN2P3), Universite Paris-Sud (Paris XI) (France); Petitbon, V.; Pierre, S. [Institut de Physique Nucleaire d' Orsay, 91406 Orsay Cedex, CNRS (UMR8608-IN2P3), Universite Paris-Sud (Paris XI) (France)

    2010-02-11

    CACAO, Chimie des Actinides et Cibles radioActives a Orsay (actinide chemistry and radioactive targets at Orsay), is a project under construction that consists of the installation of a hot laboratory dedicated to the production and characterization of thin radioactive layers. The project aims to be a joint CNRS-CEA national laboratory to overcome difficulties related mainly to safety issues and to the lack of knowledge and potential manpower. The first goal is to fulfill, at least, the needs of the whole French community, and to be able to coordinate the different activities related to radioactive targets. For this purpose, itis important to be complementary to already existing international installations. Inside this framework, it will of course be possible to produce and/or characterize targets for other users.

  1. CACAO: A project for a laboratory for the production and characterization of thin radioactive layers

    Science.gov (United States)

    Bacri, C. O.; Petitbon, V.; Pierre, S.; Cacao Group

    2010-02-01

    CACAO, Chimie des Actinides et Cibles radioActives à Orsay (actinide chemistry and radioactive targets at Orsay), is a project under construction that consists of the installation of a hot laboratory dedicated to the production and characterization of thin radioactive layers. The project aims to be a joint CNRS-CEA national laboratory to overcome difficulties related mainly to safety issues and to the lack of knowledge and potential manpower. The first goal is to fulfill, at least, the needs of the whole French community, and to be able to coordinate the different activities related to radioactive targets. For this purpose, itis important to be complementary to already existing international installations. Inside this framework, it will of course be possible to produce and/or characterize targets for other users.

  2. Characterization and biodegradation of polycyclic aromatic hydrocarbons in radioactive wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Tikilili, Phumza V. [Water Utilisation Division, Department of Chemical Engineering, University of Pretoria, Pretoria 0002 (South Africa); Nkhalambayausi-Chirwa, Evans M., E-mail: Evans.Chirwa@up.ac.za [Water Utilisation Division, Department of Chemical Engineering, University of Pretoria, Pretoria 0002 (South Africa)

    2011-09-15

    Highlights: {yields} Biodegradation of recalcitrant toxic organics under radioactive conditions. {yields} Biodegradation of PAHs of varying size and complexity in mixed waste streams. {yields} Validation of radiation-tolerance and performance of the isolated organisms. - Abstract: PAH degrading Pseudomonad and Alcaligenes species were isolated from landfill soil and mine drainage in South Africa. The isolated organisms were mildly radiation tolerant and were able to degrade PAHs in simulated nuclear wastewater. The radiation in the simulated wastewater, at 0.677 Bq/{mu}L, was compatible to measured values in wastewater from a local radioisotope manufacturing facility, and was enough to inhibit metabolic activity of known PAH degraders from soil such as Pseudomonas putida GMP-1. The organic constituents in the original radioactive waste stream consisted of the full range of PAHs except fluoranthene. Among the observed PAHs in the nuclear wastewater from the radioisotope manufacturing facility, acenaphthene and chrysene predominated-measured at 25.1 and 14.2 mg/L, respectively. Up to sixteen U.S.EPA priority PAHs were detected at levels higher than allowable limits in drinking water. The biodegradation of the PAHs was limited by the solubility of the compounds. This contributed to the observed faster degradation rates in low molecular weight (LMW) compounds than in high molecular weight compounds.

  3. Concretes characterization for spent radioactive sources; Caracterizacion de concretos para fuentes radiactivas gastadas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez B, J. [Instituto Tecnologico de Saltillo, Venustiano Carranza No. 2400, Col. Tecnologico, 25280 Saltillo, Coahuila (Mexico); Monroy G, F. P., E-mail: jmtzbock@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    The present work includes the preparation and characterization of the concrete used as conditioning matrix of spent radioactive sources in the Treatment Plant of Radioactive Wastes of the Instituto Nacional de Investigaciones Nucleares (ININ). The concrete tests tubes were subjected to resistance assays to the compression, leaching, resistance to the radiation and porosity, and later on characterized by means of X rays diffraction, scanning electron microscopy and infrared spectrometry, with the purpose of evaluating if this concrete accredits the established tests by the NOM-019-Nucl-1995. The results show that the concrete use in the Treatment Plant fulfills the requirements established by the NOM-019-Nucl-1995. (author)

  4. Characterization of radioactive aerosols in Tehran research reactor containment

    Directory of Open Access Journals (Sweden)

    Moradi Gholamreza

    2015-01-01

    Full Text Available The objectives of this research were to determine the levels of radioactivity in the Tehran research reactor containment and to investigate the mass-size distribution, composition, and concentration of radionuclides during operation of the reactor. A cascade impactor sampler was used to determine the size-activity distributions of radioactive aerosols in each of the sampling stations. Levels of a and b activities were determined based on a counting method using a liquid scintillation counter and smear tests. The total average mass fractions of fine particles (particle diameter dp < 1 mm in all of the sampling stations were approximately 26.75 %, with the mean and standard deviation of 52.15 ± 19.75 mg/m3. The total average mass fractions of coarse particles were approximately 73.2%, with the mean and standard deviation of 71.34 ± 24.57 mg/m3. In addition to natural radionuclides, artificial radionuclides, such as 24Na, 91Sr, 131I, 133I, 103Ru, 82Br, and 140La, may be released into the reactor containment structure. Maximum activity was associated with accumulation-mode particles with diameters less than 400 nm. The results obtained from liquid scintillation counting suggested that the mean specific activity of alpha particles in fine and coarse-modes were 89.7 % and 10.26 %, respectively. The mean specific activity of beta particles in fine and coarse-modes were 81.15 % and 18.51 %, respectively. A large fraction of the radionuclides' mass concentration in the Tehran research reactor containment was associated with coarse-mode particles, in addition, a large fraction of the activity in the aerosol particles was associated with accumulation-mode particles.

  5. Lidar Observations of Low-level Wind Reversals over the Gulf of Lion and Characterization of Their Impact on the Water Vapour Variability

    Science.gov (United States)

    Di Girolamo, Paolo; Flamant, Cyrille; Cacciani, Marco; Summa, Donato; Stelitano, Dario; Mancini, Ignazio; Richard, Evelyne; Ducrocq, Véronique; Nuret, Mathieu; Said, Frédérique

    2016-06-01

    Water vapour measurements from a ground-based Raman lidar and an airborne differential absorption lidar, complemented by high resolution numerical simulations from two mesoscale models (Arome-WMED and MESO-NH), are considered to investigate transition events from Mistral/Tramontane to southerly marine flow taking place over the Gulf of Lion in Southern France in the time frame September-October 2012, during the Hydrological Cycle in the Mediterranean Experiment (HyMeX) Special Observation Period 1 (SOP1). Low-level wind reversals associated with these transitions are found to have a strong impact on water vapour transport, leading to a large variability of the water vapour vertical and horizontal distribution. The high spatial and temporal resolution of the lidar data allow to monitor the time evolution of the three-dimensional water vapour field during these transitions from predominantly northerly Mistral/Tramontane flow to a predominantly southerly flow, allowing to identify the quite sharp separation between these flows, which is also quite well captured by the mesoscale models.

  6. National Low-Level Waste Management Program Radionuclide Report Series

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, M.J.; Garcia, R.S.

    1992-02-01

    This report, Volume 3 of the National Low-Level Radioactive Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of carbon-14. The report also discusses waste streams that contain carbon-14, waste forms that contain carbon-14, and carbon-14 behavior in the environment and in the human body.

  7. National Low-Level Waste Management Program Radionuclide Report Series

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, M.J.; Stanton, C.; Patterson, R.G.; Garcia, R.S.

    1992-02-01

    This report, Volume 2 of the National Low-Level Radioactive Waste Management Program Radionuclide Report Series, discusses radiological and chemical characteristics of technetium-99. This report also includes discussions about waste streams in which technetium-99 can be found, waste forms that contain technetium-99, and technetium-99's behavior in the environment and in the human body.

  8. National Low-Level Waste Management Program Radionuclide Report Series

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, M.J.; Garcia, R.S.

    1992-02-01

    This report, Volume 4 of the National Low-Level Radioactive Waste Management Program Radionuclide Report Series, discusses radiological and chemical characteristics about iodine-129. This report also includes discussions about waste streams that contain iodine-129, waste forms that contain iodine-129, and iodine-129's behavior in the environment, as well as in the human body.

  9. A Multicounter System for Scanning Ultra-Low-Level Radiochromatograms

    DEFF Research Database (Denmark)

    Bøtter-Jensen, Lars; Hansen, Heinz Johs. Max; Theodorsson, P.

    1977-01-01

    A multicounter system consisting of an integrated array of flow counters for the scanning of ultra-low-level radioactivity on paper and thin-layer chromatograms was developed. Experience with routine measurements over a prolonged period has proved the advantages of this system over other systems...

  10. Characterization of a radioactive {sup 11}C beam by means of the associated particle technique

    Energy Technology Data Exchange (ETDEWEB)

    Varela, A.; Policroniades, R.; Murillo, G.; Moreno, E. [ININ, Laboratorio del Acelerador Tandem, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Huerta, A.; Chavez, E.; Ortiz, M. E.; Barron, L.; Curiel, Q. [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Aguilar, C.; Coello, E. A.; Juarez, M. A.; Martinez, J. N. [UNAM, Facultad de Ciencias, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2010-02-15

    This paper describes the results obtained for the production and characterization of a radioactive {sup 11}C beam, by means of the in flight technique and the tandem laboratory of the National Institute of Nuclear Research, Mexico. The {sup 11}C production technique described here, uses the well known associated particle technique with the reaction {sup 2}H({sup 10}B, {sup 11}C)n, in order to obtain a bi univocal correspondence between the radioactive {sup 11}C particles and the associated neutrons. A discussion concerning the possible use of this {sup 11}C beam in the study of the elastic scattering of protons is introduced. (Author)

  11. Russian low-level waste disposal program

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, L. [L. Lehman and Associates, Inc., Burnsville, MN (United States)

    1993-03-01

    The strategy for disposal of low-level radioactive waste in Russia differs from that employed in the US. In Russia, there are separate authorities and facilities for wastes generated by nuclear power plants, defense wastes, and hospital/small generator/research wastes. The reactor wastes and the defense wastes are generally processed onsite and disposed of either onsite, or nearby. Treating these waste streams utilizes such volume reduction techniques as compaction and incineration. The Russians also employ methods such as bitumenization, cementation, and vitrification for waste treatment before burial. Shallow land trench burial is the most commonly used technique. Hospital and research waste is centrally regulated by the Moscow Council of Deputies. Plans are made in cooperation with the Ministry of Atomic Energy. Currently the former Soviet Union has a network of low-level disposal sites located near large cities. Fifteen disposal sites are located in the Federal Republic of Russia, six are in the Ukraine, and one is located in each of the remaining 13 republics. Like the US, each republic is in charge of management of the facilities within their borders. The sites are all similarly designed, being modeled after the RADON site near Moscow.

  12. Radioactive Air Emissions Notice of Construction (NOC) for the Waste Sampling and Characterization Facility (WSCF)

    Energy Technology Data Exchange (ETDEWEB)

    BATES, J.A.

    2000-05-01

    This NOC application is provided to update the description of amounts of material handled, and to update the calculation of potential for emissions and resultant calculation of offsite TEDE. This NOC also includes an updated description of the various emission units at WSCF, including use of portable tanks to receive and remove liquid waste contaminated with low levels of radioactive contamination. The resultant, adjusted estimate for TEDE to the hypothetical MEI due to all combined unabated emissions from WSCF is 1.4 E-02 millirem per year. The total adjusted estimate for all combined abated emissions is 2.8 E-03 millirem per year. No single emission unit at the WSCF Complex exceeds a potential (unabated) offsite dose of 2.7 E-03 millirem per year.

  13. Marine environmental impact pre-assessment for low-level radioactive waste water from a coastal nuclear power plant%某滨海核电厂低放射性废水的海洋环境影响预评价

    Institute of Scientific and Technical Information of China (English)

    马丽; 王建华; 李吉鹏; 陆志强; 张玉生

    2013-01-01

    As a clean energy resource it is essential to assess the impact of low-level radioactive waste water from the nuclear power plant. In this paper, Co, Co, Sr, Cs, Cs and 110mAg in low level radioactive waste water from a coastal nuclear power plant were selected as evaluating indicators to make prediction and assessment of radioactive impact on seawater and marine sediments based on the model suggested by International Atomic Energy Agency (IAEA). The results showed that the assessed specific activities were 2 to 3 order of magnitude lower than background values of 58Co,60Co, 134Cs and 110m Ag, and 4 order of magnitude of 90Sr in the seawater around the discharge outlet from the nuclear power plant. The assessed specific activity of Cs was slightly higher than background value. However, the assessed specific activities were 2 to 5 order of magnitude higher than background values of 58Co、60Co、134Cs、137Cs and 110mAg in coastal sediments, especially for 60Co and 110mAg. The assessed specific activity of 90Sr was 2 order of magnitude lower than background value. It is necessary to carry on the study on radiological impact assessment, transport processes of radionuclides, joint effect (thermal discharge, low-level radioactive waste water and residual chlorine) and bioindicalors.%以某滨海核电厂为例,分析确定58 Co、60Co、90Sr、134 Cs、137 Cs和110m Ag等放射性核素为该核电厂低放射性废水中的主要海洋环境影响评价因子.根据国际原子能机构推荐的评估模式预测了上述放射性核素排海后对电厂排放口海域环境(海水水质和沉积物质量)的影响,预测结果表明该核电厂低放射性废水正常排放后,排放口附近海域海水中的58 Co、60Co、134Cs、1 10m Ag比活度低于放射性核素比活度背景值检测限2~3个数量级;90Sr低于背景值4个数量级;137Cs略高于背景值,对周围海水环境未造成放射性污染.但58 Co、60Co、134Cs、137Cs、110m Ag在排

  14. Characterization of source rocks and groundwater radioactivity at the Chihuahua valley

    Energy Technology Data Exchange (ETDEWEB)

    Renteria V, M.; Montero C, M.E.; Reyes C, M.; Herrera P, E.F.; Valenzuela H, M. [Centro de lnvestigacion en Materiales Avanzados, Miguel de Cervantes 120, 31109 Chihuahua, (Mexico); Rodriguez P, A. [World Wildlife Fund (WWF), Chihuahuan Desert Program, Coronado 1005, 31000 Chihuahua (Mexico); Manjon C, G.; Garcia T, R. [Universidad de Sevilla, Departamento de Fisica Aplicada 11, ETS Arquitectura, Av. Reina Mercedes 2, 41012 Sevilla, (Spain); Crespo, T. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Av. Complutense 22, 28040 Madrid, (Spain)]. e-mail: elena.montero@cimav.edu.mx

    2007-07-01

    As part of a scientific research project about alpha radioactivity in groundwater for human consumption at the Chihuahua City, the characterization of rock sources of radioactivity around de Chihuahua valley was developed. The radioactivity of groundwater and sediments was determined, too. The radioactivity of uranium- and thorium- series isotopes contained in rocks was obtained by high resolution gamma-ray spectroscopy. Some representative values are 50 Bq/kg for the mean value of Bi-214 activity, and 121.5 Bq/kg for the highest value at West of the city. The activity of sediments, extracted during wells perforation, was determined using a Nal(TI) detector. A non-reported before uranium ore was localized at the San Marcos range formation. Its outcrops are inside the Chihuahua-Sacramento valley basin and its activity characterization was performed. Unusually high specific uranium activities, determined by alpha spectrometry, were obtained in water, plants, sediments and fish extracted at locations close to outcrops of uranium minerals. The activity of water of the San Marcos dam reached 7.7 Bq/L. The activity of fish, trapped at San Marcos dam, is 0.99 Bq/kg. Conclusions about the contamination of groundwater at North of Chihuahua City were obtained. (Author)

  15. 77 FR 26991 - Low-Level Radioactive Waste Management Issues

    Science.gov (United States)

    2012-05-08

    ... the pros and cons of the four technical issues specifically identified by the Commission in its... near-surface LLW disposal technology. The regulations emphasize an integrated systems approach to the... (waste package, waste form, disposal technology, cover technology and geo-hydrology) and the peak dose...

  16. 77 FR 10401 - Low-Level Radioactive Waste Management Issues

    Science.gov (United States)

    2012-02-22

    ... the pros and cons of the four technical issues specifically identified by the Commission in its..., 1982 (47 FR 57446). The rule applies to any near-surface LLW disposal technology, including shallow... site characteristics (waste package, waste form, disposal technology, cover technology and...

  17. Electrokinetics for removal of low-level radioactivity from soil

    Energy Technology Data Exchange (ETDEWEB)

    Pamukcu, S. [Lehigh Univ., Bethlehem, PA (United States); Wittle, J.K. [Electro-Petroleum, Inc., Wayne, PA (United States)

    1993-03-01

    The electrokinetic process is an emerging technology for in situ soil decontamination in which chemical species, both ionic and nonionic, are transported to an electrode site in soil. These products are subsequently removed from the ground via collection systems engineered for each specific application. The work presented here describes part of the effort undertaken to investigate electrokinetically enhanced transport of soil contaminants in synthetic systems. These systems consisted of clay or clay-sand mixtures containing known concentrations of a selected heavy-metal salt solution. These metals included surrogate radionuclides such as Sr, Cs and U, and an anionic species of Cr. Degree of removal of these metals from soil by the electrokinetic treatment process was assessed through the metal concentration profiles generated across the soil between the electrodes. Removals of some metal species up to 99% were achieved at the anode or cathode end of the soil upon 24 to 48 hours of treatment or a maximum of 1 pore volume of water displacement toward the cathode compartment. Transient pH change through the soil had an effect on the metal movement, as evidenced by accumulation of the metals at the discharge ends of the soil specimens. This accumulation was attributed to the precipitation of the metal and increased cation retention capacity of the clay in high pH environment at the cathode end. In general, the reduced mobility and dissociation of the ionic species as they encounter areas of higher ionic concentration in their path of migration resulted in the accumulation of the metals at the discharge ends of the soil specimens.

  18. Fast Tritium Separation From the Low Level Radioactive Liquid Waste

    Institute of Scientific and Technical Information of China (English)

    LIANG; Xiao-hu; YANG; Su-liang; YANG; Lei; YANG; Jin-ling

    2012-01-01

    <正>Due to the needed of high efficiency monitoring and controlling of the waste water generated from the spent fuel reprocessing process, analyzing work need to be done quickly. Tritium is an important nuclide in the liquid waste and its content must be determined. But the existing tritium analysis method

  19. Characterization ReportOperational Closure Covers for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada Geotechnical Sciences

    2005-06-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The Area 3 RWMS is located in south-central Yucca Flat and the Area 5 RWMS is located about 15 miles south, in north-central Frenchman Flat. Though located in two separate topographically closed basins, they are similar in climate and hydrogeologic setting. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste, while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. Over the next several decades, most waste disposal units at both the Area 3 and Area 5 RWMSs are anticipated to be closed. Closure of the Area 3 and Area 5 RWMSs will proceed through three phases: operational closure, final closure, and institutional control. Many waste disposal units at the Area 5RWMS are operationally closed and final closure has been placed on one unit at the Area 3 RWMS (U-3ax/bl). Because of the similarities between the two sites (e.g., type of wastes, environmental factors, operational closure cover designs, etc.), many characterization studies and data collected at the Area 3 RWMS are relevant and applicable to the Area 5 RWMS. For this reason, data and closure strategies from the Area 3 RWMS are referred to as applicable. This document is an interim Characterization Report – Operational Closure Covers, for the Area 5 RWMS. The report briefly describes the Area 5 RWMS and the physical environment where it is located, identifies the regulatory requirements, reviews the approach and schedule for closing, summarizes the monitoring programs, summarizes characterization studies and results, and then presents conclusions and recommendations.

  20. A literature survey for the ultrasound use in the radioactive waste characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tessaro, Ana Paula Gimenes; Vicente, Roberto, E-mail: aptessaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    This paper presents the outcomes of a literature survey of reports on the use of ultrasound methods in the characterization of radioactive wastes. This research is motivated by the necessity to characterize radioactive wastes constituted of ion exchange resins and activated charcoal beds generated at the nuclear research reactor IEA-R1 and that are stored in twenty one 200 L-drum sat the Waste Management Department. These two waste types come from the water polishing system of the nuclear reactor where they are used to remove impurities as fission and activation products from the water. After same time in the water treatment system, these two adsorbents are unable to keep the water quality and are then replaced becoming radioactive waste. Previous work determined the concentration of radio isotopes in dried samples of the adsorbents. As the water content varies largely among different drums, it is necessary to determine the water content of each individual drum for the total activity to be calculated. Ultrasound imaging was thought as an appropriate tool as a characterization method. The different acoustic impedances of liquids and solid salter the propagation of the sound wave sand can disclose the content of the waste packages. (author)

  1. Modeling and low-level waste management: an interagency workshop

    Energy Technology Data Exchange (ETDEWEB)

    Little, C.A.; Stratton, L.E. (comps.)

    1980-01-01

    The interagency workshop on Modeling and Low-Level Waste Management was held on December 1-4, 1980 in Denver, Colorado. Twenty papers were presented at this meeting which consisted of three sessions. First, each agency presented its point of view concerning modeling and the need for models in low-level radioactive waste applications. Second, a larger group of more technical papers was presented by persons actively involved in model development or applications. Last of all, four workshops were held to attempt to reach a consensus among participants regarding numerous waste modeling topics. Abstracts are provided for the papers presented at this workshop.

  2. National Low-Level Waste Management Program Radionuclide Report Series

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, M.J.; Garcia, R.S.

    1992-02-01

    This volume serves as an introduction to the National Low-Level Radioactive Waste Management Program Radionuclide Report Series. This report includes discussions of radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha-emitting transuranics with half-lives greater than five years). Each report includes information regarding radiological and chemical characteristics of specific radionuclides. Information is also included discussing waste streams and waste forms that may contain each radionuclide, and radionuclide behavior in the environment and in the human body. Not all radionuclides commonly found at low-level radioactive waste sites are included in this report. The discussion in this volume explains the rationale of the radionuclide selection process.

  3. The LHC Low Level RF

    CERN Document Server

    Baudrenghien, Philippe; Molendijk, John Cornelis; Olsen, Ragnar; Rohlev, Anton; Rossi, Vittorio; Stellfeld, Donat; Valuch, Daniel; Wehrle, Urs

    2006-01-01

    The LHC RF consists of eight 400 MHz superconducting cavities per ring, with each cavity independently powered by a 300 kW klystron, via a circulator. The challenge for the Low Level is to cope with very high beam current (more than 1 A RF component) and achieve excellent beam lifetime (emittance growth time in excess of 25 hours). Each cavity has an associated Cavity Controller rack consisting of two VME crates which implement high gain RF Feedback, a Tuner Loop with a new algorithm, a Klystron Ripple Loop and a Conditioning system. In addition each ring has a Beam Control system (four VME crates) which includes a Frequency Program, Phase Loop, Radial Loop and Synchronization Loop. A Longitudinal Damper (dipole and quadrupole mode) acting via the 400 MHz cavities is included to reduce emittance blow-up due to filamentation from phase and energy errors at injection. Finally an RF Synchronization system implements the bunch into bucket transfer from the SPS into each LHC ring. When fully installed in 2007, the...

  4. Characterizations of the radioactive waste by the remotely-controlled collimated spectrometric system

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, Vyacheslav E.; Potapov, Victor N.; Smirnov, Sergey V.; Ivanov, Oleg P. [National Research Centre Kurchatov Institute, Moscow, (Russian Federation)

    2015-07-01

    Decontamination and decommissioning of the research reactors MR (Testing Reactor) and RFT (Reactor of Physics and Technology) has recently been initiated in the National Research Center (NRC) 'Kurchatov institute', Moscow. In the building, neighboring to the reactor, the storage of HLRW is located. The storage is made of monolithic concrete in which steel cells depth 4 m are located. In cells of storage the HLRW packed into cases are placed. These the radioactive waste are also subject to export on long storage in the specialized organization. For characterization of the radioactive waste in cases the remote-controlled collimated spectrometer system was used. The system consists of a spectrometric collimated gamma-ray detector, a color video camera and a control unit, mounted on a rotator, which are mounted on a tripod with the host computer. For determination of specific activity of radionuclides in cases, it is developed programs of calculation of coefficients of proportionality of specific activity to the corresponding speeds of the account in peaks of full absorption at single specific activity of radionuclides in cases. For determination of these coefficients the mathematical model of spectrometer system based on the Monte-Carlo method was used. Dependences of calibration coefficients for various radionuclides from distance between the detector and a case at various values of the radioactive waste density in cases are given. Measurements of specific activity in cases are taken and are discussed. By results of measurements decisions on the appeal of the radioactive waste being in cases are made. (authors)

  5. Characterization of radioactive orphan sources by gamma spectrometry; Caracterizacion de fuentes huerfanas radiactivas por espectrometria gamma

    Energy Technology Data Exchange (ETDEWEB)

    Cruz W, H., E-mail: wcruz@ipen.gob.pe [Instituto Peruano de Energia Nuclear (PGRR/IPEN), Lima (Peru). Planta de Gestion de Residuos Radiactivos

    2013-07-01

    The sealed radioactive sources are widely applicable in industry. They must have a permanent control and must be registered with the Technical Office of the National Authority (OTAN). However, at times it has identified the presence of abandoned sealed sources unknown to the owner. These sources are called 'orphan sources'. Of course these sources represent a high potential risk because accidents can trigger dire consequences depending on your activity and chemical form in which it presents the radioisotope. This paper describes the process and the actions taken to characterize two orphan radioactive sources from the smelter a Aceros Arequipa. For characterization we used a gamma spectrometry system using a detector NaI(Tl) 3″ x 3″ with a multichannel analyzer Nucleus PCA-II. The radioisotope identified was cesium - 137 ({sup 137}Cs) in both cases. Fortunately, the sources maintained their integrity would otherwise have generated significant pollution considering the chemical form of the radioisotope and easy dispersion. (author)

  6. Characterization of radioactive organic liquid wastes; Caracterizacion de desechos liquidos organicos radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez A, I.; Monroy G, F.; Quintero P, E.; Lopez A, E.; Duarte A, C., E-mail: ivonne-arce@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    With the purpose of defining the treatment and more appropriate conditioning of radioactive organic liquid wastes, generated in medical establishments and research centers of the country (Mexico) and stored in drums of 208 L is necessary to characterize them. This work presents the physical-chemistry and radiological characterization of these wastes. The samples of 36 drums are presented, whose registrations report the presence of H-3, C-14 and S-35. The following physiochemical parameters of each sample were evaluated: ph, conductivity, density and viscosity; and analyzed by means of gamma spectrometry and liquid scintillation, in order to determine those contained radionuclides in the same wastes and their activities. Our results show the presence of H-3 (61%), C-14 (13%) and Na-22 (11%) and in some drums low concentrations of Co-60 (5.5%). In the case of the registered drums with S-35 (8.3%) does not exist presence of radioactive material, so they can be liberated without restriction as conventional chemical wastes. The present activities in these wastes vary among 5.6 and 2312.6 B g/g, their ph between 2 and 13, the conductivities between 0.005 and 15 m S, the densities among 1.05 and 1.14, and the viscosities between 1.1 and 39 MPa. (Author)

  7. Physico-chemical and radioactive characterization of TiO2 undissolved mud for its valorization.

    Science.gov (United States)

    Gázquez, M J; Mantero, J; Bolívar, J P; García-Tenorio, R; Vaca, F; Lozano, R L

    2011-07-15

    In order to find a potential valorization of a waste generated in the industrial process devoted to the production of TiO(2) pigments, and as an essential and basic step, this waste must firstly be physically and chemically characterized. Moreover, the content of radioactivity is taken in to account due to it comes from a NORM (Naturally Occurring Radioactive Material) industry. With this end, microscopic studies were performed by applying scanning electron microscopy with X-ray microanalysis (SEM-XRMA), while the mineralogical compositions were carried out by means of the X-ray diffraction (XRD) technique. The concentrations of its major elements were determined by X-ray fluorescence (XRF), while heavy metals and other trace elements were ascertained through Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results obtained for this waste have revealed several lines of research into potential applications. Firstly, with the refractory properties of mineral phases observed leading to a possible use in the ceramics industry or in thermal isolators. And secondly, attending to the characteristic particle-size spectra can be used as an additive in the manufacture of cement and finally, its high concentration of titanium may be used as a bactericide in brick production.

  8. Low-level waste disposal in highly populated areas

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, E.; McCombie, C.; Issler, H. [NAGRA-Swiss National Cooperative for the Storage of Radioactive Waste, Baden (Switzerland)

    1989-11-01

    Nuclear-generated electricity supplies almost 40% of the demand in Switzerland (the rest being hydro-power). Allowing for a certain reserve and assuming an operational life-time of 40 years for each reactor, and taking into account wastes from decommissioning and from medicine, industry and research, the total amount of low-level radioactive waste to be disposed of is about 175,000 m{sup 3}. Since there are no unpopulated areas in Switzerland, and since Swiss Federal Law specifies that the safety of disposal may not depend upon supervision of the repository, no shallow-land burial has been foreseen, even for short-lived low-level waste. Instead, geological disposal in a mined cavern system with access through a horizontal tunnel was selected as the best way of meeting the requirements and ensuring the necessary public acceptance.

  9. National Low-Level Waste Management Program Radionuclide Report Series

    Energy Technology Data Exchange (ETDEWEB)

    J.P. Adams; M.L. Carboneau; W.E. Allred

    1999-02-01

    The National Low Level Waste Management Program at the Idaho National Engineering and Environmental Laboratory has published a report containing key information about selected radionuclides that are most likely to contribute significantly to the radiation exposures estimated from a performance assessment of a low-level radioactive waste (LLW) disposal facility. The information includes physical and chemical characteristics, production means, waste forms, behavior of the radionuclide in soils, plants, groundwater, and air, and biological effects in animals and humans. The radionuclides included in this study comprise all of the nuclides specifically listed in 10CFR61.55, Tables 1 and 2, 3 H, 14 C, 59 Ni, 60 Co, 63 Ni, 90 Sr, 94 Nb, 99 Tc, 129 I, 137 Cs, 241 Pu, and 242 Cm. Other key radionuclides addressed in the report include 237 Np, 238 U, 239 Pu, and 241 Am. This paper summarizes key information contained within this report.

  10. National Low-Level Waste Management Program Radionuclide Report Series

    Energy Technology Data Exchange (ETDEWEB)

    Adams, James Paul; Carboneau, Michael Leonard; Allred, William Edgar

    1999-03-01

    The National Low Level Waste Management Program at the Idaho National Engineering and Environmental Laboratory has published a report containing key information about selected radionuclides that are most likely to contribute significantly to the radiation exposures estimated from a performance assessment of a low-level radioactive waste (LLW) disposal facility. The information includes physical and chemical characteristics, production means, waste forms, behavior of the radionuclide in soils, plants, groundwater, and air, and biological effects in animals and humans. The radionuclides included in this study comprise all of the nuclides specifically listed in 10CFR61.55, Tables 1 and 2, 3 H, 14 C, 59 Ni, 60 Co, 63 Ni, 90 Sr, 94 Nb, 99 Tc, 129 I, 137 Cs, 241 Pu, and 242 Cm. Other key radionuclides addressed in the report include 237 Np, 238 U, 239 Pu, and 241 Am. This paper summarizes key information contained within this report.

  11. Standard guide for characterization of radioactive and/or hazardous wastes for thermal treatment

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide identifies methods to determine the physical and chemical characteristics of radioactive and/or hazardous wastes before a waste is processed at high temperatures, for example, vitrification into a homogeneous glass ,glass-ceramic, or ceramic waste form. This includes waste forms produced by ex-situ vitrification (ESV), in-situ vitrification (ISV), slagging, plasma-arc, hot-isostatic pressing (HIP) and/or cold-pressing and sintering technologies. Note that this guide does not specifically address high temperature waste treatment by incineration but several of the analyses described in this guide may be useful diagnostic methods to determine incinerator off-gas composition and concentrations. The characterization of the waste(s) recommended in this guide can be used to (1) choose and develop the appropriate thermal treatment methodology, (2) determine if waste pretreatment is needed prior to thermal treatment, (3) aid in development of thermal treatment process control, (4) develop surrogate wa...

  12. Low-level stored waste inspection using mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, J.S.; Pettus, R.O.

    1996-06-01

    A mobile robot inspection system, ARIES (Autonomous Robotic Inspection Experimental System), has been developed for the U.S. Department of Energy to replace human inspectors in the routine, regulated inspection of radioactive waste stored in drums. The robot will roam the three-foot aisles of drums, stacked four high, making decisions about the surface condition of the drums and maintaining a database of information about each drum. A distributed system of onboard and offboard computers will provide versatile, friendly control of the inspection process. This mobile robot system, based on a commercial mobile platform, will improve the quality of inspection, generate required reports, and relieve human operators from low-level radioactive exposure. This paper describes and discusses primarily the computer and control processes for the system.

  13. Alpha low-level stored waste systems design study

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Teheranian, B. [Morrison Knudson Corp., San Francisco, CA (United States). Environmental Services Div.; Quapp, W.J. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex`s Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT&E) requirements for each of the three concepts.

  14. Alpha low-level stored waste systems design study

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Teheranian, B. (Morrison Knudson Corp., San Francisco, CA (United States). Environmental Services Div.); Quapp, W.J. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex's Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT E) requirements for each of the three concepts.

  15. Low-level waste disposal performance assessments - Total source-term analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wilhite, E.L.

    1995-12-31

    Disposal of low-level radioactive waste at Department of Energy (DOE) facilities is regulated by DOE. DOE Order 5820.2A establishes policies, guidelines, and minimum requirements for managing radioactive waste. Requirements for disposal of low-level waste emplaced after September 1988 include providing reasonable assurance of meeting stated performance objectives by completing a radiological performance assessment. Recently, the Defense Nuclear Facilities Safety Board issued Recommendation 94-2, {open_quotes}Conformance with Safety Standards at Department of Energy Low-Level Nuclear Waste and Disposal Sites.{close_quotes} One of the elements of the recommendation is that low-level waste performance assessments do not include the entire source term because low-level waste emplaced prior to September 1988, as well as other DOE sources of radioactivity in the ground, are excluded. DOE has developed and issued guidance for preliminary assessments of the impact of including the total source term in performance assessments. This paper will present issues resulting from the inclusion of all DOE sources of radioactivity in performance assessments of low-level waste disposal facilities.

  16. Low back pain and low level flying

    NARCIS (Netherlands)

    J.C.F.M. Aghina

    1989-01-01

    textabstractLow level flying is a very good tactical possibility to carry out a mission unseen by a hostile radarsystem. Nowadays, Western Europe in general and the Federal Republic of Germany in particular, decreased . the permissions to low level flying in assigned regions. That's why the Royal Ne

  17. Overview of Low-Level Waste Disposal Operations at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    DOE/Navarro

    2007-02-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future.

  18. Preparation and characterization of cesium-137 aluminosilicate pellets for radioactive source applications

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, F.J.; Tompkins, J.A.; Haff, K.W.; Case, F.N.

    1981-07-01

    Twenty-seven fully loaded /sup 137/Cs aluminosilicate pellets were fabricated in a hot cell by the vacuum hot pressing of a cesium carbonate/montmorillonite clay mixture at 1500/sup 0/C and 570 psig. Four pellets were selected for characterization studies which included calorimetric measurements, metallography, scanning electron microscope and electron backscattering (SEM-BSE), electron microprobe, x-ray diffraction, and cesium ion leachability measurements. Each test pellet contained 437 to 450 curies of /sup 137/Cs as determined by calorimetric measurements. Metallographic examinations revealed a two-phase system: a primary, granular, gray matrix phase containing large and small pores and small pore agglomerations, and a secondary fused phase interspersed throughout the gray matrix. SEM-BSE analyses showed that cesium and silicon were uniformly distributed throughout both phases of the pellet. This indicated that the cesium-silicon-clay reaction went to completion. Aluminum homogeneity was unconfirmed due to the high background noise associated with the inherent radioactivity of the test specimens. X-ray diffraction analyses of both radioactive and non-radioactive aluminosilicate pellets confirmed the crystal lattice structure to be pollucite. Cesium ion quasistatic leachability measurements determined the leach rates of fully loaded /sup 137/Cs sectioned pollucite pellets to date to be 4.61 to 34.4 x 10/sup -10/ kg m/sup -2/s/sup -1/, while static leach tests performed on unsectioned fully loaded pellets showed the leach rates of the cesium ion to date to be 2.25 to 3.41 x 10/sup -12/ kg m/sup -2/s/sup -1/. The cesium ion diffusion coefficients through the pollucite pellet were calculated using Fick's first and second laws of diffusion. The diffusion coefficients calculated for three tracer level /sup 137/Cs aluminosilicate pellets were 1.29 x 10/sup -16/m/sup 2/s/sup -1/, 6.88 x 10/sup -17/m/sup 2/s/sup -1/, and 1.35 x 10/sup -17/m/sup 2/s/sup -1

  19. Material characterization in cemented radioactive waste with the associated particle technique

    Science.gov (United States)

    Carasco, C.; Perot, B.; Mariani, A.; El Kanawati, W.; Valkovic, V.; Sudac, D.; Obhodas, J.

    2010-07-01

    The elemental characterization of materials constituting radioactive waste is of great importance for the management of storage and repository facilities. To complement the information brought by gamma or X-ray imaging, the performance of a fast neutron interrogation system based on the associated particle technique (APT) has been investigated by using MCNP simulations and by performing proof-of-principle experiments. APT provides a 3D localisation of the emission of fast neutron induced gamma rays, whose spectroscopic analysis allows to identify the elements present in specific volumes of interest in the waste package. Monte Carlo calculations show that it is possible to identify materials enclosed behind the thick outer envelop of a ≈1 m 3 cemented waste drum, provided the excited nuclei emit gamma rays with a sufficient energy to limit photon attenuation. Neutron attenuation and scattering are also predominant effects that reduce the sensitivity and spatial selectivity of APT, but it is still possible to localise items in the waste by neutron time-of-flight and gamma-ray spectroscopy. Experimental tests confirm that the elemental characterization is possible across thick mortar slabs.

  20. Cost estimate of high-level radioactive waste containers for the Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Russell, E.W.; Clarke, W. [Lawrence Livermore National Lab., CA (United States); Domian, H.A. [Babcock and Wilcox Co., Lynchburg, VA (United States); Madson, A.A. [Kaiser Engineers California Corp., Oakland, CA (United States)

    1991-08-01

    This report summarizes the bottoms-up cost estimates for fabrication of high-level radioactive waste disposal containers based on the Site Characterization Plan Conceptual Design (SCP-CD). These estimates were acquired by Babcock and Wilcox (B&S) under sub-contract to Lawrence Livermore National Laboratory (LLNL) for the Yucca Mountain Site Characterization Project (YMP). The estimates were obtained for two leading container candidate materials (Alloy 825 and CDA 715), and from other three vendors who were selected from a list of twenty solicited. Three types of container designs were analyzed that represent containers for spent fuel, and for vitrified high-level waste (HLW). The container internal structures were assumed to be AISI-304 stainless steel in all cases, with an annual production rate of 750 containers. Subjective techniques were used for estimating QA/QC costs based on vendor experience and the specifications derived for the LLNL-YMP Quality Assurance program. In addition, an independent QA/QC analysis is reported which was prepared by Kasier Engineering. Based on the cost estimates developed, LLNL recommends that values of $825K and $62K be used for the 1991 TSLCC for the spent fuel and HLW containers, respectively. These numbers represent the most conservative among the three vendors, and are for the high-nickel anstenitic steel (Alloy 825). 6 refs., 7 figs.

  1. Characterization of uranium carbide target materials to produce neutron-rich radioactive beams

    Energy Technology Data Exchange (ETDEWEB)

    Tusseau-Nenez, Sandrine; Roussière, Brigitte; Barré-Boscher, Nicole [Institut de Physique Nucléaire (UMR8608) CNRS/IN2P3 – Université Paris Sud, 91406 Orsay Cedex (France); Gottberg, Alexander [CERN, CH-1211 Genève 23 (Switzerland); Corradetti, Stefano; Andrighetto, Alberto [INFN Laboratori Nazionali di Legnaro, Viale dell’Universit‘a 2, 35020 Legnaro (PD) (Italy); Cheikh Mhamed, Maher; Essabaa, Saïd [Institut de Physique Nucléaire (UMR8608) CNRS/IN2P3 – Université Paris Sud, 91406 Orsay Cedex (France); Franberg-Delahaye, Hanna; Grinyer, Joanna [Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, 14076 Caen (France); Joanny, Loïc [Institut des Sciences Chimiques de Rennes (UMR 6226) CNRS – Université de Rennes 1, Campus de Beaulieu, 35042 RENNES Cedex (France); Lau, Christophe [Institut de Physique Nucléaire (UMR8608) CNRS/IN2P3 – Université Paris Sud, 91406 Orsay Cedex (France); Le Lannic, Joseph [Institut des Sciences Chimiques de Rennes (UMR 6226) CNRS – Université de Rennes 1, Campus de Beaulieu, 35042 RENNES Cedex (France); Raynaud, Marc; Saïd, Abdelhakim [Institut de Physique Nucléaire (UMR8608) CNRS/IN2P3 – Université Paris Sud, 91406 Orsay Cedex (France); Stora, Thierry [CERN, CH-1211 Genève 23 (Switzerland); and others

    2016-03-01

    In the framework of a R&D program aiming to develop uranium carbide (UC{sub x}) targets for radioactive nuclear beams, the Institut de Physique Nucléaire d’Orsay (IPNO) has developed an experimental setup to characterize the release of various fission fragments from UC{sub x} samples at high temperature. The results obtained in a previous study have demonstrated the feasibility of the method and started to correlate the structural properties of the samples and their behavior in terms of nuclear reaction product release. In the present study, seven UC{sub x} samples have been systematically characterized in order to better understand the correlation between their physicochemical characteristics and release properties. Two very different samples, the first one composed of dense UC and the second one of highly porous UC{sub x} made of multi-wall carbon nanotubes, were provided by the ActILab (ENSAR) collaboration. The others were synthesized at IPNO. The systems for irradiation and heating necessary for the release studies have been improved with respect to those used in previous studies. The results show that the open porosity is hardly the limiting factor for the fission product release. The homogeneity of the microstructure and the pore size distribution contributes significantly to the increase of the release. The use of carbon nanotubes in place of traditional micrometric graphite particles appears to be promising, even if the homogeneity of the microstructure can still be enhanced.

  2. All dressed up and no place to go managing low level waste in the 90`s

    Energy Technology Data Exchange (ETDEWEB)

    Bovankovich, B.; Buchanan, J.; Gomeringer, J. [Public Service Electric & Gas Co., Hancocks Bridge, NJ (United States)] [and others

    1995-11-01

    Public Service Electric and Gas Company (PSE&G) operates two Pressurized Water Reactors (PWR) and one Boiling Water Reactor (BWR) along the Delaware River in Southern New Jersey. The Access Contract between the Northeast Commission expired June 30, 1994 and was not renewed. A Northeast Compact Low Level Waste Disposal Site is not complete yet. PSE&G, like all other owners in the nuclear industry, is coping with economic competitiveness while being faced with deregulation. This paper addresses the Radiation Protection Program, Radioactive material Control Program, and Low Level Radioactive Waste Management changes that PSE&G has implemented to adapt to the necessity of on-site storage of Low Level Radioactive Waste.

  3. Characterization and packaging of disused sealed radioactive sources; Caracterizacion y acondicionamiento de fuentes radiactivas selladas en desuso

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, S.L. [Instituto Boliviano de Ciencia y Tecnologia Nuclear (IBTEN), La Paz (Bolivia, Plurinational State of)

    2013-07-01

    In Bolivia are generated disused sealed sources and radioactive waste resulting from the use of radioactive materials in industrial, research and medicine. The last includes the diagnosis and treatment. Whereas exposure to ionizing radiation is a potential hazard to personnel who applies it, to those who benefit from its use or for the community at large, it is necessary to control the activities in this field. The Instituto Boliviano de Ciencia y Tecnologia Nuclear - IBTEN is working on a regional project from International Atomic Energy Agency - IAEA, RLA/09/062 Project - TSA 4, Strengthening the National Infrastructure and Regulatory Framework for the Safe Management of Radioactive waste in Latin America. This Project has strengthened the regulatory framework regarding the safe management of radioactive waste. The aim of this work was focused primarily on the security aspects in the safe management of disused sealed sources. The tasks are listed below: 1. Characterization of disused sealed sources 2. Preparation for transport to temporary storage 3. Control of all disused radioactive sources. (author)

  4. Radioactive tank waste remediation focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  5. Characterization of the Radioactive Sludge from the ORNL MVST Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.M.

    2001-10-24

    Over the last several years most of the sludge and liquid from the Liquid Low-Level Waste (LLLW) tanks at ORNL has been transferred and consolidated in the Melton Valley Storage Tanks (MVST). The contents of the MVST tanks at the time the sludge samples were collected for this report included the original inventory in the MVSTs along with the sludge and liquid from the Bethel Valley Evaporator Service Tanks (BVEST), Old Hydrofracture (OHF) tanks, and the Gunite and Associated Tanks (GAAT). During the summer of 2001 full core samples of sludge were collected from the MVST tanks. The purpose of this sampling campaign was to characterize and validate that the current radiochemical and chemical contents of the MVST sludge, which was needed to meet the contract agreements prior to the transfer of the waste to another DOE contractor for processing. This report only discusses the analytical characterization of the sludge from the MVST waste tanks. The isotopic data presented in this report supports the position that fissile isotopes of uranium ({sup 233}U and {sup 235}U) and plutonium ({sup 239}Pu and {sup 241}Pu) were ''denatured'' as required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). In general, the MVST sludge was found to be hazardous by RCRA characteristics based on total analysis of chromium, mercury, and lead. Also, the alpha activity due to transuranic isotopes was well above the 100 nCi/g limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in previous reports and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP. Therefore, the WIPP WAC limits were not evaluated for this set of samples.

  6. The fingerprint method for characterization of radioactive waste in hadron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Magistris, M. [CERN, CH-1211, Geneva 23 (Switzerland)], E-mail: matteo.magistris@cern.ch; Ulrici, L. [CERN, CH-1211, Geneva 23 (Switzerland)

    2008-06-21

    Beam losses are responsible for material activation in most of the components of particle accelerators. The activation is caused by several nuclear processes and varies with the irradiation history and the characteristics of the material (namely chemical composition and size). Once at the end of their operational lifetime, these materials require radiological characterization. The radionuclide inventory depends on the particle spectrum, the irradiation history and the chemical composition of the material. As long as these factors are known and the material cross-sections are available, the induced radioactivity can be calculated analytically. However, these factors vary widely among different items of waste and sometimes they are only partially known. The European Laboratory for Particle Physics (CERN, Geneva) has been operating accelerators for high-energy physics for 50 years. Different methods for the evaluation of the radionuclide inventory are currently under investigation at CERN, including the so-called 'fingerprint method'. This paper provides a mathematical formulation of the fingerprint method highlighting its advantages and limits of validity. The study includes the application to a real case and the validation of the predictions.

  7. Glass optimization for vitrification of Hanford Site low-level tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; Hrma, P.R.; Westsik, J.H. Jr. [and others

    1996-03-01

    The radioactive defense wastes stored in 177 underground single-shell tanks (SST) and double-shell tanks (DST) at the Hanford Site will be separated into low-level and high-level fractions. One technology activity underway at PNNL is the development of glass formulations for the immobilization of the low-level tank wastes. A glass formulation strategy has been developed that describes development approaches to optimize glass compositions prior to the projected LLW vitrification facility start-up in 2005. Implementation of this strategy requires testing of glass formulations spanning a number of waste loadings, compositions, and additives over the range of expected waste compositions. The resulting glasses will then be characterized and compared to processing and performance specifications yet to be developed. This report documents the glass formulation work conducted at PNL in fiscal years 1994 and 1995 including glass formulation optimization, minor component impacts evaluation, Phase 1 and Phase 2 melter vendor glass development, liquidus temperature and crystallization kinetics determination. This report also summarizes relevant work at PNNL on high-iron glasses for Hanford tank wastes conducted through the Mixed Waste Integrated Program and work at Savannah River Technology Center to optimize glass formulations using a Plackett-Burnam experimental design.

  8. Environmental assessment for DOE permission for off-loading activities to support the movement of commercial low level nuclear waste across the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    This environmental assessment investigates the potential environmental and safety effects which could result from the land transport of low level radioactive wastes across the Savannah River Plant. Chem-Nuclear Systems operates a low level radioactive waste burial facility adjacent to the Savannah River Plant and is seeking permission from the DOE to transport the waste across Savannah River Plant.

  9. National low-level waste management program radionuclide report series, Volume 15: Uranium-238

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J.P.

    1995-09-01

    This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.

  10. CHARACTERIZATION OF BENTONITE FOR ENGINEERED BARRIER SYSTEMS IN RADIOACTIVE WASTE DISPOSAL SITES

    Directory of Open Access Journals (Sweden)

    Dubravko Domitrović

    2012-07-01

    Full Text Available Engineered barrier systems are used in radioactive waste disposal sites in order to provide better protection of humans and the environment from the potential hazards associated with the radioactive waste disposal. The engineered barrier systems usually contain cement or clay (bentonite because of their isolation properties and long term performance. Quality control tests of clays are the same for all engineering barrier systems. Differences may arise in the required criteria to be met due for different application. Prescribed clay properties depend also on the type of host rocks. This article presents radioactive waste management based on best international practice. Standard quality control procedures for bentonite used as a sealing barrier in radioactive waste disposal sites are described as some personal experiences and results of the index tests (free swelling index, water adsorption capacity, plasticity limits and hydraulic permeability of bentonite (the paper is published in Croatian.

  11. Reasons for Low Levels of Interactivity

    DEFF Research Database (Denmark)

    Etter, Michael

    2013-01-01

    The interactivity levels of online CSR communication are typically low. This study explores the reasons for the low levels of interactivity in the popular social media tool Twitter. An analysis of 41,864 Twitter messages (tweets) from the thirty most central corporate accounts in a CSR Twitter...

  12. Low Level of Haptoglobin in Lupus

    OpenAIRE

    Homa Timlin MD, MSc; Kirthi Machireddy; Michelle Petri MD, MPH

    2017-01-01

    Haptoglobin levels are measured in systematic lupus erythematosus patients as part of the workup for anemia, with low levels indicating hemolysis. Haptoglobin is an acute phase protein. We present 2 lupus patients who were found to have low haptoglobin levels in the absence of other evidence of hemolysis.

  13. Low Level of Haptoglobin in Lupus

    Directory of Open Access Journals (Sweden)

    Homa Timlin MD, MSc

    2017-01-01

    Full Text Available Haptoglobin levels are measured in systematic lupus erythematosus patients as part of the workup for anemia, with low levels indicating hemolysis. Haptoglobin is an acute phase protein. We present 2 lupus patients who were found to have low haptoglobin levels in the absence of other evidence of hemolysis.

  14. National Low-Level Waste Management Program Radionuclide Report Series. Volume 3, Carbon-14

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, M.J.; Garcia, R.S.

    1992-02-01

    This report, Volume 3 of the National Low-Level Radioactive Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of carbon-14. The report also discusses waste streams that contain carbon-14, waste forms that contain carbon-14, and carbon-14 behavior in the environment and in the human body.

  15. National Low-Level Waste Management Program Radionuclide Report Series. Volume 2, Technetium-99

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, M.J.; Stanton, C.; Patterson, R.G.; Garcia, R.S.

    1992-02-01

    This report, Volume 2 of the National Low-Level Radioactive Waste Management Program Radionuclide Report Series, discusses radiological and chemical characteristics of technetium-99. This report also includes discussions about waste streams in which technetium-99 can be found, waste forms that contain technetium-99, and technetium-99`s behavior in the environment and in the human body.

  16. National Low-Level Waste Management Program Radionuclide Report Series. Volume 4, Iodine-129

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, M.J.; Garcia, R.S.

    1992-02-01

    This report, Volume 4 of the National Low-Level Radioactive Waste Management Program Radionuclide Report Series, discusses radiological and chemical characteristics about iodine-129. This report also includes discussions about waste streams that contain iodine-129, waste forms that contain iodine-129, and iodine-129`s behavior in the environment, as well as in the human body.

  17. Development of radiometric methods for radioactive waste characterization; Desenvolvimento de metodos radiometricos para a caracterizacao de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    Tessaro, Ana Paula Gimenes

    2015-07-01

    The admission of radioactive waste in a final repository depends among other things on the knowledge of the radioisotopic inventory of the waste. To obtain this information it is necessary make the primary characterization of the waste so that it is composition is known, to guide the next steps of radioactive waste management. Filter cartridges that are used in the water polishing system of IEA-R1 research reactor is one of these wastes. The IEA-R1 is a pool-type research reactor, operating between 2 and 5 MW that uses water as coolant, moderator and biological shield. Besides research, it is used for production of radioisotopes and irradiation of samples with neutron and gamma beams. It is located in the Nuclear and Energy Research Institute at the University of Sao Paulo campus. The filter cartridges are used to retain particles that are suspended in the cooling water. When filters become saturated and are unable to maintain the flow within the established limits, they are replaced and disposed of as radioactive waste. After a period of decay, they are sent to the Radioactive Waste Management Department. The aim of this work is to present the studies to determine the activity of gamma emitters present in the cartridge filters. The activities were calculated using the dose rates measured with hand held detectors, after the ratios of the emission rates of photons were evaluated by gamma spectrometry, by the Point Kernel method, which correlates the activity of a source with dose rates at various distances. The method described can be used to determine routinely the radioactive inventory of these filters, avoiding the necessity of destructive radiochemical analysis, or the necessity of calibrating the geometry of measurement. (author)

  18. National Low-Level Waste Management Program radionuclide report series. Volume 2, Niobium-94

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J.P.; Carboneau, M.L.

    1995-04-01

    The Purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to, state representatives and developers of low-level radioactive waste disposal facilities about the radiological chemical, and physical characteristics of selected radionuclides and their behavior in the low-level radioactive waste disposal facility environment. Extensive surveys of available literature provided information used to produce this series of reports and an introductory report. This report is Volume 11 of the series. It outlines the basic radiological, chemical, and physical characteristics of niobium-94, waste types and forms that contain it, and its behavior in environmental media such as soils, plants, groundwater, air, animals and the human body.

  19. Low-Level Burial Grounds Waste Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    ELLEFSON, M.D.

    2000-03-02

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage and/or disposal at the Low-Level Burial Grounds which are located in the 200 East and West Areas of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize, obtain and analyze representative samples of waste managed at this unit.

  20. Hormesis [Biological Effects of Low Level Exposures (Belle)] and Dermatology

    OpenAIRE

    Thong, Haw-Yueh; Maibach, Howard I.

    2008-01-01

    Hormesis, or biological effects of low level exposures (BELLE), is characterized by nonmonotonic dose response which is biphasic, displaying opposite effects at low and high dose. Its occurrence has been documented across a broad range of biological models and diverse type of exposure. Since hormesis appears to be a relatively common phenomenon in many areas, the objective of this review is to explore its occurrence related to dermatology and its public health and risk assessment implication....

  1. Biological effects of low level exposures to chemicals and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, E.J. (ed.)

    1992-01-01

    In May 1990 a group of scientists representing several federal agencies, the International Society of Regulatory Toxicology and Pharmacology, the private sector, and academia met to develop a strategy to encourage the study of the biological effects of low level exposures (BELLE) to chemical agents and radioactivity. A workshop was held in 1991 with seven invited speakers focusing on the toxicological implications of biological adaptations. The selection of topics and speakers was designed to consider critically the concept of hormesis, not only in a broad, conceptual manner, but also at the molecular and biochemical levels. These presentations offered a complementary perspective on the diverse range of molecular mechanisms that can become activated at low levels of toxicant exposure. In addition to chemical toxicology research, an overview of current research on Effects of low-dose radiation on the immune response' was presented as well as Cellular adaptation as an important response during chemical carcinogenesis'. The final presentation was devoted to biostatistical considerations when designing studies that address issues associated with the biological responses to low doses of chemicals and radiation, as well as issues in interpretation of the findings from such studies.

  2. Radon problem in an underground low-level laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Udovicic, V., E-mail: udovicic@phy.bg.ac.y [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia); Grabez, B.; Dragic, A.; Banjanac, R.; Jokovic, D.; Panic, B.; Joksimovic, D. [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia); Puzovic, J. [Faculty of Physics, PO Box 368, 11000 Belgrade (Serbia); Anicin, I. [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia)

    2009-10-15

    The low-level gamma-ray spectroscopy as well as the investigation of rare nuclear processes require not only low, but also constant levels of relevant background radiations. In underground laboratories dedicated to this type of measurements, one of the main and hard to control sources of unwanted radiation is the radioactive gas radon. It is well-known that radon concentration varies daily and seasonally, primarily due to the variation of atmospheric parameters. This introduces unwanted and hard to evaluate systematic uncertainties in long-term low-level measurements. In this paper, the system for radon reduction in the underground Low-Background Laboratory for Nuclear Physics at the Institute of Physics in Belgrade is presented in some detail. The laboratory exists for ten years and different measurements of radon concentration were carried out during this period. The indoor radon measurements are performed using nuclear track detectors (type CR-39 and LR-115) for long-term measurements and the commercially available radon monitor for short-term measurements. In this work we present the results of these measurements for the period 2003-2008.

  3. Greater-than-Class C low-level waste characterization. Appendix G: Evaluation of potential for greater-than-Class C classification of irradiated hardware generated by utility-operated reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cline, J.E.

    1991-08-01

    This study compiles and evaluates data from many sources to expand a base of data from which to estimate the activity concentrations and volumes of greater-than-Class C low-level waste that the Department of Energy will receive from the commercial power industry. Sources of these data include measurements of irradiated hardware made by or for the utilities that was classified for disposal in commercial burial sites, measurements of neutron flux in the appropriate regions of the reactor pressure vessel, analyses of elemental constituents of the particular structural material used for the components, and the activation analysis calculations done for hardware. Evaluations include results and assumptions in the activation analyses. Sections of this report and the appendices present interpretation of data and the classification definitions and requirements.

  4. Characterization of brown rice as a certified reference material for Fukushima accident-related radioactivity measurements.

    Science.gov (United States)

    Unno, Yasuhiro; Hachinohe, Mayumi; Hamamatsu, Shioka; Todoriki, Setsuko; Yunoki, Akira; Miura, Tsutomu

    2014-05-01

    We developed a certified reference material of brown rice to measure radioactivity from the Fukushima Daiichi Nuclear Power Plant accident. The rice was planted in the spring of 2011, just after the Fukushima accident occurred, and it was harvested in the autumn of 2011. The certified value of radioactivity concentration in the rice was 33.6 Bq kg(-1) of Cs-134 and 51.8 Bq kg(-1) of Cs-137 on August 1, 2012. The reference material is being widely distributed by the National Metrology Institute of Japan. To determine the radioactivity and its uncertainties in the brown rice, we employed gamma-ray spectrometry with a high-purity germanium detector and Monte Carlo simulation.

  5. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  6. Geology, Bedrock, Tabular data involving the location of design specifics for wells related to the Low-level Radioactive Waste (LLRW) Site Characterization., Published in 1998, NC DENR / Div. of Land Resources / Geological Survey Section.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Geology, Bedrock dataset, was produced all or in part from Field Survey/GPS information as of 1998. It is described as 'Tabular data involving the location of...

  7. Development of a low-level radon reference chamber; Entwicklung einer Low-Level-Radon-Referenzkammer

    Energy Technology Data Exchange (ETDEWEB)

    Linzmaier, Diana

    2013-01-04

    The naturally occurring, radioactive noble gas radon-222 exists worldwide in different activity concentrations in the air. During the decay of radon-222, decay products are generated which are electrically charged and attach to aerosols in the air. Together with the aerosols, the radon is inhaled and exhaled by humans. While the radon is nearly completely exhaled, ca. 20 % of the inhaled aerosols remain in the lungs in one breath cycle. Due to ionizing radiation, in a chain of events, lung cancer might occur. Consequently, radon and its decay products are according to the current findings the second leading cause of lung cancer. At the workplace and in the home measurements of radon activity concentration are performed to determine the radiation exposition of humans. All measurement devices for the determination of radon activity concentration are calibrated above 1000 Bq/m{sup 3}, even though the mean value of the present investigation in Germany shows only 50 Bq/m{sup 3}. For the calibration of measurement devices in the range below 1000 Bq/m{sup 3} over a long time period, the generation of a stable reference atmosphere is presented in this work. Due to a long term calibration (t>5 days) of the measurement devices, smaller uncertainties result for the calibration factor. For the calibration procedure, a so-called low-level radon reference chamber was set up and started operation. The generation of a stable reference atmosphere is effected by means of emanation sources which consist of a radium-226 activity standard. On the basis of {gamma}-spectrometry, the effective emanation coefficient ofthe emanation sources is determined. The traceability of the activity concentration in the reference volume is realized via the activity ofthe radium-226, the emanation coefficient and the volume. With the emanation sources produced, stable reference atmospheres within the range of 150 Bq/m{sup 3} to 1900 Bq/m{sup 3} are achieved. For the realization, maintenance and

  8. Corticomuscular Coherence with Low-Level Forces

    Directory of Open Access Journals (Sweden)

    Chakarov V.

    2009-12-01

    Full Text Available The present study was aimed at investigating the corticomuscular synchronization in beta- (15-30 Hz and gamma-range (30-45 Hz during isometric compensation of low-level forces. It is still unknown to what extent the synchronization processes in these frequency ranges can coexist or influence each other when the static component only is modulated in a dynamic stimulation pattern. We investigated the corticomuscular coherence (CMC, as well as the cortical spectral power (SP during a visuomotor task, where 8%, 16% and 24% of the maximal voluntary contraction (MVC were used. Seven healthy right-handed female subjects compensated isometrically the different dynamic forces with their right index finger. EEG was recorded from 52 scalp positions and belly-tendon bipolar EMG from the first dorsal interosseus muscle (FDI. Under the three conditions investigated, the beta- and gamma-range CMC existed in parallel. They behaved in a different manner: while the beta-range coherence increased linearly during higher force application, the gamma-range CMC was not significantly modulated by the force levels. Our results suggest that although gamma-range CMC is functionally associated to the isometric compensation of dynamic forces, broad beta-range CMC can fulfill functions of motor control simultaneously different when low-level forces are applied.

  9. Low level tank waste disposal study

    Energy Technology Data Exchange (ETDEWEB)

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  10. Understanding radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  11. A study on characterization and evaluation methodologies of radioactive waste forms for safe disposal

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y. C.; Lee, G. S.; Kim, G. J.; Nam, H.; Seok, J. H. [Yonsei Univ., Seoul (Korea, Republic of)

    2004-02-15

    The contents and scope of the study are summarized as follows : elicitation of significant items for characteristic assessment about stability analysis of radioactive waste forms for safe disposal, compressive strength, free water, leaching rate, and weatherability. Suggestion of assessment methods through the characteristic test of waste forms, comparison of assessment methods and suggestion of suitable testing methods about the above stated 4 items. Assessment modeling development for long-term stability of radioactive waste forms, weatherometric test of waste forms, expectation modeling development through VOM(Valance-Oxygen Model). Suggestion of determination standard together assessment testing methods and description about the standard. Explanation to be suitable guideline and regulation of waste handling and acceptance.

  12. Bremsstrahlung information for the non-destructive characterization of radioactive waste packages. Final report; Nutzung von Bremsstrahlungsinformationen fuer die zerstoerungsfreie Charakterisierung radioaktiver Abfaelle. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, T.; Rohrmoser, B.; Lierse von Gostomski, C.

    2013-04-15

    The report describes a feasibility study on non-destructive characterization of radioactive waste package using bremsstrahlung information within the gamma spectra. A multi-step was developed for the identification of the bremsstrahlung in the measured gamma spectra under defined boundary conditions. The experimental investigations were performed using a stationary HPGe detector system, a mobile HPGe detector system and a mobile gamma scanner. Further studies are necessary with respect to the possible beta emitting radionuclides in a radioactive waste package.

  13. Draft low level waste technical summary

    Energy Technology Data Exchange (ETDEWEB)

    Powell, W.J.; Benar, C.J.; Certa, P.J.; Eiholzer, C.R.; Kruger, A.A.; Norman, E.C.; Mitchell, D.E.; Penwell, D.E.; Reidel, S.P.; Shade, J.W.

    1995-09-01

    The purpose of this document is to present an outline of the Hanford Site Low-Level Waste (LLW) disposal program, what it has accomplished, what is being done, and where the program is headed. This document may be used to provide background information to personnel new to the LLW management/disposal field and to those individuals needing more information or background on an area in LLW for which they are not familiar. This document should be appropriate for outside groups that may want to learn about the program without immediately becoming immersed in the details. This document is not a program or systems engineering baseline report, and personnel should refer to more current baseline documentation for critical information.

  14. Low-level waste feed staging plan

    Energy Technology Data Exchange (ETDEWEB)

    Certa, P.J.; Grams, W.H.; McConville, C.M.; L. W. Shelton, L.W.; Slaathaug, E.J., Westinghouse Hanford

    1996-08-12

    The `Preliminary Low-Level Waste Feed Staging Plan` was updated to reflect the latest requirement in the Tank Waste Remediation Privatization Request for Proposals (RFP) and amendments. The updated plan develops the sequence and transfer schedule for retrieval of DST supernate by the management and integration contractor and delivery of the staged supernate to the private low-activity waste contractors for treatment. Two DSTs are allocated as intermediate staging tanks. A transfer system conflict analysis provides part of the basis for determining transfer system upgrade requirements to support both low-activity and high-level waste feed delivery. The intermediate staging tank architecture and retrieval system equipment are provided as a planning basis until design requirements documents are prepared. The actions needed to successfully implement the plan are identified. These include resolution of safety issues and changes to the feed envelope limits, minimum order quantities, and desired batch sizes.

  15. Environmental radiation monitoring of low-level wastes by the State of Washington

    Energy Technology Data Exchange (ETDEWEB)

    Conklin, A.W.; Mooney, R.R.; Erickson, J.L. [Dept. of Health, Olympia, WA (United States). Div. of Radiation Protection

    1989-11-01

    The Washington State Department of Health, as the state`s regulatory agency for radiation, monitors several forms of low-level radioactive wastes. The monitoring is done to assess the potential impact on the environment and on public health. The emphasis of the monitoring program is placed on the solid and liquid wastes from defense activities on the Hanford Reservation, commercial wastes at the site located on leased land at Hanford and uranium mill tailings in Northeastern Washington. Although not classified as low-level waste, monitoring is also periodically conducted at selected landfills and sewage treatment facilities and other licensees, where radioactive wastes are known or suspected to be present. Environmental pathways associated with waste disposal are monitored independently, and/or in conjunction with the waste site operators to verify their results and evaluate their programs. The Department also participates in many site investigations conducted by site operators and other agencies, and conducts it`s own special investigations when deemed necessary. Past investigations and special projects have included allegations of adverse environmental impact of I-129, uranium in ground water, impacts of wastes on the agricultural industry, radioactivity in seeps into the Columbia River from waste sites, identifying lost waste sites at Hanford, differentiating groundwater contamination from defense versus commercial sources, and radioactivity in municipal landfills and sewers. The state`s environmental radiation monitoring program has identified and verified a number of environmental problems associated with radioactive waste disposal, but has, to date, identified no adverse offsite impacts to public health.

  16. Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 3, May-June 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    This issue includes the following articles: Vermont ratifies Texas compact; Pennsylvania study on rates of decay for classes of low-level radioactive waste; South Carolina legislature adjourns without extending access to Barnwell for out-of-region generators; Southeast Compact Commission authorizes payments for facility development, also votes on petitions, access contracts; storage of low-level radioactive waste at Rancho Seco removed from consideration; plutonium estimates for Ward Valley, California; judgment issued in Ward Valley lawsuits; Central Midwest Commission questions court`s jurisdiction over surcharge rebates litigation; Supreme Court decides commerce clause case involving solid waste; parties voluntarily dismiss Envirocare case; appellate court affirms dismissal of suit against Central Commission; LLW Forum mixed waste working group meets; US EPA Office of Radiation and Indoor Air rulemakings; EPA issues draft radiation site cleanup regulation; EPA extends mixed waste enforcement moratorium; and NRC denies petition to amend low-level radioactive waste classification regulations.

  17. National Low-Level Waste Management Program Radionuclide Report Series. Volume 1, Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, M.J.; Garcia, R.S.

    1992-02-01

    This volume serves as an introduction to the National Low-Level Radioactive Waste Management Program Radionuclide Report Series. This report includes discussions of radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha-emitting transuranics with half-lives greater than five years). Each report includes information regarding radiological and chemical characteristics of specific radionuclides. Information is also included discussing waste streams and waste forms that may contain each radionuclide, and radionuclide behavior in the environment and in the human body. Not all radionuclides commonly found at low-level radioactive waste sites are included in this report. The discussion in this volume explains the rationale of the radionuclide selection process.

  18. UGT low level signal conditioning investigation

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, W.H. (Sandia National Labs., Albuquerque, NM (USA)); Cole, E. (Kaman Sciences Corp., Colorado Springs, CO (USA))

    1991-01-01

    Low level signal conditioning instrumentation and test configuration was the subject of an experiment test matrix fielded on Event DISKO ELM by Sandia National Laboratories. The test matrix consisted of forty strain gages and noise measurement channels that were nominally identical in both the HLOS pipe and instrumentation alcove. The intervening signal conditioning instrumentation and cables were the controlled variables. This paper presents results from the DISKO ELM investigation which directly compared RF-21, TSP and Sandia's special low noise cable (LNC). Other parametric studies show comparisons of 120 versus 350 {Omega} gages, effects of forward amplification, passive diode clippers and the KSC Active Clipper adapted for single channel integration into SANDUS, the Sandia 0-10 MHz, modular data acquisition system. The fastest recovery times from prompt noise effects were in the 20 to 30 microseconds range. Voltage measurements were also made to compare noise from instrumentation in the pipe with induced noise from the cable plant between the cross-cut and the instrumentation alcove. 28 figs., 2 tabs.

  19. Low-level efficacy of cosmetic preservatives.

    Science.gov (United States)

    Lundov, M D; Johansen, J D; Zachariae, C; Moesby, L

    2011-04-01

    Preservation using combinations of preservatives has several advantages. This study shows that the concentration of some of the most frequently used allergenic preservatives can be markedly lowered when they are combined with phenoxyethanol. The antimicrobial efficacy of cosmetic preservatives and known allergens of various potency [diazolidinyl urea, methylchloroisothiazolinone/methylisothiazolinone (MCI/MI), methylisothiazolinone (MI) and phenoxyethanol] was tested alone and in various combinations of two or three preservatives together. The preservatives were tested for minimum inhibitory concentration (MIC) values and possible synergy using fractional inhibitory concentration. MCI/MI was the only preservative showing low-level MIC against all four tested microorganisms: Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger. Different combinations of the preservatives indicated additive effects against the microorganisms. No combination of preservatives showed any inhibitory action on each other. Challenge tests with different concentrations and combinations were performed in a cosmetic cream. Diazolidinyl urea and MCI/MI alone were ineffective against C. albicans in a challenge test at concentrations up to 16 times higher than the observed MIC values. When combining phenoxyethanol with either one of the allergenic preservatives diazolidinyl urea, MCI/MI or MI, the cosmetic cream was adequately preserved at concentrations well below the preservatives' MIC values as well as 10-20 times below the maximum permitted concentrations. By using combinations of preservatives, effective preservation can be achieved with lower concentrations of allergenic preservatives.

  20. Low-level waste minimization at the Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Koger, J. [Oak Ridge National Lab., TN (United States)

    1993-03-01

    The Y-12 Development Waste Minimization Program is used as a basis for defining new technologies and processes that produce minimum low-level wastes (hazardous, mixed, radioactive, and industrial) for the Y-12 Plant in the future and for Complex-21 and that aid in decontamination and decommissioning (D and D) efforts throughout the complex. In the past, the strategy at the Y-12 Plant was to treat the residues from the production processes using chemical treatment, incineration, compaction, and other technologies, which often generated copious quantities of additional wastes and, with the exception of highly valuable materials such as enriched uranium, incorporated very little recycle in the process. Recycle, in this context, is defined as material that is put back into the process before it enters a waste stream. Additionally, there are several new technology drivers that have recently emerged with the changing climate in the Nuclear Weapons Complex such as Complex 21 and D and D technologies and an increasing number of disassemblies. The hierarchies of concern in the waste minimization effort are source reduction, recycle capability, treatment simplicity, and final disposal difficulty with regard to Complex 21, disassembly efforts, D and D, and, to a lesser extent, weapons production. Source reduction can be achieved through substitution of hazardous substances for nonhazardous materials, and process changes that result in less generated waste.

  1. LLW (Low-Level Waste) Notes, Volume 13, Number 1, February 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    LLW Notes is a newsletter distributed to Low-Level Radioactive Waste Forum Participants and other state and compact officials. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties. This issue focuses on the following topics: DOI approves Ward Valley permit application; Project evidentiary hearings begin in Texas; and Summary judgment motions in California breach of contract action.

  2. Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

    2012-05-01

    This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

  3. Final disposal of radioactive waste

    OpenAIRE

    Freiesleben H.

    2013-01-01

    In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW) are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of c...

  4. Characterization and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The third Aespoe International Seminar was organised by SKB to assess the state of the art in characterisation and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Site characterisation and evaluation are important elements for determining the site suitability and long-term safety of a geological repository for radioactive waste disposal. Characterisation work also provides vital information for the design of the underground facility and the engineered barrier system that will contain the waste. The aim of the seminar was to provide a comprehensive assessment of the current know-how on this topic based on world-wide experience from more than 20 years of characterisation and evaluation work. The seminar, which was held at the Aespoe Hard Rock Laboratory was attended by 72 scientists from 10 different countries. The program was divided into four sessions of which two were run in parallel. A total of 38 oral and 5 poster presentations were given at the seminar. The presentations gave a comprehensive summary of recently completed and current work on site characterisation, modelling and application in performance assessments. The results presented at the seminar generally show that significant progress has been made in this field during the last decade. New characterisation techniques have become available, strategies for site investigations have developed further, and model concepts and codes have reached new levels of refinement. Data obtained from site characterisation have also successfully been applied in several site specific performance assessments. The seminar clearly showed that there is a solid scientific basis for assessing the suitability of sites for actual repositories based on currently available site characterisation technology and modelling capabilities. Separate abstracts have been prepared for 38 of the presentations

  5. Very low level waste disposal in France. A key tool for the management for decommissioning wastes in France

    Energy Technology Data Exchange (ETDEWEB)

    Duetzer, Michel [Andra - Agence Nationale pour la Gestion des Dechets Radioactives, Chatenay-Malabry (France). Direction Industrielle

    2015-07-01

    At the end of the 90{sup th}, France had to deal with the emerging issue of the management of wastes resulting from decommissioning operations of nuclear facilities. A specific regulation was issued and Andra, the French National Radioactive Waste Management Agency, developed a dedicated near surface disposal facility to accommodate very low level radioactive wastes. After more than 10 years of operation, this facility demonstrated it can provide efficient and flexible solutions for the management of decomissioning wastes.

  6. Report of safety of the characterizing system of radioactive waste; Informe de seguridad del sistema caracterizador de desechos radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Angeles C, A.; Jimenez D, J.; Reyes L, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1998-09-15

    Report of safety of the system of radioactive waste of the ININ: Installation, participant personnel, selection of the place, description of the installation, equipment. Proposed activities: operations with radioactive material, calibration in energy, calibration in efficiency, types of waste. Maintenance: handling of radioactive waste, physical safety. Organization: radiological protection, armor-plating, personal dosemeter, risks and emergency plan, environmental impact, medical exams. (Author)

  7. Monitoring and characterization of radioactive wastes by neutronic methods; Controle et caracterisation de dechets radioactifs par methodes neutroniques

    Energy Technology Data Exchange (ETDEWEB)

    Lyoussi, A. [CEA Cadarache, Dept. d' Etudes des Dechets, DED, Lab. de Developpement de Mesures Nucleaires, 13 - Saint Paul lez Durance (France)

    2001-07-01

    In order to characterize a radioactive waste parcel, different techniques of analysis and nondestructive testing were developed during these last years. The most used are the gamma spectrometry, the passive neutron counting, the neutron interrogation and the photon interrogation with a electron accelerator. The neutron measurement are divided in two families: the active measurement and the passive measurement. The passive methods consist in measuring the neutron radiation emitted spontaneously by the contaminant. The active methods consist in the detection of neutron radiation after an external neutron irradiation. In this article are exposed the principal needs that lead to develop the neutrons measurement. Then, the passive and active neutron measurements are described. (N.C.)

  8. Final disposal of radioactive waste

    Science.gov (United States)

    Freiesleben, H.

    2013-06-01

    In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste - LLW, intermediate-level waste - ILW, high-level waste - HLW) are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  9. Low Level Waste Conceptual Design Adaption to Poor Geological Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J.; Drimmer, D.; Giovannini, A.; Manfroy, P.; Maquet, F.; Schittekat, J.; Van Cotthem, A.; Van Echelpoel, E.

    2002-02-26

    Since the early eighties, several studies have been carried out in Belgium with respect to a repository for the final disposal of low-level radioactive waste (LLW). In 1998, the Belgian Government decided to restrict future investigations to the four existing nuclear sites in Belgium or sites that might show interest. So far, only two existing nuclear sites have been thoroughly investigated from a geological and hydrogeological point of view. These sites are located in the North-East (Mol-Dessel) and in the mid part (Fleurus-Farciennes) of the country. Both sites have the disadvantage of presenting poor geological and hydrogeological conditions, which are rather unfavorable to accommodate a surface disposal facility for LLW. The underground of the Mol-Dessel site consists of neogene sand layers of about 180 m thick which cover a 100 meters thick clay layer. These neogene sands contain, at 20 m depth, a thin clayey layer. The groundwater level is quite close to the surface (0-2m) and finally, the topography is almost totally flat. The upper layer of the Fleurus-Farciennes site consists of 10 m silt with poor geomechanical characteristics, overlying sands (only a few meters thick) and Westphalian shales between 15 and 20 m depth. The Westphalian shales are tectonized and strongly weathered. In the past, coal seams were mined out. This activity induced locally important surface subsidence. For both nuclear sites that were investigated, a conceptual design was made that could allow any unfavorable geological or hydrogeological conditions of the site to be overcome. In Fleurus-Farciennes, for instance, the proposed conceptual design of the repository is quite original. It is composed of a shallow, buried concrete cylinder, surrounded by an accessible concrete ring, which allows permanent inspection and control during the whole lifetime of the repository. Stability and drainage systems should be independent of potential differential settlements an d subsidences

  10. Proceedings of the tenth annual DOE low-level waste management conference: Session 4: Waste treatment minimization

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This document contains eleven papers on various aspects of low-level radioactive waste management. Topics in this volume include: volume reduction plans; incentitives; and cost proposals; acid detoxification and reclamation; decontamination of lead; leach tests; West Valley demonstration project status report; and DOE's regional management strategies. Individual papers were processed separately for the data base. (TEM)

  11. Proceedings of the tenth annual DOE low-level waste management conference: Session 1: Institutional and regulatory issues

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This document contains eleven papers on various aspects of low-level radioactive waste regulation. Topics include: EPA environmental standards; international exemption principles; the concept of below regulatory concern; envirocare activities in Utah; mixed waste; FUSRAP and the Superfund; and a review of various incentive programs. Individual papers are processed separately for the data base. (TEM)

  12. Proceedings of the tenth annual DOE low-level waste management conference: Session 6: Closure and decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This document contains eight papers on various aspects of low-level radioactive waste management. Topics include: site closure; ground cover; alternate cap designs; performance monitoring of waste trenches; closure options for a mixed waste site; and guidance for environmental monitoring. Individual papers were processed separately for the data base. (TEM)

  13. Characterization of radioactive contamination inside pipes with the Pipe Explorer{sup trademark} system

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, C.D.; Lowry, W.; Cramer, E. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)] [and others

    1995-10-01

    The U.S. Department of Energy`s nuclear facility decommissioning program needs to characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Historically, this has been attempted using hand held survey instrumentation, surveying only the accessible exterior portions of pipe systems. Difficulty, or inability of measuring threshold surface contamination values, worker exposure, and physical access constraints have limited the effectiveness of this approach. Science and Engineering associates, Inc. under contract with the DOE Morgantown Energy Technology Center has developed and demonstrated the Pipe Explorer{trademark} system, which uses an inverting membrane to transport various characterization sensors into pipes. The basic process involves inverting (turning inside out) a tubular impermeable membrane under air pressure. A characterization sensor is towed down the interior of the pipe by the membrane.

  14. International perspective on repositories for low level waste

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Pers, Karin; Almen, Ylva (SKB International AB (Sweden))

    2011-12-15

    represent a common type of locality for a repository, given that siting criteria are fulfilled. There is also a site that was selected without any association to existing nuclear sites or mines. This is the case for the French L'Aube repository. National repositories for disposal of all waste arising in that country are common, e.g. El Cabril in Spain and Low Level Repository close to Drigg in United Kingdom. The depth of the repositories varies from being on the surface to down to 650 metres below ground. The geological conditions of the different repositories are described as well as engineered barriers, geographical location and, if available, information on safety analysis. It can be noted that in the safety analysis of repositories located close to the coast (such as in Sweden, Finland and the United Kingdom), the effect of post-glacial land rise or coastal erosion is taken into special consideration. In general, the size of the repository reflects the size of the nuclear programmes in the respective country. The activity content of the facility, both the total and normalised figures against the volume capacities, are compared for groups of radionuclides

  15. Characterization of biocenosis in the storage-reservoirs of liquid radioactive wastes of 'Mayak' PA

    Energy Technology Data Exchange (ETDEWEB)

    Pryakhin, E.; Tryapitsina, G.; Andreyev, S.; Akleyev, A. [Urals Research Center for Radiation Medicine - URCRM (Russian Federation); Mokrov, Y.; Ivanov, I. [Mayak PA (Russian Federation)

    2014-07-01

    A number of storage-reservoirs of liquid radioactive wastes of 'Mayak' Production Association ('Mayak' PA) with different levels of radioactive contamination: reservoir R-17 ('Staroye Boloto'), reservoir R-9 (Lake Karachay), reservoirs of the Techa Cascade R-3 (Koksharov pond), R-4 (Metlinsky pond), R-10 and R-11 is located in Chelyabinsk Oblast (Russia). The operation of these reservoirs began in 1949-1964. Full-scale hydro-biological studies of these reservoirs were started in 2007. The research into the status of biocenosis of these storage reservoirs of liquid radioactive wastes of 'Mayak' PA was performed in 2007 - 2011. The status of biocenosis was evaluated in accordance with the status of following communities: bacterio-plankton, phytoplankton, zooplankton, zoo-benthos, macrophytes and ichthyofauna. The status of ecosystems was determined by radioactive and chemical contamination of water bodies. The results of hydro-biological investigations showed that no changes in the status of biota in reservoir R-11 were revealed as compared to the biological parameters of the water bodies of this geographical zone. In terms of biological parameters the status of the ecosystem of the reservoir R-11 is characterized by a sufficient biological diversity, and can be considered acceptable. The ecosystem of the reservoir R-10 maintains its functional integrity, although there were registered negative effects in the zoo-benthos community associated with the decrease in the parameters of the development of pelophylic mollusks that live at the bottom of the water body throughout the entire life cycle. In reservoir R-4 the parameters of the development of phytoplankton did not differ from those in Reservoirs R-11 and R-10; however, a significant reduction in the quantity of Cladocera and Copepoda was registered in the zooplankton community, while in the zoo-benthos there were no small mollusks that live aground throughout the entire life

  16. Physical chemistry characterization of soils of the Storage Center of Radioactive Wastes; Caracterizacion fisico-quimica de suelos del Centro de Almacenamiento de Desechos Radioactivos

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez T, U. O.; Fernandez R, E. [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, 52140 Metepec, Estado de Mexico (Mexico); Monroy G, F.; Anguiano A, J., E-mail: uohtrejo@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (MX)

    2011-11-15

    Any type of waste should be confined so that it does not causes damage to the human health neither the environment and for the storage of the radioactive wastes these actions are the main priority. In the Storage Center of Radioactive Wastes the radioactive wastes generated in Mexico by non energy applications are storage of temporary way. The present study is focused in determining the physical chemistry properties of the lands of the Storage Center of Radioactive Wastes like they are: real density, ph, conductivity percentage of organic matter and percentage of humidity. With what is sought to make a characterization to verify the reaction capacity of the soils in case of a possible flight of radioactive material. The results show that there are different density variations, ph and conductivity in all the soil samples; the ph and conductivity vary with regard to the contact time between the soil and their saturation point in water, for the case of the density due to the characteristics of the same soil; for what is not possible to establish a general profile, but is necessary to know the properties of each soil type more amply. Contrary case is the content of organic matter and humidity since both are in minor proportions. (Author)

  17. Public perceptions of low-level waste risks -- Lessons learned in Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Dornsife, W.; Serie, P.

    1989-11-01

    People in Pennsylvania are no different than citizens of other eastern states, other states, or any place in the world--they care most deeply about their health, the safety and security of their families, their investments, and their autonomy. How a particular risk is perceived depends on how it is believed to affect those valued possessions. The perception of risk from exposure to the radioactivity contained in low-level radioactive low-level waste disposal facility. The Commonwealth`s program, administered by the Department of Environmental Resources, places high priority on public dialogue on this issue. This paper discusses the Department`s program to develop and promulgate low-level waste regulations, provide a framework for selection of a qualified disposal facility operator, contract with the selected firm, and oversee its activities in siting, licensing, constructing, and operating the facility. This facility will meet the needs of the states of the Appalachian States Compact, including, in addition to Pennsylvania, West Virginia, Maryland, and Delaware. The focus of the paper is on the public information and outreach program accomplished to date, and the lessons learned regarding public perceptions of risk.

  18. Performance Assessment Monitoring Plan for the Hanford Site Low Level Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    SONNICHSEN, J.C.

    2000-11-15

    As directed by the U.S. Department of Energy (DOE), Richland Operations Office (DOE-RL), Fluor Hanford, Inc. will implement the requirements of DOE Order 435.1, Radioactive Waste Management, as the requirements relate to the continued operation of the low-level waste disposal facilities on the Hanford Site. DOE Order 435.1 requires a disposal authorization statement authorizing operation (or continued operation) of a low-level waste disposal facility. The objective of this Order is to ensure that all DOE radioactive waste is managed in a manner that protects the environment and personnel and public health and safety. The manual (DOE Order 435.1 Manual) implementing the Order states that a disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980 documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility. Failure to obtain a disposal authorization statement shall result in shutdown of an operational disposal facility. In fulfillment of the requirements of DOE Order 435.1, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area and the 200 West Area Low-Level Burial Grounds. The disposal authorization statement constitutes approval of the performance assessment and composite analysis, authorizes operation of the facility, and includes conditions that the disposal facility must meet. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area Low-Level Burial Grounds be written and approved by the DOE-RL. The monitoring plan is to be updated and implemented within 1 year following issuance of the disposal authorization statement to

  19. Methodology for the characterization and radioactive tracing of a reference to the control of radioactive material in steel mills; Metodologia para la caracterizacion y trazado radiactivo de un material de referencia para el control radiactivo en acerias

    Energy Technology Data Exchange (ETDEWEB)

    Mejuto Mendieta, M.; Crespo Vazquez, M. T.; Peyres Medina, V.; Garcia-Torano, E.; Perez del Villar, L.

    2013-07-01

    One of the tasks which corresponded you to the Laboratory of Metrology of Ionizing Radiation CIEMAT, consists of the preparation of the reference standards of a black slag from steel making drawn {sup 2}26Ra, {sup 1}37Cs, {sup 6}0Co. This work summarizes the steps followed for the preparation of the reference standards of the slag, including the physical sample preparation, chemical, mineralogical and radioactive characterization as well as the development of the method of path with the above listed radionuclides. (Author)

  20. Characterization of Naturally Occurring Radioactive Material (NORM) in Oil and Gas Industry Equipment and Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Rood, A.S.; White, G.J.

    1999-10-07

    This Sampling and Analysis (S and A) Plan was developed for the NORM Characterization Program, and describes the information to be gained through the program, how the required information is to be collected, and the anticipated form and content of the final data. The S and A Plan provides detailed procedures describing the work to be performed, how and why the work will be performed, and who will be responsible for conducting the various aspects of the work. The S and A Plan has been prepared with input from all parties involved with the program. Where appropriate, portions of the procedures described in the S and A Plan will be field tested by personnel of the Idaho National Engineering Laboratory (INEL) and the Grand Junction Project Office (GJPO), as well as representatives of the cosponsor organizations prior to their use in the field.

  1. Characterization of the natural radioactivity of the first deep geothermal doublet in Flanders, Belgium.

    Science.gov (United States)

    Vasile, M; Bruggeman, M; Van Meensel, S; Bos, S; Laenen, B

    2016-12-20

    Deep geothermal energy is a local energy resource that is based on the heat generated by the Earth. As the heat is continuously regenerated, geothermal exploitation can be considered as a renewable and, depending on the techniques used, a sustainable energy production system. In September 2015, the Flemish Institute for Technological Research (VITO) started drilling an exploration well targeting a hot water reservoir at a depth of about 3km on the Balmatt site near Mol. Geothermal hot water contains naturally occurring gases, chemicals and radionuclides at variable concentrations. The actual concentrations and potentially related hazards strongly depend on local geological and hydrogeological conditions. This paper summarizes the radiological characterization of several rock samples obtained from different depths during the drilling, the formation water, the salt and the sediment fraction. The results of our analyses show low values for the activity concentration for uranium and thorium in the formation water and in the precipitate/sediment fraction. Also, the activity concentrations of (210)Pb and (210)Po are low in these samples and the activity concentration of (226)Ra is dominant. From the analysis of the rock samples, it was found that the layer above the reservoir has a higher uranium and thorium concentration than the layer of the reservoir, which on the other hand contains more radium than the layer above it.

  2. Characterization of radioactive contaminants and water treatment trials for the Taiwan Research Reactor's spent fuel pool.

    Science.gov (United States)

    Huang, Chun-Ping; Lin, Tzung-Yi; Chiao, Ling-Huan; Chen, Hong-Bin

    2012-09-30

    There were approximately 926 m(3) of water contaminated by fission products and actinides in the Taiwan Research Reactor's spent fuel pool (TRR SFP). The solid and ionic contaminants were thoroughly characterized using radiochemical analyses, scanning electron microscopy equipped with an energy dispersive spectrometer (SEM-EDS), and inductively coupled plasma optical emission spectrometry (ICP-OES) in this study. The sludge was made up of agglomerates contaminated by spent fuel particles. Suspended solids from spent ion-exchange resins interfered with the clarity of the water. In addition, the ionic radionuclides such as (137)Cs, (90)Sr, U, and α-emitters, present in the water were measured. Various filters and cation-exchange resins were employed for water treatment trials, and the results indicated that the solid and ionic contaminants could be effectively removed through the use of filters and cation exchange resins, respectively. Interestingly, the removal of U was obviously efficient by cation exchange resin, and the ceramic depth filter composed of diatomite exhibited the properties of both filtration and adsorption. It was found that the ceramic depth filter could adsorb β-emitters, α-emitters, and uranium ions. The diatomite-based ceramic depth filter was able to simultaneously eliminate particles and adsorb ionic radionuclides from water.

  3. Field test results for radioactive waste drum characterization with Waste Inspection Tomography (WIT)

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, R.T. [Bio-Imaging Research, Inc., Lincolnshire, IL (United States)

    1997-11-01

    This paper summarizes the design, fabrication, factory testing, evaluation and demonstration of waste inspection tomography (WIT). WIT consists of a self-sufficient, mobile semi-trailer for Non-Destructive Evaluation and Non-Destructive Assay (NDE/NDA) characterization of nuclear waste drums using X-ray and gamma-ray tomographic techniques. The 23-month WIT Phase I initial test results include 2 MeV Digital Radiography (DR), Computed Tomography (CT), Anger camera imaging, Single Photon Emission Computed Tomography (SPECT), Gamma-Ray Spectroscopy, Collimated Gamma Scanning (CGS), and Active and Passive Computed Tomography (A&PCT) using a 1.4 mCi source of {sup 166}Ho. These techniques were initially demonstrated on a 55-gallon phantom drum with three simulated waste matrices of combustibles, heterogeneous metals, and cement using check sources of gamma active isotopes. Waste matrix identification, isotopic identification, and attenuation-corrected gamma activity determination were all demonstrated nondestructively and noninvasively. Preliminary field tests results with nuclear waste drums are summarized. WIT has inspected drums with 0 to 20 grams plutonium 239. The minimum measured was 0.131 gram plutonium 239 in cement. 8 figs.

  4. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  5. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  6. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  7. CONTAINMENT OF LOW-LEVEL RADIOACTIVE WASTE AT THE DOE SALTSTONE DISPOSAL FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, J.; Flach, G.

    2012-03-29

    As facilities look for permanent storage of toxic materials, they are forced to address the long-term impacts to the environment as well as any individuals living in affected area. As these materials are stored underground, modeling of the contaminant transport through the ground is an essential part of the evaluation. The contaminant transport model must address the long-term degradation of the containment system as well as any movement of the contaminant through the soil and into the groundwater. In order for disposal facilities to meet their performance objectives, engineered and natural barriers are relied upon. Engineered barriers include things like the design of the disposal unit, while natural barriers include things like the depth of soil between the disposal unit and the water table. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) in South Carolina is an example of a waste disposal unit that must be evaluated over a timeframe of thousands of years. The engineered and natural barriers for the SDF allow it to meet its performance objective over the long time frame. Some waste disposal facilities are required to meet certain standards to ensure public safety. These type of facilities require an engineered containment system to ensure that these requirements are met. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) is an example of this type of facility. The facility is evaluated based on a groundwater pathway analysis which considers long-term changes to material properties due to physical and chemical degradation processes. The facility is able to meet these performance objectives due to the multiple engineered and natural barriers to contaminant migration.

  8. Environmental monitoring at the Barnwell low level radioactive waste disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Ragan, F.A. [South Carolina Dept. of Health and Environmental Control, Columbia, SC (United States)

    1989-11-01

    The Barnwell site has undergone an evolution to achieve the technology which is utilized today. A historical background will be presented along with an overview of present day operations. This paper will emphasize the environmental monitoring program: the types of samples taken, the methods of compiling and analyzing data, modeling, and resulting actions.

  9. 78 FR 59729 - Final Comparative Environmental Evaluation of Alternatives for Handling Low-Level Radioactive...

    Science.gov (United States)

    2013-09-27

    ... alter any important attribute of the resource. Moderate. The environmental effects are sufficient to noticeably alter, but not destabilize important attributes of the resource. Large. The environmental effects... Commission. Aby Mohseni, Deputy Director, Environmental Protection and Performance Directorate, Division...

  10. 77 FR 40817 - Low-Level Radioactive Waste Regulatory Management Issues

    Science.gov (United States)

    2012-07-11

    ... will accept written comments at the public meeting and welcomes active participation from those... emphasizes passive rather than active systems to limit and retard releases to the environment. Development of... participants will be in ``listen-only'' mode during the presentation. Participants will have a chance to...

  11. Guidance for Low-Level Radioactive Waste (LLRW) and Mixed Waste (MW) Treatment and Handling

    Science.gov (United States)

    2007-11-02

    mixed in-drum (as shown in Figure 8-13) by inserting a mixer blade into the drum or by physically tumbling the sealed drum. In-drum mixing is...evaporation (Figure 8-16) can also be used, but the waste must be dried before treatment. A steam-heated dryer is used which measures the correct amount of

  12. Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Hakonson, T.E.

    1986-02-01

    This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user.

  13. Handbook of radioactivity analysis

    CERN Document Server

    2012-01-01

    The updated and much expanded Third Edition of the "Handbook of Radioactivity Analysis" is an authoritative reference providing the principles, practical techniques, and procedures for the accurate measurement of radioactivity from the very low levels encountered in the environment to higher levels measured in radioisotope research, clinical laboratories, biological sciences, radionuclide standardization, nuclear medicine, nuclear power, fuel cycle facilities and in the implementation of nuclear forensic analysis and nuclear safeguards. The Third Edition contains seven new chapters providing a reference text much broader in scope than the previous Second Edition, and all of the other chapters have been updated and expanded many with new authors. The book describes the basic principles of radiation detection and measurement, the preparation of samples from a wide variety of matrices, assists the investigator or technician in the selection and use of appropriate radiation detectors, and presents state-of-the-ar...

  14. Simultaneous treatment of low-level miscellaneous solid waste by thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Amakawa, T.; Adachi, K.; Yasui, S. [Central Research Institute of Electric Power Industry, Kanagawa (Japan)

    2001-07-01

    Volume reduction is a cost saving method for the final disposal of radioactive waste. On one hand, arc plasma heating can provide sufficient heat independent of the chemical and physical properties of waste, therefore enabling stable heating at high treatment rates. CRIEPI (central research institute of electric power industry) focused on the advantages of arc plasma heating, and has clarified that arc plasma heating can be used in a simultaneous melting treatment process for low-level miscellaneous mixed solid waste, generated from nuclear power plants for volume reduction, and in the stabilization of radionuclides. (authors)

  15. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 2 (Appendices) contains the detailed analyses and data needed to support the results given in Volume 1.

  16. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Main Report

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E. S.; Holter, G. M.

    1980-06-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 1 (Main Report) contains background information and study results in summary form.

  17. Project report for the commercial disposal of mixed low-level waste debris

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

    1994-05-01

    This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project.

  18. Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 2, Appendixes

    Energy Technology Data Exchange (ETDEWEB)

    Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

    1989-01-01

    This report presents information derived form the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. Volume 1 contains the main text. This Volume contains the appendixes, including data and supporting information that verify content and results found in the main text.

  19. Radioactive Material

    CERN Multimedia

    2004-01-01

    The Radiation Protection Group of the Safety Commission is responsible for shipping of radioactive material from CERN to any external institute or organisation. The RP group is equally responsible for the reception of radioactive material shipped to any of the CERN sites. Anyone who needs to ship from or import into CERN radioactive material must contact the Radioactive Shipping Service of the RP group in advance. Instructions are available at: http://cern.ch/rp-shipping or in the Radiation Protection Procedure PRP13: https://edms.cern.ch/document/346823 Radiation Protection Group

  20. Characterization of discontinuities in an argillaceous medium (Tournemire site): key questions related to safety assessment of radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera Nunez, J. [CEA Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    2001-07-01

    The safety assessment of deep radioactive waste disposal in argillaceous medium concerns the evaluation of the possibilities and transfer processes through this geological barrier. Generally, this material is characterized by a very low permeability. However, faults and fractures may affect this medium and consequently it is important to analyse the transfer possibilities along these discontinuities. The first phase of this evaluation is the detection or survey of the fractures, and the second one is the evaluation of their hydraulic properties. A discontinuity is not a synonymous of fluid transfer, which in turn may be inhomogeneous along the same fracture. The well-compacted Tournemire argillaceous medium (argilites and marls) is affected by some faults and fractures of natural (tectonic) and artificial (excavation) origin. The natural fractures are of different scales: major regional faults that limit blocks, secondary fault and fractured zones that affect the blocks, and local fractures and micro-fractures. These discontinuities are studied from the surface analyses, transversal boreholes and drifts. Geophysical methods are tested to detect these discontinuities to different scales. The present-day fluids are shown in some fractured sectors that allow us to analyse the possibilities of fluid transfer along these discontinuities. The fracture analyses show that permeability or transmissivity properties may change along the discontinuities. A decametric fluid transfer is shown along some fractures; however, their integration in a larger scale is not yet analysed. It is necessary to understand how the transfer in the near field may be connected to the possible far field transfer, or these transfers are not possible through the argillaceous medium. (author)

  1. Characterization and Source Term Assessments of Radioactive Particles from Marshall Islands Using Non-Destructive Analytical Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jernstrom, J; Eriksson, M; Simon, R; Tamborini, G; Bildstein, O; Carlos-Marquez, R; Kehl, S R; Betti, M; Hamilton, T

    2005-06-11

    A considerable fraction of radioactivity entering the environment from different nuclear events is associated with particles. The impact of these events can only be fully assessed where there is some knowledge about the mobility of particle bound radionuclides entering the environment. The behavior of particulate radionuclides is dependent on several factors, including the physical, chemical and redox state of the environment, the characteristics of the particles (e.g., the chemical composition, crystallinity and particle size) and on the oxidative state of radionuclides contained in the particles. Six plutonium-containing particles stemming from Runit Island soil (Marshall Islands) were characterized using non-destructive analytical and microanalytical methods. By determining the activity of {sup 239,240}Pu and {sup 241}Am isotopes from their gamma peaks structural information related to Pu matrix was obtained, and the source term was revealed. Composition and elemental distribution in the particles were studied with synchrotron radiation based micro X-ray fluorescence (SR-{mu}-XRF) spectrometry. Scanning electron microscope equipped with energy dispersive X-ray detector (SEMEDX) and secondary ion mass spectrometer (SIMS) were used to examine particle surfaces. Based on the elemental composition the particles were divided into two groups; particles with plain Pu matrix, and particles where the plutonium is included in Si/O-rich matrix being more heterogeneously distributed. All of the particles were identified as fragments of initial weapons material. As containing plutonium with low {sup 240}Pu/{sup 239}Pu atomic ratio, {approx}2-6%, which corresponds to weapons grade plutonium, the source term was identified to be among the safety tests conducted in the history of Runit Island.

  2. Laboratory development of methods for centralized treatment of liquid low-level waste at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, W.D.; Bostick, D.T.; Burgess, M.W.; Taylor, P.A.; Perona, J.J.; Kent, T.E.

    1994-10-01

    Improved centralized treatment methods are needed in the management of liquid low-level waste (LLLW) at Oak Ridge National Laboratory (ORNL). LLLW, which usually contains radioactive contaminants at concentrations up to millicurie-per-liter levels, has accumulated in underground storage tanks for over 10 years and has reached a volume of over 350,000 gal. These wastes have been collected since 1984 and are a complex mixture of wastes from past nuclear energy research activities. The waste is a highly alkaline 4-5 M NaNO{sub 3} solution with smaller amounts of other salts. This type of waste will continue to be generated as a consequence of future ORNL research programs. Future LLLW (referred to as newly generated LLLW or NGLLLW) is expected to a highly alkaline solution of sodium carbonate and sodium hydroxide with a smaller concentration of sodium nitrate. New treatment facilities are needed to improve the manner in which these wastes are managed. These facilities must be capable of separating and reducing the volume of radioactive contaminants to small stable waste forms. Treated liquids must meet criteria for either discharge to the environment or solidification for onsite disposal. Laboratory testing was performed using simulated waste solutions prepared using the available characterization information as a basis. Testing was conducted to evaluate various methods for selective removal of the major contaminants. The major contaminants requiring removal from Melton Valley Storage Tank liquids are {sup 90}Sr and {sup 137}Cs. Principal contaminants in NGLLLW are {sup 9O}Sr, {sup 137}Cs, and {sup 106}Ru. Strontium removal testing began with literature studies and scoping tests with several ion-exchange materials and sorbents.

  3. Ultra Low Level Environmental Neutron Measurements Using Superheated Droplet Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, A.C. [Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Estrada Nacional 10 - km 139.7, 2695-066 Bobadela LRS (Portugal); Centro de Fisica Nuclear, Universidade de Lisboa. Av. Prof. Gama Pinto, 2, 1649- 003 Lisboa (Portugal); Felizardo, M.; Girard, T.A.; Kling, A.; Ramos, A.R. [Centro de Fisica Nuclear, Universidade de Lisboa. Av. Prof. Gama Pinto, 2, 1649- 003 Lisboa (Portugal); Marques, J.G.; Prudencio, M.I.; Marques, R.; Carvalho, F.P. [Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Estrada Nacional 10 - km 139.7, 2695-066 Bobadela LRS (Portugal)

    2015-07-01

    Through the application of superheated droplet detectors (SDDs), the SIMPLE project for the direct search for dark matter (DM) reached the most restrictive limits on the spin-dependent sector to date. The experiment is based on the detection of recoils following WIMP-nuclei interaction, mimicking those from neutron scattering. The thermodynamic operation conditions yield the SDDs intrinsically insensitive to radiations with linear energy transfer below ∼150 keVμm{sup -1} such as photons, electrons, muons and neutrons with energies below ∼40 keV. Underground facilities are increasingly employed for measurements in a low-level radiation background (DM search, gamma-spectroscopy, intrinsic soft-error rate measurements, etc.), where the rock overburden shields against cosmic radiation. In this environment the SDDs are sensitive only to α-particles and neutrons naturally emitted from the surrounding materials. Recently developed signal analysis techniques allow discrimination between neutron and α-induced signals. SDDs are therefore a promising instrument for low-level neutron and α measurements, namely environmental neutron measurements and α-contamination assays. In this work neutron measurements performed in the challenging conditions of the latest SIMPLE experiment (1500 mwe depth with 50-75 cm water shield) are reported. The results are compared with those obtained by detailed Monte Carlo simulations of the neutron background induced by {sup 238}U and {sup 232}Th traces in the facility, shielding and detector materials. Calculations of the neutron energy distribution yield the following neutron fluence rates (in 10{sup -8} cm{sup -2}s{sup -1}): thermal (<0.5 eV): 2.5; epithermal (0.5 eV-100 keV): 2.2; fast (>1 MeV): 3.9. Signal rates were derived using standard cross sections and codes routinely employed in reactor dosimetry. The measured and calculated neutron count rates per unit of active mass were 0.15 ct/kgd and 0.33 ct/kg-d respectively. As the major

  4. Classification of the Z-Pinch Waste Stream as Low-Level Waste for Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Singledecker, Steven John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-10

    The purpose of this document is to describe the waste stream from Z-Pinch Residual Waste Project that due to worker safety concerns and operational efficiency is a candidate for blending Transuranic and low level waste together and can be safely packaged as low-level waste consistent with DOE Order 435.1 requirements and NRC guidance 10 CFR 61.42. This waste stream consists of the Pu-ICE post-shot containment systems, including plutonium targets, generated from the Z Machine experiments requested by LANL and conducted by SNL/NM. In the past, this TRU waste was shipped back to LANL after Sandia sends the TRU data package to LANL to certify the characterization (by CCP), transport and disposition at WIPP (CBFO) per LANL MOU-0066. The Low Level Waste is managed, characterized, shipped and disposed of at NNSS by SNL/NM per Sandia MOU # 11-S-560.

  5. Hanford low-level tank waste interim performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F.M.

    1997-09-12

    The Hanford Low-Level Tank Waste Interim Performance Assessment examines the long-term environmental and human health effects associated with the disposal of the low-level fraction of the Hanford single and double-shell tank waste in the Hanford Site 200 East Area. This report was prepared as a good management practice to provide needed information about the relationship between the disposal system design and performance early in the disposal system project cycle. The calculations in this performance assessment show that the disposal of the low-level fraction can meet environmental and health performance objectives.

  6. Hanford low-level tank waste interim performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F.M.

    1996-09-16

    The Hanford Low-Level Tank Waste Interim Performance Assessment examines the long-term environmental and human health effects associated with the disposal of the low-level fraction of the Hanford single- and double-shell tank waste in the Hanford Site 200 East Area. This report was prepared as a good management practice to provide needed information about the relationship between the disposal system design and its performance as early as possible in the project cycle. The calculations in this performance assessment show that the disposal of the low-level fraction can meet environmental and health performance objectives.

  7. Low level cloud motion vectors from Kalpana-1 visible images

    Indian Academy of Sciences (India)

    Inderpreet Kaur; S K Deb; C M Kishtawal; P K Pal; Raj Kumar

    2013-08-01

    Till now low-level winds were retrieved using Kalpana-1 infrared (IR) images only. In this paper, an attempt has been made to retrieve low-level cloud motion vectors using Kalpana-1 visible (VIS) images at every half an hour. The VIS channel provides better detection of low level clouds, which remain obscure in thermal IR images due to poor thermal contrast. The tracers are taken to be 15 × 15 pixel templates and hence each wind corresponds to about 120km × 120km at sub-satellite point. Multiplet based wind retrieval technique is followed for VIS wind derivation. However, for height assignment of VIS winds, collocated IR image is used. Due to better contrast between cloud and ocean surface, the low level atmospheric flow is captured better as compared to IR winds. The validation of the derived VIS winds is done with Global Forecast System (GFS) model winds and Oceansat-II scatterometer (OSCAT) winds.

  8. Study of the Low Level Wind Shear using AMDAR reports

    Science.gov (United States)

    Urlea, Ana-Denisa; Pietrisi, Mirela

    2015-04-01

    The aim of this work is the study of the effects of the wind shear on aircraft flights, in particularly when it appears on path of take-off or landing phase which is the most troublesome phase. This phenomenon has a lot of generating sources as: convection, frontal surfaces, strong surface wind coupled with local topography, breezes (either sea or mountain originated), mountain waves or low level temperature inversions. Low Level Jet is also a most frequent cause of Low Level Wind Shear. It has a lot of generating causes, but in Romania the most encountered is the presence of a Mediterranean low in southeastern part of Europe mainly in winter, sometimes in the first days of spring or the last days of autumn. It generates Low Level Wind Shear between surface and up to 600m, affecting approaching, landing or take-off phases of an aircraft flight. Diagnosis of meteorological general and local conditions and presence of Low Level Jet- generating Low Level Wind Shear is made using Meteo-France ARPEGE products model and ALARO high resolution model dedicated to Romanian area. The study is focused on use of real-time and in situ data as AMDAR (Aircraft Meteorological Data Relay) registrations with verification of a mobile Doppler SODAR registrations-("SOnic Detection And Ranging" system -PCS.2000- Metek manufactured by Meteorologische Messtechnik GMBH) in the processes of estimation of the quantitative and qualitative manifestation of Low Level Wind Shear. The results will be used to improve the timing and the accuracy of the Low Level Wind Shear forecasting for the aerodrome area.

  9. Prompt-gamma neutron activation analysis for the non-destructive characterization of radioactive wastes; Prompt-Gamma-Neutronen-Aktivierungs-Analyse zur zerstoerungsfreien Charakterisierung radioaktiver Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Kettler, John Paul Hermann

    2010-07-01

    In Germany, stringent official regulations govern the handling and final storage of radioactive waste. For this reason, the Federal Government has opted for final storage of radioactive waste with negligible heat generation in deep geological formations. At present the Konrad mine in Salzgitter will be rebuilt as a final disposal, the start of operation is scheduled for 2014. Radioactive waste with negligible heat generation originates from the operation and decommissioning of nuclear power plants, the medical sector or from research establishments. The requirements of the planning approval decision to build up the disposal Konrad, published on the 22{sup nd} of May 2002, obligate the waste producer to consider the limits for chemotoxic substances and to document the waste content. Before the radioactive waste can be stored in the final disposal, it is necessary to characterize the waste composition, relating to the concentration of water polluting substances. In particular for the wastes produced in the year before 1990, the so-called old wastes, there is a lack of documentation. The chemotoxicity of old wastes can mostly only characterized by time consuming and destructive methods. Furthermore these methods produce high costs, which depend on the arrangements to avoid contamination, to comply with the radiation protection and for the conditioning of the wastes. A prototype system, based on the Prompt-Gamma-Neutron-Activation-Analysis (PGNAA) with 14 MeV neutrons, has been developed in this work. This system allows the characterization of large samples, like 25 and 50 l drums. The signature of the element composition is in this processed by gamma-ray spectroscopy. This work was focused, in addition to the feasibility of the system, to the neutron and photon transport in large samples. Therefore the neutron and photon self-absorption in dependence of the sample composition were the main part of interest. Computer simulations (MCNP) and experiments were performed to

  10. Proceedings of the tenth annual DOE low-level waste management conference: Session 3: Disposal technology and facility development

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This document contains ten papers on various aspects of low-level radioactive waste management. Topics include: design and construction of a facility; alternatives to shallow land burial; the fate of tritium and carbon 14 released to the environment; defense waste management; engineered sorbent barriers; remedial action status report; and the disposal of mixed waste in Texas. Individual papers were processed separately for the data base. (TEM)

  11. Milestones for Selection, Characterization, and Analysis of the Performance of a Repository for Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain.

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, Robert P.

    2014-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2008 of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment-specific laboratory experiments, in-situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site-specific characterization. Because the relationship is important to understanding the evolution of the Yucca Mountain Project, the tabulation also shows the interaction between four broad categories of political bodies and government agencies/institutions: (a) technical milestones of the implementing institutions, (b) development of the regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives and decisions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste.

  12. Simulated Radioactivity

    Science.gov (United States)

    Boettler, James L.

    1972-01-01

    Describes the errors in the sugar-cube experiment related to radioactivity as described in Project Physics course. The discussion considers some of the steps overlooked in the experiment and generalizes the theory beyond the sugar-cube stage. (PS)

  13. Radioactivity Calculations

    Science.gov (United States)

    Onega, Ronald J.

    1969-01-01

    Three problems in radioactive buildup and decay are presented and solved. Matrix algebra is used to solve the second problem. The third problem deals with flux depression and is solved by the use of differential equations. (LC)

  14. Concentrating Radioactivity

    Science.gov (United States)

    Herrmann, Richard A.

    1974-01-01

    By concentrating radioactivity contained on luminous dials, a teacher can make a high reading source for classroom experiments on radiation. The preparation of the source and its uses are described. (DT)

  15. Natural radioactivity of some spring and bottled mineral waters from several central Balkan sites, as a way of their characterization

    Directory of Open Access Journals (Sweden)

    SCEPAN S. MILJANIC

    2007-06-01

    Full Text Available In this work, a study of the radioactive content of some spring and bottled mineral waters originating frommetamorphic rock areas was carried out.Ahigh content of radium isotopes (226Ra, 228Ra, was found by radiometric analysis in the spring waters: Studenica (226Ra: 289 mBq/L, ^ibutkovica (226Ra: 92, 4 mBq/L, 228Ra: 610 mBq/L, and Crni Guber (226Ra: 120 mBq/L, 228Ra: 1170 mBq/L. On the other hand, the radiochemical results showed a higher concentration of 238U in the bottled mineral water samples (dissolved uranium concentrations were from 0.21 mBq/L, for "Kopaonik" to 71.5mBq/L fo "Skadarska" than in the spring water samples (dissolved uranium concentrations were very low » 10 mBq/L. The concentrations of all the present naturally occuring radionuclides: 238U, 234U, 232Th, 230Th, 228Th, 228Ra and 226Ra were determined by alpha/gamma spectrometric analysis. The activity ratios 234U/238U, 226Ra/230Th and 228Th/232Th, 228Ra/228Th were calculated and are discussed as an indication of the radioactive disequilibrium in bothe the 238U and 232Th radioactive series. The high contents of radium isotopes with respect to the equilibrium values expected from the respective parents 232Th/(232Th series and 230Th (238U series found in the spring water samples is the main evidence for the existence of significant radioactive disequilibrium in both the radioactive series.

  16. Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

    1997-05-01

    A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

  17. Catalog of documents produced by the Greater-Than-Class C Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Winberg, M.R.

    1995-03-01

    This catalog provides a ready reference for documents prepared by the Greater-Than-Class C Low-Level Waste (GTCC LLW) Management Program. The GTCC LLW Management Program is part of the National Low-Level Waste Management Program (NLLWMP). The NLLWMP is sponsored by the US Department of Energy (DOE) and is responsible for assisting the DOE in meeting its obligations under Public Law 99-240, The Low-Level Radioactive Waste Policy Amendments Act of 1985. This law assigns DOE the responsibility of ensuring the safe disposal of GTCC LLW in a facility licensed by the Nuclear Regulatory Commission (NRC). The NLLWMP is managed at the Idaho National Engineering Laboratory (INEL).

  18. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  19. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  20. National Low-Level Waste Management Program Radionuclide Report Series: Volume 12, Cobalt-60

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J.P.

    1995-06-01

    This report outlines the basic radiological and chemical characteristics of cobalt-60 ({sup 60}Co) and examines how these characteristics affect the behavior of {sup 60}Co in various environmental media, such as soils, groundwater, plants, animals, the atmosphere, and the human body. Discussions also include methods of {sup 60}Co production, waste types, and waste forms that contain {sup 60}Co. All cobalt atoms contain 27 protons (Z = 27) and various numbers of neutrons (typically N = 27 to 37 neutrons) within the atom`s nucleus. There is only one stable isotope of cobalt, namely {sup 59}Co. All other cobalt isotopes, including {sup 60}Co, are radioactive. The radioactive isotopes of cobalt have half-lives ranging from less than a second ({sup 54}Co-0.19 s) to 5.2 years ({sup 60}Co). The radioactive isotopes of cobalt are not a normal constituent of the natural environment and are generated as a result of human activities. The primary source of {sup 60}Co in the environment has been low-level radioactive waste material generated as a result of neutron activation of stable {sup 59}Co that is present in the structural components of nuclear reactor vessels. This isotope is also intentionally produced, usually in reactors but also to some degree in accelerators for industrial and medical uses, such as for radiation sources for cancer treatment and nondestructive testing of metals and welds. {sup 60}Co may enter the environment as a result of the activities associated with nuclear reactor operations and decommissioning and when industrial and medical sources are being used, manufactured, or disposed.

  1. GRABGAM Analysis of Ultra-Low-Level HPGe Gamma Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Winn, W.G.

    1999-07-28

    The GRABGAM code has been used successfully for ultra-low level HPGe gamma spectrometry analysis since its development in 1985 at Savannah River Technology Center (SRTC). Although numerous gamma analysis codes existed at that time, reviews of institutional and commercial codes indicated that none addressed all features that were desired by SRTC. Furthermore, it was recognized that development of an in-house code would better facilitate future evolution of the code to address SRTC needs based on experience with low-level spectra. GRABGAM derives its name from Gamma Ray Analysis BASIC Generated At MCA/PC.

  2. Immobilized low-level waste disposal options configuration study

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.E.

    1995-02-01

    This report compiles information that supports the eventual conceptual and definitive design of a disposal facility for immobilized low-level waste. The report includes the results of a joint Westinghouse/Fluor Daniel Inc. evaluation of trade-offs for glass manufacturing and product (waste form) disposal. Though recommendations for the preferred manufacturing and disposal option for low-level waste are outside the scope of this document, relative ranking as applied to facility complexity, safety, remote operation concepts and ease of retrieval are addressed.

  3. Development of a low-level Ar-37 calibration standard

    CERN Document Server

    Williams, R M; Bowyer, T W; Day, A R; Fuller, E S; Haas, D A; Hayes, J C; Hoppe, E W; Humble, P H; Keillor, M E; LaFerriere, B D; Mace, E K; McIntyre, J I; Miley, H S; Myers, A W; Orrell, J L; Overman, C T; Panisko, M E; Seifert, A

    2016-01-01

    Argon-37 is an environmental signature of an underground nuclear explosion. Producing and quantifying low-level Ar-37 standards is an important step in the development of sensitive field measurement instruments. This paper describes progress at Pacific Northwest National Laboratory in developing a process to generate and quantify low-level Ar-37 standards, which can be used to calibrate sensitive field systems at activities consistent with soil background levels. This paper presents a discussion of the measurement analysis, along with assumptions and uncertainty estimates.

  4. Mössbauer and Raman spectroscopy characterization of concretes used in the conditioning of spent radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Monroy-Guzman, F., E-mail: fabiola.monroy@inin.gob.mx; González-Neri, M.; González-Díaz, R. C.; Ortíz-Arcivar, G.; Corona-Pérez, I. J. [Instituto Nacional de Investigaciones Nucleares. Carretera México-Toluca s/n, La Marquesa, Ocoyoacac (Mexico); Nava, N. [Instituto Mexicano del Petroleo (Mexico); Cabral-Prieto, A.; Escobar-Alarcón, L. [Instituto Nacional de Investigaciones Nucleares. Carretera México-Toluca s/n, La Marquesa, Ocoyoacac (Mexico)

    2015-06-15

    Spent radioactive sources are considered a type of radioactive waste which must be stored properly. These sources are usually conditioned in concrete that functions as shield and physical barrier to prevent the potential migration of radionuclides, and must have suitable properties: mechanical, thermal or irradiation resistance. Concretes used in the conditioning of spent radioactive source in Mexico were tested, preparing concrete test specimens with Portland cement CPC 30RS EXTRA CEMEX and aggregates, and subjected to compression strength, γ-ray-irradiation and thermal resistance assays and subsequently analyzed by Mössbauer and Raman Spectroscopies as well as by Scanning Electron Microscopy, in order to correlate the radiation and temperature effects on the compressive strengths, the oxidation states of iron and the structural features of the concrete. Iron was found in the concrete in Fe {sup 2+} and Fe {sup 3+} in the tetrahedral (T) and two octahedral positions (O1, O2). Radiolysis of water causes the dehydratation (200-600 kGy) and rehydratation (1000-10000 kGy) of calcium silicate hydrates (C-S-H) and ferric hydrate phases in concretes and structural distortion around the iron sites in concretes. The compressive strength of concretes are not significantly affected by γ-radiation or heat.

  5. Mössbauer and Raman spectroscopy characterization of concretes used in the conditioning of spent radioactive sources

    Science.gov (United States)

    Monroy-Guzman, F.; González-Neri, M.; González-Díaz, R. C.; Ortíz-Arcivar, G.; Corona-Pérez, I. J.; Nava, N.; Cabral-Prieto, A.; Escobar-Alarcón, L.

    2015-06-01

    Spent radioactive sources are considered a type of radioactive waste which must be stored properly. These sources are usually conditioned in concrete that functions as shield and physical barrier to prevent the potential migration of radionuclides, and must have suitable properties: mechanical, thermal or irradiation resistance. Concretes used in the conditioning of spent radioactive source in Mexico were tested, preparing concrete test specimens with Portland cement CPC 30RS EXTRA CEMEX and aggregates, and subjected to compression strength, γ-ray-irradiation and thermal resistance assays and subsequently analyzed by Mössbauer and Raman Spectroscopies as well as by Scanning Electron Microscopy, in order to correlate the radiation and temperature effects on the compressive strengths, the oxidation states of iron and the structural features of the concrete. Iron was found in the concrete in Fe 2+ and Fe 3+ in the tetrahedral (T) and two octahedral positions (O1, O2). Radiolysis of water causes the dehydratation (200-600 kGy) and rehydratation (1000-10000 kGy) of calcium silicate hydrates (C-S-H) and ferric hydrate phases in concretes and structural distortion around the iron sites in concretes. The compressive strength of concretes are not significantly affected by γ-radiation or heat.

  6. A preliminary evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.H.; Roesener, W.S.; Jorgenson-Waters, M.J.

    1993-07-01

    The Mixed and Low-Level Waste Disposal Facility (MLLWDF) project was established in 1992 by the US Department of Energy Idaho Operations Office to provide enhanced disposal capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This Preliminary Evaluation of Alternatives for Disposal of INEL Low-Level Waste and Low-Level Mixed Waste identifies and evaluates-on a preliminary, overview basis-the alternatives for disposal of that waste. Five disposal alternatives, ranging from of no-action`` to constructing and operating the MLLWDF, are identified and evaluated. Several subalternatives are formulated within the MLLWDF alternative. The subalternatives involve various disposal technologies as well as various scenarios related to the waste volumes and waste forms to be received for disposal. The evaluations include qualitative comparisons of the projected isolation performance for each alternative, and facility, health and safety, environmental, institutional, schedule, and rough order-of-magnitude life-cycle cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decisionmaking. The analysis of results indicated further study is necessary to obtain the best estimate of long-term future waste volume and characteristics from the INEL Environmental Restoration activities and the expanded INEL Decontamination and Decommissioning Program.

  7. Radioactive waste caracterisation by neutron activation

    OpenAIRE

    Nicol, Tangi

    2016-01-01

    Nuclear activities produce radioactive wastes classified following their radioactive level and decay time. An accurate characterization is necessary for efficient classification and management. Medium and high level wastes containing long lived radioactive isotopes will be stored in deep geological storage for hundreds of thousands years. At the end of this period, it is essential to ensure that the wastes do not represent any risk for humans and environment, not only from radioactive point o...

  8. NTP monograph on health effects of low-level lead.

    Science.gov (United States)

    2012-06-01

    Although reductions in lead (Pb) exposure for the U.S. population have resulted in lower blood Pb levels over time, epidemiological studies continue to provide evidence of health effects at lower and lower blood Pb levels. Low-level Pb was selected for evaluation by the National Toxicology Program (NTP) because of (1) the availability of a large number of epidemiological studies of Pb, (2) a nomination by the National Institute for Occupational Safety and Health for an assessment of Pb at lower levels of exposure, and (3) public concern for effects of Pb in children and adults. This evaluation summarizes the evidence in humans and presents conclusions on health effects in children and adults associated with low-level Pb exposure as indicated by less than 10 micrograms of Pb per deciliter of blood (Monograph on Health Effects of Low-Level Lead. The document and appendices are available at http://ntp.niehs.nih.gov/go/evals. This document provides background on Pb exposure and includes a review of the primary epidemiological literature for evidence that low-level Pb is associated with neurological, immunological, cardiovascular, renal, and/or reproductive and developmental effects. The NTP Monograph presents specific conclusions for each health effect area. Overall, the NTP concludes that there is sufficient evidence that blood Pb levels Monograph on November 17-18, 2011 (http://ntp.niehs.nih.gov/go/37090.

  9. Integrating detector for measuring low levels of gamma rays

    NARCIS (Netherlands)

    Samson, D.M.; Bos, A.J.J.

    1997-01-01

    Abstract of NL 1001913 (C2) The integrating detector (1) for measuring low levels of ~c-rays, added (9) to the natural background radiation, is provided with a screen (4) placed between at least two thermo-luminescent dosimeters (5-7). It is covered with a housing. Also claimed is the measuremen

  10. Low-Level Waste Disposal Alternatives Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Carlson; Kay Adler-Flitton; Roy Grant; Joan Connolly; Peggy Hinman; Charles Marcinkiewicz

    2006-09-01

    This report identifies and compares on-site and off-site disposal options for the disposal of contract-handled and remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Potential disposal options are screened for viability by waste type resulting in a short list of options for further consideration. The most crediable option are selected after systematic consideration of cost, schedule constraints, and risk. In order to holistically address the approach for low-level waste disposal, options are compiled into comprehensive disposal schemes, that is, alternative scenarios. Each alternative scenario addresses the disposal path for all low-level waste types over the period of interest. The alternative scenarios are compared and ranked using cost, risk and complexity to arrive at the recommended approach. Schedule alignment with disposal needs is addressed to ensure that all waste types are managed appropriately. The recommended alternative scenario for the disposal of low-level waste based on this analysis is to build a disposal facility at the Idaho National Laboratory Site.

  11. On Low-level Cognitive Components of Speech

    DEFF Research Database (Denmark)

    Feng, Ling; Hansen, Lars Kai

    2005-01-01

    In this paper we analyze speech for low-level cognitive features using linear component analysis. We demonstrate generalizable component 'fingerprints' stemming from both phonemes and speaker. Phonemes are fingerprints found at the basic analysis window time scale (20 msec), while speaker...... 'voiceprints' are found at time scales around 1000 msec. The analysis is based on homomorphic filtering features and energy based sparsification....

  12. Two low-level gamma spectrometry systems of the IAEA Safeguards Analytical Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Parus, J.L. [IAEA, SAL, Vienna (Austria); Raab, W. [IAEA, SAL, Vienna (Austria); Donohue, D. [IAEA, SAL, Vienna (Austria); Jansta, V. [IAEA, SAL, Vienna (Austria); Kierzek, J. [IAEA, SAL, Vienna (Austria)

    1997-03-01

    A gamma spectrometry system designed for the measurement of samples with low and medium radioactivity (activity from a few to about 10{sup 4} Bq in the energy range from 25 to 2700 keV) has been installed at the IAEA Safeguards Analytical Laboratory in Seibersdorf. The system consists of 3 low level detectors: (1) n-type coaxial Ge with 42.4% relative efficiency, 1.85 keV FWHM at 1.33 MeV (2) planar Ge with 2000 mm{sup 2} area and 20 mm thickness, 562 eV FWHM at 122 keV (3) NaI(Tl) annulus of 25.4 cm diameter and 25.4 cm height, hole diameter 90 mm. (orig./DG)

  13. FIELD VALIDATION OF CORROSION RATES FOR LOW-LEVEL WASTE DISPOSAL PERFORMANCE ASSESSMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Flitton, M.K. Adler; Seitz, R.R.

    2003-02-27

    Research is being conducted at the Idaho National Engineering and Environmental Laboratory to assess corrosion rates of metals in the subsurface environment in direct support of waste management operations and environmental restoration activities. This research addresses a need identified by Department of Energy-Headquarters when reviewing the performance assessment for the low-level waste disposal facility at the Radioactive Waste Management Complex. Corrosion rates are a key factor determining release rates of long-lived radionuclides from activated metal waste streams. Radionuclide releases from these wastes are key contributors to the projected long-term dose associated with the disposal facility. Short-term results from the corrosion samples buried for one and three years suggest that the corrosion rates assumed for the assessments are conservative. However, the rates appear to be increasing, thus, future retrievals of coupons will be used to identify whether the increasing trend continues.

  14. FY 1995 separation studies for liquid low-level waste treatment at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.; Arnold, W.D.; Burgess, M.W. [and others

    1995-01-01

    During FY 1995, studies were continued to develop improved methods for centralized treatment of liquid low-level waste (LLLW) at Oak Ridge National Laboratory (ORNL). Focus in this reporting period was on (1) identifying the parameters that affect the selective removal of {sup 90}Sr and {sup 137}Cs, two of the principal radioactive contaminants expected in the waste; (2) validating the effectiveness of the treatment methods by testing an ac Melton Valley Storage Tank (MVST) supernate; (3) evaluating the optimum solid/liquid separation techniques for the waste; (4) identifying potential treatment methods for removal of technetium from LLLW; and (5) identifying potential methods for stabilizing the high-activity secondary solid wastes generated by the treatment.

  15. K/Th/U in photomultiplier tubes and improved low-level NaI detectors

    Science.gov (United States)

    Theodorsson, Pall

    2003-06-01

    The study presented here is the first step in a program aimed at reducing significantly the background count rate of NaI scintillation units. We have investigated: (1) the residual background of a large well type NaI detector, i.e., when shielded with 10 cm of lead and operated deep underground, (2) low concentrations of primordial radioactivity in glass used for photomultiplier tubes (PMTs) and (3) the activity in whole tubes. The residual background of the NaI units is dominated by gamma radiation from potassium, thorium and uranium in the PMT, which severely limits their sensitivity. Activity in tubes made of new high purity glass was close to the detection level. The prospects of a new generation of low-level NaI detectors with these tubes are discussed.

  16. Development of a low-level background gamma-ray spectrometer by KRISS.

    Science.gov (United States)

    Lee, K B; Park, Tae Soon; Lee, Jong Man; Oh, Phil-Je; Lee, Sang-Han

    2008-01-01

    A new low-level background and high-efficiency gamma-ray spectrometric system, to be used mainly for the activity certification of natural-matrix certified reference materials (CRMs) and environmental reference materials (RMs) that has been developed on the grounds of the Korea Research Institute of Standards and Science (KRISS). The spectrometer consists of a low-background high-purity germanium detector with a relative efficiency of 120% and various shielding devices to reduce radiation background. The cabinet-shaped device made of 10ton of shielding materials encloses the germanium detector for protection against background from natural radioactivity and neutrons. Three plates of 50-mm-thick plastic scintillation detectors on top of the passive shielding cabinet suppress cosmogenic background by detecting high-energetic cosmic muons bombarding the germanium detector. The measured background rate of the spectrometer for the energy range 50-3000keV was 1.72s(-1).

  17. National inventory of radioactive wastes; Inventaire national des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    There are in France 1064 sites corresponding to radioactive waste holders that appear in this radioactive waste inventory. We find the eighteen sites of E.D.F. nuclear power plants, The Cogema mine sites, the Cogema reprocessing plants, The Cea storages, the different factories and enterprises of nuclear industry, the sites of non nuclear industry, the Andra centers, decommissioned installations, disposals with low level radioactive wastes, sealed sources distributors, national defence. (N.C.). 16 refs.

  18. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego

    2009-06-01

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

  19. Review of private sector and Department of Energy treatment, storage, and disposal capabilities for low-level and mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Willson, R.A.; Ball, L.W.; Mousseau, J.D.; Piper, R.B.

    1996-03-01

    Private sector capacity for treatment, storage, and disposal (TSD) of various categories of radioactive waste has been researched and reviewed for the Idaho National Engineering Laboratory (INEL) by Lockheed Idaho Technologies Company, the primary contractor for the INEL. The purpose of this document is to provide assistance to the INEL and other US Department of Energy (DOE) sites in determining if private sector capabilities exist for those waste streams that currently cannot be handled either on site or within the DOE complex. The survey of private sector vendors was limited to vendors currently capable of, or expected within the next five years to be able to perform one or more of the following services: low-level waste (LLW) volume reduction, storage, or disposal; mixed LLW treatment, storage, or disposal; alpha-contaminated mixed LLW treatment; LLW decontamination for recycling, reclamation, or reuse; laundering of radioactively-contaminated laundry and/or respirators; mixed LLW treatability studies; mixed LLW treatment technology development. Section 2.0 of this report will identify the approach used to modify vendor information from previous revisions of this report. It will also illustrate the methodology used to identify any additional companies. Section 3.0 will identify, by service, specific vendor capabilities and capacities. Because this document will be used to identify private sector vendors that may be able to handle DOE LLW and mixed LLW streams, it was decided that current DOE capabilities should also be identified. This would encourage cooperation between DOE sites and the various states and, in some instances, may result in a more cost-effective alternative to privatization. The DOE complex has approximately 35 sites that generate the majority of both LLW and mixed LLW. Section 4.0 will identify these sites by Operations Office, and their associated LLW and mixed LLW TSD units.

  20. Biological effects of low-level exposures: a perspective from U.S. EPA scientists.

    OpenAIRE

    Davis, J M; Farland, W H

    1998-01-01

    Biological effects of low-level exposures (BELLE) may be very important in characterizing the potential health risks of environmental pollutants. Before some features of BELLE, such as effects that may be modulated by adaptive or defense mechanisms, can be taken into greater consideration in U.S. Environmental Protection Agency risk assessments, however adequate information on a toxicant's mode of action and answers to other questions are needed.

  1. Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 1, Text

    Energy Technology Data Exchange (ETDEWEB)

    Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

    1989-01-01

    This report presents information derived from the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. This volume contains the main text. Volume 2 contains the appendixes, including data and supporting information that verify content and results found in the main text. This report documents information collected by the Pacific Northwest Laboratory at the request of Westinghouse Hanford Company. Presented in this report are the preliminary interpretations of the hydrogeologic environment of six low-level burial grounds, which comprise four waste management areas (WMAs) located in the 200 Areas of the Hanford Site. This information and its accompanying interpretations were derived from sampling and testing activities associated with the construction of 35 ground-water monitoring wells as well as a multitude of previously existing boreholes. The new monitoring wells were installed as part of a ground-water monitoring program initiated in 1986. This ground-water monitoring program is based on requirements for interim status facilities in compliance with the Resource Conservation and Recovery Act (1976).

  2. Control of quality in spectrometry gamma of low level

    CERN Document Server

    Salazar, A

    1997-01-01

    Low level gamma spectrometry is a very precise technique to measure the concentration of nuclides present in different samples in Bq kg sup - sup 1. The quality control of the procedure and method used can be carried out by intercomparison exercises with world recognized institutions. During the last three years the Nuclear Physics Laboratory Of The University of Costa Rica (LAFNA) has been participating in the international quality assessment program (QAP) carried out by the Environmental Measurements Laboratory (EML), department of Energy, USA. The results show a very good agreement with the rest of the participant laboratories. This provides a very objective evaluation of the high precision of the methods used by LAFNA in low level spectroscopy measurements. (Author)

  3. Mixed and low-level waste treatment facility project

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  4. Hazard Classification of the Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Boyd D. Christensen

    2012-05-01

    The Battelle Energy Alliance (BEA) at the Idaho National Laboratory (INL) is constructing a new facility to replace remote-handled low-level radioactive waste disposal capability for INL and Naval Reactors Facility operations. Current disposal capability at the Radioactive Waste Management Complex (RWMC) will continue until the facility is full or closed for remediation (estimated at approximately fiscal year 2015). Development of a new onsite disposal facility is the highest ranked alternative and will provide RH-LLW disposal capability and will ensure continuity of operations that generate RH-LLW for the foreseeable future. As a part of establishing a safety basis for facility operations, the facility will be categorized according to DOE-STD-1027-92. This classification is important in determining the scope of analyses performed in the safety basis and will also dictate operational requirements of the completed facility. This paper discusses the issues affecting hazard classification in this nuclear facility and impacts of the final hazard categorization.

  5. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Mike Lehto

    2010-02-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  6. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Mike Lehto

    2010-10-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  7. Technical assessment of processes to enable recycling of low-level contaminated metal waste

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, G.A.

    1991-10-01

    Accumulations of metal waste exhibiting low levels of radioactivity (LLCMW) have become a national burden, both financially and environmentally. Much of this metal could be considered as a resource. The Department of Energy was assigned the task of inventorying and classifying LLCMW, identifying potential applications, and applying and/or developing the technology necessary to enable recycling. One application for recycled LLCMW is high-quality canisters for permanent repository storage of high-level waste (HLW). As many as 80,000 canisters will be needed by 2035. Much of the technology needed to decontaminate LLCMW has already been developed, but no integrated process has been described, even on a pilot scale, for recycling LLCMW into HLW canisters. This report reviews practices for removal of radionuclides and for producing low carbon stainless steel. Contaminants that readily form oxides may be reduced to below de minimis levels and combined with a slag. Most of the radioactivity remaining in the ingot is concentrated in the inclusions. Radionuclides that chemically resemble the elements that comprise stainless steel can not be removed effectively. Slag compositions, current melting practices, and canister fabrication techniques were reviewed.

  8. Performance assessment for low-level waste disposal in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, A.B. [UK Dept. of the Environment, London (United Kingdom)

    1995-12-31

    British Nuclear Fuels plc (BNFL) operate a site for the disposal of Low Level Radioactive Waste at Drigg in West Cumbria, in North-West England. HMIP are responsible for the regulation of the site with regard to environmental discharges of radioactive materials, both operational and post-closure. This paper is concerned with post-closure matters only. Two post-closure performance assessments have been carried out for this site: one by the National Radiological Protection Board (NRPB) in 1987; and a subsequent one carried out on behalf of HMIP, completed in 1991. Currently, BNFL are preparing a Safety Case for continued operation of the Drigg site, and it expected that the core of this Case will comprise BNFL`s own analysis of post-closure performance. HMIP has developed procedures for the assessment of this Case, based upon experience of the previous Drigg assessments, and also upon the experience of similar work carried out in the assessment of Intermediate Level Waste (ILW) disposal at both deep and shallow potential sites. This paper describes the more important features of these procedures.

  9. Passive Infrared Detection of Microburst Induced Low Level Wind Shear

    Science.gov (United States)

    1990-05-17

    airborne microburst detector is needed. A low cost, low maintenance system that will provide real-time, accurate detection of this LLWS hazard. Having the...R.L. Kurkowski, and F. Caracena, 1983: Airborne operation of an infrared low-level windshear predicition system, J. Aircraft,20, 170-173. , and R.L...and App. Meteor., Vol. 23, 898-915. Appendix A PREDICITION OF ATMOSPHERIC TRANSMISSION AND RADIANCE Over the past 50 years various computer codes

  10. Waste Management Facilities cost information for low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Shropshire, D.; Sherick, M.; Biadgi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  11. On Low-level Cognitive Components of Speech

    DEFF Research Database (Denmark)

    Feng, Ling; Hansen, Lars Kai

    2006-01-01

    In this paper we analyze speech for low-level cognitive features using linear component analysis. We demonstrate generalizable component ‘fingerprints’ stemming from both phonemes and speakers. Phonemes are fingerprints found at the basic analysis window time scale (20 msec), while speaker...... ‘voiceprints’ are found at time scales around 1000 msec. The analysis is based on homomorphic filtering features and energy based sparsification....

  12. The Low-Level Wind Shear Alert System (LLWSAS)

    Science.gov (United States)

    1980-05-01

    known overshooting problems of cup -type anemometers such as the model F-420, the NWS sensor has far more severe damping characteristics than the LLWSAS...the Low-Level Wind Shear Alert System (LLWSAS) field test and evalua- tion are reported. The system is a computer controlled anemometer mesonetwork...Hardware 17 LLWSAS Software 46 Anemometer Siting Criteria 64 LLWSAS Data Collection and Analysis 88 Airport Sensor Configurations, Special Siting Factors

  13. Effect of Low-Level Laser Stimulation on EEG

    Directory of Open Access Journals (Sweden)

    Jih-Huah Wu

    2012-01-01

    Full Text Available Conventional laser stimulation at the acupoint can induce significant brain activation, and the activation is theoretically conveyed by the sensory afferents. Whether the insensible low-level Laser stimulation outside the acupoint could also evoke electroencephalographic (EEG changes is not known. We designed a low-level laser array stimulator (6 pcs laser diode, wavelength 830 nm, output power 7 mW, and operation frequency 10 Hz to deliver insensible laser stimulations to the palm. EEG activities before, during, and after the laser stimulation were collected. The amplitude powers of each EEG frequency band were analyzed. We found that the low-level laser stimulation was able to increase the power of alpha rhythms and theta waves, mainly in the posterior head regions. These effects lasted at least 15 minutes after cessation of the laser stimulation. The amplitude power of beta activities in the anterior head regions decreased after laser stimulation. We thought these EEG changes comparable to those in meditation.

  14. Proceedings of the eighth annual DOE low-level waste management forum: Executive summary, opening plenary session, closing plenary session, attendees

    Energy Technology Data Exchange (ETDEWEB)

    1987-02-01

    The Eighth Annual DOE (Department of Energy) Low-Level Waste Management Forum was held in September 1986, in Denver, Colorado, to provide a forum for exchange of information on low-level radioactive waste (LLW) management activities, requirements, and plans. The one hundred ninety attendees included representatives from the DOE Nuclear Energy and Defense Low-Level Waste Management Programs, DOE Operations Offices and their contractors; representatives from the US Nuclear Regulatory Commission (NRC), US Environmental Protection Agency (EPA), US Geological Survey, and their contractors; representatives of states and regions responsible for development of new commercial low-level waste disposal facilities; representatives of utilities, private contractors, disposal facility operators, and other parties concerned with low-level waste management issues. Plenary sessions were held at the beginning and conclusion of the meeting, while eight concurrent topical sessions were held during the intervening two days. The meeting was organized by topical areas to allow for information exchange and discussion on current and future low-level radioactive waste management challenges. Session chairmen presented summaries of the discussions and conclusions resulting from their respective sessions. Selected papers in this volume have been processed for inclusion in the Energy Data Base.

  15. International low level waste disposal practices and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, W.M. (Nuclear Engineering Division)

    2011-12-19

    The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of

  16. A preliminary evaluation of alternatives for treatment of INEL Low-Level Waste and low-level mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.H.; Roesener, W.S.; Jorgensen-Waters, M.J.; Edinborough, C.R.

    1992-06-01

    The Mixed and Low-Level Waste Treatment Facility (MLLWTF) project was established in 1991 by the US Department of Energy Idaho Field Office to provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies and evaluates the alternatives for treating that waste. Twelve treatment alternatives, ranging from ``no-action`` to constructing and operating the MLLWTF, are identified and evaluated. Evaluations include facility performance, environmental, safety, institutional, schedule, and rough order-of-magnitude cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decision making. Analysis of results indicated further study is necessary to obtain the best estimate of future waste volumes and characteristics from the expanded INEL Decontamination and Decommissioning Program. It is also recommended that conceptual design begin as scheduled on the MLLWTF, maximum treatment alternative while re-evaluating the waste volume projections.

  17. Application of artificial neural networks on the characterization of radioactive waste drums; Aplicacao de redes neurais artificiais na caracterizacao de tambores de rejeito radioativo

    Energy Technology Data Exchange (ETDEWEB)

    Potiens Junior, Ademar Jose; Hiromoto, Goro, E-mail: apotiens@ipen.b, E-mail: hiromoto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-10-26

    The methodology consist of system simulation of drum-detector by Monte Carlo for obtention of counting efficiency. The obtained data were treated and a neural artificial network (RNA) were constructed for evaluation of total activity of drum. For method evaluation measurements were performed in ten position parallel to the drum axis and the results submitted to the RNA. The developed methodology showed to be effective for isotopic characterization of gamma emitter radioactive wastes distributed in a heterogeneous way in a 200 litters drum. The objective of this work as to develop a methodology of analyse for quantification and localization of radionuclides not homogeneous distributed in a 200 liters drum based on the mathematical techniques

  18. Radioactive waste engineering and management

    CERN Document Server

    Nakayama, Shinichi

    2015-01-01

    This book describes essential and effective management for reliably ensuring public safety from radioactive wastes in Japan. This is the first book to cover many aspects of wastes from the nuclear fuel cycle to research and medical use, allowing readers to understand the characterization, treatment and final disposal of generated wastes, performance assessment, institutional systems, and social issues such as intergenerational ethics. Exercises at the end of each chapter help to understand radioactive waste management in context.

  19. A multiattribute utility analysis of sites nominated for characterization for the first radioactive-waste repository: A decision-aiding methodology

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In December 1984, the Department of Energy (DOE) published draft environmental assessments (EAs) to support the proposed nomination of five sites and the recommendation of three sites for characterization for the first radioactive-waste repository. A chapter common to all the draft EAs (Chapter 7) presented rankings of the five sites against the postclosure and the preclosure technical siting guidelines. To determine which three sites appeared most favorable for recommendation for characterization, three simple quantitative methods were used to aggregate the rankings assigned to each site for the various technical guidelines. In response to numerous comments on the methods, the DOE has undertaken a formal application of one of them (hereafter referred to as the decision-aiding methodology) for the purpose of obtaining a more rigorous evaluation of the nominated sites. The application of the revised methodology is described in this report. The method of analysis is known as multiattribute utility analysis; it is a tool for providing insights as to which sites are preferable and why. The decision-aiding methodology accounts for all the fundamental considerations specified by the siting guidelines and uses as source information the data and evaluations reported or referenced in the EAs. It explicitly addresses the uncertainties and value judgments that are part of all siting problems. Furthermore, all scientific and value judgments are made explicit for the reviewer. An independent review of the application of the decision-aiding methodology has been conducted by the Board on Radioactive Waste Management of the National Academy of Sciences; the comments of the Board are included as an appendix to this report.

  20. Forearm muscle oxygenation decreases with low levels of voluntary contraction

    Science.gov (United States)

    Murthy, G.; Kahan, N. J.; Hargens, A. R.; Rempel, D. M.

    1997-01-01

    The purpose of our investigation was to determine if the near infrared spectroscopy technique was sensitive to changes in tissue oxygenation at low levels of isometric contraction in the extensor carpi radialis brevis muscle. Nine subjects were seated with the right arm abducted to 45 degrees, elbow flexed to 85 degrees, forearm pronated 45 degrees, and wrist and forearm supported on an armrest throughout the protocol. Altered tissue oxygenation was measured noninvasively with near infrared spectroscopy. The near infrared spectroscopy probe was placed over the extensor carpi radialis brevis of the subject's right forearm and secured with an elastic wrap. After 1 minute of baseline measurements taken with the muscle relaxed, four different loads were applied just proximal to the metacarpophalangeal joint such that the subjects isometrically contracted the extensor carpi radialis brevis at 5, 10, 15, and 50% of the maximum voluntary contraction for 1 minute each. A 3-minute recovery period followed each level of contraction. At the end of the protocol, with the probe still in place, a value for ischemic tissue oxygenation was obtained for each subject. This value was considered the physiological zero and hence 0% tissue oxygenation. Mean tissue oxygenation (+/-SE) decreased from resting baseline (100% tissue oxygenation) to 89 +/- 4, 81 +/- 8, 78 +/- 8, and 47 +/- 8% at 5, 10, 15, and 50% of the maximum voluntary contraction, respectively. Tissue oxygenation levels at 10, 15, and 50% of the maximum voluntary contraction were significantly lower (p muscle contraction and that near infrared spectroscopy is a sensitive technique for detecting deoxygenation noninvasively at low levels of forearm muscle contraction. Our findings have important implications in occupational medicine because oxygen depletion induced by low levels of muscle contraction may be directly linked to muscle fatigue.

  1. Improvements to the DOE low-level waste regulatory structure and process under recommendation 94-2 - progress to date

    Energy Technology Data Exchange (ETDEWEB)

    Regnier, E.

    1995-12-31

    Among the concerns expressed by the Defense Nuclear Facility Safety Board (DNFSB) in its Recommendation 94-2 was the lack of a clearly defined and effective internal Department of Energy (DOE) regulatory oversight and enforcement process for ensuring that low-level radioactive waste management health, safety, and environmental requirements are met. Therefore, part of the response to the DNFSB concern is a task to clarify and strengthen the low-level waste management regulatory structure. This task is being conducted in two steps. First, consistent with the requirements of the current DOE waste management order and within the framework of the current organizational structure, interim clarification of a review process and the associated organizational responsibilities has been issued. Second, in coordination with the revision of the waste management order and consistent with the organizational responsibilities resulting from the strategic alignment of DOE, a rigorous, more independent regulatory oversight structure will be developed.

  2. Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H. [Westinghouse Hanford Co., Richland, WA (United States); Serne, R.J.; Cantrell, K.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.

  3. International low level waste disposal practices and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, W.M. (Nuclear Engineering Division)

    2011-12-19

    The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of

  4. Ground-water protection, low-level waste, and below regulatory concern: What`s the connection?

    Energy Technology Data Exchange (ETDEWEB)

    Gruhlke, J.M.; Galpin, F.L. [Environmental Protection Agency, Washington, DC (United States). Office of Radiation Programs

    1991-12-31

    The Environmental Protection Agency (EPA) has a responsibility to protect ground water and drinking water under a wide variety of statutes. Each statute establishes different but specific requirements for EPA and applies to diverse environmental contaminants. Radionuclides are but one of the many contaminants subject to this regulatory matrix. Low-level radioactive waste (LLW) and below regulatory concern (BRC) are but two of many activities falling into this regulatory structure. The nation`s ground water serves as a major source of drinking water, supports sensitive ecosystems, and supplies the needs of agriculture and industry. Ground water can prove enormously expensive to clean up. EPA policy for protecting ground water has evolved considerably over the last ten years. The overall goal is to prevent adverse effects to human health, both now and in the future, and to protect the integrity of the nation`s ground-water resources. The Agency uses the Maximum Contaminant Levels (MCLs) under the Safe Drinking Water Act as reference points for protection in both prevention and remediation activities. What`s the connection? Both low-level waste management and disposal activities and the implementation of below regulatory concern related to low-level waste disposal have the potential for contaminating ground water. EPA is proposing to use the MCLs as reference points for low-level waste disposal and BRC disposal in order to define limits to the environmental contamination of ground water that is, or may be, used for drinking water.

  5. Geologic setting of the low-level burial grounds

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, K.A.; Jaeger, G.K. [CH2M Hill Hanford, Inc., Richland, WA (United States); Slate, J.L. [Associated Western Universities Northwest, Richland, WA (United States); Swett, K.J.; Mercer, R.B. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-10-13

    This report describes the regional and site specific geology of the Hanford Sites low-level burial grounds in the 200 East and West Areas. The report incorporates data from boreholes across the entire 200 Areas, integrating the geology of this area into a single framework. Geologic cross-sections, isopach maps, and structure contour maps of all major geological units from the top of the Columbia River Basalt Group to the surface are included. The physical properties and characteristics of the major suprabasalt sedimentary units also are discussed.

  6. Low Level Laser Irradiation of Nerve Cells In Vitro

    Science.gov (United States)

    1996-01-01

    formation in GaAs laser treated tooth extraction wounds in rats.3 Increased lead deposition in the newly formed bone also 8 suggested more rapid ossification...Lim et al. used a GaAIAs low level laser to treat post orthodontic manipulation pain.46 Patients exposed to the laser reported a lower level of pain...1):47-50, 1987. 31. Takeda, Y.: Irradiation effect of low-energy laser on alveolar bone after tooth extraction . Experimental study in rats. Int J Oral

  7. Low-Level Waste Overview of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    J. T. Carilli; M. G. Skougard; S. K. Krenzien; J.K Wrapp; C. Ramirez; V. Yucel; G.J. Shott; S.J. Gordon; K.C. Enockson; L.T. Desotell

    2008-02-01

    This paper provides an overview and the impacts of new policies, processes, and opportunities at the Nevada Test Site. Operational changes have been implemented, such as larger trench sizes and more efficient soil management as have administrative processes to address U.S. Department of Energy and U.S. Code of Federal Regulation analyses. Some adverse conditions have prompted changes in transportation and mixed low-level waste polices, and a new funding mechanism was developed. This year has seen many changes to the Nevada Test Site disposal family.

  8. Low level atmospheric sulfur dioxide pollution and childhood asthma

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, R.Y.; Li, C.K. (Chinese Univ. of Hong Kong (Hong Kong))

    1990-11-01

    Quarterly analysis (1983-1987) of childhood asthma in Hong Kong from 13,620 hospitalization episodes in relation to levels of pollutants (SO{sub 2}, NO{sub 2}, NO, O{sub 3}, TSP, and RSP) revealed a seasonal pattern of attack rates that correlates inversely with exposure to sulfur dioxide (r = -.52, P less than .05). The same cannot be found with other pollutants. Many factors may contribute to the seasonal variation of asthma attacks. We speculate that prolonged exposure (in terms of months) to low level SO{sub 2} is one factor that might induce airway inflammation and bronchial hyperreactivity and predispose to episodes of asthma.

  9. Effectiveness of low-level laser on carpal tunnel syndrome

    Science.gov (United States)

    Li, Zhi-Jun; Wang, Yao; Zhang, Hua-Feng; Ma, Xin-Long; Tian, Peng; Huang, Yuting

    2016-01-01

    Abstract Background: Low-level laser therapy (LLLT) has been applied in the treatment of carpal tunnel syndrome (CTS) for an extended period of time without definitive consensus on its effectiveness. This meta-analysis was conducted to evaluate the effectiveness of low-level laser in the treatment of mild to moderate CTS using a Cochrane systematic review. Methods: We conducted electronic searches of PubMed (1966–2015.10), Medline (1966–2015.10), Embase (1980–2015.10), and ScienceDirect (1985–2015.10), using the terms “carpal tunnel syndrome” and “laser” according to the Cochrane Collaboration guidelines. Relevant journals or conference proceedings were searched manually to identify studies that might have been missed in the database search. Only randomized clinical trials were included, and the quality assessments were performed according to the Cochrane systematic review method. The data extraction and analyses from the included studies were conducted independently by 2 reviewers. The results were expressed as the mean difference (MD) with 95% confidence intervals (CI) for the continuous outcomes. Results: Seven randomized clinical trials met the inclusion criteria; there were 270 wrists in the laser group and 261 wrists in the control group. High heterogeneity existed when the analysis was conducted. Hand grip (at 12 weeks) was stronger in the LLLT group than in the control group (MD = 2.04; 95% CI: 0.08–3.99; P = 0.04; I2 = 62%), and there was better improvement in the visual analog scale (VAS) (at 12 weeks) in the LLLT group (MD = 0.97; 95% CI: 0.84–1.11; P 95% in the calculation of these 3 parameters. There were no statistically significant differences in the other parameters between the 2 groups. Conclusion: This study revealed that low-level laser improve hand grip, VAS, and SNAP after 3 months of follow-up for mild to moderate CTS. More high-quality studies using the same laser intervention protocol are needed to

  10. Low level communication management for e-health systems

    Science.gov (United States)

    Riva, Guillermo; Zerbini, Carlos; Voos, Javier; Centeno, Carlos; González, Eduardo

    2011-12-01

    The heterogeneity of e-health systems encourages the use of standards such as Health Level 7 (HL7v3) to ensure interoperability. Many actual implementations address this problem by unoptimized high level programming of top-range portable computing platforms. However, this approach could pose excessive demands on battery-powered mid-range terminals. In this work, we propose low-level support for portable HL7v3-compatible embedded systems in order to better exploit their limited processing and communications capabilities. In particular, we present our experience in mobile communication management through two different approaches, which proves the feasibility of this proposal.

  11. Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

    2004-07-09

    A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

  12. Current research on biological effects of low-level exposures

    Energy Technology Data Exchange (ETDEWEB)

    Sagan, L.A.

    1994-12-31

    Rather substantial numbers of industrial chemicals, pharmaceuticals, and radiation display U-shaped or seemingly paradoxical dose-response relationships. A limited listing of studies providing examples of data fitting the U-shaped curve has been published. This array suggests that the U-shaped response is broadly generalizable and therefore potentially of considerable significance in the toxicological and public health domains. In fact, in 1992 and 1993, three conferences (Japan, United States, and China) were held exclusively on the topic of the biological effects of low doses of chemicals and radioactivity with articular emphasis on U-shaped curves. Substantial efforts have been made at understanding this observation.

  13. Radioactive characterization of the main materials involved in the titanium dioxide production process and their environmental radiological impact.

    Science.gov (United States)

    Mantero, J; Gazquez, M J; Bolivar, J P; Garcia-Tenorio, R; Vaca, F

    2013-06-01

    A study about the distribution of several radionuclides from the uranium and the thorium series radionuclides along the production process of a typical NORM industry devoted to the production of titanium dioxide has been performed. With this end the activity concentrations in raw materials, final product, co-products, and wastes of the production process have been determined by both gamma-ray and alpha-particle spectrometry. The main raw material used in the studied process (ilmenite) presents activity concentrations of around 300 Bq kg(-1) for Th-series radionuclides and 100 Bq kg(-1) for the U-series ones. These radionuclides in the industrial process are distributed in the different steps of the production process according mostly to the chemical behaviour of each radioelement, following different routes. As an example, most of the radium remains associated with the un-dissolved material waste, with activity concentrations around 3 kBq kg(-1) of (228)Ra and around 1 kBq kg(-1) of (226)Ra, while the final commercial products (TiO2 pigments and co-products) contain negligible amounts of radioactivity. The obtained results have allowed assessing the possible public radiological impact associated with the use of the products and co-products obtained in this type of industry, as well as the environmental radiological impact associated with the solid residues and liquid generated discharges.

  14. Course of operation of the characterizing system of radioactive waste; Curso de operacion del sistema caracterizador de desechos radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Angeles C, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1998-09-15

    The technique of the spectrometry gamma is an analytic method that is used to determine radioactive isotopes. It identify and it measures gamma transmitters directly of the prepared samples. The geometry is the physical form as the sample it is presented to the detector for its mensuration; it depends on their type, the composition of the radionuclide and the activity level that it is wanted to measure. The aspects important most that should be considered are: the used system, the time of mensuration that varies according to the sample type, the limits of required detection, the detection efficiency, the volume or weight of the sample and the radionuclide of interest. Other additional considerations are: for a certain detector, the geometry of the samples should be selected according to its type, for example filter of air, soil or foods. For the calibration it is necessary to use certified sources by a grateful organization, for with the analyzed samples have the same density. The method should be subject to a program of control of quality. It is good to be in a comparative program with other qualified laboratories, nationals and foreigners. (Author)

  15. The effect of low-level laser therapy on hearing.

    Science.gov (United States)

    Goodman, Shawn S; Bentler, Ruth A; Dittberner, Andrew; Mertes, Ian B

    2013-01-01

    One purported use of low-level laser therapy (LLLT) is to promote healing in damaged cells. The effects of LLLT on hearing loss and tinnitus have received some study, but results have been equivocal. The purpose of this study was to determine if LLLT improved hearing, speech understanding, and/or cochlear function in adults with hearing loss. Using a randomized, double-blind, placebo-controlled design, subjects were assigned to a treatment, placebo, or control group. The treatment group was given LLLT, which consisted of shining low-level lasers onto the outer ear, head, and neck. Each laser treatment lasted approximately five minutes. Three treatments were applied within the course of one week. A battery of auditory tests was administered immediately before the first treatment and immediately after the third treatment. The battery consisted of pure-tone audiometry, the Connected Speech Test, and transient-evoked otoacoustic emissions. Data were analyzed by comparing pre- and posttest results. No statistically significant differences were found between groups for any of the auditory tests. Additionally, no clinically significant differences were found in any individual subjects. This trial is registered with ClinicalTrials.gov (NCT01820416).

  16. The impact of meteorology on smoke and low-level clouds over the southeast Atlantic

    Science.gov (United States)

    Adebiyi, Adeyemi A.

    In this dissertation, we use radiosondes and satellite observation, reanalysis datasets, as well as radiative and trajectory models to document the relationship between the low-level clouds, smoke and meteorology over the southeast Atlantic. The southeast Atlantic presents a natural environment with one of the world's largest marine low-level clouds, occurring along with the largest consumption of biomass fire over the adjacent southern African continent. This combination results in an extensive region of above-cloud biomass burning aerosols (predominantly smoke) over the marine low-level clouds, whereby the elevated smoke could lead to the stabilization of the lower troposphere, reduction of the cloud-top entrainment, and the build-up of water vapor within the boundary layer, which may eventually lead to increases in cloud fraction and decreases in cloud-top heights, in a process called semi-direct aerosol effect. The smokes are transported at a preferred altitude (˜750h Pa - 550hPa) by a background easterly winds between July and October. During the same period, strong surface winds and ocean-influenced cold surface temperature characterize the meteorology within the boundary layer. The marine low-level cloud region is also associated with strong climatological subsidence above it, and cloud-top temperature inversion layer. The meteorological variations occurring above and below the low-level clouds are capable of influencing the cloud properties, and therefore may confound with the aerosol effects, making the separation of the aerosol and meteorological influences, on the low-level cloud, a very difficult challenge. We address this problem by identifying the dynamical and thermodynamical variations above the low-level clouds during the the peak aerosol months (July-October). Specifically, three areas are explored in this dissertation: the convolution of the dynamical and moisture effects with shortwave-absorbing aerosols over the low-level clouds; the role of

  17. A Film Classifier Based on Low-level Visual Features

    Directory of Open Access Journals (Sweden)

    Hui-Yu Huang

    2008-07-01

    Full Text Available We propose an approach to classify the film classes by using low level features and visual features. This approach aims to classify the films into genres. Our current domain of study is using the movie preview. A movie preview often emphasizes the theme of a film and hence provides suitable information for classifying process. In our approach, we categorize films into three broad categories: action, dramas, and thriller films. Four computable video features (average shot length, color variance, motion content and lighting key and visual features (show and fast moving effects are combined in our approach to provide the advantage information to demonstrate the movie category. The experimental results present that visual features are the useful messages for processing the film classification. On the other hand, our approach can also be extended for other potential applications, including the browsing and retrieval of videos on the internet, video-on-demand, and video libraries.

  18. WRAP low level waste (LLW) glovebox acceptance test report

    Energy Technology Data Exchange (ETDEWEB)

    Leist, K.J.

    1998-02-17

    In June 28, 1997, the Low Level Waste (LLW) glovebox was tested using glovebox acceptance test procedure 13031A-85. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, lidder/delidder device and the supercompactor were also conducted. As of November 24, 1997, 2 of the 131 test exceptions that affect the LLW glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test Exceptions are provided as appendices to this report.

  19. Summertime Low-Level Jets over the Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Stensrud, D.J. [NOAA/ERL/National Severe Storms Lab., Norman, OK (United States); Pfeifer, S. [Univ. of Oklahoma, Norman, OK (United States)

    1996-04-01

    The sky over the southern Great Plains Cloud and Atmospheric Radiation Testbed (CART) site of the Atmospheric Radiation Measurement (ARM) Program during the predawn and early morning hours often is partially obstructed by stratocumulus, stratus fractus, or cumulus fractus that are moving rapidly to the north, even through the surface winds are weak. This cloud movement is evidence of the low-level jet (LLJ), a wind speed maximum that occurs in the lowest few kilometers of the atmosphere. Owing to the wide spacing between upper-air sounding sites and the relatively infrequent sounding launches, LLJ evolution has been difficult to observe adequately, even though the effects of LLJs on moisture flux into North America are large. Model simulation of the LLJ is described.

  20. Low-Level Hierarchical Multiscale Segmentation Statistics of Natural Images.

    Science.gov (United States)

    Akbas, Emre; Ahuja, Narendra

    2014-09-01

    This paper is aimed at obtaining the statistics as a probabilistic model pertaining to the geometric, topological and photometric structure of natural images. The image structure is represented by its segmentation graph derived from the low-level hierarchical multiscale image segmentation. We first estimate the statistics of a number of segmentation graph properties from a large number of images. Our estimates confirm some findings reported in the past work, as well as provide some new ones. We then obtain a Markov random field based model of the segmentation graph which subsumes the observed statistics. To demonstrate the value of the model and the statistics, we show how its use as a prior impacts three applications: image classification, semantic image segmentation and object detection.

  1. Effect of interstitial low level laser stimulation in skin density

    Science.gov (United States)

    Jang, Seulki; Ha, Myungjin; Lee, Sangyeob; Yu, Sungkon; Park, Jihoon; Radfar, Edalat; Hwang, Dong Hyun; Lee, Han A.; Kim, Hansung; Jung, Byungjo

    2016-03-01

    As the interest in skin was increased, number of studies on skin care also have been increased. The reduction of skin density is one of the symptoms of skin aging. It reduces elasticity of skin and becomes the reason of wrinkle formation. Low level laser therapy (LLLT) has been suggested as one of the effective therapeutic methods for skin aging as in hasten to change skin density. This study presents the effect of a minimally invasive laser needle system (MILNS) (wavelength: 660nm, power: 20mW) in skin density. Rabbits were divided into three groups. Group 1 didn't receive any laser stimulation as a control group. Group 2 and 3 as test groups were exposed to MILNS with energy of 8J and 6J on rabbits' dorsal side once a week, respectively. Skin density of rabbits was measured every 12 hours by using an ultrasound skin scanner.

  2. Low-level light therapy (LLLT) for cosmetics and dermatology

    Science.gov (United States)

    Sawhney, Mossum K.; Hamblin, Michael R.

    2014-02-01

    Over the last few years, low-level laser (light) therapy (LLLT) has been demonstrated to be beneficial to the field of aesthetic medicine, specifically aesthetic dermatology. LLLT encompasses a broad spectrum of procedures, primarily cosmetic, which provide treatment options for a myriad of dermatological conditions. Dermatological disorders involving inflammation, acne, scars, aging and pigmentation have been investigated with the assistance of animal models and clinical trials. The most commercially successful use of LLLT is for managing alopecia (hair loss) in both men and women. LLLT also seems to play an influential role in procedures such as lipoplasty and liposuction, allowing for noninvasive and nonthermal methods of subcutaneous fat reduction. LLLT offers a means to address such conditions with improved efficacy versatility and no known side-effects; however comprehensive literature reports covering the utility of LLLT are scarce and thus the need for coverage arises.

  3. Low level laser therapy on injured rat muscle

    Science.gov (United States)

    Mantineo, M.; Pinheiro, J. P.; Morgado, A. M.

    2013-06-01

    Although studies show the clinical effectiveness of low level laser therapy (LLLT) in facilitating the muscle healing process, scientific evidence is still required to prove the effectiveness of LLLT and to clarify the cellular and molecular mechanisms triggered by irradiation. Here we evaluate the effect of different LLLT doses, using continuous illumination (830 nm), in the treatment of inflammation induced in the gastrocnemius muscle of Wistar rats, through the quantification of cytokines in systemic blood and histological analysis of muscle tissue. We verified that all applied doses produce an effect on reducing the number of inflammatory cells and the concentration of pro-inflammatory TNF-α and IL-1β cytokines. The best results were obtained for 40 mW. The results may suggest a biphasic dose response curve.

  4. Low Level Laser Therapy: laser radiation absorption in biological tissues

    Science.gov (United States)

    Di Giacomo, Paola; Orlando, Stefano; Dell'Ariccia, Marco; Brandimarte, Bruno

    2013-07-01

    In this paper we report the results of an experimental study in which we have measured the transmitted laser radiation through dead biological tissues of various animals (chicken, adult and young bovine, pig) in order to evaluate the maximum thickness through which the power density could still produce a reparative cellular effect. In our experiments we have utilized a pulsed laser IRL1 ISO model (based on an infrared diode GaAs, λ=904 nm) produced by BIOMEDICA s.r.l. commonly used in Low Level Laser Therapy. Some of the laser characteristics have been accurately studied and reported in this paper. The transmission results suggest that even with tissue thicknesses of several centimeters the power density is still sufficient to produce a cell reparative effect.

  5. SNS Low-Level RF Control System Design and Performance

    CERN Document Server

    Ma, Hengjie; Crofford, Mark; Doolittle, Lawrence; Kasemir, Kay-Uwe; Piller, Maurice; Ratti, Alessandro

    2005-01-01

    A full digital Low-Level RF controller has been developed for SNS LINAC. Its design is a good example of a modern digital implementation of the classic control theory. The digital hardware for all the control and DSP functionalities, including the final vector modulation, is implemented on a single high-density FPGA. Two models for the digital hardware have been written in VHDL and Verilog respectively, based on a very low latency control algorithm, and both have been being used for supporting the testing and commissioning the LINAC to the date. During the commissioning, the flexibility and ability for precise controls that only digital design on a larger FPGA can offer has proved to be a necessity for meeting the great challenge of a high-power pulsed SCL.

  6. Oestrogen, ocular function and low-level vision: a review.

    Science.gov (United States)

    Hutchinson, Claire V; Walker, James A; Davidson, Colin

    2014-11-01

    Over the past 10 years, a literature has emerged concerning the sex steroid hormone oestrogen and its role in human vision. Herein, we review evidence that oestrogen (oestradiol) levels may significantly affect ocular function and low-level vision, particularly in older females. In doing so, we have examined a number of vision-related disorders including dry eye, cataract, increased intraocular pressure, glaucoma, age-related macular degeneration and Leber's hereditary optic neuropathy. In each case, we have found oestrogen, or lack thereof, to have a role. We have also included discussion of how oestrogen-related pharmacological treatments for menopause and breast cancer can impact the pathology of the eye and a number of psychophysical aspects of vision. Finally, we have reviewed oestrogen's pharmacology and suggest potential mechanisms underlying its beneficial effects, with particular emphasis on anti-apoptotic and vascular effects.

  7. Effects of high vs low-level radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Bond, V.P.

    1983-01-01

    In order to appreciate adequately the various possible effects of radiation, particularly from high-level vs low-level radiation exposure (HLRE, vs LLRE), it is necessary to understand the substantial differences between (a) exposure as used in exposure-incidence curves, which are always initially linear and without threshold, and (b) dose as used in dose-response curves, which always have a threshold, above which the function is curvilinear with increasing slope. The differences are discussed first in terms of generally familiar nonradiation situations involving dose vs exposure, and then specifically in terms of exposure to radiation, vs a dose of radiation. Examples are given of relevant biomedical findings illustrating that, while dose can be used with HLRE, it is inappropriate and misleading the LLRE where exposure is the conceptually correct measure of the amount of radiation involved.

  8. Preliminary low-level waste feed staging plan

    Energy Technology Data Exchange (ETDEWEB)

    Certa, P.J.

    1996-02-05

    A Preliminary Low-Level Waste Feed Staging Plan was prepared. The plan supports the Phase I privatization effort by providing recommendations that may influence the technical content of the final request for proposal, and the interface control documents for the turnover of two double-shell tanks (DST) to the private contractors for use as feed tanks and the transfer of supernate to these tanks. Additionally, the preliminary schedule of feed staging activities will be useful to both RL and the private bidders during the contract negotiation period. A revised feed staging plan will be issued in August 1996 reflecting anticipated changes in the request for proposal, resolution of issues identified in this report, and completion of additional work scope.

  9. Detection of Low-Level Cardinium and Wolbachia Infections in Culicoides.

    Science.gov (United States)

    Mee, Peter T; Weeks, Andrew R; Walker, Peter J; Hoffmann, Ary A; Duchemin, Jean-Bernard

    2015-09-01

    Bacterial endosymbionts have been identified as potentially useful biological control agents for a range of invertebrate vectors of disease. Previous studies of Culicoides (Diptera: Ceratopogonidae) species using conventional PCR assays have provided evidence of Wolbachia (1/33) and Cardinium (8/33) infections. Here, we screened 20 species of Culicoides for Wolbachia and Cardinium, utilizing a combination of conventional PCR and more sensitive quantitative PCR (qPCR) assays. Low levels of Cardinium DNA were detected in females of all but one of the Culicoides species screened, and low levels of Wolbachia were detected in females of 9 of the 20 Culicoides species. Sequence analysis based on partial 16S rRNA gene and gyrB sequences identified "Candidatus Cardinium hertigii" from group C, which has previously been identified in Culicoides from Japan, Israel, and the United Kingdom. Wolbachia strains detected in this study showed 98 to 99% sequence identity to Wolbachia previously detected from Culicoides based on the 16S rRNA gene, whereas a strain with a novel wsp sequence was identified in Culicoides narrabeenensis. Cardinium isolates grouped to geographical regions independent of the host Culicoides species, suggesting possible geographical barriers to Cardinium movement. Screening also identified Asaia bacteria in Culicoides. These findings point to a diversity of low-level endosymbiont infections in Culicoides, providing candidates for further characterization and highlighting the widespread occurrence of these endosymbionts in this insect group.

  10. ALTERATIONS INDUCED BY LOW LEVELS OF DEOXYNIVALENOL IN WEANED PIGLETS

    Directory of Open Access Journals (Sweden)

    DANIELA ELIZA MARIN

    2013-12-01

    Full Text Available Deoxynivalenol (DON is a mycotoxin produced by different species of Fusarium genus that may contaminate feed and food. In the present study we investigated the effect of low levels of DON on the modulation of performance, hemodynamic parameters, cellular and humoral immune response in weaned pigs. Histological alterations in different organ tissues were also analyzed. Our results showed that a short in vivo exposure (14 days of weanling piglets to 0; 0.5; 1.5 mg/day of DON significantly induced a dose dependent increase of cellular immune response (lymphocytes proliferation and leucocytes numbers. The 0.5 and 1.5 mg/day of DON modulated also the humoral immune response by increasing the immunoglobulin A synthesis with 7.32 % and 37.98 % and by decreasing that of immunoglubulin G with 11.15 % and 36.87 %, respectively when compared with the control. DON produced also alterations in the hemodynamic parameters of intoxicated piglets; the activity of lactate dehydrogenase significantly increased while the activity of L-glutamate, alkaline phosphatase, urea and creatinine significantly decreased. Both doses of the toxin induced microscopic alterations of the internal organ structure. By contrast, ingestion of the contaminated material had no effect on the performance (weight gain, feed consumption, and feed efficiency, organ weights, and total serum concentration of cholesterol, calcium, sodium and potassium. Taken together these results suggest that even when present at low level DON can affect blood parameters, humoral and cellular immune response in weaned piglets with a significant importance for the swine health.

  11. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste: Volume 3, Site evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Waters, R.D.; Gruebel, M.M. [eds.

    1996-03-01

    A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussion of the results for each site.

  12. Special Analysis for Disposal of High-Concentration I-129 Waste in the Intermediate-Level Vaults at the E-Area Low-Level Waste Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collard, L.B.

    2000-09-26

    This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds.

  13. Pilot-scale grout production test with a simulated low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Fow, C.L.; Mitchell, D.H.; Treat, R.L.; Hymas, C.R.

    1987-05-01

    Plans are underway at the Hanford Site near Richland, Washington, to convert the low-level fraction of radioactive liquid wastes to a grout form for permanent disposal. Grout is a mixture of liquid waste and grout formers, including portland cement, fly ash, and clays. In the plan, the grout slurry is pumped to subsurface concrete vaults on the Hanford Site, where the grout will solidify into large monoliths, thereby immobilizing the waste. A similar disposal concept is being planned at the Savannah River Laboratory site. The underground disposal of grout was conducted at Oak Ridge National Laboratory between 1966 and 1984. Design and construction of grout processing and disposal facilities are underway. The Transportable Grout Facility (TGF), operated by Rockwell Hanford Operations (Rockwell) for the Department of Energy (DOE), is scheduled to grout Phosphate/Sulfate N Reactor Operations Waste (PSW) in FY 1988. Phosphate/Sulfate Waste is a blend of two low-level waste streams generated at Hanford's N Reactor. Other wastes are scheduled to be grouted in subsequent years. Pacific Northwest Laboratory (PNL) is verifying that Hanford grouts can be safely and efficiently processed. To meet this objective, pilot-scale grout process equipment was installed. On July 29 and 30, 1986, PNL conducted a pilot-scale grout production test for Rockwell. During the test, 16,000 gallons of simulated nonradioactive PSW were mixed with grout formers to produce 22,000 gallons of PSW grout. The grout was pumped at a nominal rate of 15 gpm (about 25% of the nominal production rate planned for the TGF) to a lined and covered trench with a capacity of 30,000 gallons. Emplacement of grout in the trench will permit subsequent evaluation of homogeneity of grout in a large monolith. 12 refs., 34 figs., 5 tabs.

  14. The contractor`s role in low-level waste disposal facility application review and licensing

    Energy Technology Data Exchange (ETDEWEB)

    Serie, P.J.; Dressen, A.L. [Environmental Issues Management, Inc., Seattle, WA (United States)

    1991-12-31

    The California Department of Health Services will soon reach a licensing decision on the proposed Ward Valley low-level radioactive waste disposal facility. As the first regulatory agency in the country to address the 10 CFR Part 61 requirements for a new disposal facility, California`s program has broken new ground in its approach. Throughout the review process, the Department has relied on contractor support to augment its technical and administrative staff. A team consisting of Roy F. Weston, Inc., supported by ERM-Program Management Corp., Environmental Issues Management, Inc., and Rogers and Associates Engineering Corporation, has worked closely with the Department in a staff extension role. The authors have been involved with the project in contractor project management roles since 1987, and continue to support the Department`s program as it proceeds to finalize its licensing process. This paper describes the selection process used to identify a contractor team with the needed skills and experience, and the makeup of team capabilities. It outlines the management, communication, and technical approaches used to assure a smooth agency-contractor function and relationship. It describes the techniques used to ensure that decisions and documents represented the Department credibly in its role as the regulatory and licensing agency under the Nuclear Regulatory Commission (NRC) Agreement State program. The paper outlines the license application review process and activities, through preparation of licensing documentation and responses to public comments. Lessons learned in coordination of an agency-contractor team effort to review and license a low-level waste disposal facility are reviewed and suggestions made for approaching a similar license application review and licensing situation.

  15. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2008-09-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

  16. Development of a Low-Level Ar-37 Calibration Standard

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Richard M.; Aalseth, Craig E.; Bowyer, Ted W.; Day, Anthony R.; Fuller, Erin S.; Haas, Derek A.; Hayes, James C.; Hoppe, Eric W.; Humble, Paul H.; Keillor, Martin E.; LaFerriere, Brian D.; Mace, Emily K.; McIntyre, Justin I.; Miley, Harry S.; Myers, Allan W.; Orrell, John L.; Overman, Cory T.; Panisko, Mark E.; Seifert, Allen

    2016-03-07

    Argon-37 is an important environmental signature of an underground nuclear explosion. Producing and quantifying low-level 37Ar standards is an important step in the development of sensitive field measurement instruments for use during an On-Site Inspection, a key provision of the Comprehensive Nuclear-Test-Ban Treaty. This paper describes progress at Pacific Northwest National Laboratory (PNNL) in the development of a process to generate and quantify low-level 37Ar standard material, which can then be used to calibrate sensitive field systems at activities consistent with soil background levels. The 37Ar used for our work was generated using a laboratory-scale, high-energy neutron source to irradiate powdered samples of calcium carbonate. Small aliquots of 37Ar were then extracted from the head space of the irradiated samples. The specific activity of the head space samples, mixed with P10 (90% stable argon:10% methane by mole fraction) count gas, is then derived using the accepted Length-Compensated Internal-Source Proportional Counting method. Due to the low activity of the samples, a set of three Ultra-Low Background Proportional-Counters designed and fabricated at PNNL from radio-pure electroformed copper was used to make the measurements in PNNL’s shallow underground counting laboratory. Very low background levels (<10 counts/day) have been observed in the spectral region near the 37Ar emission feature at 2.8 keV. Two separate samples from the same irradiation were measured. The first sample was counted for 12 days beginning 28 days after irradiation, the second sample was counted for 24 days beginning 70 days after irradiation (the half-life of 37Ar is 35.0 days). Both sets of measurements were analyzed and yielded very similar results for the starting activity (~0.1 Bq) and activity concentration (0.15 mBq/ccSTP argon) after P10 count gas was added. A detailed uncertainty model was developed based on the ISO Guide to the Expression of Uncertainty in

  17. Project management plan for low-level mixed wastes and greater-than category 3 waste per Tri-Party Agreement M-91-10

    Energy Technology Data Exchange (ETDEWEB)

    BOUNINI, L.

    1999-06-17

    The objective of this project management plan is to define the tasks and deliverables that will support the treatment, storage, and disposal of remote-handled and large container contact-handled low-level mixed waste, and the storage of Greater-Than-Category 3 waste. The plan is submitted to fulfill the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-91-10. The plan was developed in four steps: (1) the volumes of the applicable waste streams and the physical, dangerous, and radioactive characteristics were established using existing databases and forecasts; (2) required treatment was identified for each waste stream based on land disposal restriction treatment standards and waste characterization data; (3) alternatives for providing the required treatment were evaluated and the preferred options were selected; and (4) an acquisition plan was developed to establish the techuical, schedule, and cost baselines for providing the required treatment capabilities. The major waste streams are summarized in the table below, along with the required treatment for disposal.

  18. Project management plan for low-level mixed waste and greater-than-category 3 waste per tri-party agreement M-91-10

    Energy Technology Data Exchange (ETDEWEB)

    BOUNINI, L.

    1999-05-20

    The objective of this project management plan is to define the tasks and deliverables that will support the treatment, storage, and disposal of remote-handled and large container contact-handled low-level mixed waste, and the storage of Greater-thaw category 3 waste. The plan is submitted to fulfill the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-91-10, The plan was developed in four steps: (1) the volumes of the applicable waste streams and the physical, dangerous, and radioactive characteristics were established using existing databases and forecasts; (2) required treatment was identified for each waste stream based on land disposal restriction treatment standards and waste characterization data; (3) alternatives for providing the required treatment were evaluated and the preferred options were selected; (4) an acquisition plan was developed to establish the technical, schedule, and cost baselines for providing the required treatment capabilities. The major waste streams are tabulated, along with the required treatment for disposal.

  19. Characterizing fractured plutonic rocks of the Canadian shield for deep geological disposal of Canada`s radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lodha, G.S.; Davison, C.C.; Gascoyne, M. [Atomic Energy of Canada Ltd. , Pinawa, MB (Canada). Whiteshell Labs.

    1998-09-01

    Since 1978 AECL has been investigating plutonic rocks of the Canadian Shield as a potential medium for the disposal of Canada`s nuclear fuel waste. During the last two years this study has been continued as part of Ontario Hydro`s used fuel disposal program. Methods have been developed for characterizing the geotechnical conditions at the regional scale of the Canadian Shield as well as for characterizing conditions at the site scale and the very near-field scale needed for locating and designing disposal vault rooms and waste emplacement areas. The Whiteshell Research Area (WRA) and the Underground Research Laboratory (URL) in southeastern Manitoba have been extensively used to develop and demonstrate the different scales of characterization methods. At the regional scale, airborne magnetic and electromagnetic surveys combined with LANDSAT 5 and surface gravity survey data have been helpful in identifying boundaries of the plutonic rocks , overburden thicknesses, major lineaments that might be geological structures, lithological contacts and depths of the batholiths. Surface geological mapping of exposed rock outcrops, combined with surface VLF/EM, radar and seismic reflection surveys were useful in identifying the orientation and depth continuity of low-dipping fracture zones beneath rock outcrops to a depth of 500 to 1000 m. The surface time-domain EM method has provided encouraging results for identifying the depth of highly saline pore waters. The regional site scale investigations at the WRA included the drilling of twenty deep boreholes (> 500 m) at seven separate study areas. Geological core logging combined with borehole geophysical logging, TV/ATV logging, flowmeter logging and full waveform sonic logging in these boreholes helped to confirm the location of hydro geologically important fractures, orient cores and infer the relative permeability of some fracture zones. Single-hole radar and crosshole seismic tomography surveys were useful to establish the

  20. Investigation of the low-level modulated light action

    Science.gov (United States)

    Antonov, Sergei N.; Sotnikov, V. N.; Koreneva, L. G.

    1994-07-01

    Now there exists no clear complete knowledge about mechanisms and pathways by which low level laser bioactivation works. Modulated laser light action has been investigated two new ways: dynamical infrared thermography and computing image of living brain. These ways permit observation in real time laser action on peripheral blood flow, reflex reactions to functional probes, thermoregulation mechanisms as well as brain electrical activity changes of humans. We have designed a universal apparatus which produced all regimes of the output laser light. It has a built-in He-Ne laser with an acousto-optic modulator and an infrared GaAs laser. The device provided spatial combination of both the light beams and permitted us to irradiate an object both separately and simultaneously. This research shows that the most effective frequencies range from several to dozens of hertz. The duty factor and frequency scanning are also important. On the basis of these results in Russian clinics new treatment methods using modulated light are applied in practical neurology, gynecology, etc.

  1. WRAP low level waste (LLW) glovebox operational test report

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, J.K.

    1998-02-19

    The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into another 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution`s (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.

  2. Ultra-low level radon assays in gases

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin Ran [University College London, Gower Street, London, WC1E 6BT (United Kingdom)

    2015-08-17

    The SuperNEMO experiment aims to search for the neutrinoless double beta decay (0νβ β) to T{sub 1{sub /{sub 2}}}(0ν) > 10{sup 26} years, this corresponds to an effective neutrino mass of 50-100 meV. The extremely rare event rate means the minimisation of background is of critical concern. The stringent strategy instigated to ensure detector radiopurity is outlined here for all construction materials. In particular the large R&D programme undertaken to reach the challengingly low level of radon, < 0.15 mBq/m{sup 3}, required inside the SuperNEMO gaseous tracker will be detailed. This includes an experiment designed to measure radon diffusion through various materials. A “Radon Concentration Line” (RnCL) was developed to be used in conjunction with a state-of-the-art radon detector in order to achieve world leading sensitivity to {sup 222}Rn content in large gas volumes at the level of a few µBq/m{sup 3}. A radon purification system was developed and installed which has demonstrated radon suppression by several orders of magnitude depending on the carrier gas. This apparatus has now been commissioned and measurements of cylindered gas have been made to confirm radon suppression by a factor 20 when using nitrogen as the carrier gas. The results from measurements of radon content in various gases, used inside SuperNEMO, using the RnCL will be presented.

  3. Biphasic dose response in low level light therapy - an update.

    Science.gov (United States)

    Huang, Ying-Ying; Sharma, Sulbha K; Carroll, James; Hamblin, Michael R

    2011-01-01

    Low-level laser (light) therapy (LLLT) has been known since 1967 but still remains controversial due to incomplete understanding of the basic mechanisms and the selection of inappropriate dosimetric parameters that led to negative studies. The biphasic dose-response or Arndt-Schulz curve in LLLT has been shown both in vitro studies and in animal experiments. This review will provide an update to our previous (Huang et al. 2009) coverage of this topic. In vitro mediators of LLLT such as adenosine triphosphate (ATP) and mitochondrial membrane potential show biphasic patterns, while others such as mitochondrial reactive oxygen species show a triphasic dose-response with two distinct peaks. The Janus nature of reactive oxygen species (ROS) that may act as a beneficial signaling molecule at low concentrations and a harmful cytotoxic agent at high concentrations, may partly explain the observed responses in vivo. Transcranial LLLT for traumatic brain injury (TBI) in mice shows a distinct biphasic pattern with peaks in beneficial neurological effects observed when the number of treatments is varied, and when the energy density of an individual treatment is varied. Further understanding of the extent to which biphasic dose responses apply in LLLT will be necessary to optimize clinical treatments.

  4. Remediation alternatives for low-level herbicide contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Conger, R.M. [BASF Corp., Geismar, LA (United States)

    1995-10-01

    In early 1995, an evaluation of alternatives for remediation of a shallow groundwater plume containing low-levels of an organic herbicide was conducted at BASF Corporation, a petrochemical facility located in Ascension Parish, Louisiana. The contaminated site is located on an undeveloped portion of property within 1/4 mile of the east bank of the Mississippi River near the community of Geismar. Environmental assessment data indicated that about two acres of the thirty acre site had been contaminated from past waste management practices with the herbicide bentazon. Shallow soils and groundwater between 5 to 15 feet in depth were affected. Maximum concentrations of bentazon in groundwater were less than seven parts per million. To identify potentially feasible remediation alternatives, the environmental assessment data, available research, and cost effectiveness were reviewed. After consideration of a preliminary list of alternatives, only two potentially feasible alternatives could be identified. Groundwater pumping, the most commonly used remediation alternative, followed by carbon adsorption treatment was identified as was a new innovative alternative known as vegetative transpiration. This alternative relies on the natural transpiration processes of vegetation to bioremediate organic contaminants. Advantages identified during screening suggest that the transpiration method could be the best remediation alternative to address both economic and environmental factors. An experiment to test critical factors of the vegetatived transpiration alternative with bentazon was recommended before a final decision on feasibility can be made.

  5. Effect of interstitial low level laser therapy on tibial defect

    Science.gov (United States)

    Lee, Sangyeob; Ha, Myungjin; Hwang, Donghyun; Yu, Sungkon; Jang, Seulki; Park, Jihoon; Radfar, Edalat; Kim, Hansung; Jung, Byungjo

    2016-03-01

    Tibial defect is very common musculoskeletal disorder which makes patient painful and uncomfortable. Many studies about bone regeneration tried to figure out fast bone healing on early phase. It is already known that low level laser therapy (LLLT) is very convenient and good for beginning of bone disorder. However, light scattering and absorption obstruct musculoskeletal therapy which need optimal photon energy delivery. This study has used an interstitial laser probe (ILP) to overcome the limitations of light penetration depth and scattering. Animals (mouse, C57BL/6) were divided into three groups: laser treated test group 1 (660 nm; power 10 mW; total energy 5 J) and test group 2 (660 nm; power 20 mW; total energy 10 J); and untreated control group. All animals were taken surgical operation to make tibial defect on right crest of tibia. The test groups were treated every 48 hours with ILP. Bone volume and X-ray attenuation coefficient were measured on 0, 14th and 28th day with u-CT after treatment and were used to evaluate effect of LLLT. Results show that bone volume of test groups has been improved more than control group. X-ray attenuation coefficients of each groups have slightly different. The results suggest that LLLT combined with ILP may affect on early phase of bone regeneration and may be used in various musculoskeletal disease in deep tissue layer.

  6. Graphics Processors in HEP Low-Level Trigger Systems

    Directory of Open Access Journals (Sweden)

    Ammendola Roberto

    2016-01-01

    Full Text Available Usage of Graphics Processing Units (GPUs in the so called general-purpose computing is emerging as an effective approach in several fields of science, although so far applications have been employing GPUs typically for offline computations. Taking into account the steady performance increase of GPU architectures in terms of computing power and I/O capacity, the real-time applications of these devices can thrive in high-energy physics data acquisition and trigger systems. We will examine the use of online parallel computing on GPUs for the synchronous low-level trigger, focusing on tests performed on the trigger system of the CERN NA62 experiment. To successfully integrate GPUs in such an online environment, latencies of all components need analysing, networking being the most critical. To keep it under control, we envisioned NaNet, an FPGA-based PCIe Network Interface Card (NIC enabling GPUDirect connection. Furthermore, it is assessed how specific trigger algorithms can be parallelized and thus benefit from a GPU implementation, in terms of increased execution speed. Such improvements are particularly relevant for the foreseen Large Hadron Collider (LHC luminosity upgrade where highly selective algorithms will be essential to maintain sustainable trigger rates with very high pileup.

  7. Steam reforming of low-level mixed waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  8. Advances in Low-Level Jet Research and Future Prospects

    Institute of Scientific and Technical Information of China (English)

    LIU Hongbo; HE Mingyang; WANG Bin; ZHANG Qinghong

    2014-01-01

    The low-level jet (LLJ) is closely related to severe rainfall events, air pollution, wind energy utilization, aviation safety, sandstorms, forest fi re, and other weather and climate phenomena. Therefore, it has attracted considerable attention since its discovery. Scientists have carried out many studies on LLJs and made signifi cant achievements during the past fi ve or six decades. This article summarizes and assesses the current knowledge on this subject, and focuses in particular on three aspects: 1) LLJ classifi cation, defi nition, distribution, and structure; 2) LLJ formation and evolutionary mechanisms; and 3) relationships between LLJ and rainfall, as well as other interdisciplinary fi elds. After comparing the status of LLJ research at home (China) and abroad, we then discuss the shortcomings of LLJ research in China. We suggest that this includes: coarse defi nitions of the LLJ, lack of observations and inadequate quality control, few thorough explorations of LLJ characteristics and formation mechanisms, and limited studies in interdisciplinary fi elds. The future prospects for several LLJ research avenues are also speculated.

  9. Graphics Processors in HEP Low-Level Trigger Systems

    Science.gov (United States)

    Ammendola, Roberto; Biagioni, Andrea; Chiozzi, Stefano; Cotta Ramusino, Angelo; Cretaro, Paolo; Di Lorenzo, Stefano; Fantechi, Riccardo; Fiorini, Massimiliano; Frezza, Ottorino; Lamanna, Gianluca; Lo Cicero, Francesca; Lonardo, Alessandro; Martinelli, Michele; Neri, Ilaria; Paolucci, Pier Stanislao; Pastorelli, Elena; Piandani, Roberto; Pontisso, Luca; Rossetti, Davide; Simula, Francesco; Sozzi, Marco; Vicini, Piero

    2016-11-01

    Usage of Graphics Processing Units (GPUs) in the so called general-purpose computing is emerging as an effective approach in several fields of science, although so far applications have been employing GPUs typically for offline computations. Taking into account the steady performance increase of GPU architectures in terms of computing power and I/O capacity, the real-time applications of these devices can thrive in high-energy physics data acquisition and trigger systems. We will examine the use of online parallel computing on GPUs for the synchronous low-level trigger, focusing on tests performed on the trigger system of the CERN NA62 experiment. To successfully integrate GPUs in such an online environment, latencies of all components need analysing, networking being the most critical. To keep it under control, we envisioned NaNet, an FPGA-based PCIe Network Interface Card (NIC) enabling GPUDirect connection. Furthermore, it is assessed how specific trigger algorithms can be parallelized and thus benefit from a GPU implementation, in terms of increased execution speed. Such improvements are particularly relevant for the foreseen Large Hadron Collider (LHC) luminosity upgrade where highly selective algorithms will be essential to maintain sustainable trigger rates with very high pileup.

  10. Apparatus to measure low level helium for neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, Shuji; Takao, Yoshiyuki; Muramasu, Masatomo; Hida, Tomoya; Sou, Hirofumi; Nakashima, Hideki [Kyushu Univ., Fukuoka (Japan); Kanda, Yukinori

    1998-03-01

    An apparatus to measure low level helium in a solid sample for neutron dosimetry in the practical use such as area monitoring in the long-term and reactor surveillance was reported. In our previous work, the helium atoms measurement system (HAMS) was developed. A sample was evaporated in the furnace and the released gas from the sample was analyzed with the mass spectrometer of the system to determine the amount of helium contained in it. The system has been improved to advance the lower helium measurement limit in a solid sample for its application to an area monitoring system. The mass of a solid is up to 100mg. Two important points should be considered to advance the lower limit. One was to produce a high quality vacuum in the system chamber for suppressing background gases during the sample measurement. The other important point was to detect very small output from the mass spectrometer. A pulse counting system was used to get high sensitivity in the mass 4 analyzing. (author)

  11. Towards Smart Homes Using Low Level Sensory Data

    Directory of Open Access Journals (Sweden)

    Young-Koo Lee

    2011-12-01

    Full Text Available Ubiquitous Life Care (u-Life care is receiving attention because it provides high quality and low cost care services. To provide spontaneous and robust healthcare services, knowledge of a patient’s real-time daily life activities is required. Context information with real-time daily life activities can help to provide better services and to improve healthcare delivery. The performance and accuracy of existing life care systems is not reliable, even with a limited number of services. This paper presents a Human Activity Recognition Engine (HARE that monitors human health as well as activities using heterogeneous sensor technology and processes these activities intelligently on a Cloud platform for providing improved care at low cost. We focus on activity recognition using video-based, wearable sensor-based, and location-based activity recognition engines and then use intelligent processing to analyze the context of the activities performed. The experimental results of all the components showed good accuracy against existing techniques. The system is deployed on Cloud for Alzheimer’s disease patients (as a case study with four activity recognition engines to identify low level activity from the raw data captured by sensors. These are then manipulated using ontology to infer higher level activities and make decisions about a patient’s activity using patient profile information and customized rules.

  12. Hanford low-level waste process chemistry testing data package

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.D.; Tracey, E.M.; Darab, J.G.; Smith, P.A.

    1996-03-01

    Recently, the Tri-Party Agreement (TPA) among the State of Washington Department of Ecology, U.S. Department of Energy (DOE) and the US Environmental Protection Agency (EPA) for the cleanup of the Hanford Site was renegotiated. The revised agreement specifies vitrification as the encapsulation technology for low level waste (LLW). A demonstration, testing, and evaluation program underway at Westinghouse Hanford Company to identify the best overall melter-system technology available for vitrification of Hanford Site LLW to meet the TPA milestones. Phase I is a {open_quotes}proof of principle{close_quotes} test to demonstrate that a melter system can process a simulated highly alkaline, high nitrate/nitrite content aqueous LLW feed into a glass product of consistent quality. Seven melter vendors were selected for the Phase I evaluation: joule-heated melters from GTS Duratek, Incorporated (GDI); Envitco, Incorporated (EVI); Penberthy Electomelt, Incorporated (PEI); and Vectra Technologies, Incorporated (VTI); a gas-fired cyclone burner from Babcock & Wilcox (BCW); a plasma torch-fired, cupola furnace from Westinghouse Science and Technology Center (WSTC); and an electric arc furnace with top-entering vertical carbon electrodes from the U.S. Bureau of Mines (USBM).

  13. Versatile Low Level RF System For Linear Accelerators

    Science.gov (United States)

    Potter, James M.

    2011-06-01

    The Low Level RF (LLRF) system is the source of all of the rf signals required for an rf linear accelerator. These signals are amplified to drive accelerator and buncher cavities. It can even provide the synchronizing signal for the rf power for a synchrotron. The use of Direct Digital Synthesis (DDS) techniques results in a versatile system that can provide multiple coherent signals at the same or different frequencies with adjustable amplitudes and phase relations. Pulsing the DDS allows rf switching with an essentially infinite on/off ratio. The LLRF system includes a versatile phase detector that allows phase-locking the rf frequency to a cavity at any phase angle over the full 360° range. With the use of stepper motor driven slug tuners multiple cavity resonant frequencies can be phase locked to the rf source frequency. No external phase shifters are required and there is no feedback loop phase setup required. All that is needed is to turn the frequency feedback on. The use of Digital Signal Processing (DSP) allows amplitude and phase control over the entire rf pulse. This paper describes the basic principles of a LLRF system that has been used for both proton accelerators and electron accelerators, including multiple tank accelerators, sub-harmonic and fundamental bunchers, and synchrotrons.

  14. Current practices for maintaining occupational exposures ALARA at low-level waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Hadlock, D.E.; Herrington, W.N.; Hooker, C.D.; Murphy, D.W.; Gilchrist, R.L.

    1983-12-01

    The United States Nuclear Regulatory Commission contracted with Pacific Northwest Laboratory (PNL) to provide technical assistance in establishing operational guidelines, with respect to radiation control programs and methods of minimizing occupational radiation exposure, at Low-Level Waste (LLW) disposal sites. The PNL, through site visits, evaluated operations at LLW disposal sites to determine the adequacy of current practices in maintaining occupational exposures as low as is reasonably achievable (ALARA). The data sought included the specifics of: ALARA programs, training programs, external exposure control, internal exposure control, respiratory protection, surveillance, radioactive waste management, facilities and equipment, and external dose analysis. The results of the study indicated the following: The Radiation Protection and ALARA programs at the three commercial LLW disposal sites were observed to be adequate in scope and content compared to similar programs at other types of nuclear facilities. However, it should be noted that there were many areas that could be improved upon to help ensure the health and safety of occupationally exposed individuals.

  15. Recommended Radiation Protection Practices for Low-Level Waste Disposal Sites

    Energy Technology Data Exchange (ETDEWEB)

    Hadlock, D. E.; Hooker, C. D.; Herrington, W. N.; Gilchrist, R. L.

    1983-12-01

    The United States Nuclear Regulatory Commission contracted with Pacific Northwest Laboratory (PNL) to provide technical assistance in estsblishing operational guidelines, with respect to radiation control programs and methods of minimizing occupational radiation exposure, at Low-Level Waste (LLW) dis- posal sites. The PNL, through site visits, evaluated operations at LLW dis- posal sites to determine the adequacy of current practices in maintaining occupational exposures as low as is reasonably achievable (ALARA). The data sought included the specifics of: ALARA programs, training programs, external exposure control , internal exposure control , respiratory protection, survei 1 - lance, radioactive waste management, facilities and equipment, and external dose analysis. The results of the study indicated the following: The Radiation Protection and ALARA programs at the three commercial LLW disposal sites were observed to be adequate in scope and content compared to similar programs at other types of nuclear facilities. However, it should be noted that there were many areas that could be improved upon to help ensure the health and safety of the occupa- tionally exposed individuals. As a result, radiation protection practices were recommended with related rationales in order to reduce occupational exposures as far below specified radiation limits as is reasonably achievable. In addition, recommendations were developed for achieving occupational exposure ALARA under the Regulatory Requirements issued in 10 CFR Part 61.

  16. The low levels of eicosapentaenoic acid in rat brain phospholipids are maintained via multiple redundant mechanisms.

    Science.gov (United States)

    Chen, Chuck T; Domenichiello, Anthony F; Trépanier, Marc-Olivier; Liu, Zhen; Masoodi, Mojgan; Bazinet, Richard P

    2013-09-01

    Brain eicosapentaenoic acid (EPA) levels are 250- to 300-fold lower than docosahexaenoic acid (DHA), at least partly, because EPA is rapidly β-oxidized and lost from brain phospholipids. Therefore, we examined if β-oxidation was necessary for maintaining low EPA levels by inhibiting β-oxidation with methyl palmoxirate (MEP). Furthermore, because other metabolic differences between DHA and EPA may also contribute to their vastly different levels, this study aimed to quantify the incorporation and turnover of DHA and EPA into brain phospholipids. Fifteen-week-old rats were subjected to vehicle or MEP prior to a 5 min intravenous infusion of (14)C-palmitate, (14)C-DHA, or (14)C-EPA. MEP reduced the radioactivity of brain aqueous fractions for (14)C-palmitate-, (14)C-EPA-, and (14)C-DHA-infused rats by 74, 54, and 23%, respectively; while it increased the net rate of incorporation of plasma unesterified palmitate into choline glycerophospholipids and phosphatidylinositol and EPA into ethanolamine glycerophospholipids and phosphatidylserine. MEP also increased the synthesis of n-3 docosapentaenoic acid (n-3 DPA) from EPA. Moreover, the recycling of EPA into brain phospholipids was 154-fold lower than DHA. Therefore, the low levels of EPA in the brain are maintained by multiple redundant pathways including β-oxidation, decreased incorporation from plasma unesterified FA pool, elongation/desaturation to n-3 DPA, and lower recycling within brain phospholipids.

  17. National Low-Level Waste Management Program Radionuclide Report Series. Volume 10, Nickel-63

    Energy Technology Data Exchange (ETDEWEB)

    Carboneau, M.L.; Adams, J.P.

    1995-02-01

    This report outlines the basic radiological, chemical, and physical characteristics of nickel-63 ({sup 63}Ni) and examines how these characteristics affect the behavior of {sup 63}Ni in various environmental media, such as soils, groundwater, plants, animals, the atmosphere, and the human body. Discussions also include methods of {sup 63}Ni production, waste types, and waste forms that contain {sup 63}Ni. The primary source of {sup 63}Ni in the environment has been low-level radioactive waste material generated as a result of neutron activation of stable {sup 62}Ni that is present in the structural components of nuclear reactor vessels. {sup 63}Ni enters the environment from the dismantling activities associated with nuclear reactor decommissioning. However, small amounts of {sup 63}Ni have been detected in the environment following the testing of thermonuclear weapons in the South Pacific. Concentrations as high as 2.7 Bq{sup a} per gram of sample (or equivalently 0.0022 parts per billion) were observed on Bikini Atoll (May 1954). {sup 63}Ni was not created as a fission product species (e.g., from {sup 235}U or {sup 239}Pu fissions), but instead was produced as a result of neutron capture in {sup 63}Ni, a common nickel isotope present in the stainless steel components of nuclear weapons (e.g., stainless-304 contains {approximately}9% total Ni or {approximately}0.3% {sup 63}Ni).

  18. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  19. Comparison of low-level waste disposal programs of DOE and selected international countries

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, B.G. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cole, L.T. [Cole and Associates (United States)

    1996-06-01

    The purpose of this report is to examine and compare the approaches and practices of selected countries for disposal of low-level radioactive waste (LLW) with those of the US Department of Energy (DOE). The report addresses the programs for disposing of wastes into engineered LLW disposal facilities and is not intended to address in-situ options and practices associated with environmental restoration activities or the management of mill tailings and mixed LLW. The countries chosen for comparison are France, Sweden, Canada, and the United Kingdom. The countries were selected as typical examples of the LLW programs which have evolved under differing technical constraints, regulatory requirements, and political/social systems. France was the first country to demonstrate use of engineered structure-type disposal facilities. The UK has been actively disposing of LLW since 1959. Sweden has been disposing of LLW since 1983 in an intermediate-depth disposal facility rather than a near-surface disposal facility. To date, Canada has been storing its LLW but will soon begin operation of Canada`s first demonstration LLW disposal facility.

  20. Alternative disposal options for alpha-mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, G.G.; Sherick, M.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    This paper presents several disposal options for the Department of Energy alpha-mixed low-level waste. The mixed nature of the waste favors thermally treating the waste to either an iron-enriched basalt or glass waste form, at which point a multitude of reasonable disposal options, including in-state disposal, are a possibility. Most notably, these waste forms will meet the land-ban restrictions. However, the thermal treatment of this waste involves considerable waste handling and complicated/expensive offgas, systems with secondary waste management problems. In the United States, public perception of off gas systems in the radioactive incinerator area is unfavorable. The alternatives presented here are nonthermal in nature and involve homogenizing the waste with cryogenic techniques followed by complete encapsulation with a variety of chemical/grouting agents into retrievable waste forms. Once encapsulated, the waste forms are suitable for transport out of the state or for actual in-state disposal. This paper investigates variances that would have to be obtained and contrasts the alternative encapsulation idea with the thermal treatment option.

  1. Feasible modifications for the low-level waste treatment plant at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Chilton, J.M.

    1984-06-01

    Aqueous, low-level, radioactive wastes at Oak Ridge National Laboratory (ORNL) contain small amounts of /sup 60/Co, /sup 90/Sr, /sup 137/Cs, and trace amounts of other radionuclides. These wastes are processed by passage through beds of a strong-acid cation exchange resin, and the treated water is then discharged to the environment. Studies show that pretreatment of the waste with a weak-acid cation exchange resin would result in a significant decrease in regeneration reagents and a saving of manpower. This can be accomplished in the present plant by piping changes on the existing columns. The effluent from the cation treatment process contains all of the radionuclides that are present in anionic form. Routinely, this consists only of approximately one-half of the /sup 60/Co. Under certain conditions, other anions (such as /sup 131/I) could be present. Studies show that these can be removed by use of an anion exchange resin bed at the end of the process. This would require the construction of an additional column, if the head-end treatment described above is also installed. 2 references, 2 figures, 2 tables.

  2. Characterization of organic air emissions from the Certification and Segregation Building and Air Support Weather Shield II at the Radioactive Waste Management Complex

    Energy Technology Data Exchange (ETDEWEB)

    Shoop, D.S.; Jackson, J.M.; Jolley, J.G.; Izbicki, K.J.

    1994-12-01

    During the latter part of Fiscal Year (FY-92), a task was initiated to characterize the organic air emissions from the Certification and Segregation (C and S) Building [Waste Management Facility (WMF) 612] and the Air Support Weather Shield II (ASWS II or ASB II) (WMF 711) at the Radioactive Waste Management Complex (RWMC). The purpose of this task, titled the RWMC Organic Air Emissions Evaluation Task, was to identify and quantify the volatile organic compounds (VOCS) present in the ambient air in these two facilities and to estimate the organic air emissions. The VOCs were identified and quantified by implementing a dual method approach using two dissimilar analytical methodologies, Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) and SUMMA canister sampling, following the US Environmental Protection Agency (EPA) analytical method TO-14. The data gathered were used in conjunction with the building`s ventilation rate to calculate an estimated organic air emissions rate. This report presents the data gathered during the performance of this task and relates the data to the relevant regulatory requirements.

  3. Radioactive materials transport accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    McSweeney, T.I.; Maheras, S.J.; Ross, S.B. [Battelle Memorial Inst. (United States)

    2004-07-01

    Over the last 25 years, one of the major issues raised regarding radioactive material transportation has been the risk of severe accidents. While numerous studies have shown that traffic fatalities dominate the risk, modeling the risk of severe accidents has remained one of the most difficult analysis problems. This paper will show how models that were developed for nuclear spent fuel transport accident analysis can be adopted to obtain estimates of release fractions for other types of radioactive material such as vitrified highlevel radioactive waste. The paper will also show how some experimental results from fire experiments involving low level waste packaging can be used in modeling transport accident analysis with this waste form. The results of the analysis enable an analyst to clearly show the differences in the release fractions as a function of accident severity. The paper will also show that by placing the data in a database such as ACCESS trademark, it is possible to obtain risk measures for transporting the waste forms along proposed routes from the generator site to potential final disposal sites.

  4. [Substantiation of a complex of radiation-hygienic approaches to the management of very low-level waste].

    Science.gov (United States)

    Korenkov, I P; Lashchenova, T N; Shandala, N K

    2015-01-01

    In the article there are presented materials on radiation-hygienic approaches to the treatment of very low level radioactive waste (VLLW) and industrial waste containing radionuclides. There is done detailed information on radiation-hygienic principles and criteria for the assurance ofradiation safety in the collection, transportation, storage and processing of VLLW as a category of radioactive waste.. Particular attention is paid to the problem of designing VLLW landfill site choice, system of radiation monitoring in operation and decommissioning of the landfill. There are presented data about the criteria for the release of VLLW buried at the site, from regulatory control. Also there are considered in detail the radiation-hygienic requirements for radiation safety of industrial waste containing radionuclides for which there is assumed unlimited and limited use of solid materials in economic activity, based on the requirements ofthe revised Basic Sanitary Rules for Radiation Safety - 99/2010. There are considered basic requirements for the organization of industrial waste landfill. As an example, there-are presented the hygiene requirements for industrial waste management and results of waste categorization in Northern Federal Enterprise for Radioactive Waste Management.

  5. The effect of low level laser on anaplastic thyroid cancer

    Science.gov (United States)

    Rhee, Yun-Hee; Moon, Jeon-Hwan; Ahn, Jin-Chul; Chung, Phil-Sang

    2015-02-01

    Low-level laser therapy (LLLT) is a non-thermal phototherapy used in several medical applications, including wound healing, reduction of pain and amelioration of oral mucositis. Nevertheless, the effects of LLLT upon cancer or dysplastic cells have been so far poorly studied. Here we report that the effects of laser irradiation on anaplastic thyroid cancer cells leads to hyperplasia. 650nm of laser diode was performed with a different time interval (0, 15, 30, 60J/cm2 , 25mW) on anaplastic thyroid cancer cell line FRO in vivo. FRO was orthotopically injected into the thyroid gland of nude mice and the irradiation was performed with the same method described previously. After irradiation, the xenograft evaluation was followed for one month. The thyroid tissues from sacrificed mice were undergone to H&E staining and immunohistochemical staining with HIF-1α, Akt, TGF-β1. We found the aggressive proliferation of FRO on thyroid gland with dose dependent. In case of 60 J/ cm2 of energy density, the necrotic bodies were found in a center of the thyroid. The phosphorylation of HIF-1α and Akt was detected in the thyroid gland, which explained the survival signaling of anaplastic cancer cell was turned on the thyroid gland. Furthermore, TGF-β1 expression was decreased after irradiation. In this study, we demonstrated that insufficient energy density irradiation occurred the decreasing of TGF-β1 which corresponding to the phosphorylation of Akt/ HIF-1α. This aggressive proliferation resulted to the hypoxic condition of tissue for angiogenesis. We suggest that LLLT may influence to cancer aggressiveness associated with a decrease in TGF-β1 and increase in Akt/HIF-1α.

  6. Counting people with low-level features and Bayesian regression.

    Science.gov (United States)

    Chan, Antoni B; Vasconcelos, Nuno

    2012-04-01

    An approach to the problem of estimating the size of inhomogeneous crowds, which are composed of pedestrians that travel in different directions, without using explicit object segmentation or tracking is proposed. Instead, the crowd is segmented into components of homogeneous motion, using the mixture of dynamic-texture motion model. A set of holistic low-level features is extracted from each segmented region, and a function that maps features into estimates of the number of people per segment is learned with Bayesian regression. Two Bayesian regression models are examined. The first is a combination of Gaussian process regression with a compound kernel, which accounts for both the global and local trends of the count mapping but is limited by the real-valued outputs that do not match the discrete counts. We address this limitation with a second model, which is based on a Bayesian treatment of Poisson regression that introduces a prior distribution on the linear weights of the model. Since exact inference is analytically intractable, a closed-form approximation is derived that is computationally efficient and kernelizable, enabling the representation of nonlinear functions. An approximate marginal likelihood is also derived for kernel hyperparameter learning. The two regression-based crowd counting methods are evaluated on a large pedestrian data set, containing very distinct camera views, pedestrian traffic, and outliers, such as bikes or skateboarders. Experimental results show that regression-based counts are accurate regardless of the crowd size, outperforming the count estimates produced by state-of-the-art pedestrian detectors. Results on 2 h of video demonstrate the efficiency and robustness of the regression-based crowd size estimation over long periods of time.

  7. In vitro transdentinal effect of low-level laser therapy

    Science.gov (United States)

    Oliveira, C. F.; Basso, F. G.; dos Reis, R. I.; Parreiras-e-Silva, L. T.; Lins, E. C.; Kurachi, C.; Hebling, J.; Bagnato, V. S.; de Souza Costa, C. A.

    2013-05-01

    Low-level laser therapy (LLLT) has been used for the treatment of dentinal hypersensitivity. However, the specific LLL dose and the response mechanisms of these cells to transdentinal irradiation have not yet been demonstrated. Therefore, this study evaluated the transdentinal effects of different LLL doses on stressed odontoblast-like pulp cells MDPC-23 seeded onto the pulpal side of dentin discs obtained from human third molars. The discs were placed in devices simulating in vitro pulp chambers and the whole set was placed in 24-well plates containing plain culture medium (DMEM). After 24 h incubation, the culture medium was replaced by fresh DMEM supplemented with either 5% (simulating a nutritional stress condition) or 10% fetal bovine serum (FBS). The cells were irradiated with doses of 15 and 25 J cm-2 every 24 h, totaling three applications over three consecutive days. The cells in the control groups were removed from the incubator for the same times as used in their respective experimental groups for irradiation, though without activating the laser source (sham irradiation). After 72 h of the last active or sham irradiation, the cells were evaluated with respect to succinic dehydrogenase (SDH) enzyme production (MTT assay), total protein (TP) expression, alkaline phosphatase (ALP) synthesis, reverse transcriptase polymerase chain reaction (RT-PCR) for collagen type 1 (Col-I) and ALP, and morphology (SEM). For both tests, significantly higher values were obtained for the 25 J cm-2 dose. Regarding SDH production, supplementation of the culture medium with 5% FBS provided better results. For TP and ALP expression, the 25 J cm-2 presented higher values, especially for the 5% FBS concentration (Mann-Whitney p laser irradiation at 25 J cm-2 caused transdentinal biostimulation of odontoblast-like MDPC-23 cells.

  8. Asthma and low level air pollution in Helsinki

    Energy Technology Data Exchange (ETDEWEB)

    Poenkae A5 (Department of Environmental Health, Helsinki City Health Department (Finland))

    1991-09-01

    The effects of relatively low levels of air pollution and weather conditions on the number of patients who had asthma attacks and who were admitted to a hospital were studied in Helsinki during a 3-y period. The number of admissions increased during cold weather (n = 4,209), especially among persons who were of working age but not among children. Even after standardization for temperature, all admissions, including emergency ward admissions, were significantly correlated with ambient air concentrations of nitrogen dioxide (NO2), nitric oxide (NO), sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3), and total suspended particulates (TSP). Regression analysis revealed that NO and O3 were most strongly associated with asthma problems. Effects of air pollutants and cold were maximal if they occurred on the same day, except for O3, which had a more pronounced effect after a 1-d lag. The associations between pollutants, low temperature, and admissions were most significant among adults of working age, followed by the elderly. Among children, only O3 and NO were significantly correlated with admissions. Levels of pollutants were fairly low, the long-term mean being 19.2 micrograms/m3 for SO2, 38.6 micrograms/m3 for NO2, 22.0 micrograms/m3 or O3, and 1.3 mg/m3 for CO. In contrast, the mean concentration of TSP was high (76.3 micrograms/m3), and the mean temperature was low (+ 4.7 degrees C). These results suggest that concentrations of pollutants lower than those given as guidelines in many countries may increase the incidence of asthma attacks.

  9. The Dose That Works: Low Level Laser Treatment of Tendinopathy

    Science.gov (United States)

    Tumilty, Steve; Munn, Joanne; McDonough, Suzanne; Hurley, Deirdre A.; Basford, Jeffrey R.; David Baxter, G.

    2010-05-01

    Background: Low Level Laser Therapy (LLLT) is used in the treatment of tendon injuries. However, the clinical effectiveness of this modality remains controversial with limited agreement on the most efficacious dosage and parameter choices. Purpose: To assess the clinical effectiveness of LLLT in the treatment of tendinopathy and the validity of current dosage recommendations for treatment. Method: Medical databases were searched from inception to 1st August 2008. Controlled clinical trials evaluating LLLT as a primary intervention for any tendinopathy were included in the review. Methodological quality was classified using the PEDro scale. Appropriateness of treatment parameters were assessed using established guidelines. Results: Twenty five trials met the inclusion criteria. There was conflicting findings from multiple trials: 12 showed positive effects and 13 were inconclusive or showed no effect. Dosages used in the 12 positive studies support the existence of an effective dosage window that closely resembled current guidelines. Where pooling of data was possible, LLLT showed a positive effect size; in high quality studies of lateral epicondylitis, participants' grip strength was 9.59 Kg higher than the control group; for participants with Achilles tendinopathy, the effect was 13.6 mm less pain on a 100 mm visual analogue scale. Conclusion: This study found conflicting evidence as to the effectiveness of LLLT in the treatment of tendinopathy. However, an effective dosage window emerged showing benefit in the treatment of tendinopathy. Strong evidence exists from the 12 positive studies that positive outcomes are associated with the use of current dosage recommendations for the treatment of tendinopathy.

  10. Low level laser therapy reduces inflammation in activated Achilles tendinitis

    Science.gov (United States)

    Bjordal, Jan M.; Iversen, Vegard; Lopes-Martins, Rodrigo Alvaro B.

    2006-02-01

    Objective: Low level laser therapy (LLLT) has been forwarded as therapy for osteoarthritis and tendinopathy. Results in animal and cell studies suggest that LLLT may act through a biological mechanism of inflammatory modulation. The current study was designed to investigate if LLLT has an anti-inflammatory effect on activated tendinitis of the Achilles tendon. Methods: Seven patients with bilateral Achilles tendonitis (14 tendons) who had aggravated symptoms by pain-inducing activity immediately prior to the study. LLLT (1.8 Joules for each of three points along the Achilles tendon with 904nm infrared laser) and placebo LLLT were administered to either Achilles tendons in a random order to which patients and therapist were blinded. Inflammation was examined by 1) mini-invasive microdialysis for measuring the concentration of inflammatory marker PGE II in the peritendinous tissue, 2) ultrasound with Doppler measurement of peri- and intratendinous blood flow, 3) pressure pain algometry and 4) single hop test. Results: PGE 2- levels were significantly reduced at 75, 90 and 105 minutes after active LLLT compared both to pre-treatment levels (p=0.026) and to placebo LLLT (p=0.009). Changes in pressure pain threshold (PPT) were significantly different (P=0.012) between groups. PPT increased by a mean value of 0.19 kg/cm2 [95%CI:0.04 to 0.34] after treatment in the active LLLT group, while pressure pain threshold was reduced by -0.20 kg/cm2 [95%CI:-0.45 to 0.05] after placebo LLLT. Conclusion: LLLT can be used to reduce inflammatory musculskeletal pain as it reduces inflammation and increases pressure pain threshold levels in activity-induced pain episodes of Achilles tendinopathy.

  11. KINETICS OF BIOLOGICAL TREATMENT OF LOW LEVEL PESTICIDE WASTEWATER

    Directory of Open Access Journals (Sweden)

    Abdel E. Ghaly

    2012-01-01

    Full Text Available Pesticides are chemical substances intended to protect food crops and livestock from pests in order to pro-mote agricultural productivity and protect public health. Contamination of soil, air and water and threat to human and animal health are the major constraints in the use of pesticides. Treatment of pesticide contaminated water is, therefore, paramount. Biological treatment provides the most economical option when compared to other treatment methods. The aim of the study was to develop a safe and effective in the farm biological treatment for low level agricultural pesticide wastewater. The degradation of the fungicide captan was evaluated under batch and continuous modes of operation with a retention time of 15 days. The initial cell number (30.1ח106 cells/mL in the soil water mixture first declined with time during the 24 h reaching 15.6ח106 and 11.1ח106 cells/mL in the batch and continuous bioreactors, respectively. This was due to the inhibitory effect of pesticide on some of the soil microbial species that had less tolerance to captan at the initial concentration of 144 mg L-1. Then, the microbial population started growing, reaching its maximum after 5 and 12 days from the start in the batch and continuous bioreactors, respectively. The lag period and the specific growth rate for the batch bioreactor were 22 h and 0.096 h-1, respectively. A captan degradation efficiency of 89.6% was achieved after 10 days in the continuous bioreactor compared to a degradation efficiency of 100% after 5 d in the batch bioreactor. This study showed that the effluent from the continuous bioreactor has a captan concentration of 12 mg L-1 which is not acceptable for livestock water according to Health Canada Guidelines. A half life of 52 h is observed in the batch bioreactor.

  12. Radioactive characterization of leachates and efflorescences in the neighbouring areas of a phosphogypsum disposal site as a preliminary step before its restoration.

    Science.gov (United States)

    Gázquez, M J; Mantero, J; Mosqueda, F; Bolívar, J P; García-Tenorio, R

    2014-11-01

    After the recent closure of certain phosphoric acid plants located in the South-West of Spain, it has been decided to restore a big extension (more than six hundred hectares) of salt-marshes, where some million tonnes of phosphogypsum (PG), the main by-product generated by these plants, had been disposed of. This PG is characterized by its content of high activity concentrations of several radionuclides from the uranium series, mainly (226)Ra, (210)Pb, and (210)Po and, to a lesser extent, U-isotopes. The PG disposal area can be considered as a potential source of radionuclides into their nearby environment, through the waters which percolate from them and through the efflorescences formed in their surroundings. For this reason, a detailed radioactive characterization of the mentioned waters and efflorescences has been considered essential for a proper planning of the restoration tasks to be applied in the near future in the zone. To this end, U-isotopes, (234)Th, (230)Th, (226)Ra, (210)Pb and (210)Po activity concentrations have been determined by applying both alpha-particle and gamma-ray spectrometric techniques to selected water and efflorescence aliquots collected in the area. The analysis of the obtained results has enabled to obtain information about the geochemical behaviour in the area of the different radionuclides analyzed; and the conclusion to be drawn that, in the restoration plan under preparation, both the prohibition of outflowing waters from the disposal area to the neighbouring salt-marshes, and the removal of all the efflorescences now disseminated in their surroundings are essential.

  13. Development of new non destructive methods for bituminized radioactive waste drums characterization; Developpement de nouvelles methodes de caracterisation non destructive pour des dechets radioactifs enrobes dans du bitume

    Energy Technology Data Exchange (ETDEWEB)

    Pin, P

    2004-10-15

    Radioactive waste constitute a major issue for the nuclear industry. One of the key points is their characterization to optimize their management: treatment and packaging, orientation towards the suited disposal. This thesis proposes an evaluation method of the low-energy photon attenuation, based on the gamma-ray spectra Compton continuum. Effectively, the {sup 241}Am measurement by gamma-ray spectrometry is difficult due to the low energy of its main gamma-ray (59.5 keV). The photon attenuation strongly depends on the bituminous mix composition, which includes very absorbing elements. As the Compton continuum also depends on this absorption, it is possible to link the 59.5 keV line attenuation to the Compton level. Another technique is proposed to characterize uranium thanks to its fluorescence X-rays induced by the gamma emitters already present in the waste. The uranium present in the drums disturbs the neutron measurements and its measurement by self-induced X-ray fluorescence allows to correct this interference. Due to various causes of error, the total uncertainty is around 50 % on the activity of the radioisotope {sup 241}Am, corrected by the peak to Compton technique. The same uncertainty is announced on the uranium mass measured by self induced X-ray fluorescence. As a consequence of these promising results, the two methods were included in the industrial project of the 'Marcoule Sorting Unit'. One major advantage is that they do not imply any additional material because they use information already present in the gamma-ray spectra. (author)

  14. Mixed waste characterization, treatment & disposal focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  15. Cellular chromophores and signaling in low level light therapy

    Science.gov (United States)

    Hamblin, Michael R.; Demidova-Rice, Tatiana N.

    2007-02-01

    The use of low levels of visible or near infrared light (LLLT) for reducing pain, inflammation and edema, promoting healing of wounds, deeper tissues and nerves, and preventing tissue damage by reducing cellular apoptosis has been known for almost forty years since the invention of lasers. Originally thought to be a peculiar property of laser light (soft or cold lasers), the subject has now broadened to include photobiomodulation and photobiostimulation using non-coherent light. Despite many reports of positive findings from experiments conducted in vitro, in animal models and in randomized controlled clinical trials, LLLT remains controversial. This likely is due to two main reasons; firstly the biochemical mechanisms underlying the positive effects are incompletely understood, and secondly the complexity of rationally choosing amongst a large number of illumination parameters such as wavelength, fluence, power density, pulse structure and treatment timing has led to the publication of a number of negative studies as well as many positive ones. In recent years major advances have been made in understanding the mechanisms that operate at the cellular and tissue levels during LLLT. Mitochondria are thought to be the main site for the initial effects of light and specifically cytochrome c oxidase that has absorption peaks in the red and near infrared regions of the electromagnetic spectrum matches the action spectra of LLLT effects. The discovery that cells employ nitric oxide (NO) synthesized in the mitochondria by neuronal nitric oxide synthase, to regulate respiration by competitive binding to the oxygen binding of cytochrome c oxidase, now suggests how LLLT can affect cell metabolism. If LLLT photodissociates inhibitory NO from cytochrome c oxidase, this would explain increased ATP production, modulation of reactive oxygen species, reduction and prevention of apoptosis, stimulation of angiogenesis, increase of blood flow and induction of transcription factors. In

  16. Low-level light therapy of the eye and brain

    Directory of Open Access Journals (Sweden)

    Rojas JC

    2011-10-01

    Full Text Available Julio C Rojas1,2, F Gonzalez-Lima1 1Departments of Psychology, Pharmacology and Toxicology, University of Texas at Austin, Austin, TX; 2Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA Abstract: Low-level light therapy (LLLT using red to near-infrared light energy has gained attention in recent years as a new scientific approach with therapeutic applications in ophthalmology, neurology, and psychiatry. The ongoing therapeutic revolution spearheaded by LLLT is largely propelled by progress in the basic science fields of photobiology and bioenergetics. This paper describes the mechanisms of action of LLLT at the molecular, cellular, and nervous tissue levels. Photoneuromodulation of cytochrome oxidase activity is the most important primary mechanism of action of LLLT. Cytochrome oxidase is the primary photoacceptor of light in the red to near-infrared region of the electromagnetic spectrum. It is also a key mitochondrial enzyme for cellular bioenergetics, especially for nerve cells in the retina and the brain. Evidence shows that LLLT can secondarily enhance neural metabolism by regulating mitochondrial function, intraneuronal signaling systems, and redox states. Current knowledge about LLLT dosimetry relevant for its hormetic effects on nervous tissue, including noninvasive in vivo retinal and transcranial effects, is also presented. Recent research is reviewed that supports LLLT potential benefits in retinal disease, stroke, neurotrauma, neurodegeneration, and memory and mood disorders. Since mitochondrial dysfunction plays a key role in neurodegeneration, LLLT has potential significant applications against retinal and brain damage by counteracting the consequences of mitochondrial failure. Upon transcranial delivery in vivo, LLLT induces brain metabolic and antioxidant beneficial effects, as measured by increases in cytochrome oxidase and superoxide dismutase activities. Increases

  17. SECONDARY LOW-LEVEL WASTE GENERATION RATE ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    D. LaRue

    1999-05-10

    The objective of this design analysis is -to update the assessment of estimated annual secondary low-level waste (LLW) generation rates resulting from the repackaging of spent nuclear fuel (SNF) and high-level waste (HLW) for disposal at the Monitored Geologic Repository (MGR). This analysis supports the preparation of documentation necessary for license application (LA) for the MGR. For the purposes of this analysis, secondary LLW is defined, in brief terms, as LLW generated as a direct result of processing SNF/HLW through the receiving and repackaging operations. The current Waste Handling Building (WHB) design is based on the predominant movement of fuel assemblies through the wet handling lines within the WHB. Dry handling lines are also included in the current WHB design to accommodate canistered waste (i.e., SNF and/or HLW packages). Major input changes to this analysis in comparison to previous analyses include: (1) changes in the SNF/HLW arrival schedules; (2) changes to the WHB and the Waste Treatment Building (WTB) dimensions; and (3) changes in operational staff sizes within the WHB and WTB. The rates generated in this analysis can be utilized to define necessary waste processes, waste flow rates, and equipment sizes for the processing of secondary LLW for proper disposal. This analysis is based on the present reference design, i.e., Viability Assessment (VA) design, and present projections on spent fuel delivery and processing. LLW generation rates, for both liquids and solids, are a direct function of square footages in radiological areas, and a direct function of spent fuel throughput. Future changes in the approved reference design or spent fuel throughput will directly impact the LLW generation rates defined in this analysis. Small amounts of wastes other than LLW may be generated on a non-routine basis. These wastes may include transuranic (TRU), hazardous, and mixed wastes. Although the objective of this analysis is to define LLW waste generation

  18. Closure Plan for Active Low Level Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    2000-11-16

    This plan has been prepared in response to direction from the U.S. Department of Energy. The purpose of the plan is to define approaches that will be implemented to ensure protection of the public and the environment when active Low-Level Burial Grounds (LLBGs) at the Hanford Site are closed. Performance assessments for active burial grounds in the 200 East and West 200 Areas provide current estimates of potential environmental contamination and doses to the ''maximum exposed individual'' from burial ground operation and closure and compare dose estimates to performance objective dose limits for the facilities. This is an Operational Closure Plan. The intent of the guidance in DOE Order 435.1 is that this plan will be a living document, like the facility performance assessments, and will be revised periodically through the operational life of the LLBGs to reflect updated information on waste inventory. management practices, facility transition planning, schedule dates, assessments of post-closure performance, and environmental consequences. Out year dates identified in this plan are tentative. A Final Closure Plan will be prepared in the future when the timing and extent of closure-related activities for LLBGs can be established with greater certainty. After current operations at the LLBGs are concluded, this plan proposes transitioning of these facilities to the Environmental Restoration Program. This action will enable the Environmental Restoration Program to design and implement consistent and coordinated final remedial actions for active and inactive LLBGs. Active and inactive burial grounds in the 200 West and 200 East Areas are commingled. This plan describes approaches that will be implemented during Interim Closure, Final Closure, and Institutional Control Periods to prepare LLBGs for surface barriers, and the construction of barriers, as well as the scope of inspection, monitoring and maintenance practices that will be performed during

  19. Radionuclide-Chelating Agent Complexes in Low-Level Radioactive Decontamination Waste; Stability, Adsorption and Transport Potential

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Cantrell, Cantrell J.; Lindenmeier, Clark W.; Owen, Antionette T.; Kutnyakov, Igor V.; Orr, Robert D.; Felmy, Andrew R.

    2002-02-01

    Speciation calculations were done to determine whether organic complexants facilitate transport of radionuclides leached from waste buried in soils. EDTA readily mobilizes divalent transition metals and moderately impacts trivalent actinides. Picolinate readily mobilizes only Ni2+ and Co2+. These speciation predictions ignore the influence of soil adsorption and biodegradation that break apart the complexes. In adsorption studies, picolinate concentrations have to be >10-4 M to lower the adsorption of Ni and Co. For Sm(III), Th(IV), Np(V), U(VI), and Pu, the picolinate concentration must be >10-3 M before adsorption decreases. EDTA forms strong complexes with divalent transition metals and can stop adsorption of Ni and Co when EDTA solution concentrations are 10-5 M. EDTA complexes with Np(V), U(VI), and Pu are much weaker; EDTA concentrations would have to be >10-3 M to adversely effects non-transition metal/radionuclide adsorption. Most picolinate and ETDA-metal complexes appear to readily dissociate during interactions with soils. The enhanced migration of radionuclide-organic complexes may be limited to a few unique conditions. We recommend that mixtures of metal/radionuclides and EDTA should not be solidified or co-disposed with high pH materials such as cement. For weaker binding organic complexants, such as picolinate, citrate and oxalate, co-disposal of decontamination wastes and concrete should be acceptable.

  20. A THERMAL MODEL OF THE IMMOBILIZATION OF LOW-LEVEL RADIOACTIVE WASTE AS GROUT IN CONCRETE VAULTS

    Energy Technology Data Exchange (ETDEWEB)

    Shadday, M

    2008-10-27

    Salt solution will be mixed with cement and flyash/slag to form a grout which will be immobilized in above ground concrete vaults. The curing process is exothermic, and a transient thermal model of the pouring and curing process is herein described. A peak temperature limit of 85 C for the curing grout restricts the rate at which it can be poured into a vault. The model is used to optimize the pouring.